WO2022052985A1 - 驱动控制方法、装置和电动车辆 - Google Patents

驱动控制方法、装置和电动车辆 Download PDF

Info

Publication number
WO2022052985A1
WO2022052985A1 PCT/CN2021/117418 CN2021117418W WO2022052985A1 WO 2022052985 A1 WO2022052985 A1 WO 2022052985A1 CN 2021117418 W CN2021117418 W CN 2021117418W WO 2022052985 A1 WO2022052985 A1 WO 2022052985A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
drive motor
positive
output
negative
Prior art date
Application number
PCT/CN2021/117418
Other languages
English (en)
French (fr)
Inventor
张艳海
栾凯
Original Assignee
北京罗克维尔斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京罗克维尔斯科技有限公司 filed Critical 北京罗克维尔斯科技有限公司
Publication of WO2022052985A1 publication Critical patent/WO2022052985A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of new energy vehicles, and in particular, to a drive control method, device and electric vehicle.
  • the transmission system includes: a drive motor, a reducer, a drive shaft and a drive gear, and is connected to the drive gear through the drive motor, reducer, and drive shaft.
  • a drive motor a reducer
  • a drive shaft a drive gear
  • the transmission system includes: a drive motor, a reducer, a drive shaft and a drive gear, and is connected to the drive gear through the drive motor, reducer, and drive shaft.
  • the purpose of the present disclosure is to provide a drive control method, device and electric vehicle, which can solve at least one of the above-mentioned technical problems.
  • the specific plans are as follows:
  • the present disclosure provides a driving control method, including:
  • the output torque of the first drive motor is controlled to be negative torque
  • the output torque of the second drive motor is controlled to be positive torque.
  • the first drive motor and the second drive motor are respectively the front drive motor and the rear drive motor. one of.
  • the drive control method further includes:
  • the output torque of the first drive motor is controlled to be the first negative torque
  • the output torque of the second drive motor is the first positive torque
  • the first positive torque is controlled.
  • the sum of the torque and the first negative torque is equal to the vehicle demand torque.
  • the drive control method further includes:
  • the output torque of the first driving motor is controlled from the first negative torque to the second positive torque, and the sum of the second positive torque and the output torque of the second driving motor is equal to the vehicle demand torque.
  • controlling the output torque of the first drive motor from the first negative torque to the second positive torque includes:
  • the output torque of the first drive motor is controlled to increase from the third positive torque to the second positive torque based on a preset second rate of change, which is greater than the preset first rate of change.
  • the method when controlling the output torque of the first drive motor from the first negative torque to the second positive torque, the method further includes:
  • the output torque of the second drive motor is controlled to be the maximum positive torque.
  • the drive control method including:
  • the output torque of the second driving motor is controlled to be reduced to a fourth positive torque
  • the output torque of the first driving motor is controlled to be reduced to a second negative torque
  • the fourth positive torque is the same as the fourth positive torque.
  • the sum of the two negative torques is equal to the vehicle demand torque.
  • controlling the output torque of the first drive motor to reduce to the second negative torque including:
  • the output torque of the first driving motor is controlled to be reduced to the fifth positive torque based on the preset third change rate, and the output torque of the first driving motor is controlled based on the preset fourth change rate From the fifth positive torque to the second negative torque, the absolute value of the preset fourth rate of change is smaller than the absolute value of the preset third rate of change.
  • the method before controlling the output torque of the first drive motor to be negative torque and controlling the output torque of the second drive motor to be positive torque based on the torque demanded by the entire vehicle, the method further includes:
  • the present disclosure provides a drive control device, comprising:
  • the acquisition unit is used to acquire the required torque of the whole vehicle
  • the execution condition unit is used to control the output torque of the first drive motor to be negative torque, and control the output torque of the second drive motor to be positive torque based on the torque demanded by the whole vehicle, the first drive motor and the second drive motor are respectively the front One of the drive motor and the rear drive motor.
  • execution case unit include:
  • the first working condition sub-unit is used to control the output torque of the first drive motor to be the first negative torque when the vehicle demand torque is greater than zero and less than the maximum positive torque of the second drive motor, and the output torque of the second drive motor is The first positive torque, and the sum of the first positive torque and the first negative torque is equal to the vehicle demand torque.
  • the execution condition unit it also includes:
  • the first working condition transition subunit is used to control the output torque of the first drive motor from the first negative torque to the second positive torque, and the sum of the second positive torque and the output torque of the second drive motor is equal to the vehicle demand torque.
  • the first working condition transition subunit it includes:
  • the first working condition transition subunit it also includes:
  • the second working condition sub-unit is configured to control the output torque of the second drive motor to be the maximum positive torque when the vehicle demand torque is greater than or equal to the maximum positive torque.
  • execution case unit include:
  • the third working condition sub-unit is used to control the output torque of the second drive motor to decrease to the fourth positive torque, and control the output torque of the first drive motor to decrease to the second negative torque during the process that the vehicle demand torque decreases to zero. torque, and the sum of the fourth positive torque and the second negative torque is equal to the vehicle demand torque.
  • the third working condition subunit including:
  • the rate-controlled output torque of the first driving motor is transformed from the fifth positive torque to the second negative torque, and the absolute value of the preset fourth rate of change is smaller than the absolute value of the preset third rate of change.
  • the drive control device further comprising:
  • the unit for filtering the vehicle demand torque is used to control the output torque of the first drive motor to be negative torque and control the output torque of the second drive motor to be positive torque based on the vehicle demand torque, based on the vehicle demand torque and the current torque.
  • the change value of determines that the change value satisfies the preset threshold.
  • the present disclosure provides an electric vehicle, comprising: a controller, a front drive motor, a rear drive motor, and a battery;
  • the drive control method according to any one of the first aspect is executed when the processor is working.
  • the output torque of the first driving motor is controlled to be negative torque
  • the output torque of the second driving motor is controlled to be positive torque.
  • the clearance of the driving gear is compressed, so as to avoid the collision of the driving gear caused by the deflection of the meshing surface of the driving gear, and prolong the service life of the driving gear. It reduces the frustration of the whole vehicle during driving and improves the comfort of the occupants.
  • FIG. 1 shows a flowchart of a drive control method according to an embodiment of the present disclosure
  • FIG. 2 shows a flowchart of a driving control method according to an embodiment of the present disclosure
  • FIG. 3 shows a unit block diagram of a drive control device according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of an electric vehicle according to an embodiment of the present disclosure.
  • a driving control method proposed by the present disclosure will be described in detail below with reference to FIG. 1 and FIG. 2 through embodiments.
  • step S101 the required torque of the entire vehicle is obtained.
  • Vehicle demand torque refers to the torque requested by the driver to the controller. The higher the torque required by the vehicle, the faster the vehicle needs to travel.
  • a first drive motor and a second drive motor are usually provided to control the running of the entire vehicle.
  • the output torque of the second drive motor provides positive torque for the entire vehicle
  • the output torque of the first drive motor provides negative torque or positive torque for the entire vehicle.
  • the first drive motor and the second drive motor are one of the front drive motor and the rear drive motor, respectively.
  • the first drive motor is a front drive motor and the second drive motor is a rear drive motor; or the first drive motor is a rear drive motor and the second drive motor is a front drive motor.
  • the required torque of the whole vehicle includes the requested torque fed back to the controller through the accelerator pedal after the driver depresses the accelerator pedal.
  • the accelerator pedal opening is expressed as a percentage and is used to indicate how deeply the accelerator pedal is depressed. For example, the accelerator pedal opening is increased from 40% to 80%, which means that the accelerator pedal is depressed from shallow to deep. Since the vehicle speed of the vehicle is positively related to the accelerator pedal opening, the driver's demand for the vehicle's torque is mainly reflected by the accelerator pedal opening and the current vehicle speed. Query the pre-prepared vehicle demand torque table through the current accelerator pedal opening and vehicle speed to obtain the current vehicle demand torque.
  • the accelerator pedal opening is represented by the push distance of the manual push lever.
  • the deflection of the driving gear meshing surface causes the collision of the driving gear, which often occurs during the acceleration or deceleration period during the driving of the vehicle. Based on this, the embodiments of the present disclosure provide the following steps.
  • Step S102 based on the vehicle demand torque, control the output torque of the first drive motor to be negative torque, and control the output torque of the second drive motor to be positive torque, the first drive motor and the second drive motor are respectively the front drive motor and the rear drive motor.
  • One of the drive motors One of the drive motors.
  • the output torque of the first drive motor is the first negative torque, which is used to compress the drive gear and lower the drive gear.
  • the output torque of the second drive motor is the first positive torque, which is used to drive the vehicle to accelerate; and the sum of the first positive torque and the first negative torque is equal to the vehicle demand torque.
  • the output torque of the first drive motor needs to change from the first negative torque to the second positive torque, and the direction changes in this direction.
