WO2022142897A1 - 纵置车辆动力总成及车辆动力控制方法 - Google Patents

纵置车辆动力总成及车辆动力控制方法 Download PDF

Info

Publication number
WO2022142897A1
WO2022142897A1 PCT/CN2021/133086 CN2021133086W WO2022142897A1 WO 2022142897 A1 WO2022142897 A1 WO 2022142897A1 CN 2021133086 W CN2021133086 W CN 2021133086W WO 2022142897 A1 WO2022142897 A1 WO 2022142897A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
clutch
engine
drive
transmission
Prior art date
Application number
PCT/CN2021/133086
Other languages
English (en)
French (fr)
Inventor
王德平
张天强
于长虹
赵东峰
郭源科
孟繁雨
盛振兴
付磊
杨钫
张昶
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022142897A1 publication Critical patent/WO2022142897A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units

Definitions

  • the present application relates to the technical field of vehicle power systems, for example, to a vertical vehicle powertrain and a vehicle power control method.
  • Volkswagen's P2 configuration can be applied to horizontal and vertical models, and the changes to the basic model are small, and it can achieve maximum generalization with traditional vehicles, but the P2 configuration itself has a relatively low fuel-saving rate, and the entire vehicle saves energy. no significant effect. Therefore, it is difficult for the powertrain of the hybrid electric car in the related art to take into account the overall vehicle economy, power performance and universal design of the vehicle at the same time.
  • the present application proposes a vertical vehicle powertrain, which can take into account the overall vehicle economy, power performance, four-wheel drive function, and vehicle universal design, thereby solving the hybridization problem of medium and large passenger vehicles.
  • the present application proposes a vehicle power control method, which can improve the energy consumption efficiency of the powertrain and take into account power, economy and cost.
  • a longitudinally mounted vehicle powertrain comprising: an engine; a generator connected to an output shaft of the engine; a first clutch, an input end of the first clutch connected to an output shaft of the generator , the output end of the first clutch is connected with the direct drive transmission shaft; the drive motor is arranged at intervals from the generator and is located on the side of the first clutch away from the generator, the drive motor a transmission capable of receiving electric energy delivered by the generator; a transmission connected with the output shaft of the engine and the drive motor, the transmission comprising a synchronizer, and the transmission having at least a first gear and a second gear , when the transmission is in the first gear, the direct drive transmission shaft is connected to the input end of the synchronizer, and when the transmission is in the second gear, the output shaft of the drive motor is connected to the input end of the synchronizer.
  • the input end of the synchronizer is connected; the output shaft of the synchronizer is respectively connected with the front drive shaft and the rear drive shaft through the second clutch and the third clutch, the front drive shaft is connected with the front axle of the vehicle, the rear drive shaft an axle connected to the rear axle of the vehicle; a power battery connected to the generator and the drive motor; a controller assembly configured to control the first clutch, the The second clutch, the third clutch, the generator, the drive motor, and the transmission.
  • the longitudinal vehicle powertrain further includes two speed change assemblies, the output shaft of the synchronizer is connected with the two speed change assemblies, and the two speed change assemblies are respectively connected with the second clutch and The third clutch is connected.
  • the transmission assembly includes two intermeshing gears, one gear is connected to the output shaft of the synchronizer, and the other gear is connected to the second clutch or the third clutch.
  • the longitudinally mounted vehicle powertrain further includes a torsional damping member, and the engine and the generator are connected through the torsional damping member.
  • the transmission further includes two speed change gear sets, the synchronizer is arranged between the two speed change gear sets, one speed change gear set is connected to the output shaft of the generator, and the other speed change gear set is connected to the output shaft of the generator.
  • the group is connected to the output shaft of the drive motor.
  • the direct drive transmission shaft is inserted through the output shaft of the drive motor, and the direct drive transmission shaft is coaxially disposed with the output shaft of the drive motor.
  • a vehicle power control method applied to the aforementioned vertical vehicle powertrain, the vehicle power control method comprising:
  • the controller component obtains the driving torque and the driving power according to the first control information
  • the controller component controls the vehicle to enter a pure electric drive mode, an engine direct drive mode or a series drive mode according to the second control information, the drive torque and the drive power; the vehicle is located in the pure electric drive mode.
  • the engine works, the first clutch is disengaged, and the transmission is in the second gear;
  • the engine works, and the generator follows.
  • the engine works and drives the generator to generate electricity, so the transmission is in the first gear.
  • the first clutch is disengaged, and the transmission is in the second gear;
  • the controller component controls the vehicle to enter a four-wheel drive state, a front-drive state or a rear-drive state according to the third control information.
  • the vehicle When both the second clutch and the third clutch are engaged, the vehicle is in the four-wheel drive state.
  • the second clutch is engaged and the third clutch is disengaged, the vehicle is in the forward drive state, and when the third clutch is engaged and the second clutch is disengaged, the vehicle is in the forward drive state.
  • rear-drive state
  • the vertical vehicle powertrain outputs the driving force to the front axle and the rear axle. If the driving force meets the demand, the current output state is maintained and ended. If the driving force does not meet the demand, then Go to step S1.
  • the controller component controls the The vehicle enters the pure electric drive mode; when the drive power required by the vehicle is greater than the discharge power limit of the power battery, or the state of charge of the power battery is not greater than the preset minimum limit, The controller assembly controls the engine to start; when the current vehicle speed of the vehicle is less than the minimum vehicle speed of the engine in the engine direct drive mode, the controller assembly controls the vehicle to enter the series drive mode, the When the current vehicle speed of the vehicle is not less than the minimum vehicle speed of the engine in the engine direct drive mode, the controller assembly controls the vehicle to enter the engine direct drive mode.
  • the controller component determines that the economy of the vehicle entering the engine direct drive mode is better than that of the vehicle the economy of entering the series drive mode, the controller component controlling the vehicle to enter the engine direct drive mode, if the controller component determines that the economy of the vehicle entering the series drive mode is better than the The economy of the vehicle entering the engine direct drive mode, the controller assembly controlling the vehicle entering the series drive mode.
  • the controller assembly controls the disengagement of the second clutch and the third clutch according to one of the four-wheel drive state, the front drive state and the rear drive state selected by the driver open and engage.
  • FIG. 1 is a schematic diagram of the overall structure of a vertical vehicle powertrain provided by a specific embodiment of the present application;
  • FIG. 2 is a partial structural schematic diagram of a vertical vehicle powertrain provided by a specific embodiment of the present application
  • FIG. 3 is a flowchart of a vehicle power control method provided by a specific embodiment of the present application.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features not directly in contact The contact is made through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation or be constructed in a specific orientation.
  • Figure 1 discloses a longitudinally mounted vehicle powertrain, which includes an engine 1, a generator 21, a first clutch 3, a drive motor 22, a transmission, a power battery 9 and a controller assembly.
  • the generator 21 is connected to the output shaft of the engine 1 .
  • the input end of the first clutch 3 is connected with the output shaft of the generator 21 , and the output end of the first clutch 3 is connected with the direct drive transmission shaft 23 .
  • the drive motor 22 is spaced apart from the generator 21 and located on the side of the first clutch 3 away from the generator 21 , and the drive motor 22 can receive the electrical energy delivered by the generator 21 .
  • the transmission is connected with the output shaft of the engine 1 and the drive motor 22.
  • the transmission includes a synchronizer 41.
  • the transmission has at least a first gear and a second gear.
  • the direct drive transmission shaft 23 is connected to the synchronizer 41.
  • the input end is connected, and when the transmission is in the second gear, the output shaft of the drive motor 22 is connected to the input end of the synchronizer 41 .
