WO2023165011A1 - 一种三氮唑基交联剂及其制备方法、应用 - Google Patents

一种三氮唑基交联剂及其制备方法、应用 Download PDF

Info

Publication number
WO2023165011A1
WO2023165011A1 PCT/CN2022/090550 CN2022090550W WO2023165011A1 WO 2023165011 A1 WO2023165011 A1 WO 2023165011A1 CN 2022090550 W CN2022090550 W CN 2022090550W WO 2023165011 A1 WO2023165011 A1 WO 2023165011A1
Authority
WO
WIPO (PCT)
Prior art keywords
triazole
reaction
general formula
crosslinking agent
carbon atoms
Prior art date
Application number
PCT/CN2022/090550
Other languages
English (en)
French (fr)
Inventor
李铭新
门秀婷
公聪聪
王珂
Original Assignee
波米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波米科技有限公司 filed Critical 波米科技有限公司
Publication of WO2023165011A1 publication Critical patent/WO2023165011A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/14Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the application relates to a triazole-based crosslinking agent and its preparation method and application, belonging to the field of crosslinking agents.
  • polyimide and polybenzoxazole resins having excellent heat resistance and mechanical properties have been widely used as insulating materials for electronic components and passivation films, surface protection films, and interlayer insulating films of semiconductor devices.
  • a relief pattern coating film having good heat resistance can be obtained.
  • the positive photosensitive resin composition based on the polybenzoxazole resin not only can a miniaturized pattern be formed, but also the oxazole ring formed after curing also imparts good heat resistance.
  • the resin composition is used for applications such as semiconductors, the heat-cured film remains in the device as a permanent film, so the physical properties of the heat-cured film are important.
  • the film and the surface material of the semiconductor chip should have high adhesion.
  • the above-mentioned resin composition especially the cured resin film formed by the positive photosensitive resin composition capable of forming fine patterns, due to the differences of various additives such as photosensitizers and sensitizers in the composition, Existence leads to lower adhesion strength than when there are few additives.
  • the wiring method and mounting method of semiconductor devices have changed.
  • the cured resin film is in direct contact with copper or copper alloy and solder bumps, which requires good adhesion between the resin film and the copper or copper alloy substrate, and the resin cured film has good chemical resistance And high heat resistance, while not causing discoloration of copper or copper alloy substrates.
  • a triazole-based crosslinking agent is provided.
  • a triazole-based cross-linking agent the triazole-based cross-linking agent has the general formula described in formula I:
  • W is an organic group shown in general formula (6) or (7):
  • Y is the structure shown in general formula (6);
  • the R4 is a hydrogen atom or a hydrocarbon group with 1 to 10 carbon atoms
  • the R 5 is an organic group with 4 to 40 carbon atoms
  • X 1 and X 2 are each independently selected from one of the structures described in general formula (2), (3), (4), and (5)
  • R 3 is an organic group containing a carbon unsaturated double bond with 2 to 10 carbon atoms, and (b) is an alicyclic ring with 4 to 8 carbon atoms; or R 3 is a hydrogen atom, a methyl group or an ethyl group, and (b) is an alicyclic ring with 4 to 8 carbon atoms containing a carbon unsaturated double bond on the ring.
  • the crosslinking agent can be a single structure, or a mixed structure of two or more:
  • W is a structure shown in any one of the general formulas (6) to (7). Specifically, W may be a structure represented by general formula (6), or may be a structure represented by general formula (7).
  • R 1 and R 2 are substituents, Indicates that both positions 1 and 2 are single bonds or one of them is a double bond.
  • the position of the double bond is divided into three categories for description below, that is, positions 1 and 2 are both single bonds, 1 is a double bond, 2 is a single bond, 1 is a single bond, and 2 is a double bond.
  • R1 is an organic group containing carbon unsaturated double bonds with 2 to 10 carbon atoms
  • R2 is a hydrogen atom or an organic group with 1 to 6 carbon atoms.
  • the organic group may be a hydrocarbon group such as an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, a cycloalkyl group, an aryl group, an aralkyl group, or a heterogeneous group containing N, O, S, etc.
  • a hydrocarbon group such as an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, a cycloalkyl group, an aryl group, an aralkyl group, or a heterogeneous group containing N, O, S, etc.
  • Other organic groups of atoms such as an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, a cycloalkyl group, an aryl group, an aralkyl group, or a heterogeneous group containing N, O, S, etc.
  • Other organic groups of atoms such as an alkyl
  • R can be vinyl, propenyl, allyl, 1-methyl-1-vinyl or 1-enbutyl, 1-enyl, preferably, R is vinyl, allyl R Can be hydrogen atom, alkyl such as methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, t-butyl, cycloalkyl such as cyclopentyl, cyclohexyl, vinyl, propenyl, allyl, butenyl and other groups containing unsaturated double bonds and benzene rings, hydrocarbon groups containing heteroatoms such as N, O, S, etc., preferably, R2 is a hydrogen atom, methyl, ethyl , Propyl.
  • R 1 When 1 is a double bond, R 1 is connected to the main chain structure through a double bond, R 1 is an alkylene group with 1 to 3 carbon atoms, and R 2 is a hydrogen atom or an organic group with 1 to 6 carbon atoms.
  • R1 can be methylene, ethylene, propylene, preferably, R1 is methylene;
  • R2 can be a hydrogen atom, methyl , ethyl, propyl, butyl, pentyl, hexyl , isopropyl, tert-butyl and other alkyl groups, cyclopentyl and cyclohexyl and other alkyl groups, vinyl, propenyl, allyl, butenyl and other unsaturated double bond-containing groups and benzene rings, containing Hydrocarbon groups of heteroatoms such as N, O, S, etc., preferably, R 2 is a hydrogen atom, methyl, ethyl, propyl.
  • R 1 and R 2 are independently a hydrogen atom or a hydrocarbon group with 1 to 3 carbon atoms.
  • R 1 and R 2 are independently hydrogen atoms or methyl groups. It is worth noting that when 1 or 2 is a double bond, the substituents R 1 and R 2 may also have double bonds without affecting the structural stability, which is not limited in the present invention.
  • Described general formula (3) is asymmetric structure, when wherein 1 place is double bond, promptly substituting group R is connected with main chain by double bond, and the connection position of this double bond and main chain is not fixed, and its adjacent group
  • the group can be -CONH- group or -COOH group.
  • substitution positions of the substituents R1 and R2 are not fixed. When one of them is adjacent to the -CONH- group, the other is adjacent to the -COOH group, and vice versa .
  • R 3 is an organic group containing a carbon unsaturated double bond with 2 to 10 carbon atoms, and (b) is an alicyclic ring with 4 to 8 carbon atoms.
  • R 3 can be vinyl, propenyl, allyl, 1-methyl-1-vinyl, or 1-ene butyl, 1-enyl, preferably, R 3 is vinyl, allyl (b) can be cyclobutanyl, cyclobutenyl, cyclopentyl, cyclohexyl, 1-ene-cyclohexyl and the like. It is worth noting that when the substituent R 3 contains a carbon unsaturated double bond, the structure (b) may also contain a double bond, for example, it may be 5-allyl-nadic anhydride.
  • (b) is an alicyclic ring with 4 to 8 carbon atoms containing a carbon unsaturated double bond on the ring, such as , (b) may include structures shown in the following (I). At this time, it is the double bond on the ring that acts as a cross-linking agent, which can be cross-linked by a free radical chain addition reaction.
  • R 4 is a hydrogen atom or a hydrocarbon group with 1 to 10 carbon atoms.
  • R can be a hydrogen atom, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and other alkyl groups, ring Cycloalkyl groups such as pentyl and cyclohexyl, aromatic groups such as phenyl and tolyl, aralkyl groups such as benzyl, phenethyl, and phenylpropyl, vinyl, allyl, butenyl, propenyl, Unsaturated alkenyl groups such as isopropenyl and phenenyl are preferably hydrogen atoms or alkyl groups, more preferably hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, and still more preferably
  • Y is the structure shown in the general formula (6), and R 5 is an organic group with 4 to 40 carbon atoms.
  • the Y is a structure represented by general formula (6). Because substituent R4 is arranged in general formula (6), according to the difference of R4 position, the structure of general formula (7) has the following three kinds of isomers shown in (II):
  • the R 5 is an organic group with 4 to 40 carbon atoms, more preferably an organic group with 6 to 40 carbon atoms containing an aromatic ring, for example, it may be a structure shown in the following formula (III), But it is not limited to these.
  • the cross-linking agent contains the structure shown in general formula (7)
  • the cross-linking agent containing the structure shown in general formula (7) The number of carbon-carbon double bonds used in the crosslinking reaction in the linking agent is less, and the number of triazole groups is equal or less. Therefore, selective adjustments can be made according to the needs during use.
  • X1 and X2 are the same.
  • the compound of the general formula (2) is selected from any one of (9), (11) and (13);
  • the compound of the general formula (3) is selected from any one of (8), (10), (12);
  • the compound of the general formula (4) is (14);
  • the compound of the general formula (5) is (15).
  • R 2 is a hydrogen atom or an organic group with 1 to 6 carbon atoms
  • R is a hydrogen atom or a hydrocarbon group with 1 to 3 carbon atoms
  • R 6 is a hydrogen atom or an organic group with 1 to 6 carbon atoms.
  • R2 is a small-volume group, it can reduce steric hindrance and increase the collision probability of the double bond in the allyl group, thereby enhancing the reactivity. From the perspective of the effect on the cured resin film after cross-linking and curing, if the chain segment of R2 is longer, it can avoid excessive cross-linking to a certain extent and reduce the volume shrinkage of the resin after curing.
  • R 2 is a hydrogen atom or a hydrocarbon group with 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group.
  • R 6 is a hydrogen atom or an organic group with 1 to 6 carbon atoms, and the definition of the R 6 group is the same as R in the general formulas (8) to (11).
  • the definitions of the 2 groups are the same.
  • R 6 is a hydrogen atom.
  • the substitution position of the allyl group on the ring and the R6 group can be any position of 1, 4, 5, and 6 on the ring, which is not limited here.
  • R 4 is a hydrocarbon group with 1-3 carbon atoms.
  • R 4 is an alkyl group with 1 to 3 carbon atoms, preferably methyl or methyl.
  • the structure of the crosslinking agent includes at least one of (16)-(25)
  • R 1 is selected from C 2 -C 10 organic groups containing unsaturated double bonds
  • R 2 is selected from hydrogen atoms or C 1 -C 6 organic groups, or:
  • R 1 is selected from a C 1 -C 3 alkylene group
  • R 2 is selected from a hydrogen atom or a C 1 -C 6 organic group, or:
  • R 1 and R 2 are independently selected from a hydrogen atom or a C 1 -C 3 hydrocarbon group;
  • R 3 is selected from C 2 -C 10 organic groups containing carbon unsaturated double bonds
  • (b) is selected from C 4 -C 8 alicyclic rings
  • R 3 is selected from hydrogen atoms, methyl, ethyl
  • the R 4 is a hydrogen atom or a C 1 -C 10 hydrocarbon group.
  • This application designed and synthesized a triazole-based crosslinking agent by simultaneously introducing double bonds, amic acid or imide structures, and triazole groups into the structure. Adding it to the resin composition can not only improve the Film properties, improve the adhesion between the resin and the copper or copper alloy substrate after curing, inhibit the discoloration of the copper or copper alloy substrate, and at the same time, the resin has better heat resistance and chemical resistance after curing. The poor compatibility caused by too many types of additives is avoided, and the problem of excessive additives can be alleviated at the same time.
  • the second aspect of the present application provides a preparation method of the above-mentioned triazole-based crosslinking agent.
  • the preparation method of above-mentioned triazole-based crosslinking agent, described reaction step comprises:
  • An acid anhydride monomer with a structure shown in any one of the general formula (26) or (27) is subjected to amidation reaction with a diamine monomer with a structure shown in the general formula (28) to obtain the triazole-based crosslinking agent ;
  • R 1 , R 2 , R 3 , (b), and W are as defined above.
  • the order of addition and the reaction order of amidation and imidization can be obtained in the same crosslinking agent structure X 1 and X 2 are the same or different compound of.
  • the acid anhydride monomer of the structure shown in the general formula (26) or (27) is amidated with the diamine monomer shown in the general formula (28) to obtain a polyamide Acid compound, that is, a triazole-based crosslinking agent with a structure represented by general formula (1-2) or (1-4).
  • the acid anhydride monomer of the structure shown in general formula (26) or (27) and the diamine monomer shown in general formula (28) carry out amidation reaction and then carry out imidization reaction, then obtain general formula (1-1) Or a triazole-based crosslinking agent with the structure shown in (1-3).
  • the products of the incomplete imidization reaction are also within the protection scope of the present invention.
  • Described X 1 and X 2 different situations, for example, by controlling the addition amount of the acid anhydride monomer of structure shown in general formula (26), earlier pass through the acid anhydride monomer of structure shown in general formula (26) and general formula (28).
  • the diamine monomer of the structure shown in ) carries out amidation reaction and imidization reaction to obtain the compound of the structure shown in the general formula (1-5), then it is passed through the amidation reaction with the compound of the structure shown in the general formula (26)
  • a triazole-based crosslinking agent having a structure represented by the general formula (1-6) is obtained.
  • a step of post-processing the reaction solution to obtain the crosslinking agent product represented by formula (1) is also included.
  • the reaction solution is directly post-treated to obtain an amic acid compound, that is, the crosslinking agent shown in formula (1-2) or (1-4)
  • the reaction solution obtained is continued to carry out imidization reaction, and after the imidization reaction finishes, the reaction solution obtained is subjected to post-treatment, then formula (1-1) or (1-3) is obtained
  • the indicated crosslinker is a general compound purification method in the art, and there is no difficulty for those skilled in the art.
  • the post-treatment includes the step of removing solvent and other impurities by distillation or vacuum distillation to obtain the product; or adding water to the reaction solution, so that the product is directly precipitated.
  • the main components of impurities are unreacted raw materials and by-products formed by the reaction.
  • amidation reaction and the imidization reaction need to be carried out in an aprotic polar solvent.
  • the aprotic type solvent is selected from N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide and ⁇ -butyrolactone at least one of the
