WO2022057403A1 - 四驱纯电动汽车动力系统 - Google Patents

四驱纯电动汽车动力系统 Download PDF

Info

Publication number
WO2022057403A1
WO2022057403A1 PCT/CN2021/105139 CN2021105139W WO2022057403A1 WO 2022057403 A1 WO2022057403 A1 WO 2022057403A1 CN 2021105139 W CN2021105139 W CN 2021105139W WO 2022057403 A1 WO2022057403 A1 WO 2022057403A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
motor
wheel
target
state
Prior art date
Application number
PCT/CN2021/105139
Other languages
English (en)
French (fr)
Inventor
刘建康
王燕
霍云龙
白卓伟
尹建坤
杨钫
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Priority to EP21868232.6A priority Critical patent/EP4215396A1/en
Publication of WO2022057403A1 publication Critical patent/WO2022057403A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2063Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K2023/085Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles automatically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/427One-way clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the embodiments of the present application relate to vehicle technologies, for example, to a power system of a four-wheel drive pure electric vehicle.
  • the embodiments of the present application provide a power system of a four-wheel drive pure electric vehicle, which can reduce the loss of the motor along with the rotation, the resistance when the vehicle is driven is smaller, the power consumption of the vehicle is lower, and the driving range is longer.
  • an embodiment of the present application provides a four-wheel drive pure electric vehicle power system, including: a first motor, a second motor, a first transmission mechanism, a second transmission mechanism, a clutch, a first reducer and a second reducer device;
  • the clutch is arranged between the first motor and the first transmission mechanism, wherein the first motor is arranged on the front axle;
  • the clutch is arranged between the first transmission mechanism and the first reducer
  • the clutch is arranged between the second motor and the second transmission, wherein the second motor is arranged on the rear axle;
  • the clutch is arranged between the second transmission mechanism and the second speed reducer.
  • FIG. 1 is a schematic structural diagram of a four-wheel drive pure electric vehicle power system in Embodiment 1 of the present application;
  • 1a is a schematic structural diagram of a four-wheel drive pure electric vehicle power system in which the clutch is arranged between the first motor and the first transmission mechanism in the first embodiment of the present application;
  • 1b is a schematic structural diagram of a four-wheel drive pure electric vehicle power system in which the clutch is arranged between the first transmission mechanism and the first reducer in the first embodiment of the present application;
  • 1c is a schematic structural diagram of a four-wheel drive pure electric vehicle power system in which the clutch is arranged between the second motor and the second transmission mechanism in the first embodiment of the present application;
  • 1d is a schematic structural diagram of a four-wheel drive pure electric vehicle power system in which the clutch is arranged between the second transmission mechanism and the second reducer in the first embodiment of the present application;
  • Fig. 1e is a relationship diagram between wheel-end torque and vehicle speed during a drive control in the first embodiment of the present application
  • Fig. 1f is a relationship diagram between wheel-end torque and vehicle speed during another driving control in Embodiment 1 of the present application;
  • Fig. 1g is the relation diagram of wheel end torque and vehicle speed during a kind of braking control in the first embodiment of the present application;
  • FIG. 1h is a relationship diagram between wheel-end torque and vehicle speed during another braking control in Embodiment 1 of the present application.
  • 1 is a four-wheel drive pure electric vehicle power system provided in the first embodiment of the application, including: a first reducer 110, a first transmission mechanism 120, a clutch 130, a first motor 140, a second motor 150, and a second transmission mechanism 160 and second reducer 170;
  • the clutch 130 is arranged between the first motor 150 and the first transmission mechanism 120, wherein the first motor 150 is arranged on the front axle;
  • the clutch is arranged between the first transmission mechanism and the first reducer
  • the clutch is arranged between the second motor and the second transmission, wherein the second motor is arranged on the rear axle;
  • the clutch is arranged between the second transmission mechanism and the second speed reducer.
  • the clutch is a one-way clutch or a two-way clutch.
  • it further includes: a first motor controller, a second motor controller and a vehicle controller;
  • the clutch is arranged on the front axle and the clutch is a two-way clutch
  • the first motor controller reports the first torque according to the state of the first motor
  • the second motor controller reports the first torque according to the state of the second motor report the second torque in the state of ;
  • the vehicle controller determines the target wheel-end electric creep torque according to the current vehicle speed and the target electric creep speed;
  • the first motor When the first torque is less than or equal to the second torque, if the target wheel-end electric creep torque is less than or equal to the first torque, the first motor outputs the target wheel-end electric creep torque to drive the vehicle When driving, the second motor rotates along with the clutch, and the clutch is in the engaged state. If the first torque is less than the target wheel end electric creep torque, and the target wheel end electric creep torque is less than or equal to the second torque, then the The second motor outputs the target wheel-end electric creep torque to drive the vehicle, and the first motor rotates along with it. If the second torque is smaller than the target wheel-end electric creep torque, the second motor outputs the second torque, and the first motor rotates along with it. a motor outputs a first differential torque, the first differential torque is the differential torque between the target wheel-end electric creep torque and the second torque, and the clutch is in an engaged state;
  • the second motor When the first torque is greater than the second torque, if the target wheel end electric creep torque is less than or equal to the second torque, the second motor outputs the target wheel end electric creep torque to drive the vehicle to run, The first motor rotates along with the clutch, and if the second torque is smaller than the target wheel end electric creep torque, and the target wheel end electric creep torque is smaller than or equal to the first torque, the The first motor outputs the target wheel end electric creep torque to drive the vehicle, the second motor rotates along with it, and the clutch is in the engaged state, if the first torque is less than the target wheel end electric creep torque, the first A motor outputs the first torque to obtain a second difference torque between the target wheel end electric creep torque and the first torque, and a second motor outputs the second difference torque, where the first torque is the current maximum available torque of the first motor, and the second torque is the current maximum available torque of the second motor.
  • the vehicle controller calculates the required driver torque at the wheel end according to the accelerator pedal opening, the brake pedal state and the vehicle speed signal;
  • the first motor controller reports the third torque according to the state of the first motor
  • the second motor controller reports the fourth torque according to the state of the second motor
  • the second motor When the wheel-end required driver torque is less than or equal to the fourth torque, the second motor outputs the wheel-end required driver torque, and the clutch is converted from the engaged state to the disengaged state, and the first motor is in a stationary state , and the first motor does not output torque;
  • the product of the front torque distribution coefficient, the speed ratio of the first transmission mechanism and the speed ratio of the first final reducer calculates the first target torque, the first motor outputs the first target torque, and the rear
  • the product of the torque distribution coefficient, the second transmission gear ratio and the second final gear ratio calculates a second target torque, the second motor outputs the second target torque, and the clutch is in an engaged state, wherein the first The third torque is the current maximum available torque of the first motor, and the fourth torque is the current maximum available torque of the second motor.
  • the vehicle controller calculates the required braking torque at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal;
  • the first motor controller reports the fifth torque according to the state of the first motor
  • the second motor controller reports the sixth torque according to the state of the second motor
  • the second motor When the wheel-end demanded braking torque is less than or equal to the sixth torque, the second motor outputs a third target torque, where the third target torque is the product of the wheel-end demanded braking torque and the second speed ratio The ratio of , wherein the product of the second speed ratio is the product of the speed ratio of the second transmission mechanism and the speed ratio of the second main reducer, the clutch is in a disengaged state, the first motor is in a non-operating state, and the The first motor does not rotate with it;
  • the second motor When the sixth torque is less than the wheel-end demand braking torque, and the wheel-end demand braking torque is less than or equal to the sum of the fifth torque and the sixth torque, the second motor outputs a sixth torque , obtain the third difference torque between the wheel-end demanded braking torque and the sixth torque, the first motor outputs a fourth target torque, and the fourth target torque is the ratio of the third difference torque to the first speed ratio
  • the ratio of the product wherein the product of the first speed ratio is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first final reducer, and the clutch is in the engaged state;
  • the clutch When the wheel-end demanded braking torque is greater than the sum of the fifth torque and the sixth torque, the clutch is in an engaged state, the first motor and the second motor do not generate torque, and the first motor and the second motor generate no torque. Both a motor and the second motor are in a follow-up state, wherein the fifth torque is the current maximum available torque of the first motor, and the sixth torque is the current maximum available torque of the second motor.
  • it further includes: a first motor controller, a second motor controller and a vehicle controller;
  • the first motor controller reports the seventh torque according to the state of the first motor
  • the second motor controller reports the seventh torque according to the state of the first motor.
  • the state of the second motor reports the eighth torque
  • the vehicle controller determines the target wheel-end electric creep torque according to the current vehicle speed and the target electric creep speed;
  • the first motor When the seventh torque is less than or equal to the eighth torque, if the target wheel-end electric creep torque is less than or equal to the seventh torque, the first motor outputs the target wheel-end electric creep torque to drive the vehicle
  • the second motor rotates along, when the seventh torque is less than the target wheel end electric creep torque, and the target wheel end electric creep torque is less than or equal to the eighth torque, then the second motor outputs the target wheel end terminal electric creep torque, drive the vehicle to drive, the first motor rotates along, if the eighth torque is less than the target wheel end electric creep torque, the second motor outputs the eighth torque, the first motor outputs the fourth difference torque, the first motor
  • the fourth difference torque is the difference torque between the target motor torque and the eighth torque;
  • the second motor When the seventh torque is greater than the eighth torque, if the target wheel end electric creep torque is less than or equal to the eighth torque, the second motor outputs the target wheel end electric creep torque to drive the vehicle to run, The first motor rotates along, and when the eighth torque is less than the target wheel-end electric creep torque, and the target wheel-end electric creep torque is less than or equal to the seventh torque, the first motor outputs the target wheel-end electric creep torque.
  • the second motor rotates with it, if the seventh torque is less than the target wheel end electric creep torque, the first motor outputs the seventh torque, and obtains the target wheel end electric creep torque and the The fifth difference torque of the seventh torque, the second motor outputs the fifth difference torque, wherein the seventh torque is the current maximum available torque of the first motor, and the eighth torque is the current second motor's torque. Maximum available torque.
  • the vehicle controller calculates the required driver torque at the wheel end according to the accelerator pedal opening, the brake pedal state and the vehicle speed signal;
  • the first motor controller reports the ninth torque according to the state of the first motor
  • the second motor controller reports the tenth torque according to the state of the second motor
  • the second motor When the wheel-end required driver torque is less than or equal to the tenth torque, the second motor outputs the wheel-end required driver torque, the first motor is in a stationary state, and the first motor does not output torque;
  • the product of the front torque distribution coefficient, the speed ratio of the first transmission mechanism and the speed ratio of the first final reducer calculates the first target torque, the first motor outputs the first target torque, and the driver torque and rear torque are distributed according to the wheel end demand
  • the product of the coefficient, the speed ratio of the first transmission mechanism and the speed ratio of the first final reducer calculates the second target torque, and the second motor outputs the second target torque, wherein the ninth torque is the current maximum value of the first motor Available torque, the tenth torque is the current maximum available torque of the second motor.
  • the vehicle controller calculates the required braking torque at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal;
  • the first motor controller reports the eleventh torque according to the state of the first motor
  • the second motor controller reports the twelfth torque according to the state of the second motor
  • the second motor When the wheel-end demanded braking torque is less than or equal to the twelfth torque, the second motor outputs a third target torque, where the third target torque is the wheel-end demanded braking torque and the second speed ratio The ratio of the product, wherein the product of the second speed ratio is the product of the speed ratio of the second transmission mechanism and the speed ratio of the second final gear;
  • the second motor When the twelfth torque is less than the wheel-end demand braking torque, and the wheel-end demand braking torque is less than or equal to the sum of the eleventh torque and the twelfth torque, the second motor outputs the first Twelve torques, the first motor does not work and does not follow the rotation, obtains the sixth difference torque between the required braking torque at the wheel end and the twelfth torque, and the mechanical hydraulic braking system outputs the sixth difference torque ;
  • the first motor and the second motor are in a follow-up state, wherein the eleventh torque is The current maximum available torque of the first motor, and the twelfth torque is the current maximum available torque of the second motor.
  • it further includes: a first motor controller, a second motor controller and a vehicle controller;
  • the clutch is arranged on the rear axle and the clutch is a two-way clutch
  • the first motor controller reports the thirteenth torque according to the state of the first motor
  • the second motor controller reports the thirteenth torque according to the second The state of the motor reports the fourteenth torque
  • the vehicle controller determines the target wheel-end electric creep torque according to the current vehicle speed and the target electric creep speed;
  • the first motor When the thirteenth torque is less than or equal to the fourteenth torque, if the target wheel-end electric creep torque is less than or equal to the thirteenth torque, the first motor outputs a target wheel-end electric creep torque , drive the vehicle, the second motor rotates with it, and the clutch is in the engaged state, if the thirteenth torque is less than the target wheel end electric creep torque, and the target wheel end electric creep torque is less than or equal to the fourteenth torque, then the second motor outputs the target wheel-end electric creep torque to drive the vehicle, and the first motor rotates accordingly, if the fourteenth torque is less than the target wheel-end electric creep torque, the second motor outputs the first fourteen torques, the first motor outputs a seventh differential torque, the seventh differential torque is the differential torque between the target wheel-end electric creep torque and the fourteenth torque, and the clutch is in an engaged state;
  • the second motor When the thirteenth torque is greater than the fourteenth torque, if the target wheel-end electric creep torque is less than or equal to the fourteenth torque, the second motor outputs the target wheel-end electric creep torque to drive When the vehicle is running, the first motor rotates along with the clutch and the clutch is in the engaged state, if the fourteenth torque is less than the target wheel end electric creep torque, and the target wheel end electric creep torque is less than or equal to the thirteenth torque, the first motor outputs the target wheel-end electric creep torque to drive the vehicle, the second motor rotates along with it, and the clutch is in the engaged state, if the thirteenth torque is less than the target wheel-end electric creep torque, the first motor outputs the thirteenth torque, obtains the eighth difference torque between the target wheel end electric creep torque and the thirteenth torque, and the second motor outputs the eighth difference torque , wherein the thirteenth torque is the current maximum available torque of the first motor, and the fourteenth torque is the current maximum available torque of the second motor;
  • the vehicle controller calculates the required driver torque at the wheel end according to the accelerator pedal opening, the brake pedal state and the vehicle speed signal;
  • the first motor controller reports the fifteenth torque according to the state of the first motor
  • the second motor controller reports the sixteenth torque according to the state of the second motor
  • the first motor When the wheel-end required driver torque is less than or equal to the fifteenth torque, the first motor outputs the wheel-end required driver torque to convert the clutch from an engaged state to a disengaged state, and the second motor is at rest state, and the second motor does not output torque;