  • the output shaft of the synchronizer 41 is connected to the front propeller shaft 71 and the rear propeller shaft 72 respectively through the second clutch 5 and the third clutch 6 , the front propeller shaft 71 is connected to the front axle 100 of the vehicle, and the rear propeller shaft 72 is connected to the rear axle of the vehicle. 110 connections.
  • the power battery 9 is connected to the generator 21 and the drive motor 22 .
  • the controller assembly is configured to control the first clutch 3 , the second clutch 5 , the third clutch 6 , the generator 21 , the drive motor 22 and the transmission.
  • the output shaft of the engine 1 is connected to the generator 21 , so that the engine 1 can not only drive the generator 21 to generate electricity, but also can transmit power through the generator 21 .
  • Both ends of the first clutch 3 are respectively connected to the output shaft of the generator 21 and the direct drive transmission shaft 23.
  • the direct drive transmission shaft 23 is connected to the input end of the synchronizer 41, and the transmission is located in the second gear.
  • the output end of the drive motor 22 is connected with the input end of the synchronizer 41, so that the first clutch 3 is in a disconnected state.
  • the input end is connected, and drives the synchronizer 41 to rotate, so that the output shaft of the synchronizer 41 drives the front transmission shaft 71 and/or the rear transmission shaft 72 to rotate, so as to realize the input power to the front axle 100 and the rear axle 110 of the vehicle through the driving motor 22 ;
  • the output shaft of the engine 1 can drive the generator 21 to rotate, can input power to generate power to the generator 21, and can also drive the direct drive shaft 23 to rotate through the output shaft of the generator 21.
  • the direct drive transmission shaft 23 can drive the front transmission shaft 71 and/or the rear transmission shaft 72 to rotate under the action of the engine 1, so as to realize the transmission of the engine 1 to the vehicle through the generator 21 and the direct drive transmission shaft 23.
  • the front axle 100 and the rear axle 110 input power.
  • the vehicle can realize power input through a variety of different types of power, so as to be suitable for different application scenarios of the vehicle and improve the application of the longitudinal vehicle powertrain. scope.
  • the output shaft of the synchronizer 41 is also connected to the front transmission shaft 71 and the rear transmission shaft 72 through the second clutch 5 and the third clutch 6, respectively, the output shaft of the synchronizer 41 is under the action of the power of the engine 1 or the drive motor 22.
  • the controller assembly can determine the engagement state of the second clutch 5 and the third clutch 6 according to the actual operating requirements of the vehicle. When both the second clutch 5 and the third clutch 6 are engaged, the output shaft of the synchronizer 41 can simultaneously drive the front of the vehicle.
  • the axle 100 and the rear axle 110 move so that the vehicle is in four-wheel drive mode, and when one of the second clutch 5 or the third clutch 6 is in a disengaged state, the output shaft of the synchronizer 41 can only drive the front axle 100 or the rear axle of the vehicle.
  • the shaft 110 moves to make the vehicle in the front-drive mode or the rear-drive mode, and the arrangement of the second clutch 5 and the third clutch 6 can facilitate the realization of various driving states of the vehicle, so as to improve the applicable range of vehicle driving.
  • the power battery 9 can not only provide electrical energy to the drive motor 22, so that the drive motor 22 can input power to the front axle 100 and the rear axle 110, and can also store the electrical energy input from the generator 21 to the drive motor 22, which can improve the kinetic energy utilization rate of the vehicle , in order to improve the economy of the vehicle.
  • the longitudinally mounted vehicle powertrain of the present embodiment since the longitudinally mounted vehicle powertrain can be arranged at the front axle 100 of the vehicle, and the rear axle 110 can be driven through the rear transmission shaft 72 , the rear of the vehicle does not need to be occupied There is no need to install a motor and an electric bridge structure on the rear axle 110 of the vehicle.
  • the changes to the basic model are small and will not affect the design and structural changes of the rear of the vehicle body, which can achieve a larger generalized design; at the same time, the vehicle The power can be directly driven by the engine 1 or driven by the drive motor 22 to realize a variety of different driving modes, which can better improve the economy of the whole vehicle.
  • the controller component can adjust the power source according to the actual needs and operating conditions to The dynamic performance of the vehicle is improved; the second clutch 5 and the third clutch 6 can realize the switching between the four-wheel drive state, the front-wheel drive state and the rear-drive state of the vehicle, which improves the application range of the vehicle. Therefore, the vertical vehicle powertrain of this embodiment can take into account the overall vehicle economy, power performance, four-wheel drive function, and vehicle universal design, thereby solving the hybridization problem of medium and large passenger vehicles.
  • the longitudinal vehicle powertrain further includes two speed change assemblies 8 , the output shaft of the synchronizer 41 is connected with the two speed change assemblies 8 , and the two speed change assemblies 8 are respectively connected with The second clutch 5 and the third clutch 6 are connected.
  • the output end of the synchronizer 41 can be easily connected to the front transmission shaft 71 and the rear transmission shaft 72 through the second clutch 5 and the third clutch 6, respectively, thereby improving the powertrain of the longitudinal vehicle. Ease of installation.
  • the transmission assembly 8 includes two intermeshing gears, one gear connected to the output shaft of the synchronizer 41 and the other gear connected to the second clutch 5 or the third clutch 6 connect.
  • the gear transmission is relatively stable and reliable, and at the same time, it can also play the role of speed change, which is not only conducive to transmitting the power of the output shaft of the synchronizer 41 to the front transmission shaft 71 and the rear transmission shaft 72, but also facilitates the recovery of the front axle 100 during vehicle braking. and the braking energy of the rear axle 110 .
  • the longitudinal vehicle powertrain further includes a torsional damping member 10 , and the engine 1 and the generator 21 are connected through the torsional damping member 10 .
  • the torsional damping member 10 can reduce the torsional vibration generated during the rotation of the engine 1, so that the power generated by the engine 1 can be smoothly transmitted to the generator 21, thereby improving the smoothness of the vehicle running.
  • the transmission further includes two speed change gear sets 42 , a synchronizer 41 is provided between the two speed change gear sets 42 , and one speed change gear set 42 is connected to the output of the generator 21 .
  • the shaft is connected, and the other transmission gear set 42 is connected with the output shaft of the drive motor 22 .
  • the transmission can enter the first gear or the second gear.
  • the setting of the two transmission gear sets 42 can better realize the transmission in the first gear and the second gear.
  • the bits are respectively connected with the direct drive transmission shaft 23 or the output shaft of the drive motor 22 .
  • the actual speed ratio of the two transmission gear sets 42 can be designed through performance simulation, so as to improve the power transmission effect of the direct drive transmission shaft 23 and the drive motor 22 .
  • the direct drive transmission shaft 23 passes through the output shaft of the drive motor 22 , and the direct drive transmission shaft 23 is coaxially disposed with the output shaft of the drive motor 22 .
  • Putting the direct drive transmission shaft 23 in the output shaft of the drive motor 22 can better realize the coaxial arrangement of the direct drive transmission shaft 23 and the output shaft of the drive motor 22, which can reduce the layout space of the entire longitudinal vehicle powertrain. , it can also facilitate the transmission of the transmission between the first gear and the second gear.
  • the connection positions of the direct drive transmission shaft 23 and the output shaft of the drive motor 22 and the transmission it is also possible to adjust the connection positions of the direct drive transmission shaft 23 and the output shaft of the drive motor 22 and the transmission, and to make the output shaft of the drive motor 22 pass through the direct drive transmission shaft 23 and keep the
  • the direct drive transmission shaft 23 and the output shaft of the drive motor 22 are coaxially arranged, which can also achieve the above effects.
  • the structure and positional relationship between the direct drive transmission shaft 23 and the output shaft of the drive motor 22 can be based on the actual installation of the vertical vehicle powertrain. It can be adjusted according to the environment, as long as it is convenient to realize the switching between the pure electric drive mode, the engine direct drive mode and the series drive mode of the longitudinal vehicle powertrain through the transmission.
  • the vertical vehicle powertrain further includes an inverter 11 , the power battery 9 is connected to the inverter 11 through the high-voltage wire harness 12 , and the inverter 11 is connected to the generator 21 and the power battery 9 through the high-voltage wire harness 12 Connection, the vertical vehicle powertrain has a power generation mode.
  • the engine 1 starts and drives the generator 21 to generate electricity.
  • the generator 21 stores the electrical energy in the power battery 9 through the high voltage wiring harness 12 .
  • the inverter 11 can not only facilitate the power battery 9 to transmit electric energy to the drive motor 22 through the high-voltage wiring harness 12, so that the drive motor 22 can realize power output, but also facilitate the engine 1 to drive the generator 21 to generate electricity and store the electric energy in the power battery. 9 in.
  • the power generation modes of the vertical vehicle powertrain include a driving power generation mode and an idle power generation mode.
  • the engine 1 works and drives the generator 21 to generate electricity.
  • the generator 21 stores the electrical energy in the power battery 9 through the high-voltage wiring harness 12 and the inverter 11.
  • the first clutch 3 is engaged, the drive motor 22 is on standby, and the engine 1.
  • the power is transmitted to the transmission through the direct drive transmission shaft 23.
  • the transmission is in the first gear, so that the transmission outputs the power of the engine 1 through the output shaft of the synchronizer 41.
  • the controller component can also be based on actual needs.
  • the states of the second clutch 5 and the third clutch 6 are controlled so that the vehicle enters any one of a four-wheel drive state, a front drive state or a rear drive state.
  • the engine 1 works and drives the generator 21 to generate electricity.
  • the generator 21 stores the electrical energy in the power battery 9 through the high-voltage wiring harness 12 and the inverter 11.
  • the first clutch 3 is engaged, and the vehicle powertrain is installed vertically. The other structures in it don't work.
  • the drive motor 22 can also receive the power of the front axle 100 and the rear axle 110 to generate electricity during the braking process of the front axle 100 and the rear axle 110 , and the inverter 11 and the high-voltage wiring harness 12 can facilitate the drive motor. 22 Stores the electric energy obtained from the power generation in the power battery 9, and the vehicle is in the braking energy recovery mode at this time.
  • the engine 1 When the vehicle is in the braking energy recovery mode, the engine 1 is stopped, the first clutch 3 is disconnected, the second clutch 5 and the third clutch 6 are engaged, and the power of the front and rear wheels of the vehicle is transmitted to the two through the front drive shaft 71 and the rear drive shaft 72.
  • the transmission gear set 42 is then transmitted to the output shaft of the synchronizer 41.
  • the transmission is in the second gear, and the transmission can transmit the power transmitted to the output shaft of the synchronizer 41 to the drive motor 22.
  • the drive motor 22 is in braking power. Power is generated under the action of the high-voltage wiring harness 12 and the inverter 11, and the electric energy is stored in the power battery 9, thereby realizing the recovery of the braking energy of the vehicle.
  • the controller components include engine controller 13 , transmission controller 14 , motor controller 15 , battery controller 16 , and vehicle controller 17 .
  • the engine controller 13 is configured to control the engine 1 .
  • the transmission controller 14 is configured to control the transmission.
  • the motor controller 15 is configured to control the generator 21 and the drive motor 22 .
  • the battery controller 16 is configured to control the power battery 9 .
  • the vehicle controller 17 is connected in communication with the engine controller 13 , the transmission controller 14 , the motor controller 15 and the battery controller 16 through a local area network.
  • the vehicle controller 17 and the controllers of multiple assemblies are connected through a controller area network (CAN) bus to form a local area network, and multiple assemblies transmit their status information through their own controllers, and carry out data on the CAN bus. Circulation and sharing.
  • the vehicle controller 17 monitors the vehicle status and combines the demand input (including accelerator pedal stroke, brake pedal stroke, mode selection switch, battery discharge power limit, battery state of charge limit) given by the driver through the vehicle man-machine interface, etc. value, etc.) to determine the working mode of the power system, and send commands to multiple assemblies through the CAN bus according to the predefined control strategies in multiple modes.
  • Multiple assembly controllers receive commands from the vehicle controller (Vehicle Control Unit, HCU), and control the assemblies to respond to the demand. Finally, the outputs of multiple assemblies are converted into wheel-end forces, thereby driving the vehicle to accelerate or decelerate.
  • (1) Pure electric drive mode In the pure electric drive mode, the engine 1 works, the first clutch 3 is disconnected, the transmission is in the second gear, and the power battery 9 provides all the power required by the vehicle.
  • the vertical vehicle powertrain of the embodiment of the present application can realize three drive modes: pure electric four-wheel drive mode, pure electric front drive mode and pure electric rear drive mode. The details of the drive modes are as follows:
  • 2Pure electric front drive mode the second clutch 5 is engaged and the third clutch 6 is disconnected, and the output shaft of the synchronizer 41 drives the front axle 100 to move through the front transmission shaft 71.
  • Engine direct drive mode In the engine direct drive mode, the engine 1 works, the generator 21 rotates, the first clutch 3 is engaged, the drive motor 22 is stopped, the transmission is in the first gear, and the mechanical energy of the engine 1 passes through the generator. 21 and the first clutch 3 are transmitted to the direct drive transmission shaft 23 which is connected to the transmission and transmits power through the output shaft of the synchronizer 41 .
  • the vertical vehicle powertrain of the embodiment of the present application can realize three driving modes: a direct-drive four-wheel drive mode, a direct-drive front-drive mode, and a direct-drive rear-drive mode. The details of the drive modes are as follows:
  • 2Direct-drive front-drive mode the second clutch 5 is engaged and the third clutch 6 is disconnected, and the output shaft of the synchronizer 41 drives the front axle 100 to move through the front transmission shaft 71 .
  • Tandem four-wheel drive mode both the second clutch 5 and the third clutch 6 are engaged, and the output shaft of the synchronizer 41 can drive the front axle 100 and the rear axle 110 to move through the front transmission shaft 71 and the rear transmission shaft 72 respectively.
  • Tandem front drive mode the second clutch 5 is engaged and the third clutch 6 is disconnected, and the output shaft of the synchronizer 41 drives the front axle 100 to move through the front transmission shaft 71 .
  • Tandem rear drive mode the third clutch 6 is engaged and the second clutch 5 is disconnected, and the output shaft of the synchronizer 41 drives the rear shaft 110 to move through the rear transmission shaft 72 .
  • the series drive mode In the series drive mode, the output speed and torque of the engine 1 and the driving force demand of the wheel electrical terminals are decoupled, so that the engine 1 can work at a working point with better economy, thereby achieving good fuel economy.
  • the series drive mode can also be divided into two sub-modes: series-following and series-generating.
  • the electric energy generated by the generator 21 driven by the engine 1 In the series-following sub-mode, the electric energy generated by the generator 21 driven by the engine 1 is all used to drive the wheels.
  • the electric energy generated by the generator 21 driven by the engine 1 is greater than the demand of the driving wheel end, and the electric energy exceeding its power demand can be charged to the power battery 9 through the high-voltage wiring harness 12 and the inverter 11.
  • Table 1 Status of multiple components of a longitudinally mounted vehicle powertrain in different drive modes
  • the present application also discloses a vehicle power control method.
  • the vehicle power control method is applied to the vertical vehicle powertrain described above.
  • the vehicle power control method includes: S1 , the controller component obtains according to the control information Driving torque and driving power; S2, the controller component controls the vehicle to enter pure electric drive mode, engine direct drive mode or series drive mode according to the control information, drive torque and drive power of the longitudinal vehicle powertrain; the vehicle is in pure electric drive mode.
  • the engine 1 works, the first clutch 3 is disconnected, and the transmission is in the second gear; when the engine 1 is in the engine direct drive mode, the engine 1 works, the generator 21 rotates, the first clutch 3 is engaged, and the drive motor 22 stops , the transmission is in the first gear; when the vehicle is in the series drive mode, the engine 1 works and drives the generator 21 to generate electricity, the first clutch 3 is disconnected, and the transmission is in the second gear; S3, the controller component controls the vehicle to enter according to the control information.
  • the controller component can make the vehicle enter different driving modes according to the actual needs of the driver, and after satisfying the needs of the driver Maintaining the current working mode can improve the energy efficiency of the powertrain, taking into account power, economy and cost.
