WO2023273004A1 - 动力驱动系统和车辆 - Google Patents

动力驱动系统和车辆 Download PDF

Info

Publication number
WO2023273004A1
WO2023273004A1 PCT/CN2021/122814 CN2021122814W WO2023273004A1 WO 2023273004 A1 WO2023273004 A1 WO 2023273004A1 CN 2021122814 W CN2021122814 W CN 2021122814W WO 2023273004 A1 WO2023273004 A1 WO 2023273004A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
gear
vehicle
locking mechanism
power
Prior art date
Application number
PCT/CN2021/122814
Other languages
English (en)
French (fr)
Inventor
张恒先
周之光
耿丽珍
叶远龙
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2023273004A1 publication Critical patent/WO2023273004A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators

Definitions

  • the present application relates to the technical field of automobiles, in particular to a power drive system and a vehicle.
  • the application provides a power drive system and a vehicle, specifically adopting the following technical solutions:
  • the first aspect of the present application is to provide a power drive system, the system includes: a first motor, a second motor, a locking mechanism, a sun gear, a planetary gear, a planet carrier, a ring gear and an output gear set;
  • the output shaft of the first motor is connected to the sun gear
  • the output shaft of the second motor is connected to the ring gear
  • the locking mechanism is connected to the output shaft of the first motor and is located between the first motor and the sun gear, and the locking mechanism can brake the output shaft of the first motor;
  • the planetary gear is interposed between the ring gear and the sun gear, and meshes with the ring gear and the sun gear;
  • One end of the planet carrier is connected with the planetary gear, and the other end is connected with the output gear set.
  • the locking mechanism is a brake or a one-way clutch.
  • the system further includes a drive wheel assembly including a differential, a drive shaft, and wheels;
  • the differential is sleeved on the drive shaft and meshed with the output gear set;
  • the wheels are connected to the drive shaft.
  • the output gear set includes a first gear, a second gear, a third gear and an intermediate shaft, and the numbers of teeth of the first gear, the second gear and the third gear are different from each other;
  • the first gear is connected to the output end of the planet carrier
  • the second gear meshes with the first gear, and the second gear is connected to the third gear through an intermediate shaft;
  • the third gear meshes with the differential.
  • the system also includes a power supply assembly
  • the power supply assembly includes a battery device, a battery management system, a first motor controller, a second motor controller, a first inverter and a second inverter;
  • the battery device is connected to the battery management system
  • the battery management system is connected to the first motor controller and the second motor controller respectively;
  • the first motor controller is connected to the first inverter, and the first inverter is connected to the first motor;
  • the second motor controller is connected to the second inverter, and the second inverter is connected to the second motor.
  • the second aspect of the present application is to provide a control method, the control method is used to control the above-mentioned power drive system, so that the power drive system is in single-motor drive mode, reverse mode, dual-motor drive mode and energy recovery in any of the modes.
  • control method when controlling the power drive system to be in the single-motor drive mode, the control method includes:
  • the first motor is controlled not to work
  • the second motor is controlled to work
  • the locking mechanism is controlled to brake the output shaft of the first motor.
  • control method when controlling the power drive system to be in the reverse mode, includes:
  • control method when controlling the power drive system to be in the dual-motor drive mode, the control method includes:
  • the first motor is controlled to work
  • the second motor is controlled to work
  • the locking mechanism is controlled not to brake the output shaft of the first motor.
  • control method when controlling the power drive system to be in the energy recovery mode, includes:
  • the first motor is controlled not to work
  • the second motor is controlled to generate electricity
  • the locking mechanism is controlled to brake the output shaft of the first motor.
  • the third aspect of the present application is to provide a vehicle, including a control unit and the power drive system described in the first aspect above, the control unit is connected with the first motor, the second motor and the lock in the power drive system Mechanism electrical connection.
  • control unit is configured to:
  • the first motor is controlled not to work
  • the second motor is controlled to work
  • the locking mechanism is controlled to brake the output shaft of the first motor, so that the vehicle is in a single-motor driving mode.
  • control unit is configured to:
  • the rotation direction of the second motor in the reversing mode is opposite to that in the single-motor driving mode.
  • control unit is configured to:
  • the first motor is controlled to work
  • the second motor is controlled to work
  • the locking mechanism is controlled not to brake the output shaft of the first motor, so that the vehicle is in a dual-motor driving mode.
  • control unit is configured to:
  • the first motor is controlled not to work
  • the second motor is controlled to generate electricity
  • the locking mechanism is controlled to brake the output shaft of the first motor, so that the vehicle is in an energy recovery mode.
  • Fig. 1 is a schematic structural diagram of a power drive system provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the power transmission of the power drive system in the single-motor drive mode provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the power transmission of the power drive system in the reverse mode provided by the embodiment of the present application;
  • Fig. 4 is a schematic diagram of power transmission of the power drive system in the dual-motor drive mode provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of power transmission of the power drive system in the energy recovery mode provided by the embodiment of the present application.
  • An embodiment of the present application provides a power drive system using electric energy, which can be directly applied to a pure electric vehicle, or can be combined with an engine power drive system to form a hybrid drive system, thereby being applied to a hybrid vehicle.
  • the power drive system has two power sources, and the system has an E-CVT (Electric Continuously Variable Transmission) structure, which can realize continuously variable transmission.
  • E-CVT Electrical Continuously Variable Transmission
  • the power drive system includes a first motor 1, a second motor 2, a locking mechanism 3, a single planetary gear mechanism and an output gear set, and the single planetary gear mechanism includes a sun gear 4, a planetary gear 5, and a planet carrier 6 and ring gear 7.
  • the output shaft of the first motor 1 is connected with the sun gear 4; the locking mechanism 3 is arranged between the first motor 1 and the sun gear 4, and is used to execute or interrupt the torque transmission between the first motor 1 and the sun gear 4
  • the output shaft of the second motor 2 is connected with the ring gear 7; the planetary gear 5 is sandwiched between the ring gear 7 and the sun gear 4, and meshes with the ring gear 7 and the sun gear 4; one end of the planet carrier 6 is connected to the planetary gear 5 connected, and the other end is connected to the output gear set.
  • the first motor 1 and the second motor 2 are components for providing power output.
  • the first motor 1 and the second motor 2 have two modes: working mode and power generation mode, wherein in the working mode, the first motor 1 and the second motor 2 are used to convert the received electrical energy into mechanical energy and output it, and in the power generation mode, the second motor A motor 1 and a second motor 2 are used to convert received mechanical energy into electrical energy and output it.
  • the first motor 1 and the second motor 2 are not working, it means that the first motor 1 and the second motor 2 are in the state of neither converting electrical energy into mechanical energy nor converting mechanical energy into electrical energy.
  • the power transmission components in the power drive system can transmit the power output by the first motor 1 and/or the second motor 2 to the wheels 10 to drive the vehicle.
  • the first motor and the second motor in the embodiment of the present application may be permanent magnet synchronous motors, and the permanent magnet synchronous motors have high power density and high efficiency, so as to provide better acceleration performance for the vehicle.
  • the single planetary mechanism is a component used to transmit power.
  • the single planetary gear mechanism in the mode of driving the vehicle, can have two power input ends and one power output end, the two power input ends refer to the sun gear 4 and the ring gear 7 respectively, and one power output end end refers to the planet carrier 6, and the two power input ends of the single planetary row mechanism are respectively connected to two components that provide power output, specifically, the sun gear 4 is connected to the first motor 1, and the ring gear 7 is connected to the second motor 2