  • the first target torque is calculated by the product of the operator torque, the front torque distribution coefficient, the speed ratio of the first transmission mechanism and the speed ratio of the first final reducer, the first motor outputs the first target torque, and the driver needs the driver according to the wheel end.
  • the product of the torque, the rear torque distribution factor, the second transmission gear ratio and the second final gear ratio calculates a second target torque, the second motor outputting the second target torque, and the clutch is engaged, wherein,
  • the fifteenth torque is the current maximum available torque of the first motor, and the sixteenth torque is the current maximum available torque of the second motor;
  • the vehicle controller calculates the required braking torque at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal;
  • the first motor controller reports the seventeenth torque according to the state of the first motor
  • the second motor controller reports the eighteenth torque according to the state of the second motor
  • the first motor When the wheel-end demanded braking torque is less than or equal to the seventeenth torque, the first motor outputs a fifth target torque, where the fifth target torque is the wheel-end demanded braking torque and the first speed ratio
  • the product of the first speed ratio is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first final gear, the clutch is in a disengaged state, the second motor is in a non-operating state, and all The second motor does not rotate with it;
  • the first motor When the seventeenth torque is less than the wheel-end demand braking torque, and the wheel-end demand braking torque is less than or equal to the sum of the seventeenth torque and the eighteenth torque, the first motor outputs The seventeenth torque is to obtain the ninth difference torque between the wheel-end demanded braking torque and the seventeenth torque, the second motor outputs a fifth target torque, and the fifth target torque is the ninth difference torque and the The ratio of the product of the first speed ratio, wherein the product of the first speed ratio is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first final gear, and the clutch is in the engaged state;
  • the clutch When the wheel-end demanded braking torque is greater than the sum of the seventeenth torque and the eighteenth torque, the clutch is in an engaged state, the first motor and the second motor do not generate torque, and all Both the first motor and the second motor are in a follow-up state, wherein the seventeenth torque is the current maximum available torque of the first motor, and the eighteenth torque is the current maximum available torque of the second motor.
  • it further includes: a first motor controller, a second motor controller and a vehicle controller;
  • the first motor controller reports the nineteenth torque according to the state of the first motor
  • the second motor controller reports the nineteenth torque according to the state of the first motor.
  • the state of the second motor reports the twentieth torque
  • the vehicle controller determines the target wheel-end electric creep torque according to the current vehicle speed and the target electric creep speed;
  • the nineteenth torque is less than or equal to the twentieth torque
  • the first motor outputs a target wheel-end electric creep torque , drive the vehicle, and the second motor rotates with it
  • the nineteenth torque is less than the target wheel-end electric creep torque
  • the target wheel-end electric creep torque is less than or equal to the twentieth torque
  • the The second motor outputs the target wheel end electric creep torque to drive the vehicle, and the first motor rotates along with it.
  • the eighth torque is less than the target wheel end electric creep torque
  • the second motor outputs the twentieth torque
  • the first motor outputs the tenth difference. value torque
  • the tenth difference torque is the difference torque between the target motor torque and the twentieth torque;
  • the second motor When the nineteenth torque is greater than the twentieth torque, if the target wheel-end electric creep torque is less than or equal to the twentieth torque, the second motor outputs the target wheel-end electric creep torque to drive When the vehicle is running, the first motor rotates with it.
  • the twentieth torque is less than the target wheel end electric creep torque, and the target wheel end electric creep torque is less than or equal to the nineteenth torque
  • the first motor Output the target wheel-end electric creep torque to drive the vehicle, and the second motor rotates along with it.
  • the seventh torque is less than the target wheel-end electric creep torque
  • the first motor outputs the nineteenth torque to obtain the target wheel-end electric creep torque.
  • the eleventh difference torque between the electric creep torque and the nineteenth torque the second motor outputs the eleventh difference torque, wherein the nineteenth torque is the current maximum available torque of the first motor, so The twentieth torque is the current maximum available torque of the second motor;
  • the vehicle controller calculates the required driver torque at the wheel end according to the accelerator pedal opening, the brake pedal state and the vehicle speed signal;
  • the first motor controller reports the twenty-first torque according to the state of the first motor
  • the second motor controller reports the twenty-second torque according to the state of the second motor
  • the first motor When the wheel-end required driver torque is less than or equal to the twenty-first torque, the first motor outputs the wheel-end required driver torque, the second motor is in a stationary state, and the second motor does not output torque ;
  • the product of the terminal demand driver torque, the front torque distribution coefficient, the speed ratio of the first transmission mechanism and the speed ratio of the first final reducer calculates the first target torque, the first motor outputs the first target torque, and drives according to the wheel end demand
  • the second target torque is calculated by calculating the product of the operator torque, the rear torque distribution coefficient, the speed ratio of the first transmission mechanism and the speed ratio of the first final gear, and the second motor outputs the second target torque, wherein the twenty-first The torque is the current maximum available torque of the first motor, and the twenty-second torque is the current maximum available torque of the second motor;
  • the vehicle controller calculates the required braking torque at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal;
  • the first motor controller reports the twenty-third torque according to the state of the first motor
  • the second motor controller reports the twenty-fourth torque according to the state of the second motor
  • the first motor When the wheel-end demanded braking torque is less than or equal to the twenty-third torque, the first motor outputs a fifth target torque, where the fifth target torque is the wheel-end demanded braking torque and the first speed ratio The ratio of the product, wherein, the product of the first speed ratio is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first main reducer, and the second motor does not work and does not follow the rotation;
  • the first The motor outputs the 23rd torque
  • the second motor does not work and does not rotate with it, obtains the twelfth difference torque between the required braking torque at the wheel end and the 23rd torque
  • the traditional mechanical hydraulic braking system outputs the twelfth differential torque
  • the first motor and the second motor are in a follow-up state, wherein the twentieth
  • the third torque is the current maximum available torque of the first motor
  • the twenty-fourth torque is the current maximum available torque of the second motor.
  • the torque, the twenty-second torque, the twenty-third torque, and the twenty-fourth torque may be the same or different, and the above torques are the maximum torques that can be generated by the wheel end in the corresponding scenario.
  • the first target torque, the second target torque, the third target torque, the fourth target torque and the fifth target torque may be the same or different.
  • the first differential torque, the second differential torque, the third differential torque, the fourth differential torque, the fifth differential torque, the sixth differential torque, the seventh differential torque, the eighth differential torque, The ninth differential torque, the tenth differential torque, the eleventh differential torque, and the twelfth differential torque may be the same or different.
  • a four-wheel drive pure electric vehicle power system mainly includes a first motor, a second motor, a first transmission mechanism, a second transmission mechanism, a clutch, a vehicle controller (VCU), and a first motor Controller (MCU1), second motor controller (MCU2), battery management system (BMS), clutch controller (CCU).
  • VCU vehicle controller
  • MCU1 first motor Controller
  • MCU2 second motor controller
  • BMS battery management system
  • CCU clutch controller
  • the BMS sends information such as battery SOC, battery charge and discharge allowable power, battery temperature, and fault status to the VCU.
  • MCU1 sends the torque, speed, power, temperature, and fault status of the first motor to the VCU.
  • MCU2 sends the torque, speed, and fault status of the second motor to the VCU.
  • the speed, power, temperature, and fault status are sent to the VCU, the ESP (Electronic Stability Program, body electronic stability system) sends the vehicle's acceleration, speed and other signals to the VCU, and the CCU sends the clutch status to the VCU.
  • ESP Electronic Stability Program, body electronic stability system
  • VCU sends clutch control commands to CCU, CCU controls clutch actuators to execute the above control commands, VCU sends motor torque and speed control commands to MCU1 and MCU2, MCU1 and MCU2 execute the control commands, and control the first motor and the second motor according to the command run.
  • clutch arrangement positions there are four kinds of clutch arrangement positions: as shown in Figure 1a, the clutch is arranged between the first motor and the first transmission mechanism, as shown in Figure 1b, the clutch is arranged between the first transmission mechanism and the main reducer 1, As shown in FIG. 1 c , the clutch is arranged between the second motor and the second transmission mechanism, and as shown in FIG. 1 d , the clutch is arranged between the second transmission mechanism and the final reducer 2 .
  • the clutch type can be a two-way clutch or a one-way clutch.
  • the one-way clutch has only one default state, there is no separation or combination of two states, and no controller is required to control it.
  • the one-way clutch can only transmit power from one direction to another direction, and cannot reverse it. to transmit power.
  • an example is as follows: if the clutch is a one-way clutch, the driving force of the first motor can be transmitted to the first transmission mechanism through the clutch, that is, the first motor can drive the vehicle forward, but It is not possible to drive the vehicle backwards, and when the vehicle is driving forward, when the vehicle is decelerating under braking conditions, due to the one-way nature of the transmission force of the one-way clutch, the first motor will not generate a resistance that hinders the vehicle from moving forward. Similarly, the first motor cannot realize the braking energy recovery function (the braking energy recovery function: that is, by controlling the first motor to generate a negative torque to brake the vehicle, and at the same time, the feedback electric energy is stored in the power battery).
  • the braking energy recovery function that is, by controlling the first motor to generate
  • the two-way clutch has three states: separation, combination, and sliding. All three states can be controlled by the CCU. When the state is in the disengaged state, the parts at both ends of the clutch cannot transmit power; when the state is in the combined state, the parts at both ends of the clutch can transmit power normally; when the state is in the slipping state, the clutch can transmit part of the power.
  • the clutch is a two-way clutch
  • the first motor when the clutch is engaged, can transmit the driving force to the first transmission mechanism, so as to transmit the drive to the final drive to drive the vehicle, and when the vehicle brakes During the process, the first motor can also be controlled to generate electricity to generate negative torque to brake the vehicle, so as to realize the function of braking energy recovery.
  • the clutch When the clutch is disengaged, the first motor cannot drive the vehicle, nor can the brake recovery be performed, and the first motor does not produce a resistance to the vehicle.
  • the first transmission mechanism is a pair or two pairs of gear transmission mechanisms, or a mechanical transmission mechanism such as a chain
  • the second transmission mechanism is a pair or two pairs of gear transmission mechanisms, or a mechanical transmission such as a chain. mechanism.
  • the first motor and the second motor are both permanent magnet synchronous motors.
  • the present application also proposes a control method based on the above-mentioned power system, which can be as follows. According to the combination of clutch arrangement position and clutch type, there are four control methods, which are:
  • Combination 1 The clutch is arranged on the front axle (as shown in Figure 1a or 1b), and the clutch is a two-way clutch;
  • the clutch is arranged on the front axle (as shown in Figure 1a or 1b), and the clutch is a one-way clutch;
  • the clutch is arranged on the rear axle (as shown in Figure 1c or Figure 1d), and the clutch is a two-way clutch;
  • Combination 4 The clutch is arranged on the rear axle (as shown in Figure 1c or Figure 1d), and the clutch is a one-way clutch;
  • the clutch is arranged on the front axle (as shown in Figure 1a or Figure 1b), the clutch is a two-way clutch, and its control method is as follows:
  • the MCU1 reports the maximum available torque T1 of the first motor according to the state of the first motor.
  • the maximum torque that can be generated by the first motor to the wheel end is T1*i1, where i1 is the speed ratio of the first transmission mechanism and the first main reducer.
  • the product of the speed ratio, at this time MCU2 reports the maximum available torque T2 of the second motor according to the state of the second motor, the maximum torque that the second motor can generate to the wheel end is T2*i2, i2 is the speed ratio of the second transmission mechanism and the first The product of the speed ratio of the two main reducers;
  • the default state of the clutch is the combined state.
  • the motor torque is controlled according to the opening of the accelerator pedal and the brake pedal and the vehicle speed.
  • the VCU performs PTD control according to the current vehicle speed and the target electric creep speed, and outputs the target wheel end electric creep torque T_creep.
  • the electric crawling speed is 3-7km/h.
  • the first motor outputs the electric creep torque at the target wheel end to drive the vehicle, the second motor rotates along with it, does not output the torque command, and the clutch maintains the default engagement state; if the above T1*i1 ⁇ T_creep ⁇ T2*i2, the second motor outputs the target wheel end electric creep torque to drive the vehicle, the first motor rotates with it, does not output torque commands, and the clutch maintains the default engagement state; if T2*i2 ⁇ T_creep, the second motor outputs Maximum torque, the first motor outputs the difference between the target wheel end electric creep torque and the second motor's maximum torque, and the clutch maintains the default engagement state.
  • T1*i1>T2*i2 If the above T_creep ⁇ T2*i2, the second motor outputs the electric creep torque at the target wheel end to drive the vehicle, the first motor rotates with it, does not output torque command, and the clutch maintains the default engagement state; if the above T2*i2 ⁇ T_creep ⁇ T1*i1, the first motor outputs the target wheel end electric creep torque to drive the vehicle, the second motor rotates with it, does not output torque commands, and the clutch maintains the default engagement state; if T1 *i1 ⁇ T_creep, the first motor outputs the maximum torque, the second motor outputs the difference between the target electric creep torque at the wheel end and the maximum torque of the first motor, and the clutch maintains the default engagement state.
  • the VCU calculates the required driver torque T_driver at the wheel end according to the accelerator pedal opening, the state of the brake pedal and the vehicle speed signal.
  • the MCU1 reports the maximum available torque T3 of the first motor according to the state of the first motor.
  • the maximum torque that can be generated by a motor to the wheel end is T3*i1, where i1 is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first main reducer.
  • MCU2 reports the maximum torque of the second motor according to the state of the second motor.
  • Available torque T4 the maximum torque that can be generated by the second motor to the wheel end is T4*i2, where i2 is the product of the speed ratio of the second transmission mechanism and the speed ratio of the second main reducer;
  • the second motor drives the vehicle alone, and the second motor outputs power according to the driver's torque request , the clutch is disengaged, and the first motor is in a static state and does not output torque.
  • the first motor is separated from the wheels at this time, and the mechanical frictional resistance of the first motor itself will not hinder the vehicle from moving forward.
  • the first motor is Both a motor and the first transmission mechanism are separated from the wheels, and the mechanical frictional resistance of the first motor and the first transmission mechanism itself will not hinder the vehicle from moving forward.
  • the first motor is stationary, and the permanent magnet synchronous motor does not generate field weakening current to consume battery power.
  • the vehicle resistance is lower, and the use efficiency of a motor-driven vehicle is higher, the power consumption of the whole vehicle is lower, and the driving mileage is longer.
  • the front and rear torque distribution coefficients are determined as follows.
  • the table look-up method is used to obtain the front and rear torque distribution coefficient tables as shown in Table 1 below.
  • the front and rear torque distribution coefficients are enumerated as There is a front-to-rear torque distribution factor
  • the corresponding two motors have the highest comprehensive driving efficiency, that is, the consumption of battery power is the smallest. It is the front and rear torque distribution coefficient corresponding to the combination of vehicle speed and wheel-end torque (Vx, Tx).
  • Vx, Tx the front and rear torque distribution coefficient corresponding to the combination of vehicle speed and wheel-end torque
  • the braking demand torque is defined as a negative value.
  • the allowable braking feedback torque of the first motor and the second motor is also a negative value.
