WO2023000982A1 - 一种电动汽车的动力系统、控制方法及电动汽车 - Google Patents

一种电动汽车的动力系统、控制方法及电动汽车 Download PDF

Info

Publication number
WO2023000982A1
WO2023000982A1 PCT/CN2022/104176 CN2022104176W WO2023000982A1 WO 2023000982 A1 WO2023000982 A1 WO 2023000982A1 CN 2022104176 W CN2022104176 W CN 2022104176W WO 2023000982 A1 WO2023000982 A1 WO 2023000982A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
differential
mode
torque
output end
Prior art date
Application number
PCT/CN2022/104176
Other languages
English (en)
French (fr)
Inventor
王燕
刘建康
赵慧超
于长虹
刘力源
霍云龙
闫书畅
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023000982A1 publication Critical patent/WO2023000982A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of vehicles, for example, to a power system of an electric vehicle, a control method and the electric vehicle.
  • the permanent magnet synchronous motor has a large anti-drag torque under the condition of rotating, and in order to prevent the back electromotive force from being too high, its magnetic field weakening current in the high speed section is relatively large, and consumes more electric energy , These all lead to the high power consumption and short driving range of the four-wheel drive models using permanent magnet synchronous motors, which affect the competitiveness of the models.
  • the present application provides a power system of an electric vehicle.
  • the power system of the electric vehicle reduces the loss with rotation of the motor and the resistance of the vehicle, which is beneficial to reduce the energy consumption of the vehicle and prolong the cruising range of the vehicle.
  • a power system for an electric vehicle comprising:
  • first differential the first output end and the second output end of the first differential are respectively connected to two wheels;
  • the first motor, the output end of the first motor is connected to the input end of the first differential, and the first motor is set as an asynchronous motor or between the first motor and the first differential There is a clutch between them;
  • the output end of the second motor is in transmission connection with the input end of the second differential
  • a third motor the output end of the third motor is in driving connection with the input end of the second differential.
  • the power system of the electric vehicle further includes a transmission, the output end of the second motor is connected to the transmission, and the output end of the second motor passes through the transmission It is drivingly connected with the input end of the second differential.
  • the output end of the third motor is connected to the transmission, and the output end of the third motor is connected to the input end of the second differential through the transmission Drive connection.
  • the power system of the electric vehicle further includes a first reduction mechanism, the first reduction mechanism is connected to the output end of the first motor and the first differential between the input terminals of the device.
  • the power system of the electric vehicle further includes a second speed reduction mechanism, and the second speed reduction mechanism satisfies at least one of the following:
  • the second reduction mechanism is connected between the output end of the second motor and the input end of the second differential;
  • the second reduction mechanism is connected between the output end of the third motor and the input end of the second differential.
  • a control method for an electric vehicle used to control the power system of the electric vehicle provided by any of the above technical solutions, the control method for the electric vehicle includes an extreme mode, and when driving in the extreme mode, the clutch is Combined state, the first electric motor, the second electric motor and the third electric motor all adopt the torque control mode and the magnitude of the torque issued is determined by the opening degree of the accelerator pedal; It is in the first gear when the speed is lower than or equal to the preset speed, and it is in the second gear when the speed of the second motor is higher than the preset speed.
  • the first motor, the second motor or the The required torque Mdmd of the third motor is:
  • the clutch When braking in the extreme mode, the clutch is in an engaged state, the braking torque is provided by the first electric motor, the second electric motor and the third electric motor do not work, and the power generation demand torque of the first electric motor for:
  • Tbrake is the required braking torque of the wheel
  • i1 is the transmission ratio between the output end of the first motor and the input end of the first differential
  • ⁇ 1 is the mechanical transmission efficiency from the first motor to the wheel.
  • the control method of the electric vehicle further includes a sport mode, and when driving in the sport mode, the clutch is in an engaged state, and the first motor, the second Both the electric motor and the third electric motor adopt a torque control mode and the magnitude of the emitted torque is determined by the opening degree of the accelerator pedal; the transmission is in the first gear when the speed of the second electric motor is lower than or equal to a preset speed , when the speed of the second motor is higher than the preset speed, it is in the second gear, and the required torque Mdmd of the first motor, the second motor or the third motor is:
  • the clutch When braking in the sports mode, the clutch is in a disengaged state, and the braking torque is provided by the first motor or the third motor, and the power generation demand torque of the first motor or the third motor is:
  • Tbrake is the required braking torque of the wheel
  • i is the transmission ratio between the output end of the first motor and the input end of the first differential or the ratio between the output end of the third motor and the second differential
  • the transmission ratio between the input ends, ⁇ is the mechanical transmission efficiency from the first motor to the wheels or the mechanical transmission efficiency from the third motor to the wheels.
  • control method of the electric vehicle further includes an economic mode, and when the economic mode is driven, the clutch is in a disengaged state, the second motor does not work, and the The transmission is in a neutral state, the first motor or the third motor is working, and the required torque Mdmd of the first motor or the third motor is:
  • Tdrive is the required drive torque of the wheel
  • i is the transmission ratio between the output end of the first motor and the input end of the first differential or the output end of the third motor and the input of the second differential Transmission ratio between the ends
  • is the mechanical transmission efficiency from the first motor to the wheel or the mechanical transmission efficiency from the third motor to the wheel
  • the clutch When braking in the economic mode, the clutch is in a disengaged state, the braking torque is provided by the first motor or the third motor, and the power generation demand torque of the first motor or the third motor is:
  • Tbrake is the required braking torque of the wheel
  • i is the transmission ratio between the output end of the first motor and the input end of the first differential or the ratio between the output end of the third motor and the second differential
  • the transmission ratio between the input ends, ⁇ is the mechanical transmission efficiency from the first motor to the wheels or the mechanical transmission efficiency from the third motor to the wheels.
  • control method of the electric vehicle further includes a comfort mode, and when driving in the comfort mode, the clutch is in an engaged state, and the first motor, the second Both the electric motor and the third electric motor adopt a torque control mode and the magnitude of the emitted torque is determined by the opening degree of the accelerator pedal; the transmission remains in the first gear, and the first electric motor, the second electric motor or The required torque Mdmd of the third motor is:
  • the clutch When braking in the comfort mode, the clutch is engaged, the braking torque is provided by the first electric motor, the second electric motor and the third electric motor do not work, and the power generation demand torque of the first electric motor for:
  • Tbrake is the required braking torque of the wheel
  • i1 is the transmission ratio between the output end of the first motor and the input end of the first differential
  • ⁇ 1 is the mechanical transmission efficiency from the first motor to the wheel.
  • An electric vehicle adopts the power system of the electric vehicle provided by any one of the above technical solutions.
  • FIG. 1 is a schematic structural view of a power system of an electric vehicle provided in Embodiment 1 of the present application;
  • Fig. 2 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 2 of the present application;
  • Fig. 3 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 3 of the present application;
  • Fig. 4 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 4 of the present application;
  • Fig. 5 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 5 of the present application;
  • Fig. 6 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 6 of the present application;
  • Fig. 7 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 7 of the present application.
