WO2024046083A1 - 双电机混合动力系统及具有其的车辆 - Google Patents

双电机混合动力系统及具有其的车辆 Download PDF

Info

Publication number
WO2024046083A1
WO2024046083A1 PCT/CN2023/112308 CN2023112308W WO2024046083A1 WO 2024046083 A1 WO2024046083 A1 WO 2024046083A1 CN 2023112308 W CN2023112308 W CN 2023112308W WO 2024046083 A1 WO2024046083 A1 WO 2024046083A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
power
transmission shaft
dual
engine
Prior art date
Application number
PCT/CN2023/112308
Other languages
English (en)
French (fr)
Inventor
赵东峰
于长虹
刘元治
张春才
杨钫
张行
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024046083A1 publication Critical patent/WO2024046083A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the technical field of hybrid power system design, and specifically to a dual-motor hybrid power system and a vehicle having the same.
  • This application requests the priority of the patent application submitted to the China State Intellectual Property Office on August 31, 2022, with the application number 202211064754.4 and the invention title "Dual-motor hybrid system and vehicle having the same”.
  • the main purpose of this application is to provide a dual-motor hybrid power system and a vehicle equipped with the same, so as to solve the problem that the hybrid power system in the prior art cannot take into account the economy and power of the entire vehicle.
  • a dual-motor hybrid system including: an engine assembly having a first transmission shaft connected to the output end of the engine; a first motor assembly, the first motor The assembly has a second transmission shaft connected to the output end of the first motor, and the first end of the second transmission shaft is connected to the output end of the engine; the second motor assembly has a second transmission shaft connected to the output end of the second motor.
  • the third transmission shaft is connected to the second end of the second transmission shaft; the graded power transmission mechanism is connected to the first transmission shaft and the third transmission shaft respectively, and the graded power transmission mechanism is used to drive the third transmission shaft.
  • the power transmitted by one of the first transmission shaft and the third transmission shaft can be selectively transmitted to the wheel train structure of the vehicle through different power transmission paths; wherein, the second transmission shaft and the third transmission shaft are coaxially arranged, and the second transmission shaft and the third transmission shaft are coaxially arranged.
  • the third transmission shaft is configured as a hollow shaft, and the first transmission shaft is inserted into the hollow shaft and connected with the graded power transmission mechanism.
  • a first clutch is provided between the engine and the first transmission shaft, and the first clutch is used to control coupling or disengagement of the engine from the first transmission shaft.
  • a second clutch is provided between the output end of the engine and the second transmission shaft, and the second clutch is used to control coupling or disengagement of the engine from the second transmission shaft.
  • a third clutch is provided between the third transmission shaft and the second transmission shaft, and the third clutch is used to control the coupling or disengagement of the third transmission shaft from the second transmission shaft.
  • the hierarchical power transmission mechanism includes: a first power output shaft, the first power output shaft is arranged parallel to the first transmission shaft; a first synchronizer, the first synchronizer is arranged on the first power output shaft, the first synchronizer
  • the first gear set is connected to the third transmission shaft, and the first synchronizer is connected to the first transmission shaft through the second gear set.
  • the first synchronizer is selectively in the first neutral position, the first working position, and the second working position. switching between; wherein, when the first synchronizer is in the first working position, the first gear set is connected to the first power output shaft for power transmission; when the first synchronizer is in the second working position, the second gear set is connected to the first power output shaft.
  • a power output shaft is connected for power transmission. When the first synchronizer is in the first neutral position, both the first gear set and the second gear set are disconnected from the first power output shaft.
  • the hierarchical power transmission mechanism also includes: a second power output shaft, the second power output shaft is arranged parallel to the first power output shaft; a second synchronizer, the second synchronizer is connected to the first power output shaft through the third gear set connection, the second synchronizer is connected to the first power output shaft through a fourth gear set, wherein the transmission ratios of the third gear set and the fourth gear set are set differently, and the second synchronizer is optionally in the second neutral position, Switching between the third working position and the fourth working position; wherein, when the second synchronizer is in the third working position, the third gear set is connected to the second power output shaft for power transmission, and the second synchronizer is in the fourth working position. When the second synchronizer is in the second neutral position, the third gear set and the fourth gear set are both disconnected from the second power output shaft.
  • the first motor is a generator.
  • the second motor is a driving motor.
  • the dual-motor hybrid system also includes: a power battery, and the power battery is electrically connected to the first motor and the second motor respectively.
  • the engine assembly further includes: a torsion damper, the torsion damper is connected to the engine, and the output end of the engine is connected to both the first clutch and the second clutch through the torsion damper.
  • a vehicle including a dual-motor hybrid system.
  • the dual-motor hybrid system is the above-mentioned dual-motor hybrid system.
  • the dual-motor hybrid system forms multiple working modes through the cooperation of the engine component, the first motor component, and the second motor component, and realizes multi-speed ratio output of the power system through the hierarchical power transmission mechanism, and can simultaneously
  • the engine component drives the wheel train structure, the two motor components drive the wheel train structure, or the engine component cooperates with the two motor components to drive the wheel train structure to improve the economy of the vehicle.
  • the dual-motor hybrid system arranges the second transmission shaft and the third transmission shaft coaxially and sets them as a hollow shaft.
  • the first transmission shaft penetrates the hollow shaft, which avoids the limitation of the axial size of the motor in some existing configurations.
  • Figure 1 shows a schematic structural diagram of a first embodiment of a dual-motor hybrid system according to the present application
  • Figure 2 shows a topology diagram of a second embodiment of a dual-motor hybrid system according to the present application.
  • Figure 3 is a hardware structural block diagram of a vehicle's electronic device according to a control method for a dual-motor hybrid system according to an optional embodiment of the present application;
  • FIG. 4 is a flow chart of a control method of a dual-motor hybrid system according to an optional embodiment of the present application.
  • the above-mentioned drawings include the following reference signs: 10. Engine; 11. First drive shaft; 20. The first motor; 21. The second transmission shaft; 30. The second motor; 31. The third transmission shaft; 40. Graded power transmission mechanism; 41. First power output shaft; 42. First synchronizer; 421. First gear set; 422. The second gear set; 43. The second power output shaft; 44. The second synchronizer; 441. The third gear set; 442. The fourth gear set; 50. First clutch; 60. Second clutch; 70. Third clutch; 80. Power battery; 90. Torsional shock absorber; 100. Gear train structure; 101. Inverter.
  • hybrid technology applied in longitudinally mounted medium and large passenger cars mainly includes Toyota THS longitudinal hybrid system and Volkswagen P2 configuration longitudinal hybrid system.
  • Toyota THS hybrid system consists of MG1 motor, MG2 motor, and power distribution system. Both motors can generate electricity and drive, but the function of MG1 is biased towards power generation, and the function of MG2 is biased towards driving.
  • the power of the engine and the two electric motors is coupled through a power distribution system, which is composed of a set of planetary gears.
  • Toyota's THS hybrid system is characterized by the use of planetary gears for power distribution.
  • the Volkswagen P2 configuration longitudinal hybrid system is mainly composed of an engine, C0 clutch, drive motor, dual-clutch transmission and transfer case. This configuration can realize a variety of hybrid mode functions.
  • the transmission can By adding the power of the two and transmitting it to the wheels, the entire vehicle can obtain higher power. Since the P2 configuration hybrid system mainly relies on the engine for driving when the power battery power is low, the P2 configuration has the disadvantage of poor vehicle economy.
  • the application of hybrid technology in transverse medium and large passenger cars mainly includes Nissan i-MMD hybrid system and BYD DM-i super hybrid system.
  • Honda's i-MMD hybrid system uses a hybrid configuration of two motors. One motor is driven by the engine to generate electricity, and the other motor is used to drive the wheels. The engine can also directly drive the wheels.
  • This system is on a transverse vehicle. Due to the limitation of the distance between the longitudinal beams of the body, the axial size of the motor is required to be relatively high, so that the motor power cannot be designed to be too large, which affects the dynamics of the entire vehicle.
  • BYD's DM-i super hybrid system uses a hybrid configuration of two motors. One motor is driven by the engine to generate electricity, and the other motor is used to drive the wheel train. The engine can also directly drive the wheel train. The system adopts a parallel axis arrangement of two motors.
  • a dual-motor hybrid system is provided.
  • the dual-motor hybrid system includes an engine component, a first motor component, a second motor component, and a hierarchical power transmission mechanism 40 .
  • the engine assembly has a first drive shaft 11 connected to the output end of the engine 10 .
  • the first motor assembly has a second transmission shaft 21 connected to the output end of the first motor 20 .
  • the first end of the second transmission shaft 21 is connected with the output end of the engine 10 .
  • the second motor assembly has a third transmission shaft 31 connected to the output end of the second motor 30 .
  • the third transmission shaft 31 is connected to the second end of the second transmission shaft 21 .
  • the graded power transmission mechanism 40 is connected to the first transmission shaft 11 and the third transmission shaft 31 respectively.
  • the hierarchical power transmission mechanism 40 is used to selectively transmit the power transmitted by one of the first transmission shaft 11 and the third transmission shaft 31 to the wheel train structure 100 of the vehicle through different power transmission paths.
  • the second transmission shaft 21 and the third transmission shaft 31 are coaxially arranged,
  • the second transmission shaft 21 and the third transmission shaft 31 are configured as hollow shafts, and the first transmission shaft 11 is inserted into the hollow shaft and connected to the graded power transmission mechanism 40 .
  • the dual-motor hybrid system forms multiple working modes through the cooperation of the engine component, the first motor component, and the second motor component, and realizes multi-speed ratio output of the power system through the hierarchical power transmission mechanism 40.
  • the wheel train structure 100 can be driven by the engine component, the wheel train structure 100 can be driven by two motor components, or the wheel train structure 100 can be driven by the engine component and two motor components, thereby improving the economy of the entire vehicle.
  • the dual-motor hybrid power system arranges the second transmission shaft 21 and the third transmission shaft 31 coaxially and sets it as a hollow shaft.
  • the first transmission shaft 11 penetrates the hollow shaft, which avoids the axial direction of the motor in some existing configurations.