  • the torque values are their absolute values. The size of the value, without the minus sign.
  • the VCU calculates the required braking torque T_brake at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal.
  • the first motor and the second motor report their own allowable braking torque T5 and T6 respectively.
  • the VCU sends a control command according to the braking demand torque, the second motor generates electricity, and the generated torque is T_brake/i2 , the generated negative torque brakes the vehicle, and the generated electrical energy is stored in the power battery, the clutch is disengaged, the first motor does not work, and does not follow the rotation.
  • the efficiency is higher and the recovered electric energy is more, which is more conducive to the reduction of the overall power consumption of the vehicle.
  • the second motor When T6*i2 ⁇ T_brake ⁇ T5*i1+T6*i2, that is, in the I region in Figure 1g (K and L regions in Figure 1h), the second motor generates electricity at this time, and the torque generated by it is the maximum torque T6, the generated negative torque brakes the vehicle, and at the same time stores the generated electrical energy in the power battery; the insufficient braking demand is T_brake-T6*i2, the insufficient part is supplemented by the first motor, the clutch is engaged, the first The negative torque generated by the motor is (T_brake-T6*i2)/i1.
  • the clutch is arranged on the front axle (as shown in Figure 1a or Figure 1b), the clutch is a one-way clutch, and its control method is as follows:
  • MCU1 reports the maximum available torque T7 of the first motor according to the state of the first motor.
  • the maximum torque that can be generated by the first motor to the wheel end is T7*i1, where i1 is the speed ratio of the first transmission mechanism and the first main reducer.
  • the product of the speed ratio at this time MCU2 reports the maximum available torque T8 of the second motor according to the state of the second motor, the maximum torque that the second motor can generate to the wheel end is T8*i2, i2 is the speed ratio of the second transmission mechanism and the first The product of the speed ratio of the two main reducers;
  • the motor torque is controlled according to the opening of the accelerator pedal and the brake pedal and the vehicle speed.
  • the VCU performs PTD control according to the current vehicle speed and the target electric creep speed, and outputs the target wheel end electric creep torque T_creep.
  • the electric crawling speed is 3-7km/h.
  • the first motor outputs the target motor torque to drive the vehicle, and the second motor rotates with it without outputting torque commands; if the above-mentioned T7*i1 ⁇ T_creep ⁇ T8*i2, the second motor outputs the target motor torque Motor torque, driving the vehicle, the first motor rotates with it and does not output a torque command; if T8*i2 ⁇ T_creep, the second motor outputs the maximum torque, and the first motor outputs the difference between the target motor torque and the second motor maximum torque.
  • T7*i1>T8*i2 if the above T_creep ⁇ T8*i2, the second motor outputs the target motor torque to drive the vehicle, the first motor rotates with it, and does not output the torque command; if the above T8*i2 ⁇ T_creep ⁇ T7*i1, the first motor outputs the target motor torque to drive the vehicle, the second motor rotates with it, and does not output a torque command; if T7*i1 ⁇ T_creep, the first motor outputs the maximum torque, and the second motor outputs the target motor torque The difference from the maximum torque of the first motor.
  • the clutch is a one-way clutch that requires no control and is a mechanical component with fixed characteristics.
  • the rest of the control methods are the same as the corresponding driving driving control methods in "the combination 1 clutch is arranged on the front axle (as shown in Figure 1a or Figure 1b), and the clutch is a two-way clutch”.
  • the VCU calculates the required driver torque T_driver at the wheel end according to the accelerator pedal opening, the state of the brake pedal and the vehicle speed signal.
  • the MCU1 reports the maximum available torque T9 of the first motor according to the state of the first motor.
  • the maximum torque that can be generated by a motor to the wheel end is T9*i1, i1 is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first main reducer.
  • MCU2 reports the maximum torque of the second motor according to the state of the second motor.
  • Available torque T10, the maximum torque that can be generated by the second motor to the wheel end is T10*i2, where i2 is the product of the speed ratio of the second transmission mechanism and the speed ratio of the second main reducer;
  • the second motor drives the vehicle alone, the second motor outputs power according to the driver's torque request, and the first motor is in a static state and does not output torque.
  • the first motor is stationary, and the permanent magnet synchronous motor does not generate field weakening current to consume battery power.
  • the resistance of the vehicle is lower, and a motor-driven vehicle has higher efficiency, lower power consumption of the whole vehicle, and longer driving range.
  • both the first motor and the second motor participate in driving the vehicle, wherein the output torque of the first motor is The output torque of the second motor is
  • the braking demand torque is defined as a negative value.
  • the allowable braking feedback torque of the first motor and the second motor is also a negative value.
  • the torque values are their absolute values. The size of the value, without the minus sign.
  • the VCU calculates the required braking torque T_brake at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal.
  • the first motor and the second motor report their own allowable braking torque T11 and T12 respectively.
  • the VCU sends a control command according to the braking demand torque, the second motor generates electricity, and the generated torque is T_brake/i2, the generated negative torque brakes the vehicle, and the generated electric energy is stored in the power battery , the first motor does not work and does not follow the rotation. At this time, one motor is braked and recovered, and its efficiency is higher than that of two motors recovered separately, and more electric energy is recovered, which is more conducive to reducing the overall power consumption of the vehicle.
  • the second motor When T12*i2 ⁇ T_brake ⁇ T11*i1+T12*i2, the second motor generates electricity at this time, the torque generated by it is the maximum torque T12, the generated negative torque brakes the vehicle, and the generated electric energy is stored in the power battery Medium; the first motor does not work and does not rotate with it.
  • the insufficient braking demand is T_brake-T12*i2, which is supplemented by the traditional mechanical hydraulic braking system.
  • the braking torque required is very large at this time, and it is considered that the driver is braking urgently.
  • the braking energy recovery function is withdrawn.
  • the first motor and the second motor None of the motors generate torque, the clutch remains in a default engagement state, and the first motor and the second motor are in a follow-up state.
  • the braking torque required by the driver is all realized by the traditional mechanical hydraulic system.
  • the clutch is arranged on the rear axle (as shown in Figure 1c or Figure 1d), the clutch is a two-way clutch, and the control method is as follows:
  • MCU1 reports the maximum available torque T13 of the first motor according to the state of the first motor.
  • the maximum torque that can be generated by the first motor to the wheel end is T13*i1, where i1 is the speed ratio of the first transmission mechanism and the speed ratio of the first main reducer.
  • the product of the speed ratio at this time MCU2 reports the maximum available torque T14 of the second motor according to the state of the second motor, the maximum torque that the second motor can generate to the wheel end is T14*i2, i2 is the speed ratio of the second transmission mechanism and the first The product of the speed ratio of the two main reducers;
  • the default state of the clutch is the combined state.
  • the motor torque is controlled according to the opening of the accelerator pedal and the brake pedal and the vehicle speed.
  • the VCU performs PTD control according to the current vehicle speed and the target electric creep speed, and outputs the target wheel end electric creep torque T_creep.
  • the electric crawling speed is 3-7km/h.
  • the first motor outputs the target motor torque to drive the vehicle, the second motor rotates with it, does not output torque commands, and the clutch maintains the default engagement state; if the above T13*i1 ⁇ T_creep ⁇ T14*i2 , then the second motor outputs the target motor torque, drives the vehicle, the first motor rotates with it, does not output torque commands, and the clutch maintains the default engagement state; if T14*i2 ⁇ T_creep, the second motor outputs the maximum torque, the first motor The difference between the target motor torque and the maximum torque of the second motor is output, and the clutch maintains the default engagement state.
  • the VCU calculates the required driver torque T_driver at the wheel end according to the accelerator pedal opening, the state of the brake pedal and the vehicle speed signal.
  • the MCU1 reports the maximum available torque T15 of the first motor according to the state of the first motor.
  • the maximum torque that can be generated by a motor to the wheel end is T15*i1, i1 is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first main reducer.
  • MCU2 reports the maximum torque of the second motor according to the state of the second motor.
  • Available torque T16, the maximum torque that can be generated by the second motor to the wheel end is T16*i2, where i2 is the product of the speed ratio of the second transmission mechanism and the speed ratio of the second main reducer;
  • the first motor drives the vehicle alone, the first motor outputs power according to the driver's torque request, the clutch is disengaged, and the second motor is in a stationary state and does not output torque.
  • the second motor is separated from the wheel at this time, and the mechanical frictional resistance of the second motor itself will not hinder the vehicle from moving forward.
  • the first motor Both the second motor and the second transmission mechanism are separated from the wheels, and the mechanical frictional resistance of the second motor and the second transmission mechanism itself will not hinder the vehicle from moving forward.
  • the second motor is stationary, and the permanent magnet synchronous motor does not generate field weakening current to consume battery power.
  • the resistance of the vehicle is lower, and a motor-driven vehicle has higher efficiency, lower power consumption of the whole vehicle, and longer driving range.
  • the front and rear torque distribution coefficients are determined as follows. The table is obtained by look-up method, and its table is shown in Table 1 above.
  • the braking demand torque is defined as a negative value.
  • the allowable braking feedback torque of the first motor and the second motor is also a negative value.
  • the torque values are their absolute values. The size of the value, without the minus sign.
  • the VCU calculates the required braking torque T_brake at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal.
  • the first motor and the second motor report their own allowable braking torque T17 and T18 respectively.
  • the VCU sends a control command according to the braking demand torque, the first motor generates electricity, and the torque generated by it is T_brake/i1, the generated negative torque brakes the vehicle, and the generated electric energy is stored in the power battery , the clutch is disengaged, the second motor does not work, and does not rotate with it. At this time, one motor is braked to recover, and its efficiency is higher than that of the two motors respectively. reduce.
  • the first motor When T17*i1 ⁇ T_brake ⁇ T17*i1+T18*i2, the first motor generates electricity at this time, the torque generated by it is the maximum torque T17, and the generated negative torque brakes the vehicle, and at the same time stores the generated electrical energy into the power In the battery; the insufficient braking demand is T_brake-T17*i1, the insufficient part is supplemented by the second motor, the clutch is engaged, and the second motor produces a negative torque of (T_brake-T17*i1)/i2.
  • the clutch is arranged on the rear axle (as shown in Figure 1c or Figure 1d), the clutch is a one-way clutch, and its control method is as follows:
  • MCU1 reports the maximum available torque T19 of the first motor according to the state of the first motor.
  • the maximum torque that the first motor can generate to the wheel end is T19*i1, where i1 is the speed ratio of the first transmission mechanism and the first main reducer.
  • the product of the speed ratio at this time MCU2 reports the maximum available torque T20 of the second motor according to the state of the second motor, the maximum torque that the second motor can generate to the wheel end is T20*i2, i2 is the speed ratio of the second transmission mechanism and the first The product of the speed ratio of the two main reducers;
  • the motor torque is controlled according to the opening of the accelerator pedal and the brake pedal and the vehicle speed.
  • the VCU performs PTD control according to the current vehicle speed and the target electric creep speed, and outputs the target wheel end electric creep torque T_creep.
  • the electric crawling speed is 3-7km/h.
  • the first motor outputs the target motor torque to drive the vehicle, and the second motor rotates along with it without outputting the torque command; if the above T19*i1 ⁇ T_creep ⁇ T20*i2, then the second motor outputs the target Motor torque, driving the vehicle, the first motor rotates with it and does not output a torque command; if T20*i2 ⁇ T_creep, the second motor outputs the maximum torque, and the first motor outputs the difference between the target motor torque and the second motor maximum torque.
  • the clutch is a one-way clutch that requires no control and is a mechanical component with fixed characteristics.
  • the rest of the control methods are the same as the corresponding driving driving control methods in "the combination 1 clutch is arranged on the front axle (as shown in Figure 1a or Figure 1b), and the clutch is a two-way clutch”.
  • the VCU calculates the required driver torque T_driver at the wheel end according to the accelerator pedal opening, the state of the brake pedal and the vehicle speed signal.
  • the MCU1 reports the maximum available torque T21 of the first motor according to the state of the first motor.
  • the maximum torque that a motor can generate to the wheel end is T21*i1, where i1 is the product of the speed ratio of the first transmission mechanism and the speed ratio of the first main reducer.
  • MCU2 reports the maximum torque of the second motor according to the state of the second motor.
  • Available torque T2 the maximum torque that can be generated by the second motor to the wheel end is T22*i2, where i2 is the product of the speed ratio of the second transmission mechanism and the speed ratio of the second main reducer;
  • the first motor drives the vehicle alone, the first motor outputs power according to the driver's torque request, and the second motor is in a static state and does not output torque.
  • the second motor is stationary, and the permanent magnet synchronous motor does not generate field weakening current to consume battery power.
  • the resistance of the vehicle is lower, and a motor-driven vehicle has higher efficiency, lower power consumption of the whole vehicle, and longer driving range.
  • both the first motor and the second motor participate in driving the vehicle, wherein the output torque of the first motor is The output torque of the second motor is
  • the braking demand torque is defined as a negative value.
  • the allowable braking feedback torque of the first motor and the second motor is also a negative value.
  • the torque values are their absolute values. The size of the value, without the minus sign.
  • the VCU calculates the required braking torque T_brake at the wheel end according to the pressure of the driver's brake master cylinder and the state of the accelerator pedal.
  • the first motor and the second motor report their own allowable braking torque T23 and T24 respectively.
  • the VCU sends a control command according to the braking demand torque, the first motor generates electricity, and the torque generated is T_brake/i1, and the generated negative torque brakes the vehicle, and the generated electric energy is stored in the power battery. , the second motor does not work and does not follow the rotation. At this time, one motor is braked and recovered, and its efficiency is higher than that of the two motors recovered separately, and more electric energy is recovered, which is more conducive to reducing the overall power consumption of the vehicle.
  • the first motor When T23*i1 ⁇ T_brake ⁇ T23*i1+T24*i2, the first motor generates electricity at this time, the torque generated by it is the maximum torque 23, the generated negative torque brakes the vehicle, and the generated electric energy is stored in the power battery Medium; the second motor does not work and does not rotate with it. Insufficient braking demand is
  • the clutch is arranged between the first motor and the first transmission mechanism, wherein the first motor is arranged on the front axle; or, the clutch is arranged on the first motor Between a transmission mechanism and the first speed reducer; or, the clutch is arranged between the second motor and the second transmission mechanism, wherein the second motor is arranged at the rear axle; or, the clutch It is arranged between the second transmission mechanism and the second reducer, and through the technical solution of the present application, the loss of the motor following rotation can be reduced, the resistance when the vehicle is driven is smaller, and the power consumption of the vehicle is lower, Longer driving mileage.
  • the four-wheel drive pure electric vehicle power system includes: a first motor, a second motor, a first transmission mechanism, a second transmission mechanism, a clutch, a first reducer and a second reducer; wherein, the The clutch is arranged between the first motor and the first transmission mechanism, wherein the first motor is arranged on the front axle; or the clutch is arranged between the first transmission mechanism and the first speed reducer or, the clutch is arranged between the second motor and the second transmission mechanism, wherein the second motor is arranged at the rear axle; or, the clutch is arranged between the second transmission mechanism and the second transmission mechanism between the second reducer. It can reduce the loss of the motor with the rotation, the resistance of the vehicle when driving is smaller, the power consumption of the vehicle is lower, and the driving mileage is longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请公开了一种四驱纯电动汽车动力系统。包括:第一电机、第二电机、第一传动机构、第二传动机构、离合器、第一减速器和第二减速器;其中,所述离合器布置在所述第一电机和所述第一传动机构之间,其中,所述第一电机布置在前轴;或者,所述离合器布置在所述第一传动机构和所述第一减速器之间;或者,所述离合器布置在所述第二电机和所述第二传动机构之间,其中,第二电机布置在后轴;或者,所述离合器布置在所述第二传动机构和所述第二减速器之间。