  • Fig. 8 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 8 of the present application.
  • Fig. 9 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 9 of the present application.
  • FIG. 10 is a schematic structural diagram of a power system of an electric vehicle provided in Embodiment 10 of the present application.
  • the first differential 1. The first differential; 2. The second differential; 3. The first motor; 4. The second motor; 5. The third motor; 6. Transmission; 7. The first reduction mechanism; 8. The second reduction mechanism; 9, clutch.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being “on” or “under” a second feature may include the first feature being in direct contact with the second feature, and may also include the first feature and the second feature. Two features are not in direct contact but through another feature between them. Moreover, “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • this embodiment provides a power system of an electric vehicle
  • the power system of the electric vehicle includes a first differential 1, a second differential 2, a first motor 3, a second motor 4 and a first differential Three motors 5, the first output end and the second output end of the first differential 1 are respectively connected to the two wheels, the first output end and the second output end of the second differential 2 are respectively connected to the two wheels,
  • the output end of the first motor 3 is connected to the input end of the first differential gear 1
  • the output end of the second motor 4 and the output end of the third motor 5 are connected to the input end of the second differential gear 2.
  • a motor 3 can drive or brake the wheels on the first differential 1 through the first differential 1
  • the second motor 4 and the third motor 5 can drive or brake the second differential through the second differential 2
  • the three motors can provide power for the four-wheel drive of the electric vehicle, so that the vehicle can obtain good acceleration performance.
  • the power system of the electric vehicle also includes a first reduction mechanism 7, the first reduction mechanism 7 is connected between the output end of the first motor 3 and the input end of the first differential 1, the first reduction mechanism 7 It is used to decelerate the rotational speed output by the first motor 3 and transmit it to the first differential 1 .
  • the power system of the electric vehicle further includes a second speed reduction mechanism 8, the second speed reduction mechanism 8 is connected between the output end of the third motor 5 and the input end of the second differential gear 2, and the second speed reduction mechanism 8 The mechanism 8 is used to decelerate the rotational speed output by the third electric motor 5 and transmit it to the second differential 2 .
  • the power system of the electric vehicle also includes a transmission 6, the output end of the second motor 4 is connected to the transmission 6, and the output end of the second motor 4 is driven by the input end of the transmission 6 and the second differential 2
  • the gear adjustment of the output rotational speed of the second motor 4 is realized.
  • the transmission 6 is a two-speed transmission 6, so that the transmission 6 can output in the first gear and the second gear.
  • the transmission 6 is set as a dual-clutch two-speed transmission 6 or an automatic mechanical transmission 6, which is easy to use and has high transmission efficiency.
  • the first motor 3 in this embodiment is an asynchronous motor
  • the asynchronous motor has a small running loss, which reduces the resistance of the vehicle, reduces the energy consumption of the vehicle, and prolongs the cruising range of the vehicle.
  • the second motor 4 and the third motor 5 are permanent magnet synchronous motors, which have high power density and high efficiency and can provide better acceleration performance for electric vehicles.
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the extreme mode is mainly to ensure the optimal acceleration and the highest speed of electric vehicles.
  • the first motor 3 , the second motor 4 and the third motor 5 all adopt the torque control mode, and the torque generated during driving is determined by the opening degree of the accelerator pedal operated by the driver.
  • the required driving torque Tdrive of the wheels can be obtained by looking up the opening of the accelerator pedal. This method is common knowledge of those skilled in the art and will not be repeated here.
  • the transmission 6 is in the first gear when the speed of the second motor 4 is lower than or equal to the preset speed, and the transmission 6 is in the second gear when the speed of the second motor 4 is higher than the preset speed.
  • the preset speed as the maximum speed of the second motor 4 as an example, when the vehicle speed exceeds the maximum speed (such as 16000rpm) of the second motor 4 corresponding to the preset speed (such as 200km/h), the transmission 6 switches to the second gear .
  • the required torques of the first motor 3, the second motor 4 and the third motor 5 are M 1 dmd, M 2 dmd and M 3 dmd respectively:
  • Tdrive is the required driving torque of the wheel.
  • i 1 is the transmission ratio between the output end of the first motor 3 and the input end of the first differential 1 , it can be understood that i 1 is the transmission ratio of the first reduction mechanism 7 in this embodiment.
  • ⁇ 1 is the mechanical transmission efficiency from the first motor 3 to the wheels.
  • Tdrive is the required driving torque of the wheel.
  • i 2 is the transmission ratio between the output end of the second motor 4 and the input end of the second differential 2 , it can be understood that in this embodiment, i 2 is the transmission ratio of the current gear of the transmission 6 .
  • ⁇ 2 is the mechanical transmission efficiency from the second electric machine 4 to the wheels.
  • Tdrive is the required driving torque of the wheel.
  • i 3 is the transmission ratio between the output end of the third motor 5 and the input end of the second differential 2 , it can be understood that in this embodiment, i 3 is the transmission ratio of the second reduction mechanism 8 .
  • ⁇ 3 is the mechanical transmission efficiency from the third electric machine 5 to the wheels.
  • the braking torque is completely provided by the first motor 3, the second motor 4 and the third motor 5 do not work (do not generate electricity), and the torque provided by the second motor 4 and the third motor 5 is zero.
  • the required braking torque Tbrake of the wheels is determined according to the pressure of the brake master cylinder. This method is common knowledge of those skilled in the art and will not be repeated here.
  • the power generation demand torque of the first motor 3 is:
  • Tbrake is the required braking torque of the wheel
  • i1 is the transmission ratio between the output end of the first motor 3 and the input end of the first differential 1
  • i1 is The gear ratio of the first reduction mechanism 7.
  • ⁇ 1 is the mechanical transmission efficiency from the first motor 3 to the wheels.
  • the sports mode ensures excellent acceleration of electric vehicles, and at the same time considers part of the economy. It can achieve good acceleration and maximum speed when driving, and can reduce the drag loss of the motor and deceleration mechanism when braking, optimizing the economy. .
  • the driving and braking in the sports mode are the same as those in the extreme mode, and will not be repeated here.
  • the economical mode mainly considers economical efficiency and weakens dynamic performance.
  • driving it is realized by a motor, which can greatly improve the efficiency of the motor and improve the economy.
  • it can also reduce the drag of the motor and the transmission system when braking.
  • Hysteresis loss, and the use of a motor brake is also more efficient.
  • the first motor 3 When driving in the economical mode, the first motor 3 is driven independently, the second motor 4 and the third motor 5 are not working, the transmission 6 is in a neutral state, and the required torque M 1 dmd of the first motor 3 is:
  • Tdrive is the required driving torque of the wheel
  • i1 is the transmission ratio between the output end of the first motor 3 and the input end of the first differential 1
  • i1 is the first deceleration Gear ratio of mechanism 7.
  • ⁇ 1 is the mechanical transmission efficiency from the first motor 3 to the wheels.
  • the braking in this embodiment is the same as the braking in the extreme mode, and will not be repeated here.
  • the comfort mode mainly considers the comfort.
  • the transmission 6 does not shift gears (keep in the first gear) when driving and braking, which reduces the impact and frustration during the shifting process and is conducive to improving comfort.
  • the transmission 6 When driving in the comfort mode, the transmission 6 remains in the first gear, and the driving in the comfort mode is the same as that in the extreme mode, so no further details are given here.
  • the transmission 6 When braking in the comfort mode, the transmission 6 remains in the first gear, and the braking in the braking mode is the same as the braking in the extreme mode, so no further details are given here.
  • this embodiment provides a power system of an electric vehicle