  • the problem of limited size effectively reduces the radial size of the electric drive assembly and eliminates the need to limit the design of the motor power, thereby lifting the constraints on the vehicle's dynamics imposed by the existing configuration. Combined with the technical solution of this application, it can effectively solve the problem that the existing hybrid power system cannot take into account the economy and power of the vehicle.
  • the dual-motor hybrid system can be applied to a vehicle with a transverse powertrain arrangement, and the first motor 20 and the second motor 30 are arranged in a coaxial manner.
  • the coaxial arrangement can reduce the radial size of the entire dual-motor hybrid system, thereby leaving more space for the first motor 20 and the second motor 30 and lifting the space restrictions in their design.
  • the first motor 20 and the second motor 30 are both disposed at one end of the first transmission shaft 11 close to the engine 10 , which can effectively reduce the axial size of the dual-motor hybrid system, thereby providing more power to the first motor. 20.
  • the second motor 30 leaves more space and relieves the space restriction in its design.
  • a transverse dual-motor multi-speed multi-mode hybrid configuration and control method are provided, which take into account the economy and power of the vehicle and can realize a variety of working modes.
  • a multi-gear solution and a hybrid configuration solution with relatively balanced vehicle performance are provided.
  • a first clutch 50 is provided between the engine 10 and the first transmission shaft 11 .
  • the first clutch 50 is used to control the coupling or disengagement of the engine 10 from the first transmission shaft 11 .
  • the engine 10 can drive the gear train structure 100 .
  • a second clutch 60 is provided between the output end of the engine 10 and the second transmission shaft 21 .
  • the second clutch 60 is used to control the coupling or disengagement of the engine 10 from the second transmission shaft 21 .
  • Such an arrangement allows the dual-motor hybrid system to use the engine 10 to directly drive the wheel train structure 100 or drive the first motor 20 to generate electricity.
  • a third clutch 70 is provided between the third transmission shaft 31 and the second transmission shaft 21 .
  • the third clutch 70 is used to control the coupling or disengagement of the third transmission shaft 31 from the second transmission shaft 21 .
  • the power output can be transmitted to the gear train structure 100 , thereby realizing the independent driving mode of the first motor 20 .
  • the engine assembly also includes a torsional damper 90 .
  • the torsional damper 90 is connected to the engine 10 , and the output end of the engine 10 is connected to both the first clutch 50 and the second clutch 60 through the torsional damper 90 .
  • the engine output shaft is axially connected to the first clutch 50 through a torsion damper 90.
  • the function of the torsion damper 90 is to reduce the torsional vibration caused by the rotation of the engine 10, so that the power can be transmitted smoothly backward, improving the overall vehicle performance. of smoothness.
  • the first motor 20 is coupled with a second clutch 60 and a third clutch 70 .
  • the input end of the second clutch 60 is connected to the torsional damper 90 .
  • the output end of the second clutch 60 is connected to the input end of the first motor 20 .
  • the input end of the third clutch 70 The output end of the third clutch 70 is connected with the output shaft of the second motor 30 .
  • first motor 20 and the second motor 30 are coaxially arranged, and the second transmission shaft 21 and the third transmission shaft 31 adopt a hollow structure.
  • the first transmission shaft 11 passes through the hollow shaft of the driving motor, and the second transmission shaft 21
  • the third transmission shaft 31 is meshed with the drive motor power output gear, and the first transmission shaft 11 is meshed with the engine power output gear.
  • the drive motor power output speed ratio and the engine power output speed ratio are designed based on performance simulation.
  • the first transmission shaft 11 is also the direct drive transmission shaft of the engine.
  • the third transmission shaft 31 is also the output shaft of the drive motor.
  • the driving motor power output gear mesh is the first gear set 421
  • the engine power output gear is the second gear set 422.
  • the stepped power transmission mechanism 40 includes a first power output shaft 41 and a first synchronizer 42 .
  • the first power output shaft 41 is arranged parallel to the first transmission shaft 11 .
  • the first synchronizer 42 is disposed on the first power output shaft 41 , and is connected to the third transmission shaft 31 through the first gear set 421 .
  • the first synchronizer 42 is connected to the first transmission shaft 11 through the second gear set 422 .
  • the first synchronizer 42 can selectively switch between a first neutral position, a first working position, and a second working position. When the first synchronizer 42 is in the first working position, the first gear set 421 is connected to the first power output shaft 41 for power transmission.
  • the second gear set 422 When the first synchronizer 42 is in the second working position, the second gear set 422 is connected to the first power output shaft 41 for power transmission. When the first synchronizer 42 is in the first neutral position, both the first gear set 421 and the second gear set 422 are disconnected from the first power output shaft 41 . This arrangement enables the first synchronizer 42 to selectively transmit the driving force according to the switching of different working positions.
  • the first synchronizer 42 is designed to have left and right gears, the left gear is connected to the drive motor power output gear, the right gear is connected to the engine power output gear, and the middle gear is neutral.
  • the first power output shaft 41 connects the two gears through splines.
  • the driving motor power output gear mesh is the first gear set 421
  • the engine power output gear is the second gear set 422.
  • the stepped power transmission mechanism 40 also includes a second power output shaft 43 and a second synchronizer 44 .
  • the second power output shaft 43 is arranged parallel to the first power output shaft 41 .
  • the second synchronizer 44 is connected to the first power output shaft 41 through the third gear set 441 .
  • the second synchronizer 44 is connected to the first power output shaft 41 through the fourth gear set 442 .
  • the transmission ratios of the third gear set 441 and the fourth gear set 442 are set differently.
  • the second synchronizer 44 can selectively switch between the second neutral position, the third working position, and the fourth working position. When the second synchronizer 44 is in the third working position, the third gear set 441 is connected to the second power output shaft 43 for power transmission.
  • the fourth gear set 442 When the second synchronizer 44 is in the fourth working position, the fourth gear set 442 is connected to the second power output shaft 43 for power transmission. When the second synchronizer 44 is in the second neutral position, both the third gear set 441 and the fourth gear set 442 are disconnected from the second power output shaft 43 .
  • This arrangement enables the second synchronizer 44 to further selectively transmit the driving force according to the switching of different working positions, and at the same time realize the transmission of the two speed ratios of the power source.
  • the second synchronizer 44 is designed to have left and right gears, the left gear is connected to the third gear set 441, the right gear is connected to the fourth gear set 442, and the middle gear is neutral; the vehicle driving force is output through the second power Shaft 43 is input to the wheels and drives the vehicle.
  • the first motor 20 is a generator.
  • the second motor 30 is a driving motor.
  • the dual-motor hybrid system also includes a power battery 80 .
  • the power battery 80 is electrically connected to the first motor 20 and the second motor 30 respectively. Such an arrangement allows both the first motor 20 and the second motor 30 to perform driving tasks independently, and the first motor 20 can also perform energy recovery and power generation tasks.
  • the main working modes that the dual-motor hybrid system provided in this application can achieve include: single-motor pure electric drive mode, dual-motor pure electric drive mode, series drive mode, parallel drive mode, engine direct drive mode, and single-motor energy recovery mode. , dual motor energy recovery mode and power generation mode, etc.
  • the drive motor output shaft is the third transmission shaft 31
  • the drive motor power output gear mesh is the first gear set 421
  • the engine power output gear is the second gear.
  • Group 422 the working status of each assembly in each drive mode is described as follows:
  • Single motor pure electric drive mode the engine 10 is stopped, the first clutch 50 is disconnected, the second clutch 60 is disconnected, and the third clutch 70 is disconnected. Energy is provided by the battery to drive the motor, and the power is transferred to the output shaft of the drive motor. The power is transmitted to the drive motor power output gear, and at the same time, the first synchronizer 42 is engaged in the left gear, and the power is transmitted to the first power output shaft 41 .
  • this configuration can achieve two speed ratios.
  • the working status of the assembly in the two-speed single-motor pure electric drive mode is described as follows: (1) The first-speed single-motor pure electric drive mode: after the power is transmitted to the first power output shaft 41, the second synchronizer 44 is in the left position, The power is transmitted to the second power output shaft 43 through the third gear set 441, and then transmitted to the wheels through the second power output shaft 43. (2) Second-speed single-motor pure electric drive mode: After the power is transmitted to the first power output shaft 41, the second synchronizer 44 is in the right position, and the power is transmitted to the second power output shaft 43 through the fourth gear set 442. Then it is transmitted to the wheels through the second power output shaft 43 .
  • Dual-motor pure electric drive mode the engine 10 is stopped, the first clutch 50 is disconnected, the second clutch 60 is disconnected, and the third clutch 70 is engaged. Energy is provided by the battery, the generator and the drive motor work, and the output shaft is driven by the drive motor. The power is transmitted to the drive motor power output gear, and at the same time, the first synchronizer 42 is engaged in the left gear, and the power is transmitted to the first power output shaft 41 .
  • this configuration can achieve two speed ratios. For a description of the working status of the assembly in the two-speed dual-motor pure electric drive mode, see the description of the assembly’s working status in the two-speed single-motor pure electric drive mode.
  • Parallel drive mode the first clutch 50 is disconnected, the second clutch 60 is engaged, the engine works and drives the generator to generate electricity, the third clutch 70 is disconnected, the generator generates electricity and then transmits the electric energy to the drive motor, and the drive motor works.
  • the drive motor output shaft transmits power to the drive motor power output gear.
  • the first synchronizer 42 is engaged in the left gear, and the power is transmitted to the first power output shaft 41.
  • the power battery provides power to the drive motor, and the energy is passed through the same method as above. It is transmitted to the first power output shaft 41 to realize the parallel drive mode.
  • two gear ratios can also be achieved. For a description of the assembly working status in the two-speed parallel drive mode, see the description of the assembly working status in the two-speed single-motor pure electric drive mode.
  • Engine direct drive mode The engine 10 is working, the first clutch 50 is engaged, the second clutch 60 is disconnected, the third clutch 70 is disconnected, the generator and the drive motor do not work, and the power is transmitted to the engine through the engine direct drive shaft.
  • Output gear at this time the first synchronizer 42 is engaged in the right gear, and the power is transmitted to the first power output shaft 41.