  • the power output end is connected with other power transmission components in the power drive system.
  • the single planetary gear mechanism can transmit the power output by the first motor 1 and/or the second motor 2 to the output gear set.
  • the locking mechanism 3 is a component for braking the output shaft of the first motor 1 .
  • the sun gear 4 needs to be locked.
  • the locking mechanism 3 brakes the output shaft of the first motor 1, the sun gear 4 is locked and cannot rotate; when the locking mechanism 3 does not brake the output shaft of the first motor 1, the sun gear 4 can rotate.
  • the output gear set is also the part used to transmit power. After the power output by the first motor 1 and/or the second motor 2 is transmitted to the output gear set through the single planetary gear mechanism, the output gear set continues to transmit backward until the driving wheel 10 rotates.
  • the output gear set may include a plurality of gears meshed and connected with each other, and the numbers of teeth of the plurality of gears are different from each other.
  • the power drive system provided by the embodiment of the present application can not only realize the use of a single motor to drive the vehicle with a fixed gear under low-to-medium load conditions, but also realize the use of dual motors with E-CVT structure to drive under high-load conditions.
  • the vehicle greatly improves the power of the vehicle.
  • the first motor 1 and the second motor 2 can always work in the high-efficiency zone by using multi-speed ratios, thereby reducing energy consumption.
  • the speed regulation can be realized through the cooperation of the two motors during the gear shifting process, which greatly improves the ride comfort of the vehicle.
  • the locking mechanism 3 may be a brake or a one-way clutch.
  • the brake can be sleeved on the output shaft of the first motor 1 .
  • the first motor 1 can transmit power to the sun gear 4 , and the sun gear 4 can also transmit power to the first motor 1 .
  • the brake brakes the output shaft of the first motor 1 the first motor 1 cannot transmit power to the sun gear 4, and the sun gear 4 is completely locked.
  • the second motor 2 can transmit power in forward rotation to drive the vehicle forward; it can also transmit power in reverse to drive the vehicle in reverse. It should be noted that the forward rotation direction and reverse rotation direction of the motor need to be set according to actual needs, wherein the forward rotation direction is either clockwise rotation or counterclockwise rotation, and the reverse rotation direction is either clockwise rotation or counterclockwise rotation. another of .
  • the locking mechanism 3 is a one-way clutch
  • one end of the one-way clutch can be connected with the output shaft of the first motor 1 , and the other end can be connected with the sun gear 4 .
  • the one-way clutch is configured to only transmit power from the first motor 1 to the sun gear 4 , but not to transmit power from the sun gear 4 to the first motor 1 .
  • the sun gear 4 is locked, and the planetary gear 5 rotates and continues to transmit power backward; however, when the second motor 2.
  • the one-way clutch cannot lock the sun gear 4. Therefore, when using the one-way clutch as the locking mechanism 3, the second motor 2 is usually not used to drive the vehicle in reverse, that is, the second motor 2 is only allowed to rotate forward, not Inversion is allowed.
  • the power drive system further includes a drive wheel assembly, and the drive wheel assembly includes a differential 8, a drive shaft 9 and wheels 10; the differential 8 is sleeved on the drive shaft 9, and Mesh with output gear set; wheel 10 is connected with drive shaft 9.
  • the output gear set can transmit power to the differential 8, and then to the drive shaft 9 by the differential 8, and then drive the two wheels 10 connected to the two ends of the drive shaft 9 to rotate, wherein the differential 8 can make the drive shaft Two wheels 10 at 9 two ends rotate with different rotational speeds.
  • the differential 8 can be used to make the two wheels 10 roll at different rotational speeds, thereby realizing the difference in the rotational speeds of the two wheels 10 .
  • the present application also provides a possible structure of the output gear set. As shown in FIG. The number of teeth of the second gear 12 and the third gear 13 are different from each other; the first gear 11 is connected with the output end of the planet carrier 6; the second gear 12 meshes with the first gear 11, and the second gear 12 is connected with the third gear through the intermediate shaft 14 13 is connected; the third gear 13 meshes with the differential 8.
  • the structure of the above-mentioned output gear set can only provide a fixed gear to drive the wheels 10 to rotate.
  • the output gear set can also have other structures, for example, it can also include a synchronizer and/or a one-way Clutch, so that more gears are configured for the vehicle through the cooperation of multiple gears and synchronizers and/or one-way clutches.
  • the power drive system further includes a power supply component.
  • the power supply assembly is a component that exchanges energy with the first motor 1 and the second motor 2 . Wherein when the first motor 1 and/or the second motor 2 are in the working mode, the power supply assembly provides energy for the first motor 1 and/or the second motor 2; when the first motor 1 and/or the second motor 2 are in the power generation mode , the power supply component receives and stores the electric energy transformed by the first motor 1 and/or the second motor 2 .
  • the power supply assembly may include a battery device 15, a battery management system 16 (BMS, Battery Management System), a first motor controller 17 (MCU, Motor Control Unit), a second motor controller 18, a first inverter 19 (INV, Inverter) and the second inverter 20 .
  • BMS Battery Management System
  • MCU Motor Control Unit
  • second motor controller 18 a first inverter 19
  • INV Inverter
  • the battery device 15 is connected with the battery management system 16;
  • the battery management system 16 is respectively connected with the first motor controller 17 and the second motor controller 18;
  • the first motor controller 17 is connected with the first inverter 19, and the first
  • the inverter 19 is connected to the first motor 1 ;
  • the second motor controller 18 is connected to the second inverter 20 , and the second inverter 20 is connected to the second motor 2 .
  • the battery device 15 is a device for storing electrical energy.
  • the process of energy exchange between the power supply component and the first motor 1 and the second motor 2 is actually a process of increasing or decreasing the electric energy stored in the battery device 15 .
  • the battery device 15 may be a rechargeable battery.
  • the battery management system 16 is a component for controlling charging and discharging of the battery device 15 . Wherein when the first motor 1 and/or the second motor 2 work, the battery management system 16 controls the discharge of the battery device 15, and the stored electric energy in the battery device 15 decreases; when the first motor 1 and/or the second motor 2 generate electricity , the battery management system 16 controls the charging of the battery device 15, and the electric energy stored in the battery device 15 increases.
  • the motor controller is a component used to control the motor to work according to the set direction, speed, angle and response time.
  • the motor controller can convert the electric energy stored in the power battery into the electric energy required to drive the motor, thereby controlling the vehicle's starting operation, forward and backward speed, climbing force and other driving states.
  • the inverter is used to realize the conversion of the DC power in the battery device 15 into constant frequency and constant voltage or frequency modulation and voltage modulation AC power.
  • each motor is connected with a motor controller and an inverter, and is controlled by the motor controller.
  • the first inverter 19 and the second inverter 20 are respectively arranged on the two output circuits of the battery device 15, and are used to convert the direct current output by the battery to the three-phase alternating current to drive the corresponding motor.
  • the first motor controller 17 , the first inverter 19 , the second motor controller 18 and the second inverter 20 can also be integrated together, thereby saving installation space.
  • the power drive system may further include a control unit, which can determine the corresponding operating mode according to the current vehicle state.
  • the current operating state includes at least the current opening of the accelerator pedal, the current opening of the brake pedal, the current power battery Electricity, current vehicle speed and current working conditions, the operating modes of the system include at least single-motor drive mode, reverse mode, dual-motor drive mode and energy recovery mode.
  • the power drive system provided by the embodiment of the present application has a simple and compact overall structure. Through the cooperation of a locking mechanism 3 and a single planetary mechanism, switching of operating modes and speed ratio adjustment according to working conditions are realized. It can be adapted to use a single motor to drive a vehicle under low-speed conditions, or to use a dual-motor to drive a vehicle under medium-high speed conditions, which reduces the torque requirements for the first motor 1 and the second motor 2, and also makes the two motors More work in the high-efficiency zone reduces energy consumption while ensuring good power performance.