Description

四驱纯电动汽车动力系统
本公开要求在2020年09月18日提交中国专利局、申请号为202010988993.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及车辆技术,例如涉及一种四驱纯电动汽车动力系统。
背景技术
纯电动汽车发展越来越快,为了追求较好的动力性,很多车型均采用四驱方案,即前后各采用一套电驱动系统。永磁同步电机由于其功率密度大,而且效率较高,目前在纯电动汽车上得到了广泛应用。但是与异步电机不同,永磁同步电机在随转工况下其反拖扭矩较大,而且为了防止反电动势过高,其在高转速段的弱磁电流较大,消耗电能较多,这些均导致了采用永磁同步电机的四驱车型电耗较高,续驶里程较短,影响车型竞争力。
发明内容
本申请实施例提供一种四驱纯电动汽车动力系统,能够减小电机随转的损失,车辆驱动时的阻力更小,车辆电耗更低,续驶里程更长。
第一方面,本申请实施例提供了一种四驱纯电动汽车动力系统,包括:第一电机、第二电机、第一传动机构、第二传动机构、离合器、第一减速器和第二减速器;
其中,所述离合器布置在所述第一电机和所述第一传动机构之间,其中,所述第一电机布置在前轴;
或者,
所述离合器布置在所述第一传动机构和所述第一减速器之间;
或者,
所述离合器布置在所述第二电机和所述第二传动机构之间,其中,第二电机布置在后轴;
或者,
所述离合器布置在所述第二传动机构和所述第二减速器之间。
附图说明
下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本申请实施例一中的一种四驱纯电动汽车动力系统的结构示意图;
图1a是本申请实施例一中离合器布置在第一电机和第一传动机构之间的四驱纯电动汽车动力系统的结构示意图;
图1b是本申请实施例一中的离合器布置在第一传动机构和第一减速器之间的四驱纯电动汽车动力系统的结构示意图;
图1c是本申请实施例一中的离合器布置在第二电机和第二传动机构之间的四驱纯电动汽车动力系统的结构示意图;
图1d是本申请实施例一中的离合器布置在第二传动机构和第二减速器之间的四驱纯电动汽车动力系统的结构示意图;
图1e是本申请实施例一中的一种驱动控制时轮端扭矩和车速的关系图;
图1f是本申请实施例一中的另一种驱动控制时轮端扭矩和车速的关系图;
图1g是本申请实施例一中的一种制动控制时轮端扭矩和车速的关系图;
图1h是本申请实施例一中的另一种制动控制时轮端扭矩和车速的关系图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例一
图1为本申请实施例一提供的一种四驱纯电动汽车动力系统,包括:第一减速器110、第一传动机构120、离合器130、第一电机140、第二电机150、第二传动机构160和第二减速器170;
其中,所述离合器130布置在所述第一电机150和所述第一传动机构120之间,其中,所述第一电机150布置在前轴;
或者,
所述离合器布置在所述第一传动机构和所述第一减速器之间;
或者,
所述离合器布置在所述第二电机和所述第二传动机构之间,其中,第二电机布置在后轴;
或者,
所述离合器布置在所述第二传动机构和所述第二减速器之间。
可选的,所述离合器为单向离合器或者双向离合器。
可选的,还包括:第一电机控制器、第二电机控制器和整车控制器;
若所述离合器布置前轴,且所述离合器为双向离合器,则所述第一电机控制器根据所述第一电机的状态上报第一扭矩,所述第二电机控制器根据所述第二电机的状态上报第二扭矩;
当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
当所述第一扭矩小于或者等于所述第二扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第一扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,离合器处于结合状态,若所述第一扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第二扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,若第二扭矩小于所述目标轮端电爬行扭矩,所述第二电机输出第二扭矩,所述第一电机输出第一差值扭矩,所述第一差值扭矩为所述目标轮端电爬行扭矩与所述第二扭矩的差值扭矩,离合器处于结合状态;
当所述第一扭矩大于所述第二扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第二扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,离合器处于结合状态,若所述第二扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第一扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第二电机随转,所述离合器处于结合状态,若所述第一扭矩小于所述目标轮端电爬行扭矩,则 所述第一电机输出所述第一扭矩,获取所述目标轮端电爬行扭矩与所述第一扭矩的第二差值扭矩,第二电机输出所述第二差值扭矩,其中,所述第一扭矩为当前第一电机的最大可用扭矩,所述第二扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:
在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
所述第一电机控制器根据所述第一电机的状态上报第三扭矩,所述第二电机控制器根据所述第二电机的状态上报第四扭矩;
当所述轮端需求驾驶员扭矩小于或者等于所述第四扭矩时,第二电机输出所述轮端需求驾驶员扭矩,将离合器从结合状态转换为分离状态,所述第一电机处于静止状态,且所述第一电机不输出扭矩;
当所述第四扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第三扭矩和所述第四扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,所述第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第二传动机构速比和第二主减速器的速比之积计算第二目标扭矩,所述第二电机输出所述第二目标扭矩,离合器处于结合状态,其中,所述第三扭矩为当前第一电机的最大可用扭矩,所述第四扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:
所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
所述第一电机控制器根据所述第一电机的状态上报第五扭矩,所述第二电 机控制器根据所述第二电机的状态上报第六扭矩;
当所述轮端需求制动扭矩小于或者等于所述第六扭矩时,第二电机输出第三目标扭矩,所述第三目标扭矩为所述轮端需求制动扭矩与第二速比之积的比值,其中,所述第二速比之积为第二传动机构速比和第二主减速器的速比之积,离合器处于分离状态,所述第一电机处于非工作状态,且所述第一电机不随转;
当所述第六扭矩小于所述轮端需求制动扭矩,且所述轮端需求制动扭矩小于或者等于所述第五扭矩和所述第六扭矩之和时,第二电机输出第六扭矩,获取轮端需求制动扭矩与所述第六扭矩的第三差值扭矩,所述第一电机输出第四目标扭矩,所述第四目标扭矩为第三差值扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,离合器处于结合状态;
当所述轮端需求制动扭矩大于所述第五扭矩和所述第六扭矩之和时,离合器处于结合状态,所述第一电机和所述第二电机均不产生扭矩,且所述第一电机和所述第二电机均处于随转状态,其中,所述第五扭矩为当前第一电机的最大可用扭矩,所述第六扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:第一电机控制器、第二电机控制器和整车控制器;
若所述离合器布置在前轴,且所述离合器为单向离合器,则所述第一电机控制器根据所述第一电机的状态上报第七扭矩,所述第二电机控制器根据所述第二电机的状态上报第八扭矩;
当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
当所述第七扭矩小于或者等于所述第八扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第七扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱 动车辆行驶,第二电机随转,当所述第七扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第八扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,若第八扭矩小于所述目标轮端电爬行扭矩,第二电机输出第八扭矩,第一电机输出第四差值扭矩,所述第四差值扭矩为目标电机扭矩与第八扭矩的差值扭矩;
当所述第七扭矩大于所述第八扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第八扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,当所述第八扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第七扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,若第七扭矩小于所述目标轮端电爬行扭矩,则第一电机输出所述第七扭矩,获取所述目标轮端电爬行扭矩与所述第七扭矩的第五差值扭矩,第二电机输出所述第五差值扭矩,其中,所述第七扭矩为当前第一电机的最大可用扭矩,所述第八扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:
在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
所述第一电机控制器根据所述第一电机的状态上报第九扭矩,所述第二电机控制器根据所述第二电机的状态上报第十扭矩;
当所述轮端需求驾驶员扭矩小于或者等于所述第十扭矩时,第二电机输出所述轮端需求驾驶员扭矩,第一电机处于静止状态,且所述第一电机不输出扭矩;
当所述第十扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭 矩小于或者等于所述第九扭矩和所述第十扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第二目标扭矩,第二电机输出所述第二目标扭矩,其中,所述第九扭矩为当前第一电机的最大可用扭矩,所述第十扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:
所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
所述第一电机控制器根据所述第一电机的状态上报第十一扭矩,所述第二电机控制器根据所述第二电机的状态上报第十二扭矩;
当所述轮端需求制动扭矩小于或者等于所述第十二扭矩时,第二电机输出第三目标扭矩,所述第三目标扭矩为所述轮端需求制动扭矩与第二速比之积的比值,其中,所述第二速比之积为第二传动机构速比和第二主减速器的速比之积;
当所述第十二扭矩小于所述轮端需求制动扭矩,所述轮端需求制动扭矩小于或者等于所述第十一扭矩和所述第十二扭矩之和时,第二电机输出第十二扭矩,所述第一电机不工作,且不随转,获取轮端需求制动扭矩与所述第十二扭矩的第六差值扭矩,机械液压制动系统输出所述第六差值扭矩;
当所述轮端需求制动扭矩大于所述第十一扭矩和所述第十二扭矩之和时,第一电机和所述第二电机处于随转状态,其中,所述第十一扭矩为当前第一电机的最大可用扭矩,所述第十二扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:第一电机控制器、第二电机控制器和整车控制器;
若所述离合器布置后轴,且所述离合器为双向离合器,则所述第一电机控制器根据所述第一电机的状态上报第十三扭矩,所述第二电机控制器根据所述第二电机的状态上报第十四扭矩;
当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
当所述第十三扭矩小于或者等于所述第十四扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第十三扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,离合器处于结合状态,若所述第十三扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第十四扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,若第十四扭矩小于所述目标轮端电爬行扭矩,所述第二电机输出第十四扭矩,所述第一电机输出第七差值扭矩,所述第七差值扭矩为所述目标轮端电爬行扭矩与所述第十四扭矩的差值扭矩,离合器处于结合状态;
当所述第十三扭矩大于所述第十四扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第十四扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,离合器处于结合状态,若所述第十四扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第十三扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第二电机随转,所述离合器处于结合状态,若所述第十三扭矩小于所述目标轮端电爬行扭矩,则所述第一电机输出所述第十三扭矩,获取所述目标轮端电爬行扭矩与所述第十三扭矩的第八差值扭矩,第二电机输出所述第八差值扭矩,其中,所述第十三扭矩为当前第一电机的最大可用扭矩,所述第十四扭矩为当前第二电机的最大可用扭矩;
在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
所述第一电机控制器根据所述第一电机的状态上报第十五扭矩,所述第二电机控制器根据所述第二电机的状态上报第十六扭矩;
当所述轮端需求驾驶员扭矩小于或者等于所述第十五扭矩时,第一电机输出所述轮端需求驾驶员扭矩,将离合器从结合状态转换为分离状态,所述第二电机处于静止状态,且所述第二电机不输出扭矩;
当所述第十五扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第十五扭矩和所述第十六扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,所述第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第二传动机构速比和第二主减速器的速比之积计算第二目标扭矩,所述第二电机输出所述第二目标扭矩,离合器处于结合状态,其中,所述第十五扭矩为当前第一电机的最大可用扭矩,所述第十六扭矩为当前第二电机的最大可用扭矩;
所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