  • two speed ratios can also be achieved. For a description of the assembly working status in the two-speed engine direct drive mode, see the description of the assembly working status in the two-speed single-motor pure electric drive mode.
  • Single-motor energy recovery mode In this mode, the power system converts the vehicle's kinetic energy into electrical energy and stores it in the power battery. At this time, the engine 10 is stopped, the first clutch 50 is disconnected, the second clutch 60 is disconnected, and the third clutch 70 is disconnected. The power of the front wheels is transmitted to the second power output shaft 43. At this time, the second power output shaft 43 is selected according to the control strategy.
  • the left and right gears of the synchronizer 44 transmit power to the first power output shaft 41.
  • the first synchronizer 42 selects the left gear, and the power is transmitted to the driving motor, and the driving motor generates electricity and stores the electric energy in the power battery.
  • Dual-motor energy recovery mode In this mode, the power system converts the vehicle's kinetic energy into electrical energy and stores it in the power battery. At this time, the engine is stopped, the first clutch 50 is disconnected, the second clutch 60 is disconnected, the third clutch 70 is engaged, and the power of the front wheels is transmitted to the second power output shaft 43. At this time, the second synchronizer is selected according to the control strategy 44, the power is transmitted to the first power output shaft 41, the first synchronizer 42 selects the left gear, the power is transmitted to the drive motor and generator, and the drive motor and generator generate electricity, and at the same time, the electric energy is stored in the power in battery.
  • Power generation mode In this mode, when the battery power is lower than the threshold control value, the engine starts to drive the generator to generate electricity and stores the electric energy in the power battery. In this mode, depending on whether the vehicle is driving, it can be divided into driving power generation and idling power generation.
  • Driving power generation mode the first clutch 50 is engaged, the second clutch 60 is engaged, the third clutch 70 is disconnected, the engine operates and drives the generator to generate electricity. At the same time, the electric energy is stored in the power battery through the high-voltage wiring harness, the drive motor is not working, and the power is transmitted to the engine power output gear through the engine direct drive shaft. At this time, the first synchronizer 42 is engaged in the right gear, and the power is transmitted to the first power output. Axis 41. In the driving power generation mode, two speed ratios can also be achieved. For a description of the assembly working status in the two-speed driving power generation mode, see the description of the assembly working status in the two-speed single-motor pure electric drive mode.
  • Idle power generation mode The engine 10 works and drives the generator to generate electricity. At the same time, the electric energy is stored in the power battery through the high-voltage wiring harness. The first clutch 50 is disconnected, the second clutch 60 is engaged, the third clutch 70 is disconnected, and others The assembly is not working.
  • a vehicle including a dual-motor hybrid system.
  • the dual-motor hybrid system is the dual-motor hybrid system of the above embodiment.
  • FIG. 2 shows the power system topology of the dual-motor hybrid system.
  • Controllers such as engine controller (EMS), transmission controller (TCU), motor controller (MCU), and battery management system (BMS) are each connected to their controlled objects;
  • the vehicle controller (HCU) communicates with each of the above controllers through
  • the CAN (Controller Area Network) bus is connected, and each controller exchanges information through the CAN bus;
  • the power battery is connected to the inverter 101 through a high-voltage wire harness, and the inverter 101 is connected to the generator and the drive motor for driving/braking energy. transfer.
  • EMS engine controller
  • TCU transmission controller
  • MCU motor controller
  • BMS battery management system
  • the basic principle of system control is: the HCU and the controllers of each assembly are connected through the CAN bus to form a local area network. Each assembly transmits its status information through its own controller, and performs data circulation and sharing on the CAN bus.
  • the HCU determines the power system by monitoring the vehicle status and combining it with the driver's demand input through the vehicle human-machine interface (including accelerator pedal stroke, brake pedal stroke, mode selection switch, battery discharge power limit, battery SOC limit, etc.) working mode, and according to the predefined control strategy in each mode, commands are issued to each assembly through the CAN bus.
  • Each assembly controller receives the command from the HCU and controls the assembly to respond to the demand. Finally, the output of each assembly is converted into force at the wheel end to drive the vehicle to accelerate or decelerate.
  • an embodiment of a control method for a dual-motor hybrid power system is provided. It should be noted that the steps shown in the flow chart of the accompanying drawings can be executed on a computer such as a set of computer-executable instructions. systems are performed, and although a logical sequence is shown in the flowcharts, in some cases the steps shown or described may be performed in a sequence different from that herein.
  • the electronic device of the vehicle may include one or more processors 102 (the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU), programmable logic devices (FPGA), neural network processors (NPU), tensor processors (TPU), artificial intelligence (AI) type processors, etc. processing device) and a memory 104 for storing data.
  • processors 102 the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU), programmable logic devices (FPGA), neural network processors (NPU), tensor processors (TPU), artificial intelligence (AI) type processors, etc. processing device
  • the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU) ), digital signal processing (DSP) chips, microprocessors (MCU),
  • the above-mentioned electronic device of the automobile may also include a transmission device 106 for communication functions, an input and output device 108, and a display 110.
  • a transmission device 106 for communication functions may also include a transmission device 106 for communication functions, an input and output device 108, and a display 110.
  • the structure shown in FIG. 3 is only illustrative, and it does not limit the structure of the electronic device of the vehicle.
  • the electronic device of the vehicle may also include more or less components than the above structural description, or have a different configuration than the above structural description.
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the control method of the dual-motor hybrid system in the embodiment of the present application.
  • the processor 102 runs the computer stored in the memory 104 program to perform various functional applications and data processing, that is, to implement the control method of the dual-motor hybrid system mentioned above.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • Transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device may be a Radio Frequency (RF) module, which is used to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • Display 110 may be a touch screen liquid crystal display (LCD).
  • the liquid crystal display may enable a user to interact with the user interface of the mobile terminal.
  • the above-mentioned mobile terminal has a graphical user interface (GUI), and the user can perform human-computer interaction with the GUI through finger contact and/or gestures on the touch-sensitive surface.
  • GUI graphical user interface
  • the human-computer interaction function here is optional. Including the following interactions: creating web pages, drawing, word processing, making electronic documents, games, video conferencing, real-time Executable instructions for performing the above human-computer interaction functions such as communication, sending and receiving emails, call interfaces, playing digital videos, playing digital music, and/or web browsing are configured/stored in one or more processor-executable computer programs. product or readable storage media.
  • FIG. 4 is a flow chart of a control method for a dual-motor hybrid system according to one embodiment of the present application.
  • the process includes the following steps:
  • the HCU analyzes the driver's driving demand based on the current vehicle speed, accelerator pedal opening and other information, and calculates the driving torque and power demand;
  • the HCU compares whether the system's demand drive power is less than the current battery's discharge power limit: If the system's demand drive power is less than the current battery's discharge power limit, it enters the third step; if the system's demand drive power is not less than If the current battery discharge power limit is reached, the vehicle will not start the engine;
  • the HCU further compares whether the power battery SOC is greater than the minimum SOC limit: if the power battery SOC is greater than the minimum SOC limit, the power system enters pure electric drive mode; if If the power battery SOC is not greater than the minimum SOC limit, the vehicle starts the engine;
  • the HCU determines that the power system has entered the pure electric drive mode in the third step, it will further detect whether the driver has issued a four-wheel drive request to the power system through the vehicle's human-machine interface: if there is a four-wheel drive demand, the power system will enter the front Pure electric four-wheel drive mode in which the axle and rear axle are driven simultaneously; if there is no demand for four-wheel drive, the system enters pure electric two-wheel drive mode;
  • the HCU determines that the current driving power demand exceeds the battery's discharge power limit in the second step, or the power battery SOC is not greater than the minimum SOC limit in the third step, the engine should be started; further, the HCU determines the current vehicle speed Whether the engine direct drive can be carried out under , then enter the sixth step;
  • Step 6 If the HCU determines in the fifth step that engine direct drive is possible at the current vehicle speed, it will further determine whether the engine direct drive is more economical. If so, it will directly enter the engine direct drive mode; if the engine direct drive is not economical, If it is better, the system will enter the series drive mode;
  • the HCU determines in the sixth step that it has entered the engine direct drive mode, it will further detect whether the driver issues a four-wheel drive request to the power system through the vehicle's human-machine interface: If there is a four-wheel drive request, the power system enters the front axle and The engine direct-drive four-wheel drive mode drives the rear axle at the same time; if there is no need for four-wheel drive, the system defaults to the engine direct-drive two-wheel drive mode;
  • Step 8 If in steps 5 and 6, the HCU determines that it has entered the series drive mode, it will further detect whether the driver sends a four-wheel drive request to the power system through the vehicle's human-machine interface: If there is a four-wheel drive demand, the power system Enter the series drive four-wheel drive mode in which the front and rear axles are driven simultaneously; if there is no need for four-wheel drive, the system defaults to the series drive two-wheel drive mode;
  • Step 9 Based on the above steps, the working mode of the power system will finally be determined, and the driving force will be output to the wheel end in the corresponding working mode;
  • Step 10 Based on the driver's feedback (i.e., changes in the accelerator pedal), determine whether the current driving force meets the driver's needs. If it meets the driver's needs, maintain the current output state and end the control process; if not, return to the first step. step, proceed to the next round of iteration.
  • the driver's feedback i.e., changes in the accelerator pedal
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请提供了一种双电机混合动力系统及具有其的车辆,双电机混合动力系统包括:发动机组件,发动机组件具有与发动机的输出端连接的第一传动轴;第一电机组件,第一电机组件具有与第一电机的输出端连接的第二传动轴,第二传动轴的第一端与发动机的输出端连接;第二电机组件,第二电机组件具有与第二电机的输出端连接的第三传动轴,第三传动轴与第二传动轴的第二端连接;分级动力传递机构,分级动力传递机构分别与第一传动轴、第三传动轴连接,分级动力传递机构用于将由第一传动轴、第三传动轴中的一个传递的动力可选择地以不同动力传递路径传递至车辆的轮系结构。采用本申请的技术方案,解决了现有混合动力系统无法兼顾整车经济性和动力性的问题。