  • the embodiment of the present application also provides a vehicle, the vehicle includes a control unit and the above-mentioned power drive system, and the control unit is electrically connected with the first motor 1 , the second motor 2 and the locking mechanism 3 in the power drive system.
  • the control unit can determine the corresponding operation mode according to the current state of the vehicle, so as to send control signals to the first motor 1, the second motor 2 and the locking mechanism 3, so that the vehicle is in the corresponding operation mode.
  • the current operating state includes at least the current accelerator pedal opening, the current brake pedal opening, the current power battery power, the current vehicle speed and the current working condition
  • the operating mode includes at least single-motor drive mode, reverse mode, dual-motor drive mode and energy recovery. model.
  • control unit controls the working state of each component in the power drive system by executing the following control method, so that the vehicle is in the single-motor drive mode, reverse mode, dual-motor drive mode and energy recovery mode. in either mode.
  • control unit When controlling the vehicle to be in the single-motor driving mode, the control unit is configured to: control the first motor 1 not to work, control the second motor 2 to work, and control the locking mechanism 3 to brake the output shaft of the first motor 1 .
  • the single-motor drive mode refers to the mode corresponding to using only one motor to drive the vehicle forward. This operating mode is usually used when the vehicle is running under low-to-medium load conditions, such as the vehicle starting acceleration phase, low-speed driving phase, etc., which can save more power.
  • the battery management system 16 controls the discharge of the battery device 15, the second motor controller 18 controls the second motor 2 to work, and the first motor controller 17 controls the first motor 1 to not work.
  • the locking mechanism 3 brakes the output shaft of the first motor 1 .
  • the power transmission path under the single-motor drive mode is shown in Figure 2: the electric energy output by the battery device 15 is converted into mechanical energy by the second motor 2, and then passes through the ring gear 7, the planetary gear 5, the planet carrier 6, the first gear 11, and the second gear in sequence.
  • the second gear 12, the intermediate shaft 14, the third gear 13, and the differential gear 8 are finally transmitted to the drive shaft 9 to drive the wheels 10 to rotate.
  • control unit When controlling the vehicle to be in the reverse mode, the control unit is configured to: control the first motor 1 not to work, control the second motor 2 to work, and control the locking mechanism 3 to brake the output shaft of the first motor 1 .
  • the reverse mode refers to the corresponding mode in which the power source drives the vehicle to drive backward.
  • the reverse mode is usually entered according to the driving needs of the driver, such as parking scenes, reverse scenes, etc., and generally only one power source is used for the reverse mode. .
  • the battery management system 16 controls the discharge of the battery device 15, and the second motor controller 18 controls the operation of the second motor 2, and at this time, the rotation direction of the second motor 2 is different from that in the single motor driving mode.
  • the lower rotation direction is opposite, the first motor controller 17 controls the first motor 1 not to work, and the locking mechanism 3 brakes the output shaft of the first motor 1 .
  • the power transmission path in the reversing mode is shown in Figure 3: the electric energy output by the battery device 15 is converted into mechanical energy by the second motor 2, and then passes through the ring gear 7, the planetary gear 5, the planet carrier 6, the first gear 11, and the second gear 12.
  • the intermediate shaft 14, the third gear 13, and the differential 8 are finally transmitted to the drive shaft 9 to drive the wheels 10 to rotate.
  • the rotation direction of the wheels 10 is opposite to that of the wheels 10 in the single-motor drive mode.
  • control unit When controlling the vehicle to be in the dual-motor driving mode, the control unit is configured to: control the first motor 1 to work, control the second motor 2 to work, and control the locking mechanism 3 not to brake the output shaft of the first motor 1 .
  • Dual-motor drive mode refers to the mode corresponding to using two motors to drive the vehicle forward. This operating mode is usually used when the vehicle is running under high-load conditions.
  • the power source can output larger power and improve the dynamic performance of the whole vehicle.
  • the battery management system 16 controls the discharge of the battery device 15
  • the first motor controller 17 controls the first motor 1 to work
  • the second motor controller 18 controls the second motor 2 to work
  • the lock The stop mechanism 3 does not brake the output shaft of the first motor 1.
  • the power transmission path under the dual-motor drive mode is shown in Figure 4: a part of the electric energy output by the battery device 15 is converted into mechanical energy by the first motor 1, and transmitted to the planetary gear 5 through the sun gear 4; another part of the electric energy output by the battery device 15 is passed through The second motor 2 is converted into mechanical energy, which is transmitted to the planetary gear 5 through the ring gear 7, and is coupled with the power output by the first motor 1 at the planetary gear 5, and continues to be transmitted downward, passing through the planetary carrier 6, the first gear 11, The second gear 12 , the intermediate shaft 14 , the third gear 13 , and the differential gear 8 are finally transmitted to the drive shaft 9 to drive the wheels 10 to rotate.
  • the dual-motor drive mode keeping the rotational speed of the planetary gear 5 constant, various speed ratio matching modes of the first motor 1 and the second motor 2 can be realized, so that the first motor 1 and the second motor 2 always work in the high-efficiency zone. That is to say, as the vehicle speed changes, the first motor 1 and the second motor 2 can adjust the speed ratio under the condition of ensuring high efficiency to realize continuously variable speed, that is, to realize the so-called E-CVT mode.
  • control unit When controlling the vehicle to be in the energy recovery mode, the control unit is configured to: control the first motor 1 not to work, control the second motor 2 to generate electricity, and control the locking mechanism 3 to brake the output shaft of the first motor 1 .
  • the energy recovery mode refers to a mode corresponding to at least one motor converting the mechanical energy of the vehicle body into electrical energy and storing it in the battery device 15 .
  • the battery device 15 can be charged using the energy recovery mode.
  • the recovered part of the electrical energy can provide energy for the operation of subsequent vehicles, thereby increasing the cruising range of the vehicle.
  • the running state of the vehicle can be set to the energy recovery mode.
  • the power system of the vehicle in order to brake the running vehicle, the power system of the vehicle provides the reverse torque for the whole vehicle, and at the same time The part of kinetic energy to be braked is converted into electric energy via the second motor 2 and stored in the battery device 15 for backup.
  • the first motor controller 17 controls the first motor 1 not to work
  • the locking mechanism 3 brakes the output shaft of the first motor 1
  • the second motor controller 18 controls the second motor 2 to generate electricity
  • the battery management system 16 controls the battery device 15 to charge.
  • the power transmission path in the energy recovery mode is shown in Figure 2: part of the kinetic energy reduced by the braking of the whole vehicle will be converted into mechanical energy through the wheels 10, and then transmitted to the drive shaft 9, differential 8, third gear 13, The intermediate shaft 14, the second gear 12, the first gear 11, the planetary carrier 6, the planetary gear 5, and the ring gear 7 are finally transmitted to the second motor 2, and the second motor 2 converts mechanical energy into electrical energy and stores it in the battery device 15 spare.
  • control unit can control the vehicle to switch between multiple operating modes according to the current working conditions, thereby reducing the torque requirements for the first motor and the second motor, thereby reducing the cost of the entire transmission system , at the same time, based on the cooperation of the locking mechanism and the single planetary mechanism in the power system of the vehicle, the first motor and the second motor work more in the high-efficiency area, with less energy transmission loss, high system efficiency, and good performance Power and energy conversion effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种动力驱动系统和车辆,其中动力驱动系统包括:第一电机(1)、第二电机(2)、锁止机构(3)、太阳轮(4)、行星轮(5)、行星架(6)、齿圈(7)和输出齿轮组;第一电机(1)与太阳轮(4)连接;第二电机(2)与齿圈(7)连接;锁止机构(3)位于第一电机(1)和太阳轮(4)之间,用于制动第一电机(1);行星轮(5)夹设在齿圈(7)和太阳轮(4)之间;行星架(6)与行星轮(5)和输出齿轮组连接。

Description

动力驱动系统和车辆
本申请要求于2021年06月29日提交的申请号为202110726960.6、发明名称为“动力驱动系统和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,具体涉及一种动力驱动系统和车辆。
背景技术
随着汽车保有量的不断加大,汽车尾气污染已经成为城市空气污染的主要来源。为此,传统汽车企业正在加速转型,大力发展新能源汽车。受此影响,越来越多的新能源汽车进入消费者的视野。
然而目前市场上的单电机纯电动汽车由于动力性能不足、续航里程短等原因,给用户带来的实际体验不佳。
发明内容
本申请提供了一种动力驱动系统和车辆,具体采用如下技术方案:
本申请的第一方面是提供了一种动力驱动系统,所述系统包括:第一电机、第二电机、锁止机构、太阳轮、行星轮、行星架、齿圈和输出齿轮组;
所述第一电机的输出轴与所述太阳轮连接;
所述第二电机的输出轴与所述齿圈连接;
所述锁止机构连接在所述第一电机的输出轴上并位于所述第一电机和所述太阳轮之间,所述锁止机构能够制动所述第一电机的输出轴;
所述行星轮夹设在所述齿圈和所述太阳轮之间,并与所述齿圈和所述太阳轮啮合;
所述行星架的一端与所述行星轮连接,另一端与所述输出齿轮组连接。
可选地,所述锁止机构为制动器或单向离合器。
可选地,所述系统还包括驱动轮组件,所述驱动轮组件包括差速器、驱动轴和车轮;
所述差速器套设在所述驱动轴上,并与所述输出齿轮组啮合;
所述车轮与所述驱动轴连接。
可选地,所述输出齿轮组包括第一齿轮、第二齿轮、第三齿轮和中间轴,所述第一齿轮、所述第二齿轮和所述第三齿轮的齿数彼此不同;
所述第一齿轮与所述行星架的输出端连接;
所述第二齿轮与所述第一齿轮啮合,所述第二齿轮通过中间轴与所述第三齿轮连接;
所述第三齿轮与所述差速器啮合。
可选地,所述系统还包括电源组件;
所述电源组件包括电池装置、电池管理系统、第一电机控制器、第二电机控制器、第一逆变器和第二逆变器;
所述电池装置与所述电池管理系统连接;
所述电池管理系统与所述第一电机控制器和所述第二电机控制器分别连接;
所述第一电机控制器与所述第一逆变器连接,所述第一逆变器与所述第一电机连接;
所述第二电机控制器与所述第二逆变器连接,所述第二逆变器与所述第二电机连接。
本申请的第二方面是提供了一种控制方法,所述控制方法用于控制上述的动力驱动系统,以使所述动力驱动系统处于单电机驱动模式、倒车模式、双电机驱动模式和能量回收模式中的任一种模式下。
可选地,当控制所述动力驱动系统处于所述单电机驱动模式时,所述控制方法包括:
控制第一电机不工作,控制第二电机工作,控制锁止机构制动所述第一电机的输出轴。
可选地,当控制所述动力驱动系统处于所述倒车模式时,所述控制方法包括:
控制第一电机不工作,控制第二电机工作,控制锁止机构制动所述第一电机的输出轴;
其中所述第二电机在所述倒车模式下的转动方向与其在所述单电机驱动模式下的转动方向相反。
可选地,当控制所述动力驱动系统处于所述双电机驱动模式时,所述控制方法包括:
控制第一电机工作,控制第二电机工作,控制锁止机构不制动所述第一电机的输出轴。
可选地,当控制所述动力驱动系统处于所述能量回收模式时,所述控制方法包括:
控制第一电机不工作,控制第二电机发电,控制锁止机构制动所述第一电机的输出轴。
本申请的第三方面是提供了一种车辆,包括控制单元和上述第一方面所述的动力驱动系统,所述控制单元与所述动力驱动系统中的第一电机、第二电机和锁止机构电连接。
可选地,所述控制单元被配置为:
控制所述第一电机不工作,控制所述第二电机工作,控制所述锁止机构制动所述第一电机的输出轴,以使所述车辆处于单电机驱动模式。
可选地,所述控制单元被配置为:
控制所述第一电机不工作,控制所述第二电机工作,控制所述锁止机构制动所述第一电机的输出轴,以使所述车辆处于倒车模式;
所述第二电机在所述倒车模式下的转动方向与其在所述单电机驱动模式下的转动方向相反。
可选地,所述控制单元被配置为:
控制所述第一电机工作,控制所述第二电机工作,控制所述锁止机构不制动所述第一电机的输出轴,以使所述车辆处于双电机驱动模式。
可选地,所述控制单元被配置为:
控制所述第一电机不工作,控制所述第二电机发电,控制所述锁止机构制动所述第一电机的输出轴,以使所述车辆处于能量回收模式。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种动力驱动系统的结构示意图;
图2是本申请实施例提供的单电机驱动模式下动力驱动系统的动力传递示意图;
图3是本申请实施例提供的倒车模式下动力驱动系统的动力传递示意图;
图4是本申请实施例提供的双电机驱动模式下动力驱动系统的动力传递示意图;
图5是本申请实施例提供的能量回收模式下动力驱动系统的动力传递示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种使用电能的动力驱动系统,该系统可以直接应用于纯电动汽车,也可以与发动机动力驱动系统结合而形成混合动力驱动系统,从而应用于混合动力汽车。该动力驱动系统具有两个动力源,系统内具有E-CVT(电动无级变速器,Electric Continuously Variable Transmission)结构,能够实现无级变速传动。
如图1所示,该动力驱动系统包括第一电机1、第二电机2、锁止机构3、单行星排机构和输出齿轮组,单行星排机构包括太阳轮4、行星轮5、行星架6和齿圈7。
其中,第一电机1的输出轴与太阳轮4连接;锁止机构3设置在第一电机1和太阳轮4之间,用于执行或中断第一电机1和太阳轮4之间的扭矩传输;第二电机2的输出轴与齿圈7连接;行星轮5夹设在齿圈7和太阳轮4之间,并与齿圈7和太阳轮4啮合;行星架6的一端与行星轮5连接,另一端与输出齿 轮组连接。
第一电机1和第二电机2是用于提供动力输出的部件。第一电机1和第二电机2具有两种模式:工作模式和发电模式,其中工作模式下第一电机1和第二电机2用于将接收到的电能转化为机械能并输出,发电模式下第一电机1和第二电机2用于将接收到的机械能转化为电能并输出。而第一电机1和第二电机2不工作,则是指第一电机1和第二电机2处于既不将电能转化为机械能,又不将机械能转化为电能的状态。该动力驱动系统中的动力传递部件能够将第一电机1和/或第二电机2输出的动力传递至车轮10,从而驱动车辆行驶。其中,本申请实施例中的第一电机和第二电机可以为永磁同步电机,永磁同步电机功率密度大、效率较高,从而能够为车辆提供较好的加速性能。
单行星排机构是用于传递动力的部件。如图1所示,在驱动车辆行驶的模式下,单行星排机构可以具有两个动力输入端和一个动力输出端,两个动力输入端分别是指太阳轮4和齿圈7,一个动力输出端指的是行星架6,单行星排机构的两个动力输入端分别与两个提供动力输出的部件连接,具体地,太阳轮4与第一电机1连接,齿圈7与第二电机2连接,动力输出端则与该动力驱动系统中的其他动力传递部件连接。需要说明的是,在能量回收的模式下,动力输入端和动力输出端的功能对调,即行星架6成为动力输入端,太阳轮4和齿圈7成为动力输出端。单行星排机构能够将第一电机1和/或第二电机2输出的动力传递至输出齿轮组。
锁止机构3是用于制动第一电机1的输出轴的部件。在单独使用第二电机2驱动车辆时,为了防止太阳轮4和齿圈7同步转动而导致动力无法继续向后传递,需要对太阳轮4进行锁止。当锁止机构3制动第一电机1的输出轴时,太阳轮4被锁止,无法转动;当锁止机构3不制动第一电机1的输出轴时,太阳轮4可以转动。
输出齿轮组也是用于传递动力的部件。第一电机1和/或第二电机2输出的动力经过单行星排机构传递到输出齿轮组后,由输出齿轮组继续向后传递直至驱动车轮10转动。输出齿轮组可以包括多个齿轮,多个齿轮相互啮合和连接,多个齿轮的齿数彼此不同。
因此,本申请实施例提供的动力驱动系统,既能够实现在中低负荷工况下使用单电机以固定挡位驱动车辆,也能够实现在高负荷工况下使用双电机配合 E-CVT结构驱动车辆,大大提升了车辆的动力性。其中在使用双电机驱动车辆时,可以利用多挡速比使得第一电机1和第二电机2始终工作在高效区,从而降低能耗。而且在换挡过程中可以通过两个电机的配合实现调速,对整车平顺性也有很大提升。
在本申请实施例的一些实现方式中,如图1所示,锁止机构3可以为制动器或单向离合器。
当锁止机构3为制动器时,制动器可以套设在第一电机1的输出轴上。在制动器不制动第一电机1的输出轴时,第一电机1可以向太阳轮4传递动力,太阳轮4也可以向第一电机1传递动力。在制动器制动第一电机1的输出轴时,第一电机1无法向太阳轮4传递动力,太阳轮4被完全锁止。第二电机2可以正转传递动力,驱动车辆前进;也可以反转传递动力,驱动车辆倒车。需要说明的是,电机的正转方向和反转方向需要根据实际需求进行设定,其中正转方向为顺时针转动和逆时针转动中的一个,反转方向为顺时针转动和逆时针转动中的另一个。
当锁止机构3为单向离合器时,单向离合器的一端可以与第一电机1的输出轴连接,另一端与太阳轮4连接。单向离合器被配置为仅能将动力从第一电机1传递至太阳轮4,而不能将动力从太阳轮4传递至第一电机1。例如当第二电机2正转且第一电机不工作时,在单向离合器的摩擦力的作用下,太阳轮4被锁止,行星轮5转动并继续向后传递动力;然而当第二电机2反转时,单向离合器无法锁止太阳轮4,因此在使用单向离合器作为锁止机构3时,通常不使用第二电机2驱动车辆倒车,即第二电机2只允许正转,不允许反转。
继续参见图1,在本申请实施例中,动力驱动系统还包括驱动轮组件,驱动轮组件包括差速器8、驱动轴9和车轮10;差速器8套设在驱动轴9上,并与输出齿轮组啮合;车轮10与驱动轴9连接。
输出齿轮组可以将动力传递至差速器8,再由差速器8传递至驱动轴9,进而驱动连接在驱动轴9两端的两个车轮10转动,其中,差速器8可以使驱动轴9两端的两个车轮10以不同转速转动。当汽车转弯行驶时,汽车的内侧车轮10和汽车的外侧车轮10的转弯半径不同,外侧车轮10的转弯半径要大于内侧车轮10的转弯半径,这就要求在转弯时外侧车轮10的转速要高于内侧车轮10的转速,利用差速器8可以使两个车轮10以不同的转速滚动,从而实现两个车轮 10转速的差异。
本申请还提供了一种可能的输出齿轮组的结构,如图1所示,输出齿轮组可以包括第一齿轮11、第二齿轮12、第三齿轮13和中间轴14,第一齿轮11、第二齿轮12和第三齿轮13的齿数彼此不同;第一齿轮11与行星架6的输出端连接;第二齿轮12与第一齿轮11啮合,第二齿轮12通过中间轴14与第三齿轮13连接;第三齿轮13与差速器8啮合。
上述输出齿轮组的结构只能提供一个固定挡位驱动车轮10转动,当然,在本申请的其他实施例中,输出齿轮组也可以具有其它的结构,例如还可以包括同步器和/或单向离合器,从而通过多个齿轮与同步器和/或单向离合器的配合而为车辆配置更多的挡位。
在本申请实施例中,动力驱动系统还包括电源组件。电源组件是与第一电机1和第二电机2发生能量交换的部件。其中当第一电机1和/或第二电机2处于工作模式时,电源组件为第一电机1和/或第二电机2提供能量;当第一电机1和/或第二电机2处于发电模式时,电源组件接收并存储第一电机1和/或第二电机2转化的电能。
参见图1,电源组件可以包括电池装置15、电池管理系统16(BMS,Battery Management System)、第一电机控制器17(MCU,Motor Control Unit)、第二电机控制器18、第一逆变器19(INV,Inverter)和第二逆变器20。其中,电池装置15与电池管理系统16连接;电池管理系统16与第一电机控制器17和第二电机控制器18分别连接;第一电机控制器17与第一逆变器19连接,第一逆变器19与第一电机1连接;第二电机控制器18与第二逆变器20连接,第二逆变器20与第二电机2连接。
电池装置15是用于存储电能的装置。电源组件与第一电机1和第二电机2发生能量交换的过程,实际上是电池装置15中所存储的电能增加或减少的过程。其中,电池装置15可以为可充电电池。
电池管理系统16是用于控制电池装置15充放电的部件。其中当第一电机1和/或第二电机2工作时,电池管理系统16控制电池装置15放电,电池装置15中所存储的电能减少;当第一电机1和/或第二电机2发电时,电池管理系统16控制电池装置15充电,电池装置15中所存储的电能增加。
电机控制器是用于控制电机按照设定的方向、速度、角度、响应时间进行 工作的部件。电机控制器能够将动力电池所存储的电能转化为驱动电机所需的电能,从而控制车辆的启动运行、进退速度、爬坡力度等行驶状态。而逆变器则用于实现把电池装置15中的直流电能转变成定频定压或调频调压交流电。其中,每个电机与一个电机控制器和一个逆变器连接,并接受该电机控制器的控制。第一逆变器19和第二逆变器20分别设置在电池装置15的两条输出电路上,用于将电池转能够执15输出的直流电转换成三相交流电后驱动对应的电机。
示例性地,第一电机控制器17、第一逆变器19、第二电机控制器18和第二逆变器20也可以集成在一起,从而节省安装空间。
在本申请实施例中,动力驱动系统还可以包括控制单元,控制单元能够根据当前车辆状态确定出对应的运行模式,当前运行状态至少包括当前油门踏板开度、当前刹车踏板开度、当前动力电池电量、当前车速和当前工况,系统的运行模式至少包括单电机驱动模式、倒车模式、双电机驱动模式和能量回收模式。
综上所述,本申请实施例提供的动力驱动系统,整体结构简单紧凑,通过一个锁止机构3和一个单行星排机构的配合,实现了根据工况需求切换运行模式和速比调整,既可以适应低速工况下使用单电机驱动车辆行驶,也可以适应中高速工况下使用双电机驱动车辆行驶,降低了对第一电机1和第二电机2的扭矩要求,也使得这两个电机更多地在高效区工作,降低了能耗的同时还保证了良好的动力性。
本申请实施例还提供了一种车辆,该车辆包括控制单元和上述的动力驱动系统,控制单元与动力驱动系统中的第一电机1、第二电机2和锁止机构3电连接。控制单元能够根据当前车辆状态确定出对应的运行模式,从而向第一电机1、第二电机2和锁止机构3发送控制信号,以使车辆处于对应的运行模式下。其中,当前运行状态至少包括当前油门踏板开度、当前刹车踏板开度、当前动力电池电量、当前车速和当前工况,运行模式至少包括单电机驱动模式、倒车模式、双电机驱动模式和能量回收模式。
在本申请实施例中,控制单元通过执行如下的控制方法,从而控制动力驱动系统中各部件的工作状态,以使车辆处于单电机驱动模式、倒车模式、双电机驱动模式和能量回收模式中的任一种模式下。
下面以锁止机构3是制动器为例,结合附图2-5,对车辆在每一种模式下控制单元所执行的控制方法和动力传递路径做出详细的说明。
(1)单电机驱动模式
当控制车辆处于单电机驱动模式时,该控制单元被配置为:控制第一电机1不工作,控制第二电机2工作,控制锁止机构3制动第一电机1的输出轴。
单电机驱动模式是指仅使用一个电机驱动车辆向前行驶所对应的模式。这种运行模式通常是车辆在中低负荷工况下运行时使用,例如车辆起步加速阶段、低速行驶阶段等,能够更加节省电力。
在单电机驱动模式下,如图2所示,电池管理系统16控制电池装置15放电,第二电机控制器18控制第二电机2工作,第一电机控制器17控制第一电机1不工作,锁止机构3制动第一电机1的输出轴。单电机驱动模式下的动力传递路径如图2所示:电池装置15输出的电能经第二电机2转化为机械能,依次经过齿圈7、行星轮5、行星架6、第一齿轮11、第二齿轮12、中间轴14、第三齿轮13、差速器8,最后传递至驱动轴9,带动车轮10转动。
(2)倒车模式
当控制该车辆处于倒车模式时,该控制单元被配置为:控制第一电机1不工作,控制第二电机2工作,控制锁止机构3制动第一电机1的输出轴。
倒车模式是指动力源驱动车辆后退行驶的所对应的模式,倒车模式通常根据驾驶员的驾驶需求而进入,例如当停车场景、倒车场景等,并且一般情况倒车模式仅使用一个动力源驱动即可。
在倒车模式下,如图3所示,电池管理系统16控制电池装置15放电,第二电机控制器18控制第二电机2工作,并且此时第二电机2的转动方向与其在单电机驱动模式下的转动方向相反,第一电机控制器17控制第一电机1不工作,锁止机构3制动第一电机1的输出轴。倒车模式下的动力传递路径如图3所示:电池装置15输出的电能经第二电机2转化为机械能,依次经过齿圈7、行星轮5、行星架6、第一齿轮11、第二齿轮12、中间轴14、第三齿轮13、差速器8,最后传递至驱动轴9,带动车轮10转动,此时车轮10的转动方向与单电机驱动模式下车轮10的转动方向相反。
(3)双电机驱动模式
当控制车辆处于双电机驱动模式时,控制单元被配置为:控制第一电机1 工作,控制第二电机2工作,控制锁止机构3不制动第一电机1的输出轴。
双电机驱动模式是指同时使用两个电机驱动车辆向前行驶所对应的模式,这种运行模式通常是车辆在高负荷工况下运行时使用,例如车辆处于中高速行驶阶段,此时两个动力源可以输出较大的功率,提高整车动力性。
在双电机驱动模式下,如图4所示,电池管理系统16控制电池装置15放电,第一电机控制器17控制第一电机1工作,第二电机控制器18控制第二电机2工作,锁止机构3不制动第一电机1的输出轴。双电机驱动模式下的动力传递路径如图4所示:电池装置15输出的一部分电能经第一电机1转化为机械能,经太阳轮4传递至行星轮5;电池装置15输出的另一部分电能经第二电机2转化为机械能,经齿圈7传递至行星轮5,并在行星轮5处与第一电机1输出的动力耦合,继续向下传递,依次经过行星架6、第一齿轮11、第二齿轮12、中间轴14、第三齿轮13、差速器8,最后传递至驱动轴9,带动车轮10转动。
在双电机驱动模式下,保持行星轮5的转速一定,可以实现第一电机1和第二电机2的多种速比配合方式,是第一电机1和第二电机2一直工作在高效区。也就是说,随着车速的变化,第一电机1和第二电机2可以在保证高效的情况下调整速比,实现无级变速,即实现所谓的E-CVT模式。
(4)能量回收模式
当控制车辆处于能量回收模式时,控制单元被配置为:控制第一电机1不工作,控制第二电机2发电,控制锁止机构3制动第一电机1的输出轴。
能量回收模式是指至少一个电机将车身的机械能转化为电能存入电池装置15所对应的模式。当电池装置15的电量不足时,可以使用能量回收模式为电池装置15充电。所回收的这部分电能,可以为后续车辆的运行提供能量,从而提高了车辆的续航里程。例如,在滑行和制动工况下,车辆运行状态可以设置为能量回收模式,在上述模式下,为使运行的车辆被制动,该车的动力系统为整车提供了反向力矩,同时将被制动的这部分动能经由第二电机2转换为电能,并存入电池装置15中备用。
在能量回收模式下,如图5所示,第一电机控制器17控制第一电机1不工作,锁止机构3制动第一电机1的输出轴,第二电机控制器18控制第二电机2发电,电池管理系统16控制电池装置15充电。能量回收模式下的动力传递路径如图2所示:由整车制动而减小的部分动能会通过车轮10转换为机械能,依 次传递给驱动轴9、差速器8、第三齿轮13、中间轴14、第二齿轮12、第一齿轮11、行星架6、行星轮5、齿圈7,最终传递给第二电机2,第二电机2将机械能转换为电能并存入电池装置15中备用。
本实施例所提供的车辆中,控制单元能够根据当前工况控制车辆在多种运行模式之间切换,从而降低对第一电机和第二电机的扭矩要求,进而降低了整个变速传动系统的成本,同时,基于车辆的动力系统中锁止机构和单行星排机构的配合,使得第一电机和第二电机更多地在高效区工作,能量传递损失较少,系统工作效率高,具有良好的动力性和能量转换效果。
在本申请中,应该理解到,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
本领域技术人员在考虑说明书及实践这里公开的本申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种动力驱动系统,包括:第一电机(1)、第二电机(2)、锁止机构(3)太阳轮(4)、行星轮(5)、行星架(6)、齿圈(7)和输出齿轮组;
    所述第一电机(1)的输出轴与所述太阳轮(4)连接;
    所述第二电机(2)的输出轴与所述齿圈(7)连接;
    所述锁止机构(3)连接在所述第一电机(1)的输出轴上并位于所述第一电机(1)和所述太阳轮(4)之间,所述锁止机构(3)能够制动所述第一电机(1)的输出轴;
    所述行星轮(5)夹设在所述齿圈(7)和所述太阳轮(4)之间,并与所述齿圈(7)和所述太阳轮(4)啮合;
    所述行星架(6)的一端与所述行星轮(5)连接,另一端与所述输出齿轮组连接。
  2. 根据权利要求1所述的系统,所述锁止机构(3)为制动器或单向离合器。
  3. 根据权利要求1或2所述的系统,包括驱动轮组件,所述驱动轮组件包括差速器(8)、驱动轴(9)和车轮(10);
    所述差速器(8)套设在所述驱动轴(9)上,并与所述输出齿轮组啮合;
    所述车轮(10)与所述驱动轴(9)连接。
  4. 根据权利要求3所述的系统,所述输出齿轮组包括第一齿轮(11)、第二齿轮(12)、第三齿轮(13)和中间轴(14),所述第一齿轮(11)、所述第二齿轮(12)和所述第三齿轮(13)的齿数彼此不同;
    所述第一齿轮(11)与所述行星架(6)的输出端连接;
    所述第二齿轮(12)与所述第一齿轮(11)啮合,所述第二齿轮(12)通过中间轴(14)与所述第三齿轮(13)连接;
    所述第三齿轮(13)与所述差速器(8)啮合。
  5. 根据权利要求1所述的系统,包括电源组件;
    所述电源组件包括电池装置(15)、电池管理系统(16)、第一电机控制器(17)、第二电机控制器(18)、第一逆变器(19)和第二逆变器(20);
    所述电池装置(15)与所述电池管理系统(16)连接;
    所述电池管理系统(16)与所述第一电机控制器(17)和所述第二电机控制器(18)分别连接;
    所述第一电机控制器(17)与所述第一逆变器(19)连接,所述第一逆变器(19)与所述第一电机(1)连接;
    所述第二电机控制器(18)与所述第二逆变器(20)连接,所述第二逆变器(20)与所述第二电机(2)连接。
  6. 一种车辆,包括控制单元和权利要求1-5任一项所述的动力驱动系统,所述控制单元与所述动力驱动系统中的第一电机、第二电机和锁止机构电连接。
  7. 根据权利要求6所述的车辆,所述控制单元被配置为:
    控制所述第一电机(1)不工作,控制所述第二电机(2)工作,控制所述锁止机构(3)制动所述第一电机(1)的输出轴,以使所述车辆处于单电机驱动模式。
  8. 根据权利要求7所述的车辆,所述控制单元被配置为:
    控制所述第一电机(1)不工作,控制所述第二电机(2)工作,控制所述锁止机构(3)制动所述第一电机(1)的输出轴,以使所述车辆处于倒车模式;
    所述第二电机(2)在所述倒车模式下的转动方向与其在所述单电机驱动模式下的转动方向相反。
  9. 根据权利要求6所述的车辆,所述控制单元被配置为:
    控制所述第一电机(1)工作,控制所述第二电机(2)工作,控制所述锁止机构(3)不制动所述第一电机(1)的输出轴,以使所述车辆处于双电机驱动模式。
  10. 根据权利要求6所述的车辆,所述控制单元被配置为:
    控制所述第一电机(1)不工作,控制所述第二电机(2)发电,控制所述锁止机构(3)制动所述第一电机(1)的输出轴,以使所述车辆处于能量回收模式。
PCT/CN2021/122814 2021-06-29 2021-10-09 动力驱动系统和车辆 WO2023273004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110726960.6 2021-06-29
CN202110726960.6A CN113263905A (zh) 2021-06-29 2021-06-29 动力驱动系统和控制方法

Publications (1)

Publication Number Publication Date
WO2023273004A1 true WO2023273004A1 (zh) 2023-01-05

Family

ID=77236308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122814 WO2023273004A1 (zh) 2021-06-29 2021-10-09 动力驱动系统和车辆

Country Status (2)

Country Link
CN (1) CN113263905A (zh)
WO (1) WO2023273004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494742A (zh) * 2023-05-17 2023-07-28 湖北万润新能源科技股份有限公司 驱动装置和电机驱动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263905A (zh) * 2021-06-29 2021-08-17 奇瑞汽车股份有限公司 动力驱动系统和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844511A (zh) * 2010-05-14 2010-09-29 北汽福田汽车股份有限公司 一种电动汽车的动力输出装置
FR2997047A1 (fr) * 2012-10-18 2014-04-25 Faar Industry Dispositif de motorisation pour vehicule electrique
CN103754099A (zh) * 2014-01-13 2014-04-30 北京理工大学 一种双电机多模式动力耦合驱动总成
CN105196863A (zh) * 2015-10-29 2015-12-30 厦门市福工动力技术有限公司 一种电动汽车驱动装置
CN106696759A (zh) * 2017-01-14 2017-05-24 张化锴 一种单行星排结构电动汽车动力总成及其控制方法
CN113263905A (zh) * 2021-06-29 2021-08-17 奇瑞汽车股份有限公司 动力驱动系统和控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211364239U (zh) * 2019-10-29 2020-08-28 华人运通(江苏)技术有限公司 一种双电机驱动系统及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844511A (zh) * 2010-05-14 2010-09-29 北汽福田汽车股份有限公司 一种电动汽车的动力输出装置
FR2997047A1 (fr) * 2012-10-18 2014-04-25 Faar Industry Dispositif de motorisation pour vehicule electrique
CN103754099A (zh) * 2014-01-13 2014-04-30 北京理工大学 一种双电机多模式动力耦合驱动总成
CN105196863A (zh) * 2015-10-29 2015-12-30 厦门市福工动力技术有限公司 一种电动汽车驱动装置
CN106696759A (zh) * 2017-01-14 2017-05-24 张化锴 一种单行星排结构电动汽车动力总成及其控制方法
CN113263905A (zh) * 2021-06-29 2021-08-17 奇瑞汽车股份有限公司 动力驱动系统和控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494742A (zh) * 2023-05-17 2023-07-28 湖北万润新能源科技股份有限公司 驱动装置和电机驱动方法

Also Published As

Publication number Publication date
CN113263905A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN108382187B (zh) 双电机混合动力系统及其控制方法
CN100595085C (zh) 插电式集成起动发电机混合动力轿车驱动系统
JPH11217025A (ja) ハイブリッド車
CN108116218B (zh) 基于行星轮系的多档位混联驱动系统
CN107160994B (zh) 一种混合动力电子无级驱动系统及汽车
WO2009056042A1 (en) Hybrid power driving system and driving method thereof
WO2023273004A1 (zh) 动力驱动系统和车辆
WO2022089176A1 (zh) 混合动力系统及车辆
JPH04297330A (ja) シリーズ、パラレル複合ハイブリッドカーシステム
US20160023651A1 (en) Hybrid vehicle driving apparatus
CN111688470B (zh) 一种串并联构型插电式混合动力系统及其控制方法
CN110816253B (zh) 无齿圈行星轮系混合动力系统
WO2023029340A1 (zh) 电动动力传递系统及车辆
CN111469652A (zh) 混合动力驱动系统、控制方法及汽车
CN113335079B (zh) 双电机驱动系统及应用
CN114211950A (zh) 混合动力系统及车辆
CN110789328B (zh) 混合动力驱动系统
CN212400883U (zh) 混合动力驱动系统及汽车
CN212737732U (zh) 一种混合动力耦合系统和混合动力汽车
JP3646963B2 (ja) ハイブリッド車
CN210390754U (zh) 单电机混合动力驱动装置及具有其的车辆
CN107672441B (zh) 一种混合动力系统
CN113799592A (zh) 一种混合动力耦合系统及其控制方法
CN114851828B (zh) 变速传动系统和车辆
CN110103697A (zh) 混合动力系统及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE