WO2016065672A1 - 纯电动汽车的驱动系统和方法 - Google Patents

纯电动汽车的驱动系统和方法 Download PDF

Info

Publication number
WO2016065672A1
WO2016065672A1 PCT/CN2014/090807 CN2014090807W WO2016065672A1 WO 2016065672 A1 WO2016065672 A1 WO 2016065672A1 CN 2014090807 W CN2014090807 W CN 2014090807W WO 2016065672 A1 WO2016065672 A1 WO 2016065672A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
motor
speed
vehicle
electric vehicle
Prior art date
Application number
PCT/CN2014/090807
Other languages
English (en)
French (fr)
Inventor
吴雄良
陈宏德
倪政校
Original Assignee
上海惠太多元新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海惠太多元新能源科技有限公司 filed Critical 上海惠太多元新能源科技有限公司
Publication of WO2016065672A1 publication Critical patent/WO2016065672A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of pure electric vehicles, and more particularly to a drive system and method for a pure electric vehicle.
  • gasoline As an important means of transport for modern people, cars have a large amount of possession throughout the world.
  • the energy that cars traditionally use is gasoline or diesel. Since both gasoline and diesel come from non-renewable resources such as petroleum, and emit various carbon pollutants such as carbon monoxide, hydrocarbons, nitrogen oxides, and sulfur dioxide during combustion, people have been hoping to replace gasoline with other cleaner energy sources. And diesel.
  • a pure electric vehicle is one of the new energy vehicles. It only needs to use electricity without using gasoline or diesel.
  • the electric drive mode commonly used in pure electric vehicles is driven by a fixed speed reducer and a differential.
  • the motor operates under a constant speed ratio drive. Due to the different torque requirements of complex working conditions, the constant speed ratio driving method outputs different torques by changing the motor speed. For example, for large torques, the motor needs to increase the speed to achieve, while increasing the speed requires the battery to discharge at a higher current.
  • most conventional hybrid vehicles generally have an internal combustion engine and match the corresponding transmission. It is considered that the operating efficiency of the engine at different speeds and loads is very different.
  • the engine can be operated in the high efficiency zone, and the efficiency improvement is obviously greater than the efficiency reduction of the transmission system brought by the additional transmission, thereby improving the overall efficiency of the vehicle powertrain and improving the overall fuel economy of the vehicle.
  • the efficiency of the high-efficiency area of the motor can reach more than 95%, and the efficiency of the inefficient area can reach more than 70%. Therefore, the efficiency of the motor in its efficiency field is not as obvious as that of the engine, and the ratio of the high-efficiency area is much higher than that of the engine. The proportion of the area, so that pure electric vehicles are not very necessary to install the transmission.
  • the known constant speed ratio driving method has a serious drawback by changing the motor speed to output different torques.
  • the motor needs to increase the speed to achieve.
  • Increasing the speed requires the battery to discharge at a higher current, which can easily damage the battery.
  • the consequences of this approach include: the motor is hot, the use efficiency is reduced; the limited and precious battery pack capacity is drastically reduced, and the peak high current discharge causes the battery to rise sharply, and the temperature rise causes the internal resistance of the cell to increase sharply.
  • the impact is large; the number of charging cycles is rapidly reduced, the storage capacity and battery life are sharply reduced, and the discharge duration is decreased, which does not meet the discharge characteristics of the power battery pack.
  • the technical problem to be solved by the present invention is to provide a drive system and method for a pure electric vehicle, which can reduce the power consumption and damage of the battery.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide a driving system for a pure electric vehicle, including a motor driver, a brushless DC motor, a continuously variable transmission, a vehicle controller, a motor controller, and a variable speed controller.
  • the motor driver is electrically connected to the brushless DC motor, and an output shaft of the brushless DC motor is connected to an input end of the continuously variable transmission, and an output end of the continuously variable transmission is connected to an axle of the driving wheel;
  • the brushless DC motor is internally provided
  • the signal input of the motor driver is connected to the motor controller a control signal output end;
  • the signal input end of the vehicle controller is connected to the accelerator pedal main drive signal output end of the pure electric vehicle;
  • the continuously variable transmission is provided with a second group of sensors respectively for measuring at least some of the following parameters : Clutch, active and driven wheel speed and pressure, gear position switch, input of the shift controller
  • the second set of pass a sensor, an output of the shift controller is connected to a shift actuator input of the continuously variable transmission;
  • the operating conditions include start, normal travel, slow speed, medium speed, fast, uphill, and ramp start.
  • the first set of sensors also measures the following parameters: temperature.
  • the second set of sensors also measures the following parameters: oil pressure, oil temperature.
  • the brushless DC motor has a rotational speed of 0-3500 rpm/min.
  • each working condition corresponds to a different gear position
  • the maximum gear ratio is 0-10 km/h.
  • the minimum speed ratio is 60km/h.
  • the forward and reverse shift response speed is less than 0.3 s.
  • the invention also provides a driving method for a pure electric vehicle, which is suitable for a driving system, which comprises a motor driver, a brushless DC motor, a continuously variable transmission, a vehicle controller, a motor controller, and a variable speed controller, wherein