Description

双电机混合动力系统及具有其的车辆 技术领域
本申请涉及混合动力系统设计技术领域,具体而言,涉及一种双电机混合动力系统及具有其的车辆。本申请要求于2022年8月31日提交至中国国家知识产权局、申请号为202211064754.4、发明名称为“双电机混合动力系统及具有其的车辆”的专利申请的优先权。
背景技术
在当前的汽车产业环境下,混合动力轿车因其良好的节能表现,备受到国内外主机厂的广泛关注,正在着力开展产业化研发。
构型作为混合动力的核心技术之一,决定着混合动力车辆运行模式和相关性能。目前存在多种混合动力构型的车辆,如丰田的功率分流构型,其优秀的节油率,深受市场认可,但也存在构型比较复杂,生产开发难度较高等问题。本田的双电机串并联构型、节油效果良好,但其构型依赖于单电机驱动功率,整车动力性提升难度较大。大众的P2构型,可应用在横置、纵置车型上,且对基础车型改动量小,并能与传统车实现最大通用化,但P2构型本身节油率相对较低,整车节能效果不明显。国内自主品牌如比亚迪、东风、上汽等均推出适合自身构型的混合动力系统,其大多采用与本田类似的混动构型。因此,如何设计一种整车经济性、动力性、并能实现多种工作模式的构型,以及提供一种整车性能相对均衡的混动构型解决方案成为了亟需解决的技术难题。
申请内容
本申请的主要目的在于提供一种双电机混合动力系统及具有其的车辆,以解决现有技术中的混合动力系统无法兼顾整车经济性和动力性的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种双电机混合动力系统,包括:发动机组件,发动机组件具有与发动机的输出端连接的第一传动轴;第一电机组件,第一电机组件具有与第一电机的输出端连接的第二传动轴,第二传动轴的第一端与发动机的输出端连接;第二电机组件,第二电机组件具有与第二电机的输出端连接的第三传动轴,第三传动轴与第二传动轴的第二端连接;分级动力传递机构,分级动力传递机构分别与第一传动轴、第三传动轴连接,分级动力传递机构用于将由第一传动轴、第三传动轴中的一个传递的动力可选择地以不同动力传递路径传递至车辆的轮系结构;其中,第二传动轴与第三传动轴同轴布置,第二传动轴与第三传动轴设置为空心轴,第一传动轴穿设于空心轴内并与分级动力传递机构连接。
进一步地,发动机与第一传动轴之间设置有第一离合器,第一离合器用于控制发动机与第一传动轴耦合或脱离。
进一步地,发动机的输出端与第二传动轴之间设置有第二离合器,第二离合器用于控制发动机与第二传动轴耦合或脱离。
进一步地,第三传动轴与第二传动轴之间设置有第三离合器,第三离合器用于控制第三传动轴与第二传动轴耦合或脱离。
进一步地,分级动力传递机构包括:第一动力输出轴,第一动力输出轴与第一传动轴平行布置;第一同步器,第一同步器设置于第一动力输出轴上,第一同步器通过第一齿轮组与第三传动轴连接,第一同步器通过第二齿轮组与第一传动轴连接,第一同步器可选择地在第一空挡位置、第一工作位置、第二工作位置之间切换;其中,第一同步器位于第一工作位置时,第一齿轮组与第一动力输出轴连接以进行动力传递,第一同步器位于第二工作位置时,第二齿轮组与第一动力输出轴连接以进行动力传递,第一同步器位于第一空挡位置时,第一齿轮组、第二齿轮组均与第一动力输出轴断开。
进一步地,分级动力传递机构还包括:第二动力输出轴,第二动力输出轴与第一动力输出轴平行设置;第二同步器,第二同步器通过第三齿轮组与第一动力输出轴连接,第二同步器通过第四齿轮组与第一动力输出轴连接,其中,第三齿轮组和第四齿轮组的传动比不同地设置,第二同步器可选择地在第二空挡位置、第三工作位置、第四工作位置之间切换;其中,第二同步器位于第三工作位置时,第三齿轮组与第二动力输出轴连接以进行动力传递,第二同步器位于第四工作位置时,第四齿轮组与第二动力输出轴连接以进行动力传递,第二同步器位于第二空挡位置时,第三齿轮组、第四齿轮组均与第二动力输出轴断开。
进一步地,第一电机为发电机。
进一步地,第二电机为驱动电机。
进一步地,双电机混合动力系统还包括:动力电池,动力电池分别与第一电机、第二电机电性连接。
进一步地,发动机组件还包括:扭转减震器,扭转减震器与发动机连接,发动机的输出端通过扭转减震器与第一离合器和第二离合器均连接。
根据本申请的一个方面,提供了一种车辆,包括双电机混合动力系统,双电机混合动力系统为上述的双电机混合动力系统。
应用本申请的技术方案,双电机混合动力系统通过发动机组件、第一电机组件、第二电机组件配合工作形成多种工作模式,通过分级动力传递机构实现动力系统的多档速比输出,同时可通过发动机组件驱动轮系结构、通过两个电机组件驱动轮系结构或发动机组件配合两个电机组件驱动轮系结构,提高整车经济性。双电机混合动力系统将第二传动轴与第三传动轴同轴布置并设置为空心轴,通过第一传动轴穿设于空心轴内,避免了部分现有构型中电机轴向尺寸受限的问题,有效降低了电驱总成的径向尺寸,无需对电机功率的设计进行限制,从而解除了现有构型对整车动力性的限制。采用本申请的技术方案,能够有效地解决现有混合动力系统无法兼顾整车经济性和动力性的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的双电机混合动力系统的第一实施例的结构示意图;
图2示出了根据本申请的双电机混合动力系统的第二实施例的拓扑结构图。
图3是根据本申请其中一可选实施例的双电机混合动力系统的控制方法的车辆的电子装置的硬件结构框图;
图4是根据本申请其中一可选实施例的双电机混合动力系统的控制方法的流程图。
其中,上述附图包括以下附图标记:
10、发动机;11、第一传动轴;
20、第一电机;21、第二传动轴;
30、第二电机;31、第三传动轴;
40、分级动力传递机构;41、第一动力输出轴;42、第一同步器;421、第一齿轮组;422、
第二齿轮组;43、第二动力输出轴;44、第二同步器;441、第三齿轮组;442、第四齿轮组;
50、第一离合器;
60、第二离合器;
70、第三离合器;
80、动力电池;
90、扭转减震器;
100、轮系结构;101、逆变器。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
目前,纵置中大型乘用车上应用混合动力技术主要包括丰田THS纵置混合动力系统和大众P2构型纵置混合动力系统。丰田THS混合动力系统由MG1电机、MG2电机、动力分配系统构成,两台电机都能够发电和驱动,但MG1的功能偏向于发电,MG2的功能偏向于驱动。通过动力分配系统将发动机和两台电动机的动力进行耦合,动力分配系统是由一组行星齿轮构成。丰田THS混合动力系统的特点是利用行星齿轮实现动力分配。大众P2构型纵置混合动力系统主要由发动机、C0离合器、驱动电机、双离合变速器以及分动器构成,该构型可实现多种混动模式功能,在发动机和电机联合驱动时,变速器可将二者动力相加传递给车轮,整车可获得较高的动力性。由于P2构型的混合动力系统在动力电池电量较低情况下,主要还是依托于发动机进行驱动,所以P2构型存在着整车经济性较差的缺陷。
横置中大型乘用车上应用混合动力技术主要包括本田i-MMD混合动力系统和比亚迪DM-i超级混合动力系统。本田i-MMD混合动力系统采用两种电机的混合动力构型,其中一个电机由发动机带动用来发电,另一个电机用来驱动车轮,发动机也可直接驱动车轮。该系统在横置车型上,受车身纵梁间距限制,电机轴向尺寸要求较高,以至于电机功率不能设计太大,影响整车动力性的发挥。比亚迪DM-i超级混合动力系统采用两种电机的混合动力构型,其中一个电机由发动机带动用来发电,另一个电机用来驱动轮系,发动机也可直接驱动轮系。该系统采用两电机平行轴布置形式。
结合图1至图2所示,根据本申请的具体实施例,提供了一种双电机混合动力系统。