所述第一电机控制器根据所述第一电机的状态上报第十七扭矩,所述第二电机控制器根据所述第二电机的状态上报第十八扭矩;
当所述轮端需求制动扭矩小于或者等于所述第十七扭矩时,第一电机输出第五目标扭矩,所述第五目标扭矩为所述轮端需求制动扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,离合器处于分离状态,所述第二电机处于非工作状态,且所述第二电机不 随转;
当所述第十七扭矩小于所述轮端需求制动扭矩,且所述轮端需求制动扭矩小于或者等于所述第十七扭矩和所述第十八扭矩之和时,第一电机输出第十七扭矩,获取轮端需求制动扭矩与所述第十七扭矩的第九差值扭矩,所述第二电机输出第五目标扭矩,所述第五目标扭矩为第九差值扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,离合器处于结合状态;
当所述轮端需求制动扭矩大于所述第十七扭矩和所述第十八扭矩之和时,离合器处于结合状态,所述第一电机和所述第二电机均不产生扭矩,且所述第一电机和所述第二电机均处于随转状态,其中,所述第十七扭矩为当前第一电机的最大可用扭矩,所述第十八扭矩为当前第二电机的最大可用扭矩。
可选的,还包括:第一电机控制器、第二电机控制器和整车控制器;
若所述离合器布置在后轴,且所述离合器为单向离合器,则所述第一电机控制器根据所述第一电机的状态上报第十九扭矩,所述第二电机控制器根据所述第二电机的状态上报第二十扭矩;
当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
当所述第十九扭矩小于或者等于所述第二十扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第十九扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,当所述第十九扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第二十扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,若第八扭矩小于所述目标轮端电爬行扭矩,第二电机输出第二十扭矩,第一电机输出第十差 值扭矩,所述第十差值扭矩为目标电机扭矩与第二十扭矩的差值扭矩;
当所述第十九扭矩大于所述第二十扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第二十扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,当所述第二十扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第十九扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,若第七扭矩小于所述目标轮端电爬行扭矩,则第一电机输出所述第十九扭矩,获取所述目标轮端电爬行扭矩与所述第十九扭矩的第十一差值扭矩,第二电机输出所述第十一差值扭矩,其中,所述第十九扭矩为当前第一电机的最大可用扭矩,所述第二十扭矩为当前第二电机的最大可用扭矩;
在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
所述第一电机控制器根据所述第一电机的状态上报第二十一扭矩,所述第二电机控制器根据所述第二电机的状态上报第二十二扭矩;
当所述轮端需求驾驶员扭矩小于或者等于所述第二十一扭矩时,第一电机输出所述轮端需求驾驶员扭矩,第二电机处于静止状态,且所述第二电机不输出扭矩;
当所述第二十二扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第二十一扭矩和所述第二十二扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第二目标扭矩,第二电机输出所述第二目标扭矩,其中,所述第二十一扭矩为当 前第一电机的最大可用扭矩,所述第二十二扭矩为当前第二电机的最大可用扭矩;
所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
所述第一电机控制器根据所述第一电机的状态上报第二十三扭矩,所述第二电机控制器根据所述第二电机的状态上报第二十四扭矩;
当所述轮端需求制动扭矩小于或者等于所述第二十三扭矩时,第一电机输出第五目标扭矩,所述第五目标扭矩为所述轮端需求制动扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,所述第二电机不工作,也不随转;
当所述第二十三扭矩小于所述轮端需求制动扭矩,所述轮端需求制动扭矩小于或者等于所述第二十三扭矩和所述第二十四扭矩之和时,第一电机输出第二十三扭矩,所述第二电机不工作,且不随转,获取轮端需求制动扭矩与所述第二十三扭矩的第十二差值扭矩,传统机械液压制动系统输出所述第十二差值扭矩;
当所述轮端需求制动扭矩大于所述第二十三扭矩和所述第二十四扭矩之和时,第一电机和所述第二电机处于随转状态,其中,所述第二十三扭矩为当前第一电机的最大可用扭矩,所述第二十四扭矩为当前第二电机的最大可用扭矩。
需要说明的是,上述第一扭矩、第二扭矩、第三扭矩、第四扭矩、第五扭矩、第六扭矩、第七扭矩、第八扭矩、第九扭矩、第十扭矩、第十一扭矩、第十二扭矩、第十三扭矩、第十四扭矩、第十五扭矩、第十六扭矩、第十七扭矩、第十八扭矩、第十九扭矩、第二十扭矩、第二十一扭矩、第二十二扭矩、第二十三扭矩、第二十四扭矩可以相同,也可以不同,上述扭矩为相应场景下的轮 端能够产生的最大扭矩。
所述第一目标扭矩、第二目标扭矩、第三目标扭矩、第四目标扭矩和第五目标扭矩可以相同,也可以不同。
所述第一差值扭矩、第二差值扭矩、第三差值扭矩、第四差值扭矩、第五差值扭矩、第六差值扭矩、第七差值扭矩、第八差值扭矩、第九差值扭矩、第十差值扭矩、第十一差值扭矩、第十二差值扭矩可以相同,也可以不同。
在一个示例的例子中,一种四驱纯电动汽车动力系统,主要包括第一电机、第二电机、第一传动机构、第二传动机构、离合器、整车控制器(VCU)、第一电机控制器(MCU1)、第二电机控制器(MCU2),电池管理系统(BMS)、离合器的控制器(CCU)。
BMS将电池SOC、电池充放电允许功率、电池温度、故障状态等信息发送给VCU,MCU1将第一电机的扭矩、转速、功率、温度、故障状态发送给VCU,MCU2将第二电机的扭矩、转速、功率、温度、故障状态发送给VCU,ESP(Electronic Stability Program,车身电子稳定系统)将车辆的加速度、车速等信号发送给VCU,CCU将离合器的状态发送给VCU。VCU发送离合器的控制指令给CCU,CCU控制离合器的执行器执行上述控制指令,VCU发送电机扭矩和转速控制命令给MCU1和MCU2,MCU1和MCU2执行控制指令,控制第一电机和第二电机按照指令运行。
离合器布置位置分别有以下四种:如图1a所示,离合器布置在第一电机和第一传动机构之间,如图1b所示,离合器布置在第一传动机构和主减速器1之间,如图1c所示,离合器布置在第二电机和第二传动机构之间,如图1d所示,离合器布置在第二传动机构和主减速器2之间。
无论是上述离合器位置为哪一种,所述的离合器类型均可以为双向离合器 或者单向离合器。
所述的单向离合器仅有一种默认状态,不存在分离或者结合两种状态,也不需要控制器进行控制,所述的单向离合器仅能将动力从一个方向传递到另外一个方向,不能反向传递动力。如图1a或者图1b所示,举例子说明如下:假如离合器为单向离合器,则第一电机的驱动力可以通过离合器传递到第一传动机构,即第一电机可以正向驱动车辆行驶,但不能反向驱动车辆倒车,而且车辆在向前行驶过程中,遇到制动工况减速时,由于单向离合器的传递力的单向性,第一电机不会产生一个阻碍车辆前进的阻力,同样第一电机也无法实现制动能量回收功能(制动能量回收功能:即通过控制第一电机发电产生一个负力矩对车辆进行制动,同时回馈电能储存到动力电池中)。
所述的双向离合器有三种状态:分离、结合、滑磨。这三种状态均可以通过所述的CCU对其进行控制。当其状态为分离状态时,离合器两端的部件无法进行动力传递;当其状态为结合状态时,离合器两端的部件能够正常传递动力;当其状态为滑磨状态时,离合器能够传递一部分动力。举例子说明如下:如图1a所示,假如离合器为双向离合器,则离合器结合时,第一电机能够将驱动力传递到第一传动机构,从而传动到主减速器驱动车辆行驶,在车辆制动过程中,也可以控制第一电机发电,产生负力矩对车辆进行制动,实现制动能量回收功能。当离合器分离时,第一电机无法驱动车辆,也无法进行制动回收,第一电机也不会对车辆产生一个阻力。
所述的第一传动机构为一对或者两对齿轮传动机构、也可以为链条等机械传动机构,所述的第二传动机构为一对或者两对齿轮传动机构、也可以为链条等机械传动机构。
所述的第一电机和第二电机均为永磁同步电机。
本申请还提出了基于上述动力系统的控制方法,可以为如下。针对离合器布置位置和离合器类型组合,所述的控制方法有四种,分别为:
组合1、离合器布置在前轴(如图1a或图1b),离合器为双向离合器;
组合2、离合器布置在前轴(如图1a或图1b),离合器为单向离合器;
组合3、离合器布置在后轴(如图1c或图1d),离合器为双向离合器;
组合4、离合器布置在后轴(如图1c或图1d),离合器为单向离合器;
(一)针对上述组合1:离合器布置在前轴(如图1a或图1b),离合器为双向离合器,其控制方法如下:
驱动起步控制:
此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T1,第一电机到轮端能够产生的最大扭矩为T1*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T2,第二电机到轮端能够产生的最大扭矩为T2*i2,i2为第二传动机构速比和第二主减速器的速比之积;
离合器的默认状态为结合状态,在车辆起步时,根据油门踏板和制动踏板开度、车速,控制电机扭矩。当驾驶员松开制动踏板同时未踩下加速踏板时,VCU根据当前车速与目标电爬行车速进行PTD控制,输出目标轮端电爬行扭矩T_creep。所述的电爬行车速为3~7km/h。
当T1*i1≤T2*i2时:
如果上述T_creep≤T1*i1,则第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,不输出扭矩指令,离合器维持默认的结合状态;如果上述T1*i1<T_creep≤T2*i2,则第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,不输出扭矩指令,离合器维持默认的结合状态;如果T2*i2< T_creep,则第二电机输出最大扭矩,第一电机输出目标轮端电爬行扭矩与第二电机最大扭矩的差值,离合器维持默认的结合状态。
当T1*i1>T2*i2时:如果上述T_creep≤T2*i2,则第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,不输出扭矩指令,离合器维持默认的结合状态;如果上述T2*i2<T_creep≤T1*i1,则第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,不输出扭矩指令,离合器维持默认的结合状态;如果T1*i1<T_creep,则第一电机输出最大扭矩,第二电机输出目标轮端电爬行扭矩与第一电机最大扭矩的差值,离合器维持默认的结合状态。
驱动行驶控制:
在车辆驱动行驶时,VCU根据油门踏板开度、制动踏板状态及车速信号,计算轮端需求驾驶员扭矩T_driver,此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T3,第一电机到轮端能够产生的最大扭矩为T3*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T4,第二电机到轮端能够产生的最大扭矩为T4*i2,i2为第二传动机构速比和第二主减速器的速比之积;
当T_driver≤T4*i2时,即处于图1e中的A区域和B区域时(图1f中的D区域),此时第二电机单独驱动车辆行驶,第二电机按照驾驶员需求扭矩要求输出动力,离合器分离,第一电机处于静止状态不输出扭矩。如图1a所示,由于离合器的分离,此时第一电机与车轮分开,此时第一电机本身的机械摩擦阻力不会阻碍车辆前进,如图1b所示,由于离合器的分离,此时第一电机和第一传动机构均与车轮分开,此时第一电机和第一传动机构本身的机械摩擦阻力不会阻碍车辆前进。第一电机静止,永磁同步电机不会产生弱磁电流消耗电池电量。与相关技术(没有离合器)相比,车辆阻力更低,而且一个电机驱动车辆 其使用效率更高,整车电耗更低,续驶里程更长。
当T4*i2<T_driver≤T3*i1+T4*i2时,即处于图1e中的C区域(图1f中的E和F区域)时:
第一电机和第二电机均参与驱动车辆,离合器结合,其中第一电机输出扭矩为
Figure PCTCN2021105139-appb-000001
第二电机输出扭矩为
Figure PCTCN2021105139-appb-000002
同时还要考虑不能超出第一电机或第二电机的最大可用扭矩,所述的
Figure PCTCN2021105139-appb-000003
为前后扭矩分配系数,其确定方法如下所述。
Figure PCTCN2021105139-appb-000004
采用查表方法得到,前后扭矩分配系数表格如下表1所示。
表1
Figure PCTCN2021105139-appb-000005
上述表格通过以下方法得到:
针对一个车速、轮端扭矩组合(Vx,Tx),对前后扭矩分配系数进行枚举为
Figure PCTCN2021105139-appb-000006
存在一个前后扭矩分配系数
Figure PCTCN2021105139-appb-000007
其对应的两个电机综合驱动效率最高,即消耗的电池电量最小,则此时的
Figure PCTCN2021105139-appb-000008
即为车速、轮端扭矩组合(Vx,Tx)对应的前后扭矩分配系数。例如针对车速为20Km/h、轮端扭矩为2000Nm的一个组合,按照每0.01之间一个点,在0~1之间存在99个前后扭矩分配系数,在这99个数之间必定存在一个值(假设是0.4)其对应的前后电机综合驱动效率最高,则(20km/h,2000Nm)这个车速、轮端扭矩组合对应的 前后扭矩分配系数为0.4,填入上表中。以此方法类推,得出其它车速、轮端扭矩组合对应的最优前后扭矩分配系数,最终得到一个完整的二位表格如上述表1所示。
制动控制:
制动时制动需求扭矩定义为负值,同样,第一电机和第二电机的允许制动回馈力矩也为负值,为了避免歧义,以下描述过程,所述的扭矩值大小均为其绝对值大小,不含负号。
VCU根据驾驶员制动主缸压力大小,油门踏板状态等计算轮端需求制动力矩T_brake,第一电机和第二电机分别上报自身许用制动力矩大小T5、T6,i1、i2分别为第一传动机构、第一主减速器的速比之积,第二传动机构和第二主减速器的速比之积。
当T_brake≤T6*i2,即处于图1g中G区域和H区域时(图1h中的J区域),VCU根据制动需求力矩发送控制命令,第二电机发电,其产生的力矩为T_brake/i2,产生的负力矩对车辆进行制动,同时发出的电能存储到动力电池中,离合器分离,第一电机不工作,也不随转,此时一个电机制动回收,其效率与两个电机分别回收相比,效率更高,回收电能更多,更有利于车辆整体电耗的降低。