  • the output torque of the front first drive motor requires the first negative torque to press the drive gear to reduce the transmission clearance of the drive gear; and the sum of the second positive torque and the output torque of the second drive motor is equal to the vehicle demand torque.
  • the output torque of the second drive motor is the fourth positive torque, which is used to compress the drive motor and reduce the transmission clearance of the drive gear; and the output torque of the first drive motor is The second negative torque is used to control the driving gear to be in a braking state to decelerate the vehicle; and the sum of the fourth positive torque and the second negative torque is equal to the vehicle demand torque.
  • the output torque of the first driving motor needs to change in direction, that is, from positive torque to negative torque, for controlling the driving gear to change from the driving state to the braking state.
  • Step S102-1 when the vehicle demand torque is greater than zero and less than the maximum positive torque of the second drive motor, control the output torque of the first drive motor to be the first negative torque, and the output torque of the second drive motor to be the first positive torque , and the sum of the first positive torque and the first negative torque is equal to the vehicle demand torque.
  • the output torque of the first driving motor is the first negative torque, which is used to compress the driving gear and reduce the transmission clearance of the driving gear;
  • the output torque of the second driving motor is the first positive torque, which is used to drive the whole vehicle to accelerate.
  • the first negative torque when the vehicle demanded torque is greater than zero and less than the maximum positive torque of the second drive motor, the first negative torque always maintains a fixed negative torque value, for example, the first negative torque Negative torque is equal to -6Nm.
  • the sum of the first negative torque output by the first drive motor and the first positive torque output by the second drive motor is equal to the vehicle demand torque.
  • the meshing stability value refers to the minimum output torque value at which the corresponding drive gear controlled by the drive motor cooperates with other components of the transmission system to stably control the operation of the transmission system.
  • the first negative torque is a meshing stable value, that is, the minimum output torque value at which the first drive motor controls the corresponding drive gear to cooperate with other components of the transmission system, and can stably control the operation of the transmission system.
  • the first negative torque is greater than or equal to -6.5Nm and less than or equal to -5.5Nm.
  • the first drive motor needs to control the drive gear and other components of the transmission system to be braked.
  • the engaged state transitions to the disengaged state, and then from the disengaged state to the drive-engaged state.
  • the output torque of the first driving motor also undergoes a process of changing direction from negative torque to positive torque, so as to control the driving gear to complete the direction change.
  • the transition from working condition A to working condition B is in the acceleration process, which includes the following steps:
  • Step S102-2 the output torque of the first drive motor is controlled from the first negative torque to the second positive torque, and the sum of the second positive torque and the output torque of the second drive motor is equal to the vehicle demand torque.
  • the ac period is a directional change process in which the output torque of the first driving motor changes from negative torque to positive torque.
  • the meshing surface of the driving gear is easily deflected, causing the collision of the driving gear. Therefore, the first negative torque is used to compress the drive gear and reduce the drive backlash of the drive gear in the ac period.
  • first negative torque in the specific working condition 1 and the first negative torque in the specific working condition 2 are regarded as the same value, it can be clearly understood that the first negative torque from the A working conditions to the B working conditions in the acceleration process in Figure 2 can be clearly understood.
  • the first negative torque is a stable meshing value before the direction change.
  • controlling the output torque of the first drive motor from the first negative torque to the second positive torque specifically includes the following steps:
  • Step S102-2-1 controlling the output torque of the first drive motor to transition from a first negative torque to a third positive torque based on a preset first rate of change, where the third positive torque is smaller than the second positive torque.
  • the third positive torque as the output torque of the first drive motor, is a stable meshing value after the direction change is completed, which is also an empirical value. As shown in the ab period in FIG. 2 , the ab period is a process in which the output torque of the first drive motor changes in the direction from negative torque to positive torque.
  • the third positive torque is greater than or equal to 5.5 Nm and less than or equal to 6.5 Nm.
  • the preset first change rate includes an increase of 0 ⁇ 5.5 Nm every 5 ms. That is, the output torque of the first driving motor is controlled to slowly transition from the first negative torque to the third positive torque, so as to prevent the driving gear meshing surface from deflecting and causing the driving gear to collide.
  • the third positive torque is smaller than the second positive torque during acceleration.
  • Step S102-2-2 controlling the output torque of the first drive motor to increase from a third positive torque to a second positive torque based on a preset second rate of change, where the preset second rate of change is greater than the preset first rate of change.
  • step S102-2-1 Since the direction change of the output torque of the first drive motor is completed in step S102-2-1, optionally, as shown in the period bc in FIG.
  • the torque output by the drive motor rapidly reaches the second positive torque.
  • the preset second rate of change includes an increase of 5-10 Nm every 5 ms. Thereby, the time to reach the second positive torque is shortened.
  • time a corresponds to the first negative torque output by the first drive motor
  • time b corresponds to the third negative torque output by the first drive motor
  • positive torque time c corresponds to the second positive torque output by the first drive motor
  • the first drive motor output torque Tqfront slowly transitions from the first negative torque (for example, -6Nm) to the third positive torque (for example, 6Nm), and then from the first The three positive torques quickly transition to the second positive torque.
  • the output torque of the second drive motor is controlled to be the maximum positive torque of the second drive motor.
  • the sum of the maximum positive torque of the second drive motor and the second positive torque is equal to the required torque of the entire vehicle.
  • the output torque of the second drive motor reaches the maximum output torque and can no longer output a larger torque for the entire vehicle, the output torque of the first drive motor is increased to increase the torque required for the entire vehicle.
  • the deflection of the driving gear meshing surface causes the collision of the driving gear, which often occurs during the deceleration period during the whole vehicle driving process.
  • the C condition is in the deceleration process, which includes the following steps:
  • Step S102-3 when the vehicle demand torque is less than zero, the output torque of the second drive motor is the fourth positive torque, and the output torque of the first drive motor is the third negative torque, and the fourth positive torque is the same as the third negative torque.
  • the sum of the torques is equal to the torque demanded by the entire vehicle.
  • the fourth positive torque is an empirical value.
  • the output torque of the first drive motor is bound to be negative torque.
  • the output torque (ie, the fourth positive torque) of the second driving motor is used to press the clearance of the driving gear, so as to avoid the collision of the driving gear caused by the deflection of the meshing surface of the driving gear.
  • the fourth positive torque when the vehicle demand torque is less than zero, the fourth positive torque always maintains a fixed positive torque value, for example, the fourth positive torque is greater than or equal to 5.5Nm, and less than or equal to 5.5Nm. or equal to 6.5Nm.
  • the transition process from working condition B to working condition C includes the following steps:
  • Step S102-4 in the process of reducing the vehicle demand torque to zero, the output torque of the second drive motor is controlled to be reduced to the fourth positive torque, and the output torque of the first drive motor is controlled to be reduced to the second negative torque, and the first drive motor is controlled to be reduced to the second negative torque.
  • the sum of the four positive torques and the second negative torque is equal to the vehicle demand torque.
  • the dg period is the process of changing the direction of the output torque of the first drive motor from positive torque to positive and negative torque, and the second negative torque in the specific working condition 4 is greater than that in the specific working condition 3. Third negative torque.
  • the second negative torque is a stable meshing value after the direction is changed.
  • controlling the output torque of the first drive motor to reduce to the second negative torque specifically including the following steps:
  • Step S102-4-1 controlling the output torque of the first drive motor to decrease to a fifth positive torque based on a preset third rate of change.
  • the fifth positive torque is the meshing stable value before the output torque of the first drive motor changes in direction.
  • the fifth positive torque is greater than or equal to 5.5 Nm and less than or equal to 6.5 Nm.
  • the preset third rate of change includes a decrease of -10 to -5Nm every 5ms.
  • Step S102-4-2 controlling the output torque of the first driving motor to transition from the fifth positive torque to the second negative torque based on the preset fourth change rate.
  • the absolute value of the preset fourth change rate is smaller than the absolute value of the preset third change rate value.
  • preset the second deceleration rule reduce -10 to -5Nm every 5ms.
  • the second negative torque is regarded as the stable meshing value after the output torque of the first drive motor changes in direction, which is also an empirical value. As shown in the eg period in Fig. 2, the eg period is when the output torque of the first drive motor changes from the positive torque to the negative torque direction change process.
  • the second negative torque makes the drive gear controlled by the first drive motor in a braking state, for example, the second negative torque is greater than or equal to -6.5Nm and less than or equal to -5.5Nm.
  • the output torque of the first drive motor is rapidly reduced from the positive torque corresponding to time d to the fifth positive torque corresponding to time e (for example, 6Nm).
  • the output torque of the first drive motor corresponding to time f is zero torque, which means the start of the deceleration process; in the eg period, the output torque of the first drive motor is determined by the fifth positive torque corresponding to the e time.
  • the first driving motor slowly transitions to the second negative torque (such as -6Nm) at time g, so as to complete the direction change of the output torque of the first drive motor from positive torque to negative torque; then the output torque of the first drive motor is changed by time g
  • the deceleration process is quickly completed corresponding to the second negative torque, and the negative torque corresponding to time h is reached; the output torque of the second drive motor is rapidly reduced from the positive torque corresponding to time d to the fourth positive torque corresponding to time f, which is used to compress the drive gear.
  • the first driving motor rapidly reduces the output torque to complete the deceleration process.
  • step S102 the following steps are further included:
  • Step S101-1 obtaining a change value based on the vehicle demand torque and/or the current torque.
  • the current torque change value is the quotient of the calculated difference between the current actual torque and the previous actual torque and the preset collection period.
  • Step S101-11 acquiring the previous vehicle demand torque acquired in the previous preset acquisition period.
  • the preset collection period is 0.05ms, and the torque required by the previous vehicle is 200Nm.
  • step S101-12 the difference between the torque demanded by the entire vehicle and the torque demanded by the previous vehicle is calculated, and the difference in demand variation is obtained.
  • step S101-13 the quotient of the difference between the demand change and the preset collection period is calculated to obtain the change value.
  • Step S101-21 acquiring the current actual torque and the previous actual torque acquired in the previous preset collection period.
  • the preset collection period is 0.05ms
  • the previous actual torque is 200Nm
  • the current actual torque is 210Nm.
  • step S101-22 the difference between the current actual torque and the previous actual torque is calculated, and the actual variation difference is obtained.
  • Step S101-23 Calculate the quotient of the actual change difference value and the preset collection period to obtain the change value.
  • Step S101-31 acquiring the previous actual torque acquired in the previous preset acquisition period.
  • the preset acquisition period is 0.05ms, and the previous actual torque is 200Nm.
  • Step S101-32 Calculate the difference between the vehicle demanded torque and the previous actual torque, and obtain a first mixed change difference.
  • Step S101-33 Calculate the quotient of the first mixed change difference value and the preset collection period, and obtain the current change value of the torque demanded by the entire vehicle.
  • Step S101-31 acquiring the current actual torque and the previous vehicle demand torque acquired in the previous preset collection period.
  • the preset collection period is 0.05ms
  • the current actual torque is 210Nm
  • the previous actual torque is 200Nm.
  • Step S101-32 Calculate the difference between the current actual torque and the previous vehicle demand torque, and obtain a second mixture change difference.
  • Step S101-33 Calculate the quotient of the second mixed variation difference value and the preset collection period, and obtain the variation value of the current vehicle demand torque.
  • Step S101-2 when the change value satisfies the preset change threshold, obtain the next vehicle demand torque.
  • the change value satisfies the preset change threshold, that is, the acceleration process or deceleration process of the whole vehicle does not reach a violent level, therefore, it is not necessary to control the output torque of the first drive motor to be negative torque, and control the output torque of the second drive motor to be positive torque.
  • the next required torque of the entire vehicle that is, returning to step S101 to continue monitoring the required torque of the entire vehicle next time.
  • the preset change threshold is less than an increase of 5Nm every 10ms, and greater than a decrease of -5Nm every 10ms.
  • step S101-3 when the change value does not meet the preset change threshold, step S102 is executed.
  • the method further includes the following steps:
  • Step S104-1 the first drive motor outputs negative torque.
  • the drive motor In new energy vehicles (such as pure electric vehicles, hybrid electric vehicles (including extended-range electric vehicles) or fuel cell vehicles), the drive motor has two functions: when outputting positive torque, it is the driving motor; when outputting negative torque Another generator. Therefore, the embodiment of the present disclosure stores the negative torque generated electric energy output by the first driving motor in the battery. Improve energy efficiency and reduce the cost of new energy vehicles.
  • new energy vehicles such as pure electric vehicles, hybrid electric vehicles (including extended-range electric vehicles) or fuel cell vehicles
  • the drive motor has two functions: when outputting positive torque, it is the driving motor; when outputting negative torque Another generator. Therefore, the embodiment of the present disclosure stores the negative torque generated electric energy output by the first driving motor in the battery. Improve energy efficiency and reduce the cost of new energy vehicles.
  • the output torque of the first driving motor is controlled to be negative torque
  • the output torque of the second driving motor is controlled to be positive torque.
  • the present disclosure also provides an embodiment of a drive control device. Since an embodiment of a drive control device is basically similar to an embodiment of a drive control method, the description is relatively simple, and for relevant parts, please refer to the corresponding description of the embodiment of a drive control method.
  • the apparatus embodiments described below are merely illustrative.
  • FIG. 3 shows an embodiment of a drive control device provided by the present disclosure.
  • the present disclosure provides a drive control device 300, including:
  • an obtaining unit 301 configured to obtain the vehicle demand torque
  • the execution condition unit 302 is configured to control the output torque of the first drive motor to be negative torque, and control the output torque of the second drive motor to be positive torque based on the torque demanded by the entire vehicle, the first drive motor and the second drive motor are respectively One of the front drive motor and the rear drive motor.
  • execution condition unit 302 it includes:
  • the first working condition sub-unit is used to control the output torque of the first drive motor to be the first negative torque when the vehicle demand torque is greater than zero and less than the maximum positive torque of the second drive motor, and the output torque of the second drive motor is The first positive torque, and the sum of the first positive torque and the first negative torque is equal to the vehicle demand torque.
  • execution condition unit 302 it further includes:
  • the first working condition transition subunit is used to control the output torque of the first drive motor from the first negative torque to the second positive torque, and the sum of the second positive torque and the output torque of the second drive motor is equal to the vehicle demand torque.
  • the first working condition transition subunit it includes:
  • the first working condition transition subunit it also includes:
  • the second working condition subunit is used to control the output torque of the second drive motor to be the maximum positive torque when the vehicle demand torque is greater than or equal to the maximum positive torque.
  • execution condition unit 302 it includes:
  • the third working condition sub-unit is used to control the output torque of the second drive motor to decrease to the fourth positive torque, and control the output torque of the first drive motor to decrease to the second negative torque during the process that the vehicle demand torque decreases to zero. torque, and the sum of the fourth positive torque and the second negative torque is equal to the vehicle demand torque.
  • the third working condition subunit including:
  • the rate-controlled output torque of the first driving motor is transformed from the fifth positive torque to the second negative torque, and the absolute value of the preset fourth rate of change is smaller than the absolute value of the preset third rate of change.
  • the drive control device further comprising:
  • the unit for filtering the vehicle demand torque is used to control the output torque of the first drive motor to be negative torque and control the output torque of the second drive motor to be positive torque based on the vehicle demand torque, based on the vehicle demand torque and the current torque.
  • the change value of determines that the change value satisfies the preset threshold.
  • the current torque change value is the quotient of the calculated difference between the current actual torque and the previous actual torque and the preset collection period.
  • the output torque of the first driving motor is controlled to be negative torque
  • the output torque of the second driving motor is controlled to be positive torque.
  • Embodiments of the present disclosure provide an embodiment of a drive control system, and the system is used in a drive control method.
  • the drive control system includes: at least one controller; and a memory communicatively connected to the at least one controller; wherein,
  • the memory stores instructions executable by one controller, and the instructions are executed by the at least one controller to enable the at least one controller to perform steps such as drive control method embodiments.
  • Embodiments of the present disclosure provide an embodiment of a drive control computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute part or all of a drive control method.
  • an embodiment of the present disclosure provides an embodiment of an electric vehicle 400 , including: a controller 401 , a front drive motor 402 , a rear drive motor 403 , and a battery 404 ;
  • the processor executes part or all of the content of a drive control method.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic apparatus; or may exist alone without being assembled into the electronic apparatus.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and This includes conventional procedural programming languages - such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments of the present disclosure may be implemented in a software manner, and may also be implemented in a hardware manner. Among them, the name of the unit does not constitute a limitation of the unit itself under certain circumstances.
  • exemplary types of hardware logic components include: Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (ASSPs), Systems on Chips (SOCs), Complex Programmable Logical Devices (CPLDs) and more.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLDs Complex Programmable Logical Devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种驱动控制方法、装置(300)和电动车辆(400)。该方法包括:获取整车需求扭矩;基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,第一驱动电机和第二驱动电机分别是前驱动电机(402)和后驱动电机(403)中的一个。

Description

驱动控制方法、装置和电动车辆
相关申请的交叉引用
本申请基于申请号为202010943308.5、申请日为2020年9月9日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及新能源汽车领域,具体而言,涉及一种驱动控制方法、装置和电动车辆。
背景技术
对于新能源汽车,传动系统包括:驱动电机、减速器、传动轴和驱动齿轮,且通过驱动电机、减速器、传动轴连接到驱动齿轮上。受到加工工艺、机械制造精度等技术能力制约,在整个传动系统的能量传递过程中,也就是在整车行驶过程中,当驾驶员踩下加速踏板加速过程中或松开加速踏板减速过程中,由于整车传动间隙偏大,从主观感受上整车出现顿挫感,而从客观数据能够看出驱动电机转速波动很大。严重影响汽车乘员的乘车体验。
发明内容
本公开的目的在于提供一种驱动控制方法、装置和电动车辆,能够解决上述提到的至少一个技术问题。具体方案如下:
根据本公开的具体实施方式,第一方面,本公开提供一种驱动控制方法,包括:
获取整车需求扭矩;
基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,第一驱动电机和第二驱动电机分别是前驱动电机和后驱动电机中的一个。
可选的,驱动控制方法,还包括:
当整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,控制第一驱动电机的输出扭矩为第一负扭矩,第二驱动电机的输出扭矩为第一正扭矩,且第一正扭矩与第一负扭矩的和等于整车需求扭矩。
可选的,驱动控制方法,还包括:
控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩,且第二正扭矩与第二驱动电机的输出扭矩的和等于整车需求扭矩。
可选的,控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩,包括:
基于预设第一变化率控制第一驱动电机的输出扭矩从第一负扭矩转变到第三正扭矩,其中第三正扭矩小于第二正扭矩;
基于预设第二变化率控制第一驱动电机的输出扭矩从第三正扭矩提高到第二正扭 矩,预设第二变化率大于预设第一变化率。
可选的,控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩时,还包括:
当整车需求扭矩大于或等于最大正扭矩时,控制第二驱动电机的输出扭矩为最大正扭矩。
可选的,驱动控制方法,包括:
在整车需求扭矩降低到零的过程中,控制第二驱动电机的输出扭矩降低到第四正扭矩,以及控制第一驱动电机的输出扭矩降低到第二负扭矩,且第四正扭矩与第二负扭矩的和等于整车需求扭矩。
可选的,在整车需求扭矩降低到零的过程中,控制第一驱动电机的输出扭矩降低到第二负扭矩,包括:
在整车需求扭矩降低到零的过程中,基于预设第三变化率控制第一驱动电机的输出扭矩降低到第五正扭矩,以及基于预设第四变化率控制第一驱动电机的输出扭矩从第五正扭矩转变到第二负扭矩,预设第四变化率的绝对值小于预设三变化率的绝对值。
可选的,在基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩前,还包括:
基于整车需求扭矩和当前扭矩的变化值确定变化值满足预设阈值。
根据本公开的具体实施方式,第二方面,本公开提供一种驱动控制装置,包括:
获取单元,用于获取整车需求扭矩;
执行工况单元,用于基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,第一驱动电机和第二驱动电机分别是前驱动电机和后驱动电机中的一个。
可选的,在执行工况单元中,包括:
第一工况子单元,用于当整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,控制第一驱动电机的输出扭矩为第一负扭矩,第二驱动电机的输出扭矩为第一正扭矩,且第一正扭矩与第一负扭矩的和等于整车需求扭矩。
可选的,在执行工况单元中,还包括:
第一工况过渡子单元,用于控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩,且第二正扭矩与第二驱动电机的输出扭矩的和等于整车需求扭矩。
可选的,在第一工况过渡子单元中,包括:
执行预设第一变化率子单元,用于基于预设第一变化率控制第一驱动电机的输出扭矩从第一负扭矩转变到第三正扭矩,其中第三正扭矩小于第二正扭矩;
执行预设第二变化率子单元,用于基于预设第二变化率控制第一驱动电机的输出扭矩从第三正扭矩提高到第二正扭矩,预设第二变化率大于预设第一变化率。
可选的,在第一工况过渡子单元中,还包括:
第二工况子单元,用于当整车需求扭矩大于或等于最大正扭矩时,控制第二驱动电机的输出扭矩为最大正扭矩。
可选的,在执行工况单元中,包括:
第三工况子单元,用于在整车需求扭矩降低到零的过程中,控制第二驱动电机的输出扭矩降低到第四正扭矩,以及控制第一驱动电机的输出扭矩降低到第二负扭矩,且第四正扭矩与第二负扭矩的和等于整车需求扭矩。
可选的,在第三工况子单元中,包括:
执行减速变化率子单元,用于在整车需求扭矩降低到零的过程中,基于预设第三变化率控制第一驱动电机的输出扭矩降低到第五正扭矩;以及基于预设第四变化率控制第一驱动电机的输出扭矩从第五正扭矩转变到第二负扭矩,预设第四变化率的绝对值小于预设三变化率的绝对值。
可选的,驱动控制装置,还包括:
过滤整车需求扭矩单元,用于在基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩前,基于整车需求扭矩和当前扭矩的变化值确定变化值满足预设阈值。
根据本公开的具体实施方式,第三方面,本公开提供一种电动车辆,包括:控制器、前驱动电机、后驱动电机和电池;
处理器工作时执行如第一方面任一项的驱动控制方法。
本公开实施例的上述方案与现有技术相比,至少具有以下有益效果:
本公开在加速或减速过程中,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩。通过负扭矩与正扭矩的相互制约,压紧驱动齿轮的间隙,避免了驱动齿轮啮合面发生偏转引起驱动齿轮碰撞,延长了驱动齿轮的使用寿命。减少了整车行驶过程中的顿挫感,提高了乘员舒适度。
附图说明
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。在附图中:
图1示出了根据本公开实施例的驱动控制方法的流程图;
图2示出了根据本公开实施例的驱动控制方法的流程图;
图3示出了根据本公开实施例的驱动控制装置的单元框图;
图4示出了根据本公开的实施例的电动车辆的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
下面结合附图详细说明本公开的可选实施例。
下面结合图1和图2对本公开提出的一种驱动控制方法通过实施例进行详细说明。
如图1所示,步骤S101,获取整车需求扭矩。
整车需求扭矩,是指驾驶员向控制器请求的扭矩。整车需求扭矩越高,需求的整车行驶速度越快。
对于新能源汽车(比如,纯电汽车、混合动力汽车(含增程式电动车)或燃料电池汽车),通常设置第一驱动电机和第二驱动电机,用于控制整车的行驶。第二驱动电机的输出扭矩为整车提供正扭矩,第一驱动电机的输出扭矩为整车提供负扭矩或正扭矩。第一驱动电机和第二驱动电机分别是前驱动电机和后驱动电机中的一个。例如,第一驱动电机为前驱动电机,第二驱动电机为后驱动电机;或第一驱动电机为后驱动电机,第二驱动电机为前驱动电机。
通常,在新能源汽车中设置一加速踏板,用于控制整车的行驶速度。因此,整车需求扭矩,包括驾驶员踩下加速踏板后,通过加速踏板向控制器反馈的请求扭矩。
加速踏板开度以百分比表示,用于表示加速踏板被踩下的深度。例如,加速踏板开度由40%提高到80%,表示加速踏板由浅到深被踩下。由于整车的车速与加速踏板开度正相关,因此,驾驶员对整车需求扭矩的需求主要是通过加速踏板开度和当前车速体现。通过当前的加速踏板开度和车速查询预先编制的整车需求扭矩表,得到当前整车需求扭矩。
当然,本领域技术人员应能理解上述获取整车需求扭矩仅为举例,其他现有的或今后可能出现的获取整车需求扭矩的方法如可适用于本申请,也应包含在本申请保护范围以内,并在此以引用方式包含于此。例如,加速踏板开度由手动推进杆的推进距离来表现。
整车在行驶过程中,车速始终是在动态变化的,因而传动系统也处在动态变化中。根据整车需求扭矩的变化调整第一驱动电机的输出扭矩与第二驱动电机的输出扭矩,控制减小整车传动系统间隙是本公开实施例的目的。
对于整车传动系统,驱动齿轮啮合面发生偏转引起驱动齿轮碰撞常常发生在整车行驶过程中的加速或减速时段。基于此,本公开实施例提供了以下步骤。
步骤S102,基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,第一驱动电机和第二驱动电机分别是前驱动电机和后驱动电机中的一个。
在整车加速或减速时段,保证一个驱动电机处于负扭矩,且另一个驱动电机处于正扭矩,使与驱动电机相关联的驱动齿轮始终处于被压紧状态,降低驱动齿轮的传动间隙,防止驱动齿轮发生碰撞引起的顿挫感。
具体的,在加速过程中,即整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,第一驱动电机的输出扭矩为第一负扭矩,用于压紧驱动齿轮,降低驱动齿轮的传动间隙;第 二驱动电机的输出扭矩为第一正扭矩,用于驱动整车加速;且第一正扭矩与第一负扭矩的和等于整车需求扭矩。在加速过程中,即整车需求扭矩大于或等于第二驱动电机的最大正扭矩时,第一驱动电机的输出扭矩需要从第一负扭矩转变到第二正扭矩发生方向变化,在此方向变化前第一驱动电机的输出扭矩需要第一负扭矩压紧驱动齿轮,降低驱动齿轮的传动间隙;且第二正扭矩与第二驱动电机的输出扭矩的和等于整车需求扭矩。
在减速过程中,即整车需求扭矩小于零时,第二驱动电机的输出扭矩为第四正扭矩,用于压紧驱动电机,降低驱动齿轮的传动间隙;以及第一驱动电机的输出扭矩为第二负扭矩,用于控制驱动齿轮处于制动状态,使整车发生减速;且第四正扭矩与第二负扭矩的和等于整车需求扭矩。同时,在减速过程中,第一驱动电机的输出扭矩需要发生方向变化,即从正扭矩转变到负扭矩,用于控制驱动齿轮由驱动状态转变成制动状态。下面结合具体工况对上述步骤S102进行进一步说明。
具体工况一
在加速过程中,当踩下加速踏板后,整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,具体包括以下步骤:
步骤S102-1,当整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,控制第一驱动电机的输出扭矩为第一负扭矩,第二驱动电机的输出扭矩为第一正扭矩,且第一正扭矩与第一负扭矩的和等于整车需求扭矩。
第一驱动电机的输出扭矩为第一负扭矩,用于压紧驱动齿轮,降低驱动齿轮的传动间隙;第二驱动电机的输出扭矩为第一正扭矩,用于驱动整车加速。可选的,如图2中A工况所示,在整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,第一负扭矩始终保持一个固定的负扭矩值,例如,第一负扭矩等于-6Nm。
由于A工况处于稳定的加速状态,此时第一驱动电机输出的第一负扭矩与第二驱动电机输出的第一正扭矩的和等于整车需求扭矩。
例如,如图2中A工况所示,整车需求扭矩大于零且小于第二驱动电机的最大输出扭矩时,整车工作在A工况;当车速是50km/h,驾驶员踩下加速踏板40%开度,这时整车需求扭矩Tqdmd=200Nm,第一驱动电机的最大输出扭矩Tqfront=±250Nm,第二驱动电机的最大输出扭矩Tqrear=±300Nm,第一驱动电机的输出扭矩Tqfront=第一负扭矩=-6Nm;此时,第二驱动电机的输出扭矩Tqrear=整车需求扭矩Tqdmd-第一负扭矩=200Nm-(-6Nm)=206Nm;如图2中ac时段所示,当整车需求扭矩大于或等于第二驱动电机的最大正扭矩时,ac时段,第一驱动电机的输出扭矩从-6Nm缓慢转变成6Nm,第二驱动电机的输出扭矩保持第二驱动电机的最大正扭矩;然后,第一驱动电机的输出扭矩从6Nm快速提高到满足整车需求扭矩的输出扭矩;此时第一驱动电机输出扭矩与第二驱动电机输出的最大正扭矩的和等于整车需求扭矩。
啮合稳定就是驱动齿轮与传动系统的其他部件相配合,能够稳定的控制传动系统工作。
啮合稳定值,是指驱动电机控制对应的驱动齿轮与传动系统的其他部件相配合,能够稳定的控制传动系统工作的最小输出扭矩值。可选的,第一负扭矩为啮合稳定值,也就是第一 驱动电机控制对应的驱动齿轮与传动系统的其他部件相配合,能够稳定的控制传动系统工作的最小输出扭矩值。例如,第一负扭矩大于或等于-6.5Nm,且小于或等于-5.5Nm。
具体工况二
在加速过程中,当进一步提高加速踏板的开度,使整车需求扭矩大于或等于第二驱动电机的最大正扭矩时,第一驱动电机需要控制驱动齿轮与传动系统的其他部件发生由制动啮合状态转变到分离状态,再由分离状态转变到驱动啮合状态。对应的,第一驱动电机的输出扭矩也发生从负扭矩转变成正扭矩的方向变化过程,以控制驱动齿轮完成方向变化。如图2中A工况过渡到B工况是在加速过程,具体包括以下步骤:
步骤S102-2,控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩,且第二正扭矩与第二驱动电机的输出扭矩的和等于整车需求扭矩。
如图2中ac时段所示,ac时段是第一驱动电机的输出扭矩从负扭矩转变成正扭矩的方向变化过程。在发生方向变化过程中极易导致驱动齿轮啮合面发生偏转,引起驱动齿轮碰撞。因此,在ac时段中第一负扭矩用于压紧驱动齿轮且降低驱动齿轮的传动间隙。
如果将具体工况一中的第一负扭矩与具体工况二中的第一负扭矩视为同一值,可以清晰的了解图2中加速过程中A工况到B工况通过第一负扭矩压紧驱动齿轮,降低驱动齿轮的传动间隙的工作过程。
可选的,第一负扭矩为方向变化前的啮合稳定值。
可选的,控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩,具体包括以下步骤:
步骤S102-2-1,基于预设第一变化率控制第一驱动电机的输出扭矩从第一负扭矩转变到第三正扭矩,其中第三正扭矩小于第二正扭矩。
同样的,第三正扭矩作为第一驱动电机的输出扭矩为完成方向变化后的啮合稳定值,也是一经验值。如图2中ab时段所示,ab时段是第一驱动电机的输出扭矩由负扭矩到正扭矩方向变化过程。例如,第三正扭矩大于或等于5.5Nm,且小于或等于6.5Nm。
例如,预设第一变化率包括每5ms增加0~5.5Nm。也就是控制第一驱动电机的输出扭矩从第一负扭矩缓慢过渡到第三正扭矩,以免驱动齿轮啮合面发生偏转,引起驱动齿轮碰撞。
由于,ab时段是ac时段的一部分,因此,在加速过程中,第三正扭矩小于第二正扭矩。
步骤S102-2-2,基于预设第二变化率控制第一驱动电机的输出扭矩从第三正扭矩提高到第二正扭矩,预设第二变化率大于预设第一变化率。
由于步骤S102-2-1中第一驱动电机的输出扭矩完成了方向变化,可选的,如图2中bc时段所示,通过预设第二变化率大于预设第一变化率使第一驱动电机输出的扭矩快速达到第二正扭矩。例如,预设第二变化率包括每5ms增加5~10Nm。从而缩短达到第二正扭矩的时间。
例如,如图2中ac时段所示,在从A工况过渡到B工况的过程中,a时间对应第一驱动电机输出的第一负扭矩,b时间对应第一驱动电机输出的第三正扭矩,c时间对应第一驱动电机输出的第二正扭矩;第一驱动电机输出扭矩Tqfront第一负扭矩(比如,-6Nm)缓慢过渡到第三正扭矩(比如,6Nm),然后从第三正扭矩快速过渡第二正扭矩。
可选的,当整车需求扭矩大于或等于最大正扭矩时,控制第二驱动电机的输出扭矩为第二驱动电机的最大正扭矩。如图2中B工况所示,第二驱动电机的最大正扭矩与第二正扭矩的和等于整车需求扭矩。
由于第二驱动电机的输出扭矩达到最大输出扭矩后无法再为整车输出更大的扭矩,则通过提高第一驱动电机的输出扭矩,以提高整车需求扭矩。
例如,如图2中B工况所示,第一驱动电机和第二驱动电机均输出正扭矩,整车需求扭矩大于或等于第二驱动电机的最大输出扭矩;当车速是50km/h,驾驶员踩下加速踏板80%开度,整车需求扭矩Tqdmd=450Nm,第一驱动电机的最大输出扭矩Tqfront=±250Nm,第二驱动电机的最大输出扭矩Tqrear=±300Nm;此时,第一驱动电机的输出扭矩Tqfront=整车需求扭矩Tqdmd-第二驱动电机的最大输出扭矩Tqrear=450Nm-300Nm=150Nm。
具体工况三
对于整车传动系统,驱动齿轮啮合面发生偏转引起驱动齿轮碰撞也常常发生在整车行驶过程中的减速时段。
在减速过程中,松开加速踏板,使整车需求扭矩小于零时,如图2中C工况是在减速过程,具体包括以下步骤:
步骤S102-3,当整车需求扭矩小于零时,第二驱动电机的输出扭矩为第四正扭矩,以及第一驱动电机的输出扭矩为第三负扭矩,且第四正扭矩与第三负扭矩的和等于整车需求扭矩。
其中,第四正扭矩为一经验值,当整车需求扭矩小于零时,第一驱动电机的输出扭矩势必为负扭矩。本公开实施例利用第二驱动电机的输出扭矩(即第四正扭矩)压紧驱动齿轮的间隙,避免驱动齿轮啮合面发生偏转引起驱动齿轮碰撞。
可选的,如图2中C工况所示,当整车需求扭矩小于零时,第四正扭矩始终保持一个固定的正扭矩值,例如,第四正扭矩大于或等于5.5Nm,且小于或等于6.5Nm。
例如,如图2所示中C工况下,当车速是50km/h,驾驶员松开加速踏板,整车需求扭矩Tqdmd=-100Nm,第一驱动电机的最大输出扭矩Tqfront=±250Nm,第二驱动电机的最大输出扭矩Tqrea=±300Nm,第二驱动电机的输出扭矩Tqrea=第四正扭矩=6Nm;则第一驱动电机的输出扭矩Tqfront=整车需求扭矩Tqdmd-第二驱动电机的输出扭矩Tqrear=-100Nm-6Nm=-106Nm
具体工况四
在减速过程中,松开加速踏板,第一驱动电机的输出扭矩需要发生方向变化,即从正扭矩转变到负扭矩,使整车发生减速,同样也是减速过程的一部分。在此过程中,第一驱动电机需要控制的驱动齿轮与传动系统的其他部件发生由驱动啮合状态转变到分离状态,再由分离状态转变到制动啮合状态。对应的,第一驱动电机的输出扭矩需要从正扭矩转变成负扭矩的方向变化过程,以控制驱动齿轮完成方向变化。如图2中B工况到C工况的过渡过程,也就是dg时段,具体包括以下步骤:
步骤S102-4,在整车需求扭矩降低到零的过程中,控制第二驱动电机的输出扭矩降低到第四正扭矩,以及控制第一驱动电机的输出扭矩降低到第二负扭矩,且第四正扭矩与第二负 扭矩的和等于整车需求扭矩。
如图2中dg时段所示,dg时段是第一驱动电机的输出扭矩从正扭矩转变成正负扭矩的方向变化过程,且具体工况四中的第二负扭矩大于具体工况三中的第三负扭矩。
可选的,第二负扭矩为方向变化后的啮合稳定值。
可选的,在整车需求扭矩降低到零的过程中,控制第一驱动电机的输出扭矩降低到第二负扭矩,具体包括以下步骤:
步骤S102-4-1,基于预设第三变化率控制第一驱动电机的输出扭矩降低到第五正扭矩。
由于减速过程必然发生其中一个驱动电机的输出扭矩发生由正扭矩到负扭矩的方向变化,因此,在de时段驱动电机没有发生方向变化时,本公开实施使第一驱动电机的输出扭矩快速降低到第五正扭矩。第五正扭矩也就是第一驱动电机的输出扭矩发生方向变化前的啮合稳定值。例如,第五正扭矩大于或等于5.5Nm,且小于或等于6.5Nm。
可选的,预设第三变化率包括每5ms减少-10至-5Nm。
步骤S102-4-2,基于预设第四变化率控制第一驱动电机的输出扭矩从第五正扭矩转变到第二负扭矩。
由于减速过程必然发生其中一个驱动电机的输出扭矩发生由正扭矩到负扭矩的方向变化,为了使eg时段能够缓慢完成方向变化,预设第四变化率的绝对值小于预设三变化率的绝对值。可选的,预设第二减速规则:每5ms减少-10~-5Nm。
同时,第二负扭矩作为第一驱动电机的输出扭矩发生方向变化后的啮合稳定值,也是一经验值,如图2中eg时段所示,eg时段是第一驱动电机的输出扭矩由正扭矩到负扭矩方向变化过程。第二负扭矩使第一驱动电机控制的驱动齿轮处于制动状态,例如,第二负扭矩大于或等于-6.5Nm,且小于或等于-5.5Nm。
例如,如图2所示,在从B工况过渡到C工况的过程中,第一驱动电机的输出扭矩由d时间对应的正扭矩快速降低到e时间对应的第五正扭矩(比如6Nm),在eg时段中f时间对应第一驱动电机的输出扭矩为零扭矩,也就是意味着减速过程的开始;在eg时段中,第一驱动电机的输出扭矩由e时间对应的第五正扭矩(比如6Nm)缓慢过渡到g时间对应第二负扭矩(比如-6Nm),从而完成第一驱动电机的输出扭矩由正扭矩到负扭矩的方向变化;然后第一驱动电机的输出扭矩由g时间对应第二负扭矩快速完成减速过程,到达h时间对应的负扭矩;第二驱动电机的输出扭矩从d时间对应的正扭矩快速降低到f时间对应的第四正扭矩,用于压紧驱动齿轮的间隙;当驱动齿轮啮合面完全啮合后,第一驱动电机再快速降低输出扭矩,完成减速过程。
驱动齿轮啮合面发生偏转,引起驱动齿轮碰撞,通常发生在整车剧烈加速或剧烈减速的过程中。为了避免负扭矩给整车带来的能耗,可选的,在步骤S102前,还包括以下步骤:
步骤S101-1,基于整车需求扭矩和/或当前扭矩获取变化值。其中,当前扭矩变化值是当前实际扭矩和前一实际扭矩计算的差与预设采集周期的商。
对于该步骤,本公开实施例提供了以下具体实施方式:
具体实施方式一
步骤S101-11,获取前一预设采集周期内获取的前一整车需求扭矩。
例如,预设采集周期为0.05ms,前一整车需求扭矩为200Nm。
步骤S101-12,计算整车需求扭矩与前一整车需求扭矩的差,获取需求变化差值。
例如,继续上述例子,整车需求扭矩为205Nm,则需求变化差值为205-200=5Nm。
步骤S101-13,计算需求变化差值与预设采集周期的商,获取变化值。
例如,继续上述例子,变化值=5Nm÷0.05ms=100Nm/ms。
具体实施方式二
步骤S101-21,获取当前实际扭矩和前一预设采集周期内获取的前一实际扭矩。
例如,预设采集周期为0.05ms,前一实际扭矩为200Nm,当前实际扭矩为210Nm。
步骤S101-22,计算当前实际扭矩与前一实际扭矩的差,获取实际变化差值。
例如,继续上述例子,变化差值为210-200=10Nm。
步骤S101-23,计算实际变化差值与预设采集周期的商,获取变化值。
例如,继续上述例子,变化值=10Nm÷0.05ms=200Nm/ms。
具体实施方式三
步骤S101-31,获取前一预设采集周期内获取的前一实际扭矩。
例如,预设采集周期为0.05ms,前一实际扭矩为200Nm。
步骤S101-32,计算整车需求扭矩与前一实际扭矩的差,获取第一混合变化差值。
例如,继续上述例子,整车需求扭矩为215Nm,则第一混合变化差值为215-200=15Nm。
步骤S101-33,计算第一混合变化差值与预设采集周期的商,获取当前整车需求扭矩的变化值。
例如,继续上述例子,变化值=15Nm÷0.05ms=300Nm/ms。
具体实施方式四
步骤S101-31,获取当前实际扭矩和前一预设采集周期内获取的前一整车需求扭矩。
例如,预设采集周期为0.05ms,当前实际扭矩为210Nm,前一实际扭矩为200Nm。
步骤S101-32,计算当前实际扭矩与前一整车需求扭矩的差,获取第二混合变化差值。
例如,继续上述例子,第二混合变化差值为215-200=15Nm。
步骤S101-33,计算第二混合变化差值与预设采集周期的商,获取当前整车需求扭矩的变化值。
例如,继续上述例子,变化值=15Nm÷0.05ms=300Nm/ms。
步骤S101-2,当变化值满足预设变化阈值时,则获取下一整车需求扭矩。
变化值满足预设变化阈值,也就是整车的加速过程或减速过程没有达到剧烈的程度,因此,无需控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩。获取下一整车需求扭矩,也就是返回步骤S101继续下一次对整车需求扭矩的监控。
可选的,预设变化阈值小于每10ms增加5Nm,且大于每10ms减少-5Nm。
步骤S101-3,当变化值不满足预设变化阈值时,则执行步骤S102。
也就是整车的加速过程或减速过程达到一定的剧烈程度,需要控制第一驱动电机的输出 扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩。
可选的,方法还包括以下步骤:
步骤S104-1,第一驱动电机输出负扭矩。
在新能源汽车(比如,纯电汽车、混合动力汽车(含增程式电动车)或燃料电池汽车)中,驱动电机具有两种功能:在输出正扭矩时,是驱动电机;在输出负扭矩时又是发电机。因此,本公开实施例将第一驱动电机输出的负扭矩生成电能储存在电池中。提高了能源利用率,降低了新能源汽车的使用成本。
本公开实施例在加速或减速过程中,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩。通过负扭矩与正扭矩的相互制约,压紧驱动齿轮的间隙,避免了驱动齿轮啮合面发生偏转引起驱动齿轮碰撞,延长了驱动齿轮的使用寿命。减少了整车行驶过程中的顿挫感,提高了乘员舒适度。
与本公开提供的一种驱动控制方法实施例相对应,本公开还提供了一种驱动控制装置的实施例。由于一种驱动控制装置的实施例基本相似于一种驱动控制方法实施例,所以描述得比较简单,相关的部分请参见一种驱动控制方法实施例的对应说明即可。下述描述的装置实施例仅仅是示意性的。
图3示出了本公开提供的一种驱动控制装置的实施例。
如图3所示,本公开提供一种驱动控制装置300,包括:
获取单元301,用于获取整车需求扭矩;
执行工况单元302,用于基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,第一驱动电机和第二驱动电机分别是前驱动电机和后驱动电机中的一个。
可选的,在执行工况单元302中,包括:
第一工况子单元,用于当整车需求扭矩大于零且小于第二驱动电机的最大正扭矩时,控制第一驱动电机的输出扭矩为第一负扭矩,第二驱动电机的输出扭矩为第一正扭矩,且第一正扭矩与第一负扭矩的和等于整车需求扭矩。
可选的,在执行工况单元302中,还包括:
第一工况过渡子单元,用于控制第一驱动电机的输出扭矩由第一负扭矩到第二正扭矩,且第二正扭矩与第二驱动电机的输出扭矩的和等于整车需求扭矩。
可选的,在第一工况过渡子单元中,包括:
执行预设第一变化率子单元,用于基于预设第一变化率控制第一驱动电机的输出扭矩从第一负扭矩转变到第三正扭矩,其中第三正扭矩小于第二正扭矩;
执行预设第二变化率子单元,用于基于预设第二变化率控制第一驱动电机的输出扭矩从第三正扭矩提高到第二正扭矩,预设第二变化率大于预设第一变化率。
可选的,在第一工况过渡子单元中,还包括:
第二工况子单元,用于当整车需求扭矩大于或等于最大正扭矩时,控制第二驱动电机的 输出扭矩为最大正扭矩。
可选的,在执行工况单元302中,包括:
第三工况子单元,用于在整车需求扭矩降低到零的过程中,控制第二驱动电机的输出扭矩降低到第四正扭矩,以及控制第一驱动电机的输出扭矩降低到第二负扭矩,且第四正扭矩与第二负扭矩的和等于整车需求扭矩。
可选的,在第三工况子单元中,包括:
执行减速变化率子单元,用于在整车需求扭矩降低到零的过程中,基于预设第三变化率控制第一驱动电机的输出扭矩降低到第五正扭矩;以及基于预设第四变化率控制第一驱动电机的输出扭矩从第五正扭矩转变到第二负扭矩,预设第四变化率的绝对值小于预设三变化率的绝对值。
可选的,驱动控制装置,还包括:
过滤整车需求扭矩单元,用于在基于整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩前,基于整车需求扭矩和当前扭矩的变化值确定变化值满足预设阈值。其中,当前扭矩变化值是当前实际扭矩和前一实际扭矩计算的差与预设采集周期的商。需要说明的是,本发明实施例提供的驱动控制装置可以用于执行以本公开的相应实施例提供的驱动控制方法,相关的术语以及具体实现方式可参考图1和图2所示方法的对应描述,在此不再赘述,但应当明确,本实施例的驱动控制装置能够对应实现前述方法实施例中的全部内容。
本公开实施例在加速或减速过程中,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩。通过负扭矩与正扭矩的相互制约,压紧驱动齿轮的间隙,避免了驱动齿轮啮合面发生偏转引起驱动齿轮碰撞,延长了驱动齿轮的使用寿命。减少了整车行驶过程中的顿挫感,提高了乘员舒适度。
本公开实施例提供了一种驱动控制系统的实施例,该系统用于驱动控制方法,驱动控制系统,包括:至少一个控制器;以及,与至少一个控制器通信连接的存储器;其中,
存储器存储有可被一个控制器执行的指令,指令被至少一个控制器执行,以使至少一个控制器能够执行如驱动控制方法实施例的步骤。
本公开实施例提供了一种驱动控制计算机存储介质的实施例,计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行如一种驱动控制方法中的部分或全部的内容。
如图4所示,本公开实施例提供了一种电动车辆400实施例,包括:控制器401、前驱动电机402、后驱动电机403和电池404;
处理器工作时执行如一种驱动控制方法中的部分或全部的内容。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入 该电子设备。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解 所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (15)

  1. 一种驱动控制方法,其特征在于,包括:
    获取整车需求扭矩;
    基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,所述第一驱动电机和所述第二驱动电机分别是前驱动电机和后驱动电机中的一个。
  2. 根据权利要求1所述的驱动控制方法,其特征在于,所述基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,包括:
    当所述整车需求扭矩大于零且小于所述第二驱动电机的最大正扭矩时,控制所述第一驱动电机的输出扭矩为第一负扭矩,所述第二驱动电机的输出扭矩为第一正扭矩,且所述第一正扭矩与所述第一负扭矩的和等于所述整车需求扭矩。
  3. 根据权利要求2所述的驱动控制方法,其特征在于,所述基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,还包括:
    控制所述第一驱动电机的输出扭矩由所述第一负扭矩到第二正扭矩,且所述第二正扭矩与所述第二驱动电机的输出扭矩的和等于所述整车需求扭矩。
  4. 根据权利要求3所述的驱动控制方法,其特征在于,所述控制所述第一驱动电机的输出扭矩由所述第一负扭矩到第二正扭矩,包括:
    基于预设第一变化率控制所述第一驱动电机的输出扭矩从所述第一负扭矩转变到第三正扭矩,其中所述第三正扭矩小于所述第二正扭矩;
    基于预设第二变化率控制所述第一驱动电机的输出扭矩从所述第三正扭矩提高到第二正扭矩,所述预设第二变化率大于所述预设第一变化率。
  5. 根据权利要求3所述的驱动控制方法,其特征在于,所述控制所述第一驱动电机的输出扭矩由所述第一负扭矩到第二正扭矩时,还包括:
    当所述整车需求扭矩大于或等于所述最大正扭矩时,控制所述第二驱动电机的输出扭矩为所述最大正扭矩。
  6. 根据权利要求1所述的驱动控制方法,其特征在于,所述基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,包括:
    在所述整车需求扭矩降低到零的过程中,控制所述第二驱动电机的输出扭矩降低到第四正扭矩,以及控制所述第一驱动电机的输出扭矩降低到第二负扭矩,且所述第四正扭矩与所述第二负扭矩的和等于所述整车需求扭矩。
  7. 根据权利要求6所述的驱动控制方法,其特征在于,在所述整车需求扭矩降低到零的过程中,控制所述第一驱动电机的输出扭矩降低到第二负扭矩,包括:
    在所述整车需求扭矩降低到零的过程中,基于预设第三变化率控制所述第一驱动电 机的输出扭矩降低到第五正扭矩,以及基于预设第四变化率控制所述第一驱动电机的输出扭矩从所述第五正扭矩转变到第二负扭矩,所述预设第四变化率的绝对值小于所述预设三变化率的绝对值。
  8. 根据权利要求1-7任意项所述的驱动控制方法,其特征在于,所述基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩前,还包括:
    基于所述整车需求扭矩和当前扭矩的变化值确定所述变化值满足预设阈值。
  9. 一种驱动控制装置,其特征在于,包括:
    获取单元,用于获取整车需求扭矩;
    执行工况单元,用于基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩,所述第一驱动电机和所述第二驱动电机分别是前驱动电机和后驱动电机中的一个。
  10. 根据权利要求9所述的驱动控制装置,其特征在于,在所述执行工况单元中,包括:
    第一工况子单元,用于当所述整车需求扭矩大于零且小于所述第二驱动电机的最大正扭矩时,控制所述第一驱动电机的输出扭矩为第一负扭矩,所述第二驱动电机的输出扭矩为第一正扭矩,且所述第一正扭矩与所述第一负扭矩的和等于所述整车需求扭矩。
  11. 根据权利要求10所述的驱动控制装置,其特征在于,在所述执行工况单元中,还包括:
    第一工况过渡子单元,用于控制所述第一驱动电机的输出扭矩由所述第一负扭矩到第二正扭矩,且所述第二正扭矩与所述第二驱动电机的输出扭矩的和等于所述整车需求扭矩。
  12. 根据权利要求11所述的驱动控制装置,其特征在于,在所述第一工况过渡子单元中,包括:
    执行预设第一变化率子单元,用于基于预设第一变化率控制所述第一驱动电机的输出扭矩从所述第一负扭矩转变到第三正扭矩,其中所述第三正扭矩小于所述第二正扭矩;
    执行预设第二变化率子单元,用于基于预设第二变化率控制所述第一驱动电机的输出扭矩从所述第三正扭矩提高到第二正扭矩,所述预设第二变化率大于所述预设第一变化率。
  13. 根据权利要求9所述的驱动控制装置,其特征在于,在所述执行工况单元中,包括:
    第三工况子单元,用于当所述整车需求扭矩降低到零时,所述第二驱动电机的输出扭矩为第四正扭矩,以及所述第一驱动电机的输出扭矩为第二负扭矩,且所述第四正扭矩与所述第二负扭矩的和等于所述整车需求扭矩。
  14. 根据权利要求9-13任一项所述的驱动控制装置,其特征在于,所述驱动控制装置,还包括:
    过滤整车需求扭矩单元,用于在所述基于所述整车需求扭矩,控制第一驱动电机的输出扭矩为负扭矩,以及控制第二驱动电机的输出扭矩为正扭矩前,基于所述整车需求扭矩和当前扭矩的变化值确定所述变化值满足预设阈值。
  15. 一种电动车辆,其特征在于,包括:控制器、前驱动电机、后驱动电机和电池;
    所述处理器工作时执行如权利要求1-9任一项所述的驱动控制方法。
PCT/CN2021/117418 2020-09-09 2021-09-09 驱动控制方法、装置和电动车辆 WO2022052985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010943308.5 2020-09-09
CN202010943308.5A CN111993904A (zh) 2020-09-09 2020-09-09 一种驱动控制方法、装置和电动车辆

Publications (1)

Publication Number Publication Date
WO2022052985A1 true WO2022052985A1 (zh) 2022-03-17

Family

ID=73469642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117418 WO2022052985A1 (zh) 2020-09-09 2021-09-09 驱动控制方法、装置和电动车辆

Country Status (2)

Country Link
CN (1) CN111993904A (zh)
WO (1) WO2022052985A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115257397A (zh) * 2022-06-17 2022-11-01 潍柴动力股份有限公司 车辆的控制方法、装置、处理器和车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993904A (zh) * 2020-09-09 2020-11-27 北京罗克维尔斯科技有限公司 一种驱动控制方法、装置和电动车辆
CN113415281B (zh) * 2021-07-23 2022-01-04 上海洛轲智能科技有限公司 车辆的控制方法、装置、设备及介质
CN116039401B (zh) * 2023-04-03 2023-06-13 成都赛力斯科技有限公司 一种驱动电机的扭矩切换方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176899A1 (en) * 2003-03-07 2004-09-09 Hallowell Stephen James Torque distribution systems and methods for wheeled vehicles
JP2018057169A (ja) * 2016-09-29 2018-04-05 株式会社Subaru 車両の制御装置及び車両の制御方法
CN108290502A (zh) * 2015-11-25 2018-07-17 捷豹路虎有限公司 用于机动车辆的控制器和方法
CN108602452A (zh) * 2015-11-25 2018-09-28 捷豹路虎有限公司 用于机动车辆的控制器和方法
CN111439265A (zh) * 2019-01-17 2020-07-24 源捷公司 消除动力传动系统齿隙的控制系统
CN111993904A (zh) * 2020-09-09 2020-11-27 北京罗克维尔斯科技有限公司 一种驱动控制方法、装置和电动车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580217B2 (ja) * 2011-01-07 2014-08-27 Ntn株式会社 車両用モータ駆動装置および自動車
US9254760B2 (en) * 2014-03-27 2016-02-09 Ford Global Technologies, Llc Controlling torque of a vehicle traction motor
KR102131729B1 (ko) * 2017-06-01 2020-07-08 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법 및 제어 장치
CN109968997B (zh) * 2019-03-19 2021-06-11 中国第一汽车股份有限公司 一种电动汽车驱动扭矩过0过程中的扭矩控制方法
US10744889B1 (en) * 2019-04-18 2020-08-18 Toyota Motor Engineering & Manufacturing North America, Inc. Method of drive quality control and shift management for electric vehicles involving multiple traction drive motors
CN110303899B (zh) * 2019-06-20 2021-05-14 中国第一汽车股份有限公司 一种电动四驱汽车驱动扭矩控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176899A1 (en) * 2003-03-07 2004-09-09 Hallowell Stephen James Torque distribution systems and methods for wheeled vehicles
CN108290502A (zh) * 2015-11-25 2018-07-17 捷豹路虎有限公司 用于机动车辆的控制器和方法
CN108602452A (zh) * 2015-11-25 2018-09-28 捷豹路虎有限公司 用于机动车辆的控制器和方法
JP2018057169A (ja) * 2016-09-29 2018-04-05 株式会社Subaru 車両の制御装置及び車両の制御方法
CN111439265A (zh) * 2019-01-17 2020-07-24 源捷公司 消除动力传动系统齿隙的控制系统
CN111993904A (zh) * 2020-09-09 2020-11-27 北京罗克维尔斯科技有限公司 一种驱动控制方法、装置和电动车辆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115257397A (zh) * 2022-06-17 2022-11-01 潍柴动力股份有限公司 车辆的控制方法、装置、处理器和车辆

Also Published As

Publication number Publication date
CN111993904A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022052985A1 (zh) 驱动控制方法、装置和电动车辆
US11007878B2 (en) Electric vehicle and control method thereof
WO2022057403A1 (zh) 四驱纯电动汽车动力系统
JP6233063B2 (ja) 車両
JP5278617B1 (ja) ハイブリッド車における車両状態表示装置
JP4839864B2 (ja) 車両およびその制御方法並びに制動装置
WO2019042129A1 (zh) 电机的输出扭矩控制方法、装置及汽车
JP4623195B2 (ja) 車両の制御装置および制御方法
CN105398324B (zh) 用于机动车辆的混合动力变速箱
US9090256B2 (en) Vehicle control device
CN111479736B (zh) 混合动力车辆的控制方法和控制装置
WO2012108028A1 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
CN105082966A (zh) 一种双电机动力系统、换挡方法及电动汽车
DE102014112871A1 (de) Vorrichtung und Verfahren zum Steuern einer Verbrennungsmotorkupplung eines Hybrid-Elektrofahrzeugs
US11413972B2 (en) Control system to eliminate power train backlash
CN112622633A (zh) 一种氢能汽车扭矩管理系统
CN112622634A (zh) 电动汽车的扭矩控制方法及系统
JP2014162452A (ja) 駆動力制御装置
WO2013035179A1 (ja) 車両および車両の制御方法
KR20150071568A (ko) 자동 긴급 제동 방법 및 시스템
CN108528459A (zh) 双行星排四轴混合动力汽车关键部件高等级故障处理方法
JP2013183503A (ja) 電動車両の制御装置
CN114954420A (zh) 一种混合动力汽车定速巡航控制方法及其系统
WO2021220694A1 (ja) 車両用制動装置
JP2022116410A (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866037

Country of ref document: EP

Kind code of ref document: A1