  • reaction temperatures of the amidation reaction and the imidization reaction are independently 0-100°C.
  • reaction temperatures of the amidation reaction and the imidization reaction are independently 20-50°C.
  • the temperature of the reaction is independently selected from 0°C, 10°C, 20°C, 25°C, 30°C, 35°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C Any value of or any range value in between.
  • reaction times of the amidation reaction and the imidization reaction are independently 10-40 h.
  • reaction times of the amidation reaction and the imidization reaction are independently 15-30 h.
  • reaction time is independently selected from any value among 10h, 15h, 20h, 25h, 30h, 35h, 40h or any range value between them.
  • the molar ratio of the acid anhydride monomer to the diamine monomer is 2:(0.9-1.1).
  • the molar ratio of the acid anhydride monomer to the diamine monomer is 2:1.
  • the base is selected from at least one of pyridine, triethylamine, and diisopropylethylamine.
  • the acid anhydride is selected from at least one of acetic anhydride and trifluoroacetic anhydride.
  • alkali and acid anhydride are directly added to the reaction solution after the amidation reaction, and the amic acid compound obtained by the amidation reaction is subjected to imidization reaction to obtain a crosslinking agent containing an imide ring structure.
  • the base can be any base reported in the prior art that can be used to catalyze imidization, such as pyridine, triethylamine or diisopropylethylamine, etc., preferably pyridine, and the amount of the base is generally
  • the molar weight of the acid anhydride monomer shown in formula (26) or (27) is 2 times or more, such as 2 to 10 times, that is, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times , 9 times, 10 times.
  • the acid anhydride used can be any acid anhydride reported in the prior art that can be used for imidization, such as acetic anhydride, trifluoroacetic anhydride, etc., preferably acetic anhydride.
  • the amount of the acid anhydride is 2 times or more than the molar amount of the acid anhydride monomer shown in the general formula (26) or (27), such as 2 to 10 times, for example, it can be 2 times, 3 times, 4 times, 5 times, 6 times Times, 7 times, 8 times, 9 times, 10 times.
  • the third aspect of the present application provides a resin composition.
  • a resin composition comprising a heat-resistant resin and a triazole-based cross-linking agent, the triazole-based cross-linking agent being the above-mentioned triazole-based cross-linking agent and/or the above-mentioned
  • the triazole-based crosslinking agent prepared by the preparation method.
  • the resin composition by mass, corresponds to 0.5-50 parts of triazole-based crosslinking agent per 100 parts of heat-resistant resin.
  • the resin composition by mass, corresponds to 5-40 parts of triazole-based crosslinking agent per 100 parts of heat-resistant resin.
  • the resin composition corresponds to 8-30 parts of triazole-based crosslinking agent per 100 parts of heat-resistant resin by mass.
  • the addition amount of the triazole-based crosslinking agent in this application is 0.5-50 mass parts with respect to 100 mass parts of resins.
  • the content of the triazole-based crosslinking agent of the present invention may be 5 parts by mass or more, preferably 8 parts by mass or more, based on 100 parts by mass of the polymer. From the viewpoint of storage stability and prevention of excessive crosslinking, it may be 45 parts by mass or less, preferably 40 parts by mass or less, more preferably 30 parts by mass or less.
  • the number of parts of the corresponding triazole-based crosslinking agent is independently selected from 0.5 parts, 1 part, 5 parts, 8 parts, Any value in 10 parts, 15 parts, 20 parts, 25 parts, 30 parts, 35 parts, 40 parts, 45 parts, 50 parts or any range between the two.
  • the fourth aspect of the present application provides the application of the above-mentioned triazole-based cross-linking agent and the triazole-based cross-linking agent obtained by the above-mentioned preparation method as a heat-resistant resin modifier.
  • the crosslinking agent in the present invention can be used as a heat-resistant resin modifier.
  • the addition of the crosslinking agent can improve the film-forming properties of the resin, improve the adhesion of the heat-resistant resin to the copper or copper alloy substrate after curing, and inhibit the discoloration of the copper or copper alloy substrate. heat and chemical resistance.
  • the heat-resistant resin includes polyimide resin, a precursor of polyimide resin such as polyamic acid resin or polyamic acid ester resin, polybenzoxazole resin, polyamide, polyamideimide, polyamide Benzimidazole, polybenzothiazole, etc.
  • Some active groups in the resin are easy to react with copper or copper alloy substrates, and the copper ions on the surface of the substrate will diffuse to the resin layer, causing the substrate to change color, thereby affecting the dielectric properties ;
  • the copper ions diffused into the resin layer will cause the resin to oxidize and decompose, and a gap will be formed between the resin layer and the substrate, and the adhesion will be reduced, thus affecting normal use.
  • the structure of the triazole-based crosslinking agent in the present invention simultaneously contains carbon-carbon double bonds, amic acid or imide rings, and triazole groups.
  • the cross-linking agent in the present invention is used in the resin composition to generate a cross-linking reaction by heating to form a polymer network, which can enhance the film-forming properties of the resin and the mechanical strength of the film.
  • the crosslinking in the present invention forms a polymer through cross-linking, and fixes the triazole group in the polymer network, thereby promoting the triazole group to better complex with the copper or copper alloy substrate, inhibiting the discoloration of the substrate, and improving the resin and substrate. Adhesion of the material.
  • the present invention provides a resin composition, including a heat-resistant resin and a crosslinking agent.
  • the cross-linking agent is a cross-linking agent with a structure represented by general formula (1)
  • the heat-resistant resin includes but is not limited to a positive-type photosensitive resin.
  • a positive-type photosensitive resin polyimide Amines or precursors thereof, polybenzoxazoles or precursors thereof.
  • the triazole-based crosslinking agent in the present invention contains carbon-carbon double bonds and can undergo thermal crosslinking reactions. The reaction may be a reaction between cross-linking agent molecules, or a cross-linking reaction between the cross-linking agent and other double bond-containing substances in the resin composition, and finally a cured resin is obtained.
  • the triazole-based crosslinking agent in the present invention can be used in conjunction with at least one other thermal crosslinking agent, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin , dimethylol urea, dimethylol ethylene urea, dimethylol propylene urea, trimethylol melamine, hexamethylol melamine, etc.
  • the resin composition may also contain other components, such as photosensitizers, sensitizers, silane coupling agents, etc., which can be adjusted according to needs, and are not limited here.
  • the cured resin film formed after the resin composition is cured can be used as a surface protection layer, an interlayer insulating layer, a rewiring layer, etc. of a semiconductor device, and is not limited here.
  • the crosslinking agent provided by this application has very good chemical resistance and good heat resistance, and can protect the substrate from being corroded by the resin, inhibit the discoloration of the copper or copper alloy substrate, and at the same time Enhanced the adhesion between the resin layer and the substrate;
  • the preparation method of the cross-linking agent provided by the application has the advantages of easy-to-obtain raw materials, simple process, and low cost, which is conducive to industrial production; due to heating, a cross-linking reaction is generated to form a polymer network, thereby strengthening the formation of the resin. Membrane properties and mechanical strength of the membrane.
  • the weight-average molecular weight (Mw) of the resin was determined by gel permeation chromatography (the instrument model is LC-20AD of Shimadzu Corporation, Japan) by standard polystyrene conversion, and the elution solvent was N-methylpyrrolidone.
  • the viscosity of the resin composition was tested at 25 ⁇ 0.1° C. using a rotational viscometer (Brookfield DV2T RV).
  • a Fourier transform infrared spectrometer (Bruker, Germany, Tensor-27) was used to test the synthesized cross-linking agent samples to detect whether the cross-linking agent in the present application was successfully prepared.
  • the resin composition sample is evenly coated on the silicon wafer, and then it is placed on a 120°C heating platform (HT-300 experimental electric heating plate, Guangzhou Godana Instrument Co., Ltd.) for 3 minutes and softly baked to obtain a film thickness It is a resin film of 10-20 ⁇ m. Then place the film in a vacuum anaerobic oven (MOLZK-32D1), under the protection of nitrogen atmosphere, heat treatment at 170°C for 30 minutes, then raise the temperature to 320°C for 1 hour, and treat at 320°C for 1 hour, then Directly cool naturally in an oven to below 50°C to finally obtain a cured film. Put the silicon chip with the cured film in the hydrofluoric acid solution to corrode and strip the silicon chip. Film-forming properties were evaluated using the following criteria.
  • Excellent the resin composition can form a film, has toughness, and does not break when folded in half;
  • the resin composition can form a film, has toughness, and breaks when folded in half;
  • the resin composition sample is evenly coated on the substrate of copper material by using a coating machine, and it is placed on a heating platform (HT-300 experimental electric heating plate, Guangzhou Gedana Instrument Co., Ltd.) at 120 ° C for 3 minutes to soften. Baking to obtain a resin film with a film thickness of 10-20 ⁇ m.
  • a heating platform HT-300 experimental electric heating plate, Guangzhou Gedana Instrument Co., Ltd.
  • the cured film obtained by the same method above was placed in a PCT test box for 120 hours of PCT aging test (121 ° C, 2 atmospheric pressure saturated steam; Dongguan Hongjin Technology PCT-30), after the PCT test was completed, and then Use the same method as above to carry out the peeling test with adhesive tape, and record the number of cells peeled off as the peeling situation after the PCT test.
  • PCT aging test 121 ° C, 2 atmospheric pressure saturated steam; Dongguan Hongjin Technology PCT-30
  • the homogenizer Utilize the homogenizer to coat the resin composition sample evenly on the silicon wafer, it is placed on the heating platform of 120 °C (HT-300 experimental electric heating plate, Guangzhou Godana Instrument Co., Ltd.) and carry out soft baking for 3 minutes, A resin film having a film thickness of 10 to 20 ⁇ m was obtained. Then place the film in a vacuum anaerobic oven (MOLZK-32D1), under the protection of nitrogen atmosphere, heat treatment at 170°C for 30 minutes, then raise the temperature to 320°C for 1 hour, and treat at 320°C for 1 hour, then Directly cool naturally in an oven to below 50°C to finally obtain a cured film.
  • MOLZK-32D1 vacuum anaerobic oven
  • the heat resistance of the resin was evaluated by measuring the temperature at which the weight of the above cured film decreased by 5% (ie, T 5wt% ). Using a thermogravimetric analyzer (US TA company, Q50 series) to test, the heating rate is 10°C/min, and the temperature range is 30-650°C.
  • the homogenizer Utilize the homogenizer to coat the resin composition sample evenly on the silicon wafer, it is placed on the heating platform of 120 °C (HT-300 experimental electric heating plate, Guangzhou Godana Instrument Co., Ltd.) and carry out soft baking for 3 minutes, A resin film having a film thickness of 10 to 20 ⁇ m was obtained. Then place the film in a vacuum anaerobic oven (MOLZK-32D1), under the protection of nitrogen atmosphere, heat treatment at 170°C for 30 minutes, then raise the temperature to 320°C for 1 hour, and treat at 320°C for 1 hour, then Directly cool naturally in an oven to below 50°C to finally obtain a cured film.
  • MOLZK-32D1 vacuum anaerobic oven
  • BANI-X (Maruzen Petrochemical Co., Ltd.) is compared with the crosslinking agent in the present application, and the structure of the BANI-X is as follows:
  • 1550cm -1 is the CN asymmetric stretching vibration of CONH.
  • 1550cm -1 is the CN asymmetric stretching vibration of CONH.
  • Reference example 2 is the same as reference example 1 except that the crosslinking agent A-1 is changed from 0.5g to 0.8g.
  • Reference example 3 is the same as reference example 1 except that the crosslinking agent A-1 is changed from 0.5g to 1.0g.
  • Reference example 4 is the same as reference example 1 except that the crosslinking agent A-1 is changed from 0.5g to 1.3g.
  • Reference Example 5 is the same as Reference Example 2 except that the cross-linking agent A-1 is replaced by A-2.
  • Reference Example 6 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-3.
  • Reference Example 7 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-4.
  • Reference Example 8 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-5.
  • Reference Example 9 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-6.
  • Reference Example 11 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-8.
  • Reference Example 12 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-9.
  • Reference Example 13 is the same as Reference Example 2 except that the crosslinking agent A-1 is replaced by A-10.
  • Comparative Example 6 was the same as Reference Example 2 except that the crosslinking agent A-1 was changed to 2,6-dimethoxymethylene-4-tert-butylphenol (DMOM-PTBP-MF, Honshu Chemical).
  • DMOM-PTBP-MF 2,6-dimethoxymethylene-4-tert-butylphenol
  • Comparative Example 8 is the same as Reference Example 1 except that no crosslinking agent is added to the system.
  • the resin compositions added with crosslinking agents A-1 to A-10 in this application all have good film-forming properties, and the resin cured film has good adhesion to the copper substrate, and the adhesion There was no or a small amount of peeling in the test; in the copper discoloration test, it has a good effect of inhibiting the discoloration of the copper substrate.
  • the cured resin film did not crack in strong acid solution, strong alkali solution, or organic solvent.
  • the resin cured film added with the crosslinking agent in this application still maintains good heat resistance, and its T 5wt% is equivalent to that of pure resin cured film.
  • This application designed and synthesized a triazole-based crosslinking agent by simultaneously introducing double bonds, amic acid or imide structures, and triazole groups into the structure. Adding it to the resin composition can not only improve the Film properties, improve the adhesion between the resin and the copper or copper alloy substrate after curing, inhibit the discoloration of the copper or copper alloy substrate, and at the same time, the resin has better heat resistance and chemical resistance after curing. The poor compatibility caused by too many types of additives is avoided, and the problem of excessive additives can be alleviated at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请公开了一种交联剂及其制备方法、应用。该交联剂的结构中含有三氮唑基,并同时含有双键、酰胺酸或酰亚胺结构。将其加入树脂组合物中,不仅可改善成膜性,提高树脂固化后与铜或铜合金基材的密合性,抑制铜或铜合金基材变色,同时树脂固化后有较好的耐热性和耐化学品性。避免了添加剂种类过多带来的配合性不佳,同时可缓解添加剂过量的问题。