当T6*i2<T_brake≤T5*i1+T6*i2时,即处于图1g中的I区域(图1h中的K和L区域)时,此时第二电机发电,其产生的力矩为最大力矩T6,产生的负力矩对车辆进行制动,同时将发出的电能存储到动力电池中;不足的制动需求为T_brake-T6*i2,不足的这部分由第一电机补充,离合器结合,第一电机产生负扭矩为(T_brake-T6*i2)/i1。
当T5*i1+T6*i2<T_brake时,此时需求的制动力矩很大,认为驾驶员在紧 急制动,为了保证制动安全性,退出制动能量回收功能,第一电机和第二电机均不产生扭矩,离合器维持默认结合状态,第一电机和第二电机处于随转状态。驾驶员需求的制动力矩全部由传统机械液压系统实现。
(二)针对上述组合2:离合器布置在前轴(如图1a或图1b),离合器为单向离合器,其控制方法如下:
驱动起步控制:
此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T7,第一电机到轮端能够产生的最大扭矩为T7*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T8,第二电机到轮端能够产生的最大扭矩为T8*i2,i2为第二传动机构速比和第二主减速器的速比之积;
在车辆起步时,根据油门踏板和制动踏板开度、车速,控制电机扭矩。当驾驶员松开制动踏板同时未踩下加速踏板时,VCU根据当前车速与目标电爬行车速进行PTD控制,输出目标轮端电爬行扭矩T_creep。所述的电爬行车速为3~7km/h。
当T7*i1≤T8*i2时:
如果上述T_creep≤T7*i1,则第一电机输出目标电机扭矩,驱动车辆行驶,第二电机随转,不输出扭矩指令;如果上述T7*i1<T_creep≤T8*i2,则第二电机输出目标电机扭矩,驱动车辆行驶,第一电机随转,不输出扭矩指令;如果T8*i2<T_creep,则第二电机输出最大扭矩,第一电机输出目标电机扭矩与第二电机最大扭矩的差值。
当T7*i1>T8*i2时:如果上述T_creep≤T8*i2,则第二电机输出目标电机扭矩,驱动车辆行驶,第一电机随转,不输出扭矩指令;如果上述T8*i2< T_creep≤T7*i1,则第一电机输出目标电机扭矩,驱动车辆行驶,第二电机随转,不输出扭矩指令;如果T7*i1<T_creep,则第一电机输出最大扭矩,第二电机输出目标电机扭矩与第一电机最大扭矩的差值。
驱动行驶控制:
离合器为单向离合器,不需要控制,为一个固定特性的机械部件。其余控制方法与“组合1离合器布置在前轴(如图1a或图1b),离合器为双向离合器”中对应的驱动行驶控制方法相同。
在车辆驱动行驶时,VCU根据油门踏板开度、制动踏板状态及车速信号,计算轮端需求驾驶员扭矩T_driver,此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T9,第一电机到轮端能够产生的最大扭矩为T9*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T10,第二电机到轮端能够产生的最大扭矩为T10*i2,i2为第二传动机构速比和第二主减速器的速比之积;
当T_driver≤T10*i2时,此时第二电机单独驱动车辆行驶,第二电机按照驾驶员需求扭矩要求输出动力,第一电机处于静止状态不输出扭矩。第一电机静止,永磁同步电机不会产生弱磁电流消耗电池电量。与相关技术(没有离合器)相比,车辆阻力更低,而且一个电机驱动车辆其使用效率更高,整车电耗更低,续驶里程更长。
当T10*i2<T_driver≤T9*i1+T10*i2时,第一电机和第二电机均参与驱动车辆,其中第一电机输出扭矩为
Figure PCTCN2021105139-appb-000009
第二电机输出扭矩为
Figure PCTCN2021105139-appb-000010
制动控制:
制动时制动需求扭矩定义为负值,同样,第一电机和第二电机的允许制动 回馈力矩也为负值,为了避免歧义,以下描述过程,所述的扭矩值大小均为其绝对值大小,不含负号。
VCU根据驾驶员制动主缸压力大小,油门踏板状态等计算轮端需求制动力矩T_brake,第一电机和第二电机分别上报自身许用制动力矩大小T11、T12,i1、i2分别为第一传动机构、第一主减速器的速比之积,第二传动机构和第二主减速器的速比之积。
当T_brake≤T12*i2,VCU根据制动需求力矩发送控制命令,第二电机发电,其产生的力矩为T_brake/i2,产生的负力矩对车辆进行制动,同时发出的电能存储到动力电池中,第一电机不工作,也不随转,此时一个电机制动回收,其效率与两个电机分别回收相比,效率更高,回收电能更多,更有利于车辆整体电耗的降低。
当T12*i2<T_brake≤T11*i1+T12*i2时,此时第二电机发电,其产生的力矩为最大力矩T12,产生的负力矩对车辆进行制动,同时发出的电能存储到动力电池中;第一电机不工作,也不随转。不足的制动需求为T_brake-T12*i2,不足的这部分由传统机械液压制动系统补充。
当T11*i1+T12*i2<T_brake时,此时需求的制动力矩很大,认为驾驶员在紧急制动,为了保证制动安全性,退出制动能量回收功能,第一电机和第二电机均不产生扭矩,离合器维持默认结合状态,第一电机和第二电机处于随转状态。驾驶员需求的制动力矩全部由传统机械液压系统实现。
(三)针对上述组合3:离合器布置在后轴(如图1c或图1d),离合器为双向离合器,其控制方法如下:
驱动起步控制:
此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T13,第一 电机到轮端能够产生的最大扭矩为T13*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T14,第二电机到轮端能够产生的最大扭矩为T14*i2,i2为第二传动机构速比和第二主减速器的速比之积;
离合器的默认状态为结合状态,在车辆起步时,根据油门踏板和制动踏板开度、车速,控制电机扭矩。当驾驶员松开制动踏板同时未踩下加速踏板时,VCU根据当前车速与目标电爬行车速进行PTD控制,输出目标轮端电爬行扭矩T_creep。所述的电爬行车速为3~7km/h。
当T13*i1≤T14*i2时:
如果上述T_creep≤T13*i1,则第一电机输出目标电机扭矩,驱动车辆行驶,第二电机随转,不输出扭矩指令,离合器维持默认的结合状态;如果上述T13*i1<T_creep≤T14*i2,则第二电机输出目标电机扭矩,驱动车辆行驶,第一电机随转,不输出扭矩指令,离合器维持默认的结合状态;如果T14*i2<T_creep,则第二电机输出最大扭矩,第一电机输出目标电机扭矩与第二电机最大扭矩的差值,离合器维持默认的结合状态。
当T13*i1>T14*i2时:控制方法与上述T13*i1≤T14*i2类似,不再赘述。
驱动行驶控制:
在车辆驱动行驶时,VCU根据油门踏板开度、制动踏板状态及车速信号,计算轮端需求驾驶员扭矩T_driver,此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T15,第一电机到轮端能够产生的最大扭矩为T15*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T16,第二电机到轮端能够产生的最大扭矩为T16*i2,i2为第二传动机构速比和第二主减速器的速比之积;
当T_driver≤T15*i1时,此时第一电机单独驱动车辆行驶,第一电机按照驾驶员需求扭矩要求输出动力,离合器分离,第二电机处于静止状态不输出扭矩。如图1d所示,由于离合器的分离,此时第二电机与车轮分开,此时第二电机本身的机械摩擦阻力不会阻碍车辆前进,如图1c所示,由于离合器的分离,此时第二电机和第二传动机构均与车轮分开,此时第二电机和第二传动机构本身的机械摩擦阻力不会阻碍车辆前进。第二电机静止,永磁同步电机不会产生弱磁电流消耗电池电量。与相关技术(没有离合器)相比,车辆阻力更低,而且一个电机驱动车辆其使用效率更高,整车电耗更低,续驶里程更长。
当T15*i1<T_driver≤T15*i1+T16*i2时:
第一电机和第二电机均参与驱动车辆,离合器结合,其中第一电机输出扭矩为
Figure PCTCN2021105139-appb-000011
第二电机输出扭矩为
Figure PCTCN2021105139-appb-000012
同时还要考虑不能超出第一电机或第二电机的最大可用扭矩,所述的
Figure PCTCN2021105139-appb-000013
为前后扭矩分配系数,其确定方法如下所述。
Figure PCTCN2021105139-appb-000014
采用查表方法得到,其表格如上述表1所示。
制动控制:
制动时制动需求扭矩定义为负值,同样,第一电机和第二电机的允许制动回馈力矩也为负值,为了避免歧义,以下描述过程,所述的扭矩值大小均为其绝对值大小,不含负号。
VCU根据驾驶员制动主缸压力大小,油门踏板状态等计算轮端需求制动力矩T_brake,第一电机和第二电机分别上报自身许用制动力矩大小T17、T18,i1、i2分别为第一传动机构、第一主减速器的速比之积,第二传动机构和第二主减速器的速比之积。
当T_brake≤T17*i1,VCU根据制动需求力矩发送控制命令,第一电机发电,其产生的力矩为T_brake/i1,产生的负力矩对车辆进行制动,同时发出的电能存储 到动力电池中,离合器分离,第二电机不工作,也不随转,此时一个电机制动回收,其效率与两个电机分别回收相比,效率更高,回收电能更多,更有利于车辆整体电耗的降低。
当T17*i1<T_brake≤T17*i1+T18*i2时,此时第一电机发电,其产生的力矩为最大力矩T17,产生的负力矩对车辆进行制动,同时将发出的电能存储到动力电池中;不足的制动需求为T_brake-T17*i1,不足的这部分由第二电机补充,离合器结合,第二电机产生负扭矩为(T_brake-T17*i1)/i2。
当T17*i1+T18*i2<T_brake时,此时需求的制动力矩很大,认为驾驶员在紧急制动,为了保证制动安全性,退出制动能量回收功能,第一电机和第二电机均不产生扭矩,离合器维持默认结合状态,第一电机和第二电机处于随转状态。驾驶员需求的制动力矩全部由传统机械液压系统实现。
(四)针对上述组合4:离合器布置在后轴(如图1c或图1d),离合器为单向离合器,其控制方法如下:
驱动起步控制:
此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T19,第一电机到轮端能够产生的最大扭矩为T19*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T20,第二电机到轮端能够产生的最大扭矩为T20*i2,i2为第二传动机构速比和第二主减速器的速比之积;
在车辆起步时,根据油门踏板和制动踏板开度、车速,控制电机扭矩。当驾驶员松开制动踏板同时未踩下加速踏板时,VCU根据当前车速与目标电爬行车速进行PTD控制,输出目标轮端电爬行扭矩T_creep。所述的电爬行车速为3~7km/h。
当T19*i1≤T20*i2时:
如果上述T_creep≤T19*i1,则第一电机输出目标电机扭矩,驱动车辆行驶,第二电机随转,不输出扭矩指令;如果上述T19*i1<T_creep≤T20*i2,则第二电机输出目标电机扭矩,驱动车辆行驶,第一电机随转,不输出扭矩指令;如果T20*i2<T_creep,则第二电机输出最大扭矩,第一电机输出目标电机扭矩与第二电机最大扭矩的差值。
当T19*i1>T20*i2时:控制方法与上述T19*i1≤T20*i2类似,不再赘述。
驱动行驶控制:
离合器为单向离合器,不需要控制,为一个固定特性的机械部件。其余控制方法与“组合1离合器布置在前轴(如图1a或图1b),离合器为双向离合器”中对应的驱动行驶控制方法相同。
在车辆驱动行驶时,VCU根据油门踏板开度、制动踏板状态及车速信号,计算轮端需求驾驶员扭矩T_driver,此时MCU1根据第一电机的状态上报第一电机的最大可用扭矩T21,第一电机到轮端能够产生的最大扭矩为T21*i1,i1为第一传动机构速比和第一主减速器的速比之积,此时MCU2根据第二电机的状态上报第二电机的最大可用扭矩T2,第二电机到轮端能够产生的最大扭矩为T22*i2,i2为第二传动机构速比和第二主减速器的速比之积;
当T_driver≤T21*i1时,此时第一电机单独驱动车辆行驶,第一电机按照驾驶员需求扭矩要求输出动力,第二电机处于静止状态不输出扭矩。第二电机静止,永磁同步电机不会产生弱磁电流消耗电池电量。与相关技术(没有离合器)相比,车辆阻力更低,而且一个电机驱动车辆其使用效率更高,整车电耗更低,续驶里程更长。
当T22*i2<T_driver≤T21*i1+T22*i2时,第一电机和第二电机均参与驱动 车辆,其中第一电机输出扭矩为
Figure PCTCN2021105139-appb-000015
第二电机输出扭矩为
Figure PCTCN2021105139-appb-000016
制动控制:
制动时制动需求扭矩定义为负值,同样,第一电机和第二电机的允许制动回馈力矩也为负值,为了避免歧义,以下描述过程,所述的扭矩值大小均为其绝对值大小,不含负号。
VCU根据驾驶员制动主缸压力大小,油门踏板状态等计算轮端需求制动力矩T_brake,第一电机和第二电机分别上报自身许用制动力矩大小T23、T24,i1、i2分别为第一传动机构、第一主减速器的速比之积,第二传动机构和第二主减速器的速比之积。
当T_brake≤T23*i1,VCU根据制动需求力矩发送控制命令,第一电机发电,其产生的力矩为T_brake/i1,产生的负力矩对车辆进行制动,同时发出的电能存储到动力电池中,第二电机不工作,也不随转,此时一个电机制动回收,其效率与两个电机分别回收相比,效率更高,回收电能更多,更有利于车辆整体电耗的降低。
当T23*i1<T_brake≤T23*i1+T24*i2时,此时第一电机发电,其产生的力矩为最大力矩23,产生的负力矩对车辆进行制动,同时发出的电能存储到动力电池中;第二电机不工作,也不随转。不足的制动需求为
T_brake-T23*i1,不足的这部分由传统机械液压制动系统补充。
当T23*i1+T24*i2<T_brake时,此时需求的制动力矩很大,认为驾驶员在紧急制动,为了保证制动安全性,退出制动能量回收功能,第一电机和第二电机均不产生扭矩,离合器维持默认结合状态,第一电机和第二电机处于随转状态。驾驶员需求的制动力矩全部由传统机械液压系统实现。
本实施例的技术方案,通过所述离合器布置在所述第一电机和所述第一传动机构之间,其中,所述第一电机布置在前轴;或者,所述离合器布置在所述第一传动机构和所述第一减速器之间;或者,所述离合器布置在所述第二电机和所述第二传动机构之间,其中,第二电机布置在后轴;或者,所述离合器布置在所述第二传动机构和所述第二减速器之间,通过本申请的技术方案,以实现能够减小电机随转的损失,车辆驱动时的阻力更小,车辆电耗更低,续驶里程更长。
本申请实施例中提供的四驱纯电动汽车动力系统包括:第一电机、第二电机、第一传动机构、第二传动机构、离合器、第一减速器和第二减速器;其中,所述离合器布置在所述第一电机和所述第一传动机构之间,其中,所述第一电机布置在前轴;或者,所述离合器布置在所述第一传动机构和所述第一减速器之间;或者,所述离合器布置在所述第二电机和所述第二传动机构之间,其中,第二电机布置在后轴;或者,所述离合器布置在所述第二传动机构和所述第二减速器之间。能够减小电机随转的损失,车辆驱动时的阻力更小,车辆电耗更低,续驶里程更长。

Claims (10)

  1. 一种四驱纯电动汽车动力系统,包括:第一电机、第二电机、第一传动机构、第二传动机构、离合器、第一减速器和第二减速器;
    其中,所述离合器布置在所述第一电机和所述第一传动机构之间,其中,所述第一电机布置在前轴;
    或者,
    所述离合器布置在所述第一传动机构和所述第一减速器之间;
    或者,
    所述离合器布置在所述第二电机和所述第二传动机构之间,其中,第二电机布置在后轴;
    或者,
    所述离合器布置在所述第二传动机构和所述第二减速器之间。
  2. 根据权利要求1所述的四驱纯电动汽车动力系统,其中,所述离合器为单向离合器或者双向离合器。
  3. 根据权利要求2所述的四驱纯电动汽车动力系统,还包括:第一电机控制器、第二电机控制器和整车控制器;
    若所述离合器布置前轴,且所述离合器为双向离合器,则所述第一电机控制器根据所述第一电机的状态上报第一扭矩,所述第二电机控制器根据所述第二电机的状态上报第二扭矩;
    当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
    当所述第一扭矩小于或者等于所述第二扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第一扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱 动车辆行驶,第二电机随转,离合器处于结合状态,若所述第一扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第二扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,若第二扭矩小于所述目标轮端电爬行扭矩,所述第二电机输出第二扭矩,所述第一电机输出第一差值扭矩,所述第一差值扭矩为所述目标轮端电爬行扭矩与所述第二扭矩的差值扭矩,离合器处于结合状态;
    当所述第一扭矩大于所述第二扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第二扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,离合器处于结合状态,若所述第二扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第一扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第二电机随转,所述离合器处于结合状态,若所述第一扭矩小于所述目标轮端电爬行扭矩,则所述第一电机输出所述第一扭矩,获取所述目标轮端电爬行扭矩与所述第一扭矩的第二差值扭矩,第二电机输出所述第二差值扭矩,其中,所述第一扭矩为当前第一电机的最大可用扭矩,所述第二扭矩为当前第二电机的最大可用扭矩。
  4. 根据权利要求3所述的四驱纯电动汽车动力系统,还包括:
    在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第三扭矩,所述第二电机控制器根据所述第二电机的状态上报第四扭矩;
    当所述轮端需求驾驶员扭矩小于或者等于所述第四扭矩时,第二电机输出所述轮端需求驾驶员扭矩,将离合器从结合状态转换为分离状态,所述第一电机处于静止状态,且所述第一电机不输出扭矩;
    当所述第四扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第三扭矩和所述第四扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,所述第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第二传动机构速比和第二主减速器的速比之积计算第二目标扭矩,所述第二电机输出所述第二目标扭矩,离合器处于结合状态,其中,所述第三扭矩为当前第一电机的最大可用扭矩,所述第四扭矩为当前第二电机的最大可用扭矩。
  5. 根据权利要求4所述的四驱纯电动汽车动力系统,还包括:
    所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第五扭矩,所述第二电机控制器根据所述第二电机的状态上报第六扭矩;
    当所述轮端需求制动扭矩小于或者等于所述第六扭矩时,第二电机输出第三目标扭矩,所述第三目标扭矩为所述轮端需求制动扭矩与第二速比之积的比值,其中,所述第二速比之积为第二传动机构速比和第二主减速器的速比之积,离合器处于分离状态,所述第一电机处于非工作状态,且所述第一电机不随转;
    当所述第六扭矩小于所述轮端需求制动扭矩,且所述轮端需求制动扭矩小于或者等于所述第五扭矩和所述第六扭矩之和时,第二电机输出第六扭矩,获取轮端需求制动扭矩与所述第六扭矩的第三差值扭矩,所述第一电机输出第四目标扭矩,所述第四目标扭矩为第三差值扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,离合器处于结合状态;
    当所述轮端需求制动扭矩大于所述第五扭矩和所述第六扭矩之和时,离合器处于结合状态,所述第一电机和所述第二电机均不产生扭矩,且所述第一电机和所述第二电机均处于随转状态,其中,所述第五扭矩为当前第一电机的最大可用扭矩,所述第六扭矩为当前第二电机的最大可用扭矩。
  6. 根据权利要求2所述的四驱纯电动汽车动力系统,还包括:第一电机控制器、第二电机控制器和整车控制器;
    若所述离合器布置在前轴,且所述离合器为单向离合器,则所述第一电机控制器根据所述第一电机的状态上报第七扭矩,所述第二电机控制器根据所述第二电机的状态上报第八扭矩;
    当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
    当所述第七扭矩小于或者等于所述第八扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第七扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,当所述第七扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第八扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,若第八扭矩小于所述目标轮端电爬行扭矩,第二电机输出第八扭矩,第一电机输出第四差值扭矩,所述第四差值扭矩为目标电机扭矩与第八扭矩的差值扭矩;
    当所述第七扭矩大于所述第八扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第八扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,当所述第八扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第七扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,若第七扭矩小于所述目标轮端电爬 行扭矩,则第一电机输出所述第七扭矩,获取所述目标轮端电爬行扭矩与所述第七扭矩的第五差值扭矩,第二电机输出所述第五差值扭矩,其中,所述第七扭矩为当前第一电机的最大可用扭矩,所述第八扭矩为当前第二电机的最大可用扭矩。
  7. 根据权利要求6所述的四驱纯电动汽车动力系统,还包括:
    在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第九扭矩,所述第二电机控制器根据所述第二电机的状态上报第十扭矩;
    当所述轮端需求驾驶员扭矩小于或者等于所述第十扭矩时,第二电机输出所述轮端需求驾驶员扭矩,第一电机处于静止状态,且所述第一电机不输出扭矩;
    当所述第十扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第九扭矩和所述第十扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第二目标扭矩,第二电机输出所述第二目标扭矩,其中,所述第九扭矩为当前第一电机的最大可用扭矩,所述第十扭矩为当前第二电机的最大可用扭矩。
  8. 根据权利要求7所述的四驱纯电动汽车动力系统,还包括:
    所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第十一扭矩,所述第二 电机控制器根据所述第二电机的状态上报第十二扭矩;
    当所述轮端需求制动扭矩小于或者等于所述第十二扭矩时,第二电机输出第三目标扭矩,所述第三目标扭矩为所述轮端需求制动扭矩与第二速比之积的比值,其中,所述第二速比之积为第二传动机构速比和第二主减速器的速比之积;
    当所述第十二扭矩小于所述轮端需求制动扭矩,所述轮端需求制动扭矩小于或者等于所述第十一扭矩和所述第十二扭矩之和时,第二电机输出第十二扭矩,所述第一电机不工作,且不随转,获取轮端需求制动扭矩与所述第十二扭矩的第六差值扭矩,机械液压制动系统输出所述第六差值扭矩;
    当所述轮端需求制动扭矩大于所述第十一扭矩和所述第十二扭矩之和时,第一电机和所述第二电机处于随转状态,其中,所述第十一扭矩为当前第一电机的最大可用扭矩,所述第十二扭矩为当前第二电机的最大可用扭矩。
  9. 根据权利要求2所述的四驱纯电动汽车动力系统,还包括:第一电机控制器、第二电机控制器和整车控制器;
    若所述离合器布置后轴,且所述离合器为双向离合器,则所述第一电机控制器根据所述第一电机的状态上报第十三扭矩,所述第二电机控制器根据所述第二电机的状态上报第十四扭矩;
    当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
    当所述第十三扭矩小于或者等于所述第十四扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第十三扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,离合器处于结合状态,若所述第十三扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述 第十四扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,若第十四扭矩小于所述目标轮端电爬行扭矩,所述第二电机输出第十四扭矩,所述第一电机输出第七差值扭矩,所述第七差值扭矩为所述目标轮端电爬行扭矩与所述第十四扭矩的差值扭矩,离合器处于结合状态;
    当所述第十三扭矩大于所述第十四扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第十四扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第一电机随转,离合器处于结合状态,若所述第十四扭矩小于所述目标轮端电爬行扭矩,且所述目标轮端电爬行扭矩小于或者等于所述第十三扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,所述第二电机随转,所述离合器处于结合状态,若所述第十三扭矩小于所述目标轮端电爬行扭矩,则所述第一电机输出所述第十三扭矩,获取所述目标轮端电爬行扭矩与所述第十三扭矩的第八差值扭矩,第二电机输出所述第八差值扭矩,其中,所述第十三扭矩为当前第一电机的最大可用扭矩,所述第十四扭矩为当前第二电机的最大可用扭矩;
    在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第十五扭矩,所述第二电机控制器根据所述第二电机的状态上报第十六扭矩;
    当所述轮端需求驾驶员扭矩小于或者等于所述第十五扭矩时,第一电机输出所述轮端需求驾驶员扭矩,将离合器从结合状态转换为分离状态,所述第二电机处于静止状态,且所述第二电机不输出扭矩;
    当所述第十五扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第十五扭矩和所述第十六扭矩之和,根据轮端需求驾驶 员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,所述第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第二传动机构速比和第二主减速器的速比之积计算第二目标扭矩,所述第二电机输出所述第二目标扭矩,离合器处于结合状态,其中,所述第十五扭矩为当前第一电机的最大可用扭矩,所述第十六扭矩为当前第二电机的最大可用扭矩;
    所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第十七扭矩,所述第二电机控制器根据所述第二电机的状态上报第十八扭矩;
    当所述轮端需求制动扭矩小于或者等于所述第十七扭矩时,第一电机输出第五目标扭矩,所述第五目标扭矩为所述轮端需求制动扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,离合器处于分离状态,所述第二电机处于非工作状态,且所述第二电机不随转;
    当所述第十七扭矩小于所述轮端需求制动扭矩,且所述轮端需求制动扭矩小于或者等于所述第十七扭矩和所述第十八扭矩之和时,第一电机输出第十七扭矩,获取轮端需求制动扭矩与所述第十七扭矩的第九差值扭矩,所述第二电机输出第五目标扭矩,所述第五目标扭矩为第九差值扭矩与第一速比之积的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,离合器处于结合状态;
    当所述轮端需求制动扭矩大于所述第十七扭矩和所述第十八扭矩之和时,离合器处于结合状态,所述第一电机和所述第二电机均不产生扭矩,且所述第 一电机和所述第二电机均处于随转状态,其中,所述第十七扭矩为当前第一电机的最大可用扭矩,所述第十八扭矩为当前第二电机的最大可用扭矩。
  10. 根据权利要求2所述的四驱纯电动汽车动力系统,还包括:第一电机控制器、第二电机控制器和整车控制器;
    若所述离合器布置在后轴,且所述离合器为单向离合器,则所述第一电机控制器根据所述第一电机的状态上报第十九扭矩,所述第二电机控制器根据所述第二电机的状态上报第二十扭矩;
    当制动主缸上的压力为零,且加速踏板的开度为零时,所述整车控制器根据当前车速和目标电爬行车速确定目标轮端电爬行扭矩;
    当所述第十九扭矩小于或者等于所述第二十扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第十九扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,当所述第十九扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第二十扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,若第八扭矩小于所述目标轮端电爬行扭矩,第二电机输出第二十扭矩,第一电机输出第十差值扭矩,所述第十差值扭矩为目标电机扭矩与第二十扭矩的差值扭矩;
    当所述第十九扭矩大于所述第二十扭矩时,若所述目标轮端电爬行扭矩小于或者等于所述第二十扭矩,则所述第二电机输出目标轮端电爬行扭矩,驱动车辆行驶,第一电机随转,当所述第二十扭矩小于所述目标轮端电爬行扭矩,所述目标轮端电爬行扭矩小于或者等于所述第十九扭矩,则所述第一电机输出目标轮端电爬行扭矩,驱动车辆行驶,第二电机随转,若第七扭矩小于所述目标轮端电爬行扭矩,则第一电机输出所述第十九扭矩,获取所述目标轮端电爬行扭矩与所述第十九扭矩的第十一差值扭矩,第二电机输出所述第十一差值扭 矩,其中,所述第十九扭矩为当前第一电机的最大可用扭矩,所述第二十扭矩为当前第二电机的最大可用扭矩;
    在车辆驱动行驶时,所述整车控制器根据油门踏板开度、制动踏板状态和车速信号计算轮端需求驾驶员扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第二十一扭矩,所述第二电机控制器根据所述第二电机的状态上报第二十二扭矩;
    当所述轮端需求驾驶员扭矩小于或者等于所述第二十一扭矩时,第一电机输出所述轮端需求驾驶员扭矩,第二电机处于静止状态,且所述第二电机不输出扭矩;
    当所述第二十二扭矩小于所述轮端需求驾驶员扭矩,且所述轮端需求驾驶员扭矩小于或者等于所述第二十一扭矩和所述第二十二扭矩之和,根据轮端需求驾驶员扭矩、前扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第一目标扭矩,第一电机输出所述第一目标扭矩,根据轮端需求驾驶员扭矩、后扭矩分配系数、第一传动机构速比和第一主减速器的速比之积计算第二目标扭矩,第二电机输出所述第二目标扭矩,其中,所述第二十一扭矩为当前第一电机的最大可用扭矩,所述第二十二扭矩为当前第二电机的最大可用扭矩;
    所述整车控制器根据驾驶员制动主缸压力大小和油门踏板状态计算轮端需求制动扭矩;
    所述第一电机控制器根据所述第一电机的状态上报第二十三扭矩,所述第二电机控制器根据所述第二电机的状态上报第二十四扭矩;
    当所述轮端需求制动扭矩小于或者等于所述第二十三扭矩时,第一电机输出第五目标扭矩,所述第五目标扭矩为所述轮端需求制动扭矩与第一速比之积 的比值,其中,所述第一速比之积为第一传动机构速比和第一主减速器的速比之积,所述第二电机不工作,也不随转;
    当所述第二十三扭矩小于所述轮端需求制动扭矩,所述轮端需求制动扭矩小于或者等于所述第二十三扭矩和所述第二十四扭矩之和时,第一电机输出第二十三扭矩,所述第二电机不工作,且不随转,获取轮端需求制动扭矩与所述第二十三扭矩的第十二差值扭矩,传统机械液压制动系统输出所述第十二差值扭矩;
    当所述轮端需求制动扭矩大于所述第二十三扭矩和所述第二十四扭矩之和时,第一电机和所述第二电机处于随转状态,其中,所述第二十三扭矩为当前第一电机的最大可用扭矩,所述第二十四扭矩为当前第二电机的最大可用扭矩。
PCT/CN2021/105139 2020-09-18 2021-07-08 四驱纯电动汽车动力系统 WO2022057403A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21868232.6A EP4215396A1 (en) 2020-09-18 2021-07-08 Four-wheel drive pure electric vehicle power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010988993.3 2020-09-18
CN202010988993.3A CN112092613B (zh) 2020-09-18 2020-09-18 一种四驱纯电动汽车动力系统

Publications (1)

Publication Number Publication Date
WO2022057403A1 true WO2022057403A1 (zh) 2022-03-24

Family

ID=73758978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105139 WO2022057403A1 (zh) 2020-09-18 2021-07-08 四驱纯电动汽车动力系统

Country Status (3)

Country Link
EP (1) EP4215396A1 (zh)
CN (1) CN112092613B (zh)
WO (1) WO2022057403A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092613B (zh) * 2020-09-18 2022-01-25 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统
CN113370772A (zh) * 2021-07-22 2021-09-10 中国第一汽车股份有限公司 一种电动汽车的动力系统及控制方法
CN113619560A (zh) * 2021-09-06 2021-11-09 中国第一汽车股份有限公司 汽车输出扭矩的控制方法、装置、电子设备及介质
CN113682150A (zh) * 2021-09-09 2021-11-23 中国第一汽车股份有限公司 纯电动汽车动力系统、纯电动汽车及控制方法
CN113580956A (zh) * 2021-09-09 2021-11-02 中国第一汽车股份有限公司 纯电动汽车动力系统、纯电动汽车及控制方法
CN115264046B (zh) * 2022-06-23 2024-03-15 中国第一汽车股份有限公司 一种带有犬牙离合器的车辆控制方法和控制装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187944A (ja) * 2012-03-06 2013-09-19 Honda Motor Co Ltd 車両用駆動装置
CN205202749U (zh) * 2015-11-27 2016-05-04 北汽福田汽车股份有限公司 电动汽车的动力系统和电动汽车
CN107499179A (zh) * 2017-03-30 2017-12-22 宝沃汽车(中国)有限公司 电动汽车的动力驱动方法、系统及电动汽车
CN208134079U (zh) * 2018-05-11 2018-11-23 北京车和家信息技术有限公司 动力系统及车辆
CN109591583A (zh) * 2018-12-26 2019-04-09 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力输出系统、方法和电动汽车
CN109649141A (zh) * 2019-01-10 2019-04-19 洛阳智能农业装备研究院有限公司 一种用于电动拖拉机的双置动力驱动系统构型
CN109733206A (zh) * 2019-01-14 2019-05-10 北京长城华冠汽车科技股份有限公司 电动车辆及其驱动方法
CN111038240A (zh) * 2019-12-11 2020-04-21 华为技术有限公司 动力总成、驱动系统和汽车
CN112092612A (zh) * 2020-09-18 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统
CN112092613A (zh) * 2020-09-18 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438007A (zh) * 2015-12-03 2016-03-30 康迪电动汽车(长兴)有限公司 一种电动汽车驱动装置
CN107097686A (zh) * 2017-04-21 2017-08-29 阿尔特汽车技术股份有限公司 双电机电动汽车的驱动扭矩分配控制方法
CN109367399A (zh) * 2018-09-18 2019-02-22 江西江铃集团新能源汽车有限公司 四驱控制装置及汽车
CN109733189A (zh) * 2018-12-26 2019-05-10 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力输出系统、方法和电动汽车
CN110466360B (zh) * 2019-08-12 2021-08-24 山东元齐新动力科技有限公司 一种车辆控制方法、装置及车辆
CN110920384A (zh) * 2019-12-26 2020-03-27 宜宾凯翼汽车有限公司 四驱电动车的双电机驱动装置
CN111098686A (zh) * 2020-02-27 2020-05-05 徐工集团工程机械股份有限公司科技分公司 纯电动装载机的传动系统及控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187944A (ja) * 2012-03-06 2013-09-19 Honda Motor Co Ltd 車両用駆動装置
CN205202749U (zh) * 2015-11-27 2016-05-04 北汽福田汽车股份有限公司 电动汽车的动力系统和电动汽车
CN107499179A (zh) * 2017-03-30 2017-12-22 宝沃汽车(中国)有限公司 电动汽车的动力驱动方法、系统及电动汽车
CN208134079U (zh) * 2018-05-11 2018-11-23 北京车和家信息技术有限公司 动力系统及车辆
CN109591583A (zh) * 2018-12-26 2019-04-09 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力输出系统、方法和电动汽车
CN109649141A (zh) * 2019-01-10 2019-04-19 洛阳智能农业装备研究院有限公司 一种用于电动拖拉机的双置动力驱动系统构型
CN109733206A (zh) * 2019-01-14 2019-05-10 北京长城华冠汽车科技股份有限公司 电动车辆及其驱动方法
CN111038240A (zh) * 2019-12-11 2020-04-21 华为技术有限公司 动力总成、驱动系统和汽车
CN112092612A (zh) * 2020-09-18 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统
CN112092613A (zh) * 2020-09-18 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统

Also Published As

Publication number Publication date
EP4215396A1 (en) 2023-07-26
CN112092613B (zh) 2022-01-25
CN112092613A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022057403A1 (zh) 四驱纯电动汽车动力系统
CN109204260B (zh) 电动汽车制动力分配方法
CN108382187B (zh) 双电机混合动力系统及其控制方法
CN112092612B (zh) 一种四驱纯电动汽车动力系统
US9969391B2 (en) Vehicle travel control apparatus
EP3028893B1 (en) Vehicle
CN101073992A (zh) 基于abs的汽车再生与常规制动集成控制器及控制方法
CN107554353A (zh) 一种电动汽车的整车扭矩控制方法
WO2016114282A1 (ja) 駆動装置の制御装置及び制御方法ならびに記録媒体
CN107117203B (zh) 一种用于汽车驱动桥的差矩助力转向系统及其控制方法
CN102269658A (zh) 电、液联合制动实验车
CN108688474A (zh) 电动汽车制动能量回收控制算法
WO2022052985A1 (zh) 驱动控制方法、装置和电动车辆
BR112017011550B1 (pt) Método e dispositivo de controle de transmissão de potência para um guindaste, e guindaste de potência híbrida óleo-hidráulico de tipo paralelo
EP3683078A1 (en) Control system to eliminate powertrain backlash
US11619272B2 (en) Dog clutch engagement method of electric four-wheel drive vehicle
CN112606695B (zh) 一种新能源汽车坡道环境下的控制方法及系统
CN105620310B (zh) 一种三电机混合驱动载货汽车及动力系统参数匹配方法
CN202115506U (zh) 电、液联合制动实验车
CN110271425B (zh) 一种纯电动客车再生制动控制方法
CN112622634A (zh) 电动汽车的扭矩控制方法及系统
CN107499182A (zh) 一种四轮电动汽车驱动控制的转换方法及系统
WO2023000982A1 (zh) 一种电动汽车的动力系统、控制方法及电动汽车
JP2021130361A (ja) 制御装置
CN112977075A (zh) 一种前轮驱动车辆的制动控制方法、装置及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868232

Country of ref document: EP

Effective date: 20230418