双电机混合动力系统包括发动机组件、第一电机组件、第二电机组件、分级动力传递机构40。发动机组件具有与发动机10的输出端连接的第一传动轴11。第一电机组件具有与第一电机20的输出端连接的第二传动轴21。第二传动轴21的第一端与发动机10的输出端连接。第二电机组件具有与第二电机30的输出端连接的第三传动轴31。第三传动轴31与第二传动轴21的第二端连接。分级动力传递机构40分别与第一传动轴11、第三传动轴31连接。分级动力传递机构40用于将由第一传动轴11、第三传动轴31中的一个传递的动力可选择地以不同动力传递路径传递至车辆的轮系结构100。其中,第二传动轴21与第三传动轴31同轴布置, 第二传动轴21与第三传动轴31设置为空心轴,第一传动轴11穿设于空心轴内并与分级动力传递机构40连接。
应用本实施例的技术方案,双电机混合动力系统通过发动机组件、第一电机组件、第二电机组件配合工作形成多种工作模式,通过分级动力传递机构40实现动力系统的多档速比输出,同时可通过发动机组件驱动轮系结构100、通过两个电机组件驱动轮系结构100或发动机组件配合两个电机组件驱动轮系结构100,提高整车经济性。双电机混合动力系统将第二传动轴21与第三传动轴31同轴布置并设置为空心轴,通过第一传动轴11穿设于空心轴内,避免了部分现有构型中电机轴向尺寸受限的问题,有效降低了电驱总成的径向尺寸,无需对电机功率的设计进行限制,从而解除了现有构型对整车动力性的限制。结合本申请的技术方案,能够有效地解决现有混合动力系统无法兼顾整车经济性和动力性的问题。
可选地,采用本申请的技术方案,双电机混合动力系统可应用于横置动力总成布置车型上,第一电机20与第二电机30采用同轴布置形式。同轴布置可以使得整个双电机混合动力系统的径向尺寸降低,进而给第一电机20、第二电机30留出更多空间,解除其设计时的空间限制。在一个可选的实施例中,第一电机20、第二电机30均设置于第一传动轴11靠近发动机10的一端,可以有效降低双电机混合动力系统的轴向尺寸,进而给第一电机20、第二电机30留出更多空间,解除其设计时的空间限制。
进一步地,采用本申请的技术方案,提供了一种横置的双电机多档多模混合动力构型以及控制方法,兼顾整车经济性、动力性、并能实现多种工作模式的构型,在此基础上,提供一种多档方案和一种整车性能相对均衡的混动构型解决方案。
如图1所示,发动机10与第一传动轴11之间设置有第一离合器50。第一离合器50用于控制发动机10与第一传动轴11耦合或脱离。通过上述方案可实现发动机10驱动轮系结构100。
如图1所示,发动机10的输出端与第二传动轴21之间设置有第二离合器60。第二离合器60用于控制发动机10与第二传动轴21耦合或脱离。这样设置使得双电机混合动力系统既可以利用发动机10直接驱动轮系结构100,也可以带动第一电机20进行发电。
如图1所示,第三传动轴31与第二传动轴21之间设置有第三离合器70。第三离合器70用于控制第三传动轴31与第二传动轴21耦合或脱离。这样设置第一电机20能够单独工作时,能够将动力输出传递至轮系结构100,进而实现第一电机20的单独驱动模式。
进一步地,发动机组件还包括扭转减震器90。扭转减震器90与发动机10连接,发动机10的输出端通过扭转减震器90与第一离合器50和第二离合器60均连接。发动机输出轴通过扭转减震器90与第一离合器50轴向连接,扭转减震器90的作用是降低发动机10转动过程中带来的扭转震动,使得动力平稳地向后进行传递,提高整车的平顺性。
第一电机20中耦合第二离合器60和第三离合器70,第二离合器60输入端与扭转减震器90相连,第二离合器60输出端与第一电机20输入端相连,第三离合器70输入端与第一电机20转子输出轴连接,第三离合器70输出端与第二电机30输出轴相连。
进一步地,第一电机20与第二电机30进行同轴布置,且第二传动轴21与第三传动轴31采用空心结构,第一传动轴11穿过驱动电机空心轴,第二传动轴21与第三传动轴31与驱动电机动力输出齿轮啮合,第一传动轴11与发动机动力输出齿轮啮合。驱动电机动力输出速比和发动机动力输出速比根据性能仿真进行设计。第一传动轴11也即发动机直驱传动轴。第三传动轴31也即驱动电机输出轴。其中,驱动电机动力输出齿轮啮即为第一齿轮组421,发动机动力输出齿轮即为第二齿轮组422。
进一步地,分级动力传递机构40包括第一动力输出轴41、第一同步器42。第一动力输出轴41与第一传动轴11平行布置。第一同步器42设置于第一动力输出轴41上,第一同步器42通过第一齿轮组421与第三传动轴31连接。第一同步器42通过第二齿轮组422与第一传动轴11连接。第一同步器42可选择地在第一空挡位置、第一工作位置、第二工作位置之间切换。其中,第一同步器42位于第一工作位置时,第一齿轮组421与第一动力输出轴41连接以进行动力传递。第一同步器42位于第二工作位置时,第二齿轮组422与第一动力输出轴41连接以进行动力传递。第一同步器42位于第一空挡位置时,第一齿轮组421、第二齿轮组422均与第一动力输出轴41断开。这样设置使得第一同步器42能够根据不同工作位置的切换实现驱动力可选择地传递。
在一个具体的实施例中,第一同步器42设计左右挡,左档与驱动电机动力输出齿轮连接,右档与发动机动力输出齿轮连接,中间档为空挡。第一动力输出轴41通过花键连接两档齿轮。其中,驱动电机动力输出齿轮啮即为第一齿轮组421,发动机动力输出齿轮即为第二齿轮组422。
进一步地,分级动力传递机构40还包括第二动力输出轴43、第二同步器44。第二动力输出轴43与第一动力输出轴41平行设置。第二同步器44通过第三齿轮组441与第一动力输出轴41连接。第二同步器44通过第四齿轮组442与第一动力输出轴41连接。其中,第三齿轮组441和第四齿轮组442的传动比不同地设置。第二同步器44可选择地在第二空挡位置、第三工作位置、第四工作位置之间切换。其中,第二同步器44位于第三工作位置时,第三齿轮组441与第二动力输出轴43连接以进行动力传递。第二同步器44位于第四工作位置时,第四齿轮组442与第二动力输出轴43连接以进行动力传递。第二同步器44位于第二空挡位置时,第三齿轮组441、第四齿轮组442均与第二动力输出轴43断开。这样设置使得第二同步器44能够进一步地根据不同工作位置的切换实现驱动力可选择地的传递,同时实现动力源的两档速比的传递。
在一个具体的实施例中,第二同步器44设计左右挡,左档与第三齿轮组441连接,右档与第四齿轮组442连接,中间档为空挡;车辆驱动力通过第二动力输出轴43输入到车轮,并驱动车辆行驶。
进一步地,第一电机20为发电机。第二电机30为驱动电机。
进一步地,双电机混合动力系统还包括动力电池80。动力电池80分别与第一电机20、第二电机30电性连接。这样设置使得第一电机20、第二电机30均可以单独执行驱动任务,第一电机20还可以执行能量回收和发电任务。
本申请所提供的双电机混合动力系统可以实现的主要工作模式包括:单电机纯电驱动模式、双电机纯电驱动模式、串联驱动模式、并联驱动模式、发动机直接驱动模式、单电机能量回收模式、双电机能量回收模式和发电模式等。
结合图1所示,在一个可选的实施例中,驱动电机输出轴即为第三传动轴31,驱动电机动力输出齿轮啮即为第一齿轮组421,发动机动力输出齿轮即为第二齿轮组422,各驱动模式下各总成工作状态分别描述如下:
1、单电机纯电驱动模式:发动机10停机,第一离合器50断开,第二离合器60断开,第三离合器70断开,由电池提供能量,驱动电机工作,通过驱动电机输出轴将动力传递到驱动电机动力输出齿轮,同时第一同步器42挂到左档,动力传递到第一动力输出轴41。单电机纯电动模式下,此构型可以实现两档速比。
两档单电机纯电驱动模式下的总成工作状态描述如下:(1)一档单电机纯电驱动模式:动力传递到第一动力输出轴41后,第二同步器44处于左侧位置,动力通过第三齿轮组441传递到第二动力输出轴43上,再由第二动力输出轴43传递到车轮。(2)二档单电机纯电驱动模式:动力传递到第一动力输出轴41后,第二同步器44处于右侧位置,动力通过第四齿轮组442传递到第二动力输出轴43上,再由第二动力输出轴43传递到车轮。
