WO2016114282A1 - 駆動装置の制御装置及び制御方法ならびに記録媒体 - Google Patents

駆動装置の制御装置及び制御方法ならびに記録媒体 Download PDF

Info

Publication number
WO2016114282A1
WO2016114282A1 PCT/JP2016/050771 JP2016050771W WO2016114282A1 WO 2016114282 A1 WO2016114282 A1 WO 2016114282A1 JP 2016050771 W JP2016050771 W JP 2016050771W WO 2016114282 A1 WO2016114282 A1 WO 2016114282A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
control
difference
torque
right driving
Prior art date
Application number
PCT/JP2016/050771
Other languages
English (en)
French (fr)
Inventor
智一 本多
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2016569468A priority Critical patent/JP6546199B2/ja
Priority to EP16737353.9A priority patent/EP3246221B1/en
Priority to US15/120,639 priority patent/US10065527B2/en
Priority to CN201680005558.6A priority patent/CN107107908B/zh
Publication of WO2016114282A1 publication Critical patent/WO2016114282A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0046Disposition of motor in, or adjacent to, traction wheel the motor moving together with the vehicle body, i.e. moving independently from the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/40Torque distribution
    • B60W2520/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/40Torque distribution
    • B60W2520/406Torque distribution between left and right wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/20Sideslip angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/427One-way clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention adjusts the driving force of the left and right drive units for propulsion of the transportation equipment, thereby obtaining a difference between the left and right drive force sum that is the sum of the left and right drive unit driving forces and the left and right drive unit driving forces.
  • the present invention relates to a control device and a control method for a drive device and a recording medium that can change a difference between left and right drive force independently of each other.
  • Patent Document 1 Conventionally, as this type of control device, for example, one disclosed in Patent Document 1 is known.
  • this control device while the vehicle is turning, the torque of the left and right wheels of the vehicle is controlled so that the yaw moment (absolute value) of the vehicle increases when the vehicle speed is low / medium speed lower than a predetermined vehicle speed, When the vehicle speed is higher than a predetermined vehicle speed, control is performed so that the yaw moment (absolute value) of the vehicle decreases.
  • the turning performance of the vehicle is improved.
  • the torque of the left and right wheels is increased so that the yaw moment increases when the vehicle speed is low and medium, and the yaw moment decreases when the vehicle speed is high. Is controlled. For this reason, for example, when the vehicle is turning and the vehicle speed is high, the following problems occur when the vehicle speed becomes low or medium due to the operation of the vehicle brake or the like. There is a fear. That is, in this case, the yaw moment is abruptly changed by controlling the yaw moment to be increased from the state in which the torque of the left and right wheels has been controlled so as to decrease the yaw moment. As a result, the behavior of the vehicle may become unstable.
  • An object of the present invention is to provide a control device and control method for a driving device, and a recording medium.
  • the invention according to claim 1 is a propulsion device for transportation equipment arranged on the left side with respect to the traveling direction of transportation equipment (vehicle V in the embodiment (hereinafter, the same in this section)).
  • Left driving force (left rear wheel WRL) of the left driving force and driving of the right driving portion (right rear wheel WRR) for propelling the transportation equipment arranged on the right side with respect to the traveling direction of the transportation equipment By adjusting the right driving force that is the force, the left and right driving force sum (left and right torque sum TTWLR) that is the sum of the left driving force and the right driving force and the left and right that is the difference between the left driving force and the right driving force
  • a control device 1 of a drive device (rear wheel drive device DRS) that can change a drive force difference (left-right torque difference ⁇ TWLR) independently of each other, and a yaw moment in a direction opposite to the turning direction of the transport device is Left driving force through the driving device and Control means (ECU2, steps 1, 4
  • the left and right driving force difference is generated by controlling the left driving force and the right driving force via the driving device so that the yaw moment in the direction opposite to the turning direction of the transporting device acts on the transporting device.
  • Reverse distribution control is executed. Thereby, the behavior of the transportation equipment can be stabilized by reducing the yaw moment during the turning of the transportation equipment.
  • the left driving force and the right driving force are controlled so that the change in the left / right driving force difference is smaller than the change in the left / right driving force sum when the deceleration of the transport device is acquired. Limit control is performed.
  • the propulsive force for propelling the transportation device changes according to the change in the left / right driving force sum
  • the yaw moment of the transportation device changes according to the change in the left / right driving force difference.
  • the left driving force and the right driving force are set so that the change in the left / right driving force difference is smaller than the change in the left / right driving force sum when the deceleration of the transport device is acquired during the reverse distribution control. Is controlled. Thereby, it is possible to suppress the fluctuation of the yaw moment of the transportation device during deceleration during the turning of the transportation device, and thus it is possible to stabilize the behavior of the transportation device.
  • the restriction control is not executed. Therefore, an excessive turning state of the transportation device due to the turning assist being maintained unnecessarily does not occur. Furthermore, in this case, the behavior of the transportation device can be stabilized only by controlling the left driving force and the right driving force without determining whether the behavior of the transportation device is stable.
  • the “difference between the left driving force and the right driving force” in the present invention is an amount including the difference between the left driving force and the right driving force or the ratio between the left driving force and the right driving force.
  • “acquisition” is a concept including detection, calculation, estimation, and prediction
  • “change” is a concept including a change speed and a change amount.
  • the invention according to claim 2 further comprises speed acquisition means (vehicle speed sensor 21) for acquiring the traveling speed of the transport device in the control device 1 of the drive device according to claim 1, wherein the control means is for reverse distribution control.
  • the restriction control is started when the transport device deceleration is acquired. (Step 45, Step 2: YES, Step 8, Step 61: YES, Step 62).
  • the restriction control is started when the deceleration of the transportation device is acquired.
  • the traveling speed of the transportation device is relatively high, if the left and right wheel driving force difference is greatly changed, the behavior of the vehicle may become very unstable. Therefore, by starting the restriction control in the situation as described above, the effect of the invention according to claim 1, that is, the effect that the behavior of the transportation device can be stabilized during the deceleration during the turning of the transportation device can be effectively achieved. Obtainable.
  • the left / right driving force difference can be controlled freely without starting the limit control, so that the yaw moment in the same direction as the turning direction of the transport equipment acts on the transport equipment. Can be made.
  • the control means uses the left driving force and the left driving force so as to keep the left-right driving force difference substantially constant as the limiting control.
  • the right driving force is controlled (step 8).
  • the left driving force and the right driving force are controlled so that the left / right driving force difference is maintained substantially constant during the limit control.
  • the deceleration acquisition means further acquires the end of deceleration of the transportation equipment or the acceleration of the transportation equipment, and the control means Is characterized in that the restriction control is continued until the end of deceleration of the transportation device or the acceleration of the transportation device is acquired (step 47: NO, step 72: NO, step 48).
  • the restriction control is continued until the end of deceleration of the transportation device or the acceleration of the transportation device is acquired.
  • the restriction control since the restriction control is continued from the start to the end of deceleration of the transport device during the turning of the transport device, the behavior of the transport device can be stabilized.
  • the movement state acquisition means (vehicle speed sensor 21, steering angle sensor 22, lateral direction) for acquiring the movement state of the transport equipment.
  • the acceleration sensor 23 and the yaw moment sensor 24) are further provided, and the control means performs the left driving force and the right driving after the end of the limiting control (step 47: NO, step 72: NO, steps 48, 49, step 3: YES).
  • the values controlled at the end of the limit control previously value TWLOBJZ, previous value TWROBJZ
  • the values the left wheel provisional target torque TWPRO, Control is made to gradually return to the right wheel provisional target torque TWRPRO (step 9).
  • the left driving force and the right driving force are controlled by the normal control according to the acquired movement state of the transportation equipment from the values controlled at the end of the limit control. It is controlled not to be suddenly returned to a certain value, but to be gradually restored. Thereby, the transition from the limit control to the normal control can be smoothly performed without suddenly changing the left and right driving force difference.
  • the transport device is the vehicle V
  • the left and right drive units are the left and right wheels (left and right rear wheels) of the vehicle. Wheels WRL, WRR).
  • the driving device is a left rotating electrical machine (first rear motor) coupled to the left driving unit and the right driving unit, respectively. 41) and a right rotating electrical machine (second rear motor 61).
  • the left driving force and the right driving force can be controlled independently of each other by controlling the left rotating electric machine and the right rotating electric machine, so the effect of the invention according to claim 1, that is, the turning of the transportation equipment
  • the effect that the behavior of the transportation device can be stabilized during deceleration inside can be appropriately obtained.
  • the invention according to claim 8 is directed to the left side for propulsion of a transportation device arranged on the left side with respect to the traveling direction of the transportation device (vehicle V in the embodiment (hereinafter, the same applies in this section)).
  • the left driving force which is the driving force of the driving unit (left rear wheel WRL), and the driving force of the right driving unit (right rear wheel WRR) for propelling the transportation equipment arranged on the right side with respect to the traveling direction of the transportation equipment
  • a left / right driving force sum (left / right torque sum TTWLR) which is the sum of the left driving force and the right driving force and a left / right driving force which is a difference between the left driving force and the right driving force.
  • a control device 1 for a drive device that can change the difference (left-right torque difference ⁇ TWLR) independently of each other, and at least one of a movement state of a transport device and a request of a transport device operator Control parameter to obtain the control parameter to represent Data acquisition means (vehicle speed sensor 21, steering angle sensor 22, lateral acceleration sensor 23, yaw moment sensor 24, accelerator opening sensor 25) and acquired control parameters (vehicle speed VP, steering angle ⁇ , lateral acceleration GL, Based on the yaw moment YM and the accelerator pedal opening AP), the left / right difference target value (target torque difference ⁇ TT) that is the target value of the left / right driving force difference and the left / right sum target value (target torque) that is the target value of the left / right driving force sum.
  • Data acquisition means vehicle speed sensor 21, steering angle sensor 22, lateral acceleration sensor 23, yaw moment sensor 24, accelerator opening sensor 25
  • acquired control parameters vehicle speed VP, steering angle ⁇ , lateral acceleration GL, Based on the yaw
  • Target value calculating means (ECU2, steps 21 and 23) for calculating the sum TRT), and control means for controlling the left driving force and the right driving force in accordance with the calculated left / right difference target value and left / right sum target value ( ECU 2, steps 24 to 31, and steps 4 to 7), and the control means causes the yaw moment in the direction opposite to the turning direction of the transportation device to act on the transportation device according to the left / right difference target value.
  • Reverse distribution control that causes a left / right driving force difference by controlling the left driving force and the right driving force via the driving device is executed, and the change in the left / right difference target value is performed while the reverse distribution control is being executed (step 42: YES).
  • step 71 When the left and right sum target values are both obtained (step 71: YES), the left driving force and the right driving force are set so that the change in the left and right driving force difference is smaller than the change in the left and right driving force sum. Restriction control to be controlled is executed (step 45, step 2: YES, step 8, step 61: YES, step 62).
  • the control parameter indicating at least one of the movement state of the transport device and the request of the transport device operator is acquired, and based on the acquired control parameter, the target value of the left-right driving force difference is obtained.
  • a left / right difference target value and a left / right sum target value which is a target value of the left / right driving force sum, are calculated, and left driving force and right driving force are calculated according to the calculated left / right difference target value and left / right sum target value.
  • the left and right driving force difference is controlled by controlling the left driving force and the right driving force via the driving device so that the yaw moment in the direction opposite to the turning direction of the transportation device acts on the transportation device according to the left / right difference target value.
  • Reverse distribution control that causes Thereby, like the invention concerning Claim 1, the behavior of transportation equipment can be stabilized by reducing the yaw moment during turning of transportation equipment.
  • the change in the left / right driving force difference is smaller than the change in the left / right driving force sum.
  • limit control for controlling the left driving force and the right driving force is executed.
  • the traveling speed of the equipment is changing or changing, that is, the transportation equipment is decelerating or accelerating or the transportation equipment is decelerating or accelerating.
  • the yaw moment of the transportation equipment can be suppressed from changing during the deceleration of the transportation equipment during the turn, as in the invention according to claim 1, and consequently the transportation equipment.
  • the behavior of can be stabilized. In this case, it is possible to stabilize the behavior of the transportation device only by controlling the left driving force and the right driving force without determining whether the behavior of the transportation device is stable.
  • the invention according to claim 9 is directed to propulsion of a transportation device disposed on the left side with respect to the traveling direction of the transportation device (vehicle V in the embodiment (hereinafter, the same applies in this section)).
  • the left driving force which is the driving force of the driving unit (left rear wheel WRL), and the driving force of the right driving unit (right rear wheel WRR) for propelling the transportation equipment arranged on the right side with respect to the traveling direction of the transportation equipment
  • a left / right driving force sum (left / right torque sum TTWLR) which is the sum of the left driving force and the right driving force and a left / right driving force which is a difference between the left driving force and the right driving force.
  • a control method for a drive device that can change the difference (left-right torque difference ⁇ TWLR) independently of each other, such that the yaw moment in the direction opposite to the turning direction of the transportation device acts on the transportation device.
  • step 42: YES When reverse distribution control is being executed (step 42: YES), when the deceleration of the transport device is acquired (step 43: YES, step 71: YES), the change in the left / right driving force difference is greater than the change in the left / right driving force sum.
  • step 45, step 2: YES, step 8, step 61: YES, step 62 for executing the limit control for controlling the left driving force and the right driving force so as to be reduced.
  • the invention according to claim 9 is obtained by rewriting the invention of the control device according to claim 1 into the invention of the control method without substantially changing the contents. Therefore, the effect by the invention which concerns on Claim 1, ie, the effect that the behavior of the transport equipment can be stabilized during the deceleration during the turning of the transport equipment, etc. can be obtained similarly.
  • the invention according to claim 10 is directed to propulsion of a transportation device arranged on the left side with respect to the traveling direction of the transportation device (vehicle V in the embodiment (hereinafter, the same applies in this section)).
  • the left driving force which is the driving force of the driving unit (left rear wheel WRL), and the driving force of the right driving unit (right rear wheel WRR) for propelling the transportation equipment arranged on the right side with respect to the traveling direction of the transportation equipment
  • a left / right driving force sum (left / right torque sum TTWLR) which is the sum of the left driving force and the right driving force and a left / right driving force which is a difference between the left driving force and the right driving force.
  • ROM 2a Recording medium (ROM 2a) on which a program for causing a computer (ECU 2) to execute a control process for controlling a drive device (rear wheel drive device DRS) that can change the difference (left-right torque difference ⁇ TWLR) independently of each other
  • control process Reverse distribution control that produces a left-right driving force difference by controlling the left driving force and the right driving force via the drive device so that the yaw moment in the direction opposite to the turning direction of the transport device acts on the transport device.
  • Steps to be executed Steps 1 and 4 to 7
  • steps for acquiring the deceleration of the transportation device Steps 43 and 47, Steps 71 and 72
  • execution of reverse distribution control Step 42: YES).
  • step 43 YES, step 71: YES
  • step 45, step 2: YES, step 8, step 61: YES, step 62 a step of executing control
  • the invention according to claim 10 is the one in which the invention of the control device according to claim 1 is rewritten to the invention of the recording medium of the computer program without substantially changing the contents. It is. Therefore, the effect by the invention which concerns on Claim 1, ie, the effect that the behavior of the transport equipment can be stabilized during the deceleration during the turning of the transport equipment, etc. can be obtained similarly.
  • a vehicle V shown in FIG. 1 is a four-wheel vehicle having left and right front wheels WFL, WFR and left and right rear wheels WRL, WRR.
  • the vehicle V includes a front wheel drive device DFS for driving the front wheels WFL, WFR, A rear wheel drive device DRS for driving the rear wheels WRL and WRR is mounted.
  • DFS front wheel drive device
  • DRS rear wheel drive device
  • the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR are collectively referred to as “front wheels WFL, WFR” and “rear wheels WRL, WRR”, respectively.
  • the front wheel drive device DFS is the same as that disclosed in Japanese Patent No. 5362792 by the present applicant, its configuration and operation will be briefly described below.
  • the front wheel drive device DFS is an internal combustion engine (hereinafter referred to as “engine”) 3 as a power source, a front motor 4 constituted by an electric motor capable of generating electricity, and the power of the engine 3 and the front motor 4 are shifted, and the front wheels WFL, A transmission 5 for transmitting to the WFR is included.
  • engine internal combustion engine
  • the engine 3 is a gasoline engine having a plurality of cylinders, and the intake air amount, fuel injection amount, fuel injection timing, ignition timing, and the like are controlled by an ECU 2 described later of the control device 1 shown in FIG.
  • the intake air amount is supplied via a throttle valve (not shown)
  • the fuel injection amount and fuel injection timing are supplied via a fuel injection valve (not shown)
  • the ignition timing is indicated by an ignition plug (not shown).
  • the front motor 4 is a brushless DC motor, and has a stator composed of a three-phase coil or the like and a rotor composed of a magnet (not shown).
  • the stator is electrically connected to a chargeable / dischargeable battery 7 via a power drive unit (hereinafter referred to as “PDU”) 6.
  • the PDU 6 is composed of an electric circuit such as an inverter, and is electrically connected to the ECU 2 (see FIG. 3).
  • the front motor 4 when electric power is supplied from the battery 7 to the stator via the PDU 6 by the control of the PDU 6 by the ECU 2, this electric power is converted into power and the rotor rotates (powering). In this case, the power of the rotor is controlled by controlling the electric power supplied to the stator. In addition, when the rotor is rotated by power input while power supply to the stator is stopped, the power input to the rotor is converted into power by the control of the PDU 6 by the ECU 2 to generate power. The generated electric power is charged in the battery 7 or supplied to first and second rear motors 41 and 61 (to be described later) of the rear wheel drive device DRS.
  • the vehicle V is equipped with an auxiliary machine 8 composed of an air conditioner compressor and the like, and a 12V battery (not shown).
  • the auxiliary machine 8 is connected to the PDU 6 and the 12V battery is a DC / DC converter (not shown).
  • the battery 7 is electrically connected to the stator of the front motor 4 and the battery 7.
  • the auxiliary machine 8 is supplied with the electric power generated by the front motor 4 and the electric power of the battery 7.
  • the electric power supplied to the auxiliary machine 8 is controlled by the ECU 2 via the PDU 6.
  • the transmission 5 is constituted by a so-called dual clutch transmission.
  • the transmission 5 includes a first input shaft connected to the engine 3 via the first clutch, a planetary gear device disposed between the front motor 4 and the first input shaft, and a second clutch.
  • a second input shaft connected to the engine 3 via the output shaft, an output shaft parallel to the first and second input shafts, a plurality of input gears rotatably provided on the first and second input shafts, and an output shaft
  • a plurality of output gears meshed with the plurality of input gears one of the plurality of input gears is selectively connected to the first or second input shaft, and the input gear and the gear by the output gear meshing with the input gear It has a synchronizer that sets the stage.
  • the ECU 2 controls the first and second clutches and the synchronizer, etc., so that the power of the engine 3 (hereinafter referred to as “engine power”) according to the connection / disconnection state of the first and second clutches. And / or the power of the front motor 4 is selectively input to the first input shaft or the engine power is input to the second input shaft.
  • the input power is output to the output shaft in a state of being shifted at a predetermined gear ratio by the gear set by the synchronizer, and further, via the final gear 9 and the left and right front drive shafts SFL, SFR, It is transmitted to the left and right front wheels WFL, WFR.
  • the rear wheel drive device DRS includes a first rear motor 41, a first planetary gear device 51, a second rear motor 61, and a second planetary gear device 71.
  • the first rear motor 41, the first planetary gear device 51, the second planetary gear device 71, and the second rear motor 61 are arranged in this order from the left side between the left and right rear wheels WRL, WRR.
  • the rear drive shafts SRL and SRR are provided coaxially.
  • the left and right rear drive shafts SRL, SRR are rotatably supported by bearings (not shown), and one end portions thereof are coupled to the left and right rear wheels WRL, WRR, respectively.
  • the first rear motor 41 is a brushless DC motor configured as a so-called motor generator, like the front motor 4, and has a stator 42 and a rotatable rotor 43.
  • the stator 42 is attached to a casing CA fixed to the vehicle V, and is electrically connected to the stator of the front motor 4 and the battery 7 via the PDU 6 described above.
  • the rotor 43 is integrally attached to the hollow rotating shaft 44.
  • the rotation shaft 44 is relatively rotatably disposed outside the left rear drive shaft SRL and is rotatably supported by a bearing (not shown).
  • the electric power from the battery 7 or the electric power generated by the front motor 4 is supplied to the stator 42 via the PDU 6 under the control of the PDU 6 by the ECU 2, the electric power is converted into power accordingly. Then, the rotor 43 rotates (power running). In this case, the power of the rotor 43 is controlled by controlling the power supplied to the stator 42. Further, when the rotor 43 is rotated by the input of power while the power supply to the stator 42 is stopped, the power input to the rotor 43 is converted into electric power by the control of the PDU 6 by the ECU 2 to generate power. At the same time (regeneration), the generated power is charged in the battery 7.
  • the first planetary gear device 51 is for decelerating the power of the first rear motor 41 and transmitting it to the left rear wheel WRL.
  • the first sun gear 52, the first ring gear 53, the double pinion gear 54, and the first carrier 55 are used. have.
  • the first sun gear 52 is integrally attached to the rotary shaft 44 described above, and is rotatable integrally with the rotor 43 of the first rear motor 41.
  • the first ring gear 53 has a larger number of teeth than the first sun gear 52 and is integrally attached to the hollow rotating shaft 81.
  • the rotating shaft 81 is rotatably supported by a bearing (not shown).
  • the double pinion gear 54 integrally includes a first pinion gear 54a and a second pinion gear 54b, and the number thereof is three (only two are shown).