  • the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 1 is that the power system of the electric vehicle does not
  • a second reduction mechanism 8 is provided, the second motor 4 and the third motor 5 are connected to the transmission 6, the second motor 4 can be driven by two gears of the transmission 6, and the third motor 5 is shared with the second motor 4 One gear in the transmission 6, and the third motor 5 can only be driven through one gear.
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • Tdrive is the required driving torque of the wheel.
  • i 3 is the transmission ratio between the output end of the third motor 5 and the input end of the second differential 2 , it can be understood that in this embodiment, i 3 is the transmission ratio of the gear used by the transmission 6 .
  • ⁇ 3 is the mechanical transmission efficiency from the third electric machine 5 to the wheels.
  • the braking in the extreme mode is the same as the braking in the extreme mode in Embodiment 1, and details will not be repeated here.
  • the driving and braking in the sports mode are the same as those in the first embodiment, and will not be repeated here.
  • the driving and braking in the sports mode are the same as the driving and braking in the economic mode in Embodiment 1, and will not be repeated here.
  • the driving of the comfort mode in this embodiment is the same as the driving of the comfort mode in Embodiment 1, and will not be repeated here.
  • the braking in the comfort mode in this embodiment is the same as the braking in the comfort mode in Embodiment 1, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle, the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 1 is that the power system of the electric vehicle also A clutch 9 is included, and the clutch 9 is arranged between the first motor 3 and the first differential 1 for disconnecting or connecting the transmission between the first motor 3 and the first differential 1 .
  • the first motor 3 , the second motor 4 and the third motor 5 in this embodiment are all permanent magnet synchronous motors, which have high power density and high efficiency and can provide better acceleration performance for electric vehicles.
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the clutch 9 is in the engaged state, and the driving and braking in the extreme mode in this embodiment are the same as those in the extreme mode in Embodiment 1, and will not be repeated here.
  • the clutch 9 when driving in the sports mode, the clutch 9 is in the engaged state, and the driving in the sports mode is the same as the driving in the extreme mode in this embodiment, and will not be repeated here.
  • the clutch 9 when braking in the sports mode, the clutch 9 is in a disengaged state, and when switching from braking to driving, the clutch 9 is gradually engaged again.
  • the difference between the braking of the motion mode in this embodiment and the braking of the motion mode in Embodiment 1 is that only the third motor 5 generates electricity, the first motor 3 and the second motor 4 do not work, and the third motor
  • the power generation demand torque of 5 is:
  • Tbrake is the required braking torque of the wheel
  • i 3 is the transmission ratio between the output end of the third motor 5 and the input end of the second differential 2
  • i 3 is The transmission ratio of the second reduction mechanism 8.
  • ⁇ 3 is the mechanical transmission efficiency from the third electric machine 5 to the wheels.
  • the clutch 9 when driving in the economical mode, the clutch 9 is in a disengaged state, the first motor 3 and the second motor 4 do not work, the speed changer 6 is in neutral, the third motor 5 is driven independently, and the required torque of the third motor 5 is M 3 dmd:
  • Tdrive is the required driving torque of the wheel.
  • i 3 is the transmission ratio between the output end of the third motor 5 and the input end of the second differential 2 , it can be understood that in this embodiment, i 3 is the transmission ratio of the second reduction mechanism 8 .
  • ⁇ 3 is the mechanical transmission efficiency from the third electric machine 5 to the wheels.
  • the clutch 9 when braking in the economic mode, the clutch 9 is in a disengaged state, the first motor 3 and the second motor 4 are not working, the transmission 6 is in a neutral state, the third motor 5 brakes alone, and the power generation of the third motor 5
  • the required torque is:
  • Tbrake is the required braking torque of the wheel
  • i 3 is the transmission ratio between the output end of the third motor 5 and the input end of the second differential 2
  • i 3 is The transmission ratio of the second reduction mechanism 8.
  • ⁇ 3 is the mechanical transmission efficiency from the third electric machine 5 to the wheels.
  • Driving and braking in the comfort mode in this embodiment are the same as driving and braking in the comfort mode in Embodiment 1, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle
  • the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 1 is that the power system of the electric vehicle does not
  • a second reduction mechanism 8 is provided, the second motor 4 and the third motor 5 are connected to the transmission 6, the second motor 4 can be driven by two gears of the transmission 6, and the third motor 5 is shared with the second motor 4 One gear in the transmission 6, and the third motor 5 can only be driven through one gear.
  • the power system of the electric vehicle in this embodiment also includes a clutch 9, the clutch 9 is arranged between the first motor 3 and the first differential 1, and is used to disconnect or connect the first motor 3 and the first differential 1 transmission.
  • the first motor 3 , the second motor 4 and the third motor 5 in this embodiment are all permanent magnet synchronous motors.
  • the permanent magnet synchronous motors have high power density and high efficiency, and can provide better acceleration performance for electric vehicles.
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the driving and braking of the extreme mode in this embodiment are the same as the driving and braking of the extreme mode in the second embodiment, and will not be repeated here.
  • the driving and braking in the sport mode in this embodiment are the same as the driving and braking in the sport mode in the third embodiment, and will not be repeated here.
  • the driving and braking in the economic mode in this embodiment are the same as the driving and braking in the economic mode in Embodiment 3, and will not be repeated here.
  • the clutch 9 is always in the engaged state, and the transmission 6 is always in the first gear.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in the second embodiment, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle, the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 3 is that the power system of the electric vehicle
  • the clutch 9 is arranged between the first motor 3 and the first reduction mechanism 7 .
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the clutch 9 is in the engaged state, and the driving and braking in the extreme mode in this embodiment are the same as those in the extreme mode in Embodiment 3, and will not be repeated here.
  • the driving and braking of the sports mode in this embodiment are the same as the driving and braking of the sports mode in the third embodiment, and will not be repeated here.
  • the driving and braking in the economical mode in this embodiment are the same as those in the economical mode in Embodiment 3, and will not be repeated here.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in the third embodiment, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle
  • the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 5 is that the power system of the electric vehicle is different
  • a second reduction mechanism 8 is provided, the second motor 4 and the third motor 5 are connected to the transmission 6, the second motor 4 can be driven by two gears of the transmission 6, and the third motor 5 is shared with the second motor 4 One gear in the transmission 6, and the third motor 5 can only be driven through one gear.
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the driving and braking in the extreme mode in this embodiment are the same as the driving and braking in the extreme mode in Embodiment 4, and will not be repeated here.
  • the driving and braking of the sports mode in this embodiment are the same as those in the fifth embodiment, and will not be repeated here.
  • the driving and braking in the economic mode in this embodiment are the same as the driving and braking in the sports mode in Embodiment 4, and will not be repeated here.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in Embodiment 4, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle
  • the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 1 is that the power system of the electric vehicle also A clutch 9 is included, and the clutch 9 is arranged between the third motor 5 and the second reduction mechanism 8 for disconnecting or connecting the transmission between the third motor 5 and the second reduction mechanism 8 .
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the driving and braking in the extreme mode in this embodiment are the same as the driving and braking in the extreme mode in Embodiment 5, and will not be repeated here.
  • the clutch 9 is in the engaged state.
  • the driving of the sports mode in this embodiment is the same as that in the second embodiment, and will not be repeated here.
  • the clutch 9 In the braking of the sports mode in this embodiment, the clutch 9 is in a disengaged state, and when the braking is turned into driving, the clutch 9 is gradually engaged again.
  • the braking in the sports mode in this embodiment is the same as that in the second embodiment, and will not be repeated here.
  • the clutch 9 In the driving of the economical mode in this embodiment, the clutch 9 is in a disengaged state, the driving and braking of the economical mode in this embodiment are the same as the driving and braking of the economical mode in Embodiment 2, and will not be carried out here repeat.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in Embodiment 5, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle
  • the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 2 is that the power system of the electric vehicle is also A clutch 9 is included, and the clutch 9 is arranged between the third motor 5 and the transmission 6 for disconnecting or connecting the transmission between the third motor 5 and the transmission 6 .
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the driving and braking in the extreme mode in this embodiment are the same as the driving and braking in the extreme mode in Embodiment 6, and will not be repeated here.
  • the driving and braking of the sport mode in this embodiment are the same as the driving and braking of the sport mode in Embodiment 7, and will not be repeated here.
  • the driving and braking of the economic mode in this embodiment are the same as the driving and braking of the economic mode in Embodiment 7, and will not be repeated here.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in Embodiment 6, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle.
  • the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 1 is that the power system of the electric vehicle also The clutch 9 is included, and the clutch 9 is arranged between the transmission 6 and the second speed reduction mechanism 8 for disconnecting or connecting the transmission between the second speed reduction mechanism 8 and the transmission 6 .
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the driving and braking in the extreme mode in this embodiment are the same as the driving and braking in the extreme mode in Embodiment 7, and will not be repeated here.
  • the driving and braking of the sport mode in this embodiment are the same as the driving and braking of the sport mode in Embodiment 7, and will not be repeated here.
  • the driving and braking of the economic mode in this embodiment are the same as the driving and braking of the economic mode in the eighth embodiment, and will not be repeated here.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in Embodiment 7, and will not be repeated here.
  • this embodiment provides a power system of an electric vehicle, the difference between the power system of the electric vehicle and the power system of the electric vehicle provided in Embodiment 2 is that the power system of the electric vehicle is also A clutch 9 is included, and the clutch 9 is arranged between the transmission 6 and the second motor 4 for disconnecting or connecting the transmission between the second motor 4 and the transmission 6 .
  • This embodiment also provides a control method for an electric vehicle.
  • the control method for an electric vehicle in this embodiment includes an extreme mode, a sports mode, an economical mode and a comfortable mode.
  • the driving and braking in the extreme mode in this embodiment are the same as the driving and braking in the extreme mode in the eighth embodiment, and will not be repeated here.
  • the driving and braking of the sport mode in this embodiment are the same as the driving and braking of the sport mode in the eighth embodiment, and will not be repeated here.
  • the driving and braking of the economic mode in this embodiment are the same as the driving and braking of the economic mode in the eighth embodiment, and will not be repeated here.
  • the driving and braking in the comfort mode in this embodiment are the same as the driving and braking in the comfort mode in the eighth embodiment, and will not be repeated here.
  • the present application also provides a four-mode switching method in the electric vehicle control method provided by the above technical solution.
  • the driver switches the driving mode through the interface of the vehicle infotainment system related to the instrument or the central control screen. It can be understood that the switching of the four modes must meet certain conditions before the switching can be successful. If this condition is not met, the switching is prohibited and the driver is informed of the reason why the switching cannot be performed.
  • the switching conditions of the four modes in the control method of the electric vehicle are as follows:
  • the conditions for switching to the sports mode are: the vehicle speed is less than 5km/h, the accelerator pedal is not depressed, and the state of charge of the power battery is greater than 50%; the conditions for switching to the economic mode are: : The vehicle speed is less than 5km/h, and the accelerator pedal is not depressed; the conditions for switching to the comfort mode are: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the conditions for switching to the extreme mode are: the vehicle speed is less than 1km/h, and the vehicle is in parking gear or neutral, and the state of charge of the power battery is greater than 50%; then it is possible to switch to the economic mode
  • the condition is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed; the condition for switching to the comfort mode is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the conditions for switching to the extreme mode are: the vehicle speed is less than 1km/h, and the vehicle is in parking gear or neutral, and the state of charge of the power battery is greater than 50%; then it is possible to switch to the sports mode
  • the conditions are: the vehicle speed is less than 5km/h, the accelerator pedal is not depressed, and the state of charge of the power battery is greater than 30%; the condition for switching to the comfort mode is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the conditions for switching to the extreme mode are: the vehicle speed is less than 1km/h, and the vehicle is in park or neutral, and the state of charge of the power battery is greater than 50%; then it is possible to switch to the sports mode
  • the conditions are: the vehicle speed is less than 5km/h, the accelerator pedal is not depressed, and the state of charge of the power battery is greater than 30%; the condition for switching to the economic mode is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the present application provides a power system of an electric vehicle
  • the power system of the electric vehicle includes a first differential, a second differential, a first motor, a second motor and a third motor, the first differential and the second Both the first output end and the second output end of the second differential are connected to the wheels, the output end of the first motor is connected to the input end of the first differential, and the first motor can be driven or braked through the first differential. Turn the wheels on the first differential.
  • the output ends of the second motor and the third motor are connected to the input end of the second differential, and the second motor and the third motor can drive or brake the wheels on the second differential through the second differential.
  • a motor can provide power for the four-wheel drive of the electric vehicle, so that the vehicle can obtain good acceleration performance.
  • the first motor is set as an asynchronous motor or a clutch is arranged between the first motor and the first differential, since the first motor is an asynchronous motor or the clutch can separate the first motor from the first differential, reducing the The rotation loss of the motor reduces the resistance of the vehicle, reduces the energy consumption of the vehicle, and prolongs the cruising range of the vehicle.
  • the present application also provides a control method for an electric vehicle, the control method for the electric vehicle is used to control the power system of the electric vehicle in the above technical solution, the control method includes an extreme mode, and in the extreme mode, the electric vehicle can obtain Better acceleration and higher vehicle speed are conducive to improving the driver's driving experience.
  • the present application also provides an electric vehicle, which adopts the power system of the electric vehicle provided by the above technical solution, and the electric vehicle not only has low energy consumption but also has Long cruising range, better acceleration and higher speed can be obtained, which is conducive to enabling the driver to obtain a good driving experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车的动力系统、控制方法及电动汽车,其中电动汽车的动力系统包括:第一差速器(1),第一差速器(1)的第一输出端和第二输出端分别与两个车轮连接;第二差速器(2),第二差速器(2)的第一输出端和第二输出端分别与两个车轮连接;第一电机(3),第一电机(3)的输出端与第一差速器(1)的输入端传动连接,第一电机(3)设置为异步电机或第一电机(3)和第一差速器(1)之间设置有离合器(9);第二电机(4),第二电机(4)的输出端与第二差速器(2)的输入端传动连接;第三电机(5),第三电机(5)的输出端与第二差速器(2)的输入端传动连接。