2、双电机纯电驱动模式:发动机10停机,第一离合器50断开,第二离合器60断开,第三离合器70接合,由电池提供能量,发电机与驱动电机工作,通过驱动电机输出轴将动力传递到驱动电机动力输出齿轮,同时第一同步器42挂到左档,动力传递到第一动力输出轴41。单电机纯电动模式下,此构型可以实现两档速比。两档双电机纯电驱动模式下的总成工作状态描述见两档单电机纯电驱动模式下的总成工作状态描述。
3、串联驱动模式:第一离合器50断开,第二离合器60接合,发动机10工作并带动发电机发电,第三离合器70断开,发电机发电后将电能输送至驱动电机,驱动电机工作,通过驱动电机输出轴将动力传递到驱动电机动力输出齿轮,同时第一同步器42挂到左档,动力传递到第一动力输出轴41。在串联驱动模式下,也可以实现两档速比,两档串联驱动模式下的总成工作状态描述见两档单电机纯电驱动模式下的总成工作状态描述。
4、并联驱动模式:第一离合器50断开,第二离合器60接合,发动机工作并带动发电机发电,第三离合器70断开,发电机发电后将电能输送至驱动电机,驱动电机工作,通过驱动电机输出轴将动力传递到驱动电机动力输出齿轮,同时第一同步器42挂到左档,动力传递到第一动力输出轴41,此时动力电池提供电量给驱动电机,能量通过上述同样方式传递到第一动力输出轴41上,实现并联驱动模式。在并联驱动模式下,也可以实现两档速比,两档并联驱动模式下的总成工作状态描述见两档单电机纯电驱动模式下的总成工作状态描述。
5、发动机直驱模式:发动机10工作,第一离合器50接合,第二离合器60断开,第三离合器70断开,发电机与驱动电机不工作,动力通过发动机直驱传动轴传递到发动机动力输出齿轮,此时第一同步器42挂到右档,动力传递到第一动力输出轴41上。在发动机直驱模式下,也可以实现两档速比,两档发动机直驱模式的总成工作状态描述见两档单电机纯电驱动模式下的总成工作状态描述。
6、单电机能量回收模式:此模式下,动力系统将车辆的动能转化为电能,存储至动力电池中。此时,发动机10停机,第一离合器50断开,第二离合器60断开,第三离合器70断开,前车轮的动力传递到第二动力输出轴43上,此时根据控制策略选择第二同步器44的左右档,动力传递到第一动力输出轴41上,第一同步器42选择左档,动力传递到驱动电机,并由驱动电机进行发电,同时将电能储存在动力电池中。
7、双电机能量回收模式:此模式下,动力系统将车辆的动能转化为电能,存储至动力电池中。此时,发动机停机,第一离合器50断开,第二离合器60断开,第三离合器70接合,前车轮的动力传递到第二动力输出轴43上,此时根据控制策略选择第二同步器44的左右档,动力传递到第一动力输出轴41上,第一同步器42选择左档,动力传递到驱动电机和发电机上,并由驱动电机和发电机进行发电,同时将电能储存在动力电池中。
8、发电模式:在此模式下,电池电量低于门限控制值时,发动机启机带动发电机发电,并将电能存储至动力电池中。此模式下,根据是否行车可分为行车发电和怠速发电。
进一步地,各种发电模式下的总成工作状态描述如下:
(1)行车发电模式:第一离合器50接合,第二离合器60接合,第三离合器70断开,发动机工作,并带动发电机发电。同时将电能通过高压线束存储于动力电池中,驱动电机不工作,动力通过发动机直驱传动轴传递到发动机动力输出齿轮,此时第一同步器42挂到右档,动力传递到第一动力输出轴41。在行车发电模式下,也可以实现两档速比,两档行车发电模式的总成工作状态描述见两档单电机纯电驱动模式下的总成工作状态描述。
(2)怠速发电模式:发动机10工作,并带动发电机发电,同时将电能通过高压线束存储于动力电池中,第一离合器50断开,第二离合器60接合,第三离合器70断开,其他总成不工作。
根据本申请的另一具体实施例,提供了一种车辆,包括双电机混合动力系统,双电机混合动力系统为上述实施例的双电机混合动力系统。
如图2所示为双电机混合动力系统的动力系统拓扑结构图。发动机控制器(EMS)、变速器控制器(TCU)、电机控制器(MCU)、电池管理系统(BMS)等控制器各自与其被控对象相连;整车控制器(HCU)与以上各控制器通过CAN(控制器局域网)总线相连,各控制器通过CAN总线进行信息交互;动力电池通过高压线束与逆变器101相连,逆变器101与发电机和驱动电机相连,进行驱动/制动能量的传递。
系统控制的基本原理为:HCU与各总成的控制器通过CAN总线连接形成局域网,各总成通过自身控制器传递其状态信息,并在CAN总线上进行数据流通和共享。HCU通过监测车辆状态并结合驾驶员通过车辆人机接口等给出的需求输入(包括加速踏板行程、制动踏板行程、模式选择开关、电池放电功率限制、电池SOC限值等)等判定动力系统的工作模式,并根据预定义的各模式下的控制策略,通过CAN总线向各总成发出命令。各总成控制器接收HCU的命令,并控制总成响应该需求,最终各总成的输出转化为轮端的力,驱动车辆加速或减速。
根据本申请其中一实施例,提供了一种双电机混合动力系统的控制方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
该方法实施例可以在车辆中包含存储器和处理器的电子装置或者类似的运算装置中执行。以运行在车辆的电子装置上为例,如图3所示,车辆的电子装置可以包括一个或多个处理器102(处理器可以包括但不限于中央处理器(CPU)、图形处理器(GPU)、数字信号处理(DSP)芯片、微处理器(MCU)、可编程逻辑器件(FPGA)、神经网络处理器(NPU)、张量处理器(TPU)、人工智能(AI)类型处理器等的处理装置)和用于存储数据的存储器104。可选地,上述汽车的电子装置还可以包括用于通信功能的传输设备106、输入输出设备108以及显示器110。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述车辆的电子装置的结构造成限定。例如,车辆的电子装置还可包括比上述结构描述更多或者更少的组件,或者具有与上述结构描述不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的双电机混合动力系统的控制方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的双电机混合动力系统的控制方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输设备106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
显示器110可以是触摸屏式的液晶显示器(LCD)。该液晶显示器可使得用户能够与移动终端的用户界面进行交互。在一些实施例中,上述移动终端具有图形用户界面(GUI),用户可以通过触摸触敏表面上的手指接触和/或手势来与GUI进行人机交互,此处的人机交互功能可选的包括如下交互:创建网页、绘图、文字处理、制作电子文档、游戏、视频会议、即时 通信、收发电子邮件、通话界面、播放数字视频、播放数字音乐和/或网络浏览等用于执行上述人机交互功能的可执行指令被配置/存储在一个或多个处理器可执行的计算机程序产品或可读存储介质中。
本实施例中提供了一种运行于上述车辆的电子装置的双电机混合动力系统的控制方法,图4是根据本申请其中一实施例的双电机混合动力系统的控制方法的流程图。
如图4所示,流程包括以下步骤:
第一步,HCU根据当前车速、加速踏板开度等信息对驾驶员驱动需求进行解析,计算出驱动扭矩和功率需求;
第二步,HCU对比系统的需求驱动功率是否小于当前电池的放电功率限值:若系统的需求驱动功率小于当前电池的放电功率限值,则进入第三步;若系统的需求驱动功率不小于当前电池的放电功率限值,则车辆否起动发动机;