  • the double pinion gear 54 is rotatably supported by the first carrier 55, and the first pinion gear 54 a meshes with the first sun gear 52 and the second pinion gear 54 b meshes with the first ring gear 53.
  • the first carrier 55 is integrally attached to the other end portion of the left rear drive shaft SRL, and is rotatable integrally with the left rear drive shaft SRL.
  • the second rear motor 61 and the second planetary gear unit 71 are configured in the same manner as the first rear motor 41 and the first planetary gear unit 51, the configuration will be briefly described below.
  • the second rear motor 61 and the second planetary gear device 71 are provided symmetrically with the first rear motor 41 and the first planetary gear device 51 with a one-way clutch 83 described later as a center.
  • the stator 62 of the second rear motor 61 is attached to the casing CA and is electrically connected to the stator of the front motor 4, the battery 7 and the stator 42 of the first rear motor 41 via the PDU 6.
  • the rotor 63 of the second rear motor 61 is integrally attached to the hollow rotating shaft 64.
  • the rotation shaft 64 is relatively rotatably disposed outside the right rear drive shaft SRR and is rotatably supported by a bearing (not shown).
  • the electric power of the battery 7 and the electric power generated by the front motor 4 are supplied to the stator 62 through the PDU 6 by the control of the PDU 6 by the ECU 2, the electric power is converted into power accordingly.
  • the rotor 63 rotates (power running). In this case, the power of the rotor 63 is controlled by controlling the power supplied to the stator 62. Further, when the rotor 63 is rotated by the input of power while the power supply to the stator 62 is stopped, the power input to the rotor 63 is converted into electric power by the control of the PDU 6 by the ECU 2 to generate power. At the same time (regeneration), the generated power is charged in the battery 7.
  • the second planetary gear device 71 is for decelerating the power of the second rear motor 61 and transmitting it to the right rear wheel WRR.
  • the second sun gear 72, the second ring gear 73, the double pinion gear 74, and the second carrier 75 are used. have.
  • the number of teeth of second sun gear 72, second ring gear 73, and double pinion gear 74 is set to be the same as the number of teeth of first sun gear 52, first ring gear 53, and double pinion gear 54, respectively.
  • the second sun gear 72 is integrally attached to the rotary shaft 64 described above, and is rotatable integrally with the rotor 63 of the second rear motor 61.
  • the second ring gear 73 has a larger number of teeth than the second sun gear 72 and is integrally attached to the hollow rotating shaft 82.
  • the rotating shaft 82 is rotatably supported by a bearing (not shown), and opposes the rotating shaft 81 in the axial direction with a slight gap.
  • the double pinion gear 74 is rotatably supported by the second carrier 75, and the first pinion gear 74 a meshes with the second sun gear 72 and the second pinion gear 74 b meshes with the second ring gear 73.
  • the second carrier 75 is integrally attached to the other end portion of the right rear drive shaft SRR, and is rotatable integrally with the right rear drive shaft SRR.
  • the rear wheel drive device DRS further includes a one-way clutch 83 and a hydraulic brake 84.
  • the one-way clutch 83 has an inner race 83a and an outer race 83b, and is disposed between the first and second planetary gear devices 51 and 71.
  • the inner race 83a is drawn on the outer side
  • the outer race 83b is drawn on the inner side.
  • the inner race 83a is engaged with the rotary shafts 81 and 82 described above, whereby the inner race 83a, the rotary shafts 81 and 82, and the first and second ring gears 53 and 73 are rotatable together.
  • the outer race 83b is attached to the casing CA.
  • the one-way clutch 83 connects the rotary shafts 81 and 82 to the casing CA when the reverse power is transmitted to the rotary shafts 81 and 82, thereby connecting the rotary shafts 81 and 82, the first and second ring gears 53 and 73.
  • the rotary shafts 81 and 82, the first and second ring gears are blocked by blocking between the rotary shafts 81 and 82 and the casing CA. 53, 73 normal rotation is allowed.
  • the hydraulic brake 84 is composed of a multi-plate clutch, is attached to the casing CA and the rotary shafts 81 and 82, and is disposed on the outer periphery of the first and second planetary gear devices 51 and 71.
  • the hydraulic brake 84 is controlled by the ECU 2 to select a braking operation for braking the first and second ring gears 53 and 73 and a rotation allowing operation for allowing the first and second ring gears 53 and 73 to rotate. Run it.
  • the braking force of the hydraulic brake 84 is controlled by the ECU 2.
  • the ECU 2 receives a detection signal representing the vehicle speed VP of the vehicle V from the vehicle speed sensor 21 and the steering angle ⁇ of the steering wheel (not shown) of the vehicle V from the steering angle sensor 22.
  • a detection signal representing the lateral acceleration GL acting on the vehicle V is input from the sensor 23.
  • the steering angle ⁇ is detected as a positive value during forward left turn of the vehicle V and as a negative value during forward right turn.
  • the lateral acceleration GL is detected with a leftward acceleration acting on the vehicle V as a positive value and a rightward acceleration as a negative value.
  • the detection signal indicating the yaw moment YM of the vehicle V from the yaw moment sensor 24 represents the accelerator opening AP which is the depression amount of the accelerator pedal (not shown) of the vehicle V from the accelerator opening sensor 25.
  • the detection signal is input from the brake switch 26 as an output signal indicating ON / OFF (depression / deactivation) of a brake pedal (not shown) of the vehicle V.
  • the yaw moment YM is detected with the counterclockwise yaw moment of the vehicle V as a positive value and the clockwise yaw moment as a negative value.
  • the ECU 2 is composed of a microcomputer comprising an I / O interface, CPU, RAM, ROM 2a, etc., and the front wheels according to the programs recorded in the ROM 2a according to the detection signals from the various sensors and switches 21 to 26 described above.
  • the operation of the vehicle V including the operations of the drive device DFS and the rear wheel drive device DRS is controlled.
  • the operation modes of the front wheel drive device DFS include an ENG travel mode in which only the engine 3 is used as a power source for the vehicle V, an EV travel mode in which only the front motor 4 is used as a power source, and an assist for assisting the engine 3 with the front motor 4. Travel mode, charging travel mode in which the battery 7 is charged by the front motor 4 using a part of the engine power, and deceleration regeneration mode in which the battery 7 is charged by the front motor 4 using travel energy during deceleration travel of the vehicle V Etc. are included.
  • the operation of the front wheel drive device DFS in each operation mode is controlled by the ECU 2.
  • the operation mode of the rear wheel drive device DRS includes a drive mode, a regeneration mode, a drive / regeneration mode, and the like.
  • the operation of the rear wheel drive device DRS in each operation mode is controlled by the ECU 2.
  • these operation modes will be described in order.
  • This drive mode is an operation mode in which the left and right rear wheels WRL, WRR are driven by the power of the first and second rear motors 41, 61.
  • the first and second rear motors 41 and 61 perform power running and control the electric power supplied to both 41 and 61. Further, when the left and right rear wheels WRL, WRR are rotated forward, the rotors 43, 63 of the first and second rear motors 41, 61 are rotated forward, and the first and second ring gears 53, 73 are driven by the hydraulic brake 84. Brake.
  • FIG. 4 shows an example of the rotational speed relationship and the torque balance relationship between the various rotating elements when the left and right rear wheels WRL, WRR are rotated forward during the drive mode.
  • the rotation speed of the first sun gear 52 is equal to the rotation speed of the first rear motor 41 (rotor 43), and the rotation speed of the first carrier 55 is
  • the rotational speed of the rear wheel WRL and the rotational speed of the first ring gear 53 are equal to the rotational speed of the second ring gear 73, respectively.
  • the rotation speed of the second sun gear 72 is equal to the rotation speed of the second rear motor 61 (rotor 63), and the rotation speed of the second carrier 75 is equal to the rotation speed of the right rear wheel WRR.
  • the rotational speed of the first sun gear 52, the rotational speed of the first carrier 55, and the rotational speed of the first ring gear 53 are in a collinear relationship that is located on the same straight line in the collinear diagram.
  • the first sun gear 52 and the first ring gear 53 are located on both outer sides of the first carrier 55. This also applies to the second sun gear 72, the second carrier 75, and the second ring gear 73.
  • TM1 is the output torque of the first rear motor 41 (hereinafter referred to as “first rear motor output torque”)
  • TM2 is the output torque of the second rear motor 61 (hereinafter referred to as “second rear motor output torque”).
  • RRL is the reaction torque of the left rear wheel
  • RRR is the reaction torque of the right rear wheel WRR
  • ROW is the reaction torque of the one-way clutch 83.
  • the first rear motor output torque TM1 acts to cause the first sun gear 52 to rotate in the forward direction and to actuate the first ring gear 53 in the reverse direction.
  • the first rear motor output torque TM1 uses the reaction force torque ROW of the one-way clutch 83 acting on the first ring gear 53 as a reaction force, and is applied to the left rear wheel WRL via the first carrier 55 and the left rear drive shaft SRL.
  • the left rear wheel WRL is driven.
  • the second rear motor output torque TM2 is generated by applying the reaction force torque ROW of the one-way clutch 83 acting on the second ring gear 73 as a reaction force to the right rear wheel WRR via the second carrier 75 and the right rear drive shaft SRR.
  • the right rear wheel WRR is driven.
  • the torque of the left and right rear wheels WRL and WRR (hereinafter referred to as “left wheel torque” and “right wheel torque”, respectively) can be freely controlled. It is.
  • This regeneration mode is an operation mode in which the first and second rear motors 41 and 61 generate electric power (regeneration) using the travel energy of the vehicle V and charge the battery 7 with the regenerated electric power.
  • the electric power regenerated by the first and second rear motors 41 and 61 is controlled, and the first and second ring gears 53 and 73 are braked by the hydraulic brake 84.
  • FIG. 5 shows the rotational speed relationship and the torque balance relationship between the various rotary elements in the regeneration mode.
  • TRL is the left wheel torque (the torque of the left rear wheel WRL)
  • TRR is the right wheel torque (the torque of the right rear wheel WRR).
  • RBR is a reaction torque of the hydraulic brake 84.
  • the other parameters are as described with reference to FIG.
  • regeneration mode regeneration is performed by the first and second rear motors 41 and 61, so the first and second rear motor output torques TM1 and TM2 are negative torques (braking torques).
  • the first and second rear motor output torques TM1 and TM2 transmitted to the first and second sun gears 52 and 72, respectively, are obtained by using the reaction force torque RBR of the hydraulic brake 84 as a reaction force.
  • the left and right rear wheels WRL, WRR are braked.
  • the left wheel torque and the right wheel torque can be freely controlled by changing the first and second rear motor output torques TM1 and TM2.
  • This drive / regeneration mode is an operation mode in which power is performed by one of the first and second rear motors 41, 61 and regeneration is performed by the other of the motors 41, 42.
  • the electric power supplied to the one motor and the electric power regenerated by the other motor are controlled, and the first and second ring gears 53 and 73 are braked by the one-way clutch 83 or the hydraulic brake 84.
  • FIG. 6 shows the rotational speed relationship and the torque balance relationship between the various types of rotating elements when the first rear motor 41 performs power running and the second rear motor 61 performs regeneration.
  • Various parameters in the figure are as described with reference to FIGS. 4 and 5.
  • the first rear motor output torque TM1 (drive torque) is transmitted to the left rear wheel WRL via the first planetary gear unit 51, whereby the left rear wheel WRL. Is driven, and the second rear motor output torque TM2 (braking torque) is transmitted to the right rear wheel WRR via the second planetary gear unit 71, whereby the right rear wheel WRR is braked.
  • TM1 drive torque
  • TM2 braking torque
  • the ECU 2 executes a motor control process shown in FIG. 7 and a flag setting process shown in FIG. 9 in order to control the first and second rear motor output torques TM1 and TM2 in order to control the left wheel torque and the right wheel torque. To do. These processes are repeatedly executed every predetermined time (for example, 100 msec).
  • step 1 of FIG. 7 (illustrated as “S1”, the same applies hereinafter), provisional target value calculation processing is executed.
  • FIG. 8 shows this provisional target value calculation processing, and this processing is for calculating provisional values of the target values of the left wheel torque and the right wheel torque.
  • a target torque sum TRT is calculated by searching a predetermined map (not shown) based on the detected vehicle speed VP and accelerator pedal opening AP.
  • This target torque sum TRT is a provisional value of the target value of the sum of the left wheel torque and the right wheel torque. In the above map, the larger the accelerator pedal opening AP is, the larger the value is set.
  • a target yaw moment YMOBJ which is a target value of the yaw moment YM
  • a target torque difference ⁇ TT is calculated based on the calculated target yaw moment YMOBJ (step 23).
  • This target torque difference ⁇ TT is a provisional value of the target value of the difference between the left wheel torque and the right wheel torque, and is specifically calculated by the following equation (1).
  • ⁇ TT 2 ⁇ r ⁇ YMOBJ / Tr (1)
  • r is the radius of each of the left and right rear wheels WRL, WRR, and Tr is the tread width (the distance between the left and right rear wheels WRL, WRR).
  • the left wheel temporary target torque TTL and the right wheel temporary target torque TTR are calculated by a calculation method similar to the calculation method described in paragraphs [0113] to [0118] of International Publication WO2013 / 005783 by the present applicant ( Step 24). That is, based on the target torque sum TRT and the target torque difference ⁇ TT calculated in Steps 21 and 23, the left wheel temporary target torque TTL and the right wheel temporary target torque TTR are calculated using the following equations (2) and (3). Is calculated. These temporary target torques TTL and TTR for the left wheel and the right wheel are temporary target values for the left wheel torque and the right wheel torque, respectively.
  • TTL + TTR TRT (2)
  • TTL ⁇ TTR ⁇ TT (3)
  • the left wheel temporary target torque TTL is calculated by dividing the sum of the target torque sum TRT and the target torque difference ⁇ TT by 2 ((TRT + ⁇ TT) / 2).
  • the right wheel temporary target torque TTR is calculated by dividing the difference between the target torque sum TRT and the target torque difference ⁇ TT by 2 ((TRT ⁇ TT) / 2).
  • the first left motor temporary target torque TM1PRO is calculated by multiplying the calculated left wheel temporary target torque TTL by a predetermined first reduction ratio, and the calculated right wheel temporary target torque TTR is set to a predetermined second.
  • a second rear motor provisional target torque TM2PRO is calculated by multiplying the reduction ratio (step 25).
  • These first and second rear motor provisional target torques TM1PRO and TM2PRO are provisional values of the target values of the first and second rear motor output torques TM1 and TM2, respectively.
  • the first and second reduction ratios are determined by various gears of the first and second planetary gear devices 51 and 71, and are equal to each other.
  • the left wheel rudder angle proportional torque TFFL, the right wheel rudder angle proportional torque TFFR, the left wheel FB torque TFBL and the right wheel FB torque TFBR are calculated, respectively.
  • These parameters TFFL, TFFR, TFBL, and TFBR are basically described in Japanese Patent Application No. 2013-159612, paragraphs [0046] to [0052], [0060] to [0064] and FIG.
  • the calculation method is the same as the calculation method described above.
  • the calculation of the steering angle proportional torques TFFL and TFFR of the left and right wheels in steps 26 and 27 is specifically performed as follows. First, target torques of the engine 3 and the front motor 4 are calculated by searching a predetermined map (not shown) according to the detected vehicle speed VP and accelerator opening AP. Next, on the basis of the calculated target torque of the engine 3 and the front motor 4 and the first and second rear motor provisional target torques TM1PRO and TM2PRO calculated in the step 25, wheel driving for the left and right rear wheels WRL and WRR is performed. The force F is calculated. Next, an estimated value GLEST of the lateral acceleration GL of the vehicle V is calculated based on the vehicle speed VP and the steering angle ⁇ . Next, the sum of the detected lateral acceleration GL and the calculated estimated value GLEST is calculated as a corrected lateral acceleration GLCOR.
  • the left and right rear wheels WRL and WRR is the outer wheel, and the front-rear distribution ratio and the left-right distribution ratio are calculated.
  • the outer / inner ring torque distribution ratio for the left and right rear wheels WRL, WRR is calculated.
  • the steering angle proportional torques TFFL and TFFR of the left wheel and the right wheel are respectively calculated.
  • the calculation of the left wheel and right wheel FB torques TFBL and TFBR in the steps 28 and 29 is specifically performed as follows. First, the slip angle of the vehicle V is calculated based on the vehicle speed VP, the steering angle ⁇ , the lateral acceleration GL, and the detected yaw moment YM. Next, a slip angle threshold value is calculated based on the vehicle speed VP and the lateral acceleration GL. Next, based on the difference between the calculated slip angle and the slip angle threshold value, when the slip angle is larger than a predetermined value, it is determined that the vehicle V is in an unstable state, and this state is resolved. The left wheel and right wheel FB torques TFBL and TFBR are calculated so as to reduce the torque distributed to the rear wheels WRL and WRR and reduce the torque distributed to the outer wheels.
  • step 30 the left wheel provisional target torque TWLPRO is calculated.
  • This left wheel provisional target torque TWLPRO is a provisional value of the target value of the left wheel torque, and is calculated as the sum of the left wheel steering angle proportional torque TFFL calculated in step 26 and the left wheel FB torque TFBL calculated in step 28.
  • the right wheel provisional target torque TWRPRO is calculated (step 31), and this process ends.
  • This right wheel provisional target torque TWRPRO is a provisional value of the right wheel torque target value, and is the sum of the right wheel steering angle proportional torque TFFR calculated in step 27 and the right wheel FB torque TFBR calculated in step 29. Is calculated.
  • step 2 following step 1 it is determined whether or not the holding control flag F_HOLDC is “1”.
  • This holding control flag F_HOLDC indicates that the holding control described later is being executed by “1”, and is set by the flag setting process shown in FIG. Details thereof will be described later.
  • step 3 it is determined whether or not the transition control flag F_TRANC is “1” (step 3).
  • This transition control flag F_TRANC indicates that execution of transition control, which will be described later, is being performed by “1”, and is set by the flag setting process described above. Details thereof will be described later.
  • the wheel temporary target torque TWRPRO is set as a left wheel target torque TWLOBJ and a right wheel target torque TWROBJ, respectively.
  • These target torques TWLOBJ and TWROBJ for the left wheel and the right wheel are target values for the left wheel torque and the right wheel torque, respectively.
  • Step 6 following Step 5 the first rear motor target torque TM1OBJ is calculated by multiplying the calculated (set) left wheel target torque TWLOBJ by the above-described first reduction ratio, and the calculated (set) right wheel is calculated.
  • a second rear motor target torque TM2OBJ is calculated by multiplying the wheel target torque TWROBJ by the second reduction ratio described above.
  • These first and second rear motor target torques TM1OBJ and TM2OBJ are the target values of the first and second rear motor output torques TM1 and TM2, respectively.
  • step 7 a control signal based on the calculated first and second rear motor target torques TM1OBJ and TM2OBJ is output to the PDU 6, and this process ends.
  • the first and second rear motor output torques TM1 and TM2 are controlled via the PDU 6 so that the first and second rear motor target torques TM1OBJ and TM2OBJ are respectively obtained.
  • the left wheel torque and the right wheel torque are Control is performed so that the target torques TWLOBJ and TWROBJ of the left wheel and the right wheel are respectively obtained.
  • normal control the control of the left wheel torque and the right wheel torque in steps 1 and 4 to 7 will be referred to as “normal control”.
  • the left wheel torque and the right wheel torque are controlled so as to cause a torque difference between the left and right rear wheels WRL, WRR.
  • reverse distribution control the control that causes a torque difference between the left and right rear wheels WRL and WRR so that the yaw moment in the direction opposite to the turning direction acts on the vehicle V during the turning of the vehicle V.
  • This holding control is a control for holding the difference between the left wheel torque and the right wheel torque (hereinafter referred to as “left-right torque difference”) at the same value as that immediately before the start of the holding control.
  • the left wheel target torque TWLOBJ and the right wheel target torque TWROBJ are calculated by performing delta hold processing.
  • Step 6 and the subsequent steps are then executed, whereby first and second rear motor target torques TM1OBJ and TM2OBJ are calculated based on the calculated target torques TWLOBJ and TWROBJ for the left and right wheels, respectively, and the former TM1OBJ and the latter A control signal based on TM2OBJ is output to PDU 6, and this process is terminated.
  • the target torques TWLOBJ and TWROBJ for the left wheel and the right wheel are specifically calculated as follows. That is, first, the deviation between the previous value TWLOBJZ of the left wheel target torque and the previous value TWROBJZ of the right wheel target torque is calculated as the previous value of the left and right target torque difference, and the left wheel temporary target torque TWLPRO and the right wheel temporary target torque TWRPRO Is calculated as the left-right provisional target torque difference.
  • the left wheel provisional target torque TWLPRO and the right wheel provisional target torque TWRPRO are respectively set as the left wheel target torque TWLOBJ and the right wheel target torque TWROBJ. Set.
  • the sum of the previous value TWLOBJZ of the left wheel target torque and the previous value TWROBJZ of the right wheel target torque is used as the previous value of the left and right target torque sum.
  • the sum of the left wheel provisional target torque TWLPRO and the right wheel provisional target torque TWRPRO is calculated as the left and right provisional target torque sum.
  • the absolute value of the deviation between the calculated left-right provisional target torque sum and the previous value of the left-right target torque sum is calculated as the left-right sum temporary change amount.
  • a value obtained by subtracting 1/2 of the left-right sum temporary change amount from the previous value TWLOBJZ of the left wheel target torque (TWLOBJZ ⁇ left-right sum temporary change amount / 2) is calculated as the left wheel target torque TWLOBJ.
  • a value (TWROBJZ ⁇ left-right sum provisional change amount / 2) obtained by subtracting 1 ⁇ 2 of the left-right sum provisional change amount from the previous value TWROBJZ of the right wheel target torque is calculated as the right wheel target torque TWROBJ.
  • the left wheel target torque TWLOBJ and the right wheel target torque TWROBJ are set so that the left / right target torque difference, which is the deviation between the former TWLOBJ and the latter TWROBJ, is held at the value immediately before the start of the holding control. Is calculated.
  • the left wheel torque and the right wheel torque are controlled so as to hold the left-right torque difference (the difference between the left wheel torque and the right wheel torque) at the same value as that immediately before the start of the holding control.
  • the left and right torque sum is set to a value based on the provisional target torques TWPRO and TWRPRO for the left and right wheels, that is, the vehicle V travels.
  • the left wheel torque and the right wheel torque are controlled so as to change to values according to the state.
  • This shift control is a control for preventing the left wheel torque and the right wheel torque from changing suddenly when shifting from the holding control described above to the normal control. Specifically, first, in step 9, by performing rate limit processing on the temporary target torques TWLPRO and TWRPRO for the left and right wheels calculated in steps 30 and 31 of FIG. Torques TWLOBJ and TWROBJ are calculated respectively.
  • the left wheel target torque TWLOBJ is calculated as follows. That is, when the previous value TWLOBJZ of the left wheel target torque is larger than the left wheel provisional target torque TWPRO, and the absolute value of the deviation between the former TWLOBJZ and the latter TWLPRO is larger than a predetermined value (positive value) (when the degree of deviation is large). Calculates a value obtained by subtracting a predetermined subtraction term (positive value) from the previous value TWLOBJZ as the left wheel target torque TWLOBJ.
  • a predetermined addition term ( A value obtained by adding (positive value) is calculated as the left wheel target torque TWLOBJ.
  • the absolute value of the deviation between the previous value TWLOBJZ of the left wheel target torque and the left wheel provisional target torque TWLPRO is equal to or less than a predetermined value, the left wheel provisional target torque TWPRO is set as the left wheel target torque TWLOBJ.
  • the right wheel target torque TWROBJ is calculated as follows. That is, when the previous value TWROBJZ of the right wheel target torque is larger than the right wheel temporary target torque TWRPRO, and the absolute value of the deviation between the former TWROBJZ and the latter TWRPRO is larger than the predetermined value (when the degree of deviation is large). The value obtained by subtracting the subtraction term from the previous value TWROBJZ is calculated as the right wheel target torque TWROBJ.
  • the above addition term is added to the previous value TWROBJZ.
  • the added value is calculated as the right wheel target torque TWROBJ.
  • the right wheel temporary target torque TWRPRO is set as the right wheel target torque TWROBJ.
  • step 10 it is determined whether or not a predetermined end condition is satisfied.
  • This end condition is that the absolute value of the deviation between the previous value TWLOBJZ of the left wheel target torque and the left wheel provisional target torque TWLPRO is not more than a predetermined value, and the deviation between the previous value TWROBJZ of the right wheel target torque and the right wheel provisional target torque TWRPRO. It is a condition that the absolute value of is not more than a predetermined value. If the answer to step 10 is NO and the end condition is not satisfied, the above-described step 6 and the subsequent steps are executed, so that the first (based) calculated left wheel and right wheel target torques TWLOBJ and TWROBJ are used as the first. The second rear motor target torques TM1OBJ and TM2OBJ are calculated, and control signals based on both TM1OBJ and TM2OBJ are output to the PDU 6, and this process is terminated.
  • step 10 determines whether the answer to step 10 is YES and the end condition is satisfied. If it is approaching, the transition control flag F_TRANC is reset to “0” in order to end the transition control (step 11). Next, Step 6 and the subsequent steps are executed, and this process is terminated.
  • the left wheel torque and the right wheel torque are controlled by the normal control from the values controlled at the end of the holding control (previous values TWLOBJZ, TWROBJZ). Control is performed so as to gradually return to the target torque TWLPRO and the right wheel provisional target torque TWRPRO).
  • This reverse distribution control flag indicates that the above-described reverse distribution control (control of the left wheel torque and the right wheel torque to generate a yaw moment in the direction opposite to the turning direction during turning of the vehicle V) is being executed. This is represented by “1”, and is set based on the steering angle ⁇ , the first and second rear motor target torques TM1OBJ, TM2OBJ, and the like.
  • step 44 when the answer to step 44 is YES, that is, when the holding pedal is not being executed, and the reverse distribution control is being executed and the vehicle V is in a high speed running state,
  • the holding control flag F_HOLDC is set to “1” (step 45).
  • the transition control flag F_TRANC is set to “0” (step 46), and this process is terminated. Note that the holding control flag F_HOLDC is reset to “0” when the engine 3 is started.
  • step 47 it is determined whether or not the brake flag F_BRAKE is “1” (step 47).
  • the transition control flag F_TRANC is set to “1” (step 49), and this process is terminated.
  • the transition control flag F_TRANC is reset to “0” when the engine 3 is started and when the vehicle V is stopped.
  • FIG. 10 shows an operation example (solid line) of the motor control process (FIG. 7) and flag setting process (FIG. 9) together with a comparative example (broken line).
  • ⁇ TWLR is the left-right torque difference (the difference between the left wheel torque and the right wheel torque).
  • the comparative example is an example in which only the normal control in steps 1 and 4 to 7 is executed without executing both the holding control in step 8 and the like in FIG. 7 and the shift control in step 9 and the like. is there.
  • the comparative example corresponds to the left-right torque difference ⁇ TWLR controlled based on the left-wheel target torque TWLOBJ set to the left-wheel provisional target torque TWLPRO and the right-wheel target torque TWROBJ set to the right-wheel provisional target torque TWRPRO. .
  • the left and right wheel target torques TWLOBJ and TWROBJ are calculated so as to hold the left / right target torque difference (deviation between TWLOBJ and TWROBJ) at the same value as that immediately before the holding control is started.
  • the left-right torque difference ⁇ TWLR according to the comparative example shown by the broken line changes with the passage of time, and in particular, immediately before time t1 to time t2 and immediately before time t7 to time t8 in FIG.
  • F_BRAKE 1
  • transition control flag F_TRANC is set to “1” when the holding control is terminated by releasing the depression of the brake pedal (step 49 in FIG. 9), and thereby the transition control is started (FIG. 9). 7 step 3: YES, step 9).
  • the left wheel target torque TWOBJ Light wheel target torque TWROBJ
  • the transition control flag F_TRANC is satisfied when the above-described termination conditions (both the absolute value of the deviation between TWLOBJZ and TWLPRO and the absolute value of the deviation between TWROBJZ and TWRPRO are less than or equal to a predetermined value) are satisfied (step 10 in FIG. 7: YES), it is reset to “0” (step 11), whereby the control for transition is completed.
  • FIG. 11 shows an example of transition of the left-right torque difference ⁇ TWLR and the left-right torque sum TTWLR (the sum of the left wheel torque and the right wheel torque) from the start of the holding control to the start of the normal control (with a thick solid line).
  • a comparative example an arrow with a two-dot chain line. Similar to the comparative example shown in FIG. 10, this comparative example is an example in which only the normal control is executed without executing both the holding control and the shift control.
  • the left-right torque difference ⁇ TWLR and the left-right torque sum TTWLR are the first torque difference ⁇ T1 and the first torque sum TT1, which are positive values, respectively. Further, during the holding control, as shown by a thick solid line with an arrow in FIG. 11, the left-right torque sum TTWLR decreases while the left-right torque difference ⁇ TWLR is constant.
  • the left-right torque difference ⁇ TWLR is the first torque difference ⁇ T1 as at the start of the holding control
  • the left-right torque sum TTWLR is a second torque sum TT2 that is smaller than the first torque sum TT1. It has become.
  • the left-right torque difference ⁇ TWLR decreases, and is indicated by a white circle C in FIG. 11 at the start of the normal control.
  • the second torque difference ⁇ T2 is a negative value.
  • the left-right torque difference ⁇ TWLR and the left-right torque sum TTTLR are respectively the first torque difference ⁇ T1 and the first torque sum TT1 (white circle A).
  • the change speed (change amount per unit time) of the left-right torque difference ⁇ TWLR is larger than the change speed (change amount per unit time) of the left-right torque sum TTWLR (
  • FIG. 12 shows an operation example (solid line) according to the present embodiment when the brake pedal is depressed during execution of reverse distribution control while the vehicle V is traveling at a high speed together with a comparative example (two-dot chain line).
  • This comparative example controls the left wheel torque and right wheel torque so that the absolute value of the yaw moment YM decreases when the vehicle speed VP is equal to or higher than the predetermined vehicle speed VPREF, as in the conventional control device described above.
  • the left-right torque difference ⁇ TWLR is held at the same value as that just before the start of the holding control, and changes in a constant state.
  • the absolute values of the lateral acceleration GL and the yaw moment YM are reduced in a stable state without greatly changing as the vehicle speed VP decreases due to depression of the brake pedal.
  • the left-right torque difference ⁇ TWLR is set to a positive value when the vehicle speed VP is equal to or higher than the predetermined vehicle speed VPREF (before time t12), and the vehicle speed VP is depressed by depressing the brake pedal. Is less than the predetermined vehicle speed VPREF (time t12), the negative value is thereafter controlled.
  • the lateral acceleration GL and the yaw moment YM are repeatedly performed from the time t12 when the left-right torque difference ⁇ TWLR becomes a negative value to the subsequent time t13 due to the sudden change in the left-right torque difference ⁇ TWLR from the positive value to the negative value.
  • VSA Vehicle was controlled by (Stability Assist).
  • the correspondence between various elements in the present embodiment and various elements in the present invention is as follows. That is, the vehicle V in the present embodiment corresponds to the transportation device in the present invention, the left rear wheel WRL in the present embodiment corresponds to the left drive unit and the left wheel in the present invention, and the right rear wheel in the present embodiment. WRR corresponds to the right drive unit and the right wheel in the present invention. Further, the rear wheel drive device DRS in the present embodiment corresponds to the drive device in the present invention, and the first and second rear motors 41 and 61 in the present embodiment correspond to the left rotating electric machine and the right rotating electric machine in the present invention, respectively. To do.
  • the ECU 2 in the present embodiment corresponds to the control means, the target value calculation means, and the computer in the present invention.
  • the brake switch 26 and the ECU 2 in the present embodiment correspond to the deceleration acquisition means in the present invention.
  • the vehicle speed sensor 21 corresponds to the speed acquisition means in the present invention.
  • the vehicle speed sensor 21, the steering angle sensor 22, the lateral acceleration sensor 23, and the yaw moment sensor 24 in the present embodiment correspond to the motion state acquisition unit and the control parameter acquisition unit in the present invention, and the accelerator opening in the present embodiment.
  • the sensor 25 corresponds to the control parameter acquisition means in the present invention
  • the ROM 2a in the present embodiment corresponds to the recording medium in the present invention.
  • the left-right torque difference ⁇ TWLR is generated by controlling the left wheel torque and the right wheel torque so that the yaw moment in the direction opposite to the turning direction of the vehicle V acts on the vehicle V.
  • Reverse distribution control is executed. Thereby, the behavior of the vehicle V can be stabilized by reducing the yaw moment during the turning of the vehicle V.
  • the holding control is executed while the reverse distribution control is being executed and the vehicle V is being decelerated, whereby the left-right torque difference ⁇ TWLR is held at the same value as that just before the start of the holding control.
  • the behavior of the vehicle V can be reliably stabilized.
  • the left-right torque difference ⁇ TWLR is generated so that the yaw moment in the same direction as the turning direction of the vehicle V acts on the vehicle V, that is, when the turning of the vehicle V is assisted, the holding control is not executed. Therefore, an excessive turning state of the vehicle V due to the unnecessary turning assist being maintained is not generated. Further, in this case, the behavior of the vehicle V can be stabilized only by controlling the left wheel torque and the right wheel torque without determining whether the behavior of the vehicle V is stable.
  • the holding control is started when the vehicle V decelerates. Therefore, the above-described effect, that is, the effect that the behavior of the vehicle V can be stabilized during deceleration while the vehicle V is turning can be effectively obtained. Further, when the vehicle speed VP is lower than the high vehicle speed VPHI, the left-right torque difference ⁇ TWLR can be freely controlled without starting the holding control, so that the yaw moment in the same direction as the turning direction of the vehicle V is applied to the vehicle V. Can do.
  • the holding control is continued until the depression of the brake pedal is released and the deceleration of the vehicle V is completed.
  • the holding control is continued from the start to the end of deceleration of the vehicle V during the turning of the vehicle V, the behavior of the vehicle V can be stabilized.
  • the left wheel torque and the right wheel torque are values (the left wheel provisional target torque TWPRO) controlled by the normal control from the values (the previous values TWLOBJZ and TWROBJZ) that were controlled at the time of the holding control being finished.
  • Right wheel provisional target torque TWRPRO is controlled not to be suddenly returned but gradually returned.
  • the left wheel torque and the right wheel torque can be controlled independently of each other by controlling the first and second rear motors 41 and 61, the above-described effect, that is, during deceleration of the vehicle V while turning, The effect that the behavior can be stabilized can be appropriately obtained.
  • step 61 it is determined whether or not the limiting control flag F_LIMITC is “1”.
  • This control control in-progress flag F_LIMITC indicates that the limit control is being executed by “1” and is set by the same setting method (see FIG. 9) as the holding control flag F_HOLDC. Is omitted.
  • step 61 When the answer to step 61 is NO, the above step 3 and subsequent steps are executed.
  • step 62 and steps 6 and 7 are executed, thereby executing the limit control.
  • the process ends.
  • the change speed of the left-right torque difference ⁇ TWLR absolute value, hereinafter referred to as “left-right torque difference change speed”
  • the change speed of the left-right torque sum TTWLR absolute value, hereinafter referred to as “left-right torque sum change speed”. It is control to do.
  • step 62 the target torques TWLOBJ and TWROBJ for the left and right wheels are calculated by performing the delta limit process.
  • the target torques TWLOBJ and TWROBJ for the left and right wheels are calculated so that the left-right torque difference change rate is smaller than the left-right torque sum change rate while maintaining reverse distribution control.
  • the absolute value of the deviation between the current value of the left / right target torque difference (TWLOBJ-TWROBJ) and the previous value of the left / right target torque difference (TWLOBJZ-TWROBJZ) is the rate of change in the left / right torque difference (the left-right torque difference ⁇ TWLR per unit time) Change amount).
  • the absolute value of the deviation between the current value of the left / right target torque sum (TWLOBJ + TWROBJ) and the previous value of the left / right target torque sum (TWLOBJZ + TWROBJZ) is the above-mentioned left-right torque sum change speed (the left-right torque sum TTWLR per unit time). Change amount).
  • the target torques TWLOBJ and TWROBJ for the left and right wheels may be calculated so that the following equation (4) is satisfied.
  • > (4)
  • the limit control flag F_LIMITC is set in the same manner as the holding control flag F_HOLDC, the delta limit process in step 62 is executed during deceleration of the vehicle V.
  • TWLOBJ ⁇ TWROBJ When (TWLOBJ ⁇ TWROBJ) ⁇ (TWLOBJZ ⁇ TWROBJZ) is a positive value, TWLOBJ ⁇ TWLOBJZ is established from Equation (4), and when it is negative, TWROBJ ⁇ TWROBJZ is established from Equation (4).
  • the target torques TWLOBJ and TWROBJ for the left wheel and the right wheel may be calculated.
  • the target torques TWLOBJ and TWROBJ for the left and right wheels are calculated as follows. That is, first, similarly to the delta hold process described above, the previous value of the left and right target torque difference is calculated (TWLOBJZ-TWROBJZ), and the left and right provisional target torque difference is calculated (TWLPRO-TWRPRO). Next, when the calculated previous value of the left and right target torque difference and the left and right provisional target torque difference are equal to each other, the left and right wheel provisional target torques TWLPRO and TWRPRO are set as the left and right wheel target torques TWLOBJ and TWROBJ, respectively. To do.
  • TWLOBJ ⁇ TWLOBJZ is a positive value when the previous value of the left / right target torque difference and the left / right provisional target torque difference are different from each other.
  • TWLOBJ ⁇ TWLOBJZ is based on the above viewpoint.
  • the target torques TWLOBJ and TWROBJ for the left wheel and the right wheel are calculated so as to be established.
  • the left wheel target torque TWLOBJ is calculated by subtracting the subtraction term SUB from the previous value TWLOBJZ of the left wheel target torque.
  • the subtraction term SUB is calculated by searching a predetermined map (not shown) according to the left-right torque sum change amount, the steering angle ⁇ , and the like. In this map, the subtraction term SUB is set to a value that maintains the magnitude relationship between the previous value TWLOBJZ of the left wheel target torque and the previous value TWROBJZ of the right wheel target torque in order to maintain reverse distribution control. .
  • the left-right torque sum change amount is calculated as an absolute value of the deviation between the left-right provisional target torque sum and the previous value of the left-right target torque sum (TWLOBJZ + TWROBJZ).
  • the left-right provisional target torque sum is calculated as the left wheel provisional target torque TWPRO.
  • the correction addition term ADCR is calculated, and the calculated correction addition term ADCR is added to the right wheel provisional target torque TWRPRO.
  • the right wheel target torque TWROBJ is calculated.
  • TWROBJ ⁇ TWROBJZ is based on the above viewpoint.
  • the target torques TWLOBJ and TWROBJ for the left wheel and the right wheel are calculated so as to be established.
  • the right wheel target torque TWROBJ is calculated by subtracting the subtraction term SUB calculated as described above from the previous value TWROBJZ of the right wheel target torque.
  • the correction addition term ADCL is calculated by subtracting the calculated right wheel target torque TWROBJ from the right wheel provisional target torque TWRPRO, and the calculated correction addition term ADCL is added to the left wheel provisional target torque TWPRO. To calculate the left wheel target torque TWLOBJ.
  • the left and right target torques TWLOBJ and TWROBJ have the same left / right target torque sum as the left / right provisional target torque sum (TWPRO + TWRPRO), and the left / right torque difference change rate is smaller than the left / right torque sum change rate. It is calculated so that it becomes. That is, the target torques TWLOBJ and TWROBJ for the left wheel and the right wheel maintain the change in the left and right target torque sum according to the running state of the vehicle V, so that the left and right torque difference change speed becomes smaller than the left and right torque sum change speed. Is calculated.
  • FIG. 15 shows an example of transition of the left-right torque difference ⁇ TWLR and the left-right torque sum TTWLR (the sum of the left wheel torque and the right wheel torque) during execution of the above-described limit control (arrow with a thick solid line) as a comparative example ( It is shown together with an arrow with a two-dot chain line).
  • This comparative example is an example in which only the normal control is executed without executing both the restriction control and the transition control.
  • the left-right torque difference ⁇ TWLR and the left-right torque sum TTWLR become the positive third torque difference ⁇ T3 and third torque sum TT3, respectively. ing. Further, during execution of the limit control, as the predetermined time elapses from the first timing, the left-right torque difference ⁇ TWLR and the left-right torque sum TTWLR change as shown by a thick solid line with an arrow in FIG. As indicated by a white circle Y in FIG.
  • the left-right torque difference ⁇ TWLR when a predetermined time elapses from the first timing is a positive value and becomes a fourth torque difference ⁇ T4 that is slightly smaller than the third torque difference ⁇ T3. Therefore, the left-right torque sum TTTLR is a fourth torque sum TT4 that is a negative value.
  • the angle ⁇ formed by the line connecting the white circle X and the white circle Y and the horizontal line representing the magnitude of the left-right torque difference ⁇ TWLR is larger than 45 °.
  • the changing speed of the left-right torque difference ⁇ TWLR is smaller than the changing speed of the left-right torque sum TTWLR (
  • the change speed of the left-right torque difference ⁇ TWLR and the change speed of the left-right torque sum TTWLR are constant, and the line connecting the white circle X and the white circle Y is a straight line, but the change of each parameter ⁇ TWLR, TTWLR Also when the speed changes and the line connecting the white circle X and the white circle Y becomes a curve, the change speed of the left-right torque difference ⁇ TWLR is smaller than the change speed of the left-right torque sum TTWLR as described above.
  • the left-right torque difference ⁇ TWLR and the left-right torque sum TTTLR are respectively the third torque difference ⁇ T3 and the third torque sum TT3 (white circle X).
  • the white circle Z like the white circle Y, represents the left-right torque difference ⁇ TWLR and the left-right torque sum TTWLR when the predetermined time elapses from the first timing during the limit control.
  • the angle ⁇ formed by the line connecting the white circle X and the white circle Z and the horizontal line indicating the magnitude of the left-right torque difference ⁇ TWLR is smaller than 45 °.
  • the changing speed of the left-right torque difference ⁇ TWLR is larger than the changing speed of the left-right torque sum TTWLR (
  • the limit control is executed while the reverse distribution control is being executed and the vehicle V is being decelerated (steps 62, 6 and 7), thereby the left-right torque difference ⁇ TWLR.
  • the left wheel torque and the right wheel torque are controlled such that the change rate of the left and right torques becomes smaller than the change rate of the left-right torque sum TTWLR. Therefore, similarly to the above-described embodiment, the yaw moment of the vehicle V can be suppressed from changing during deceleration of the vehicle V while turning, and thus the behavior of the vehicle V can be stabilized. In addition, the effect by embodiment mentioned above can be acquired similarly.
  • step 71 is executed to determine whether or not a predetermined condition is satisfied.
  • the predetermined condition is that the change of the target torque sum TRT (change amount per unit time) is not less than a first predetermined value, and the change of the target torque difference ⁇ TT (change amount per unit time) is not less than a second predetermined value. It is a condition that The change in the target torque sum TRT is calculated as the absolute value of the deviation between the current value and the previous value, and the change in the target torque difference ⁇ TT is calculated as the absolute value of the deviation between the current value and the previous value.
  • the first and second predetermined values are respectively set to a change in the target torque sum TRT and a change in the target torque difference ⁇ TT during normal deceleration or acceleration of the vehicle V.
  • step 71 When the answer to step 71 is NO, the present process is terminated as it is. On the other hand, when YES and the predetermined condition described above is satisfied, it is determined that the deceleration or acceleration of the vehicle V has been started, and the processing after step 44 is executed. To do.
  • step 72 is executed to determine whether or not a predetermined condition is satisfied as in step 71 described above.
  • step 48 the subsequent steps are executed (F_HOLDC ⁇ 0).
  • the deceleration of the vehicle V is acquired based on the output signal of the brake switch 26.
  • the deceleration may be acquired based on the detection signal of the acceleration sensor that detects the acceleration of the vehicle V. It may be acquired based on a detection signal of a sensor that detects the amount of operation of the sensor, or may be acquired based on a decrease in the amount of operation of the accelerator pedal detected by a sensor or the like.
  • deceleration of the vehicle V is predicted based on a detection signal of a gradient sensor that detects the gradient of the traveling road surface of the vehicle, or is predicted based on data stored in a car navigation system provided in the vehicle. Also good.
  • the holding control and the limiting control are started, the holding control and the limiting control may be started when the deceleration of the vehicle V is acquired during the execution of the reverse distribution control regardless of the vehicle speed VP. Furthermore, in the embodiment, the holding control and the limiting control are finished when the deceleration of the vehicle V is finished, but may be finished when the vehicle speed VP becomes very low. Further, in the embodiment, the holding control and the limiting control are ended when the deceleration of the vehicle V is ended, but may be ended when the acceleration of the vehicle V is started.
  • the left wheel torque and the right wheel torque are controlled such that the left-right torque difference ⁇ TWLR is held at the same value as that just before the start of the holding control. Control may be performed so that the difference ⁇ TWLR is held substantially constant.
  • the holding control and limit control methods described in the embodiments are merely examples, and other appropriate control methods may be employed.
  • the target torque difference ⁇ TT is set to the same value as the value immediately before the start of the holding control, and the calculation method according to the steps 24 to 31, 4 and 5 according to the set target torque difference ⁇ TT.
  • the left wheel torque and the right wheel torque may be controlled so that the calculated left-right torque difference change speed is smaller than the left-right torque sum change speed.
  • the left wheel torque and the right wheel torque are changed from the values controlled at the end of the holding control and the limiting control to normal use. Although it is calculated so as to gradually return to the value controlled by the control, it may be calculated so as to return immediately.
  • the left / right driving force difference in the present invention is the left / right torque difference ⁇ TWLR (difference between the left wheel torque and the right wheel torque), but may be a ratio of the left wheel torque to the right wheel torque.
  • the left driving force and the right driving force in the present invention are a left wheel torque and a right wheel torque, respectively, but may be a left wheel driving force and a right wheel driving force that can be calculated from these torques.
  • the embodiment uses the rear wheel drive device DRS having the first and second rear motors 41 and 61 as the drive device in the present invention
  • the left and right drive force is adjusted by adjusting the left drive force and the right drive force.
  • Other suitable drive devices that can change the sum and the left / right driving force difference independently of each other may be used.
  • a drive device having a hydraulic motor and a planetary gear device disclosed in JP-A-8-207542 by the present applicant a drive device having two brakes and a planetary gear device disclosed in Japanese Patent No. 3104157
  • a drive device having a clutch that connects the left and right wheels to each other via a planetary gear device may be used.
  • the left and right wheels in the present invention are the left and right rear wheels WRL and WRR, but may be left and right front wheels WFL and WFR.
  • the embodiment is an example in which the control device according to the present invention is applied to an all-wheel drive (AWD) type vehicle V, but a vehicle in which some of a plurality of wheels are driven, for example, two wheels
  • AWD all-wheel drive
  • the present invention may be applied to a drive (2WD) type vehicle.
  • the number of wheels is not limited to four and is arbitrary.
  • the transportation device in the present invention is the vehicle V, but may be a ship or an aircraft.
  • the left and right drive units are the left and right screws for propelling the ship when the transport device is a ship, and the left and right propellers for propelling the aircraft when the transport device is an aircraft.
  • the variations related to the above embodiments may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 輸送機器の旋回中における減速中に、輸送機器のヨーモーメントの変動を抑制でき、ひいては、輸送機器の挙動を安定させることができる駆動装置の制御装置及び制御方法ならびに記録媒体を提供する。制御装置では、逆配分制御が実行される(ステップ1、4~7)ことによって、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、左駆動力及び右駆動力が制御され、それにより、左駆動力と右駆動力との差異である左右駆動力差が発生する。逆配分制御の実行中、輸送機器の減速が取得されたときに、制限制御が実行される(ステップ8)ことによって、左右駆動力差の変化が、左駆動力と右駆動力との和である左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力が制御される。

Description

駆動装置の制御装置及び制御方法ならびに記録媒体
 本発明は、輸送機器の推進用の左右の駆動部の駆動力を調整することによって、左右の駆動部の駆動力の和である左右駆動力和と、左右の駆動部の駆動力の差異である左右駆動力差とを互いに独立して変更可能な駆動装置の制御装置及び制御方法ならびに記録媒体に関する。
 従来、この種の制御装置として、例えば特許文献1に開示されたものが知られている。この制御装置では、車両の旋回中、車両の左右輪のトルクが、車速が所定車速よりも低い低・中速であるときには、車両のヨーモーメント(絶対値)が増大するように、制御され、車速が所定車速以上の高速であるときには、車両のヨーモーメント(絶対値)が減少するように、制御される。以上により、従来の制御装置では、車両の旋回性を向上させるようにしている。
特開昭62-205824号公報
 上述したように、従来の制御装置では、車両の旋回中に、車速が低・中速であるときにはヨーモーメントが増大するように、高速であるときにはヨーモーメントが減少するように、左右輪のトルクが制御される。このため、例えば、車両の旋回中で、かつ、車速が高速である場合において、車両のブレーキが操作されることなどにより車速が低・中速になったときには、次のような不具合が発生するおそれがある。すなわち、この場合には、左右輪のトルクが、それまでヨーモーメントが減少するように制御されていた状態から、ヨーモーメントが増大するように制御されることによって、ヨーモーメントが急に変動し、ひいては、車両の挙動が不安定になるおそれがある。
 本発明は、以上のような課題を解決するためになされたものであり、輸送機器の旋回中における減速中に、輸送機器のヨーモーメントの変動を抑制でき、ひいては、輸送機器の挙動を安定させることができる駆動装置の制御装置及び制御方法ならびに記録媒体を提供することを目的とする。
 上記の目的を達成するために、請求項1に係る発明は、輸送機器(実施形態における(以下、本項において同じ)車両V)の進行方向に対して左側に配置された輸送機器の推進用の左駆動部(左後輪WRL)の駆動力である左駆動力と、輸送機器の進行方向に対して右側に配置された輸送機器の推進用の右駆動部(右後輪WRR)の駆動力である右駆動力とを調整することによって、左駆動力と右駆動力との和である左右駆動力和(左右トルク和TTWLR)と、左駆動力と右駆動力との差異である左右駆動力差(左右トルク差ΔTWLR)とを互いに独立して変更可能な駆動装置(後輪駆動装置DRS)の制御装置1であって、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、駆動装置を介して左駆動力及び右駆動力を制御することで左右駆動力差を生じさせる逆配分制御を実行する制御手段(ECU2、ステップ1、4~7)と、輸送機器の減速を取得する減速取得手段(ブレーキスイッチ26、ECU2)と、を備え、制御手段は、逆配分制御の実行中(ステップ42:YES)、輸送機器の減速が取得されたとき(ステップ43:YES、ステップ71:YES)に、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力を制御する制限制御を実行する(ステップ45、ステップ2:YES、ステップ8、ステップ61:YES、ステップ62)ことを特徴とする。
 この構成によれば、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、駆動装置を介して左駆動力及び右駆動力を制御することで左右駆動力差を生じさせる逆配分制御が実行される。これにより、輸送機器の旋回中のヨーモーメントを減少させることによって、輸送機器の挙動を安定させることができる。また、この逆配分制御の実行中、輸送機器の減速が取得されたときに、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように左駆動力及び右駆動力を制御する制限制御が実行される。
 ここで、輸送機器を推進させる推進力は、上記の左右駆動力和が変化するのに応じて変化し、また、輸送機器のヨーモーメントは、左右駆動力差が変化するのに応じて変化する。上述したように、逆配分制御の実行中、輸送機器の減速が取得されたときに、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力が制御される。これにより、輸送機器の旋回中における減速中に、輸送機器のヨーモーメントが変動するのを抑制でき、ひいては、輸送機器の挙動を安定させることができる。また、輸送機器の旋回方向と同方向のヨーモーメントが輸送機器に作用するように左右駆動力差を生じさせているとき、すなわち、輸送機器の旋回をアシストしているときには、制限制御を実行しないので、該旋回アシストが不要に維持されることによる輸送機器の過旋回状態を発生させることがない。さらに、この場合、輸送機器の挙動が安定しているかを判定することなく、左駆動力及び右駆動力の制御だけで、輸送機器の挙動を安定させることができる。
 なお、本発明における「左駆動力と右駆動力との差異」は、左駆動力と右駆動力との差、又は、左駆動力と右駆動力との比をも含んだ量である。また、「取得」は、検出や、算出、推定、予測をも含んだ概念であり、「変化」は、変化速度や変化量をも含んだ概念である。
 請求項2に係る発明は、請求項1に記載の駆動装置の制御装置1において、輸送機器の進行速度を取得する速度取得手段(車速センサ21)をさらに備え、制御手段は、逆配分制御の実行中、取得された輸送機器の進行速度(車速VP)が所定速度(高車速VPHI)以上である場合において(ステップ44:YES)、輸送機器の減速が取得されたときに、制限制御を開始する(ステップ45、ステップ2:YES、ステップ8、ステップ61:YES、ステップ62)ことを特徴とする。
 この構成によれば、逆配分制御の実行中、取得された輸送機器の進行速度が所定速度以上である場合において、輸送機器の減速が取得されたときに、制限制御が開始される。輸送機器の進行速度が比較的高い場合における逆配分制御の実行中には、左右輪駆動力差を大きく変化させると、車両の挙動が非常に不安定になるおそれがある。したがって、上述したような状況で制限制御を開始することによって、請求項1に係る発明による効果、すなわち、輸送機器の旋回中における減速中に輸送機器の挙動を安定させられるという効果を、有効に得ることができる。さらに、輸送機器の進行速度が所定速度よりも低いときには、制限制御を開始せずに、左右駆動力差を自在に制御できるので、輸送機器の旋回方向と同方向のヨーモーメントを輸送機器に作用させることができる。
 請求項3に係る発明は、請求項1又は2に記載の駆動装置の制御装置1において、制御手段は、制限制御として、左右駆動力差がほぼ一定に保持されるように、左駆動力及び右駆動力を制御する(ステップ8)ことを特徴とする。
 この構成によれば、制限制御の実行中、左右駆動力差がほぼ一定に保持されるように、左駆動力及び右駆動力が制御される。これにより、輸送機器の旋回中における減速中に、輸送機器のヨーモーメントが変動するのを確実に抑制でき、ひいては、輸送機器の挙動を確実に安定させることができる。
 請求項4に係る発明は、請求項1ないし3のいずれかに記載の駆動装置の制御装置1において、減速取得手段は、輸送機器の減速の終了又は輸送機器の加速をさらに取得し、制御手段は、輸送機器の減速の終了又は輸送機器の加速が取得されるまで、制限制御を継続する(ステップ47:NO、ステップ72:NO、ステップ48)ことを特徴とする。
 この構成によれば、輸送機器の減速の終了又は輸送機器の加速が取得されるまで、制限制御が継続される。このように、輸送機器の旋回中における輸送機器の減速が開始されてから終了するまでの間において、制限制御を継続するので、輸送機器の挙動を安定させることができる。
 請求項5に係る発明は、請求項1ないし4のいずれかに記載の駆動装置の制御装置1において、輸送機器の運動状態を取得する運動状態取得手段(車速センサ21、操舵角センサ22、横加速度センサ23、ヨーモーメントセンサ24)をさらに備え、制御手段は、制限制御の終了後(ステップ47:NO、ステップ72:NO、ステップ48、49、ステップ3:YES)、左駆動力及び右駆動力を、制限制御の終了時に制御されていた値(前回値TWLOBJZ、前回値TWROBJZ)から、取得された輸送機器の運動状態に応じて通常用制御で制御される値(左輪暫定目標トルクTWLPRO、右輪暫定目標トルクTWRPRO)に徐々に戻すように制御する(ステップ9)ことを特徴とする。
 この構成によれば、制限制御の終了後、左駆動力及び右駆動力が、制限制御の終了時に制御されていた値から、取得された輸送機器の運動状態に応じた通常用制御で制御される値に、急に戻すように制御されるのではなく、徐々に戻すように制御される。これにより、制限制御から通常用制御への移行を、左右駆動力差を急変させずに円滑に行うことができる。
 請求項6に係る発明は、請求項1ないし5のいずれかに記載の駆動装置の制御装置1において、輸送機器は車両Vであり、左右の駆動部は、車両の左右の車輪(左右の後輪WRL、WRR)であることを特徴とする。
 この構成によれば、左右の車輪を有する車両について、請求項1に係る発明の説明で述べた効果を得ることができる。
 請求項7に係る発明は、請求項1ないし6のいずれかに記載の駆動装置の制御装置1において、駆動装置は、左駆動部及び右駆動部にそれぞれ連結された左回転電機(第1リヤモータ41)及び右回転電機(第2リヤモータ61)を有することを特徴とする。
 この構成によれば、左回転電機及び右回転電機を制御することによって、左駆動力及び右駆動力を互いに独立して制御できるので、請求項1に係る発明による効果、すなわち、輸送機器の旋回中における減速中に輸送機器の挙動を安定させられるという効果を適切に得ることができる。
 前記目的を達成するため、請求項8に係る発明は、輸送機器(実施形態における(以下、本項において同じ)車両V)の進行方向に対して左側に配置された輸送機器の推進用の左駆動部(左後輪WRL)の駆動力である左駆動力と、輸送機器の進行方向に対して右側に配置された輸送機器の推進用の右駆動部(右後輪WRR)の駆動力である右駆動力とを調整することによって、左駆動力と右駆動力との和である左右駆動力和(左右トルク和TTWLR)と、左駆動力と右駆動力との差異である左右駆動力差(左右トルク差ΔTWLR)とを互いに独立して変更可能な駆動装置(後輪駆動装置DRS)の制御装置1であって、輸送機器の運動状態及び輸送機器の操縦者の要求の少なくとも一方を表す制御用パラメータを取得する制御用パラメータ取得手段(車速センサ21、操舵角センサ22、横加速度センサ23、ヨーモーメントセンサ24、アクセル開度センサ25)と、取得された制御用パラメータ(車速VP、操舵角θ、横加速度GL、ヨーモーメントYM、アクセル開度AP)に基づいて、左右駆動力差の目標値である左右差目標値(目標トルク差ΔTT)と、左右駆動力和の目標値である左右和目標値(目標トルク和TRT)とを算出する目標値算出手段(ECU2、ステップ21、23)と、算出された左右差目標値及び左右和目標値に応じて、左駆動力及び右駆動力を制御する制御手段(ECU2、ステップ24~31、ステップ4~7)と、を備え、制御手段は、左右差目標値に応じ、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、駆動装置を介して左駆動力及び右駆動力を制御することで左右駆動力差を生じさせる逆配分制御を実行し、逆配分制御の実行中(ステップ42:YES)、左右差目標値の変化及び左右和目標値の変化の双方が取得されたとき(ステップ71:YES)に、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力を制御する制限制御を実行する(ステップ45、ステップ2:YES、ステップ8、ステップ61:YES、ステップ62)ことを特徴とする。
 この構成によれば、輸送機器の運動状態及び輸送機器の操縦者の要求の少なくとも一方を表す制御用パラメータが取得され、取得された制御用パラメータに基づいて、左右駆動力差の目標値である左右差目標値と、左右駆動力和の目標値である左右和目標値とが算出されるとともに、算出された左右差目標値及び左右和目標値に応じて、左駆動力及び右駆動力が制御される。また、左右差目標値に応じ、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、駆動装置を介して左駆動力及び右駆動力を制御することで左右駆動力差を生じさせる逆配分制御が実行される。これにより、請求項1に係る発明と同様、輸送機器の旋回中のヨーモーメントを減少させることによって、輸送機器の挙動を安定させることができる。
 また、この逆配分制御の実行中、左右差目標値の変化及び左右和目標値の変化の双方が取得されたときに、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力を制御する制限制御が実行される。前述したように、輸送機器を推進させる推進力が左右駆動力和の変化に応じて変化するので、左右駆動力和の目標値である左右和目標値の変化が取得されたということは、輸送機器の進行速度が変化している又は変化する状態にあることを、すなわち、輸送機器が減速ないし加速している又は輸送機器の減速ないし加速が行われる状態にあることを表す。したがって、上述したように制限制御を実行することによって、請求項1に係る発明と同様、輸送機器の旋回中における減速中に、輸送機器のヨーモーメントが変動するのを抑制でき、ひいては、輸送機器の挙動を安定させることができる。この場合、輸送機器の挙動が安定しているかを判定することなく、左駆動力及び右駆動力の制御だけで、輸送機器の挙動を安定させることができる。
 前記目的を達成するため、請求項9に係る発明は、輸送機器(実施形態における(以下、本項において同じ)車両V)の進行方向に対して左側に配置された輸送機器の推進用の左駆動部(左後輪WRL)の駆動力である左駆動力と、輸送機器の進行方向に対して右側に配置された輸送機器の推進用の右駆動部(右後輪WRR)の駆動力である右駆動力とを調整することによって、左駆動力と右駆動力との和である左右駆動力和(左右トルク和TTWLR)と、左駆動力と右駆動力との差異である左右駆動力差(左右トルク差ΔTWLR)とを互いに独立して変更可能な駆動装置(後輪駆動装置DRS)の制御方法であって、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、駆動装置を介して左駆動力及び右駆動力を制御することで左右駆動力差を生じさせる逆配分制御を実行するステップ(ステップ1、4~7)と、輸送機器の減速を取得するステップ(ステップ43、47、ステップ71、72)と、逆配分制御の実行中(ステップ42:YES)、輸送機器の減速が取得されたとき(ステップ43:YES、ステップ71:YES)に、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力を制御する制限制御を実行するステップ(ステップ45、ステップ2:YES、ステップ8、ステップ61:YES、ステップ62)と、を含むことを特徴とする。
 上記の内容から明らかなように、請求項9に係る発明は、請求項1に係る制御装置の発明を、その内容を実質的に変更せずに、制御方法の発明に書き換えたものである。したがって、請求項1に係る発明による効果、すなわち、輸送機器の旋回中における減速中に輸送機器の挙動を安定させられるという効果などを、同様に得ることができる。
 前記目的を達成するため、請求項10に係る発明は、輸送機器(実施形態における(以下、本項において同じ)車両V)の進行方向に対して左側に配置された輸送機器の推進用の左駆動部(左後輪WRL)の駆動力である左駆動力と、輸送機器の進行方向に対して右側に配置された輸送機器の推進用の右駆動部(右後輪WRR)の駆動力である右駆動力とを調整することによって、左駆動力と右駆動力との和である左右駆動力和(左右トルク和TTWLR)と、左駆動力と右駆動力との差異である左右駆動力差(左右トルク差ΔTWLR)とを互いに独立して変更可能な駆動装置(後輪駆動装置DRS)を制御するための制御処理をコンピュータ(ECU2)に実行させるプログラムが記録された記録媒体(ROM2a)であって、制御処理は、輸送機器の旋回方向と逆方向のヨーモーメントが輸送機器に作用するように、駆動装置を介して左駆動力及び右駆動力を制御することで左右駆動力差を生じさせる逆配分制御を実行するステップ(ステップ1、4~7)と、輸送機器の減速を取得するステップ(ステップ43、47、ステップ71、72)と、逆配分制御の実行中(ステップ42:YES)、輸送機器の減速が取得されたとき(ステップ43:YES、ステップ71:YES)に、左右駆動力差の変化が左右駆動力和の変化よりも小さくなるように、左駆動力及び右駆動力を制御する制限制御を実行するステップ(ステップ45、ステップ2:YES、ステップ8、ステップ61:YES、ステップ62)と、を含むことを特徴とする。
 上記の内容から明らかなように、請求項10に係る発明は、請求項1に係る制御装置の発明を、その内容を実質的に変更せずに、コンピュータプログラムの記録媒体の発明に書き換えたものである。したがって、請求項1に係る発明による効果、すなわち、輸送機器の旋回中における減速中に輸送機器の挙動を安定させられるという効果などを、同様に得ることができる。
本実施形態による制御装置を適用したハイブリッド車両を概略的に示す図である。 後輪駆動装置を概略的に示すスケルトン図である。 制御装置のECUなどを示すブロック図である。 後輪駆動装置の各種の回転要素及び左右の後輪の間の回転数の関係とトルクの釣合関係を、駆動モード中について示す共線図である。 後輪駆動装置の各種の回転要素及び左右の後輪の間の回転数の関係とトルクの釣合関係を、回生モード中について示す共線図である。 後輪駆動装置の各種の回転要素及び左右の後輪の間の回転数の関係とトルクの釣合関係を、駆動・回生モード中について示す共線図である。 ECUによって実行されるモータ制御処理を示すフローチャートである。 図7のステップ1で実行される暫定目標値算出処理を示すフローチャートである。 ECUによって実行されるフラグ設定処理を示すフローチャートである。 モータ制御処理及びフラグ設定処理の動作例を比較例とともに示すタイミングチャートである。 保持制御の開始時から通常用制御の開始時までの間における左右トルク差及び左右トルク和の推移の一例を、比較例とともに示す図である。 本実施形態による動作例を比較例とともに示すタイミングチャートである。 モータ制御処理の変形例を示すフローチャートである。 フラグ設定処理の変形例を示すフローチャートである。 制限制御の実行中における左右トルク差及び左右トルク和の推移の一例を、比較例とともに示す図である。
 以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1に示す車両Vは、左右の前輪WFL、WFR及び左右の後輪WRL、WRRを有する四輪車両であり、車両Vには、前輪WFL、WFRを駆動するための前輪駆動装置DFSと、後輪WRL、WRRを駆動するための後輪駆動装置DRSが搭載されている。以下、左右の前輪WFL、WFR及び左右の後輪WRL、WRRをそれぞれ総称して、適宜「前輪WFL、WFR」及び「後輪WRL、WRR」という。
 前輪駆動装置DFSは、本出願人による特許第5362792号に開示されたものと同じものであるので、以下、その構成及び動作について簡単に説明する。前輪駆動装置DFSは、動力源としての内燃機関(以下「エンジン」という)3と、発電可能な電動機で構成されたフロントモータ4と、エンジン3及びフロントモータ4の動力を変速し、前輪WFL、WFRに伝達する変速装置5を有している。
 エンジン3は、複数の気筒を有するガソリンエンジンであり、その吸入空気量、燃料噴射量、燃料噴射時期及び点火時期などは、図3に示す制御装置1の後述するECU2によって制御される。周知のように、吸入空気量はスロットル弁(図示せず)を介して、燃料噴射量及び燃料噴射時期は燃料噴射弁(図示せず)を介して、点火時期は点火プラグ(図示せず)を介して、それぞれ制御される。
 フロントモータ4は、ブラシレスDCモータであり、三相コイルなどで構成されたステータと、磁石などで構成されたロータ(いずれも図示せず)を有している。ステータは、パワードライブユニット(以下「PDU」という)6を介して、充放電可能なバッテリ7に電気的に接続されている。このPDU6は、インバータなどの電気回路で構成されており、ECU2に電気的に接続されている(図3参照)。
 フロントモータ4では、ECU2によるPDU6の制御によって、バッテリ7からPDU6を介してステータに電力が供給されると、それに伴い、この電力が動力に変換され、ロータが回転する(力行)。この場合、ステータに供給される電力が制御されることによって、ロータの動力が制御される。また、ステータへの電力供給を停止した状態で、動力の入力によりロータが回転しているときに、ECU2によるPDU6の制御によって、ロータに入力された動力が電力に変換され、発電が行われるとともに、発電した電力が、バッテリ7に充電されたり、後輪駆動装置DRSの後述する第1及び第2リヤモータ41、61に供給されたりする。
 また、車両Vには、エアコンのコンプレッサなどから成る補機8と、12Vバッテリ(図示せず)が搭載されており、補機8はPDU6を介して、12VバッテリはDC/DCコンバータ(図示せず)を介して、フロントモータ4のステータ及びバッテリ7に電気的に接続されている。補機8には、フロントモータ4で発電した電力や、バッテリ7の電力が供給され、補機8に供給される電力は、ECU2により、PDU6を介して制御される。
 前記変速装置5は、いわゆるデュアルクラッチトランスミッションで構成されている。図示しないが、変速装置5は、第1クラッチを介してエンジン3に接続された第1入力軸と、フロントモータ4と第1入力軸の間に配置された遊星歯車装置と、第2クラッチを介してエンジン3に接続された第2入力軸と、第1及び第2入力軸と平行な出力軸と、第1及び第2入力軸に回転自在に設けられた複数の入力ギヤと、出力軸に一体に設けられ、複数の入力ギヤに噛み合う複数の出力ギヤと、複数の入力ギヤの1つを第1又は第2入力軸に選択的に連結し、その入力ギヤとそれに噛み合う出力ギヤによるギヤ段を設定するシンクロ装置などを有している。
 以上の構成により、第1及び第2クラッチならびにシンクロ装置などをECU2で制御することにより、第1及び第2クラッチの接続/遮断状態に応じて、エンジン3の動力(以下「エンジン動力」という)及び/又はフロントモータ4の動力が第1入力軸に、又はエンジン動力が第2入力軸に、選択的に入力される。入力された動力は、シンクロ装置によって設定されたギヤ段による所定の変速比で変速された状態で、出力軸に出力され、さらに、ファイナルギヤ9及び左右の前駆動軸SFL、SFRを介して、左右の前輪WFL、WFRに伝達される。
 図2に示すように、前記後輪駆動装置DRSは、第1リヤモータ41、第1遊星歯車装置51、第2リヤモータ61及び第2遊星歯車装置71を有している。これらの第1リヤモータ41、第1遊星歯車装置51、第2遊星歯車装置71、及び第2リヤモータ61は、左右の後輪WRL、WRRの間に、左側からこの順で並んでおり、左右の後駆動軸SRL、SRRと同軸状に設けられている。左右の後駆動軸SRL、SRRは、軸受け(図示せず)に回転自在に支持されるとともに、それらの一端部がそれぞれ、左右の後輪WRL、WRRに連結されている。
 上記の第1リヤモータ41は、フロントモータ4と同様、いわゆるモータジェネレータとして構成されたブラシレスDCモータであり、ステータ42と、回転自在のロータ43を有している。ステータ42は、車両Vに固定されたケーシングCAに取り付けられるとともに、前述したPDU6を介して、フロントモータ4のステータ及びバッテリ7に電気的に接続されている。ロータ43は、中空の回転軸44に一体に取り付けられている。回転軸44は、左後駆動軸SRLの外側に相対的に回転自在に配置されるとともに、軸受け(図示せず)に回転自在に支持されている。
 第1リヤモータ41では、ECU2によるPDU6の制御によって、バッテリ7からの電力や、フロントモータ4で発電した電力が、PDU6を介してステータ42に供給されると、それに伴い、この電力が動力に変換され、ロータ43が回転する(力行)。この場合、ステータ42に供給される電力が制御されることによって、ロータ43の動力が制御される。また、ステータ42への電力供給を停止した状態で、動力の入力によりロータ43が回転しているときに、ECU2によるPDU6の制御によって、ロータ43に入力された動力が電力に変換され、発電が行われる(回生)とともに、発電した電力がバッテリ7に充電される。
 第1遊星歯車装置51は、第1リヤモータ41の動力を減速して左後輪WRLに伝達するためのものであり、第1サンギヤ52、第1リングギヤ53、2連ピニオンギヤ54及び第1キャリヤ55を有している。第1サンギヤ52は、前述した回転軸44に一体に取り付けられており、第1リヤモータ41のロータ43と一体に回転自在である。第1リングギヤ53は、第1サンギヤ52よりも大きな歯数を有しており、中空の回転軸81に一体に取り付けられている。回転軸81は、軸受け(図示せず)に回転自在に支持されている。2連ピニオンギヤ54は、第1ピニオンギヤ54a及び第2ピニオンギヤ54bを一体に有しており、その数が3つ(2つのみ図示)である。また、2連ピニオンギヤ54は、第1キャリヤ55に回転自在に支持されており、その第1ピニオンギヤ54aが第1サンギヤ52に、第2ピニオンギヤ54bが第1リングギヤ53に、それぞれ噛み合っている。第1キャリヤ55は、左後駆動軸SRLの他端部に一体に取り付けられており、左後駆動軸SRLと一体に回転自在である。
 前記第2リヤモータ61及び第2遊星歯車装置71は、第1リヤモータ41及び第1遊星歯車装置51とそれぞれ同様に構成されているため、以下、その構成について簡単に説明する。第2リヤモータ61及び第2遊星歯車装置71は、後述するワンウェイクラッチ83を中心として、第1リヤモータ41及び第1遊星歯車装置51と対称に設けられている。第2リヤモータ61のステータ62は、前記ケーシングCAに取り付けられるとともに、PDU6を介して、フロントモータ4のステータ、バッテリ7及び第1リヤモータ41のステータ42に電気的に接続されている。また、第2リヤモータ61のロータ63は、中空の回転軸64に一体に取り付けられている。回転軸64は、右後駆動軸SRRの外側に相対的に回転自在に配置されるとともに、軸受け(図示せず)に回転自在に支持されている。
 第2リヤモータ61では、ECU2によるPDU6の制御によって、バッテリ7の電力や、フロントモータ4で発電した電力が、PDU6を介してステータ62に供給されると、それに伴い、この電力が動力に変換され、ロータ63が回転する(力行)。この場合、ステータ62に供給される電力が制御されることによって、ロータ63の動力が制御される。また、ステータ62への電力供給を停止した状態で、動力の入力によりロータ63が回転しているときに、ECU2によるPDU6の制御によって、ロータ63に入力された動力が電力に変換され、発電が行われる(回生)とともに、発電した電力がバッテリ7に充電される。
 第2遊星歯車装置71は、第2リヤモータ61の動力を減速して右後輪WRRに伝達するためのものであり、第2サンギヤ72、第2リングギヤ73、2連ピニオンギヤ74及び第2キャリヤ75を有している。第2サンギヤ72、第2リングギヤ73及び2連ピニオンギヤ74の歯数は、第1サンギヤ52、第1リングギヤ53及び2連ピニオンギヤ54の歯数とそれぞれ同じに設定されている。
 第2サンギヤ72は、前述した回転軸64に一体に取り付けられており、第2リヤモータ61のロータ63と一体に回転自在である。第2リングギヤ73は、第2サンギヤ72よりも大きな歯数を有しており、中空の回転軸82に一体に取り付けられている。回転軸82は、軸受け(図示せず)に回転自在に支持されており、前述した回転軸81と若干の隙間を存した状態で軸線方向に対抗している。2連ピニオンギヤ74は、第2キャリヤ75に回転自在に支持されており、その第1ピニオンギヤ74aが第2サンギヤ72に、第2ピニオンギヤ74bが第2リングギヤ73に、それぞれ噛み合っている。第2キャリヤ75は、右後駆動軸SRRの他端部に一体に取り付けられており、右後駆動軸SRRと一体に回転自在である。
 後輪駆動装置DRSはさらに、ワンウェイクラッチ83及び油圧ブレーキ84を有している。ワンウェイクラッチ83は、インナーレース83a及びアウターレース83bを有しており、第1及び第2遊星歯車装置51、71の間に配置されている。なお、図2では、図示の便宜上、インナーレース83aが外側に、アウターレース83bが内側に、それぞれ描かれている。インナーレース83aは、前述した回転軸81、82に係合していて、それにより、インナーレース83a、回転軸81、82、第1及び第2リングギヤ53、73は、一体に回転自在である。また、アウターレース83bは、ケーシングCAに取り付けられている。ワンウェイクラッチ83は、回転軸81、82に逆転させる動力が伝達されたときには、回転軸81、82をケーシングCAに接続することによって、回転軸81、82、第1及び第2リングギヤ53、73の逆転を阻止する一方、回転軸81、82に正転させる動力が伝達されたときには、回転軸81、82とケーシングCAの間を遮断することによって、回転軸81、82、第1及び第2リングギヤ53、73の正転を許容する。
 油圧ブレーキ84は、多板式のクラッチで構成されており、ケーシングCA及び回転軸81、82に取り付けられるとともに、第1及び第2遊星歯車装置51、71の外周に配置されている。油圧ブレーキ84は、ECU2で制御されることにより、第1及び第2リングギヤ53、73を制動する制動動作と、第1及び第2リングギヤ53、73の回転を許容する回転許容動作とを、選択的に実行する。油圧ブレーキ84の制動力は、ECU2によって制御される。
 さらに、図3に示すように、ECU2には、車速センサ21から車両Vの車速VPが、操舵角センサ22から車両Vのハンドル(図示せず)の操舵角θを表す検出信号が、横加速度センサ23から車両Vに作用する横加速度GLを表す検出信号が、入力される。この場合、操舵角θは、車両Vの前進左旋回中には正値として、前進右旋回中には負値として、検出される。横加速度GLは、車両Vに作用する左方向の加速度を正値として、右方向の加速度を負値として、検出される。また、ECU2には、ヨーモーメントセンサ24から車両VのヨーモーメントYMを表す検出信号が、アクセル開度センサ25から車両Vのアクセルペダル(図示せず)の踏み込み量であるアクセル開度APを表す検出信号が、ブレーキスイッチ26から車両Vのブレーキペダル(図示せず)のON・OFF(踏み込み/踏み込み解除)を表す出力信号が、入力される。ヨーモーメントYMは、車両Vの反時計回りのヨーモーメントを正値として、時計回りのヨーモーメントを負値として、検出される。
 ECU2は、I/Oインターフェース、CPU、RAM及びROM2aなどからなるマイクロコンピュータで構成されており、上述した各種のセンサやスイッチ21~26からの検出信号に応じ、ROM2aに記録されたプログラムに従って、前輪駆動装置DFS及び後輪駆動装置DRSの動作を含む車両Vの動作を制御する。
 前輪駆動装置DFSの動作モードには、エンジン3のみを車両Vの動力源として用いるENG走行モードと、フロントモータ4のみを動力源として用いるEV走行モードと、エンジン3をフロントモータ4でアシストするアシスト走行モードと、エンジン動力の一部を用いてフロントモータ4でバッテリ7を充電する充電走行モードと、車両Vの減速走行中の走行エネルギを用いてフロントモータ4でバッテリ7を充電する減速回生モードなどが含まれる。各動作モードにおける前輪駆動装置DFSの動作は、ECU2によって制御される。
 また、後輪駆動装置DRSの動作モードには、駆動モード、回生モード及び駆動・回生モードなどが含まれる。各動作モードにおける後輪駆動装置DRSの動作は、ECU2によって制御される。以下、これらの動作モードについて順に説明する。
 [駆動モード]
 この駆動モードは、左右の後輪WRL、WRRを第1及び第2リヤモータ41、61の動力で駆動する動作モードである。駆動モードでは、第1及び第2リヤモータ41、61で力行を行うとともに、両者41、61に供給される電力を制御する。また、左右の後輪WRL、WRRを正転させる場合には、第1及び第2リヤモータ41、61のロータ43、63を正転させるとともに、油圧ブレーキ84で第1及び第2リングギヤ53、73を制動する。図4は、駆動モード中、左右の後輪WRL、WRRを正転させた場合における各種の回転要素の間の回転数の関係及びトルクの釣合関係の一例を示している。
 前述した各種の回転要素の間の連結関係から明らかなように、第1サンギヤ52の回転数は、第1リヤモータ41(ロータ43)の回転数と等しく、第1キャリヤ55の回転数は、左後輪WRLの回転数と、第1リングギヤ53の回転数は、第2リングギヤ73の回転数と、それぞれ等しい。また、第2サンギヤ72の回転数は、第2リヤモータ61(ロータ63)の回転数と等しく、第2キャリヤ75の回転数は、右後輪WRRの回転数と等しい。また、周知のように、第1サンギヤ52の回転数、第1キャリヤ55の回転数及び第1リングギヤ53の回転数は、共線図において、互いに同じ一つの直線上に位置する共線関係にあり、第1サンギヤ52及び第1リングギヤ53は、第1キャリヤ55の両外側に位置する。このことは、第2サンギヤ72、第2キャリヤ75及び第2リングギヤ73についても同様に当てはまる。
 以上から、各種の回転要素の間の回転数の関係は、図4に示す共線図のように表される。なお、同図及び後述する他の共線図では、値0を示す横線から縦線上の白丸までの距離が、各回転要素の回転数に相当する。また、図4において、TM1は、第1リヤモータ41の出力トルク(以下「第1リヤモータ出力トルク」という)であり、TM2は、第2リヤモータ61の出力トルク(以下「第2リヤモータ出力トルク」という)である。また、RRLは、左後輪の反力トルクであり、RRRは、右後輪WRRの反力トルク、ROWは、ワンウェイクラッチ83の反力トルクである。
 図4から明らかなように、第1リヤモータ出力トルクTM1は、第1サンギヤ52を正転させるように作用するとともに、第1リングギヤ53を逆転させるように作用する。以上により、第1リヤモータ出力トルクTM1は、第1リングギヤ53に作用するワンウェイクラッチ83の反力トルクROWを反力とし、第1キャリヤ55及び左後駆動軸SRLを介して、左後輪WRLに伝達され、その結果、左後輪WRLが駆動される。同様に、第2リヤモータ出力トルクTM2は、第2リングギヤ73に作用するワンウェイクラッチ83の反力トルクROWを反力とし、第2キャリヤ75及び右後駆動軸SRRを介して、右後輪WRRに伝達される。その結果、右後輪WRRが駆動される。駆動モード中、第1及び第2リヤモータ出力トルクTM1、TM2を変更することによって、左右の後輪WRL、WRRのトルク(以下、それぞれ「左輪トルク」「右輪トルク」という)を自由に制御可能である。
 [回生モード]
 この回生モードは、車両Vの走行エネルギを用いて第1及び第2リヤモータ41、61で発電(回生)を行うとともに、回生した電力をバッテリ7に充電する動作モードである。回生モードでは、第1及び第2リヤモータ41、61で回生する電力を制御するとともに、油圧ブレーキ84で第1及び第2リングギヤ53、73を制動する。図5は、回生モードにおける各種の回転要素の間の回転数の関係及びトルクの釣合関係を示している。同図において、TRLは、左輪トルク(左後輪WRLのトルク)であり、TRRは、右輪トルク(右後輪WRRのトルク)である。また、RBRは、油圧ブレーキ84の反力トルクである。その他のパラメータについては、図4を参照して説明したとおりである。なお、回生モード中には、第1及び第2リヤモータ41、61で回生が行われるので、第1及び第2リヤモータ出力トルクTM1、TM2は、負のトルク(制動トルク)である。
 図5から明らかなように、第1及び第2サンギヤ52、72にそれぞれ伝達された第1及び第2リヤモータ出力トルクTM1、TM2は、油圧ブレーキ84の反力トルクRBRを反力として、第1及び第2キャリヤ55、75にそれぞれ伝達され、さらに、左右の後駆動軸SRL、SRRを介して、左右の後輪WRL、WRRに伝達される。その結果、左右の後輪WRL、WRRが制動される。回生モード中、駆動モードの場合と同様、第1及び第2リヤモータ出力トルクTM1、TM2を変更することによって、左輪トルク及び右輪トルクを自由に制御可能である。
 [駆動・回生モード]
 この駆動・回生モードは、第1及び第2リヤモータ41、61の一方で力行を行い、両モータ41、42の他方で回生を行う動作モードである。駆動・回生モード中、この一方のモータに供給される電力と、他方のモータで回生する電力を制御するとともに、ワンウェイクラッチ83又は油圧ブレーキ84で第1及び第2リングギヤ53、73を制動する。図6は、第1リヤモータ41で力行を行うとともに、第2リヤモータ61で回生を行った場合における各種の回転要素の間の回転数の関係及びトルクの釣合関係を示している。同図における各種のパラメータは、図4及び図5を参照して説明したとおりである。
 図6と、これまでの説明から明らかなように、第1リヤモータ出力トルクTM1(駆動トルク)が、第1遊星歯車装置51を介して左後輪WRLに伝達されることにより、左後輪WRLが駆動されるとともに、第2リヤモータ出力トルクTM2(制動トルク)が、第2遊星歯車装置71を介して右後輪WRRに伝達されることにより、右後輪WRRが制動される。その結果、左右の後輪WRL、WRRの間で逆方向のトルクが発生し、車両Vの時計回りのヨーモーメントが増大する。
 上記とは逆に、第1リヤモータ41で回生を、第2リヤモータ61で力行を、それぞれ行った場合には、左後輪WRLが制動されるとともに、右後輪WRRが駆動される結果、車両Vの反時計回りのヨーモーメントが増大する。
 また、ECU2は、左輪トルク及び右輪トルクを制御すべく、第1及び第2リヤモータ出力トルクTM1、TM2を制御するために、図7に示すモータ制御処理及び図9に示すフラグ設定処理を実行する。これらの処理は、所定時間(例えば100msec)ごとに、繰り返し実行される。
 まず、図7のステップ1(「S1」と図示。以下同じ)では、暫定目標値算出処理を実行する。図8は、この暫定目標値算出処理を示しており、本処理は、左輪トルク及び右輪トルクの目標値の暫定値を算出するためのものである。まず、図8のステップ21では、検出された車速VP及びアクセル開度APに基づき、所定のマップ(図示せず)を検索することによって、目標トルク和TRTを算出する。この目標トルク和TRTは、左輪トルクと右輪トルクとの和の目標値の暫定値であり、上記のマップでは、アクセル開度APが大きいほど、より大きな値に設定されている。
 次いで、車速VP及び検出された操舵角θに基づき、所定のマップ(図示せず)を検索することによって、ヨーモーメントYMの目標値である目標ヨーモーメントYMOBJを算出する(ステップ22)。次に、算出された目標ヨーモーメントYMOBJに基づき、目標トルク差ΔTTを算出する(ステップ23)。この目標トルク差ΔTTは、左輪トルクと右輪トルクとの差の目標値の暫定値であり、具体的には、次式(1)により算出される。
 ΔTT=2・r・YMOBJ/Tr            ……(1)
 ここで、rは、左右の後輪WRL、WRRの各々の半径であり、Trは、トレッド幅(左右の後輪WRL、WRRの間の距離)である。
 次いで、本出願人による国際公開WO2013/005783の段落[0113]~[0118]に記載された算出手法と同様の算出手法によって、左輪仮目標トルクTTLと、右輪仮目標トルクTTRを算出する(ステップ24)。すなわち、前記ステップ21及び23でそれぞれ算出された目標トルク和TRT及び目標トルク差ΔTTに基づき、次式(2)及び(3)を用いて、左輪仮目標トルクTTLと、右輪仮目標トルクTTRを算出する。これらの左輪及び右輪の仮目標トルクTTL、TTRはそれぞれ、左輪トルク及び右輪トルクの仮の目標値である。
 TTL+TTR=TRT                 ……(2)
 TTL-TTR=ΔTT                 ……(3)
 より具体的には、左輪仮目標トルクTTLは、目標トルク和TRTと目標トルク差ΔTTとの和を2で除算する((TRT+ΔTT)/2)ことによって算出される。また、右輪仮目標トルクTTRは、目標トルク和TRTと目標トルク差ΔTTとの差を2で除算する((TRT-ΔTT)/2)ことによって算出される。
 次に、算出された左輪仮目標トルクTTLに所定の第1減速比を乗算することによって、第1リヤモータ暫定目標トルクTM1PROを算出するとともに、算出された右輪仮目標トルクTTRに所定の第2減速比を乗算することによって、第2リヤモータ暫定目標トルクTM2PROを算出する(ステップ25)。これらの第1及び第2リヤモータ暫定目標トルクTM1PRO、TM2PROはそれぞれ、前記第1及び第2リヤモータ出力トルクTM1、TM2の目標値の暫定値である。また、上記の第1及び第2減速比はそれぞれ、第1及び第2遊星歯車装置51、71の各種のギヤで定まるものであり、互いに等しい。
 次いで、ステップ26、27、28及び29において、左輪舵角比例トルクTFFL、右輪舵角比例トルクTFFR、左輪FBトルクTFBL及び右輪FBトルクTFBRをそれぞれ算出する。これらのパラメータTFFL、TFFR、TFBL及びTFBRは、基本的には、本出願人による特願2013-159612号の段落[0046]~[0052]、[0060]~[0064]及び図2に記載された算出手法と同様の算出手法で算出される。
 ステップ26及び27における左輪及び右輪の舵角比例トルクTFFL、TFFRの算出は、具体的には次のようにして行われる。まず、エンジン3及びフロントモータ4の目標トルクを、検出された車速VP及びアクセル開度APに応じ、所定のマップ(図示せず)を検索することによって算出する。次いで、算出されたエンジン3及びフロントモータ4の目標トルク、ならびに、前記ステップ25で算出された第1及び第2リヤモータ暫定目標トルクTM1PRO、TM2PROに基づいて、左右の後輪WRL、WRRに関する車輪駆動力Fを算出する。次に、車速VP及び操舵角θに基づいて、車両Vの横加速度GLの推定値GLESTを算出する。次いで、検出された横加速度GLと算出された推定値GLESTとの和を、補正横加速度GLCORとして算出する。
 次に、算出された補正横加速度GLCORに基づいて、左右の後輪WRL、WRRのどちらが外輪であるか否かを判定するとともに、前後配分比及び左右配分比を算出する。次いで、判定された外輪と、算出された前後配分比及び左右配分比に基づいて、左右の後輪WRL、WRRに関する外輪/内輪トルク配分比を算出する。次に、算出された車輪駆動力Fに、外輪/内輪トルク配分比に基づく割合を乗算することによって、左輪及び右輪の舵角比例トルクTFFL、TFFRがそれぞれ算出される。
 また、前記ステップ28及び29における左輪及び右輪のFBトルクTFBL、TFBRの算出は、具体的には次のようにして行われる。まず、車速VP、操舵角θ、横加速度GL、及び検出されたヨーモーメントYMに基づいて、車両Vのスリップ角を算出する。次いで、車速VP及び横加速度GLに基づいて、スリップ角しきい値を算出する。次に、算出されたスリップ角とスリップ角しきい値との差に基づいて、スリップ角が所定値よりも大きいときには、車両Vが不安定状態にあると判定し、この状態を解消するために、後輪WRL、WRRに配分されるトルクを低減するとともに外輪に配分されるトルクを低減するように、左輪及び右輪のFBトルクTFBL、TFBRが算出される。
 ステップ29に続くステップ30では、左輪暫定目標トルクTWLPROを算出する。この左輪暫定目標トルクTWLPROは、左輪トルクの目標値の暫定値であり、ステップ26で算出された左輪舵角比例トルクTFFLと、ステップ28で算出された左輪FBトルクTFBLとの和に算出される。次いで、右輪暫定目標トルクTWRPROを算出し(ステップ31)、本処理を終了する。この右輪暫定目標トルクTWRPROは、右輪トルクの目標値の暫定値であり、ステップ27で算出された右輪舵角比例トルクTFFRと、ステップ29で算出された右輪FBトルクTFBRとの和に算出される。
 図7に戻り、前記ステップ1に続くステップ2では、保持制御フラグF_HOLDCが「1」であるか否かを判別する。この保持制御フラグF_HOLDCは、後述する保持制御の実行中であることを「1」で表すものであり、図9に示すフラグ設定処理で設定される。その詳細については後述する。このステップ2の答がNO(F_HOLDC=0)で、保持制御の実行中でないときには、移行用制御フラグF_TRANCが「1」であるか否かを判別する(ステップ3)。この移行用制御フラグF_TRANCは、後述する移行用制御の実行中であることを「1」で表すものであり、上記のフラグ設定処理で設定される。その詳細については後述する。
 上記ステップ3の答がNO(F_TRANC=0)で、移行用制御の実行中でないときには、ステップ4及び5においてそれぞれ、図8の前記ステップ30及び31でそれぞれ算出された左輪暫定目標トルクTWLPRO及び右輪暫定目標トルクTWRPROを、左輪目標トルクTWLOBJ及び右輪目標トルクTWROBJとしてそれぞれ設定する。これらの左輪及び右輪の目標トルクTWLOBJ、TWROBJはそれぞれ、左輪トルク及び右輪トルクの目標値である。
 上記ステップ5に続くステップ6では、算出(設定)された左輪目標トルクTWLOBJに前述した第1減速比を乗算することによって、第1リヤモータ目標トルクTM1OBJを算出するとともに、算出(設定)された右輪目標トルクTWROBJに前述した第2減速比を乗算することによって、第2リヤモータ目標トルクTM2OBJを算出する。これらの第1及び第2リヤモータ目標トルクTM1OBJ、TM2OBJはそれぞれ、前述した第1及び第2リヤモータ出力トルクTM1、TM2の目標値である。
 上記のステップ6に続くステップ7では、算出された第1及び第2リヤモータ目標トルクTM1OBJ、TM2OBJに基づく制御信号をPDU6に出力し、本処理を終了する。これにより、第1及び第2リヤモータ出力トルクTM1、TM2が、第1及び第2リヤモータ目標トルクTM1OBJ、TM2OBJにそれぞれなるように、PDU6を介して制御される結果、左輪トルク及び右輪トルクが、左輪及び右輪の目標トルクTWLOBJ、TWROBJにそれぞれなるように制御される。
 以下、前記ステップ1及び4~7による左輪トルク及び右輪トルクの制御を「通常用制御」という。車両Vの旋回中に、この通常用制御が実行されたときには、左輪トルク及び右輪トルクが、左右の後輪WRL、WRRの間でトルク差を生じさせるように制御され、それにより、車両Vには、車両Vの旋回方向と同方向のヨーモーメント、又は、逆方向のヨーモーメントが作用する。以下、車両Vの旋回中にその旋回方向と逆方向のヨーモーメントが車両Vに作用するように左右の後輪WRL、WRRにトルク差を生じさせる制御を、「逆配分制御」という。
 一方、前記ステップ2の答がYES(F_HOLDC=1)のときには、前記保持制御を実行する。この保持制御は、左輪トルクと右輪トルクとの差(以下「左右トルク差」という)を保持制御の開始直前における値と同じ値に保持するための制御である。具体的には、ステップ8において、デルタホールド処理を行うことにより左輪目標トルクTWLOBJ及び右輪目標トルクTWROBJを算出する。次いで、前記ステップ6以降を実行し、それにより、算出された左輪及び右輪の目標トルクTWLOBJ、TWROBJに基づいて第1及び第2リヤモータ目標トルクTM1OBJ、TM2OBJをそれぞれ算出するとともに、前者TM1OBJ及び後者TM2OBJに基づく制御信号をPDU6に出力し、本処理を終了する。
 上記のデルタホールド処理では、左輪及び右輪の目標トルクTWLOBJ、TWROBJは、具体的には、次のようにして算出される。すなわち、まず、左輪目標トルクの前回値TWLOBJZと右輪目標トルクの前回値TWROBJZとの偏差を、左右目標トルク差の前回値として算出するとともに、左輪暫定目標トルクTWLPROと右輪暫定目標トルクTWRPROとの偏差を、左右暫定目標トルク差として算出する。次いで、算出された左右目標トルク差の前回値と左右暫定目標トルク差とが互いに等しいときには、左輪暫定目標トルクTWLPRO及び右輪暫定目標トルクTWRPROをそれぞれ、左輪目標トルクTWLOBJ及び右輪目標トルクTWROBJとして設定する。
 一方、左右目標トルク差の前回値と左右暫定目標トルク差とが互いに異なるときには、左輪目標トルクの前回値TWLOBJZと右輪目標トルクの前回値TWROBJZとの和を、左右目標トルク和の前回値として算出するとともに、左輪暫定目標トルクTWLPROと右輪暫定目標トルクTWRPROとの和を、左右暫定目標トルク和として算出する。次いで、算出された左右暫定目標トルク和と左右目標トルク和の前回値との偏差の絶対値を左右和暫定変化量として算出する。次に、左輪目標トルクの前回値TWLOBJZから、左右和暫定変化量の1/2を減算した値(TWLOBJZ-左右和暫定変化量/2)を、左輪目標トルクTWLOBJとして算出する。また、右輪目標トルクの前回値TWROBJZから、左右和暫定変化量の1/2を減算した値(TWROBJZ-左右和暫定変化量/2)を、右輪目標トルクTWROBJとして算出する。
 以上により、保持制御の実行中には、左輪目標トルクTWLOBJ及び右輪目標トルクTWROBJは、前者TWLOBJと後者TWROBJとの偏差である左右目標トルク差を保持制御の開始直前における値に保持するように、算出される。その結果、左輪トルク及び右輪トルクが、左右トルク差(左輪トルクと右輪トルクとの差)を保持制御の開始直前における値と同じ値に保持するように、制御される。一方、左輪トルクと右輪トルクとの和(以下「左右トルク和」という)については、左右トルク和を、左輪及び右輪の暫定目標トルクTWLPRO、TWRPROに基づく値に、すなわち、車両Vの走行状態に応じた値に変化させるように、左輪トルク及び右輪トルクが制御される。
 一方、前記ステップ3の答がYES(F_TRANC=1)のときには、前記移行用制御を実行する。この移行用制御は、上述した保持制御から通常用制御に移行する際に、左輪トルク及び右輪トルクが急変するのを防止するための制御である。具体的には、まず、ステップ9において、図8のステップ30及び31でそれぞれ算出された左輪及び右輪の暫定目標トルクTWLPRO、TWRPROに、レートリミット処理を行うことによって、左輪及び右輪の目標トルクTWLOBJ、TWROBJをそれぞれ算出する。
 具体的には、左輪目標トルクTWLOBJは次のようにして算出される。すなわち、左輪目標トルクの前回値TWLOBJZが左輪暫定目標トルクTWLPROよりも大きく、かつ前者TWLOBJZと後者TWLPROとの偏差の絶対値が所定値(正値)よりも大きいとき(乖離度合いが大きいとき)には、前回値TWLOBJZから所定の減算項(正値)を減算した値を、左輪目標トルクTWLOBJとして算出する。一方、左輪目標トルクの前回値TWLOBJZが左輪暫定目標トルクTWLPROよりも小さく、かつ前者TWLOBJZと後者TWLPROとの偏差の絶対値が上記の所定値よりも大きいときには、前回値TWLOBJZに所定の加算項(正値)を加算した値を、左輪目標トルクTWLOBJとして算出する。一方、左輪目標トルクの前回値TWLOBJZと左輪暫定目標トルクTWLPROとの偏差の絶対値が所定値以下のときには、左輪暫定目標トルクTWLPROを左輪目標トルクTWLOBJとして設定する。
 同様に、右輪目標トルクTWROBJは次のようにして算出される。すなわち、右輪目標トルクの前回値TWROBJZが右輪暫定目標トルクTWRPROよりも大きく、かつ、前者TWROBJZと後者TWRPROとの偏差の絶対値が上記の所定値よりも大きいとき(乖離度合いが大きいとき)には、前回値TWROBJZから上記の減算項を減算した値を、右輪目標トルクTWROBJとして算出する。一方、右輪目標トルクの前回値TWROBJZが右輪暫定目標トルクTWRPROよりも小さく、かつ前者TWROBJZと後者TWRPROとの偏差の絶対値が所定値よりも大きいときには、前回値TWROBJZに上記の加算項を加算した値を、右輪目標トルクTWROBJとして算出する。一方、右輪目標トルクの前回値TWROBJZと右輪暫定目標トルクTWRPROとの偏差の絶対値が所定値以下のときには、右輪暫定目標トルクTWRPROを右輪目標トルクTWROBJとして設定する。
 前記ステップ9に続くステップ10では、所定の終了条件が成立しているか否かを判別する。この終了条件は、左輪目標トルクの前回値TWLOBJZと左輪暫定目標トルクTWLPROとの偏差の絶対値が所定値以下で、かつ、右輪目標トルクの前回値TWROBJZと右輪暫定目標トルクTWRPROとの偏差の絶対値が所定値以下であるという条件である。このステップ10の答がNOで、終了条件が成立していないときには、前記ステップ6以降を実行し、それにより、算出(設定)された左輪及び右輪の目標トルクTWLOBJ、TWROBJに基づいて第1及び第2リヤモータ目標トルクTM1OBJ、TM2OBJをそれぞれ算出するとともに、両者TM1OBJ、TM2OBJに基づく制御信号をPDU6に出力し、本処理を終了する。
 一方、ステップ10の答がYESで、終了条件が成立したときには、左輪目標トルクの前回値TWLOBJZが左輪暫定目標トルクTWLPROに、右輪目標トルクの前回値TWROBJZが右輪暫定目標トルクTWRPROに、それぞれ近づいたとして、移行用制御を終了するために、移行用制御フラグF_TRANCを「0」にリセットする(ステップ11)。次いで、前記ステップ6以降を実行し、本処理を終了する。
 以上により、移行用制御の実行中には、左輪トルク及び右輪トルクが、保持制御の終了時に制御されていた値(前回値TWLOBJZ、TWROBJZ)から、通常用制御で制御される値(左輪暫定目標トルクTWLPRO、右輪暫定目標トルクTWRPRO)に徐々に戻されるように、制御される。
 次に、図9を参照しながら、前記フラグ設定処理について説明する。まず、図9のステップ41では、保持制御フラグF_HOLDCが「1」であるか否かを判別する。この答がNO(F_HOLDC=0)で、保持制御の実行中でないときには、逆配分制御中フラグF_STRCが「1」であるか否かを判別する(ステップ42)。この逆配分制御中フラグは、前述した逆配分制御(車両Vの旋回中にその旋回方向と逆方向のヨーモーメントを発生させるための左輪トルク及び右輪トルクの制御)の実行中であることを「1」で表すものであり、操舵角θや第1及び第2リヤモータ目標トルクTM1OBJ、TM2OBJなどに基づいて設定される。
 上記ステップ42の答がNOのときには、そのまま本処理を終了する一方、YES(F_STRC=1)で、逆配分制御の実行中であるときには、ブレーキフラグF_BRAKEが「1」であるか否かを判別する(ステップ43)。このブレーキフラグF_BRAKEは、前記ブレーキスイッチ26の出力信号がON状態であるとき、すなわち、ブレーキペダルが運転者により踏まれているときに、「1」に設定されるものである。このステップ43の答がNOのときには、そのまま本処理を終了する。
 このステップ43の答がYES(F_BRAKE=1)で、ブレーキペダルが踏まれたときには、車速VPが所定の高車速VPHI以上であるか否かを判別する(ステップ44)。この答がNOのときには、そのまま本処理を終了する。
 一方、上記ステップ44の答がYESのとき、すなわち、保持制御の実行中でなく、かつ、逆配分制御の実行中、車両Vが高速走行状態にある場合において、ブレーキペダルが踏まれたときには、前述した保持制御を開始するために、保持制御フラグF_HOLDCを「1」に設定する(ステップ45)。次いで、移行用制御フラグF_TRANCを「0」に設定し(ステップ46)、本処理を終了する。なお、保持制御フラグF_HOLDCは、エンジン3の始動時に「0」にリセットされる。
 一方、前記ステップ41の答がYES(F_HOLDC=1)で、保持制御の実行中であるときには、ブレーキフラグF_BRAKEが「1」であるか否かを判別する(ステップ47)。この答がYESのときには、そのまま本処理を終了する一方、NO(F_BRAKE=0)のとき、すなわち、保持制御の実行中に、ブレーキペダルの踏み込みが解除されたときには、実行中の保持制御を終了するために、保持制御フラグF_HOLDCを「0」にリセットする(ステップ48)。次いで、移行用制御を開始するために、移行用制御フラグF_TRANCを「1」に設定し(ステップ49)、本処理を終了する。なお、移行用制御フラグF_TRANCは、エンジン3の始動時と、車両Vの停止時に「0」にリセットされる。
 図10は、モータ制御処理(図7)及びフラグ設定処理(図9)の動作例(実線)を比較例(破線)とともに示している。同図において、ΔTWLRは、前記左右トルク差(左輪トルクと右輪トルクとの差)である。また、比較例は、図7のステップ8などによる保持制御と、ステップ9などによる移行用制御の双方を実行せずに、ステップ1及び4~7による通常用制御のみを実行した場合の例である。すなわち、比較例は、左輪暫定目標トルクTWLPROに設定された左輪目標トルクTWLOBJと、右輪暫定目標トルクTWRPROに設定された右輪目標トルクTWROBJとに基づいて制御された左右トルク差ΔTWLRに相当する。
 図9を参照して説明したように、保持制御フラグF_HOLDCは、逆配分制御の実行中(F_STRC=1)、車速VPが高車速VPHI以上である場合において、ブレーキペダルが踏まれたとき(F_BRAKE=1、図9のステップ42~44:YES)に、「1」に設定され、その後、該ブレーキペダルの踏み込みが解除されない限り、「1」に保持される。また、保持制御フラグF_HOLDCが「1」に設定されているときに、保持制御が実行される(図7のステップ2:YES)。保持制御の実行中、ブレーキペダルの踏み込みが解除される(ステップ47:NO)と、保持制御フラグF_HOLDCが「0」にリセットされ(ステップ48)、保持制御が終了される。
 また、保持制御の実行中、左輪及び右輪の目標トルクTWLOBJ、TWROBJが、左右目標トルク差(TWLOBJとTWROBJとの偏差)を保持制御の開始直前における値と同じ値に保持するように、算出される(ステップ8)。これにより、本実施形態によれば、図10の時点t1~時点t2直前、時点t4~時点t5直前、時点t7~時点t8直前及び時点t10以降において、実線で示すように、保持制御の実行中(F_HOLDC=1)、左右トルク差ΔTWLRは、保持制御の開始直前における値と同じ値に保持され、一定の状態で推移する。
 これに対して、破線で示す比較例による左右トルク差ΔTWLRは、時間の経過に伴って変化しており、特に、図10の時点t1~時点t2の直前及び時点t7~時点t8の直前において、ブレーキペダルが踏まれているとき(F_BRAKE=1)に、正値と負値の間で急激に変化している。
 また、移行用制御フラグF_TRANCは、ブレーキペダルの踏み込みの解除により保持制御が終了された時に、「1」に設定され(図9のステップ49)、それにより、移行用制御が開始される(図7のステップ3:YES、ステップ9)。この移行用制御の実行中、左輪暫定目標トルクTWLPRO(右輪暫定目標トルクTWRPRO)に対する左輪目標トルクの前回値TWLOBJZ(右輪目標トルクの前回値TWROBJZ)の乖離度合いが大きいときには、左輪目標トルクTWLOBJ(右輪目標トルクTWROBJ)が、その前回値TWLOBJZ(TWROBJZ)から左輪暫定目標トルクTWLPRO(右輪暫定目標トルクTWRPRO)に徐々に戻るように、算出される。
 これにより、本実施形態によれば、図10の時点t2~時点t3の直前、時点t5~時点t6の直前、及び時点t8~時点t9の直前において、実線で示すように、移行用制御の実行中(F_TRANC=1)、左右トルク差ΔTWLRは、破線で示す左輪及び右輪の暫定目標トルクTWLPRO、TWRPROにそれぞれ基づいて制御される値に向かって徐々に変化する。移行用制御フラグF_TRANCは、前述した終了条件(TWLOBJZとTWLPROとの偏差の絶対値及びTWROBJZとTWRPROとの偏差の絶対値の双方が所定値以下)が成立したときに(図7のステップ10:YES)、「0」にリセットされ(ステップ11)、それにより、移行用制御が終了される。
 また、保持制御フラグF_HOLDC及び移行用制御フラグF_TRANCがいずれも「0」であるとき(時点t3直後~時点t4直前、時点t6直後~時点t7直前、時点t9直後~時点t10直前)には、通常用制御(図7のステップ1及び4~7)が実行されることによって、左輪及び右輪の目標トルクTWLOBJ、TWROBJが、車速VPや横加速度GLなどの車両Vの走行状態に応じて算出される。これにより、左右トルク差ΔTWLRは、図10に実線で示すように、時間の経過に伴って変化している。
 また、図11は、保持制御の開始時から通常用制御の開始時までの間における左右トルク差ΔTWLR及び左右トルク和TTWLR(左輪トルクと右輪トルクとの和)の推移の一例(太い実線付きの矢印)を、比較例(二点鎖線付きの矢印)とともに示している。この比較例は、図10に示す比較例と同様、保持制御及び移行用制御の双方を実行せずに、通常用制御のみを実行した場合の例である。
 図11に白丸Aで示すように、保持制御の開始時、左右トルク差ΔTWLR及び左右トルク和TTWLRがそれぞれ、正値である第1トルク差ΔT1及び第1トルク和TT1になっている。また、保持制御の実行中、図11に矢印付きの太い実線で示すように、左右トルク差ΔTWLRが一定の状態で、左右トルク和TTWLRが減少する。保持制御の終了時では、左右トルク差ΔTWLRは、保持制御の開始時と同様に第1トルク差ΔT1になっており、左右トルク和TTWLRは、第1トルク和TT1よりも小さい第2トルク和TT2になっている。そして、保持制御が終了してから、移行用制御を経て、通常用制御が開始されるまでの間、左右トルク差ΔTWLRは、減少し、通常用制御の開始時、図11に白丸Cで示すように、負値である第2トルク差ΔT2になっている。
 これに対して、比較例では、図11に二点鎖線付きの矢印で示すように、左右トルク差ΔTWLR及び左右トルク和TTWLRがそれぞれ、第1トルク差ΔT1及び第1トルク和TT1(白丸A)から、第2トルク差ΔT2及び第2トルク和TT2(白丸C)に向かって減少する。この場合、左右トルク差ΔTWLRの変化速度(単位時間当たりの変化量)は、左右トルク和TTWLRの変化速度(単位時間当たりの変化量)よりも大きい(|ΔT2-ΔT1|>|TT2-TT1|)。
 また、図12は、車両Vの高速走行中における逆配分制御の実行中に、ブレーキペダルが踏まれた場合における本実施形態による動作例(実線)を、比較例(二点鎖線)とともに示している。この比較例は、前述した従来の制御装置のように、左輪トルク及び右輪トルクを、車速VPが所定車速VPREF以上のときに、ヨーモーメントYMの絶対値が減少するように制御するとともに、所定車速VPREFよりも低いときに、ヨーモーメントYMの絶対値が増大するように制御した場合の例である。
 図12に示すように、本実施形態(実線)によれば、これまでに説明したように、ブレーキペダルの踏み込み(F_BRAKE=1)に伴って保持制御が開始される(F_HOLDC=1、時点t11)。保持制御の実行中、左右トルク差ΔTWLRは、保持制御の開始直前における値と同じ値に保持され、一定の状態で推移する。これにより、本実施形態によれば、横加速度GL及びヨーモーメントYMの絶対値が、ブレーキペダルの踏み込みによる車速VPの低下に伴って、大きく変動せずに、安定した状態で減少している。
 これに対して、比較例(破線)では、左右トルク差ΔTWLRは、車速VPが所定車速VPREF以上であるとき(時点t12より前)には、正値に設定され、ブレーキペダルの踏み込みにより車速VPが所定車速VPREFを下回ると(時点t12)、それ以降、負値に制御される。このように、左右トルク差ΔTWLRが正値から負値に急激に変化することにより、左右トルク差ΔTWLRが負値になった時点t12からその後の時点t13において、横加速度GL及びヨーモーメントYMが繰り返し大きく増減し、大きく変動していることが分かる。なお、この時点t12~t13において、横加速度GL及びヨーモーメントYMの絶対値が一時的に繰り返し大きく減少しているのは、上述した横加速度GLなどの大きな変動に応じて、ブレーキがいわゆるVSA(Vehicle Stability Assist)により制御されたためである。
 また、本実施形態における各種の要素と、本発明における各種の要素との対応関係は、次のとおりである。すなわち、本実施形態における車両Vが、本発明における輸送機器に相当し、本実施形態における左後輪WRLが、本発明における左駆動部及び左車輪に相当するとともに、本実施形態における右後輪WRRが、本発明における右駆動部及び右車輪に相当する。また、本実施形態における後輪駆動装置DRSが、本発明における駆動装置に相当し、本実施形態における第1及び第2リヤモータ41、61が、本発明における左回転電機及び右回転電機にそれぞれ相当する。
 さらに、本実施形態におけるECU2が、本発明における制御手段、目標値算出手段及びコンピュータに相当し、本実施形態におけるブレーキスイッチ26及びECU2が、本発明における減速取得手段に相当するとともに、本実施形態における車速センサ21が、本発明における速度取得手段に相当する。さらに、本実施形態における車速センサ21、操舵角センサ22、横加速度センサ23及びヨーモーメントセンサ24が、本発明における運動状態取得手段及び制御用パラメータ取得手段に相当し、本実施形態におけるアクセル開度センサ25が、本発明における制御用パラメータ取得手段に相当するとともに、本実施形態におけるROM2aが、本発明における記録媒体に相当する。
 以上のように、本実施形態によれば、車両Vの旋回方向と逆方向のヨーモーメントが車両Vに作用するように、左輪トルク及び右輪トルクを制御することで左右トルク差ΔTWLRを生じさせる逆配分制御が実行される。これにより、車両Vの旋回中のヨーモーメントを減少させることによって、車両Vの挙動を安定させることができる。また、この逆配分制御の実行中で、かつ、車両Vの減速中に、保持制御が実行され、それにより、左右トルク差ΔTWLRが、保持制御の開始直前における値と同じ値に保持される。したがって、車両Vの旋回中における減速中に、車両Vのヨーモーメントが変動するのを確実に抑制でき、ひいては、車両Vの挙動を確実に安定させることができる。また、車両Vの旋回方向と同方向のヨーモーメントが車両Vに作用するように左右トルク差ΔTWLRを生じさせているとき、すなわち、車両Vの旋回をアシストしているときには、保持制御を実行しないので、該旋回アシストが不要に維持されることによる車両Vの過旋回状態を発生させることがない。さらに、この場合、車両Vの挙動が安定しているかを判定することなく、左輪トルク及び右輪トルクの制御だけで、車両Vの挙動を安定させることができる。
 また、逆配分制御の実行中、車速VPが高車速VPHI以上である場合において、車両Vが減速したときに、保持制御が開始される。したがって、上述した効果、すなわち、車両Vの旋回中における減速中に車両Vの挙動を安定させられるという効果を、有効に得ることができる。さらに、車速VPが高車速VPHIよりも低いときには、保持制御を開始せずに、左右トルク差ΔTWLRを自在に制御できるので、車両Vの旋回方向と同方向のヨーモーメントを車両Vに作用させることができる。
 さらに、保持制御の実行中、ブレーキペダルの踏み込みが解除され、車両Vの減速が終了するまで、該保持制御が継続される。このように、車両Vの旋回中における車両Vの減速が開始されてから終了するまでの間において、保持制御を継続するので、車両Vの挙動を安定させることができる。
 また、保持制御の終了後、左輪トルク及び右輪トルクが、該保持制御の終了時に制御されていた値(前回値TWLOBJZ、TWROBJZ)から、通常用制御で制御される値(左輪暫定目標トルクTWLPRO、右輪暫定目標トルクTWRPRO)に、急に戻すように制御されるのではなく、徐々に戻すように制御される。これにより、保持制御から通常用制御への移行を、左右トルク差ΔTWLRを急変させずに円滑に行うことができる。
 さらに、第1及び第2リヤモータ41、61を制御することによって、左輪トルク及び右輪トルクを互いに独立して制御できるので、前述した効果、すなわち、車両Vの旋回中における減速中に車両Vの挙動を安定させられるという効果を、適切に得ることができる。
 次に、図13を参照しながら、モータ制御処理の変形例について説明する。同図では、図7に示すモータ制御処理と同じ実行内容については、同じステップ番号を付している。図13と図7との比較から明らかなように、この変形例では、図7に示すモータ制御処理と比較して、保持制御(図7のステップ8)の代わりに、後述する制限制御(図13のステップ62)を実行する点が主に異なっている。以下、この変形例について、図7とは異なる点を中心に説明する。
 図13に示すように、前記ステップ2に代わるステップ61では、制限制御中フラグF_LIMITCが「1」であるか否かを判別する。この制御制御中フラグF_LIMITCは、制限制御の実行中であることを「1」で表すものであり、保持制御フラグF_HOLDCと同様の設定手法(図9参照)によって設定されるので、その設定の説明については省略する。
 上記ステップ61の答がNOのときには、前記ステップ3以降を実行する一方、YESで、F_LIMITC=1のときには、続くステップ62、前記ステップ6及び7を実行することによって、制限制御を実行し、本処理を終了する。制限制御は、左右トルク差ΔTWLRの変化速度(絶対値、以下「左右トルク差変化速度」という)を左右トルク和TTWLRの変化速度(絶対値、以下「左右トルク和変化速度」という)よりも小さくするための制御である。このステップ62では、デルタリミット処理を行うことによって、左輪及び右輪の目標トルクTWLOBJ、TWROBJが算出される。
 このデルタリミット処理では、左輪及び右輪の目標トルクTWLOBJ、TWROBJは、逆配分制御を維持したままで、上記の左右トルク差変化速度が左右トルク和変化速度よりも小さくなるように、算出される。まず、この算出手法の観点について説明する。
 前記左右目標トルク差の今回値(TWLOBJ-TWROBJ)と、左右目標トルク差の前回値(TWLOBJZ-TWROBJZ)との偏差の絶対値は、左右トルク差変化速度(単位時間当たりの左右トルク差ΔTWLRの変化量)に相当する。また、前記左右目標トルク和の今回値(TWLOBJ+TWROBJ)と、左右目標トルク和の前回値(TWLOBJZ+TWROBJZ)との偏差の絶対値は、上記の左右トルク和変化速度(単位時間当たりの左右トルク和TTWLRの変化量)に相当する。
 したがって、左右トルク差変化速度を左右トルク和変化速度よりも小さくするには、次式(4)が成立するように、左輪及び右輪の目標トルクTWLOBJ、TWROBJを算出すればよいことになる。
   |(TWLOBJ-TWROBJ)-(TWLOBJZ-TWROBJZ)|
   <|(TWLOBJ+TWROBJ)-(TWLOBJZ+TWROBJZ)|  ……(4)
 前述したように、制限制御フラグF_LIMITCが保持制御フラグF_HOLDCと同様に設定されることから明らかなように、ステップ62によるデルタリミット処理は、車両Vの減速中に実行される。このため、この式(4)の右辺における(TWLOBJ+TWROBJ)-(TWLOBJZ+TWROBJZ)は負値になる一方、左辺における(TWLOBJ-TWROBJ)-(TWLOBJZ-TWROBJZ)は、正値になる場合と負値になる場合がある。
 (TWLOBJ-TWROBJ)-(TWLOBJZ-TWROBJZ)が正値の場合には、式(4)よりTWLOBJ<TWLOBJZが成立するように、負値の場合には、式(4)よりTWROBJ<TWROBJZが成立するように、左輪及び右輪の目標トルクTWLOBJ、TWROBJを算出すればよいことになる。
 以上の観点に基づいて、左輪及び右輪の目標トルクTWLOBJ、TWROBJは、次のようにして算出される。すなわち、まず、前述したデルタホールド処理と同様、左右目標トルク差の前回値を算出する(TWLOBJZ-TWROBJZ)とともに、左右暫定目標トルク差を算出する(TWLPRO-TWRPRO)。次いで、算出された左右目標トルク差の前回値と、左右暫定目標トルク差が互いに等しいときには、左輪及び右輪の暫定目標トルクTWLPRO、TWRPROをそれぞれ、左輪及び右輪の目標トルクTWLOBJ、TWROBJとして設定する。
 一方、左右目標トルク差の前回値と、左右暫定目標トルク差が互いに異なる場合において、(TWLPRO-TWRPRO)-(TWLOBJZ-TWROBJZ)が正値のときには、上述した観点に基づいて、TWLOBJ<TWLOBJZが成立するように、左輪及び右輪の目標トルクTWLOBJ、TWROBJが算出される。
 具体的には、まず、左輪目標トルクの前回値TWLOBJZから減算項SUBを減算することによって、左輪目標トルクTWLOBJを算出する。この減算項SUBは、左右トルク和変化量や操舵角θなどに応じ、所定のマップ(図示せず)を検索することによって算出される。このマップでは、減算項SUBは、逆配分制御を維持するために、左輪目標トルクの前回値TWLOBJZと右輪目標トルクの前回値TWROBJZとの大小関係を維持するような値に、設定されている。また、上記の左右トルク和変化量は、左右暫定目標トルク和と左右目標トルク和の前回値(TWLOBJZ+TWROBJZ)との偏差の絶対値として算出され、左右暫定目標トルク和は、左輪暫定目標トルクTWLPROと右輪暫定目標トルクTWRPROとの和(TWLPRO+TWRPRO)として算出される。次いで、左輪暫定目標トルクTWLPROから、算出された左輪目標トルクTWLOBJを減算することによって、補正加算項ADCRを算出するとともに、算出された補正加算項ADCRを右輪暫定目標トルクTWRPROに加算することによって、右輪目標トルクTWROBJを算出する。
 一方、左右目標トルク差の前回値と、左右暫定目標トルク差が互いに異なる場合において、(TWLPRO-TWRPRO)-(TWLOBJZ-TWROBJZ)が負値のときには、上述した観点に基づいて、TWROBJ<TWROBJZが成立するように、左輪及び右輪の目標トルクTWLOBJ、TWROBJが算出される。
 具体的には、まず、右輪目標トルクの前回値TWROBJZから、上述したようにして算出された減算項SUBを減算することによって、右輪目標トルクTWROBJを算出する。次いで、右輪暫定目標トルクTWRPROから、算出された右輪目標トルクTWROBJを減算することによって、補正加算項ADCLを算出するとともに、算出された補正加算項ADCLを左輪暫定目標トルクTWLPROに加算することによって、左輪目標トルクTWLOBJを算出する。
 上述した算出手法により、左輪及び右輪の目標トルクTWLOBJ、TWROBJは、左右目標トルク和が左右暫定目標トルク和(TWLPRO+TWRPRO)と同じままで、左右トルク差変化速度が左右トルク和変化速度よりも小さくなるように、算出される。すなわち、左輪及び右輪の目標トルクTWLOBJ、TWROBJは、車両Vの走行状態に応じた左右目標トルク和の変化を維持しながら、左右トルク差変化速度が左右トルク和変化速度よりも小さくなるように、算出される。
 また、図15は、上述した制限制御の実行中における左右トルク差ΔTWLR及び左右トルク和TTWLR(左輪トルクと右輪トルクとの和)の推移の一例(太い実線付きの矢印)を、比較例(二点鎖線付きの矢印)とともに示している。この比較例は、制限制御及び移行用制御の双方を実行せずに、通常用制御のみを実行した場合の例である。
 図15に白丸Xで示すように、制限制御の実行中における第1タイミングでは、左右トルク差ΔTWLR及び左右トルク和TTWLRがそれぞれ、正値である第3トルク差ΔT3及び第3トルク和TT3になっている。また、制限制御の実行中、第1タイミングから所定時間が経過するのに伴って、図15に矢印付きの太い実線で示すように、左右トルク差ΔTWLR及び左右トルク和TTWLRが変化する。図15に白丸Yで示すように、第1タイミングから所定時間が経過したときの左右トルク差ΔTWLRは、正値でありかつ第3トルク差ΔT3よりも若干、小さい第4トルク差ΔT4になっており、左右トルク和TTWLRは、負値である第4トルク和TT4になっている。
 図15に示すように、白丸Xと白丸Yを結ぶ線と左右トルク差ΔTWLRの大きさを表す横線とがなす角度αは、45°よりも大きくなっている。このことから明らかなように、変形例によれば、左右トルク差ΔTWLRの変化速度は、左右トルク和TTWLRの変化速度よりも小さくなっている(|ΔT4-ΔT3|<|TT4-TT3|)。図15では、左右トルク差ΔTWLRの変化速度及び左右トルク和TTWLRの変化速度が一定であり、白丸Xと白丸Yを結ぶ線が直線状の場合の例であるが、各パラメータΔTWLR、TTWLRの変化速度が変化し、白丸Xと白丸Yを結ぶ線が曲線状になった場合にも、上記と同様、左右トルク差ΔTWLRの変化速度は、左右トルク和TTWLRの変化速度よりも小さくなる。
 これに対して、比較例では、図15に二点鎖線付きの矢印で示すように、左右トルク差ΔTWLR及び左右トルク和TTWLRがそれぞれ、第3トルク差ΔT3及び第3トルク和TT3(白丸X)から、負値である第5トルク差ΔT5及び第5トルク和TT5(白丸Z)に向かって減少する。この白丸Zは、白丸Yと同様、制限制御中において、第1タイミングから上記の所定時間が経過したときの左右トルク差ΔTWLR及び左右トルク和TTWLRを表している。
 図15に示すように、白丸Xと白丸Zを結ぶ線と左右トルク差ΔTWLRの大きさを表す横線とがなす角度βは、45°よりも小さくなっている。このことから明らかなように、比較例によれば、左右トルク差ΔTWLRの変化速度は、左右トルク和TTWLRの変化速度よりも大きくなっている(|ΔT5-ΔT3|>|TT5-TT3|)。
 以上のように、この変形例によれば、逆配分制御の実行中で、かつ、車両Vの減速中に、制限制御が実行され(ステップ62、6、7)、それにより、左右トルク差ΔTWLRの変化速度が左右トルク和TTWLRの変化速度よりも小さくなるように、左輪トルク及び右輪トルクが制御される。したがって、前述した実施形態と同様、車両Vの旋回中における減速中に、車両Vのヨーモーメントが変動するのを抑制でき、ひいては、車両Vの挙動を安定させることができる。その他、前述した実施形態による効果を同様に得ることができる。
 次に、図14を参照しながら、フラグ設定処理の変形例について説明する。同図では、図9に示すフラグ設定処理と同じ実行内容については、同じステップ番号を付している。図14と図9との比較から明らかなように、この変形例では、前記ステップ43及び47に代えて、ステップ71及び72をそれぞれ実行する点のみが異なっている。以下、この変形例について、図9と異なる点を中心に説明する。
 図14に示すように、前記ステップ42の答がYES(F_STRC=1)で、逆配分制御の実行中であるときには、ステップ71を実行し、所定条件が成立しているか否かを判別する。この所定条件は、前記目標トルク和TRTの変化(単位時間当たりの変化量)が第1所定値以上で、かつ、目標トルク差ΔTTの変化(単位時間当たりの変化量)が第2所定値以上であるという条件である。目標トルク和TRTの変化は、その今回値と前回値との偏差の絶対値として算出され、目標トルク差ΔTTの変化は、その今回値と前回値との偏差の絶対値として算出される。上記の第1及び第2所定値は、車両Vの通常の減速中や加速中における目標トルク和TRTの変化及び目標トルク差ΔTTの変化にそれぞれ設定されている。
 このステップ71の答がNOのときには、そのまま本処理を終了する一方、YESで、上述した所定条件が成立しているときには、車両Vの減速又は加速が開始されたとして、前記ステップ44以降を実行する。
 前記ステップ41の答がYES(F_HOLDC=1)のときには、ステップ72を実行し、上記のステップ71と同様、所定条件が成立しているか否かを判別する。この答がYESのときには、そのまま本処理を終了する一方、NOのとき、すなわち、保持制御の実行中に、所定条件が成立しなくなったときには、車両Vの減速又は加速が終了したとして、実行中の保持制御を終了するために、前記ステップ48以降を実行する(F_HOLDC←0)。
 以上のように、この変形例によれば、逆配分制御の実行中、目標トルク和TRTの変化が第1所定値以上で、かつ、目標トルク差ΔTTの変化が第2所定値以上であるときに、保持制御が実行される。これにより、前述した実施形態と同様、車両Vの旋回中における減速中に、車両Vのヨーモーメントが変動するのを抑制でき、ひいては、車両Vの挙動を安定させることができる。その他、前述した実施形態による効果を同様に得ることができる。
 なお、図14に示すフラグ設定処理では、保持制御フラグF_HOLDCを設定しているが、制限制御フラグF_LIMITCを設定してもよいことはもちろんである。
 また、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、車両Vの減速を、ブレーキスイッチ26の出力信号に基づいて取得しているが、車両Vの加速度を検出する加速度センサの検出信号に基づいて取得してもよく、ブレーキペダルの操作量を検出するセンサの検出信号に基づいて取得したり、センサなどで検出されたアクセルペダルの操作量の低下に基づいて取得したりしてもよい。あるいは、車両Vの減速を、車両の走行路面の勾配を検出する勾配センサの検出信号に基づいて予測したり、車両に設けられたカーナビゲーションシステムに記憶されたデータに基づいて予測したりしてもよい。
 また、実施形態では、逆配分制御の実行中、車両Vが高速走行状態にあると判定された場合において、車両Vの減速が取得されたとき(ステップ43:YES、ステップ71:YES)に、保持制御及び制限制御を開始しているが、車速VPにかかわらずに、逆配分制御の実行中に車両Vの減速が取得されたときに、保持制御及び制限制御を開始してもよい。さらに、実施形態では、保持制御及び制限制御を、車両Vの減速が終了されたときに終了しているが、車速VPが非常に低くなったときに終了してもよい。また、実施形態では、保持制御及び制限制御を、車両Vの減速が終了されたときに、終了しているが、車両Vの加速が開始されたときに、終了してもよい。
 さらに、実施形態では、保持制御の実行中、左輪トルク及び右輪トルクを、左右トルク差ΔTWLRが保持制御の開始直前における値と同じ値に保持されるように、制御しているが、左右トルク差ΔTWLRがほぼ一定に保持されるように、制御してもよい。また、実施形態で説明した保持制御及び制限制御の制御手法は、あくまで例示であり、他の適当な制御手法を採用してもよいことは、もちろんである。例えば、保持制御の実行中、目標トルク差ΔTTを保持制御の開始直前における値と同じ値に設定し、設定された目標トルク差ΔTTに応じて、前記ステップ24~31、4及び5による算出手法で左輪及び右輪の目標トルクTWLOBJ、TWROBJを算出するとともに、算出された左輪及び右輪の目標トルクTWLOBJ、TWROBJに基づいて、左輪トルク及び右輪トルクをそれぞれ制御してもよい。あるいは、左輪トルク及び右輪トルクをセンサなどで検出(算出・推定)し、検出された左輪トルク及び右輪トルクに基づいて、実際の左右トルク差変化速度及び左右トルク和変化速度を算出するとともに、算出された左右トルク差変化速度が左右トルク和変化速度よりも小さくなるように、左輪トルク及び右輪トルクを制御してもよい。
 さらに、実施形態では、保持制御及び制限制御が終了してから、移行用制御を実行することによって、左輪トルク及び右輪トルクを、保持制御及び制限制御の終了時に制御されていた値から通常用制御で制御される値に、徐々に戻すように算出しているが、即時に戻すように算出してもよい。
 また、実施形態では、本発明における左右駆動力差は、左右トルク差ΔTWLR(左輪のトルクと右輪のトルクとの差)であるが、左輪のトルクと右輪のトルクとの比でもよい。さらに、実施形態では、本発明における左駆動力及び右駆動力はそれぞれ、左輪トルク及び右輪トルクであるが、これらのトルクから算出可能な左輪の駆動力及び右輪の駆動力でもよい。
 また、実施形態は、本発明における駆動装置として、第1及び第2リヤモータ41、61を有する後輪駆動装置DRSを用いているが、左駆動力及び右駆動力を調整することによって左右駆動力和と左右駆動力差とを互いに独立して変更可能な他の適当な駆動装置を用いてもよい。例えば、本出願人による特開平8-207542号公報に開示された油圧モータと遊星歯車装置などを有する駆動装置や、特許第3104157号に開示された2つのブレーキと遊星歯車装置を有する駆動装置、遊星歯車装置を介して左右の車輪を互いに連結するクラッチを有する駆動装置などを用いてもよい。さらに、実施形態では、本発明における左右の車輪は、左右の後輪WRL、WRRであるが、左右の前輪WFL、WFRでもよい。
 また、実施形態は、本発明による制御装置を、全輪駆動(AWD)式の車両Vに適用した例であるが、複数の車輪のうちの一部の車輪が駆動される車両、例えば2輪駆動式(2WD)式の車両に適用してもよいことは、もちろんである。また、車輪の数は4つに限らず、任意である。さらに、実施形態では、本発明における輸送機器は、車両Vであるが、船舶や航空機でもよい。左右の駆動部は、輸送機器が船舶の場合には、船舶の推進用の左右のスクリューであり、航空機である場合には、航空機の推進用の左右のプロペラである。また、以上の実施形態に関するバリエーションを適宜、組み合わせてもよいことは、もちろんである。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
      V 車両(輸送機器)
    WRL 左後輪(左駆動部、左車輪)
    WRR 右後輪(右駆動部、右車輪)
    DRS 後輪駆動装置(駆動装置)
      1 制御装置
      2 ECU(制御手段、目標値算出手段、減速取得手段、コン
        ピュータ)
     2a ROM(記憶媒体)
     21 車速センサ(速度取得手段、運動状態取得手段、制御用パ
        ラメータ取得手段)
     22 操舵角センサ(運動状態取得手段、制御用パラメータ取得
        手段)
     23 横加速度センサ(運動状態取得手段、制御用パラメータ取
        得手段)
     24 ヨーモーメントセンサ(運動状態取得手段、制御用パラメ
        ータ取得手段)
     25 アクセル開度センサ(制御用パラメータ取得手段)
     26 ブレーキスイッチ(減速取得手段)
     41 第1リヤモータ(左回転電機)
     61 第2リヤモータ(右回転電機)
     VP 車速(輸送機器の進行速度、輸送機器の運動状態、制御用
        パラメータ)
      θ 操舵角(輸送機器の運動状態、制御用パラメータ)
     GL 横加速度(輸送機器の運動状態、制御用パラメータ)
     YM ヨーモーメント(輸送機器の運動状態、制御用パラメータ)
     AP アクセル開度(制御用パラメータ)
    TRT 目標トルク和(左右和目標値)
    ΔTT 目標トルク差(左右差目標値)
 TWLPRO 左輪暫定目標トルク(通常用制御で制御される値)
 TWRPRO 右輪暫定目標トルク(通常用制御で制御される値)
TWLOBJZ 前回値(制限制御の終了時に制御されていた値)
TWROBJZ 前回値(制限制御の終了時に制御されていた値)
   VPHI 高車速(所定速度)
  TTWLR 左右トルク和(左右駆動力和)
  ΔTWLR 左右トルク差(左右駆動力差)

Claims (10)

  1.  輸送機器の進行方向に対して左側に配置された該輸送機器の推進用の左駆動部の駆動力である左駆動力と、前記輸送機器の進行方向に対して右側に配置された該輸送機器の推進用の右駆動部の駆動力である右駆動力とを調整することによって、前記左駆動力と前記右駆動力との和である左右駆動力和と、前記左駆動力と前記右駆動力との差異である左右駆動力差とを互いに独立して変更可能な駆動装置の制御装置であって、
     前記輸送機器の旋回方向と逆方向のヨーモーメントが該輸送機器に作用するように、前記駆動装置を介して前記左駆動力及び前記右駆動力を制御することで前記左右駆動力差を生じさせる逆配分制御を実行する制御手段と、
     前記輸送機器の減速を取得する減速取得手段と、を備え、
     前記制御手段は、前記逆配分制御の実行中、前記輸送機器の減速が取得されたときに、前記左右駆動力差の変化が前記左右駆動力和の変化よりも小さくなるように、前記左駆動力及び前記右駆動力を制御する制限制御を実行することを特徴とする駆動装置の制御装置。
  2.  前記輸送機器の進行速度を取得する速度取得手段をさらに備え、
     前記制御手段は、前記逆配分制御の実行中、前記取得された前記輸送機器の進行速度が所定速度以上である場合において、該輸送機器の減速が取得されたときに、前記制限制御を開始することを特徴とする請求項1に記載の駆動装置の制御装置。
  3.  前記制御手段は、前記制限制御として、前記左右駆動力差がほぼ一定に保持されるように、前記左駆動力及び前記右駆動力を制御することを特徴とする、請求項1又は2に記載の駆動装置の制御装置。
  4.  前記減速取得手段は、前記輸送機器の減速の終了又は前記輸送機器の加速をさらに取得し、
     前記制御手段は、前記輸送機器の減速の終了又は前記輸送機器の加速が取得されるまで、前記制限制御を継続することを特徴とする、請求項1ないし3のいずれかに記載の駆動装置の制御装置。
  5.  前記輸送機器の運動状態を取得する運動状態取得手段をさらに備え、
     前記制御手段は、前記制限制御の終了後、前記左駆動力及び前記右駆動力を、該制限制御の終了時に制御されていた値から、前記取得された輸送機器の運動状態に応じて通常用制御で制御される値に徐々に戻すように制御することを特徴とする、請求項1ないし4のいずれかに記載の駆動装置の制御装置。
  6.  前記輸送機器は車両であり、
     前記左右の駆動部は、前記車両の左右の車輪であることを特徴とする、請求項1ないし5のいずれかに記載の駆動装置の制御装置。
  7.  前記駆動装置は、前記左駆動部及び前記右駆動部にそれぞれ連結された左回転電機及び右回転電機を有することを特徴とする、請求項1ないし6のいずれかに記載の駆動装置の制御装置。
  8.  輸送機器の進行方向に対して左側に配置された該輸送機器の推進用の左駆動部の駆動力である左駆動力と、前記輸送機器の進行方向に対して右側に配置された該輸送機器の推進用の右駆動部の駆動力である右駆動力とを調整することによって、前記左駆動力と前記右駆動力との和である左右駆動力和と、前記左駆動力と前記右駆動力との差異である左右駆動力差とを互いに独立して変更可能な駆動装置の制御装置であって、
     前記輸送機器の運動状態及び前記輸送機器の操縦者の要求の少なくとも一方を表す制御用パラメータを取得する制御用パラメータ取得手段と、
     該取得された制御用パラメータに基づいて、前記左右駆動力差の目標値である左右差目標値と、前記左右駆動力和の目標値である左右和目標値とを算出する目標値算出手段と、
     該算出された左右差目標値及び左右和目標値に応じて、前記左駆動力及び前記右駆動力を制御する制御手段と、を備え、
     該制御手段は、前記左右差目標値に応じ、前記輸送機器の旋回方向と逆方向のヨーモーメントが該輸送機器に作用するように、前記駆動装置を介して前記左駆動力及び前記右駆動力を制御することで前記左右駆動力差を生じさせる逆配分制御を実行し、
     該逆配分制御の実行中、前記左右差目標値の変化及び前記左右和目標値の変化の双方が取得されたときに、前記左右駆動力差の変化が前記左右駆動力和の変化よりも小さくなるように、前記左駆動力及び前記右駆動力を制御する制限制御を実行することを特徴とする駆動装置の制御装置。
  9.  輸送機器の進行方向に対して左側に配置された該輸送機器の推進用の左駆動部の駆動力である左駆動力と、前記輸送機器の進行方向に対して右側に配置された該輸送機器の推進用の右駆動部の駆動力である右駆動力とを調整することによって、前記左駆動力と前記右駆動力との和である左右駆動力和と、前記左駆動力と前記右駆動力との差異である左右駆動力差とを互いに独立して変更可能な駆動装置の制御方法であって、
     前記輸送機器の旋回方向と逆方向のヨーモーメントが該輸送機器に作用するように、前記駆動装置を介して前記左駆動力及び前記右駆動力を制御することで前記左右駆動力差を生じさせる逆配分制御を実行するステップと、
     前記輸送機器の減速を取得するステップと、
     前記逆配分制御の実行中、前記輸送機器の減速が取得されたときに、前記左右駆動力差の変化が前記左右駆動力和の変化よりも小さくなるように、前記左駆動力及び前記右駆動力を制御する制限制御を実行するステップと、
     を含むことを特徴とする駆動装置の制御方法。
  10.  輸送機器の進行方向に対して左側に配置された該輸送機器の推進用の左駆動部の駆動力である左駆動力と、前記輸送機器の進行方向に対して右側に配置された該輸送機器の推進用の右駆動部の駆動力である右駆動力とを調整することによって、前記左駆動力と前記右駆動力との和である左右駆動力和と、前記左駆動力と前記右駆動力との差異である左右駆動力差とを互いに独立して変更可能な駆動装置を制御するための制御処理をコンピュータに実行させるプログラムが記録された記録媒体であって、
     前記制御処理は、
     前記輸送機器の旋回方向と逆方向のヨーモーメントが該輸送機器に作用するように、前記駆動装置を介して前記左駆動力及び前記右駆動力を制御することで前記左右駆動力差を生じさせる逆配分制御を実行するステップと、
     前記輸送機器の減速を取得するステップと、
     前記逆配分制御の実行中、前記輸送機器の減速が取得されたときに、前記左右駆動力差の変化が前記左右駆動力和の変化よりも小さくなるように、前記左駆動力及び前記右駆動力を制御する制限制御を実行するステップと、
     を含むことを特徴とする記録媒体。
PCT/JP2016/050771 2015-01-13 2016-01-13 駆動装置の制御装置及び制御方法ならびに記録媒体 WO2016114282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016569468A JP6546199B2 (ja) 2015-01-13 2016-01-13 駆動装置の制御装置及び制御方法ならびに記録媒体
EP16737353.9A EP3246221B1 (en) 2015-01-13 2016-01-13 Control system, control method and recording medium for a driving device
US15/120,639 US10065527B2 (en) 2015-01-13 2016-01-13 Control system and control method for driving device, and recording medium
CN201680005558.6A CN107107908B (zh) 2015-01-13 2016-01-13 驱动装置的控制装置及控制方法以及记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004023 2015-01-13
JP2015004023 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016114282A1 true WO2016114282A1 (ja) 2016-07-21

Family

ID=56405825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050771 WO2016114282A1 (ja) 2015-01-13 2016-01-13 駆動装置の制御装置及び制御方法ならびに記録媒体

Country Status (5)

Country Link
US (1) US10065527B2 (ja)
EP (1) EP3246221B1 (ja)
JP (1) JP6546199B2 (ja)
CN (1) CN107107908B (ja)
WO (1) WO2016114282A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039344A (ja) * 2016-09-07 2018-03-15 Ntn株式会社 左右輪駆動装置の制御装置
WO2023209816A1 (ja) * 2022-04-26 2023-11-02 ジーケーエヌ オートモーティブ リミテッド 駆動システム
WO2024121888A1 (ja) * 2022-12-05 2024-06-13 日産自動車株式会社 制駆動方法及び制駆動装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161403B2 (en) * 2012-02-03 2021-11-02 Ge Hybrid Technologies, Llc Apparatus and method for delivering power in a hybrid vehicle
CN109416112B (zh) * 2016-06-30 2022-01-04 本田技研工业株式会社 驱动装置
JP6617723B2 (ja) * 2017-01-26 2019-12-11 トヨタ自動車株式会社 制動装置
CN108528269B (zh) 2017-02-21 2021-05-14 丰田自动车株式会社 驱动力控制装置
JP6841078B2 (ja) * 2017-02-21 2021-03-10 トヨタ自動車株式会社 駆動力制御装置
JP6445091B2 (ja) * 2017-05-26 2018-12-26 本田技研工業株式会社 動力装置
JP6844500B2 (ja) * 2017-10-30 2021-03-17 トヨタ自動車株式会社 車両の挙動制御装置
US10737680B2 (en) * 2018-05-03 2020-08-11 Ford Global Technologies, Llc Speed control of super positioning torque vectoring differential
CN109050228A (zh) * 2018-08-23 2018-12-21 广州汽车集团股份有限公司 纯电动汽车及动力总成系统
DE102020118923A1 (de) * 2020-07-17 2022-01-20 Audi Aktiengesellschaft Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205824A (ja) * 1986-03-07 1987-09-10 Fuji Heavy Ind Ltd 車両の後輪トルク配分制御装置
JP2009184575A (ja) * 2008-02-07 2009-08-20 Fuji Heavy Ind Ltd 車両の制御装置
JP2010162911A (ja) * 2009-01-13 2010-07-29 Hitachi Automotive Systems Ltd 車両の運動制御装置
WO2013005783A1 (ja) * 2011-07-04 2013-01-10 本田技研工業株式会社 車両用駆動装置
JP2013212726A (ja) * 2012-03-30 2013-10-17 Honda Motor Co Ltd 車両用駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223205B2 (ja) * 2001-08-27 2009-02-12 本田技研工業株式会社 ハイブリッド車両の駆動力分配装置
JP5286027B2 (ja) * 2008-10-28 2013-09-11 株式会社アドヴィックス 車両安定化制御装置
WO2010074225A1 (ja) * 2008-12-26 2010-07-01 株式会社小松製作所 トラクションコントロール装置
JP5143103B2 (ja) * 2009-09-30 2013-02-13 日立オートモティブシステムズ株式会社 車両の運動制御装置
DE102009055160A1 (de) * 2009-12-22 2011-06-30 Robert Bosch GmbH, 70469 Verfahren und Vorrichtung zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges
US8521349B2 (en) * 2010-06-10 2013-08-27 Ford Global Technologies Vehicle steerability and stability control via independent wheel torque control
EP2591939B1 (en) * 2010-07-09 2018-01-10 Nissan Motor Co., Ltd Device for controlling torque distribution to left and right wheels on a vehicle
US8589048B2 (en) * 2010-08-30 2013-11-19 E-Aam Driveline Systems Ab Method of controlling a torque vectoring mechanism and torque vectoring system
GB2502802A (en) * 2012-06-07 2013-12-11 Jaguar Land Rover Ltd Steering and yaw control for low speed, cruise control and low friction terrain
JP5452696B2 (ja) * 2012-11-12 2014-03-26 日立オートモティブシステムズ株式会社 車両の運動制御装置
US9008915B2 (en) * 2013-02-13 2015-04-14 Honda Motor Co., Ltd. Four-wheel steered vehicle and torque distribution control methods for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205824A (ja) * 1986-03-07 1987-09-10 Fuji Heavy Ind Ltd 車両の後輪トルク配分制御装置
JP2009184575A (ja) * 2008-02-07 2009-08-20 Fuji Heavy Ind Ltd 車両の制御装置
JP2010162911A (ja) * 2009-01-13 2010-07-29 Hitachi Automotive Systems Ltd 車両の運動制御装置
WO2013005783A1 (ja) * 2011-07-04 2013-01-10 本田技研工業株式会社 車両用駆動装置
JP2013212726A (ja) * 2012-03-30 2013-10-17 Honda Motor Co Ltd 車両用駆動装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039344A (ja) * 2016-09-07 2018-03-15 Ntn株式会社 左右輪駆動装置の制御装置
WO2018047703A1 (ja) * 2016-09-07 2018-03-15 Ntn株式会社 左右輪駆動装置の制御装置
CN109689417A (zh) * 2016-09-07 2019-04-26 Ntn株式会社 左右轮驱动装置的制动装置
US11110805B2 (en) 2016-09-07 2021-09-07 Ntn Corporation Control device for left and right wheel drive device
WO2023209816A1 (ja) * 2022-04-26 2023-11-02 ジーケーエヌ オートモーティブ リミテッド 駆動システム
WO2024121888A1 (ja) * 2022-12-05 2024-06-13 日産自動車株式会社 制駆動方法及び制駆動装置

Also Published As

Publication number Publication date
CN107107908B (zh) 2020-02-07
US10065527B2 (en) 2018-09-04
EP3246221B1 (en) 2019-12-04
EP3246221A1 (en) 2017-11-22
JP6546199B2 (ja) 2019-07-17
EP3246221A4 (en) 2019-02-27
US20170008422A1 (en) 2017-01-12
JPWO2016114282A1 (ja) 2017-11-09
CN107107908A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016114282A1 (ja) 駆動装置の制御装置及び制御方法ならびに記録媒体
US10442282B2 (en) Vehicle drive system
EP3028893B1 (en) Vehicle
JP2006081343A (ja) 車両の回生制動制御装置
JP2007049825A (ja) 電動車両の走行制御装置および電動走行制御システム
JP2007203793A (ja) 車両およびその制御方法並びに制動装置
JP2006248319A (ja) 自動車およびその制御方法
US11584224B2 (en) Manual torque vectoring
CA2934229C (en) Slip determination system for vehicle
US9150118B2 (en) Vehicle driving system and vehicle driving system control method
JP2007325372A (ja) 電動車両の制御装置
JP2006197757A (ja) 車両の回生制動制御装置
JP6421533B2 (ja) 車両用制御装置
JP2021075075A (ja) 車両の駆動力制御装置
JP4165344B2 (ja) 車両の制御装置
WO2017086432A1 (ja) 4wd式のハイブリッド車両及びその制御方法
WO2022024753A1 (ja) 電動車両の駆動制御装置
JP5792789B2 (ja) 四輪車両のスリップ制御装置
JP6071954B2 (ja) ハイブリッド車両の制御装置
JP2006280099A (ja) 自動車およびその制御方法
KR20240053087A (ko) 차량의 트랙션 제어 방법
JP2013203152A (ja) 車両用駆動装置
JP2008126869A (ja) 車両用駆動制御装置及び車両用駆動制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15120639

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016737353

Country of ref document: EP