  • step S1 the controller component parses the driver's driving demand according to the current vehicle speed, accelerator pedal opening and other information, and uses it as control information to calculate the driving demand corresponding to the control information. torque and power requirements.
  • step S2 when the driving power required by the vehicle is less than the discharge power limit of the power battery 9, and the state of charge of the power battery 9 is greater than the preset minimum limit, the controller component controls the vehicle to enter the pure state Electric drive mode; when the driving power required by the vehicle is greater than the discharge power limit of the power battery 9, or the state of charge of the power battery 9 is not greater than the preset minimum limit, the controller component controls the engine 1 to start; the current vehicle speed of the vehicle is less than the engine 1 When the minimum vehicle speed in the engine direct drive mode, the controller component controls the vehicle to enter the series drive mode, and the current vehicle speed of the vehicle is not less than the minimum vehicle speed of the engine 1 In the engine direct drive mode, the controller component controls the vehicle to enter the engine direct drive mode. model.
  • the controller component can determine the selection of the vehicle in the pure electric drive mode, the engine direct drive mode and the series drive mode according to various parameters such as the driving power of the vehicle, the discharge power limit of the power battery 9, and the state of charge of the power battery 9, In order to ensure that on the premise of satisfying the driving power of the vehicle, the longitudinal vehicle powertrain can achieve the optimal energy consumption efficiency, thus taking into account the power and economy of the vehicle.
  • the controller component determines that the vehicle can enter the engine direct drive mode
  • the controller component determines that the economy of the vehicle entering the engine direct drive mode is better than the economy of the vehicle entering the series drive mode
  • the controller component controls the vehicle Entering the engine direct drive mode
  • the controller component determines that the economy of the vehicle entering the series drive mode is better than the economy of the vehicle entering the engine direct drive mode
  • the re-judgment of the controller component can ensure that the drive mode the vehicle enters can have excellent economy and reliable power. sex.
  • step S3 the controller assembly controls the disengagement and engagement of the second clutch 5 and the third clutch 6 according to one of the four-wheel drive state, the front drive state and the rear drive state selected by the driver.
  • the controller component determines the driving state selected by the driver whether the four-wheel drive demand is issued to the power system through the human-machine interface of the vehicle.
  • the following describes a longitudinally mounted vehicle powertrain and a vehicle power control method according to an embodiment of the present application with reference to FIG. 1 to FIG. 3 .
  • the longitudinally mounted vehicle powertrain of this embodiment includes an engine 1, a generator 21, a first clutch 3, a drive motor 22, a transmission, a power battery 9, a controller assembly, two transmission assemblies 8, a torsional damping member 10 and an inverse Transformer 11.
  • the generator 21 is connected to the output shaft of the engine 1 .
  • the input end of the first clutch 3 is connected with the output shaft of the generator 21 , and the output end is connected with the direct drive transmission shaft 23 .
  • the direct drive transmission shaft 23 passes through the output shaft of the drive motor 22 , and the direct drive transmission shaft 23 is coaxially disposed with the output shaft of the drive motor 22 .
  • the drive motor 22 is spaced apart from the generator 21 and located on the side of the first clutch 3 away from the generator 21 , and the drive motor 22 can receive the electrical energy delivered by the generator 21 .
  • the transmission is connected with the output shaft of the engine 1 and the drive motor 22.
  • the transmission includes a synchronizer 41 and two transmission gear sets 42.
  • the transmission has at least a first gear and a second gear.
  • the direct drive transmission The shaft 23 is connected to the input end of the synchronizer 41 , and when the transmission is in the second gear, the output shaft of the drive motor 22 is connected to the input end of the synchronizer 41 .
  • the synchronizer 41 is provided between two speed change gear sets 42 , one speed change gear set 42 is connected with the output shaft of the generator 21 , and the other speed change gear set 42 is connected with the output shaft of the drive motor 22 .
  • the output shaft of the synchronizer 41 is connected to the front propeller shaft 71 and the rear propeller shaft 72 respectively through the second clutch 5 and the third clutch 6 , the front propeller shaft 71 is connected to the front axle 100 of the vehicle, and the rear propeller shaft 72 is connected to the rear axle of the vehicle. 110 connections.
  • the power battery 9 is connected to the generator 21 and the drive motor 22 .
  • the power battery 9 is connected to the inverter 11 through the high-voltage wire harness 12, and the inverter 11 is connected to the generator 21 and the power battery 9 through the high-voltage wire harness 12.
  • the vertical vehicle powertrain has a power generation mode, and the vertical vehicle powertrain enters In the power generation mode, the engine 1 starts and drives the generator 21 to generate electricity, and the generator 21 stores the electrical energy in the power battery 9 through the high-voltage wiring harness 12 .
  • the controller assembly is configured to control the first clutch 3 , the second clutch 5 , the third clutch 6 , the generator 21 , the drive motor 22 and the transmission.
  • the output shaft of the synchronizer 41 is connected to the two speed change assemblies 8 , and the two speed change assemblies 8 are connected to the second clutch 5 and the third clutch 6 .
  • the speed change assembly 8 includes two intermeshing gears, one gear is connected to the output shaft of the synchronizer 41 and the other gear is connected to the second clutch 5 or the third clutch 6 .
  • the engine 1 and the generator 21 are connected by the torsional damping member 10 .
  • Vehicle power control methods include:
  • the controller component obtains the driving torque and the driving power according to the first control information
  • the controller component controls the vehicle to enter the pure electric drive mode, the engine direct drive mode or the series drive mode according to the second control information and the drive torque and drive power; the drive power required by the vehicle is less than the discharge power limit of the power battery 9, And when the state of charge of the power battery 9 is greater than the preset minimum value, the controller component controls the vehicle to enter the pure electric drive mode; the driving power required by the vehicle is greater than the discharge power limit of the power battery 9, or the state of charge of the power battery 9 When not greater than the preset minimum value, the controller component controls the engine 1 to start; when the current vehicle speed of the vehicle is less than the minimum vehicle speed of the engine 1 in the engine direct drive mode, the controller component controls the vehicle to enter the series drive mode, and the current vehicle speed does not When it is less than the minimum vehicle speed of engine 1 in the engine direct drive mode, the controller component controls the vehicle to enter the engine direct drive mode; when the controller component determines that the vehicle can enter the engine direct drive mode, if the controller component determines that the vehicle enters the engine direct drive mode
  • the controller component determines that the economy of the vehicle entering the series drive mode is better than that of the vehicle entering the engine direct drive mode.
  • the controller assembly controls the vehicle to enter the series drive mode.
  • the engine 1 works, the first clutch 3 is disconnected, and the transmission is in the second gear;
  • the engine 1 works, the generator 21 rotates with it, and the first clutch 3 is engaged , the drive motor 22 stops, the transmission is in the first gear;
  • the engine 1 works and drives the generator 21 to generate electricity, the first clutch 3 is disconnected, and the transmission is in the second gear;
  • the controller component controls the vehicle to enter the four-wheel drive state, the front drive state or the rear drive state according to the third control information.
  • the vehicle is in the four-wheel drive state, the second clutch 5 is engaged and the third
  • the three clutches 6 are disconnected, the vehicle is in a front-drive state, and when the third clutch 6 is engaged and the second clutch 5 is disconnected, the vehicle is in a rear-drive state;
  • the longitudinally mounted vehicle powertrain outputs the driving force to the front axle 100 and the rear axle 110. If the driving force meets the demand, keep the current output state and end, and if the driving force does not meet the demand, go to step S1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种纵置车辆动力总成及车辆动力控制方法。纵置车辆动力总成包括发动机(1)、发电机(21)、第一离合器(3)、驱动电机(22)、变速器、动力电池(9)和控制器组件。发电机(21)与发动机(1)的输出轴连接。第一离合器(3)的输入端与发电机(21)的输出轴连接,输出端与直驱传动轴(23)连接。驱动电机(22)能够接收发电机(21)输送的电能。变速器与发动机(1)和驱动电机(22)的输出轴连接,变速器包括同步器(41)。同步器(41)的输出轴通过第二离合器(5)和第三离合器(6)分别与前传动轴(71)和后传动轴(72)连接,前传动轴(71)与车辆的前轴(100)连接,后传动轴(72)与车辆的后轴(110)连接。动力电池(9)与发电机(21)和驱动电机(22)连接。

Description

纵置车辆动力总成及车辆动力控制方法
本申请要求在2020年12月28日提交中国专利局、申请号为202011583469.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆动力系统技术领域,例如涉及一种纵置车辆动力总成及车辆动力控制方法。
背景技术
在汽车产业环境下,混合动力轿车因其良好的节能表现,备受到国内外主机厂的广泛关注,正在着力开展产业化研发。
构型作为混合动力的核心技术之一,决定着混合动力车辆运行模式和相关性能。多种混合动力构型,如丰田的功率分流构型,由于其优秀的节油率,深受市场认可,但功率分流构型也存在构型比较复杂,生产开发难度较高,且应用于中大型纵置乘用车,需要增加变速系统,增加成本的问题。本田的双电机串并联构型、节油效果良好,但只能应用在中小型横置车型上,无法应用在中大型纵置车型上,且如果使双电机串并联构型实现四驱功能,需要增加电后桥,对基础车型改动量较大且成本较高。大众的P2构型,可应用在横置、纵置车型上,且对基础车型改动量小,并能与传统车实现最大通用化,但P2构型本身节油率相对较低,整车节能效果不明显。因此,相关技术中的混合动力轿车的动力总成难以同时兼顾整车经济性、动力性和车辆通用化设计。
发明内容
本申请提出一种纵置车辆动力总成,能够兼顾整车经济性、动力性、四驱功能、车辆通用化设计,从而解决中大型乘用车的混合动力化问题。
本申请提出一种车辆动力控制方法,能够提升动力总成的能耗效率,并兼顾动力性、经济性和成本。
一种纵置车辆动力总成,包括:发动机;发电机,所述发电机与所述发动机的输出轴连接;第一离合器,所述第一离合器的输入端与所述发电机的输出轴连接,所述第一离合器的输出端与直驱传动轴连接;驱动电机,所述驱动电机与所述发电机间隔设置并位于所述第一离合器远离所述发电机的一侧,所述驱动电机能够接收所述发电机输送的电能;变速器,所述变速器与所述发动机 和所述驱动电机的输出轴连接,所述变速器包括同步器,所述变速器至少具有第一档位和第二档位,所述变速器位于所述第一档位时,所述直驱传动轴与所述同步器的输入端连接,所述变速器位于所述第二档位时,所述驱动电机的输出轴与所述同步器的输入端连接;所述同步器的输出轴通过第二离合器和第三离合器分别与前传动轴和后传动轴连接,所述前传动轴与车辆的前轴连接,所述后传动轴与所述车辆的后轴连接;动力电池,所述动力电池与所述发电机和所述驱动电机连接;控制器组件,所述控制器组件被配置为控制所述第一离合器、所述第二离合器、所述第三离合器、所述发电机、所述驱动电机和所述变速器。
一实施例中,所述纵置车辆动力总成还包括两个变速组件,所述同步器的输出轴与所述两个变速组件连接,所述两个变速组件分别与所述第二离合器和所述第三离合器连接。
一实施例中,所述变速组件包括两个互相啮合的齿轮,一个齿轮与所述同步器的输出轴连接,另一个齿轮与所述第二离合器或所述第三离合器连接。
一实施例中,所述纵置车辆动力总成还包括扭转减震件,所述发动机和所述发电机之间通过所述扭转减震件连接。
一实施例中,所述变速器还包括两个变速齿轮组,所述同步器设在所述两个变速齿轮组之间,一个变速齿轮组与所述发电机的输出轴连接,另一个变速齿轮组与所述驱动电机的输出轴连接。
一实施例中,所述直驱传动轴穿设在驱动电机的输出轴中,且所述直驱传动轴与所述驱动电机的输出轴同轴设置。
一种车辆动力控制方法,应用于前文所述的纵置车辆动力总成,所述车辆动力控制方法包括:
S1、所述控制器组件根据第一控制信息获取驱动扭矩和驱动功率;
S2、所述控制器组件根据第二控制信息、所述驱动扭矩和所述驱动功率,控制所述车辆进入纯电驱动模式、发动机直驱模式或串联驱动模式;所述车辆位于所述纯电驱动模式时,所述发动机工作,所述第一离合器断开,所述变速器位于所述第二档位;所述发动机位于所述发动机直驱模式时,所述发动机工作、所述发电机随转,所述第一离合器接合,所述驱动电机停机,所述变速器位于所述第一档位;所述车辆位于所述串联驱动模式时,所述发动机工作并带动所述发电机发电,所述第一离合器断开,所述变速器位于所述第二档位;
S3、所述控制器组件根据第三控制信息控制所述车辆进入四驱状态、前驱状态或后驱状态,所述第二离合器和所述第三离合器均接合时,所述车辆处于 所述四驱状态,所述第二离合器接合且所述第三离合器断开时,所述车辆处于所述前驱状态,所述第三离合器接合且所述第二离合器断开时,所述车辆处于所述后驱状态;
S4、所述纵置车辆动力总成输出驱动力到所述前轴和所述后轴,如所述驱动力满足需求,则保持当前输出状态并结束,如所述驱动力不满足需求,则进入步骤S1。
一实施例中,所述车辆所需的所述驱动功率小于所述动力电池的放电功率限值,且所述动力电池的荷电状态大于预设最低限值时,所述控制器组件控制所述车辆进入所述纯电驱动模式;所述车辆所需的所述驱动功率大于所述动力电池的放电功率限制,或所述动力电池的荷电状态不大于所述预设最低限值时,所述控制器组件控制所述发动机启动;所述车辆的当前车速小于所述发动机在发动机直驱模式下的最小车速时,所述控制器组件控制所述车辆进入所述串联驱动模式,所述车辆的当前车速不小于所述发动机在所述发动机直驱模式下的最小车速时,所述控制器组件控制所述车辆进入所述发动机直驱模式。
一实施例中,当所述控制器组件判断所述车辆能够进入所述发动机直驱模式时,如所述控制器组件判断所述车辆进入所述发动机直驱模式的经济性优于所述车辆进入所述串联驱动模式的经济性,所述控制器组件控制所述车辆进入所述发动机直驱模式,如所述控制器组件判断所述车辆进入所述串联驱动模式的经济性优于所述车辆进入所述发动机直驱模式的经济性,所述控制器组件控制所述车辆进入所述串联驱动模式。
一实施例中,所述控制器组件根据驾驶员所选择的所述四驱状态、所述前驱状态和所述后驱状态中的一个,控制所述第二离合器和所述第三离合器的断开和接合。
附图说明
图1是本申请具体实施方式提供的一种纵置车辆动力总成的整体结构示意图;
图2是本申请具体实施方式提供的一种纵置车辆动力总成的局部结构示意图;
图3是本申请具体实施方式提供的一种车辆动力控制方法的流程图。
附图标记
1、发动机;21、发电机;22、驱动电机;23、直驱传动轴;
3、第一离合器;41、同步器;42、变速齿轮组;
5、第二离合器;6、第三离合器;71、前传动轴;72、后传动轴;
8、变速组件;9、动力电池;10、扭转减震件;11、逆变器;
12、高压线束;13、发动机控制器;14、变速器控制器;15、电机控制器;16、电池控制器;17、整车控制器;
100、前轴;110、后轴。
具体实施方式
下面接合附图并通过具体实施方式来说明本申请的技术方案。
在本申请的描述中,除非另有规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
在本申请中,除非另有规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
下面参考图1-图3描述本申请实施例的纵置车辆动力总成及车辆动力控制方法。
如图1-图3所示,图1公开了一种纵置车辆动力总成,其包括发动机1、发电机21、第一离合器3、驱动电机22、变速器、动力电池9和控制器组件。发 电机21与发动机1的输出轴连接。第一离合器3的输入端与发电机21的输出轴连接,第一离合器3的输出端与直驱传动轴23连接。驱动电机22与发电机21间隔设置并位于第一离合器3远离发电机21的一侧,驱动电机22能够接收发电机21输送的电能。变速器与发动机1和驱动电机22的输出轴连接,变速器包括同步器41,变速器至少具有第一档位和第二档位,变速器位于第一档位时,直驱传动轴23与同步器41的输入端连接,变速器位于第二档位时,驱动电机22的输出轴与同步器41的输入端连接。同步器41的输出轴通过第二离合器5和第三离合器6分别与前传动轴71和后传动轴72连接,前传动轴71与车辆的前轴100连接,后传动轴72与车辆的后轴110连接。动力电池9与发电机21和驱动电机22连接。控制器组件被配置为控制第一离合器3、第二离合器5、第三离合器6、发电机21、驱动电机22和变速器。
发动机1的输出轴与发电机21连接,使发动机1既能驱动发电机21发电,也能够通过发电机21传递动力。第一离合器3的两端分别与发电机21的输出轴和直驱传动轴23连接,变速器位于第一档位时,直驱传动轴23与同步器41的输入端连接,且变速器位于第二档位时,驱动电机22的输出端与同步器41的输入端连接,使得第一离合器3处于断开状态,当变速器进入第二档位时,驱动电机22的输出端能够与同步器41的输入端连接,并驱动同步器41转动以使同步器41的输出轴带动前传动轴71和/或后传动轴72转动,以实现通过驱动电机22对车辆的前轴100和后轴110输入动力;第一离合器3处于接合状态时,发动机1的输出轴能够驱动发电机21转动,能够对发电机21输入发电动力,也能够通过发电机21的输出轴带动直驱传动轴23转动,当变速器同时进入第一档位时,直驱传动轴23能够在发动机1的作用下带动前传动轴71和/或后传动轴72转动,以实现发动机1通过发电机21和直驱传动轴23对车辆的前轴100和后轴110输入动力。通过发动机1、发电机21、驱动电机22和变速器的结构设置,能够使车辆通过多种不同类型的动力实现动力输入,以适用于车辆的不同应用场景中,提高纵置车辆动力总成的适用范围。由于同步器41的输出轴还通过第二离合器5和第三离合器6分别与前传动轴71和后传动轴72连接,使同步器41的输出轴在发动机1或驱动电机22的动力作用下时,控制器组件能够根据车辆实际运行需求确定第二离合器5和第三离合器6的接合状态,当第二离合器5和第三离合器6均接合时,同步器41的输出轴能够同时驱动车辆的前轴100和后轴110运动,使车辆处于四驱模式,当第二离合器5或第三离合器6中的一个处于断开状态时,同步器41的输出轴仅能驱动车辆的前轴100或后轴110运动,使车辆处于前驱模式或后驱模式,第二离合器5和第三离合器6的设置能够便于实现车辆的多种驱动状态,以提高车辆驱动的适用范围。动力电池9既能对驱动电机22提供电能,以使驱动电机22对前轴100和后轴110 输入动力,还能够存储由发电机21输入至驱动电机22的电能,能够提高车辆的动能利用率,以提高整车的经济性。
根据本实施例的纵置车辆动力总成,由于纵置车辆动力总成能够设置于车辆的前轴100处,并通过后传动轴72实现对后轴110的驱动,从而无需占用车辆的后部空间,也无需在车辆的后轴110部分安装电机以及电桥结构,对基础车型的改动量较小,不会影响车身后部的设计和结构变更,能够实现较大的通用化设计;同时车辆的动力能够通过发动机1进行直接驱动或通过驱动电机22进行驱动实现多种不同的驱动方式,能够较好地提高整车的经济性,控制器组件能够根据实际需求和运行情况调整动力来源,以提高车辆的动力性;第二离合器5和第三离合器6能够实现车辆在四驱状态、前驱状态和后驱状态三者之间的切换,提高了车辆的适用范围。因此,本实施例的纵置车辆动力总成,能够兼顾整车经济性、动力性、四驱功能、车辆通用化设计,从而解决中大型乘用车的混合动力化问题。
在一些实施例中,如图1和图2所示,纵置车辆动力总成还包括两个变速组件8,同步器41的输出轴与两个变速组件8连接,两个变速组件8分别与第二离合器5和第三离合器6连接。
通过两个变速组件8的设置,能够便于将同步器41的输出端通过第二离合器5和第三离合器6分别与前传动轴71和后传动轴72连接,从而提高纵置车辆动力总成的安装便捷性。
在一些实施例中,如图1和图2所示,变速组件8包括两个互相啮合的齿轮,一个齿轮与同步器41的输出轴连接,另一个齿轮与第二离合器5或第三离合器6连接。
齿轮传动较为稳定可靠,同时还能起到变速作用,既有利于将同步器41的输出轴的动力传递至前传动轴71和后传动轴72,也便于在车辆制动过程中回收前轴100和后轴110的制动能量。
在一些实施例中,如图1和图2所示,纵置车辆动力总成还包括扭转减震件10,发动机1和发电机21之间通过扭转减震件10连接。
扭转减震件10能够降低发动机1在转动过程中产生的扭转振动,使发动机1产生的动力能够平稳地传递至发电机21中,从而提高整车运行的平顺性。
在一些实施例中,如图1和图2所示,变速器还包括两个变速齿轮组42,同步器41设在两个变速齿轮组42之间,一个变速齿轮组42与发电机21的输出轴连接,另一个变速齿轮组42与驱动电机22的输出轴连接。
同步器41与两个变速齿轮组42连接时即可实现变速器进入第一档位或第 二档位,两个变速齿轮组42的设置能够较好地实现变速器在第一档位和第二档位分别与直驱传动轴23或驱动电机22的输出轴连接。两个变速齿轮组42的实际速比能够通过性能仿真进行设计,以提高直驱传动轴23和驱动电机22的动力传递效果。
在一些实施例中,如图2所示,直驱传动轴23穿设在驱动电机22的输出轴中,且直驱传动轴23与驱动电机22的输出轴同轴设置。
将直驱传动轴23穿设在驱动电机22的输出轴中能够较好地实现直驱传动轴23和驱动电机22的输出轴同轴设置,既能降低整个纵置车辆动力总成的布置空间,也能够便于变速器在第一档位和第二档位之间的切换。
在本申请的其他实施例中,也能够调整直驱传动轴23和驱动电机22的输出轴与变速器的连接位置,并使驱动电机22的输出轴穿设在直驱传动轴23中,且保持直驱传动轴23与驱动电机22的输出轴同轴设置,也能够实现上述作用,直驱传动轴23和驱动电机22的输出轴的结构及位置关系能够根据纵置车辆动力总成的实际安装环境进行调整,只要能够便于通过变速器实现纵置车辆动力总成在纯电驱动模式、发动机直驱模式和串联驱动模式三者之间的切换即可。
在一些实施例中,纵置车辆动力总成还包括逆变器11,动力电池9通过高压线束12与逆变器11连接,逆变器11通过高压线束12与发电机21和所动力电池9连接,纵置车辆动力总成具有发电模式,纵置车辆动力总成进入发电模式时,发动机1启动并带动发电机21发电,发电机21通过高压线束12将电能存储至动力电池9中。
逆变器11既能够便于动力电池9将电能通过高压线束12传递至驱动电机22,以使驱动电机22能够实现动力输出,也能够便于通过发动机1驱动发电机21发电并将电能存储与动力电池9中。
纵置车辆动力总成的发电模式包括行车发电模式和怠速发电模式。
在行车发电模式中,发动机1工作并带动发电机21发电,发电机21将电能通过高压线束12和逆变器11存储于动力电池9中,同时第一离合器3接合,驱动电机22待机,发动机1通过直驱传动轴23将动力传递至变速器中,变速器位于第一档位,使变速器通过同步器41的输出轴输出发动机1的动力,在行车发电模式下,控制器组件也能够根据实际需求控制第二离合器5和第三离合器6的状态,以使车辆进入四驱状态、前驱状态或后驱状态中的任意一种。
在怠速发电模式中,发动机1工作并带动发电机21发电,发电机21将电能通过高压线束12和逆变器11存储于动力电池9中,同时第一离合器3接合,纵置车辆动力总成中的其他结构不工作。
在一些实施例中,驱动电机22还能够在前轴100和后轴110的制动过程中接收前轴100和后轴110的动力而发电时,逆变器11和高压线束12能够便于驱动电机22将发电所得电能存储于动力电池9中,此时车辆位于制动能量回收模式。
车辆位于制动能量回收模式时,发动机1停机,第一离合器3断开,第二离合器5和第三离合器6接合,车辆前后车轮的动力通过前传动轴71和后传动轴72传递至两个变速齿轮组42,进而传递至同步器41的输出轴,此时变速器位于第二档位,变速器能够将传递至同步器41的输出轴的动力传递至驱动电机22,驱动电机22在制动动力的作用下发电,并通过高压线束12和逆变器11将电能存储于动力电池9,从而实现了车辆制动能量的回收。
在一些实施例中,控制器组件包括发动机控制器13、变速器控制器14、电机控制器15、电池控制器16和整车控制器17。发动机控制器13被配置为控制发动机1。变速器控制器14被配置为于控制变速器。电机控制器15被配置为控制发电机21和驱动电机22。电池控制器16被配置为控制动力电池9。整车控制器17通过局域网与发动机控制器13、变速器控制器14、电机控制器15和电池控制器16通信连接。
整车控制器17与多个总成的控制器通过控制器域网(Controller Area Network,CAN)总线连接形成局域网,多个总成通过自身控制器传递其状态信息,并在CAN总线上进行数据流通和共享。整车控制器17通过监测车辆状态并结合驾驶员通过车辆人机接口等给出的需求输入(包括加速踏板行程、制动踏板行程、模式选择开关、电池放电功率限制、电池的荷电状态限值等)等判定动力系统的工作模式,并根据预定义的多个模式下的控制策略,通过CAN总线向多个总成发出命令。多个总成控制器接收整车控制器(Vehicle Control Unit,HCU)的命令,并控制总成响应该需求,最终多个总成的输出转化为轮端的力,从而驱动车辆加速或减速。
在多个驱动模式的纵置车辆动力总成的工作状态详情如下:
(1)纯电驱动模式:在纯电驱动模式下,发动机1工作,第一离合器3断开,变速器位于第二档位,由动力电池9提供车辆所需的所有动力。本申请实施例的纵置车辆动力总成能够实现纯电四驱模式、纯电前驱模式和纯电后驱模式三种驱动模式,其驱动模式详情如下:
①纯电四驱模式:第二离合器5和第三离合器6均接合,同步器41的输出轴能够通过前传动轴71和后传动轴72分别驱动前轴100和后轴110运动。
②纯电前驱模式:第二离合器5接合且第三离合器6断开,同步器41的输 出轴通过前传动轴71驱动前轴100运动。
③纯电后驱模式:第三离合器6接合且第二离合器5断开,同步器41的输出轴通过后传动轴72驱动后轴110运动。
(2)发动机直驱模式:在发动机直驱模式下,发动机1工作、发电机21随转,第一离合器3接合,驱动电机22停机,变速器位于第一档位,发动机1的机械能通过发电机21和第一离合器3传递至直驱传动轴23,直驱传动轴23与变速器连接并通过同步器41的输出轴传递动力。本申请实施例的纵置车辆动力总成能够实现直驱四驱模式、直驱前驱模式和直驱后驱模式三种驱动模式,其驱动模式详情如下:
①直驱四驱模式:第二离合器5和第三离合器6均接合,同步器41的输出轴能够通过前传动轴71和后传动轴72分别驱动前轴100和后轴110运动。
②直驱前驱模式:第二离合器5接合且第三离合器6断开,同步器41的输出轴通过前传动轴71驱动前轴100运动。
③直驱后驱模式:第三离合器6接合且第二离合器5断开,同步器41的输出轴通过后传动轴72驱动后轴110运动。
(3)串联驱动模式:在串联驱动模式下,发动机1工作并带动发电机21发电,第一离合器3断开,变速器位于第二档位。发动机1输出的机械能能够通过发电机21转换为电能并输送至驱动电机22处,再通过驱动电机22的输出轴将动力传递至同步器41的输出轴,以使同步器41的输出轴传递动力。本申请实施例的纵置车辆动力总成能够实现串联四驱模式、串联前驱模式和串联后驱模式三种驱动模式,其驱动模式详情如下:
①串联四驱模式:第二离合器5和第三离合器6均接合,同步器41的输出轴能够通过前传动轴71和后传动轴72分别驱动前轴100和后轴110运动。
②串联前驱模式:第二离合器5接合且第三离合器6断开,同步器41的输出轴通过前传动轴71驱动前轴100运动。
③串联后驱模式:第三离合器6接合且第二离合器5断开,同步器41的输出轴通过后传动轴72驱动后轴110运动。
在串联驱动模式下,发动机1的输出转速、扭矩和车轮电端的驱动力需求解耦,使发动机1能够在经济性较优的工作点上工作,从而实现良好的燃油经济性。此外,根据动力电池9的实时电量,串联驱动模式还能够分为串联跟随和串联发电两种子模式,在串联跟随子模式下,发电机21在发动机1驱动下产生的电能全部用于驱动车轮运动,在串联发电子模式下,发电机21在发动机1驱动下产生的电能大于驱动轮端的需求,超出其动力需求的电能能够通过高压 线束12和逆变器11向动力电池9充电。
表1:纵置车辆动力总成在不同驱动模式下多个部件所处的状态
Figure PCTCN2021133086-appb-000001
如图3所示,本申请还公开了一种车辆动力控制方法,车辆动力控制方法应用于前文所述的纵置车辆动力总成,车辆动力控制方法包括:S1、控制器组件根据控制信息获取驱动扭矩和驱动功率;S2、控制器组件根据纵置车辆动力总成的控制信息、驱动扭矩和驱动功率,控制车辆进入纯电驱动模式、发动机 直驱模式或串联驱动模式;车辆位于纯电驱动模式时,发动机1工作,第一离合器3断开,变速器位于第二档位;发动机1位于发动机直驱模式时,发动机1工作、发电机21随转,第一离合器3接合,驱动电机22停机,变速器位于第一档位;车辆位于串联驱动模式时,发动机1工作并带动发电机21发电,第一离合器3断开,变速器位于第二档位;S3、控制器组件根据控制信息控制车辆进入四驱状态、前驱状态或后驱状态,第二离合器5和第三离合器6均接合时,车辆处于四驱状态,第二离合器5接合且第三离合器6断开时,车辆处于前驱状态,第三离合器6接合且第二离合器5断开时,车辆处于后驱状态;S4、纵置车辆动力总成输出驱动力到前轴100和后轴110,如驱动力满足需求,则保持当前输出状态并结束,如驱动力不满足需求,则进入步骤S1。
根据本实施例的车辆动力控制方法,由于具有前文所述的纵置车辆动力总成,控制器组件能够根据驾驶员的实际需求,使车辆进入不同的驱动模式中,并在满足驾驶员需求后维持当前工作模式,能够提升动力总成的能耗效率,并兼顾动力性、经济性和成本。
在一些实施例中,在步骤S1中,控制器组件根据当前车速、加速踏板开度等信息对驾驶员的驱动需求进行解析,并将其作为控制信息,以计算出与该控制信息对应的驱动扭矩和功率需求。
在一些实施例中,在步骤S2中,车辆所需的驱动功率小于动力电池9的放电功率限值,且动力电池9的荷电状态大于预设最低限值时,控制器组件控制车辆进入纯电驱动模式;车辆所需的驱动功率大于动力电池9的放电功率限制,或动力电池9的荷电状态不大于预设最低限值时,控制器组件控制发动机1启动;车辆的当前车速小于发动机1在发动机直驱模式下的最小车速时,控制器组件控制车辆进入串联驱动模式,车辆的当前车速不小于发动机1在发动机直驱模式下的最小车速时,控制器组件控制车辆进入发动机直驱模式。
控制器组件能够根据车辆的驱动功率、动力电池9的放电功率限制、动力电池9的荷电状态等多种参数以确定车辆在纯电驱动模式、发动机直驱模式和串联驱动模式下的选择,以确保在满足车辆的驱动功率的前提下,纵置车辆动力总成能够实现最优的能耗效率,从而兼顾了车辆的动力性和经济性。
在一些实施例中,当控制器组件判断车辆能够进入发动机直驱模式时,如控制器组件判断车辆进入发动机直驱模式的经济性优于车辆进入串联驱动模式的经济性,控制器组件控制车辆进入发动机直驱模式,如控制器组件判断车辆进入串联驱动模式的经济性优于车辆进入发动机直驱模式的经济性,控制器组件控制车辆进入串联驱动模式。
在车辆能够进入发动机直驱模式时,由于串联驱动模式下车辆通常具有较 好的燃油经济性,通过控制器组件的再次判断能够确保车辆所进入的驱动模式能够具有优秀的经济性和可靠的动力性。
在一些实施例中,在步骤S3中,控制器组件根据驾驶员所选择的四驱状态、前驱状态和后驱状态中的一个,控制第二离合器5和第三离合器6的断开和接合。
控制器组件通过车辆的人机接口是否对动力系统发出四驱需求,以确定驾驶员所选择的驱动状态。
实施例:
下面参考图1-图3描述本申请一个实施例的纵置车辆动力总成及车辆动力控制方法。
本实施例的纵置车辆动力总成包括发动机1、发电机21、第一离合器3、驱动电机22、变速器、动力电池9、控制器组件、两个变速组件8、扭转减震件10和逆变器11。
发电机21与发动机1的输出轴连接。
第一离合器3的输入端与发电机21的输出轴连接,输出端与直驱传动轴23连接。直驱传动轴23穿设在驱动电机22的输出轴中,且直驱传动轴23与驱动电机22的输出轴同轴设置。
驱动电机22与发电机21间隔设置并位于第一离合器3远离发电机21的一侧,驱动电机22能够接收发电机21输送的电能。
变速器与发动机1和驱动电机22的输出轴连接,变速器包括同步器41和两个变速齿轮组42,变速器至少具有第一档位和第二档位,变速器位于第一档位时,直驱传动轴23与同步器41的输入端连接,变速器位于第二档位时,驱动电机22的输出轴与同步器41的输入端连接。同步器41设在两个变速齿轮组42之间,一个变速齿轮组42与发电机21的输出轴连接,另一个变速齿轮组42与驱动电机22的输出轴连接。同步器41的输出轴通过第二离合器5和第三离合器6分别与前传动轴71和后传动轴72连接,前传动轴71与车辆的前轴100连接,后传动轴72与车辆的后轴110连接。
动力电池9与发电机21和驱动电机22连接。动力电池9通过高压线束12与逆变器11连接,逆变器11通过高压线束12与发电机21和所动力电池9连接,纵置车辆动力总成具有发电模式,纵置车辆动力总成进入发电模式时,发动机1启动并带动发电机21发电,发电机21通过高压线束12将电能存储至动力电池9中。
控制器组件被配置为控制第一离合器3、第二离合器5、第三离合器6、发电机21、驱动电机22和变速器。
同步器41的输出轴与两个变速组件8连接,两个变速组件8与第二离合器5和第三离合器6连接。变速组件8包括两个互相啮合的齿轮,一个齿轮与同步器41的输出轴连接,另一个齿轮与第二离合器5或第三离合器6连接。
发动机1和发电机21之间通过扭转减震件10连接。
车辆动力控制方法包括:
S1、控制器组件根据第一控制信息获取驱动扭矩和驱动功率;
S2、控制器组件根据第二控制信息以及驱动扭矩和驱动功率,控制车辆进入纯电驱动模式、发动机直驱模式或串联驱动模式;车辆所需的驱动功率小于动力电池9的放电功率限值,且动力电池9的荷电状态大于预设最低限值时,控制器组件控制车辆进入纯电驱动模式;车辆所需的驱动功率大于动力电池9的放电功率限制,或动力电池9的荷电状态不大于预设最低限值时,控制器组件控制发动机1启动;车辆的当前车速小于发动机1在发动机直驱模式下的最小车速时,控制器组件控制车辆进入串联驱动模式,车辆的当前车速不小于发动机1在发动机直驱模式下的最小车速时,控制器组件控制车辆进入发动机直驱模式;当控制器组件判断车辆能够进入发动机直驱模式时,如控制器组件判断车辆进入发动机直驱模式的经济性优于车辆进入串联驱动模式的经济性,控制器组件控制车辆进入发动机直驱模式,如控制器组件判断车辆进入串联驱动模式的经济性优于车辆进入发动机直驱模式的经济性,控制器组件控制车辆进入串联驱动模式。车辆位于纯电驱动模式时,发动机1工作,第一离合器3断开,变速器位于第二档位;发动机1位于发动机直驱模式时,发动机1工作、发电机21随转,第一离合器3接合,驱动电机22停机,变速器位于第一档位;车辆位于串联驱动模式时,发动机1工作并带动发电机21发电,第一离合器3断开,变速器位于第二档位;
S3、控制器组件根据第三控制信息控制车辆进入四驱状态、前驱状态或后驱状态,第二离合器5和第三离合器6均接合时,车辆处于四驱状态,第二离合器5接合且第三离合器6断开时,车辆处于前驱状态,第三离合器6接合且第二离合器5断开时,车辆处于后驱状态;
S4、纵置车辆动力总成输出驱动力到前轴100和后轴110,如驱动力满足需求,则保持当前输出状态并结束,如驱动力不满足需求,则进入步骤S1。
在本文的描述中,参考术语“有些实施例”、“其他实施例”、等的描述意指接合该实施例或示例描述的特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本文中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式接合。

Claims (10)

  1. 一种纵置车辆动力总成,包括:
    发动机(1);
    发电机(21),所述发电机(21)与所述发动机(1)的输出轴连接;
    第一离合器(3),所述第一离合器(3)的输入端与所述发电机(21)的输出轴连接,所述第一离合器(3)的输出端与直驱传动轴(23)连接;
    驱动电机(22),所述驱动电机(22)与所述发电机(21)间隔设置并位于所述第一离合器(3)远离所述发电机(21)的一侧,所述驱动电机(22)被配置为接收所述发电机(21)输送的电能;
    变速器,所述变速器与所述发动机(1)和所述驱动电机(22)的输出轴连接,所述变速器包括同步器(41),所述变速器至少具有第一档位和第二档位,在所述变速器位于所述第一档位的情况下,所述直驱传动轴(23)与所述同步器(41)的输入端连接,在所述变速器位于所述第二档位的情况下,所述驱动电机(22)的输出轴与所述同步器(41)的输入端连接;所述同步器(41)的输出轴通过第二离合器(5)和第三离合器(6)分别与前传动轴(71)和后传动轴(72)连接,所述前传动轴(71)与车辆的前轴(100)连接,所述后传动轴(72)与所述车辆的后轴(110)连接;
    动力电池(9),所述动力电池(9)与所述发电机(21)和所述驱动电机(22)连接;
    控制器组件,所述控制器组件被配置为控制所述第一离合器(3)、所述第二离合器(5)、所述第三离合器(6)、所述发电机(21)、所述驱动电机(22)和所述变速器。
  2. 根据权利要求1所述的纵置车辆动力总成,还包括两个变速组件(8),所述同步器(41)的输出轴与所述两个变速组件(8)连接,所述两个变速组件(8)分别与所述第二离合器(5)和所述第三离合器(6)连接。
  3. 根据权利要求2所述的纵置车辆动力总成,其中,所述变速组件(8)包括两个互相啮合的齿轮,一个齿轮与所述同步器(41)的输出轴连接,另一个齿轮与所述第二离合器(5)或所述第三离合器(6)连接。
  4. 根据权利要求1所述的纵置车辆动力总成,还包括扭转减震件(10),所述发动机(1)和所述发电机(21)之间通过所述扭转减震件(10)连接。
  5. 根据权利要求1所述的纵置车辆动力总成,其中,所述变速器包括还两个变速齿轮组(42),所述同步器(41)设在所述两个变速齿轮组(42)之间,一个变速齿轮组(42)与所述发电机(21)的输出轴连接,另一个变速齿轮组 (42)与所述驱动电机(22)的输出轴连接。
  6. 根据权利要求1所述的纵置车辆动力总成,其中,所述直驱传动轴(23)穿设在所述驱动电机(22)的输出轴中,且所述直驱传动轴(23)与所述驱动电机(22)的输出轴同轴设置。
  7. 一种车辆动力控制方法,应用于权利要求1-6中任一项所述的纵置车辆动力总成,包括:
    所述控制器组件根据第一控制信息获取驱动扭矩和驱动功率;
    所述控制器组件根据第二控制信息、所述驱动扭矩和所述驱动功率,控制车辆进入纯电驱动模式、发动机直驱模式或串联驱动模式;在所述车辆位于所述纯电驱动模式的情况下,所述发动机(1)工作,所述第一离合器(3)断开,所述变速器位于第二档位;在所述发动机(1)位于所述发动机直驱模式的情况下,所述发动机(1)工作、所述发电机(21)随转,所述第一离合器(3)接合,所述驱动电机(22)停机,所述变速器位于第一档位;在所述车辆位于所述串联驱动模式的情况下,所述发动机(1)工作并带动所述发电机(21)发电,所述第一离合器(3)断开,所述变速器位于第二档位;
    所述控制器组件根据第三控制信息控制所述车辆进入四驱状态、前驱状态或后驱状态,在所述第二离合器(5)和所述第三离合器(6)均接合的情况下,所述车辆处于所述四驱状态,在所述第二离合器(5)接合且所述第三离合器(6)断开的情况下,所述车辆处于所述前驱状态,在所述第三离合器(6)接合且所述第二离合器(5)断开的情况下,所述车辆处于所述后驱状态;
    所述纵置车辆动力总成输出驱动力到所述前轴(100)和所述后轴(110),在所述驱动力满足需求的情况下,保持当前输出状态并结束,在所述驱动力不满足需求的情况下,返回执行所述控制器组件根据控制信息获取驱动扭矩和驱动功率的操作。
  8. 根据权利要求7所述的车辆动力控制方法,还包括:
    在所述车辆所需的所述驱动功率小于所述动力电池(9)的放电功率限值,且所述动力电池(9)的荷电状态大于预设最低限值的情况下,所述控制器组件控制所述车辆进入所述纯电驱动模式;
    在所述车辆所需的所述驱动功率大于所述动力电池(9)的放电功率限制,或所述动力电池(9)的荷电状态不大于所述预设最低限值的情况下,所述控制器组件控制所述发动机(1)启动;
    在所述车辆的当前车速小于所述发动机(1)在发动机直驱模式下的最小车速的情况下,所述控制器组件控制所述车辆进入所述串联驱动模式,在所述车 辆的当前车速不小于所述发动机(1)在所述发动机直驱模式下的最小车速的情况下,所述控制器组件控制所述车辆进入所述发动机直驱模式。
  9. 根据权利要求8所述的车辆动力控制方法,还包括:
    在所述控制器组件判断所述车辆能够进入所述发动机直驱模式,且所述控制器组件判断所述车辆进入所述发动机直驱模式的经济性优于所述车辆进入所述串联驱动模式的经济性的情况下,所述控制器组件控制所述车辆进入所述发动机直驱模式;
    在所述控制器组件判断所述车辆能够进入所述发动机直驱模式,且所述控制器组件判断所述车辆进入所述串联驱动模式的经济性优于所述车辆进入所述发动机直驱模式的经济性的情况下,所述控制器组件控制所述车辆进入所述串联驱动模式。
  10. 根据权利要求7所述的车辆动力控制方法,其中,所述控制器组件根据第三控制信息控制所述车辆进入四驱状态、前驱状态或后驱状态,包括:
    所述控制器组件根据驾驶员所选择的所述四驱状态、所述前驱状态和所述后驱状态中的一个,控制所述第二离合器(5)和所述第三离合器(6)的断开和接合。
PCT/CN2021/133086 2020-12-28 2021-11-25 纵置车辆动力总成及车辆动力控制方法 WO2022142897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011583469.4A CN112659879B (zh) 2020-12-28 2020-12-28 一种纵置车辆动力总成及车辆动力控制方法
CN202011583469.4 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022142897A1 true WO2022142897A1 (zh) 2022-07-07

Family

ID=75411284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133086 WO2022142897A1 (zh) 2020-12-28 2021-11-25 纵置车辆动力总成及车辆动力控制方法

Country Status (2)

Country Link
CN (1) CN112659879B (zh)
WO (1) WO2022142897A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112659879B (zh) * 2020-12-28 2022-05-13 中国第一汽车股份有限公司 一种纵置车辆动力总成及车辆动力控制方法
CN112693299A (zh) * 2021-03-12 2021-04-23 三一重型装备有限公司 动力系统、动力系统控制方法和车辆
DE102021111351B4 (de) 2021-05-03 2023-04-20 Schaeffler Technologies AG & Co. KG Hybridgetriebe sowie Antriebsstrang mit Hybridgetriebe
CN113263903A (zh) * 2021-06-29 2021-08-17 奇瑞汽车股份有限公司 车辆混合动力总成、控制方法及车辆
CN113335047A (zh) * 2021-08-05 2021-09-03 北京明正维元电机技术有限公司 一种轴向双电机双离合双速比电动车动力总成及电动汽车
CN115257342B (zh) * 2022-08-31 2024-05-17 中国第一汽车股份有限公司 双电机混合动力系统及具有其的车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380887A (zh) * 2008-10-23 2009-03-11 上海交通大学 含有驱动电机工作模式切换装置的混合动力轿车驱动系统
CN202180738U (zh) * 2011-06-30 2012-04-04 长城汽车股份有限公司 汽车混合动力系统
WO2015141908A1 (ko) * 2014-03-21 2015-09-24 강명구 하이브리드 차량의 동력전달장치
CN107225956A (zh) * 2016-03-24 2017-10-03 长城汽车股份有限公司 动力系统
JP2020029195A (ja) * 2018-08-23 2020-02-27 トヨタ自動車株式会社 ハイブリッド車両
CN111674255A (zh) * 2020-06-17 2020-09-18 中国第一汽车股份有限公司 一种混合动力车辆的驱动装置及混合动力车辆
CN111823854A (zh) * 2019-04-22 2020-10-27 广州汽车集团股份有限公司 四驱系统及车辆
CN112659879A (zh) * 2020-12-28 2021-04-16 中国第一汽车股份有限公司 一种纵置车辆动力总成及车辆动力控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209667A (zh) * 2006-12-25 2008-07-02 比亚迪股份有限公司 混合动力输出装置
CN105644335B (zh) * 2014-11-14 2020-02-28 上海汽车集团股份有限公司 车辆用双电机动力系统和双电机混合动力系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380887A (zh) * 2008-10-23 2009-03-11 上海交通大学 含有驱动电机工作模式切换装置的混合动力轿车驱动系统
CN202180738U (zh) * 2011-06-30 2012-04-04 长城汽车股份有限公司 汽车混合动力系统
WO2015141908A1 (ko) * 2014-03-21 2015-09-24 강명구 하이브리드 차량의 동력전달장치
CN107225956A (zh) * 2016-03-24 2017-10-03 长城汽车股份有限公司 动力系统
JP2020029195A (ja) * 2018-08-23 2020-02-27 トヨタ自動車株式会社 ハイブリッド車両
CN111823854A (zh) * 2019-04-22 2020-10-27 广州汽车集团股份有限公司 四驱系统及车辆
CN111674255A (zh) * 2020-06-17 2020-09-18 中国第一汽车股份有限公司 一种混合动力车辆的驱动装置及混合动力车辆
CN112659879A (zh) * 2020-12-28 2021-04-16 中国第一汽车股份有限公司 一种纵置车辆动力总成及车辆动力控制方法

Also Published As

Publication number Publication date
CN112659879A (zh) 2021-04-16
CN112659879B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022142897A1 (zh) 纵置车辆动力总成及车辆动力控制方法
CN101445047B (zh) 一种全轮驱动混合动力汽车驱动系统
CN203962884U (zh) 用于混合动力车的双离合变速器系统及装设其的汽车
CN106994893B (zh) 双行星排多模混合动力车辆驱动系统
CN106627097B (zh) 双行星排双模功率分流式混合动力系统
CN106314126B (zh) 机电集成混合动力系统及混合动力汽车
WO2019154077A1 (zh) 混合动力驱动系统及车辆
CN205395752U (zh) 一种并联式混合动力驱动系统及汽车
CN210454447U (zh) 一种双离合器控制的平行轴式混合动力系统
CN111361406B (zh) 一种汽车混合动力系统的控制方法
WO2019227823A1 (zh) 一种机电耦合变速箱的模式选择控制方法及装置
CN111845706B (zh) 一种功率分流式混合动力汽车驱动系统及其控制方法
CN102897015A (zh) 采用双离合变速器的混合动力客车驱传动系统
CN213082896U (zh) 一种混合动力驱动系统及车辆
CN111469649A (zh) 一种混合动力驱动系统、控制方法及车辆
CN205439958U (zh) 四挡混合动力系统及混合动力汽车
CN213619314U (zh) 一种车辆混动系统
WO2024046083A1 (zh) 双电机混合动力系统及具有其的车辆
CN111688470B (zh) 一种串并联构型插电式混合动力系统及其控制方法
CN115648923A (zh) 混合动力系统及其控制方法与车辆
CN206983714U (zh) 一种串联式插电混合动力汽车驱动系统
CN108045215B (zh) 一种适用于混合动力公交的双行星排驱动装置
WO2016065672A1 (zh) 纯电动汽车的驱动系统和方法
CN203186070U (zh) 双轴四轮驱动混合动力系统
CN101462482A (zh) 新型双电机混联混合动力总成构型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913639

Country of ref document: EP

Kind code of ref document: A1