第三步,若第二步中HCU判定车辆不起动发动机,则HCU进一步对比动力电池SOC是否大于最低SOC限值:若动力电池SOC大于最低SOC限值,则动力系统进入纯电动驱动模式;若动力电池SOC不大于最低SOC限值,则车辆起动发动机;
第四步,若第三步中HCU判定动力系统进入纯电驱动模式,则进一步检测驾驶员是否通过车辆的人机接口对动力系统发出四驱需求:若有四驱需求,则动力系统进入前轴和后轴同时驱动的纯电四驱模式;若无四驱需求,则系统进入纯电两驱模式;
第五步,若第二步中HCU判定当前驱动功率需求超过电池的放电功率限值,或第三步中动力电池SOC不大于最低SOC限值,则应当起动发动机;进一步地,HCU判断当前车速下,是否可以进行发动机直驱,若当前车速小于发动机直驱的最小车速,则系统进入串联驱动模式;若当前车速不小于发动机直驱的最小车速,HCU判定在当前车速下可以进行发动机直驱,则进入第六步;
第六步,若第五步中HCU判定在当前车速下可以进行发动机直驱,则进一步判断发动机直驱是否经济性较优,若是,则直接进入发动机直驱模式;若发动机直驱经济性并非较优,则系统进入串联驱动模式;
第七步,若第六步中HCU判定进入发动机直驱模式,则进一步检测驾驶员是否通过车辆的人机接口对动力系统发出四驱需求:若有四驱需求,则动力系统进入前轴和后轴同时进行驱动的发动机直驱四驱模式;若无四驱需求,则系统默认进入发动机直驱两驱模式;
第八步,若第五步和第六步中,HCU判定进入串联驱动模式,则进一步检测驾驶员是否通过车辆的人机接口对动力系统发出四驱需求:若有四驱需求,则动力系统进入前轴和后轴同时进行驱动的串联驱动四驱模式;若无四驱需求,则系统默认进入串联驱动两驱模式;
第九步,根据以上步骤,最终会确定动力系统的工作模式,并在相应的工作模式下输出驱动力到轮端;
第十步,根据驾驶员的反馈(即加速踏板的变化)判断当前驱动力是否满足驾驶员需求,若满足驾驶员需求,则维持当前输出状态并结束控制流程;若不满足则返回至第一步,进行下一轮迭代。
进一步地,各工作模式下动力总成的状态如下表所示:
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位 置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种双电机混合动力系统,其特征在于,包括:
    发动机组件,所述发动机组件具有与发动机(10)的输出端连接的第一传动轴(11);
    第一电机组件,所述第一电机组件具有与第一电机(20)的输出端连接的第二传动轴(21),所述第二传动轴(21)的第一端与所述发动机(10)的输出端连接;
    第二电机组件,所述第二电机组件具有与第二电机(30)的输出端连接的第三传动轴(31),所述第三传动轴(31)与所述第二传动轴(21)的第二端连接;
    分级动力传递机构(40),所述分级动力传递机构(40)分别与所述第一传动轴(11)、所述第三传动轴(31)连接,所述分级动力传递机构(40)用于将由所述第一传动轴(11)、所述第三传动轴(31)中的一个传递的动力可选择地以不同动力传递路径传递至车辆的轮系结构(100);
    其中,所述第二传动轴(21)与所述第三传动轴(31)同轴布置,所述第二传动轴(21)与所述第三传动轴(31)设置为空心轴,所述第一传动轴(11)穿设于所述空心轴内并与所述分级动力传递机构(40)连接。
  2. 根据权利要求1所述的双电机混合动力系统,其特征在于,所述发动机(10)与所述第一传动轴(11)之间设置有第一离合器(50),所述第一离合器(50)用于控制所述发动机(10)与所述第一传动轴(11)耦合或脱离。
  3. 根据权利要求2所述的双电机混合动力系统,其特征在于,所述发动机(10)的输出端与所述第二传动轴(21)之间设置有第二离合器(60),所述第二离合器(60)用于控制所述发动机(10)与所述第二传动轴(21)耦合或脱离。
  4. 根据权利要求1所述的双电机混合动力系统,其特征在于,所述第三传动轴(31)与所述第二传动轴(21)之间设置有第三离合器(70),所述第三离合器(70)用于控制所述第三传动轴(31)与所述第二传动轴(21)耦合或脱离。
  5. 根据权利要求1所述的双电机混合动力系统,其特征在于,所述分级动力传递机构(40)包括:
    第一动力输出轴(41),所述第一动力输出轴(41)与所述第一传动轴(11)平行布置;
    第一同步器(42),所述第一同步器(42)设置于所述第一动力输出轴(41)上,所述第一同步器(42)通过第一齿轮组(421)与所述第三传动轴(31)连接,所述第一同步器(42)通过第二齿轮组(422)与所述第一传动轴(11)连接,所述第一同步器(42)可选择地在第一空挡位置、第一工作位置、第二工作位置之间切换;
    其中,所述第一同步器(42)位于第一工作位置时,所述第一齿轮组(421)与所述第一动力输出轴(41)连接以进行动力传递,所述第一同步器(42)位于第二工作位置 时,所述第二齿轮组(422)与所述第一动力输出轴(41)连接以进行动力传递,所述第一同步器(42)位于第一空挡位置时,所述第一齿轮组(421)、所述第二齿轮组(422)均与所述第一动力输出轴(41)断开。
  6. 根据权利要求5所述的双电机混合动力系统,其特征在于,所述分级动力传递机构(40)还包括:
    第二动力输出轴(43),所述第二动力输出轴(43)与所述第一动力输出轴(41)平行设置;
    第二同步器(44),所述第二同步器(44)通过第三齿轮组(441)与所述第一动力输出轴(41)连接,所述第二同步器(44)通过第四齿轮组(442)与所述第一动力输出轴(41)连接,其中,所述第三齿轮组(441)和所述第四齿轮组(442)的传动比不同地设置,所述第二同步器(44)可选择地在第二空挡位置、第三工作位置、第四工作位置之间切换;
    其中,所述第二同步器(44)位于第三工作位置时,所述第三齿轮组(441)与所述第二动力输出轴(43)连接以进行动力传递,所述第二同步器(44)位于第四工作位置时,所述第四齿轮组(442)与所述第二动力输出轴(43)连接以进行动力传递,所述第二同步器(44)位于第二空挡位置时,所述第三齿轮组(441)、所述第四齿轮组(442)均与所述第二动力输出轴(43)断开。
  7. 根据权利要求1所述的双电机混合动力系统,其特征在于,所述第一电机(20)为发电机。
  8. 根据权利要求7所述的双电机混合动力系统,其特征在于,所述第二电机(30)为驱动电机。
  9. 根据权利要求1所述的双电机混合动力系统,其特征在于,所述双电机混合动力系统还包括:
    动力电池(80),所述动力电池(80)分别与所述第一电机(20)、所述第二电机(30)电性连接。
  10. 根据权利要求3所述的双电机混合动力系统,其特征在于,所述发动机组件还包括:
    扭转减震器(90),所述扭转减震器(90)与所述发动机(10)连接,所述发动机(10)的输出端通过所述扭转减震器(90)与所述第一离合器(50)和所述第二离合器(60)均连接。
  11. 一种车辆,包括双电机混合动力系统,其特征在于,所述双电机混合动力系统为权利要求1至10中任一项所述的双电机混合动力系统。
PCT/CN2023/112308 2022-08-31 2023-08-10 双电机混合动力系统及具有其的车辆 WO2024046083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211064754.4 2022-08-31
CN202211064754.4A CN115257342B (zh) 2022-08-31 2022-08-31 双电机混合动力系统及具有其的车辆

Publications (1)

Publication Number Publication Date
WO2024046083A1 true WO2024046083A1 (zh) 2024-03-07

Family

ID=83754936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112308 WO2024046083A1 (zh) 2022-08-31 2023-08-10 双电机混合动力系统及具有其的车辆

Country Status (2)

Country Link
CN (1) CN115257342B (zh)
WO (1) WO2024046083A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115257342B (zh) * 2022-08-31 2024-05-17 中国第一汽车股份有限公司 双电机混合动力系统及具有其的车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500203B1 (ko) * 2013-11-25 2015-03-06 현대자동차주식회사 Dct 하이브리드 파워트레인
CN205365218U (zh) * 2016-01-26 2016-07-06 李冰洋 一种平台化的混合动力传动装置
CN208855415U (zh) * 2018-09-29 2019-05-14 比亚迪股份有限公司 混合动力驱动系统及车辆
CN111619334A (zh) * 2020-06-01 2020-09-04 奇瑞汽车股份有限公司 混合动力系统和控制方法
CN112659879A (zh) * 2020-12-28 2021-04-16 中国第一汽车股份有限公司 一种纵置车辆动力总成及车辆动力控制方法
CN112895880A (zh) * 2021-04-15 2021-06-04 上海馨联动力系统有限公司 双电机后驱车辆混合动力传动装置
WO2021204323A1 (de) * 2020-04-08 2021-10-14 Schaeffler Technologies AG & Co. KG Hybridfahrzeugantriebsstrang mit zwei-elektromaschinen-getriebe für seriellen antrieb und hybridfahrzeug
CN115257342A (zh) * 2022-08-31 2022-11-01 中国第一汽车股份有限公司 双电机混合动力系统及具有其的车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204161082U (zh) * 2014-04-01 2015-02-18 中国第一汽车股份有限公司 一种增程式电动汽车动力总成
DE102015202456B4 (de) * 2015-02-11 2019-05-16 Magna powertrain gmbh & co kg Hybridantriebsanordnung für ein Kraftfahrzeug
KR101714221B1 (ko) * 2015-09-16 2017-03-08 현대자동차주식회사 하이브리드 자동차용 동력 전달 시스템
CN207333611U (zh) * 2017-10-31 2018-05-08 长城汽车股份有限公司 混合动力变速器
US20210309097A1 (en) * 2018-09-21 2021-10-07 Schaeffler Technologies AG & Co. KG Hybrid power transmission and hybrid power vehicle
DE112019006955T5 (de) * 2019-03-01 2021-12-23 Schaeffler Technologies AG & Co. KG Hybridantriebssystem
CN214564580U (zh) * 2021-03-18 2021-11-02 重庆青山工业有限责任公司 双电机混合动力驱动系统
CN217124541U (zh) * 2022-01-07 2022-08-05 广州汽车集团股份有限公司 混合动力系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500203B1 (ko) * 2013-11-25 2015-03-06 현대자동차주식회사 Dct 하이브리드 파워트레인
CN205365218U (zh) * 2016-01-26 2016-07-06 李冰洋 一种平台化的混合动力传动装置
CN208855415U (zh) * 2018-09-29 2019-05-14 比亚迪股份有限公司 混合动力驱动系统及车辆
WO2021204323A1 (de) * 2020-04-08 2021-10-14 Schaeffler Technologies AG & Co. KG Hybridfahrzeugantriebsstrang mit zwei-elektromaschinen-getriebe für seriellen antrieb und hybridfahrzeug
CN111619334A (zh) * 2020-06-01 2020-09-04 奇瑞汽车股份有限公司 混合动力系统和控制方法
CN112659879A (zh) * 2020-12-28 2021-04-16 中国第一汽车股份有限公司 一种纵置车辆动力总成及车辆动力控制方法
CN112895880A (zh) * 2021-04-15 2021-06-04 上海馨联动力系统有限公司 双电机后驱车辆混合动力传动装置
CN115257342A (zh) * 2022-08-31 2022-11-01 中国第一汽车股份有限公司 双电机混合动力系统及具有其的车辆

Also Published As

Publication number Publication date
CN115257342A (zh) 2022-11-01
CN115257342B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
WO2022142897A1 (zh) 纵置车辆动力总成及车辆动力控制方法
CN102897017B (zh) 一种动力耦合电控动力换挡混合动力系统
CN102490588B (zh) 基于机械自动变速器的插电式混合动力驱动装置
CN107554280B (zh) 一种混合动力汽车的多模式动力传动系统
CN102897015B (zh) 采用双离合变速器的混合动力客车驱传动系统
CN105291809B (zh) 一种电动汽车动力耦合系统及其控制方法
WO2024046083A1 (zh) 双电机混合动力系统及具有其的车辆
CN105059103A (zh) 插电式四驱混合动力车辆及其动力传动系统
WO2019227823A1 (zh) 一种机电耦合变速箱的模式选择控制方法及装置
CN202641356U (zh) 一种混联式混合动力四轮驱动系统
CN102848898A (zh) 混合动力驱动总成及应用其的混合动力驱动汽车
WO2010133155A1 (zh) 电动汽车驱动系统
CN104295681A (zh) 混合电动车辆的动力传动系统
CN106627097A (zh) 双行星排双模功率分流式混合动力系统
CN101774346A (zh) 具有四轮驱动特征的混合动力总成和装配该总成的车辆
CN206306821U (zh) 混合动力汽车动力系统
WO2024017071A1 (zh) 混合动力车辆弹射起步的控制方法、控制装置、存储介质
CN110712514A (zh) Phev动力系统及其控制方法
CN102922981B (zh) 一种混合动力驱动装置及车辆
CN111688470B (zh) 一种串并联构型插电式混合动力系统及其控制方法
CN107139712A (zh) 一种并联式混合动力驱动系统及汽车
CN202827108U (zh) 基于双离合器自动变速器的重度混合动力驱动系统
CN102910064A (zh) 基于双离合器自动变速器的重度混合动力驱动系统
CN201047996Y (zh) 智能混合动力电动多功能教学实验车
CN115648923A (zh) 混合动力系统及其控制方法与车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859117

Country of ref document: EP

Kind code of ref document: A1