  • the motor driver is electrically connected to the brushless DC motor, and an output shaft of the brushless DC motor is connected to an input end of the continuously variable transmission, and an output end of the continuously variable transmission is connected to an axle of the driving wheel;
  • the brushless DC motor is provided a first group of sensors for measuring at least some of the following parameters: speed, voltage, current, torque, the input of the motor controller is connected to the first group of sensors;
  • the signal input of the motor driver is connected to the motor controller a control signal output end;
  • the signal input end of the vehicle controller is connected to the accelerator pedal main drive signal output end of the pure electric vehicle;
  • the continuously variable transmission is provided with a second group of sensors respectively for measuring at least some of the following parameters: Clutch, active and driven wheel speed and
  • the operating conditions include start, normal travel, slow speed, medium speed, fast, uphill, and ramp start.
  • each working condition corresponds to a different gear position
  • the maximum gear ratio is 0-10 km/h.
  • the minimum speed ratio is 60km/h.
  • the invention adopts the above technical solution, so that compared with the prior art, since the continuously variable transmission amplifies the output torque of the motor in all working conditions, the energy-saving driving makes the motor always work in the optimal high-efficiency torque region, It completely eliminates the driving mode and working state of the motor with peak power, peak torque, peak high current, high speed and high energy consumption, thereby improving the economy and power of the whole vehicle.
  • FIG. 1 shows a pure electric vehicle drive system assembly in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a driving method of an embodiment of the present invention.
  • the following embodiments of the present invention describe a drive system and method for a pure electric vehicle that can reduce the power consumption of the battery.
  • Pure electric vehicles are mainly used for urban traffic.
  • the vehicles are in the working state of starting, accelerating and braking most of the time, so the starting performance, starting torque, starting current, acceleration, efficiency at low speed, braking of the electric drive assembly
  • the energy regenerative capacity during taxiing, the overload capability of the electric drive assembly, and the energy-saving drive under full operating conditions are extremely important evidences and indicators for measuring the maturity of electric vehicle technology development.
  • the electric motor of a pure electric vehicle is known to operate at a constant speed ratio drive. Although the torque requirements of the complex conditions are different, since the motor can output different torques as needed, it is generally considered that the constant speed ratio drive is more suitable for pure electric vehicles.
  • the constant speed ratio drive mode is to output different torques by changing the motor speed.
  • a pure electric vehicle drive system using a continuously variable transmission and Its driving method.
  • the pure electric vehicle driving system and method according to the embodiment of the present invention meets both the discharge characteristics of the battery pack and the load characteristics of the vehicle, and also conforms to the power and economy of the entire vehicle.
  • a drive system 100 for a pure electric vehicle includes a motor driver 110, a brushless DC motor 120, a continuously variable transmission 130, a battery pack 140, a distribution box 150, a motor controller (MCU) 161, and a battery.
  • BMS Battery Management System
  • VCU vehicle controller
  • ABS anti-lock Braking System
  • TCU shift controller
  • the power supply output end of the battery pack 140 is connected to the input end of the power distribution box 150 via an insulated high voltage wire, and the output end of the power distribution box is connected to the input end of the motor driver 110 via an insulated high voltage wire.
  • the motor driver 110 is electrically connected to the brushless DC motor 120.
  • the high voltage input of the brushless DC motor 120 corresponds to the high voltage output of the motor driver 110 and is connected via an insulated high voltage conductor.
  • the output shaft of the brushless DC motor 120 is coupled to the input of the continuously variable transmission 130, and the output of the continuously variable transmission 130 is coupled to the axle of the drive wheel.
  • the output shaft of the brushless DC motor 120 is splined into the input of the continuously variable transmission 130.
  • the motor mount of the brushless DC motor 120 can be bolted into a corresponding threaded bore of the housing of the transmission 130.
  • the characteristics of the brushless DC motor 120 are low speed/high torque (0-3500 rpm/min).
  • the continuously variable transmission 130 may be a metal belt type continuously variable transmission.
  • the internal structure of the continuously variable transmission 130 may include a flywheel 131, a torque converter 132, a high pressure oil pump 133, a clutch 134, a drive and driven wheel combination 135, a shift actuator 136, a final drive 137, and a differential Speed 138.
  • the output shaft of the brushless DC motor 120 is concentrically fixed to the lands of the torque converter 132.
  • the spline sleeves at both ends of the drive output hole of the continuously variable transmission 130 are inserted and fixed relative to the left and right half shafts.
  • the outer spline shafts at the outer ends of the left and right axles are respectively inserted into the inner spline sleeves at the center of the left and right drive wheels.
  • a first set of sensors for measuring the following parameters may be provided in the brushless DC motor 120: temperature, speed, voltage, current, and torque. It will be appreciated that these parameters may be selected in part or in whole as desired.
  • the continuously variable transmission 130 is provided with a second group of sensors (not shown) for measuring the following parameters: oil pressure, oil temperature, clutch, active and driven wheel speed and pressure, and gear position switch. It will be appreciated that these parameters may be selected in part or in whole as desired.
  • the input of the motor controller 161 is coupled to a first set of sensors within the brushless DC motor 120 to obtain various parameters of the desired motor.
  • the control signal output of one of the motor controllers 161 is coupled to the signal input of the motor driver 110.
  • the motor driver 110 is controlled by the program management of the motor controller 161.
  • the signal input end of the vehicle controller 163 is connected to the main drive signal output end of the accelerator pedal of the pure electric vehicle.
  • the input of the ABS controller 164 is in communication with the brake pedal brake signal output via a wire.
  • An input of the shift controller 165 is coupled to the second set of sensors.
  • An output of the shifting controller 165 is coupled to an input of a shift actuator 136 of the continuously variable transmission 130.
  • the motor controller 161, the vehicle controller 163, the shift controller 165, and the ABS controller 164 are connected via an in-vehicle communication bus.
  • the vehicle communication bus is, for example, a field bus (CAN bus).
  • the vehicle controller 163 simultaneously obtains the ABS vehicle speed signal, the accelerator pedal main drive signal, the brake signal, and the motor speed in real time through the vehicle bus bidirectional communication with the shift controller 165, the motor controller 161, and the ABS controller 164. And the signal parameter such as the load current, the vehicle controller 163 determines the operating condition of the pure electric vehicle according to the information parameter, and the gear ratio and the variable torque corresponding to the working condition, and instructs the shift controller 165 to control the shift actuator 136. carried out.
  • the signal parameter such as the load current
  • the vehicle controller 163 simultaneously obtains the ABS vehicle speed signal, the accelerator pedal main drive signal, the brake signal, and the motor speed in real time through the vehicle bus bidirectional communication with the shift controller 165, the motor controller 161, and the ABS controller 164. And the signal parameters such as load current, the vehicle controller 163 can make the shift point (speed) and the vehicle speed (km/h) within the speed ratio range according to the ABS vehicle speed signal, and real-time dynamic servo speed ratio variable torque in all working conditions.
  • various operating conditions may include start, normal, slow, medium, fast, uphill, ramp start, and the like.
  • the gear ratio of the car is the maximum gear ratio, which corresponds to the vehicle speed of 0-10km/h; the ten gear is the minimum gear ratio, corresponding to the vehicle speed of 60km/h.
  • the other shifting points (speeds) can be correspondingly divided according to the speed value, and the gears are sequentially moved.
  • the vehicle speed value corresponding to the reverse gear is smaller than the forward speed value.
  • the forward and reverse shift response speed is less than 0.3s. Therefore, the intelligent self-learning cycle ratio control is realized.
  • the vehicle controller 163 is connected to the motor controller 161, the variable speed controller 165, the ABS controller 164, and the BMS 162 via the vehicle communication bus vehicle network, and performs its own functions and coordinated real-time control to realize two-way exchange communication and resource sharing of internal data. .
  • the vehicle controller 163 can be operated in real time according to the characteristics of the motor.
  • the dynamic matching output is matched, and the torque is changed by the continuously variable transmission 130 to make the motor work in the optimal cost-effective speed/torque region to enhance the torque and efficiency of the motor drive assembly.
  • the continuously variable transmission 130 that is servo-matched and controlled by the vehicle controller 163, the motor controller 161, and the shift controller 165 amplifies the output of the motor in all operating conditions.
  • Moment, energy-saving drive so that the motor always works in the best high-efficiency torque zone, completely eliminates the motor's peak power, peak torque, peak high current, high-speed and high-energy driving mode and working state, thus improving the economy of the whole vehicle. And dynamic.
  • the driving method of the embodiment of the present invention includes the following steps:
  • Step 21 The vehicle controller 163 simultaneously obtains the ABS vehicle speed signal, the accelerator pedal main drive signal, the brake signal, the motor speed, and the real-time bidirectional communication with the shift controller 165, the motor controller 161, and the ABS controller 162 via the vehicle bus. a set of signal parameters such as load current;
  • Step 22 The vehicle controller 163 determines the operating condition of the pure electric vehicle according to the set of signal parameters, and the gear ratio and the variable torque corresponding to the working condition, and instructs the shifting controller 165 to control the shifting actuator 136 to execute.
  • the average energy consumption of the energy-saving range is 0.10 to 0.12 kwh/km, that is, 10 to 12 kwh/100 km.
  • the driving method of comparing the fixed reduction ratio has a positive effect of comprehensively saving electric energy of more than 25% to 50% under the operating conditions of all working conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种纯电动汽车的驱动系统(100),包括电机驱动器(110)、无刷直流电机(120)、无级变速器(130)、整车控制器(163)、电机控制器(161)、以及变速控制器(165),该无刷直流电机(120)内设有分别用以测量以下至少部分参数的第一组传感器:转速、电压、电流、转矩,该电机控制器(161)的输入端连接该第一组传感器;该无级变速器(130)内设有分别用以测量以下至少部分参数的第二组传感器:离合、主动和从动轮转速和压力、档位位置开关,该整车控制器(163)实时获得包含ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流的一组参数,根据该组参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令该变速控制器(165)控制该换档执行器(136)执行。