Description

一种电动汽车的动力系统、控制方法及电动汽车
本申请要求在2021年7月22日提交中国专利局、申请号为202110829859.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,例如涉及一种电动汽车的动力系统、控制方法及电动汽车。
背景技术
当前纯电动汽车发展越来越快,为了追求较好的动力特性,很多车型采用四驱方案,即前后各采用一套电驱动系统,前后各设置一个电机以及配合相应的减速器。永磁同步电机由于其功率密度大,而且效率较高,目前在纯电动汽车上得到了广泛应用。但是与异步电机不同的是,永磁同步电机在随转工况下的反拖扭矩较大,而且为了防止反电动势过高,其在高转速段的弱磁电流较大,消耗的电能较多,这些均导致了采用永磁同步电机的四驱车型的电耗较高,续驶里程较短,影响车型的竞争力。
发明内容
本申请提供一种电动汽车的动力系统,该电动汽车的动力系统减小了电机的随转损失,减小了车辆的阻力,有利于降低车辆的能耗,延长车辆的续航里程。
本申请采用以下技术方案:
一种电动汽车的动力系统,包括:
第一差速器,所述第一差速器的第一输出端和第二输出端分别与两个车轮连接;
第二差速器,所述第二差速器的第一输出端和第二输出端分别与两个车轮连接;
第一电机,所述第一电机的输出端与所述第一差速器的输入端传动连接, 所述第一电机设置为异步电机或所述第一电机和所述第一差速器之间设置有离合器;
第二电机,所述第二电机的输出端与所述第二差速器的输入端传动连接;
第三电机,所述第三电机的输出端与所述第二差速器的输入端传动连接。
作为一种电动汽车的动力系统的可选方案,所述电动汽车的动力系统还包括变速器,所述第二电机的输出端连接于所述变速器,所述第二电机的输出端通过所述变速器与所述第二差速器的输入端传动连接。
作为一种电动汽车的动力系统的可选方案,所述第三电机的输出端连接于所述变速器,所述第三电机的输出端通过所述变速器与所述第二差速器的输入端传动连接。
作为一种电动汽车的动力系统的可选方案,所述电动汽车的动力系统还包括第一减速机构,所述第一减速机构连接于所述第一电机的输出端与所述第一差速器的输入端之间。
作为一种电动汽车的动力系统的可选方案,所述电动汽车的动力系统还包括第二减速机构,所述第二减速机构满足以下至少之一:
所述第二减速机构连接于所述第二电机的输出端与所述第二差速器的输入端之间;
所述第二减速机构连接于所述第三电机的输出端与所述第二差速器的输入端之间。
一种电动汽车的控制方法,用于对上述任一技术方案所提供的电动汽车的动力系统进行控制,所述电动汽车的控制方法包括极致模式,在所述极致模式驱动时,所述离合器为结合状态,所述第一电机、所述第二电机和所述第三电机均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;所述变速器在所述第二电机的转速低于或等于预设转速时处于第一档位,在所述第二电机的转速高于所述预设转速时处于第二档位,所述第一电机、所述第二电机或所述第三电机的需求扭矩Mdmd为:
Figure PCTCN2022104176-appb-000001
其中,当计算第一电机的需求扭矩Mdmd时,A为2;当计算第二电机或第三电机的需求扭矩Mdmd时,A为4;Tdrive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间传动比,η为从电机到车轮的机械传递效率;
在所述极致模式制动时,所述离合器为结合状态,制动扭矩由所述第一电机提供,所述第二电机和所述第三电机不工作,所述第一电机的发电需求扭矩为:
Figure PCTCN2022104176-appb-000002
其中,Tbrake为车轮的需求制动扭矩,i 1为所述第一电机的输出端与第一差速器的输入端之间传动比,η 1为从第一电机到车轮的机械传递效率。
作为一种电动汽车的控制方法的可选方案,所述电动汽车的控制方法还包括运动模式,在所述运动模式驱动时,所述离合器为结合状态,所述第一电机、所述第二电机和所述第三电机均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;所述变速器在所述第二电机的转速低于或等于预设转速时处于第一档位,在所述第二电机的转速高于所述预设转速时处于第二档位,所述第一电机、所述第二电机或所述第三电机的需求扭矩Mdmd为:
Figure PCTCN2022104176-appb-000003
其中,当计算第一电机的需求扭矩Mdmd时,A为2;当计算第二电机或第三电机的需求扭矩Mdmd时,A为4;Tdrive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间传动比,η为从电机到车轮的机械传递效率;
在所述运动模式制动时,所述离合器为分离状态,制动扭矩由所述第一电机或所述第三电机提供,所述第一电机或所述第三电机的发电需求扭矩为:
Figure PCTCN2022104176-appb-000004
其中,Tbrake为车轮的需求制动扭矩,i为所述第一电机的输出端与第一差 速器的输入端之间传动比或第三电机的输出端与所述第二差速器的输入端之间的传动比,η为从第一电机到车轮的机械传递效率或者从第三电机到车轮的机械传递效率。
作为一种电动汽车的控制方法的可选方案,所述电动汽车的控制方法还包括经济模式,在所述经济模式驱动时,所述离合器为分离状态,所述第二电机不工作,所述变速器处于空挡状态,所述第一电机或所述第三电机工作,所述第一电机或所述第三电机的需求扭矩Mdmd为:
Figure PCTCN2022104176-appb-000005
其中,Tdrive为车轮的需求驱动扭矩,i为所述第一电机的输出端与第一差速器的输入端之间传动比或所述第三电机的输出端与第二差速器的输入端之间传动比,η为从第一电机到车轮的机械传递效率或者从第三电机到车轮的机械传递效率;
在所述经济模式制动时,所述离合器为分离状态,制动扭矩由所述第一电机或所述第三电机提供,所述第一电机或所述第三电机的发电需求扭矩为:
Figure PCTCN2022104176-appb-000006
其中,Tbrake为车轮的需求制动扭矩,i为所述第一电机的输出端与第一差速器的输入端之间传动比或第三电机的输出端与所述第二差速器的输入端之间的传动比,η为从第一电机到车轮的机械传递效率或者从第三电机到车轮的机械传递效率。
作为一种电动汽车的控制方法的可选方案,所述电动汽车的控制方法还包括舒适模式,在所述舒适模式驱动时,所述离合器为结合状态,所述第一电机、所述第二电机和所述第三电机均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;所述变速器保持在所述第一档位,所述第一电机、所述第二电机或所述第三电机的需求扭矩Mdmd为:
Figure PCTCN2022104176-appb-000007
其中,当计算第一电机的需求扭矩Mdmd时,A为2;当计算第二电机或第三电机的需求扭矩Mdmd时,A为4;Tdrive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间传动比,η为从电机到车轮的机械传递效率;
在所述舒适模式制动时,所述离合器为结合状态,制动扭矩由所述第一电机提供,所述第二电机和所述第三电机不工作,所述第一电机的发电需求扭矩为:
Figure PCTCN2022104176-appb-000008
其中,Tbrake为车轮的需求制动扭矩,i 1为所述第一电机的输出端与第一差速器的输入端之间传动比,η 1为从第一电机到车轮的机械传递效率。
一种电动汽车,采用上述任一技术方案所提供的电动汽车的动力系统。
附图说明
图1是本申请实施例一所提供的电动汽车的动力系统的结构示意图;
图2是本申请实施例二所提供的电动汽车的动力系统的结构示意图;
图3是本申请实施例三所提供的电动汽车的动力系统的结构示意图;
图4是本申请实施例四所提供的电动汽车的动力系统的结构示意图;
图5是本申请实施例五所提供的电动汽车的动力系统的结构示意图;
图6是本申请实施例六所提供的电动汽车的动力系统的结构示意图;
图7是本申请实施例七所提供的电动汽车的动力系统的结构示意图;
图8是本申请实施例八所提供的电动汽车的动力系统的结构示意图;
图9是本申请实施例九所提供的电动汽车的动力系统的结构示意图;
图10是本申请实施例十所提供的电动汽车的动力系统的结构示意图。
图中:
1、第一差速器;2、第二差速器;3、第一电机;4、第二电机;5、第三电机;6、变速器;7、第一减速机构;8、第二减速机构;9、离合器。
具体实施方式
下面将结合附图对本申请实施例的技术方案做详细描述。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一特征和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图并通过具体实施方式来说明本申请所提供的电动汽车的动力系统及控制方法的技术方案。
实施例一
如图1所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统包括第一差速器1、第二差速器2、第一电机3、第二电机4和第三电机5,第一差速器1的第一输出端和第二输出端分别与两个车轮连接,第二差速器2的第一输出端和第二输出端分别与两个车轮连接,第一电机3的输出端与第一差速器1的输入端传动连接,第二电机4的输出端和第三电机5的输出端均与第二差速器2的输入端传动连接,第一电机3能够通过第一差速器1驱动或制动第一差速器1上的车轮,第二电机4和第三电机5能够通过第二差速器2驱动或制动第二差速器2上的车轮,三个电机能够为电动汽车的四驱提供动力,使车辆获得良好的加速性能。
可选地,该电动汽车的动力系统还包括第一减速机构7,第一减速机构7连 接于第一电机3的输出端与第一差速器1的输入端之间,第一减速机构7用以将第一电机3输出的转速减速后传递至第一差速器1上。在本实施例中,该电动汽车的动力系统还包括第二减速机构8,第二减速机构8连接于第三电机5的输出端与第二差速器2的输入端之间,第二减速机构8用以将第三电机5输出的转速减速后传递至第二差速器2上。
在本实施例中,该电动汽车的动力系统还包括变速器6,第二电机4的输出端连接于变速器6,第二电机4的输出端通过变速器6与第二差速器2的输入端传动连接,实现了第二电机4的输出转速的档位调节。可选地,变速器6为两档变速器6,使得变速器6能够以第一档位和第二档位进行输出。示例性地,变速器6设置为双离合两档变速器6或者自动机械变速器6,其使用方便,传动效率高。
示例性地,本实施例中的第一电机3为异步电机,异步电机的随转损失小,减小了车辆的阻力,降低了车辆的能耗,延长了车辆的续航里程。第二电机4和第三电机5为永磁同步电机,永磁同步电机功率密度大、效率较高且能够为电动汽车提供较好的加速性能。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
需要说明的是,极致模式主要是保证电动汽车最优的加速性和最高的车速。采用极致模式驱动时,第一电机3、第二电机4和第三电机5均采用扭矩控制模式,驱动时发出的扭矩大小由驾驶员操作加速踏板的开度确定。根据驾驶员需求扭矩图表,可由加速踏板的开度查表得出车轮的需求驱动扭矩Tdrive,此方法为本领域技术人员的公知常识,此处不再赘述。
在本实施例中,变速器6在第二电机4的转速低于或等于预设转速时处于第一档位,变速器6在第二电机4的转速高于预设转速时处于第二档位。以预设转速为第二电机4的最高转速为例,当车速超过预设车速(例如200km/h)对 应的第二电机4的最高转速(例如16000rpm)时,变速器6切换成第二档位。
在极致模式驱动时,第一电机3、第二电机4和第三电机5的需求扭矩分别为M 1dmd、M 2dmd和M 3dmd:
Figure PCTCN2022104176-appb-000009
其中,Tdrive为车轮的需求驱动扭矩。i 1为第一电机3的输出端与第一差速器1的输入端之间传动比,可以理解的是,本实施例中i 1为第一减速机构7的传动比。η 1为从第一电机3到车轮的机械传递效率。
Figure PCTCN2022104176-appb-000010
其中,Tdrive为车轮的需求驱动扭矩。i 2为第二电机4的输出端与第二差速器2的输入端之间传动比,可以理解的是,本实施例中i 2为变速器6所处当前档位的传动比。η 2为从第二电机4到车轮的机械传递效率。
Figure PCTCN2022104176-appb-000011
其中,Tdrive为车轮的需求驱动扭矩。i 3为第三电机5的输出端与第二差速器2的输入端之间传动比,可以理解的是,本实施例中i 3为第二减速机构8的传动比。η 3为从第三电机5到车轮的机械传递效率。
在极致模式制动时,制动扭矩完全由第一电机3提供,第二电机4和第三电机5不工作(不发电),第二电机4和第三电机5提供的扭矩为零。车轮的需求制动扭矩Tbrake根据制动主缸压力来确定,此方法为本领域技术人员的公知常识,此处不再赘述。
第一电机3的发电需求扭矩为:
Figure PCTCN2022104176-appb-000012
其中,Tbrake为车轮的需求制动扭矩,i 1为所述第一电机3的输出端与第一差速器1的输入端之间传动比,可以理解的是,本实施例中i 1为第一减速机构7的传动比。η 1为从第一电机3到车轮的机械传递效率。
运动模式:
需要说明的是,运动模式保证电动汽车的加速性优秀,同时考虑一部分经济性,驱动时能够实现良好的加速性和最高车速,制动时能够减少电机和减速机构的拖滞损失,优化经济性。
在本实施例中,运动模式的驱动和制动均与极致模式的驱动和制动相同,此处不再进行赘述。
经济模式:
需要说明的是,经济模式主要是考虑经济性,弱化动力性,驱动时通过一个电机实现,能够大幅度提高电机的使用效率,提升经济性,同时制动时也能够减少电机和传动系统的拖滞损失,而且采用一个电机制动其使用效率也较高。
在经济模式驱动时,第一电机3单独驱动,第二电机4和第三电机5均不工作,变速器6处于空挡状态,第一电机3的需求扭矩M 1dmd为:
Figure PCTCN2022104176-appb-000013
其中,Tdrive为车轮的需求驱动扭矩,i 1为第一电机3的输出端与第一差速器1的输入端之间传动比,可以理解的是,本实施例中i 1为第一减速机构7的传动比。η 1为从第一电机3到车轮的机械传递效率。
在经济模式制动时,本实施例的的制动和极致模式的制动相同,此处不再进行赘述。
舒适模式:
舒适模式主要考虑舒适性,在驱动时和制动时均变速器6不换挡(保持在第一档位),减少了换挡过程中的冲击和顿挫,有利于提升舒适性。
在舒适模式驱动时,变速器6保持在第一档位,舒适模式的驱动与极致模式的驱动相同,此处不再进行赘述。
在舒适模式制动时,变速器6保持在第一档位,制动模式的制动与极致模式的制动相同,此处不再进行赘述。
实施例二
如图2所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例一所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统不设有第二减速机构8,第二电机4和第三电机5均与变速器6相连接,第二电机4可以通过变速器6的两个档位进行驱动,第三电机5与第二电机4共用变速器6中的一个档位,且第三电机5仅能通过一个档位进行驱动。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
本实施例中的极致模式的驱动与实施例一中的极致模式的驱动的不同之处在于,第三电机5的需求扭矩为M 3dmd:
Figure PCTCN2022104176-appb-000014
其中,Tdrive为车轮的需求驱动扭矩。i 3为第三电机5的输出端与第二差速器2的输入端之间传动比,可以理解的是,本实施例中i 3为变速器6所用档位的传动比。η 3为从第三电机5到车轮的机械传递效率。
在本实施例中,极致模式的制动与实施例一中的极致模式的制动相同,此处不再进行赘述。
运动模式:
在本实施例中,运动模式的驱动和制动均与实施例一中的运动模式的驱动和制动相同,此处不再进行赘述。
经济模式:
在本实施例中,运动模式的驱动和制动均与实施例一中的经济模式的驱动和制动相同,此处不再进行赘述。
舒适模式:
本实施例中的舒适模式的驱动与实施例一中的舒适模式的驱动相同,此处不再进行赘述。
本实施例中的舒适模式的制动与实施例一中的舒适模式的制动相同,此处不再进行赘述。
实施例三
如图3所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例一所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统还包括离合器9,离合器9设置于第一电机3和第一差速器1之间,用以断开或者连接第一电机3和第一差速器1之间的传动。
本实施例中的第一电机3、第二电机4和第三电机5均为永磁同步电机,永磁同步电机功率密度大、效率较高且能够为电动汽车提供较好的加速性能。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中的极致模式中,离合器9处于结合状态,本实施例中的极致模式的驱动和制动与实施例一中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中,运动模式驱动时,离合器9处于结合状态,运动模式的驱动与本实施例中的极致模式的驱动相同,此处不再进行赘述。
在本实施例中,运动模式制动时,离合器9处于分离状态,当由制动转为驱动时,离合器9再逐渐结合。本实施例中的运动模式的制动与实施例一中的运动模式的制动的不同之处在于,仅第三电机5发电,第一电机3和第二电机4均不工作,第三电机5的发电需求扭矩为:
Figure PCTCN2022104176-appb-000015
其中,Tbrake为车轮的需求制动扭矩,i 3为所述第三电机5的输出端与第二差速器2的输入端之间传动比,可以理解的是,本实施例中i 3为第二减速机构8的传动比。η 3为从第三电机5到车轮的机械传递效率。
经济模式:
在本实施例中,经济模式驱动时,离合器9处于分离状态,第一电机3和第二电机4不工作,变速器6处于空挡状态,第三电机5单独驱动,第三电机5的需求扭矩为M 3dmd:
Figure PCTCN2022104176-appb-000016
其中,Tdrive为车轮的需求驱动扭矩。i 3为第三电机5的输出端与第二差速器2的输入端之间传动比,可以理解的是,本实施例中i 3为第二减速机构8的传动比。η 3为从第三电机5到车轮的机械传递效率。
在本实施例中,经济模式制动时,离合器9处于分离状态,第一电机3和第二电机4不工作,变速器6处于空挡状态,第三电机5单独制动,第三电机5的发电需求扭矩为:
Figure PCTCN2022104176-appb-000017
其中,Tbrake为车轮的需求制动扭矩,i 3为所述第三电机5的输出端与第二差速器2的输入端之间传动比,可以理解的是,本实施例中i 3为第二减速机构8的传动比。η 3为从第三电机5到车轮的机械传递效率。
舒适模式:
本实施例在舒适模式驱动和制动时与实施例一在舒适模式驱动和制动相同,此处不再进行赘述。
实施例四
如图4所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例一所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统不设有第二减速机构8,第二电机4和第三电机5均与变速器6相连接,第二电机4可以通过变速器6的两个档位进行驱动,第三电机5与第二电机4共用变速器6中的一个档位,且第三电机5仅能通过一个档位进行驱动。
本实施例中的该电动汽车的动力系统还包括离合器9,离合器9设置于第一 电机3和第一差速器1之间,用以断开或者连接第一电机3和第一差速器1之间的传动。
本实施例中的第一电机3、第二电机4和第三电机5均为永磁同步电机,永磁同步电机功率密度大,而且效率较高,能够为电动汽车提供较好的加速性能。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
本实施例中极致模式的驱动和制动与实施例二中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
本实施例中运动模式的驱动和制动与实施例三中的运动模式中的驱动和制动相同,此处不再进行赘述。
经济模式:
本实施例中经济模式的驱动和制动与实施例三中的经济模式中的驱动和制动相同,此处不再进行赘述。
舒适模式:
本实施例中,离合器9始终保持结合状态,变速器6始终保持在第一档位。本实施例中舒适模式的驱动和制动与实施例二中的舒适模式中的驱动和制动相同,此处不再进行赘述。
实施例五
如图5所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例三所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统的离合器9设置于第一电机3和第一减速机构7之间。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中的极致模式中,离合器9处于结合状态,本实施例中的极致模式的驱动和制动与实施例三中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中的极致模式中,本实施例中的运动模式的驱动和制动与实施例三中的运动模式的驱动和制动相同,此处不再进行赘述。
经济模式:
在本实施例中的极致模式中,本实施例中的经济模式的驱动和制动与实施例三中的经济模式的驱动和制动相同,此处不再进行赘述。
舒适模式
在本实施例中的极致模式中,本实施例中的舒适模式的驱动和制动与实施例三中的舒适模式的驱动和制动相同,此处不再进行赘述。
实施例六
如图6所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例五所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统的不设有第二减速机构8,第二电机4和第三电机5均与变速器6相连接,第二电机4可以通过变速器6的两个档位进行驱动,第三电机5与第二电机4共用变速器6中的一个档位,且第三电机5仅能通过一个档位进行驱动。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中,本实施例中的极致模式的驱动和制动均与实施例四中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中的运动模式中,本实施例中的运动模式的驱动和制动与实施例五中的运动模式的驱动和制动相同,此处不再进行赘述。
经济模式:
在本实施例中的经济模式中,本实施例中的经济模式的驱动和制动与实施例四中的运动模式的驱动和制动相同,此处不再进行赘述。
舒适模式:
在本实施例中的经济模式中,本实施例中的舒适模式的驱动和制动与实施例四中的舒适模式的驱动和制动相同,此处不再进行赘述。
实施例七
如图7所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例一所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统还包括离合器9,离合器9设置于第三电机5和第二减速机构8之间,用以断开或者连接第三电机5和第二减速机构8之间的传动。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中,本实施例中的极致模式的驱动和制动均与实施例五中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中的运动模式的驱动中,离合器9处于结合状态,本实施例中的运动模式的驱动与实施例二中的运动模式的驱动相同,此处不再进行赘述。
在本实施例中的运动模式的制动中,离合器9处于分离状态,当由制动转为驱动时,离合器9再逐渐结合。本实施例中的运动模式的制动与实施例二中的运动模式的制动相同,此处不再进行赘述。
经济模式:
在本实施例中的经济模式的驱动中,离合器9处于分离状态,本实施例中的经济模式的驱动和制动与实施例二中的经济模式的驱动和制动相同,此处不再进行赘述。
舒适模式:
本实施例中的舒适模式的驱动和制动与实施例五中的舒适模式的驱动和制动相同,此处不再进行赘述。
实施例八
如图8所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例二所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统还包括离合器9,离合器9设置于第三电机5和变速器6之间,用以断开或者连接第三电机5和变速器6之间的传动。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中,本实施例中的极致模式的驱动和制动均与实施例六中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中,本实施例中的运动模式的驱动和制动均与实施例七中的运动模式的驱动和制动相同,此处不再进行赘述。
经济模式:
在本实施例中,本实施例中的经济模式的驱动和制动均与实施例七中的经济模式的驱动和制动相同,此处不再进行赘述。
舒适模式:
在本实施例中,本实施例中的舒适模式的驱动和制动均与实施例六中的舒适模式的驱动和制动相同,此处不再进行赘述。
实施例九
如图9所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例一所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统还包括离合器9,离合器9设置于变速器6和第二减速机构8之间, 用以断开或者连接第二减速机构8和变速器6之间的传动。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中,本实施例中的极致模式的驱动和制动均与实施例七中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中,本实施例中的运动模式的驱动和制动均与实施例七中的运动模式的驱动和制动相同,此处不再进行赘述。
经济模式:
在本实施例中,本实施例中的经济模式的驱动和制动均与实施例八中的经济模式的驱动和制动相同,此处不再进行赘述。
舒适模式:
在本实施例中,本实施例中的舒适模式的驱动和制动均与实施例七中的舒适模式的驱动和制动相同,此处不再进行赘述。
实施例十
如图10所示,本实施例提供一种电动汽车的动力系统,该电动汽车的动力系统与实施例二所提供一种电动汽车的动力系统的不同之处在于,该电动汽车的动力系统还包括离合器9,离合器9设置于变速器6和第二电机4之间,用以断开或者连接第二电机4和变速器6之间的传动。
本实施例还提供一种电动汽车的控制方法,本实施例中的电动汽车的控制方法包括极致模式、运动模式、经济模式和舒适模式。
极致模式:
在本实施例中,本实施例中的极致模式的驱动和制动均与实施例八中的极致模式的驱动和制动相同,此处不再进行赘述。
运动模式:
在本实施例中,本实施例中的运动模式的驱动和制动均与实施例八中的运动模式的驱动和制动相同,此处不再进行赘述。
经济模式:
在本实施例中,本实施例中的经济模式的驱动和制动均与实施例八中的经济模式的驱动和制动相同,此处不再进行赘述。
舒适模式:
在本实施例中,本实施例中的舒适模式的驱动和制动均与实施例八中的舒适模式的驱动和制动相同,此处不再进行赘述。
同时,本申请还提供了在上述技术方案所提供的电动汽车的控制方法中的四种模式的切换方法。驾驶员通过仪表或者中控屏相关的车载信息娱乐系统界面进行驾驶模式切换。可以理解的是,四种模式的切换必须满足一定的条件,才能切换成功,如果不满足此条件,则禁止切换,同时告诉驾驶员不能切换的原因。
该电动汽车的控制方法中的四种模式的切换条件如下:
若当前模式为极致模式,则能够向运动模式切换的条件为:车速小于5km/h,且油门踏板未踩下,且动力电池的荷电状态大于50%;则能够向经济模式切换的条件为:车速小于5km/h,且油门踏板未踩下;则能够向舒适模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
若当前模式为运动模式,则能够向极致模式切换的条件为:车速小于1km/h,且车辆为停车档或空档,且动力电池的荷电状态大于50%;则能够向经济模式切换的条件为:车速小于5km/h,且油门踏板未踩下;则能够向舒适模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
若当前模式为经济模式,则能够向极致模式切换的条件为:车速小于1km/h,且车辆为停车档或空档,且动力电池的荷电状态大于50%;则能够向运动模式切换的条件为:车速小于5km/h,且油门踏板未踩下,且动力电池的荷电状态大于30%;则能够向舒适模式切换的条件为:车速小于5km/h,且油门踏板未踩 下。
若当前模式为舒适模式,则能够向极致模式切换的条件为:车速小于1km/h,且车辆为停车档或空档,且动力电池的荷电状态大于50%;则能够向运动模式切换的条件为:车速小于5km/h,且油门踏板未踩下,且动力电池的荷电状态大于30%;则能够向经济模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
本申请提供了一种电动汽车的动力系统,该电动汽车的动力系统包括第一差速器、第二差速器、第一电机、第二电机和第三电机,第一差速器和第二差速器的第一输出端和第二输出端均与车轮连接,第一电机的输出端与第一差速器的输入端传动连接,第一电机能够通过第一差速器驱动或制动第一差速器上的车轮。第二电机和第三电机的输出端与第二差速器的输入端传动连接,第二电机和第三电机能够通过第二差速器驱动或制动第二差速器上的车轮,三个电机能够为电动汽车的四驱提供动力,使车辆获得良好的加速性能。另外,第一电机设置为异步电机或第一电机和第一差速器之间设置有离合器,由于第一电机为异步电机或者离合器能够将第一电机和第一差速器分离,减小了电机的随转损失,减小了车辆的阻力,降低了车辆的能耗,延长了车辆的续航里程。
本申请还提供了一种电动汽车的控制方法,该电动汽车的控制方法用于对上述技术方案的电动汽车的动力系统进行控制,该控制方法包括极致模式,在极致模式下,电动汽车能够获得较好的加速性和较高的车速,有利于提高驾驶员的驾驶体验。
本申请还提供了一种电动汽车,该电动汽车采用上述技术方案所提供的电动汽车的动力系统,该电动汽车由于采用了上述技术方案所提供的电动汽车的动力系统,不仅能耗低,具有较长的续航里程,而且能够获得较好的加速性和较高的车速,有利于使驾驶员获得良好的驾驶体验。