Description

一种三氮唑基交联剂及其制备方法、应用 技术领域
本申请涉及一种三氮唑基交联剂及其制备方法、应用,属于交联剂领域。
背景技术
近年来,电子元件的绝缘材料以及半导体装置的钝化膜、表面保护膜、层间绝缘膜等广泛使用具有优异耐热性、机械特性的聚酰亚胺、聚苯并噁唑树脂。通过对感光性聚酰亚胺树脂或聚苯并噁唑树脂组合物的涂布、曝光、显影以及固化处理,可以得到耐热性好的浮雕图案覆膜。针对基于聚苯并噁唑树脂的正性感光性树脂组合物而言,不仅可形成微细化图案,同时固化后形成的噁唑环也赋予了良好的耐热性。将树脂组合物用于半导体等用途时,加热固化后的膜会作为永久膜而残留在器件内,因此,加热固化后的膜的物性是重要的。比如,为了增强半导体封装的可靠性,膜与半导体芯片表面材料要有较高的密合性。但是,对于上述树脂组合物而言,特别是能够形成微细图案的正性感光性树脂组合物形成的树脂固化膜而言,由于构成组合物中的感光剂、敏化剂等多种添加物的存在,导致密合强度比添加物少的情况低。
另一方面,随着半导体装置的集成化、芯片尺寸小型化发展,半导体装置的布线方式以及安装方法发生改变。比如,从以往的金或铝布线改为电阻更低的铜或铜合金布线,从以往的铅-锡共晶焊接变为更高密度安装的球栅阵列、芯片尺寸安装。固化后的树脂覆膜与铜或铜合金以及焊锡凸块直接接触,这就要求树脂覆膜与铜或铜合金基材有较好的密合性,树脂固化膜有较好的耐化学品性及高的耐热性,同时不能引起铜或铜合金基材变色。
现有技术中,通常会在树脂中添加多种添加剂来获取好的树脂固化膜性能。专利CN109478016A中,通过添加含氮芳香族化合物,来增加树脂对基材的粘结性。专利JP5446203B2中,通过添加杂环化合物,来减少树脂对铜或铜合金的腐蚀,增加密合性。专利CN102375336B中,通过添加嘌呤衍生物、交联剂、有机钛化合物,来增加密合性、耐热性、耐化学品性,抑制铜或铜合金基材变色。为了实现综合性能,现有技术中会添加多种添加剂,往往造成添加剂含量过多,反而会降低树脂材料的性能。此外,多种添加剂的存在往往存在配合性是否匹配的问题,否则,容易在提高一方面性能的同时造成另一性能的下降。
发明内容
根据本申请的一个方面,提供了一种三氮唑基交联剂。
一种三氮唑基交联剂,所述三氮唑基交联剂具有式I所述的通式:
X 1-W-X 2  式I
W为通式(6)或(7)所示的有机基团:
Figure PCTCN2022090550-appb-000001
通式(7)中,Y为通式(6)所示的结构;
所述R 4为氢原子或碳原子数1~10的烃基;
所述R 5为碳原子数4~40的有机基团;
X 1和X 2各自独立地,选自通式(2)、(3)、(4)、(5)所述结构中的一种
Figure PCTCN2022090550-appb-000002
所述通式(2)~(3)中,
Figure PCTCN2022090550-appb-000003
表示①或②位置处均为单键或其中一处为双键;当均为单键时,R 1为碳原子数2~10的含碳不饱和双键的有机基团,R 2为氢原子或碳原子数1~6的有机基团;当①处为双键时,R 1为碳原子数1~3的亚烷基,R 2为氢原子或碳原子数1~6的有机基团;当②处为双键时,R 1与R 2分别独立的为氢原子或碳原子数1~3的烃基;
所述通式(4)~(5)中,R 3为碳原子数2~10的含碳不饱和双键的有机基团,(b)为碳原子数4~8的脂肪环;或R 3为氢原子、甲基或乙基,(b)为环上含碳不饱和双键的碳原子数4~8的脂肪环。
具体地,交联剂可以是单一一种结构,也可以是两种及以上的混合结构:
Figure PCTCN2022090550-appb-000004
Figure PCTCN2022090550-appb-000005
所述W为通式(6)~(7)任一所示结构。具体来说,W可以为通式(6)所示结构,也可以为通式(7)所示结构。
所述通式(2)~(3)中,R 1、R 2为取代基,
Figure PCTCN2022090550-appb-000006
表示①或②位置处均为单键或其中一处为双键。为了方便进一步阐述,下面将双键所在位置分三类进行说明,即①与②位置处均为单键、①处为双键②处为单键、①处为单键②处为双键。当①与②位置处均为单键时,R 1为碳原子数2~10的含碳不饱和双键的有机基团,R 2为氢原子或碳原子数1~6的有机基团。本发明中,所述有机基团可以是烷基、烯基、炔基、亚烷基、环烷基、芳香基、芳烷基等烃基基团,也可以是包含N、O、S等杂原子的其它有机基团。例如,R 1可以为乙烯基、丙烯基、烯丙基、1-甲基-1-乙烯基或1-烯丁基,1-烯戊基,优选的,R 1为乙烯基、烯丙基;R 2可以为氢原子,甲基、乙基、丙基、丁基、戊基、己基、异丙基、叔丁基等烷基,环戊基、环己基等环烷基,乙烯基、丙烯基、烯丙基、丁烯基等含不饱和双键的基团及苯环,含有N、O、S等杂原子的烃基等,优选的,R 2为氢原子、甲基、乙基、丙基。
当①处为双键时,R 1与主链结构通过双键连接,R 1为碳原子数1~3的亚烷基,R 2为氢原子或碳原子数1~6的有机基团。例如,R1可以为亚甲基、亚乙基、亚丙基,优选的,R 1为亚甲基;R 2可以为氢原子,甲基、乙基、丙基、丁基、戊基、己基、异丙基、叔丁基等烷基,环戊基、环己基等环烷基,乙烯基、丙烯基、烯丙基、丁烯基等含不饱和双键的基团及苯环,含有N、O、S等杂原子的烃基等,优选的,R 2为氢原子、甲基、乙基、丙基。
当②处为双键时,为了保证双键的反应活性,减少空间位阻,取代基R 1、R 2应尽可能为小体积基团。R 1与R 2分别独立的为氢原子或碳原子数1~3的烃基,二者可以相同也可以不同,其可以为氢原子、甲基、乙基、丙基等烷基,也可以为乙烯基、烯丙基等烯基,优选的,R 1、R 2分别独立的为氢原子或甲基。值得注意的是,当①处或②处为双键时,在不影响结构稳定性的情况下,取代基R 1、R 2上也可以存在双键,本发明对此不进行限定。
所述通式(3)为非对称结构,当其中①处为双键时,即取代基R 1通过双键与主链相连,该双键与主链的连接位置并不固定,其临近基团可以是-CONH-基团,也可以是-COOH基。当其中①处为单键时,所述取代基R 1与R 2的取代位置不固定,当其中一个与-CONH-基团相邻时,另一个则与-COOH基相邻,反之亦同。
所述通式(4)~(5)中,R 3为碳原子数2~10的含碳不饱和双键的有机基团,(b)为碳原子数4~8的脂肪环。例如,R 3可以为乙烯基、丙烯基、烯丙基、1-甲基-1-乙烯基,或1-烯丁基,1-烯戊基, 优选的,R 3为乙烯基、烯丙基;(b)可以为环丁烷基、环丁烯基、环戊烷基、环己烷基、1-烯-环己烷基等。值得注意的是,当取代基R 3中含有碳不饱和双键时,所述(b)结构中也可以含有双键,例如,可以为5-烯丙基-纳迪克酸酐。
所述通式(4)~(5)中,R 3为氢原子、甲基或乙基时,(b)为环上含碳不饱和双键的碳原子数4~8的脂肪环,例如,(b)可以列举下述(Ⅰ)所示结构。此时,发挥交联剂作用的是环上的双键,可通过发生自由基链式加成反应进行交联。
Figure PCTCN2022090550-appb-000007
所述通式(6)中,R 4为氢原子或碳原子数1~10的烃基。例如,R 4可以为氢原子,甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、庚基、辛基、壬基、癸基等烷基,环戊基、环己基等环烷基,苯基、甲苯基等芳香基团,苄基、苯乙基、苯基丙基等芳烷基,乙烯基、烯丙基、丁烯基、丙烯基、异丙烯基、苯烯基等不饱和烯基,优选为氢原子或烷基,更优选为氢原子或碳原子数1~3的烷基,更更优选为氢原子、甲基或乙基。
所述通式(7)中,Y为通式(6)所示结构,R 5为碳原子数4~40的有机基团。
所述Y为通式(6)所示的结构。由于通式(6)中有取代基R 4,根据R 4位置的不同,通式(7)的结构有以下(Ⅱ)所示的三种异构体:
Figure PCTCN2022090550-appb-000008
所述R 5为碳原子数4~40的有机基团,进一步优选为含有芳香族环的碳原子数6~40的有机基团,例如,可以为下述式(Ⅲ)所示的结构,但并不限定于这些。
Figure PCTCN2022090550-appb-000009
相比通式(6)所示结构而言,交联剂中含有通式(7)所示的结构时,相同的交联剂重量份数下,含有通式(7)所示结构的交联剂中用于交联反应的碳碳双键数量更少,三氮唑基团数量相当或更少。因此,使用时可以根据需求进行选择性调整。
可选地,所述X 1和X 2的结构相同。
可选地,所述通式(2)的化合物选自(9)、(11)、(13)中的任意一种;
所述通式(3)的化合物选自(8)、(10)、(12)中的任意一种;
所述通式(4)的化合物为(14);
所述通式(5)的化合物为(15)。
Figure PCTCN2022090550-appb-000010
所述通式(8)~(11)中,R 2为氢原子或碳原子数1~6的有机基团;
所述通式(12)~(13)中,R 2为氢原子或碳原子数1~3的烃基;
所述通式(14)~(15)中,R 6为氢原子或碳原子数1~6的有机基团。
从反应活性的角度考虑,R 2若为小体积基团可以降低空间位阻,增强烯丙基中双键的碰撞几率,从而增强反应活性。从交联固化后对树脂固化膜的影响来看,R 2若链段较长,则可以一定程度上避 免交联过密,降低树脂固化后的体积收缩率。
所述通式(12)~(13)中,R 2为氢原子或碳原子数1~3的烃基,优选为氢原子或烷基,进一步优选为氢原子或甲基。
所述通式(14)~(15)中,R 6为氢原子或碳原子数1~6的有机基团,所述R 6基团的定义与通式(8)~(11)中R 2基团的定义一致。优选的,R 6为氢原子。此外,环上的烯丙基和R 6基团的取代位置可以是环上的1、4、5、6的任意一处位置,在此不进行限定。
Figure PCTCN2022090550-appb-000011
进一步的,所述通式(6)-(7)中,R 4为碳原子数1~3的烃基。
进一步的,所述通式(6)-(7)中,R 4为碳原子数1~3的烷基,优选为甲基或甲基。
可选地,所述交联剂的结构包括(16)-(25)中的至少一种
Figure PCTCN2022090550-appb-000012
Figure PCTCN2022090550-appb-000013
可选地,当①和②均为C-C键时,R 1选自C 2-C 10含不饱和双键的有机基团,R 2选自氢原子或C 1-C 6的有机基团,或:
当①为C=C键时,R 1选自C 1-C 3的亚烷基,R 2选自氢原子或C 1-C 6的有机基团,或:
当②为C=C键时,R 1和R 2分别独立地,选自氢原子或C 1-C 3的烃基;
当R 3选自C 2-C 10的含碳不饱和双键的有机基团时,(b)选自C 4-C 8的脂肪环;当R 3选自氢原子、甲基、乙基中的一种时,(b)选自C 4-C 8的脂肪环,且环上含碳不饱和双键;
所述R 4为氢原子或C 1-C 10的烃基。
本申请通过在结构中同时引入双键、酰胺酸或酰亚胺结构、三氮唑基团,设计合成了一种三氮唑基交联剂,将其加入树脂组合物中,不仅可改善成膜性,提高树脂固化后与铜或铜合金基材的密合性,抑制铜或铜合金基材变色,同时树脂固化后有较好的耐热性和耐化学品性。避免了添加剂种类过多带来的配合性不佳,同时可缓解添加剂过量的问题。
本申请的第二个方面,提供了上述三氮唑基交联剂的制备方法。
上述三氮唑基交联剂的制备方法,所述反应步骤包括:
将通式(26)或(27)中任一所示结构的酸酐单体,与通式(28)所示结构的二胺单体进行酰胺化反应,得到所述三氮唑基交联剂;
或,将通式(26)或(27)中任一所示结构的酸酐单体,与通式(28)所示结构的二胺单体先进行酰胺化反应,再进行亚胺化反应,得到所述三氮唑基交联剂;
Figure PCTCN2022090550-appb-000014
所述通式(26)~(28)中,R 1、R 2、R 3、(b)、
Figure PCTCN2022090550-appb-000015
和W与上述所述的定义一致。
通过控制通式(26)或(27)所示结构的酸酐单体的添加量、添加顺序以及酰胺化和亚胺化的反应顺序可以得到同一交联剂结构中X 1和X 2相同或不同的化合物。所述X 1和X 2相同的情况,例如,通式(26)或(27)所示结构的酸酐单体与通式(28)所示的二胺单体进行酰胺化反应,得到聚酰胺酸化合物,即通式(1-2)或(1-4)所示结构的三氮唑基交联剂。通式(26)或(27)所示结构的酸酐单体与通式(28)所示的二胺单体进行酰胺化反应后再进行亚胺化反应,则得到通式(1-1)或(1-3) 所示结构的三氮唑基交联剂。所述酰胺化反应后再进行亚胺化反应,若亚胺化反应不完全,则得到通式(1-1)和(1-2)所示结构的三氮唑基交联剂的混合物,或(1-3)和(1-4)所示结构的三氮唑基交联剂的混合物。所述亚胺化反应不完全的产物也在本发明的保护范围之内。
所述X 1和X 2不同的情况,例如,通过控制通式(26)所示结构的酸酐单体的添加量,先通过通式(26)所示结构的酸酐单体和通式(28)所示结构的二胺单体进行酰胺化反应和亚胺化反应得到通式(1-5)所示结构的化合物,再将其与通式(26)所示结构的化合物通过酰胺化反应得到通式(1-6)所示结构的三氮唑基交联剂。
Figure PCTCN2022090550-appb-000016
所述酰胺化反应或亚胺化反应后,还包括对反应液进行后处理得到式(1)所示的交联剂产品的步骤。举例来说,X 1和X 2相同的情况,酰胺化反应后,对反应液直接进行后处理则得到酰胺酸化合物,即式(1-2)或(1-4)所示的交联剂;在酰胺化反应后,将得到的反应液继续进行亚胺化反应,待亚胺化反应结束后,对得到的反应液进行后处理,则得到式(1-1)或(1-3)所示的交联剂。所述反应液的后处理为本领域通用的化合物纯化手段,对本领域的技术人员来说不存在困难。举例来说,所述后处理包括利用蒸馏或真空蒸馏的方式除去溶剂以及其他杂质,从而得到产物的步骤;或在反应液中加入水,从而产物直接沉降析出。其中,杂质主要成分是未反应的原料以及反应形成的副产物。
可选地,所述酰胺化反应与所述亚胺化反应需在非质子极性溶剂中进行。
可选地,所述非质子机型溶剂选自N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜和γ-丁内酯中的至少一种。
可选地,所述酰胺化反应和所述亚胺化反应,反应的温度分别独立地为0-100℃。
可选地,所述酰胺化反应和所述亚胺化反应,反应的温度分别独立地为20-50℃。
可选地,反应的温度独立地选自0℃、10℃、20℃、25℃、30℃、35℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃中的任意值或任意两者之间的范围值。
可选地,所述酰胺化反应和所述亚胺化反应,反应的时间分别独立地为10-40h。
可选地,所述酰胺化反应和所述亚胺化反应,反应的时间分别独立地为15-30h。
可选地,反应的时间独立地选自10h、15h、20h、25h、30h、35h、40h中的任意值或任意两者之间的范围值。
可选地,所述酸酐单体与所述二胺单体的摩尔比,为2:(0.9-1.1)。
可选地,所述酸酐单体与所述二胺单体的摩尔比,为2:1。
可选地,当采用先酰胺化反应再亚胺化反应的方式时:
酰胺化反应后需向反应液中加入碱和酸酐,再亚胺化反应。
可选地,所述碱选自吡啶、三乙胺、二异丙基乙基胺中的至少一种。
可选地,所述酸酐选自乙酸酐、三氟乙酸酐中的至少一种。
具体来说,在酰胺化反应后直接在反应液中加入碱和酸酐,将酰胺化反应得到的酰胺酸化合物再进行亚胺化反应,则得到含有酰亚胺环结构的交联剂。所述的碱可以为现有技术中报道的任意可以用于催化亚胺化的碱,例如吡啶、三乙胺或二异丙基乙基胺等,优选为吡啶,所述碱的用量为通式(26)或(27)所示酸酐单体摩尔量的2倍及以上,例如2~10倍,即可以为2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍。所用的酸酐可以是现有技术中报道的任意可以用于亚胺化的酸酐,例如乙酸酐、三氟乙酸酐等,优选为乙酸酐。所述酸酐的用量为通式(26)或(27)所示酸酐单体摩尔量的2倍及以上,例如2~10倍,例如可以是2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍。
本申请的第三个方面,提供了一种树脂组合物。
一种树脂组合物,所述树脂组合物包括耐热性树脂和三氮唑基交联剂,所述三氮唑基交联剂为上述所述的三氮唑基交联剂和/或上述所述制备方法制备得到的三氮唑基交联剂。
可选地,所述树脂组合物,以质量计,每100份耐热性树脂,对应三氮唑基交联剂0.5-50份。
可选地,所述树脂组合物,以质量计,每100份耐热性树脂,对应三氮唑基交联剂5-40份。
可选地,所述树脂组合物,以质量计,每100份耐热性树脂,对应三氮唑基交联剂8-30份。
相对于树脂100质量份,本申请中的三氮唑基交联剂的添加量为0.5~50质量份。为了兼顾耐热性、耐化学品性、密合性,本发明的三氮唑基交联剂的含量相对于聚合物100质量份可以为5质量份以上,优选为8质量份以上。从保存稳定性及防止过度交联的角度考虑,可以为45质量份以下,优选为40质量份以下,更优选为30质量份以下。通过添加本发明交联剂,使得感光性树脂固化后有较好的成膜性。
可选地,所述树脂组合物,以质量计,每100份耐热性树脂,对应的三氮唑基交联剂的份数独立地选自0.5份、1份、5份、8份、10份、15份、20份、25份、30份、35份、40份、45份、50份中的任意值或任意两者之间的范围值。
本申请的第四个方面,提供了上述三氮唑基交联剂、上述制备方法得到的三氮唑基交联剂,作为耐热性树脂改性剂的应用。
进一步的,本发明中的交联剂可以作为耐热性树脂改性剂使用。所述交联剂的加入可以改善树脂的成膜性,提高耐热性树脂固化后与铜或铜合金基材的密合性,抑制铜或铜合金基材变色,同时树脂固化后有较好的耐热性和耐化学品性。所述耐热性树脂包括聚酰亚胺树脂、聚酰亚胺树脂的前体例如聚酰胺酸树脂或聚酰胺酸酯树脂、聚苯并噁唑树脂、聚酰胺、聚酰胺酰亚胺、聚苯并咪唑、聚苯并噻唑等。树脂中的某些活性基团例如活性酯基或羧酸基团易与铜或铜合金基材发生反应,基材表面的铜离子会扩散至树脂层,引起基材变色,从而影响介电性能;树脂加热固化时,扩散进树脂层的铜离子又会引起树脂氧化分解,树脂层与基材之间产生缝隙,密合性降低,从而影响正常使用。本发明中的三氮唑基交联剂结构中同时含有碳碳双键、酰胺酸或酰亚胺环、三氮唑基团。一方面,通过交联反应,形成不溶性体型聚合物,提高了耐化学品性,同时有较好的耐热性。另一方面,三氮唑基团易与铜或铜合金基材发生络合反应形成稳定的络合物,保护基材不被树脂腐蚀,抑制铜或铜合金基材发生变色,同时增强了树脂层与基材之间的密合性。再一方面,将本发明中的交联剂用于树脂组合物中,通过加 热产生交联反应,形成聚合物网络,可增强树脂的成膜性及膜的机械强度。此外,由于小分子三氮唑或其衍生物沸点较低,直接将其添加到树脂中,则在高温热亚胺化过程中会有损失,导致其有效含量降低;而本发明中的交联剂通过交联形成聚合物,将三氮唑基团固定在聚合物网络中,从而促使三氮唑基团更好的与铜或铜合金基材络合,抑制基材变色,提高树脂与基材的密合性。
进一步的,本发明提供了一种树脂组合物,包括耐热性树脂和交联剂。所述交联剂为通式(1)所示结构的交联剂,所述耐热性树脂包括但不限于正型感光性树脂,作为正型感光性树脂的优选,可以列举出聚酰亚胺或其前体、聚苯并噁唑或其前体。本发明中的三氮唑基交联剂含有碳碳双键,可以发生热交联反应。所述反应可以是交联剂分子之间反应,也可以是交联剂与树脂组合物中的其他含双键物质交联反应,最终得到固化后的树脂。本发明中的三氮唑基交联剂,可以配合至少一种其它的热交联剂使用,例如,双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、二羟甲基脲、二羟甲基亚乙基脲、二羟甲基亚丙基脲、三羟甲基三聚氰胺、六羟甲基三聚氰胺等。所述树脂组合物中还可以含有其它的组分,比如感光剂、敏化剂、硅烷偶联剂等,可根据需要进行调整,在此不对其进行限定。所述树脂组合物固化后形成的树脂固化膜可以用作半导体装置的表面保护层、层间绝缘层、再配线层等,在此不对其进行限定。
本申请能产生的有益效果包括:
1)本申请所提供的交联剂,具有非常好的耐化学品性,同时有较好的耐热性,并且能够保护基材不被树脂腐蚀,抑制铜或铜合金基材发生变色,同时增强了树脂层与基材之间的密合性;
2)本申请所提供的交联剂的制备方法,具有原材料易得、工艺简单、成本较低的优势,有利于工业化生产;由于加热产生交联反应,形成聚合物网络,从而强树脂的成膜性及膜的机械强度。
具体实施方式
以下给出几个具体实施例来说明本申请,有助于本领域的普通技术人员更全面的理解,但本申请并不限定于这些例子。需要说明的是,实施例中合成的树脂的评价及制备的树脂组合物的效果评价按照以下方法进行。
(1)分子量测试
用凝胶渗透色谱法(仪器型号为日本岛津公司的LC-20AD),通过标准聚苯乙烯换算来测定树脂的重均分子量(Mw),洗脱溶剂为N-甲基吡咯烷酮。
(2)粘度测试
采用旋转粘度计(Brookfield DV2T RV),在25±0.1℃下,对树脂组合物进行粘度测试。
(3)红外测试
使用傅里叶红外光谱仪(德国布鲁克,Tensor-27)测试合成的交联剂样品,以检测是否成功制备出本申请中的交联剂。上述通式(1-2)和(1-4)所示的交联剂,通过检测-CO-NH-中的C=O基团和C-N基团的红外吸收峰;通式(1-1)和(1-3)所示的交联剂,通过检测酰亚胺环中C=O和C-N基团的红外吸收峰来判断交联剂的成功制备。
(4)成膜性
将树脂组合物样品均匀的涂覆到硅晶片上,然后将其放在120℃的加热台(HT-300实验电热板,广州格丹纳仪器有限公司)上进行3分钟软烘,得到膜厚为10~20μm的树脂膜。然后将该膜放置在真空无氧烤箱(MOLZK-32D1)中,氮气气氛保护下,在170℃下热处理30分钟后,再经过1小时升温至320℃,并在320℃下处理1小时,随后直接在烘箱中自然冷却至50℃以下,最终得到固化膜。将带有固化膜的硅片放于氢氟酸溶液中,对硅片进行腐蚀脱膜。用以下标准对成膜性进行评价。
“优”:树脂组合物可成膜,有韧性,对折不断裂;
“良”:树脂组合物可成膜,有韧性,对折断裂;
“差”:树脂组合物无法成膜,呈碎片状。
成膜性为“差”时,则不进行耐化学品性试验评价。
(5)树脂固化膜与铜基板的密合性试验
利用匀胶机将树脂组合物样品均匀的涂覆到铜材质的基板上,将其放在120℃的加热台(HT-300实验电热板,广州格丹纳仪器有限公司)上进行3分钟软烘,得到膜厚为10~20μm的树脂膜。利用划格器(BYK-Gardner A-5125)将树脂膜刻画出10行×10列的方格,然后将该膜放置在真空无氧烤箱(MOLZK-32D1)中,氮气气氛保护下,在170℃下热处理30分钟后,再经过1小时升温至320℃,并在320℃下处理1小时,随后直接在烘箱中自然冷却至50℃以下,最终得到固化膜。最后,用胶带(3M胶带)参照国家标准GB/T 9286-1998色漆和清漆漆膜的划格试验进行剥离试验,记录下剥离下的格数,作为PCT试验前的剥离情况。
a表示未剥离;b表示剥离大于或等于1个。
按照上述同样的方法得到的固化膜,将其放在PCT试验箱中进行120小时的PCT老化试验(121℃、2个大气压饱和蒸汽;东莞泓进科技PCT-30),PCT试验完成后,再采用上述同样的方法利用胶带进行剥离试验,记录下剥离下的格数,作为PCT试验后的剥离情况。
粘合性剥离实验剥下的个数低于5个时视为“优”,低于10个时视为“良”,大于等于10个时视为“差”。
(6)铜变色试验
将树脂组合物均匀的涂覆到铜基板上,然后放在120℃的加热台上进行3分钟软烘,得到膜厚为10~20μm的树脂膜,室温放置12h后,将该树脂膜放到显影液中进行溶解。根据以下的基准来评价树脂膜溶解后的铜基板变色情况。
“最佳”:即使在目视下用200倍的光学显微镜观察时也未确认到铜基板的变色;
“佳”:在目视下未确认到铜基板的变色,用200倍的光学显微镜观察时确认到铜基板的变色;
“略佳”:在目视下确认到铜基板的变色;
“差”:在目视下确认铜基板严重变色。
(7)耐热性
利用匀胶机将树脂组合物样品均匀的涂覆到硅晶片上,将其放在120℃的加热台(HT-300实验电热板,广州格丹纳仪器有限公司)上进行3分钟软烘,得到膜厚为10~20μm的树脂膜。然后将该膜放置在真空无氧烤箱(MOLZK-32D1)中,氮气气氛保护下,在170℃下热处理30分钟后,再经过1小时升温至320℃,并在320℃下处理1小时,随后直接在烘箱中自然冷却至50℃以下,最终得 到固化膜。
通过测定上述固化膜的重量减少5%的温度(即T 5wt%)来评价树脂的耐热性。利用热重分析仪(美国TA公司,Q50系列)测试,升温速度:10℃/min,温度范围30~650℃。
(8)耐化学品性
利用匀胶机将树脂组合物样品均匀的涂覆到硅晶片上,将其放在120℃的加热台(HT-300实验电热板,广州格丹纳仪器有限公司)上进行3分钟软烘,得到膜厚为10~20μm的树脂膜。然后将该膜放置在真空无氧烤箱(MOLZK-32D1)中,氮气气氛保护下,在170℃下热处理30分钟后,再经过1小时升温至320℃,并在320℃下处理1小时,随后直接在烘箱中自然冷却至50℃以下,最终得到固化膜。将固化膜在10wt%氢氧化钠(NaOH)水溶液、10vol%硫酸水溶液、N-甲基吡咯烷酮(NMP)中,50℃下分别浸泡30min,观察有无裂纹。依据以下标准对膜的裂纹情况进行评价:
“无”:无裂纹;
“轻微”:可观察到轻微裂纹;
“严重”:大量裂纹,甚至膜断裂成碎片。
本申请中,将BANI-X(丸善石油化学株式会社)与本申请中的交联剂进行对比,所述BANI-X的结构如下所示:
Figure PCTCN2022090550-appb-000017
实施例1
交联剂A-1的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml溶剂N-甲基吡咯烷酮(NMP),9.91g3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入烯丙基丁二酸酐28.03g(0.2mol,阿拉丁化学试剂),待加料完成后50℃下继续反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出的产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到交联剂A-1。
Figure PCTCN2022090550-appb-000018
所得交联剂A-1结构式如图(A-1)所示,红外信息如下:
FT-IR:1648cm -1为CONH的C=O对称伸缩振动,1550cm -1为CO-NH的C-N不对称伸缩振动。
实施例2
交联剂A-2的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入烯丙基 丁二酸酐28.03g(0.2mol,阿拉丁化学试剂),待加料完成后,50℃下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),25℃下反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出的产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到纯化的交联剂A-2。
Figure PCTCN2022090550-appb-000019
所得交联剂A-2结构式如图(A-2)所示,红外信息如下:
FT-IR:1780cm -1和1720cm -1分别为酰亚胺环上C=O的不对称和对称伸缩,725cm -1为酰亚胺环上的C=O弯曲振动,1373cm -1为酰亚胺环上C-N伸缩振动。
实施例3
交联剂A-3的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入22.40g衣康酸酐(0.2mol,浙江国光生化股份有限公司),待加料完成后50℃下继续反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到交联剂A-3。
Figure PCTCN2022090550-appb-000020
所得交联剂A-3结构式如图(A-3)所示,红外信息如下:
FT-IR:1645cm -1为CONH的C=O对称伸缩振动,1540cm -1为CO-NH的C-N不对称伸缩振动。
实施例4
交联剂A-4的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入22.40g衣康酸酐(0.2mol,浙江国光生化股份有限公司),待加料完成后,50℃下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),25℃下反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到纯化的交联剂A-4。
Figure PCTCN2022090550-appb-000021
所得交联剂A-4结构式如图(A-4)所示,红外信息如下:
FT-IR:1774cm -1和1720cm -1分别为酰亚胺环上C=O的不对称和对称伸缩,725cm -1为酰亚胺环上的C=O弯曲振动,1370cm -1为酰亚胺环上C-N伸缩振动。
实施例5
交联剂A-5的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入19.60g马来酸酐(0.2mol,淄博齐翔腾达化工股份有限公司),待加料完成后50℃下继续反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到交联剂A-5。
Figure PCTCN2022090550-appb-000022
所得交联剂A-5结构式如图(A-5)所示,红外信息如下:
FT-IR:1650cm -1为CONH的C=O对称伸缩振动,1550cm -1为CONH的C-N不对称伸缩振动。
实施例6
交联剂A-6的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入19.60g马来酸酐(0.2mol,淄博齐翔腾达化工股份有限公司),待加料完成后,50℃下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),25℃下反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到纯化的交联剂A-6。
Figure PCTCN2022090550-appb-000023
所得交联剂A-6结构式如图(A-6)所示,红外信息如下:
FT-IR:1780cm -1和1720cm -1分别为酰亚胺环上C=O的不对称和对称伸缩,723cm -1为酰亚胺环上的C=O弯曲振动,1373cm -1为酰亚胺环上C-N伸缩振动。
实施例7
交联剂A-7的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入40.85g5-烯丙基纳迪克酸酐(0.2mol,濮阳惠城电子材料股份有限公司),待加料完成后50℃下继续反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃ 下进行真空干燥,得到交联剂A-7。
Figure PCTCN2022090550-appb-000024
所得交联剂A-7结构式如图(A-7)所示,红外信息如下:
FT-IR:1643cm -1为CONH的C=O对称伸缩振动,1550cm -1为CONH的C-N不对称伸缩振动。
实施例8
交联剂A-8的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,9.91g 3,5-二氨基-1,2,4-三氮唑(0.1mol,阿拉丁化学试剂),开启搅拌,待3,5-二氨基-1,2,4-三氮唑充分溶解后,缓慢加入40.85g5-烯丙基纳迪克酸酐(0.2mol,濮阳惠城电子材料股份有限公司),待加料完成后,50℃下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),25℃下反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到纯化的交联剂A-8。
Figure PCTCN2022090550-appb-000025
所得交联剂A-8结构式如图(A-8)所示,红外信息如下:
FT-IR:1780cm -1和1720cm -1分别为酰亚胺环上C=O的不对称和对称伸缩,725cm -1为酰亚胺环上的C=O弯曲振动,1373cm -1为酰亚胺环上C-N伸缩振动。
实施例9
二胺单体B的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,19.82g 3,5-二氨基-1,2,4-三氮唑(0.2mol,阿拉丁化学试剂),搅拌溶解,待3,5-二氨基-1,2,4-三氮唑充分溶解后升温至80℃,缓慢加入21.81g均苯四甲酸酐(0.1mol,阿拉丁化学试剂),80℃反应12h后室温下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),室温反应20hr,反应完成后,将所得到的反应液倒入去离子水中,过滤收集析出沉淀,将所得到的沉淀物滤出后用去离子水洗涤三次,在50℃下进行真空干燥72hr,得到二胺单体B。
交联剂A-9的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,38.03g二胺单体B(0.1mol),开启搅拌,待二胺单体B充分溶解后,缓慢加入40.85g 5-烯丙基纳迪克酸酐(0.2mol,濮阳惠城电子材料股份有限公司),待加料完成后,50℃下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),25℃下反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到纯 化的交联剂A-9。
Figure PCTCN2022090550-appb-000026
所得交联剂A-9结构式如图(A-9)所示,红外信息如下:
FT-IR:1778cm -1和1718cm -1分别为酰亚胺环上C=O的不对称和对称伸缩,726cm -1为酰亚胺环上的C=O弯曲振动,1369cm -1为酰亚胺环上C-N伸缩振动。
实施例10
二胺单体C的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,20.81g 3,5-二氨基-1,2,4-三氮唑(0.21mol,阿拉丁化学试剂),搅拌溶解,待3,5-二氨基-1,2,4-三氮唑充分溶解后升温至80℃,缓慢加入31.02g 4,4'-氧双邻苯二甲酸酐(0.1mol,阿拉丁化学试剂),80℃反应12h后室温下继续反应20hr,然后向反应体系中加入31.6g吡啶(0.4mol),搅拌均匀后缓慢加入40.84g乙酸酐(0.4mol),室温反应20hr,反应完成后,将所得到的反应液倒入去离子水中,过滤收集析出沉淀,将所得到的沉淀物滤出后用去离子水洗涤三次,在50℃下进行真空干燥72hr,得到二胺单体C。
交联剂A-10的合成:
向配有搅拌器和温度计的500ml三口烧瓶中依次加入250ml NMP,47.24g二胺单体C(0.1mol),开启搅拌,待二胺单体C充分溶解后,缓慢加入40.85g 5-烯丙基纳迪克酸酐(0.2mol,濮阳惠城电子材料股份有限公司),待加料完成后,50℃下继续反应20hr,反应结束,将所得到的反应液倒入去离子水中,过滤收集析出产物,再用去离子水洗涤三次,在40℃下进行真空干燥,得到纯化的交联剂A-10。
Figure PCTCN2022090550-appb-000027
所得交联剂A-10结构式如图(A-10)所示,红外信息如下:
FT-IR:1643cm -1为CONH的C=O对称伸缩振动,1550cm -1为CONH的C-N不对称伸缩振动,
1778cm -1和1718cm -1分别为酰亚胺环上C=O的不对称和对称伸缩。
树脂组合物的制备
参考例1
聚酰亚胺前体的合成:
在氮气流下,依次将31.00g(0.10mol)2,3,3',4'-二苯醚四甲酸二酐(ODPA)、0.07g(0.0007mol)三乙胺、15g(0.202mol)正丁醇、100g NMP加入500ml三口烧瓶中,搅拌溶解,25℃下反应24小时。然后滴加24.05g(0.202mol)氯化亚砜,滴加过程中确保反应体系温度控制在0℃以下。滴加完成后,低温(0℃)下继续反应3小时得到2,3,3',4'-二苯醚四甲酸二正丁酯酰氯化物溶液。
在氮气流下,称取36.57g(0.10mol)2,2-双(3-氨基-4-羟基苯基)六氟丙烷(BAHF)加入500ml三口烧瓶中,再依次加入100g NMP、28g吡啶(0.35mol)搅拌溶解,将反应体系降温至0℃以下,再缓慢滴入2,3,3',4'-二苯醚四甲酸二正丁酯酰氯化物溶液,滴加过程中控制反应体系温度为0℃以下。滴加完毕后低温(0℃)继续反应3h,反应结束。将聚合物溶液倒入3L去离子水中,析出白色聚合物沉淀。过滤,再用去离子水洗涤三次,80℃真空干燥48h得到聚酰亚胺前体C,即聚酰胺酸酯树脂。用凝胶渗透色谱法(标准聚苯乙烯换算)测定聚合物的分子量,其重均分子量(Mw)为2.0~2.3万。
树脂组合物的制备:
在配有搅拌的三口烧瓶中,将10.0g合成好的聚酰胺酸酯树脂C溶解在20g NMP中,充分溶解后,添加0.3g硅烷偶联剂3-脲基丙基三乙氧基硅烷(A-1160,信越化学),再加入0.5g实施例1获得的交联剂A-1,待充分溶解后,利用1.0μm滤膜压滤,得到树脂组合物,25℃下测得粘度为3100cp。
参考例2 除了将交联剂A-1由0.5g变为0.8g以外,其它同参考例1。
参考例3 除了将交联剂A-1由0.5g变为1.0g以外,其它同参考例1。
参考例4 除了将交联剂A-1由0.5g变为1.3g以外,其它同参考例1。
参考例5 除了将交联剂A-1替换为A-2以外,其它同参考例2。
参考例6 除了将交联剂A-1替换为A-3以外,其它同参考例2。
参考例7 除了将交联剂A-1替换为A-4以外,其它同参考例2。
参考例8 除了将交联剂A-1替换为A-5以外,其它同参考例2。
参考例9 除了将交联剂A-1替换为A-6以外,其它同参考例2。
参考例10 除了将交联剂A-1替换为A-7以外,其它同参考例2。
参考例11 除了将交联剂A-1替换为A-8以外,其它同参考例2。
参考例12 除了将交联剂A-1替换为A-9以外,其它同参考例2。
参考例13 除了将交联剂A-1替换为A-10以外,其它同参考例2。
对比例1 除了将交联剂A-1变为BANI-X(丸善石油化学株式会社)以外,其它同参考例2。
对比例2 除了将交联剂A-1变为BANI-X(丸善石油化学株式会社)以外,还在体系中添加0.20g苯并三唑(阿拉丁化学试剂),其它同参考例2。
对比例3 除了将交联剂A-1变为BANI-X(丸善石油化学株式会社)以外,还在体系中添加0.35g苯并三唑(阿拉丁化学试剂),其它同参考例2。
对比例4 除了将交联剂A-1变为BANI-X(丸善石油化学株式会社)以外,还在体系中添加0.12g1H-1,2,4-三氮唑(默克公司),其它同参考例2。
对比例5 除了将交联剂A-1变为BANI-X(丸善石油化学株式会社)以外,还在体系中添加0.20g1H-1,2,4-三氮唑(默克公司),其它同参考例2。
对比例6 除了将交联剂A-1变为2,6-二甲氧基亚甲基-4-叔丁基苯酚(DMOM-PTBP-MF,本州化学)以外,其它同参考例2。
对比例7 除了将交联剂A-1变为2,6-二甲氧基亚甲基-4-叔丁基苯酚(DMOM-PTBP-MF,本州化学)以外,还在体系中添加0.35g苯并三唑(阿拉丁化学试剂),其它同参考例2。
对比例8 除了在体系中不添加交联剂,其他同参考例1。
按照前面所述的密合性试验、铜变色试验、耐热性、耐化学品性试验分别对上述制备的树脂组合物进行评价,各个参考例的结果见表1;各个对比例的结果见表2。
从表中可以看出,添加本申请中交联剂A-1~A-10的树脂组合物均有较好的成膜性,树脂固化膜与铜基材密合性较好,密合性试验中均未有或有少量剥离发生;铜变色试验中,有较好的抑制铜基材变色效果。耐化学品性试验中,树脂固化膜在强酸溶液、强碱溶液、有机溶剂中均未产生裂纹。添加本申请中交联剂的树脂固化膜仍旧保持有较好的耐热性,其T 5wt%与纯树脂固化膜相当。
从对比例1~5可以看出,在树脂组合物中仅添加BANI-X,固化后的膜与铜基材密合性较差,铜基材变色严重,而在组合物中进一步添加小分子三氮唑类化合物,添加量少时(对比例2、4中,其含有的三氮唑有效含量与本申请中参考例11中相当),则密合性和抑制铜变色情况未达到本申请最佳效果,加大添加量则可达到本申请相同的密合性效果和抑制铜变色效果(对比例3、5中,添加的三氮唑有效含量与本申请参考例中三氮唑含量最高的参考例7含量相当),但是添加如此多的小分子三氮唑类化合物后,小分子化合物挥发会导致树脂热稳定性下降,T 5wt%下降。从对比例4~5可以看出,在树脂组合物中添加商业化交联剂DMOM-PTBP-MF,未配合三氮唑类化合物时,其抑制铜变色效果和与基材的密合性效果较差,进一步添加较多量的苯并三唑后,则抑制铜变色效果及固化膜与铜基材密合性得到改善,但是其T 5wt%则下降。
表1
Figure PCTCN2022090550-appb-000028
Figure PCTCN2022090550-appb-000029
表2
Figure PCTCN2022090550-appb-000030
本申请通过在结构中同时引入双键、酰胺酸或酰亚胺结构、三氮唑基团,设计合成了一种三氮唑基交联剂,将其加入树脂组合物中,不仅可改善成膜性,提高树脂固化后与铜或铜合金基材的密合性,抑制铜或铜合金基材变色,同时树脂固化后有较好的耐热性和耐化学品性。避免了添加剂种类过多带来的配合性不佳,同时可缓解添加剂过量的问题。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (20)

  1. 一种三氮唑基交联剂,其特征在于,所述三氮唑基交联剂具有式I所述的通式:
    X 1-W-X 2  式I
    W为通式(6)或(7)所示的有机基团:
    Figure PCTCN2022090550-appb-100001
    通式(7)中,Y为通式(6)所示的结构;
    所述R 4为氢原子或碳原子数1~10的烃基;
    所述R 5为碳原子数4~40的有机基团;
    X 1和X 2各自独立地选自通式(2)、(3)、(4)、(5)所述结构中的一种
    Figure PCTCN2022090550-appb-100002
    所述通式(2)~(3)中,
    Figure PCTCN2022090550-appb-100003
    表示①或②位置处均为单键或其中一处为双键;当均为单键时,R 1为碳原子数2~10的含碳不饱和双键的有机基团,R 2为氢原子或碳原子数1~6的有机基团;当①处为双键时,R 1为碳原子数1~3的亚烷基,R 2为氢原子或碳原子数1~6的有机基团;当②处为双键时,R 1与R 2分别独立的为氢原子或碳原子数1~3的烃基;
    所述通式(4)~(5)中,R 3为碳原子数2~10的含碳不饱和双键的有机基团,(b)为碳原子数4~8的脂肪环;或R 3为氢原子、甲基或乙基,(b)为环上含碳不饱和双键的碳原子数4~8的脂肪环。
  2. 根据权利要求1所述的三氮唑基交联剂,其特征在于,所述X 1和X 2的结构相同。
  3. 根据权利要求1所述的三氮唑基交联剂,其特征在于,所述通式(2)的化合物选自(9)、(11)、(13)中的任意一种;
    所述通式(3)的化合物选自(8)、(10)、(12)中的任意一种;
    所述通式(4)的化合物为(14);
    所述通式(5)的化合物为(15);
    Figure PCTCN2022090550-appb-100004
    所述通式(8)~(11)中,R 2为氢原子或碳原子数1~6的有机基团;
    所述通式(12)~(13)中,R 2为氢原子或碳原子数1~3的烃基;
    所述通式(14)~(15)中,R 6为氢原子或碳原子数1~6的有机基团。
  4. 根据权利要求1所述的三氮唑基交联剂,其特征在于,所述三氮唑基交联剂的结构包括(16)-(25)中的至少一种
    Figure PCTCN2022090550-appb-100005
    Figure PCTCN2022090550-appb-100006
  5. 权利要求1-4中任一项所述的三氮唑基交联剂的制备方法,其特征在于,所述反应步骤包括:
    将通式(26)或(27)中任一所示结构的酸酐单体,与通式(28)所示结构的二胺单体进行酰胺化反应,得到所述三氮唑基交联剂;
    或,将通式(26)或(27)中任一所示结构的酸酐单体,与通式(28)所示结构的二胺单体先进行酰胺化反应,再进行亚胺化反应,得到所述三氮唑基交联剂;
    Figure PCTCN2022090550-appb-100007
    所述通式(26)、(27)中,R 1、R 2、R 3、(b)、
    Figure PCTCN2022090550-appb-100008
    和W与权利要求1中所述的定义一致。
  6. 根据权利要求5所述的制备方法,其特征在于,所述酰胺化反应与所述亚胺化反应在非质子极性溶剂中进行。
  7. 根据权利要求6所述的制备方法,其特征在于,所述非质子极性溶剂选自N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜和γ-丁内酯中的至少一种。
  8. 根据权利要求5所述的制备方法,其特征在于,所述酰胺化反应和所述亚胺化反应,反应的温度分别独立地为0-100℃。
  9. 根据权利要求5所述的制备方法,其特征在于,所述酰胺化反应和所述亚胺化反应,反应的温度分别独立地为20-50℃。
  10. 根据权利要求5所述的制备方法,其特征在于,所述酰胺化反应和所述亚胺化反应,反应的时间分别独立地为10-40h。
  11. 根据权利要求5所述的制备方法,其特征在于,所述酰胺化反应和所述亚胺化反应,反应的时间分别独立地为15-30h。
  12. 根据权利要求5所述的制备方法,其特征在于,所述酸酐单体与所述二胺单体的摩尔比为 2:(0.9-1.1)。
  13. 根据权利要求5所述的制备方法,其特征在于,当采用先酰胺化反应再亚胺化反应的方式时:
    酰胺化反应后向反应液中加入碱和酸酐,再亚胺化反应。
  14. 根据权利要求13所述的制备方法,其特征在于,所述碱选自吡啶、三乙胺、二异丙基乙基胺中的至少一种。
  15. 根据权利要求13所述的制备方法,其特征在于,所述酸酐选自乙酸酐、三氟乙酸酐中的至少一种。
  16. 一种树脂组合物,其特征在于,所述树脂组合物包括耐热性树脂和三氮唑基交联剂,所述三氮唑基交联剂为权利要求1-4中任一项所述的三氮唑基交联剂和/或权利要求5-15中任一项所述的制备方法制备得到的三氮唑基交联剂。
  17. 根据权利要求16所述的树脂组合物,其特征在于,所述树脂组合物,以质量计,每100份耐热性树脂,对应三氮唑基交联剂0.5-50份。
  18. 根据权利要求16所述的树脂组合物,其特征在于,所述树脂组合物,以质量计,每100份耐热性树脂,对应三氮唑基交联剂5-40份。
  19. 根据权利要求16所述的树脂组合物,其特征在于,所述树脂组合物,以质量计,每100份耐热性树脂,对应三氮唑基交联剂8-30份。
  20. 权利要求1-4中任一项所述的三氮唑基交联剂和/或权利要求5-15中任一项所述的制备方法制备得到的三氮唑基交联剂作为耐热性树脂改性剂的应用。
PCT/CN2022/090550 2022-03-03 2022-04-29 一种三氮唑基交联剂及其制备方法、应用 WO2023165011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210203306.1 2022-03-03
CN202210203306.1A CN114524807B (zh) 2022-03-03 2022-03-03 一种三氮唑基交联剂及其制备方法、应用

Publications (1)

Publication Number Publication Date
WO2023165011A1 true WO2023165011A1 (zh) 2023-09-07

Family

ID=81627467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090550 WO2023165011A1 (zh) 2022-03-03 2022-04-29 一种三氮唑基交联剂及其制备方法、应用

Country Status (2)

Country Link
CN (1) CN114524807B (zh)
WO (1) WO2023165011A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322140B (zh) * 2022-08-16 2023-09-01 波米科技有限公司 一种含双键化合物及制备方法、聚酰胺酸酯树脂组合物及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093779A (zh) * 2012-01-19 2014-10-08 伊索拉美国有限公司 合成树脂以及由其制造的清漆、预浸料和层压板
CN111690247A (zh) * 2019-03-12 2020-09-22 台燿科技股份有限公司 树脂组合物及其应用
KR20210022411A (ko) * 2019-08-20 2021-03-03 넥센타이어 주식회사 타이어 사이드월용 고무 조성물 및 이를 포함하는 타이어
CN112442063A (zh) * 2020-11-25 2021-03-05 波米科技有限公司 具有嘌呤环和酰亚胺或酰胺酸结构的硅烷偶联剂及其制备方法和应用
CN113980272A (zh) * 2021-11-22 2022-01-28 南亚新材料科技股份有限公司 马来酰亚胺树脂组合物及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194534A (ja) * 2011-02-28 2012-10-11 Fujifilm Corp 感光性組成物、感光性ソルダーレジスト組成物及び感光性ソルダーレジストフィルム、並びに、永久パターン、その形成方法及びプリント基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093779A (zh) * 2012-01-19 2014-10-08 伊索拉美国有限公司 合成树脂以及由其制造的清漆、预浸料和层压板
CN111690247A (zh) * 2019-03-12 2020-09-22 台燿科技股份有限公司 树脂组合物及其应用
KR20210022411A (ko) * 2019-08-20 2021-03-03 넥센타이어 주식회사 타이어 사이드월용 고무 조성물 및 이를 포함하는 타이어
CN112442063A (zh) * 2020-11-25 2021-03-05 波米科技有限公司 具有嘌呤环和酰亚胺或酰胺酸结构的硅烷偶联剂及其制备方法和应用
CN113980272A (zh) * 2021-11-22 2022-01-28 南亚新材料科技股份有限公司 马来酰亚胺树脂组合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARIF, R.: "Synthesis, Characterization, DNA Binding, Antibacterial, and Antioxidant Activity of New Bis-phthalimides", RUSSIAN JOURNAL OF GENERAL CHEMISTRY, vol. 86, no. 6, 27 July 2016 (2016-07-27), XP036015594, ISSN: 1070-3632, DOI: 10.1134/S1070363216060232 *

Also Published As

Publication number Publication date
CN114524807B (zh) 2023-03-24
CN114524807A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
TWI382041B (zh) 聚醯亞胺之前驅物組合物及其應用
TW201815889A (zh) 感光性樹脂組合物及硬化浮凸圖案之製造方法
CN110776738B (zh) 组合物、固化物、固化物的制造方法、盐及其用途
CN114456205B (zh) 一种三氮唑基硅烷偶联剂及其制备方法、应用
WO2020026840A1 (ja) ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
TW201821479A (zh) 聚醯亞胺前驅物及其應用
CN114755883A (zh) 感光性树脂组合物及其制备方法和应用
CN109824833A (zh) 一种负性光敏聚酰亚胺的组合物及其应用
WO2023165011A1 (zh) 一种三氮唑基交联剂及其制备方法、应用
TW202003639A (zh) 感光性樹脂組合物、硬化浮凸圖案之製造方法
CN112442063A (zh) 具有嘌呤环和酰亚胺或酰胺酸结构的硅烷偶联剂及其制备方法和应用
CN111187414B (zh) 高性能透明聚酰亚胺薄膜及其制备方法
TWI803627B (zh) 負型感光性樹脂組合物及其製造方法
CN117209528B (zh) 一种含卟啉结构化合物和负型感光性树脂组合物及其制备方法和应用
TWI625361B (zh) 感光性樹脂組成物、使用其的圖案硬化膜的製造方法及半導體裝置
TWI753387B (zh) 負型感光性樹脂組合物、聚醯亞胺之製造方法及硬化浮凸圖案之製造方法
JP6643824B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、並びに半導体装置
WO2022062037A1 (zh) 一种聚酰亚胺前体树脂及其制备方法和应用
JP2023120167A (ja) 感光性樹脂組成物、ポリイミド硬化膜、及びこれらの製造方法
JPH0446345A (ja) ポジ型感光性樹脂組成物
Wang et al. Tuning the Curing Temperature of Polyimide Precursor: Ploy Amide Ester
CN117234033B (zh) 一种正型感光性树脂组合物及其制备方法和应用
CN116880123B (zh) 一种聚苯并噁唑类感光性树脂组合物及其制备方法和应用
JP7230161B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
WO2022185718A1 (ja) ポリアミドイミド樹脂、樹脂組成物、及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929449

Country of ref document: EP

Kind code of ref document: A1