Description

纯电动汽车的驱动系统和方法 技术领域
本发明涉及纯电动汽车领域,尤其是涉及纯电动汽车的驱动系统和方法。
背景技术
汽车作为现代人的重要交通工具,在全世界有很大的保有量。汽车传统上使用的能源为汽油或者柴油。由于汽油和柴油均来自石油这样的不可再生资源,而且在燃烧时会排放一氧化碳、碳氢化合物、氮氧化合物、二氧化硫等各种气体污染物,人们一直希望能够以其他更为清洁的能源代替汽油和柴油。纯电动汽车就是其中的一种新能源汽车,它仅需使用电能,而无需使用汽油或柴油。
随着电池技术的持续进步,近年来已经出现了商业化的纯电动汽车。然而目前纯电动汽车仍然面临许多影响普及的问题。例如,因电池容量的限制,纯电动汽车的续航里程较短,引起所谓“里程焦虑”问题。在电池技术暂时难以逾越的瓶颈下,如何提高电能的使用效率,成为纯电动汽车领域的一个重要课题。
目前纯电动汽车普遍采用的电驱动方式是由电机驱动固定减速器和差速器。根据这一驱动方式,电机在恒速比驱动下运行。由于复杂工况对转矩的要求不同,恒速比驱动方式是通过改变电机转速来输出不同转矩的。举例来说,对于大转矩,需要电机增大转速来实现,而增大转速需要电池在更大的电流下放电。
尽管已经认识到纯电动汽车不采用变速器可能的缺点,例如车辆的加速时间和最高车速性能往往相互制约。但是通常认为通过合理设计电机特性曲线,匹配减速器减速比,大部分纯电动汽车最高车速也可以设计在时速150公里以上,基本上能够满足市场需求。由此得出从性能角度来看,纯电动车没有必要加装变速器的观点。
具体来说,大部分常规混合动力汽车一般加装内燃机并匹配相应的变速器,是认为发动机在不同转速、负荷下的工作效率差别很大。通过加装变速器, 可以使发动机工作在高效区,其效率提高的幅度明显大于加装变速器带来传动系统效率降低幅度,从而使车辆动力传动系统总体效率提高,提高车辆燃油经济性总体水平。但是同时也注意到电动机高效区效率可达到95%以上,而其低效区效率也可以达到70%以上,因此电动机在其效率场内效率变化没有发动机那么明显,其高效区比例远大于发动机高效区比例,从而认为纯电动汽车不是非常必要加装变速器。
然而实践中发现已知恒速比驱动方式通过改变电机转速来输出不同扭矩的做法存在着严重的弊端。对于大转矩来说,需要电机增大转速来实现。增大转速需要电池在更大的电流下放电,这容易对电池造成损害。极端情况下,需要利用电机峰值功率和峰值扭矩和峰值大电流驱动电机材能获得相应的转矩以满足实际工况的需要。这种做法造成的后果包括:电机发热,使用效率下降;使有限并珍贵的电池组电容量急剧下降,同时峰值大电流放电使电池急剧升温、升温引起电芯内阻急剧增大,电池受到极大的冲击;充电循环次数快速减少、蓄电容量和电芯寿命锐减、放电持续时间下降,不符合动力电池组的放电特性。
发明内容
本发明所要解决的技术问题是提供一种纯电动汽车的驱动系统和方法,可以减少电池的电量消耗和所受损害。
本发明为解决上述技术问题而采用的技术方案是提出一种纯电动汽车的驱动系统,包括电机驱动器、无刷直流电机、无级变速器、整车控制器、电机控制器、以及变速控制器,其中,该电机驱动器电连接该无刷直流电机,该无刷直流电机的输出轴连接该无级变速器的输入端,该无级变速器的输出端连接驱动轮的轮轴;该无刷直流电机内设有分别用以测量以下至少部分参数的第一组传感器:转速、电压、电流、转矩,该电机控制器的输入端连接该第一组传感器;该电机驱动器的信号输入端连接该电机控制器的控制信号输出端;该整车控制器的信号输入端与该纯电动汽车的加速踏板主驱动信号输出端连接;该无级变速器内设有分别用以测量以下至少部分参数的第二组传感器:离合、主动和从动轮转速和压力、档位位置开关,该变速控制器的输入端连接该第二组传 感器,该变速控制器的输出端与该无级变速器的换档执行器输入端连接;该整车控制器、电机控制器、变速控制器以及纯电动汽车的ABS控制器经车载通信总线相连;其中整车控制器同时和该变速控制器、该电机控制器及ABS控制器通过车载总线双向通信实时获得包含ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流的一组参数,根据该组参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令该变速控制器控制该换档执行器执行。
在本发明的一实施例中,该工况包括启动、正常行驶、慢速、中速、快速、上坡、坡道起步。
在本发明的一实施例中,该第一组传感器还测量以下参数:温度。
在本发明的一实施例中,该第二组传感器还测量以下参数:油压、油温。
在本发明的一实施例中,该无刷直流电机的转速为0-3500rmp/min。
在本发明的一实施例中,各个工况对应不同的档位,最大变速比0-10km/h。最小变速比为60km/h的车速。
在本发明的一实施例中,进、退换档响应速度为小于0.3s。
本发明还提出一种纯电动汽车的驱动方法,适用于一驱动系统,该驱动系统包括电机驱动器、无刷直流电机、无级变速器、整车控制器、电机控制器、以及变速控制器,其中,该电机驱动器电连接该无刷直流电机,该无刷直流电机的输出轴连接该无级变速器的输入端,该无级变速器的输出端连接驱动轮的轮轴;该无刷直流电机内设有分别用以测量以下至少部分参数的第一组传感器:转速、电压、电流、转矩,该电机控制器的输入端连接该第一组传感器;该电机驱动器的信号输入端连接该电机控制器的控制信号输出端;该整车控制器的信号输入端与该纯电动汽车的加速踏板主驱动信号输出端连接;该无级变速器内设有分别用以测量以下至少部分参数的第二组传感器:离合、主动和从动轮转速和压力、档位位置开关,该变速控制器的输入端连接该第二组传感器,该变速控制器的输出端与该无级变速器的换档执行器输入端连接;该整车控制器、电机控制器、变速控制器以及纯电动汽车的ABS控制器经车载通信总线相连,该方法包括:利用该整车控制器同时和该变速控制器、该电机控制器及ABS控制器通过车载总线双向通信实时获得包含ABS车速信号、加速踏板主驱动信 号、制动信号、电机转速和负载电流的一组参数,根据该组参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令该变速控制器控制该换档执行器执行。
在本发明的一实施例中,该工况包括启动、正常行驶、慢速、中速、快速、上坡、坡道起步。
在本发明的一实施例中,各个工况对应不同的档位,最大变速比0-10km/h。最小变速比为60km/h的车速。
本发明由于采用以上技术方案,使之与现有技术相比,由于无级变速器在全工况内放大了电机的输出转矩,节能驱动,使电机始终工作在最佳高效转矩区内,彻底杜绝克服了电机以峰值功率、峰值扭矩、峰值大电流高速高能耗的驱动方式和工作状态,从而提高了整车经济性和动力性。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1示出本发明一实施例的纯电动汽车驱动系统总成。
图2示出本发明一实施例的驱动方法流程图。
本发明的最佳实施方式
本发明的下述实施例描述一种纯电动汽车的驱动系统和方法,可以减少电池的电量消耗。
纯电动汽车主要用于城市交通,车辆大部分时间处于启动、加速、制动的工作状态,因此电驱动总成的起步性能、启动转矩、启动电流、加速性、低速时的效率、制动及滑行时的能量再生能力、电驱动总成的过载能力,和全工况节能驱动是衡量电动汽车技术发展成熟度的极为重要的依据和标志。
已知纯电动汽车的电机是在恒速比驱动下运行。尽管复杂工况对转矩的要求不同,但由于电机可以根据需要输出不同扭矩,因此通常认为恒速比驱动是更适合于纯电动汽车的。恒速比驱动方式是通过改变电机转速来输出不同转矩的。
根据本发明的实施例,提出一种使用无级变速器的纯电动汽车驱动系统及 其驱动方法。根据本发明的实施例所提出纯电动车驱动系统和方法,它既符合电池组的放电特性,又符合车辆负载特性,还符合整车的动力性和经济性。
图1示出本发明一实施例的纯电动汽车驱动系统总成。参考图1所示,一种纯电动汽车的驱动系统100,包括电机驱动器110、无刷直流电机120、无级变速器130、电池组140、配电箱150、电机控制器(MCU)161、电池管理系统(Battery Management System,BMS)162、整车控制器(VCU)163、防抱死(Anti-lock Braking System,ABS)164以及变速控制器(TCU)165。
电池组140的供电输出端与配电箱150的输入端经绝缘高压导线相连通,配电箱的输出端与电机驱动器110的输入端经绝缘高压导线相连通。
电机驱动器110电连接无刷直流电机120。举例来说,无刷直流电机120的高压输入端和电机驱动器110的高压输出端相对应,经绝缘高压导线相连通。
无刷直流电机120的输出轴连接无级变速器130的输入端,无级变速器130的输出端连接驱动轮的轮轴。在一实施例中,无刷直流电机120的输出轴通过花键插入无级变速器130的输入端。无刷直流电机120的电机座可由螺栓固接在变速器130的外壳对应的螺纹孔内。
在一实施例中,无刷直流电机120的特性为低转速/大扭矩(0-3500rmp/min)。
在一实施例中,无级变速器130可以是金属带式无级变速器。无级变速器130的内部结构如图1所示,可包括飞轮131、变矩器132、高压油泵133、离合器134、主动轮和从动轮组合135、换档执行器136、主减速器137和差速器138。无刷直流电机120的输出轴与变矩器132的连接盘同心固接为一体。
无级变速器130的驱动输出孔两端内的花键套与左右两根半轴相对插入固接。左右半轴外端外花键轴分别插入左右驱动轮中心的内花键套内紧固。
无刷直流电机120内可设有分别用以测量以下参数的第一组传感器(图中未示):温度、转速、电压、电流、以及转矩。可以理解,这些参数可以根据需要来选定一部分或者全部。
无级变速器130内设有分别用以测量以下参数的第二组传感器(图中未示):油压、油温、离合、主动和从动轮转速和压力、档位位置开关。可以理解,这些参数可以根据需要来选定一部分或者全部。
电机控制器161的输入端连接无刷直流电机120内的第一组传感器,以获取所需的电机的各种参数。电机控制器161的一个的控制信号输出端则连接电机驱动器110的信号输入端。电机驱动器110受电机控制器161的程序管理控制。
整车控制器163的信号输入端与纯电动汽车的加速踏板的主驱动信号输出端连接。ABS控制器164的输入端与刹车踏板制动信号输出端经导线相连通。变速控制器165的输入端连接第二组传感器。变速控制器165的输出端与无级变速器130的换档执行器136的输入端连接。
电机控制器161、整车控制器163、变速控制器165以及ABS控制器164经车载通信总线相连。车载通信总线例如是现场总线(CAN总线)。
根据一实施例,由整车控制器163同时和变速控制器165、电机控制器161及ABS控制器164通过车载总线双向通信实时获得ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流等信号参数,整车控制器163根据该信息参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令变速控制器165控制换档执行器136执行。
更具体地说,整车控制器163同时和变速控制器165、电机控制器161及ABS控制器164通过车载总线双向通信实时获得包含ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流等信号参数,整车控制器163可以根据ABS车速信号使变速点(档)与车速(km/h)在变速比范围内,全工况实现实时动态伺服变速比变扭矩。作为举例而非限制,各种工况可包括启动、正常行驶、慢速、中速、快速、上坡、坡道起步等。
另外,需要设定汽车在各种工况下变速比。举例来说,1档为最大变速比,对应0-10km/h的车速;10档为最小变速比,对应为60km/h的车速。其余的变速点(档)可以按车速值等分相对应,依序进档。退档对应的车速值小于进档车速值。举例来说,进、退换档响应速度为小于0.3s。因此,实现了智能自学习循环变速比控制。
整车控制器163经车载通信总线车载网络与电机控制器161、变速控制器165、ABS控制器164、BMS 162相连通,各司其职,协同实时控制,实现内部数据双向交换通信和资源共享。整车控制器163可以根据电机外特性实时伺 服动态匹配输出,通过无级变速器130变速比变扭矩,使电机工作在最佳经济高效转速/转矩区内,以达到增强电机驱动总成的转矩和效率。换句话说,在满足整车动力性要求的前提下,由整车控制器163、电机控制器161、变速控制器165伺服匹配控制的无级变速器130在全工况内放大了电机的输出转矩,节能驱动,使电机始终工作在最佳高效转矩区内,彻底杜绝克服了电机以峰值功率、峰值扭矩、峰值大电流高速高能耗的驱动方式和工作状态,从而提高了整车经济性和动力性。
图2示出本发明一实施例的驱动方法流程图。参考图2所示,从另一个角度看,本发明实施例的驱动方法包括以下步骤:
步骤21,由整车控制器163同时和变速控制器165、电机控制器161及ABS控制器162通过车载总线双向通信实时获得包含ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流等的一组信号参数;
步骤22,整车控制器163根据该组信号参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令变速控制器165控制换档执行器136执行。
试验证明,采用本发明的上述实施例,节能增程平均能耗为0.10~0.12kwh/km,即10~12kwh/100公里左右。采用本发明的技术方案比对固定减速比的驱动方法,在全工况运行条件下,具有综合节省电能大于25%~50%的积极效果。

Claims (10)

  1. 一种纯电动汽车的驱动系统,包括电机驱动器、无刷直流电机、无级变速器、整车控制器(VCU)、电机控制器(MCU)、以及变速控制器(TCU),其中,
    该电机驱动器电连接该无刷直流电机,该无刷直流电机的输出轴连接该无级变速器的输入端,该无级变速器的输出端连接驱动轮的轮轴;
    该无刷直流电机内设有分别用以测量以下至少部分参数的第一组传感器:转速、电压、电流、转矩,该电机控制器的输入端连接该第一组传感器;
    该电机驱动器的信号输入端连接该电机控制器的控制信号输出端;
    该整车控制器的信号输入端与该纯电动汽车的加速踏板主驱动信号输出端连接;
    该无级变速器内设有分别用以测量以下至少部分参数的第二组传感器:离合、主动和从动轮转速和压力、档位位置开关,该变速控制器的输入端连接该第二组传感器,该变速控制器的输出端与该无级变速器的换档执行器输入端连接;
    该整车控制器、电机控制器、变速控制器以及纯电动汽车的ABS控制器经车载通信总线相连,
    其中该整车控制器同时和该变速控制器、该电机控制器及ABS控制器通过车载总线双向通信实时获得包含ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流的一组参数,根据该组参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令该变速控制器控制该换档执行器执行。
  2. 如权利要求1所述的纯电动汽车的驱动系统,其特征在于,该工况包括启动、正常行驶、慢速、中速、快速、上坡、坡道起步。
  3. 如权利要求1所述的纯电动汽车的驱动系统,其特征在于,该第一组传感器还测量以下参数:温度。
  4. 如权利要求1所述的纯电动汽车的驱动系统,其特征在于,该第二组传感器还测量以下参数:油压、油温。
  5. 如权利要求1所述的纯电动汽车的驱动系统,其特征在于,该无刷直 流电机的转速为0-3500rmp/min。
  6. 如权利要求1所述的纯电动汽车的驱动系统,其特征在于,各个工况对应不同的档位,最大变速比0-10km/h。最小变速比为60km/h的车速。
  7. 如权利要求6所述的纯电动汽车的驱动系统,其特征在于,进、退换档响应速度为小于0.3s。
  8. 一种纯电动汽车的驱动方法,适用于一驱动系统,该驱动系统包括电机驱动器、无刷直流电机、无级变速器、整车控制器、电机控制器、以及变速控制器,其中,该电机驱动器电连接该无刷直流电机,该无刷直流电机的输出轴连接该无级变速器的输入端,该无级变速器的输出端连接驱动轮的轮轴;该无刷直流电机内设有分别用以测量以下至少部分参数的第一组传感器:转速、电压、电流、转矩,该电机控制器的输入端连接该第一组传感器;该电机驱动器的信号输入端连接该电机控制器的控制信号输出端;该整车控制器的信号输入端与该纯电动汽车的加速踏板主驱动信号输出端连接;该无级变速器内设有分别用以测量以下至少部分参数的第二组传感器:离合、主动和从动轮转速和压力、档位位置开关,该变速控制器的输入端连接该第二组传感器,该变速控制器的输出端与该无级变速器的换档执行器输入端连接;该电机控制器、整车控制器、变速控制器以及纯电动汽车的ABS控制器经车载通信总线相连,该方法包括:
    由该整车控制器同时和该变速控制器、该电机控制器及ABS控制器通过车载总线双向通信实时获得包含ABS车速信号、加速踏板主驱动信号、制动信号、电机转速和负载电流的一组参数,根据该组参数确定该纯电动汽车所处的工况,及该工况对应的变速比和变扭矩,指令该变速控制器控制该换档执行器执行。
  9. 如权利要求8所述的驱动方法,该工况包括启动、正常行驶、慢速、中速、快速、上坡、坡道起步。
  10. 如权利要求9所述的纯电动汽车的驱动系统,其特征在于,各个工况对应不同的档位,最大变速比0-10km/h。最小变速比为60km/h的车速。
PCT/CN2014/090807 2014-10-31 2014-11-11 纯电动汽车的驱动系统和方法 WO2016065672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410605405.8 2014-10-31
CN201410605405.8A CN105620307B (zh) 2014-10-31 2014-10-31 纯电动汽车的驱动系统和方法

Publications (1)

Publication Number Publication Date
WO2016065672A1 true WO2016065672A1 (zh) 2016-05-06

Family

ID=55856467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090807 WO2016065672A1 (zh) 2014-10-31 2014-11-11 纯电动汽车的驱动系统和方法

Country Status (2)

Country Link
CN (1) CN105620307B (zh)
WO (1) WO2016065672A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218386B (zh) * 2016-09-21 2019-02-19 上海瑞昱汽车有限公司 纯电动汽车用的动力总成装置
CN106515507B (zh) * 2016-10-26 2019-01-01 东风汽车股份有限公司 纯电动汽车电机辅助驻坡及坡道起步控制系统及方法
CN106864308A (zh) * 2017-03-22 2017-06-20 上海瑞昱荣科新能源汽车有限公司 纯电动汽车的驱动总成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746374A (zh) * 2010-01-08 2010-06-23 上海中科深江电动车辆有限公司 纯电动车辆电控机械式自动变速器的控制方法和控制系统
WO2011022076A2 (en) * 2009-08-19 2011-02-24 Steven Trindade Improved integrated electric powertrain assembly device and method
US20110077810A1 (en) * 2009-09-30 2011-03-31 Jatco Ltd. Electric drive apparatus and process
CN102092307A (zh) * 2011-01-19 2011-06-15 重庆大学 用于纯电动汽车的cvt传动调节系统
CN202016405U (zh) * 2011-03-30 2011-10-26 北京理工华创电动车技术有限公司 一种电动车驱动系统
CN102425657A (zh) * 2011-10-25 2012-04-25 北京理工大学 一种电动汽车上坡amt系统换挡综合控制方法
CN102717714A (zh) * 2012-06-08 2012-10-10 北京汽车新能源汽车有限公司 一种基于dct的纯电动汽车制动能量回收控制系统及方法
CN103775623A (zh) * 2014-01-31 2014-05-07 北京阳铭诚科技有限责任公司 电动车自动换挡策略

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070065031A (ko) * 2005-12-19 2007-06-22 현대자동차주식회사 하이브리드 전기 자동차의 밀림 방지 제어장치 및 방법
CN201255230Y (zh) * 2008-04-08 2009-06-10 浙江众泰汽车制造有限公司 无级变速器电液控制机构
DE112009004511B4 (de) * 2009-03-19 2018-07-12 Toyota Jidosha Kabushiki Kaisha STEUERUNGSVORRICHTUNG FüR EINE FAHRZEUGLEISTUNGSÜBERTRAGUNGSVORRICHTUNG
CN201484186U (zh) * 2009-09-02 2010-05-26 程乃士 带无级变速器的电动汽车
CN203318182U (zh) * 2013-05-14 2013-12-04 江西博能上饶客车有限公司 基于超级电容的混合动力城市客车制动系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011022076A2 (en) * 2009-08-19 2011-02-24 Steven Trindade Improved integrated electric powertrain assembly device and method
US20110077810A1 (en) * 2009-09-30 2011-03-31 Jatco Ltd. Electric drive apparatus and process
CN101746374A (zh) * 2010-01-08 2010-06-23 上海中科深江电动车辆有限公司 纯电动车辆电控机械式自动变速器的控制方法和控制系统
CN102092307A (zh) * 2011-01-19 2011-06-15 重庆大学 用于纯电动汽车的cvt传动调节系统
CN202016405U (zh) * 2011-03-30 2011-10-26 北京理工华创电动车技术有限公司 一种电动车驱动系统
CN102425657A (zh) * 2011-10-25 2012-04-25 北京理工大学 一种电动汽车上坡amt系统换挡综合控制方法
CN102717714A (zh) * 2012-06-08 2012-10-10 北京汽车新能源汽车有限公司 一种基于dct的纯电动汽车制动能量回收控制系统及方法
CN103775623A (zh) * 2014-01-31 2014-05-07 北京阳铭诚科技有限责任公司 电动车自动换挡策略

Also Published As

Publication number Publication date
CN105620307A (zh) 2016-06-01
CN105620307B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN106183780B (zh) 双行星齿轮系双电机同轴耦合驱动系统
CN106274468B (zh) 一种电动汽车的四轮驱动系统和电动汽车
CN101445047B (zh) 一种全轮驱动混合动力汽车驱动系统
WO2015113417A1 (zh) 车辆及其的滑行回馈控制方法
CN109606348B (zh) 一种插电式行星混联汽车能量管理控制方法
CN104842996A (zh) 一种混合动力汽车换挡方法及系统
CN107458369B (zh) 一种同轴并联式混合动力电动汽车能量管理方法
CN105128852A (zh) 一种增程式电动车驱动控制机构
Zulkifli et al. Operation and control of split-parallel, through-the-road hybrid electric vehicle with in-wheel motors
CN103738199A (zh) 双电机两档驱动控制系统及其驱动控制方法
WO2022142897A1 (zh) 纵置车辆动力总成及车辆动力控制方法
CN205168484U (zh) 一种四驱混合动力系统
CN202641356U (zh) 一种混联式混合动力四轮驱动系统
CN104742898A (zh) 一种分速汇矩式混合动力功率流控制方法
CN204821146U (zh) 车辆混合动力驱动系统及混合动力车辆
CN110203056B (zh) 一种多模式四驱混合动力汽车能量管理控制方法
CN106965795A (zh) 插电式四驱混合动力汽车整车控制系统
CN102198802A (zh) 一种电动汽车四轮轮毂电机驱动系统
CN106274443B (zh) 双同步离合器及行星齿轮耦合双电机动力系统
CN102514568B (zh) 一种四驱混合动力汽车驱动扭矩的控制方法及其驱动系统
CN205836531U (zh) 纯电动汽车的驱动系统及其驱动总成
CN104260720A (zh) 一种混联混合动力控制系统及采用该系统实现的控制方法
WO2018053891A1 (zh) 纯电动汽车用的动力总成装置
CN101774346A (zh) 具有四轮驱动特征的混合动力总成和装配该总成的车辆
CN203974582U (zh) 一种混联式气电混合动力客车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905118

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905118

Country of ref document: EP

Kind code of ref document: A1