Claims (10)

  1. 一种电动汽车的动力系统,包括:
    第一差速器(1),所述第一差速器(1)的第一输出端和第二输出端分别与两个车轮连接;
    第二差速器(2),所述第二差速器(2)的第一输出端和第二输出端分别与两个车轮连接;
    第一电机(3),所述第一电机(3)的输出端与所述第一差速器(1)的输入端传动连接,所述第一电机(3)设置为异步电机或所述第一电机(3)和所述第一差速器(1)之间设置有离合器(9);
    第二电机(4),所述第二电机(4)的输出端与所述第二差速器(2)的输入端传动连接;
    第三电机(5),所述第三电机(5)的输出端与所述第二差速器(2)的输入端传动连接。
  2. 根据权利要求1所述的动力系统,还包括变速器(6),所述第二电机(4)的输出端连接于所述变速器(6),所述第二电机(4)的输出端通过所述变速器(6)与所述第二差速器(2)的输入端传动连接。
  3. 根据权利要求2所述的动力系统,其中,所述第三电机(5)的输出端连接于所述变速器(6),所述第三电机(5)的输出端通过所述变速器(6)与所述第二差速器(2)的输入端传动连接。
  4. 根据权利要求2所述的动力系统,还包括第一减速机构(7),所述第一减速机构(7)连接于所述第一电机(3)的输出端与所述第一差速器(1)的输入端之间。
  5. 根据权利要求2所述的动力系统,还包括第二减速机构(8),所述第二减速机构(8)满足以下至少之一:
    所述第二减速机构(8)连接于所述第二电机(4)的输出端与所述第二差速器(2)的输入端之间;
    所述第二减速机构(8)连接于所述第三电机(5)的输出端与所述第二差 速器(2)的输入端之间。
  6. 一种电动汽车的控制方法,用于对如权利要求2-5任一项所述的电动汽车的动力系统进行控制,所述电动汽车的控制方法包括极致模式,在所述极致模式驱动时,所述离合器(9)为结合状态,所述第一电机(3)、所述第二电机(4)和所述第三电机(5)均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;所述变速器(6)在所述第二电机(4)的转速低于或等于预设转速时处于第一档位,所述变速器(6)在所述第二电机(4)的转速高于所述预设转速时处于第二档位,所述第一电机(3)、所述第二电机(4)或所述第三电机(5)的需求扭矩Mdmd为:
    Figure PCTCN2022104176-appb-100001
    其中,当计算第一电机(3)的需求扭矩Mdmd时,A为2;当计算第二电机(4)或第三电机(5)的需求扭矩Mdmd时,A为4;Tdrive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间传动比,η为从电机到车轮的机械传递效率;
    在所述极致模式制动时,所述离合器(9)为结合状态,制动扭矩由所述第一电机(3)提供,所述第二电机(4)和所述第三电机(5)不工作,所述第一电机(3)的发电需求扭矩为:
    Figure PCTCN2022104176-appb-100002
    其中,Tbrake为车轮的需求制动扭矩,i 1为所述第一电机(3)的输出端与第一差速器(1)的输入端之间传动比,η 1为从第一电机(3)到车轮的机械传递效率。
  7. 根据权利要求6所述的控制方法,还包括运动模式,在所述运动模式驱动时,所述离合器(9)为结合状态,所述第一电机(3)、所述第二电机(4)和所述第三电机(5)均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;所述变速器(6)在所述第二电机(4)的转速低于或等于预设转速时处 于第一档位,所述变速器(6)在所述第二电机(4)的转速高于所述预设转速时处于第二档位,所述第一电机(3)、所述第二电机(4)或所述第三电机(5)的需求扭矩Mdmd为:
    Figure PCTCN2022104176-appb-100003
    其中,当计算第一电机(3)的需求扭矩Mdmd时,A为2;当计算第二电机(4)或第三电机(5)的需求扭矩Mdmd时,A为4;Tdrive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间传动比,η为从电机到车轮的机械传递效率;
    在所述运动模式制动时,所述离合器(9)为分离状态,制动扭矩由所述第一电机(3)或所述第三电机(5)提供,所述第一电机(3)或所述第三电机(5)的发电需求扭矩为:
    Figure PCTCN2022104176-appb-100004
    其中,Tbrake为车轮的需求制动扭矩,i为所述第一电机(3)的输出端与第一差速器(1)的输入端之间传动比或第三电机(5)的输出端与所述第二差速器(2)的输入端之间的传动比,η为从第一电机(3)到车轮的机械传递效率或者从第三电机(5)到车轮的机械传递效率。
  8. 根据权利要求6所述的控制方法,还包括经济模式,在所述经济模式驱动时,所述离合器(9)为分离状态,所述第二电机(4)不工作,所述变速器(6)处于空挡状态,所述第一电机(3)或所述第三电机(5)工作,所述第一电机(3)或所述第三电机(5)的需求扭矩Mdmd为:
    Figure PCTCN2022104176-appb-100005
    其中,Tdrive为车轮的需求驱动扭矩,i为所述第一电机(3)的输出端与第一差速器(1)的输入端之间传动比或所述第三电机(5)的输出端与第二差速器(2)的输入端之间传动比,η为从第一电机(3)到车轮的机械传递效率或者从第三电机(5)到车轮的机械传递效率;
    在所述经济模式制动时,所述离合器(9)为分离状态,制动扭矩由所述第一电机(3)或所述第三电机(5)提供,所述第一电机(3)或所述第三电机(5)的发电需求扭矩为:
    Figure PCTCN2022104176-appb-100006
    其中,Tbrake为车轮的需求制动扭矩,i为所述第一电机(3)的输出端与第一差速器(1)的输入端之间传动比或第三电机(5)的输出端与所述第二差速器(2)的输入端之间的传动比,η为从第一电机(3)到车轮的机械传递效率或者从第三电机(5)到车轮的机械传递效率。
  9. 根据权利要求6所述的控制方法,还包括舒适模式,在所述舒适模式驱动时,所述离合器(9)为结合状态,所述第一电机(3)、所述第二电机(4)和所述第三电机(5)均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;所述变速器(6)保持在所述第一档位,所述第一电机(3)、所述第二电机(4)或所述第三电机(5)的需求扭矩Mdmd为:
    Figure PCTCN2022104176-appb-100007
    其中,当计算第一电机(3)的需求扭矩Mdmd时,A为2;当计算第二电机(4)或第三电机(5)的需求扭矩Mdmd时,A为4;Tdrive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间传动比,η为从电机到车轮的机械传递效率;
    在所述舒适模式制动时,所述离合器(9)为结合状态,制动扭矩由所述第一电机(3)提供,所述第二电机(4)和所述第三电机(5)不工作,所述第一电机(3)的发电需求扭矩为:
    Figure PCTCN2022104176-appb-100008
    其中,Tbrake为车轮的需求制动扭矩,i 1为所述第一电机(3)的输出端与第一差速器(1)的输入端之间传动比,η 1为从第一电机(3)到车轮的机械传递效率。
  10. 一种电动汽车,采用如权利要求1-5任一项所述的电动汽车的动力系统。
PCT/CN2022/104176 2021-07-22 2022-07-06 一种电动汽车的动力系统、控制方法及电动汽车 WO2023000982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110829859.3 2021-07-22
CN202110829859.3A CN113335043A (zh) 2021-07-22 2021-07-22 一种电动汽车的动力系统、控制方法及电动汽车

Publications (1)

Publication Number Publication Date
WO2023000982A1 true WO2023000982A1 (zh) 2023-01-26

Family

ID=77480198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104176 WO2023000982A1 (zh) 2021-07-22 2022-07-06 一种电动汽车的动力系统、控制方法及电动汽车

Country Status (2)

Country Link
CN (1) CN113335043A (zh)
WO (1) WO2023000982A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113335043A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469199B1 (en) * 2015-05-28 2016-10-18 Atieva, Inc. Dual data rate traction control system for a four wheel drive electric vehicle
CN110014868A (zh) * 2017-10-18 2019-07-16 上海汽车集团股份有限公司 三电机汽车动力系统及其控制方法和装置
CN209441177U (zh) * 2018-10-26 2019-09-27 蔚来汽车有限公司 车辆的动力系统、车辆、控制系统
CN112092796A (zh) * 2020-09-22 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统的控制方法及车辆
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
CN113335043A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车
CN113370772A (zh) * 2021-07-22 2021-09-10 中国第一汽车股份有限公司 一种电动汽车的动力系统及控制方法
CN113415141A (zh) * 2021-07-22 2021-09-21 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276050B (zh) * 2014-01-30 2015-08-26 比亚迪股份有限公司 车辆及其的制动回馈控制方法
CN109318697A (zh) * 2018-10-26 2019-02-12 蔚来汽车有限公司 车辆的动力系统、车辆、控制系统及控制方法
CN212685215U (zh) * 2020-08-07 2021-03-12 广州汽车集团股份有限公司 双电机动力系统及电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469199B1 (en) * 2015-05-28 2016-10-18 Atieva, Inc. Dual data rate traction control system for a four wheel drive electric vehicle
CN110014868A (zh) * 2017-10-18 2019-07-16 上海汽车集团股份有限公司 三电机汽车动力系统及其控制方法和装置
CN209441177U (zh) * 2018-10-26 2019-09-27 蔚来汽车有限公司 车辆的动力系统、车辆、控制系统
CN112092796A (zh) * 2020-09-22 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统的控制方法及车辆
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
CN113335043A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车
CN113370772A (zh) * 2021-07-22 2021-09-10 中国第一汽车股份有限公司 一种电动汽车的动力系统及控制方法
CN113415141A (zh) * 2021-07-22 2021-09-21 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车

Also Published As

Publication number Publication date
CN113335043A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2023000983A1 (zh) 一种电动汽车的动力系统及控制方法
WO2023000979A1 (zh) 一种带双变速器的电动汽车的动力系统及其控制方法
CN108382187B (zh) 双电机混合动力系统及其控制方法
WO2023001098A1 (zh) 电动汽车的动力系统、控制方法及电动汽车
CN102897017B (zh) 一种动力耦合电控动力换挡混合动力系统
WO2023001285A1 (zh) 一种带双离合器的电动汽车的动力系统及其控制方法
CN107089130A (zh) 一种新型双电机多档混合动力系统
WO2022142897A1 (zh) 纵置车辆动力总成及车辆动力控制方法
CN205395752U (zh) 一种并联式混合动力驱动系统及汽车
CN102555762B (zh) 一种汽车混合动力驱动装置及其控制方法
WO2023000982A1 (zh) 一种电动汽车的动力系统、控制方法及电动汽车
CN102514479A (zh) 增程式电动汽车动力系统
CN110834549A (zh) 一种电动汽车双电机驱动系统及其功率耦合综合控制方法
WO2022089176A1 (zh) 混合动力系统及车辆
WO2023273004A1 (zh) 动力驱动系统和车辆
CN214929031U (zh) 一种燃料电池氢能汽车四驱驱动系统
CN111688470B (zh) 一种串并联构型插电式混合动力系统及其控制方法
WO2024046083A1 (zh) 双电机混合动力系统及具有其的车辆
CN211166413U (zh) 混合动力驱动系统
CN110816253B (zh) 无齿圈行星轮系混合动力系统
CN112622643A (zh) 一种燃料电池氢能汽车四驱驱动系统
CN110901368A (zh) 混合动力驱动系统及方法
CN206983714U (zh) 一种串联式插电混合动力汽车驱动系统
CN109835167B (zh) 一种p3结构的两档差速耦合混合动力传动系统
CN213799232U (zh) 双电机混合动力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE