WO2022055324A1 - 이차 전지 제조 방법 - Google Patents

이차 전지 제조 방법 Download PDF

Info

Publication number
WO2022055324A1
WO2022055324A1 PCT/KR2021/012447 KR2021012447W WO2022055324A1 WO 2022055324 A1 WO2022055324 A1 WO 2022055324A1 KR 2021012447 W KR2021012447 W KR 2021012447W WO 2022055324 A1 WO2022055324 A1 WO 2022055324A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
gel polymer
polymer electrolyte
manufacturing
electrolyte battery
Prior art date
Application number
PCT/KR2021/012447
Other languages
English (en)
French (fr)
Inventor
강용희
류지훈
윤여민
이재원
이정훈
정범영
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022577374A priority Critical patent/JP7467690B2/ja
Priority to CN202180048029.5A priority patent/CN115769412A/zh
Priority to EP21867189.9A priority patent/EP4184651A4/en
Priority to US18/009,661 priority patent/US20230275267A1/en
Publication of WO2022055324A1 publication Critical patent/WO2022055324A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a secondary battery to which a novel activation process is applied.
  • lithium ion secondary batteries have been widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Moreover, these lithium ion secondary batteries are applied also to transportation means, such as an electric vehicle, from the characteristic of having a high energy density.
  • a lithium ion secondary battery is manufactured by stacking a positive electrode/separator/negative electrode to prepare an electrode assembly (stack cell), putting the electrode assembly in a pouch, and filling the electrolyte solution.
  • an electrode assembly stack cell
  • a gap may occur between the separator and the electrode.
  • a battery using a liquid-type electrolyte as an electrolyte is very vulnerable to safety due to the volatilization and ignition characteristics of the electrolyte.
  • a leak problem may occur to the outside of the battery.
  • a gel electrolyte is being applied. Gelyte is better than liquid electrolyte in terms of safety, but it has a problem in that battery performance deteriorates when a gap occurs between the electrode and the separator due to lack of fluidity compared to liquid electrolyte.
  • An object of the present invention is to provide a method for manufacturing a gel polymer electrolyte secondary battery using gelyte as an electrolyte.
  • a first aspect of the present invention relates to a method for manufacturing a gel polymer electrolyte battery, the method comprising: (S1) a pre-aging step of accommodating an electrode assembly in a casing, injecting an electrolyte precursor, and gelling the electrolyte precursor with a gel polymer electrolyte;
  • a second pressing step of pressing the resultant of (S4) includes,
  • Step (S5) is to be performed under a higher pressure condition than step (S2).
  • a second aspect of the present invention is that, in the first aspect, the first pressing step is performed in a range of 3 kgf/cm 2 or less.
  • a third aspect of the present invention is that according to the first or second aspect, the electrolyte precursor includes an organic solvent, a lithium salt, a crosslinkable polymer and/or oligomer, and a crosslinking initiator.
  • the cross-linkable polymer includes a PVDF-based polymer including vinylidene fluoride units and/or an acrylic polymer having a cross-linkable functional group.
  • the gelation of the electrolyte precursor is performed in a temperature range at which crosslinking is performed.
  • a sixth aspect of the present invention is that according to any one of the first to fifth aspects, the step (S2) is performed for less than 1 hour.
  • a seventh aspect of the present invention is that in any one of the first to sixth aspects, the step (S3) is performed under the same pressure condition without releasing the pressure applied in (S2).
  • An eighth aspect of the present invention is that according to any one of the first to seventh aspects, the step (S3) is to be charged in the range of 30% to 100% of the battery capacity.
  • a ninth aspect of the present invention is that in any one of the first to eighth aspects, the step (S5) is performed in a range greater than or equal to the temperature condition of the step (S2).
  • a tenth aspect of the present invention is that in any one of the first to ninth aspects, the step (S5) is performed at a temperature higher than the temperature of the step (S2).
  • the step (S5) is performed at a temperature higher than the temperature of the step (S2).
  • a twelfth aspect of the present invention is that, in any one of the first to eleventh aspects, a degassing process is further performed after the step (S5).
  • the gel polymer electrolyte battery prepared according to the present invention has a small separation between the separator and the electrode and high bonding strength. In addition, the thickness of the cell is reduced and shape stability and stiffness are improved.
  • the gel polymer battery does not change physical properties, such as deterioration of the electrolyte, and can achieve a desired effect even if the process time is not long.
  • FIG. 1 is a process flow diagram of a method for manufacturing a battery according to a specific embodiment of the present invention.
  • the present invention relates to a method of manufacturing a secondary battery, particularly a secondary battery to which a novel activation process is applied.
  • the secondary battery is capable of repeatedly charging and discharging, and is a concept that encompasses a lithium ion battery, a nickel-cadmium battery, a nickel-hydrogen battery, and the like.
  • FIG. 1 shows a process flow diagram of a method for manufacturing a battery according to the present invention.
  • a method for manufacturing a secondary battery includes a pre-aging step (S1); first pressing step (S2); formation step (S3); aging step (S4); and a second pressing step (S5); and an activation process comprising a.
  • the first and second pressurization processes may be independently performed in a heated state.
  • the second pressurization process may be performed under a higher pressure condition than that of the first pressurization process.
  • the pre-aging step (S1) may be performed in such a way that the electrode assembly is charged into the battery case, the electrolyte precursor is injected, and then maintained at room temperature for a predetermined time.
  • the electrolyte precursor may include an organic solvent, a lithium salt, a crosslinkable polymer and/or oligomer, and a crosslinking initiator.
  • the pre-aging includes a first step performed to sufficiently impregnate the electrode assembly with the electrolyte precursor, and a second step of gelling the electrolyte precursor to form a gel polymer.
  • the first step may be performed for a sufficient time so that the electrolyte precursor can penetrate and diffuse into the micropores of the electrode or separator.
  • the first step is performed before charging and discharging of the battery, and is preferably performed at room temperature so as not to cause a decomposition reaction of components such as an organic solvent included in the electrolyte precursor.
  • the electrolyte precursor is gelled by heating in a second step to be described later to form a gel polymer electrolyte (gelyte).
  • the electrolyte precursor is a salt having the same structure as A + B - ,
  • a + is Li + , Na + , K + contains alkali metal cations such as ions or a combination thereof
  • B - is PF 6 - , BF 4 - , Cl - , Br - , I - , ClO 4 - , AsF 6 - , CH 3 CO 2 - , CF 3 SO 3 - , N(CF 3 SO 2 ) 2 - , C(CF 2 SO 2 ) 3 -
  • a salt containing an ion consisting of an anion or a combination thereof is dissolved or dissociated in an organic solvent.
  • the organic solvent is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane , tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma-butyrolactone (g-butyrolactone), and an ester-based compound, and one selected from among them species or mixtures of two or more species.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane , tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • the electrolyte precursor may be gelled by crosslinking or polymerization, and includes a crosslinkable polymer and/or oligomer, and a polymerization initiator may be further included for crosslinking or polymerization thereof.
  • the crosslinkable polymer may include a PVDF-based polymer including vinylidene fluoride units and/or an acrylic polymer having a crosslinkable functional group.
  • PVDF-based polymer examples include PVDF (Polyvinylidene fluoride), PVDF-HFP (Polyvinylidene fluoride-co-hexafluoropropylene), PVDF-TFE (Polyvinylidene fluoride-co-tetrafluoroproethylene), PVDF-CTFE (Polyvinylidene fluoride-co- chloro) trifluoro ethylene), PVDF-TrFE (Polyvinylidene fluoride-co-trifluoroproethylene), and the like, and may contain one or two or more of them.
  • the polymerization initiator may include a thermal initiator such as AIBN or a peroxide initiator such as Benzonyl peroxide.
  • the electrolyte precursor the electrolyte may be gelled through a crosslinking reaction of the crosslinkable polymer induced by the crosslinking initiator.
  • the second step may be performed in a temperature range required for the initiator included in the electrolyte precursor to initiate the polymerization reaction.
  • the temperature range may be carried out within the range of 30 °C to 80 °C.
  • the crosslinkable polymer and/or oligomer included in the electrolyte precursor may be crosslinked or polymerized with each other, so that the inside of the battery may be filled with a gel electrolyte.
  • a room temperature aging step in which the battery is maintained at room temperature for a predetermined time before and/or after heating to the above temperature may be further performed.
  • the pre-aging step may be performed in a state in which the battery case is pre-sealed after the electrolyte precursor is injected.
  • the provisional sealing means completely pre-sealing the battery case in order to perform a degassing procedure for discharging the gas generated in the formation step, etc., which will be described later.
  • the first pressing step may be performed under a pressure condition of 3 kgf / cm 2 or less.
  • the pressurization may be controlled to 1kgf/cm 2 to 3kgf/cm 2 .
  • the first pressing step may be performed in a temperature range of about 30 °C to 70 °C.
  • the temperature may be adjusted to 50° C. or higher.
  • the pressure condition and temperature condition are maintained for less than 1 hour, preferably less than 30 minutes.
  • the first pressing is performed to fix the shape of the electrode assembly (eg, to fix the shape so as not to warp in the case of a flat plate type), and to promote even diffusion of the electrolyte precursor in the battery.
  • the first pressing process has an effect of increasing the shape stability of the battery and lowering the non-uniformity in the electrode assembly before performing the formation process. Accordingly, through the subsequent formation process, uniform electrochemical properties such as resistance and binding force are secured throughout the battery.
  • the formation process refers to a step of activating the secondary battery by charging and discharging the secondary battery on which the primary pressurization process has been completed.
  • the formation step may be performed in a state in which a predetermined pressure is applied as in the first pressure condition.
  • the formation process may be continuously performed under the same pressure condition without releasing the pressure applied in (S2).
  • charging is performed in the range of 30% to 100% of the battery capacity, in the range of 50% to 100%, or in the range of 80% to 100%, and the discharging is Discharge to 50% to 0% of the battery capacity or to 30% to 0% of the battery capacity.
  • the battery capacity may be expressed as SOC.
  • charging and discharging may be performed up to a maximum state of charging (SOC) of 100% in the formation step after pre-aging.
  • SOC state of charging
  • charging and discharging may be performed in a CC/CV mode and discharging in a CC mode based on a 0.1C rate.
  • the charge-discharge cut-off voltage can be set between 2.3V and 4.5V.
  • charge/discharge mode, cut-off voltage range, and charge/discharge conditions such as C-rate are not particularly limited to these ranges, and appropriate ranges or conditions are selected in consideration of the electrode active material, battery type, and battery characteristics. can be set.
  • the formation process is preferably performed at a temperature lower than the temperature applied during the first pressing process.
  • the formation process may be performed under conditions of less than 60 °C.
  • an aging step may be performed (S4).
  • the aging step may include a step of standing still for a predetermined time at a temperature condition of 30 °C to 70 °C.
  • the electrolyte is filled in an even distribution inside the battery, and the SEI film formed on the electrode by thermal energy and electrochemical energy is more stabilized and reformed to an even and uniform thickness without partial bias.
  • a room temperature aging step in which the battery is maintained at room temperature for a predetermined time before and/or after heating to the above temperature may be further performed.
  • the pressurization condition of the second pressurization step is to be performed under a condition higher than the pressurization condition of the first pressurization step.
  • the pressure condition in the second pressurization may be higher than 3 kgf.
  • the temperature condition of the second pressurization step may be performed at the same or higher temperature than the temperature during the first pressurization.
  • the time for maintaining the temperature and pressure may be adjusted to be less than or equal to the process time of the first pressurization step.
  • the time is adjusted according to the temperature condition during the second pressurization, and may be controlled to an appropriate time among, for example, 1 minute to 90 minutes.
  • the second pressing step by performing the second pressing step, it is possible to increase the interfacial bonding force and the rigidity of the battery by closely adhering between the separator and the electrode.
  • a degassing process for discharging the gas generated inside the battery before or after performing the second pressurization step may be performed, and the gas discharge may be further promoted by the second pressurization.
  • the degassing process may be performed before or after the second pressing process is performed.
  • the temporary sealing may be released and the battery case may be opened, and after the degassing process, the battery case is sealed to manufacture a battery.
  • the electrode assembly may include, for example, a negative electrode, a positive electrode, and a separator interposed between the negative electrode and the positive electrode.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m, and the thickness is generally 5 to 300 ⁇ m.
  • Such a separator may include, for example, an insulating porous substrate such as an olefin-based polymer such as chemical resistant and hydrophobic polypropylene, glass fiber or polyethylene, or a polymer sheet or nonwoven fabric commonly used in the field of secondary batteries. there is.
  • an inorganic coating layer including inorganic particles may be further formed on the surface of the porous substrate to increase the thermal stability of the separator.
  • the inorganic coating layer includes inorganic particles and a binder resin, and may have a porous structure due to an interstitial volume between the inorganic particles.
  • the inorganic particles are electrochemically stable, and are not particularly limited as long as oxidation and/or reduction reactions do not occur within the operating voltage range of a secondary battery to which the inorganic particles are applied.
  • the inorganic particles are SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Al(OH) 3 , SiC and TiO 2 and the like, and may include one or two or more of them.
  • the binder resin is a fluororesin such as PVDF, PVDF-HFP, polymethylmethacrylate, polybutylacrylate, polybutylmethacrylate, polyacrylonitrile, polyacrylonitrile, poly Vinylpyrrolidone, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan and carboxyl methyl cellulose and the like, but is not particularly limited thereto.
  • PVDF fluororesin
  • PVDF-HFP polymethylmethacrylate
  • polybutylacrylate polybutylmethacrylate
  • polyacrylonitrile polyacrylonitrile
  • poly Vinylpyrrolidone polyethylene oxide
  • polyarylate cellulose acetate, cellulose acetate butyrate, cellulose a
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, a conductive material and a binder resin on at least one surface of the current collector.
  • the negative electrode may include, as an anode active material, carbon such as lithium metal oxide, non-graphitizable carbon, and graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of Groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O
  • the conductive material is, for example, graphite, carbon black, carbon fibers or metal fibers, metal powder, conductive whiskers, conductive metal oxides, activated carbon (activated carbon) and polyphenylene derivatives. It may be any one selected from the group consisting of, or a mixture of two or more of these conductive materials. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, denka black, aluminum powder, nickel powder, oxide It may be one selected from the group consisting of zinc, potassium titanate and titanium oxide, or a mixture of two or more of these conductive materials.
  • the current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel.
  • the surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • binder resin a polymer commonly used for electrodes in the art may be used.
  • binder resins include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-cotrichlorethylene, polymethyl methacrylate ( polymethylmethacrylate, polyethylhexyl acrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan and carboxyl methyl cellulose cellulose) and the like, but is not limited thereto
  • the present invention provides a battery module including a battery including the electrode assembly as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include, but are not limited to, a power tool that is powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, but is not limited thereto.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 4 , conductive material (carbon black), and binder (SBR/CMC, 70:30 weight ratio) were added to DI water in a weight ratio of 90: 5: 5, respectively, and mixed.
  • a positive electrode mixture was prepared, and the prepared positive electrode mixture was coated on an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector to a thickness of 60 ⁇ m, and then dried to prepare a positive electrode.
  • a lithium metal thin film (thickness 160 ⁇ m) was used as the negative electrode.
  • a stack type electrode assembly was manufactured by interposing a separator (a separator made of polyethylene, thickness: 20 ⁇ m) between the cathode and the anode.
  • Al 2 O 3 and PVDF-HFP were added to acetone to obtain a slurry for forming an inorganic coating layer.
  • the content of the inorganic particles and the binder resin in the slurry was mixed in a ratio of 80:20 by weight.
  • the content of solids except for acetone in each slurry was about 18 wt%.
  • the slurry was applied on a separator (polyethylene, porosity 45%, thickness 9 ⁇ m) at a loading amount of 15 g/m 2 compared to the area of the separator, and then dried under humidification conditions of 45% relative humidity. Next, it was cut into 60 mm (length) x 25 mm (width) to obtain a separator.
  • Ethylene carbonate and ethylmethyl carbonate were mixed at 3:7 (volume ratio), and lithium salt was added thereto at a concentration of 1.2M.
  • the lithium salt is a mixture of LiPF 6 and LiFSI in a ratio of 0.5 mol:0.7 mol.
  • an electrolyte precursor was prepared by adding PVDF-HFP at a concentration of 5 wt% and AIBN, a polymerization initiator, at a concentration of 0.02 wt%.
  • the positive electrode / separator / negative electrode obtained above were sequentially laminated and laminated to obtain an electrode assembly. This was charged into a pouch-type battery case, and the electrolyte precursor was injected and temporarily sealed.
  • the activation process was performed as follows to complete the battery preparation.
  • a pre-aging step of gelling the electrolyte precursor into a gel polymer electrolyte was performed by maintaining the battery obtained above at room temperature for about 2 days and then maintaining it at 70° C. for 3 hours.
  • a first pressing process was performed.
  • the process conditions of the first pressing step of each Example were as shown in [Table 1] below.
  • formation was performed under the same pressure conditions and 50°C conditions.
  • the formation was performed by 0.1C CC/CV mode charging and 0.1C CC mode discharging, and the charging was SOC 30%.
  • an aging process of the battery was performed, and the aging process was maintained at 60° C. for 1 day.
  • Example number Item Primary Secondary note Example 1 Temperature (°C) 60°C 80°C time (min) 10 minutes 10 minutes pressure (kfg/cm 3 ) 3 5 kfg/cm 3
  • Example 2 Temperature (°C) 60°C 60°C time (min) 10 minutes 60 minutes pressure (kfg/cm 3 ) 3 5 kfg/cm 3
  • Example 3 Temperature (°C) 60 60 time (min) 10 10 pressure (kfg/cm 3 ) 3 5
  • Example 5 Temperature (°C) 80 60 Secondary temperature low time (min) 5 10 pressure (kfg/cm 3 ) 3 5
  • Example 6 Temperature (°C) 70 80 Secondary temperature and pressure high time (min) 10 5 pressure (kfg/cm 3 ) 3 5
  • Example 7 Temperature (°C) 70 80 Secondary temperature and pressure high time (min) 5
  • FIG. 2 shows the cycle characteristics according to the present charging and discharging experiment.
  • the remaining capacity is calculated from the following equation (1).
  • FIG. 2 shows the measured experimental results, and it was confirmed that the cycle characteristics were excellent when the pressure was high and the temperature was high during the second pressurization compared to the case where the pressure was not high.
  • (1) shows Example 3, (2) and (3) show Examples 4 and 5, (4) shows Example 6, and (5) shows Example 7.
  • Graphs (2) and (3) are shown as superimposed in a similar relationship with the results.
  • Residual capacity (%) [300 th cycle discharge capacity/2 nd cycle discharge capacity] X 100
  • the positive electrode / separator / negative electrode prepared in Preparation Example was sequentially stacked and laminated to obtain an electrode assembly. This was charged into a pouch-type battery case, and liquid electrolyte was injected and temporarily sealed. The liquid electrolyte was mixed with ethylene carbonate and ethylmethyl carbonate at a ratio of 3:7 (volume ratio), and lithium salt was added thereto at a concentration of 1.2M.
  • the lithium salt is a mixture of LiPF 6 and LiFSI in a ratio of 0.5 mol:0.7 mol.
  • Ethylene carbonate and ethylmethyl carbonate were mixed at 3:7 (volume ratio), and lithium salt was added thereto at a concentration of 1.2M.
  • the lithium salt is a mixture of LiPF 6 and LiFSI in a ratio of 0.5 mol:0.7 mol.
  • an electrolyte precursor was prepared by adding PVDF-HFP at a concentration of 5 wt% and AIBN, a polymerization initiator, at a concentration of 0.02 wt%.
  • the positive electrode / separator / negative electrode obtained in Preparation Example were sequentially laminated and laminated to obtain an electrode assembly. This was charged into a pouch-type battery case, the electrolyte precursor was injected, and the battery was pre-sealed.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 4 , conductive material (carbon black), and binder (SBR/CMC, 70:30 weight ratio) were added to DI water in a weight ratio of 90: 5: 5, respectively, and mixed.
  • a positive electrode mixture was prepared, and the prepared positive electrode mixture was coated on an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector to a thickness of 60 ⁇ m, and then dried to prepare a positive electrode.
  • a lithium metal thin film (thickness 160 ⁇ m) was used as the negative electrode.
  • a stack type electrode assembly was manufactured by interposing a separator (a separator made of polyethylene, thickness: 20 ⁇ m) between the cathode and the anode.
  • Al 2 O 3 and PVDF-HFP were added to acetone to obtain a slurry for forming an inorganic coating layer.
  • the content of the inorganic particles and the binder resin in the slurry was mixed in a ratio of 80:20 by weight.
  • the content of solids except for acetone in each slurry was about 18 wt%.
  • the slurry was applied on a separator (polyethylene, porosity 45%, thickness 9 ⁇ m) at a loading amount of 15 g/m 2 compared to the area of the separator, and then dried under humidification conditions of 45% relative humidity. Next, it was cut into 60 mm (length) x 25 mm (width) to obtain a separator.
  • Ethylene carbonate and ethylmethyl carbonate were mixed at 3:7 (volume ratio), and lithium salt was added thereto at a concentration of 1.2M.
  • the lithium salt is a mixture of LiPF 6 and LiFSI in a ratio of 0.5 mol:0.7 mol.
  • an electrolyte precursor was prepared by adding PVDF-HFP at a concentration of 5 wt% and AIBN, a polymerization initiator, at a concentration of 0.02 wt%.
  • the positive electrode / separator / negative electrode obtained above were sequentially laminated and laminated to obtain an electrode assembly. This was charged into a pouch-type battery case, and the electrolyte precursor was injected and temporarily sealed.
  • the formation was performed under the conditions of 3 kfg and 50 ° C.
  • the formation was performed by 0.1C CC/CV mode charging and 0.1C CC mode discharging, and the charging was performed at 30% SOC. Thereafter, the temporary sealing was released to perform a degassing step, and sealing was performed to complete the manufacture of the secondary battery.
  • the activation process was performed as follows to complete the preparation of the battery.
  • the pre-aging step was performed by maintaining the battery obtained above at room temperature for about 2 days. Next, it was maintained for 10 minutes under a pressure condition of 60° C. and 3 kgf, and the formation was performed under the same pressure condition and 50° C. condition. The formation was performed by 0.1C CC/CV mode charging and 0.1C CC mode discharging, and the charging was performed at 30% SOC. Thereafter, an aging process of the battery was performed, and the aging process was maintained at 60° C. for 1 day. Next, a second pressurization process was performed. The process conditions of the secondary pressurization step of each Example were as shown in [Table 2] below. Thereafter, the temporary sealing was released to perform a degassing step, and sealing was performed to complete the manufacture of the secondary battery.
  • the activation process was performed as follows to complete the preparation of the battery.
  • the battery obtained above was maintained at room temperature for about 2 days and then maintained at 60° C. for 3 hours to perform a pre-aging step of gelling the electrolyte precursor into a gel polymer electrolyte, followed by formation without a primary pressurization process.
  • the formation was performed by 0.1C CC/CV mode charging and 0.1C CC mode discharging, and the charging was performed at 30% SOC.
  • an aging process of the battery was performed, and the aging process was maintained at 60° C. for 1 day.
  • a second pressurization process was performed.
  • the process conditions of the secondary pressurization step of each Example were as shown in [Table 3] below. Thereafter, the temporary sealing was released to perform a degassing step, and sealing was performed to complete the manufacture of the secondary battery.
  • the activation process was performed as follows to complete the preparation of the battery.
  • a pre-aging step of gelling the electrolyte precursor into a gel polymer electrolyte was performed by maintaining the battery obtained above at room temperature for about 2 days and then at 60° C. for 3 hours. Next, it was maintained for 10 minutes under a pressure condition of 60° C. and 3 kgf, and the formation was performed under the same pressure condition and 50° C. condition. The formation was performed by 0.1C CC/CV mode charging and 0.1C CC mode discharging, and the charging was performed at 30% SOC. Thereafter, an aging process of the battery was performed, and the aging process was maintained at 60° C. for 1 day.
  • the battery was charged and discharged with a 2.5C pulse at intervals of SOC10 from 100% SOC to SOC 0 in the state of SOC 100%, and the instantaneous resistance at that time was measured using a charging/discharging device.
  • a stiffness jig was attached to the UTM equipment.
  • the diameter of the upper plate/lower plate of the jig was set to 5 mm, and the span size of the lower plate jig was 16 times the thickness of the specimen.
  • a three-point bending fracture test was performed.
  • the work load applied to the specimen was 30 gf, and the speed was set to 5 mm/min.
  • the actual measurement test speed was 10 mm/min, and the maximum compression length was 2 mm.
  • a 3 mm thick nail was completely penetrated at a speed of 80 mm/sec. After observation for about 1 hour after penetration, pass (no explosion)/fail (explosion) was evaluated depending on whether or not there was an explosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 겔 폴리머 전해질 전지를 제조하는 방법에 대한 것으로서, 상기 방법은 포메이션 전후 2 차례의 가압 공정을 수행하는 것을 구성적 특징으로 한다. 본 발명에 따라 제조된 겔 폴리머 전해질 전지는 분리막과 전극의 이격이 적고 결착력이 높다. 또한, 전지의 두께가 감소되고 형태 안정성 및 견고성(stiffness)이 개선된다. 이러한 결과, 전지의 초기 용량 증가, 초기 저항 감소, 사이클 특성 향상, 고온 안전성, 과충전 안전성, 관통 안전성 등의 특성이 개선되는 효과가 있다. 또한, 겔 폴리머 전지는 고온/가압 공정이 적용되는 경우 전해질의 열화 등 물성이 변화되지 않으며 공정 시간이 길지 않아도 소망하는 효과를 달성할 수 있어 일반 액체 전해질 전지 제조에 비해서 공정 효율성이 높다.

Description

이차 전지 제조 방법
본 특허출원은 2020년 9월 14일자로 출원된 한국특허출원 제10-2020-0117965호에 기초한 우선권을 주장한다. 본 발명은 신규 활성화 공정이 적용된 이차 전지의 제조 방법에 대한 것이다.
최근 리튬 이온 이차 전지는 노트북, 휴대 전화, 디지털 카메라, 캠코더 등의 휴대용 전자 기기의 전원으로서 널리 사용되고 있다. 또한, 이들 리튬 이온 이차 전지는 고(高)에너지밀도를 갖는다는 특징으로부터 전기 자동차 등 운송 수단에도 적용되고 있다.
일반적으로 리튬 이온 이차 전지는 양극/분리막/음극을 적층하여 전극 조립체(stack cell)을 제조하고 상기 전극 조립체를 파우치에 넣고 전해액을 채우는 방법으로 제조된다. 이와 같이 전극과 분리막이 적층되는 방식으로 이차 전지를 제조하는 경우 분리막과 전극 사이에 이격이 발생될 수 있는데 이러한 이격이 적을수록 이차 전지의 용량 특성, 수명 특성, 안전성 등 전지 성능의 향상을 기대할 수 있다. 한편, 전해질로 액체 타입의 전해액을 사용하는 전지는 전해액의 휘발 특성 및 발화 특성으로 안전성에 매우 취약하다. 그리고 전지 외부로의 누액 문제가 발생될 수 있다. 이러한 이차 전지의 문제점을 해소하기 위해 겔 전해질(gelyte)이 적용되고 있다. Gelyte는 안전성의 측면에서 액체 전해질에 비해 좋지만 액체 전해질에 비해 유동성이 없어 전극과 분리막 사이에 이격이 발생되는 경우 전지 성능이 저하되는 문제가 있다.
본 발명은 gelyte를 전해질로 사용하는 겔 폴리머 전해질 이차 전지의 제조 방법을 제공하는 것을 목적으로 한다. 또한, 분리막과 전극의 이격이 적고 분리막과 전극의 결착이 안정적으로 유지되도록 신규한 전지 활성화 공정이 적용된 이차 전지의 제조 방법을 제공하는 것을 본 발명의 또 다른 목적으로 한다. 본 발명의 다른 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 제1 측면은 젤 폴리머 전해질 전지 제조 방법에 대한 것으로서, 상기 방법은 (S1) 전극 조립체를 외장재에 수납하고 전해질 전구체를 주액하고 상기 전해질 전구체를 젤 폴리머 전해질로 젤화하는 프리 에이징 단계;
(S2) 상기 (S1)의 결과물을 가압하는 1차 가압 단계;
(S3) 상기 (S2)의 결과물을 충방전하는 포메이션 단계;
(S4) 상기 (S3)의 결과물을 소정 시간 정치하는 에이징 단계; 및
(S5) 상기 (S4)의 결과물을 가압하는 2차 가압 단계;를 포함하며,
상기 (S5) 단계는 (S2) 단계보다 높은 압력 조건하에서 수행되는 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 제1 가압 단계는 3kgf/cm2 이하의 범위에서 수행되는 것이다.
본 발명의 제3 측면은 상기 제1 또는 제2 측면에 있어서, 상기 전해질 전구체는 유기 용매, 리튬염, 가교 가능한 고분자 및/또는 올리고머, 및 가교 개시제를 포함하는 것이다.
본 발명의 제4 측면은, 상기 제3 측면에 있어서, 상기 가교 가능한 고분자는 불화비닐리덴 단위를 포함하는 PVDF계 고분자 및/또는 가교 가능한 기능기를 갖는 아크릴계 고분자를 포함한다.
본 발명의 제5 측면은 상기 제1 내지 제4 측면 중 어느 하나에 있어서, 상기 전해질 전구체의 젤화는 가교가 이루어지는 온도 범위에서 수행되는 것이다.
본 발명의 제6 측면은 상기 제1 내지 제5 측면 중 어느 하나에 있어서, 상기 (S2) 단계는 1 시간 이내의 시간 동안 수행되는 것이다.
본 발명의 제7 측면은 상기 제1 내지 제6 측면 중 어느 하나에 있어서, 상기 (S3) 단계는 (S2)에서 가하여진 압력을 해제하지 않고 동일한 압력 조건하에서 수행되는 것이다.
본 발명의 제8 측면은 상기 제1 내지 제7 측면 중 어느 하나에 있어서, 상기 (S3) 단계는 전지 용량의 30% 내지 100%의 범위로 충전되는 것이다.
본 발명의 제9 측면은 상기 제1 내지 제8 측면 중 어느 하나에 있어서, 상기 (S5) 단계는 상기 (S2) 단계의 온도 조건 이상의 범위에서 수행되는 것이다.
본 발명의 제10 측면은 상기 제1 내지 제9 측면 중 어느 하나에 있어서, 상기 (S5) 단계는 상기 (S2) 단계의 온도보다 높은 온도에서 수행되는 것이다.
본 발명의 제11 측면은 상기 제1 내지 제10 측면 중 어느 하나에 있어서, 상기 (S5) 단계는 상기 (S2) 단계의 온도보다 높은 온도에서 수행되는 것이다.
본 발명의 제12 측면은 상기 제1 내지 11 측면 중 어느 하나에 있어서, 상기 (S5) 단계 이후 디개싱 공정이 더 수행되는 것이다.
본 발명에 따라 제조된 겔 폴리머 전해질 전지는 분리막과 전극의 이격이 적고 결착력이 높다. 또한, 전지의 두께가 감소되고 형태 안정성 및 견고성(stiffness)이 개선된다.
이러한 결과, 전지의 초기 용량 증가, 초기 저항 감소, 사이클 특성 향상, 고온 안전성, 과충전 안전성, 관통 안전성 등의 특성이 개선되는 효과가 있다.
또한, 겔 폴리머 전지는 고온/가압 공정이 적용되는 경우 전해질의 열화 등 물성이 변화되지 않으며 공정 시간이 길지 않아도 소망하는 효과를 달성할 수 있어 일반 액체 전해질 전지 제조에 비해서 공정 효율성이 높다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 본 발명의 구체적인 일 실시양태에 따른 전지 제조 방법의 공정 흐름도이다.
도 2는 실시예 3 내지 실시예 7에 따른 전지의 수명 특성을 나타낸 그래프를 도시한 것이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 발명의 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로' 의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 이차 전지의 제조 방법, 특히 신규한 활성화 공정이 적용된 이차 전지의 제조 방법에 대한 것이다. 상기 이차 전지는 반복적인 충전과 방전이 가능한 것으로, 리튬 이온 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 포괄하는 개념이다.
도 1은 본 발명에 따른 전지 제조 방법의 공정 흐름도를 나타낸 것이다.
도 1을 참조하면, 본 발명의 일 실시양태에 따른 이차 전지 제조 방법은 프리 에이징 단계(S1); 1차 가압 단계(S2); 포메이션 단계(S3); 에이징 단계(S4); 및 2차 가압 단계(S5);를 포함하는 활성화 공정을 포함한다. 여기에서, 상기 1차 및 2차 가압 공정은 각각 독립적으로 가온 상태에서 진행될 수 있다. 또한, 상기 2차 가압 공정은 1차 가압 공정에 비해 높은 압력 조건에서 수행될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 프리 에이징 단계(S1)는 전극 조립체를 전지 케이스에 장입한 후 전해질 전구체를 주액한 후 실온에서 소정 시간 유지하는 방식으로 수행될 수 있다. 상기 전해질 전구체는 유기 용매, 리튬염, 가교 가능한 고분자 및/또는 올리고머, 및 가교 개시제를 포함할 수 있다.
상기 프리 에이징은 전극 조립체가 상기 전해질 전구체로 충분히 함침되도록 하기 위해 수행되는 제1 단계 및 상기 전해질 전구체를 젤화하여 겔 폴리머 전해질화하는 제2 단계를 포함한다.
상기 제1 단계는 전극이나 분리막의 미세 기공에까지 상기 전해질 전구체가 침투 및 확산될 수 있도록 충분한 시간 동안 수행될 수 있다. 또한, 상기 제1 단계는 전지의 충방전 전에 수행되는 것으로서 상기 전해질 전구체 중 포함된 유기 용매 등 성분들의 분해 반응이 초래되지 않도록 상온에서 수행되는 것이 바람직하다.
본 발명의 일 실시양태에 있어서, 상기 전해질 전구체는 후술하는 제2 단계에서 가열에 의해 젤화되어 젤 폴리머 전해질(gelyte)를 형성하는 것을 의미한다. 상기 전해질 전구체는 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 유기 용매 중 용해 또는 해리된 것이다. 상기 유기 용매는 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤), 에스테르계 화합물을 예로 들 수 있으며, 이 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
또한, 상기 전해질 전구체는 가교나 중합 반응에 의해서 젤화될 수 있는 것으로서 가교 가능한 고분자 및/또는 올리고머를 포함하며, 이들의 가교나 중합 반응을 위해 중합 개시제가 더 포함될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 가교 가능한 고분자는 불화비닐리덴 단위를 포함하는 PVDF계 고분자 및/또는 가교 가능한 기능기를 갖는 아크릴계 고분자를 포함할 수 있다. 상기 PVDF계 고분자의 비제한적인 예로는 PVDF(Polyvinylidene fluoride), PVDF-HFP(Polyvinylidene fluoride-co-hexafluoropropylene), PVDF-TFE(Polyvinylidene fluoride-co-tetrafluoroproethylene), PVDF-CTFE(Polyvinylidene fluoride-co- chloro trifluoro ethylene), PVDF-TrFE(Polyvinylidene fluoride-co-trifluoroproethylene) 등이 있으며 이 중 하나 또는 둘 이상을 포함할 수 있다. 본 발명의 구체적인 일 실시예에 있어서, 상기 중합 개시제는 AIBN 등 열개시제나 Benzonyl peroxide 등 과산화물 개시제를 포함할 수 있다. 상기 전해질 전구체는 상기 가교 개시제에 의해 유도된 상기 가교 가능한 고분자의 가교 반응을 통해 전해질이 겔화될 수 있다.
한편, 본 발명에 있어서, 상기 제2 단계는 전해질 전구체에 포함된 개시제가 중합 반응을 개시하는데 필요한 온도 범위에서 수행될 수 있다. 예를 들어 상기 온도 범위는 30℃ 내지 80℃의 범위 내에서 수행될 수 있다. 상기 제2 단계에서는 상기 전해질 전구체 중 포함된 가교성 고분자 및/또는 올리고머가 상호간 가교되거나 중합되어 전지 내부가 겔 전해질로 충진될 수 있다. 한편 본 발명의 일 실시양태에 있어서, 상기 온도까지 열이 가하여 지기 전 및/또는 가온 후에 전지가 상온에서 소정 시간 유지되는 상온 에이징 단계가 더 수행될 수 있다.
한편, 상기 프리 에이징 단계는 전해질 전구체 주액 후에 전지 케이스를 가밀봉한 상태에서 수행될 수 있다. 상기 가밀봉은 후술하는 포메이션 단계 등에서 발생된 전지 내부의 가스를 배출하기 위한 디개싱 딘계를 수행하기 위해서 전지 케이스를 완전히 예비 밀봉하는 것을 의미한다.
전술한 바와 같이 프리 에이징 단계가 완료되면, 다음으로 1차 가압 단계(S2)를 수행한다.
본 발명의 일 실시양태에 있어서, 상기 1차 가압 단계는 3 kgf/cm2이하의 압력 조건에서 수행될 수 있다. 예를 들어 상기 가압은 1kgf/cm2 내지 3kgf/cm2로 제어될 수 있다. 또한, 상기 1차 가압 단계는 약 30℃ 내지 70℃의 온도 범위에서 수행될 수 있다. 예를 들어 상기 온도는 50℃ 이상이상으로 조절될 수 있다. 바람직하게는 상기 가압 조건 및 온도 조건은 1시간 이내, 바람직하게는 30분 이내의 시간 동안 유지되는 것이다. 본 발명에 있어서 상기 1차 가압은 전극 조립체의 형태를 고정하고(예를 들어, 평판형일 경우 휘지 않도록 형태 고정), 전해질 전구체가 전지내에 고른 확산을 촉진하기 위해서 수행된다. 이와 같이 상기 1차 가압 공정은 포메이션 공정을 수행하기 전에 전지의 형태 안정성을 높이고 전극 조립체 내의 불균일성을 낮추는 효과가 있다. 이에 따라 후속되는 포메이션 공정을 통해서 전지 전체적으로 저항, 결착력 등 균일한 전기화학적 특성이 확보된다.
전술한 바와 같이 1차 가압 공정이 수행된 이후, 포메이션 공정이 수행된다(S3). 본 발명에서 상기 포메이션 공정은 상기 1차 가압 공정이 완료된 이차 전지를 충전 및 방전하여 이차 전지를 활성화하는 단계를 의미한다. 본 발명의 있어서 상기 포메이션 단계는 상기 1차 가압 조건과 같이 소정 압력이 가하여진 상태에서 수행될 수 있다. 본원 발명의 구체적인 일 실시양태에 있어서, 상기 포메이션 공정은 상기 (S2)에서 가하여진 압력을 해제하지 않고 동일한 압력 조건하에서 연속하여 수행될 수 있다.
본 발명의 구체적인 일 실시양태에 따르면 상기 (S3) 단계에서 충전은 전지 용량의 30% 내지 100%의 범위, 50% 내지 100%의 범위, 또는 80% 내지 100%의 범위로 수행되며, 방전은 전지 용량의 50% 내지 0%까지 방전되도록 또는 30% 내지 0%까지 방전되도록 한다. 본 발명의 일 실시양태에 있어서, 상기 전지 용량은 SOC로 나타낼 수 있다.
본원 발명에 따른 이차 전지 제조 방법에서는 포메이션 공정 수행 전 전극 조립체 내부로 전해질 전구체가 충분히 함침되어 있는 상태이므로 리튬 금속의 플레이팅 현상이나 이로 인한 저항 증가의 문제가 현저히 감소된다. 따라서, 프리 에이징 이후의 포메이션 단계에서 최대 SOC(State of charging) 100%까지 충방전을 수행할 수 있다. 본 발명의 구체적인 일 실시양태에 따르면 충방전은 0.1C 레이트를 기준으로 하여 충전은 CC/CV 모드, 방전은 CC모드로 수행될 수 있다. 충방전 컷-오프(cut off) 전압은2.3V에서 4.5V 사이에서 설정될 수 있다. 그러나, 이러한 충방전 모드나 컷-오프 전압의 범위, C-rate 등의 충방전 조건들은 이에 특별히 이러한 범위들로 한정되지 않으며, 전극 활물질, 전지 종류, 전지 특성 등을 고려하여 적절한 범위나 조건을 설정할 수 있다. 한편, 상기 포메이션 공정은 상기 1차 가압 공정시 인가된 온도보다 낮은 온도에서 수행되는 것이 바람직하다. 예를 들어 상기 포메이션 공정은 60℃ 미만의 조건에서 수행될 수 있다.
상기 포메이션 공정 이후에는 에이징 단계가 수행될 수 있다(S4). 상기 에이징 단계는 30℃ 내지 70℃ 의 온도 조건에서 소정 시간 정치되는 단계를 포함할 수 있다. 상기 에이징 단계가 수행되면서 전해질이 전지 내부에 고른 분포로 충진되며 열 에너지와 전기화학 에너지에 의해 전극에 형성된 SEI 막이 보다 안정화되고 부분적으로 치우침이 없이 고르고 균일한 두께로 재형성되게 한다. 한편 본 발명의 일 실시양태에 있어서, 상기 온도까지 열이 가하여 지기 전 및/또는 가온 후에 전지가 상온에서 소정 시간 유지되는 상온 에이징 단계가 더 수행될 수 있다.
이후, 2차 가압 단계(S5)를 수행한다.
본 발명에 있어서, 상기 2차 가압 단계의 가압 조건은 1차 가압 단계의 가압 조건보다 높은 조건으로 수행되는 것이다. 예를 들어 상기 2차 가압에서 압력 조건은 3 kgf 보다 높을 수 있다. 한편, 상기 2차 가압 단계의 온도 조건은 1차 가압시 온도와 같거나 높은 온도에서 수행될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 2차 가압 단계는 1차 가압 단계보다는 비교적 가혹한 조건에서 수행되기 때문에 상기 온도 및 압력이 유지되는 시간은 1차 가압 단계의 공정 시간 이하로 조절될 수 있다. 다만, 상기 시간은 2차 가압시 온도 조건에 따라 조절되는 것으로서, 예를 들어 1분 내지 90분 중 적절한 시간으로 제어될 수 있다. 본 발명에 있어서 상기 2차 가압 단계를 수행함으로써 분리막과 전극 사이를 밀착시켜 계면 결착력 및 전지의 강성을 증대시킬 수 있다. 한편, 상기 2차 가압 단계 수행 전 또는 2차 가압 후에 전지 내부에 발생된 가스를 배출하는 디개싱 공정이 수행될 수 있으며, 상기 2차 가압에 의해 가스 배출이 더욱 촉진될 수 있다.
한편, 전술한 바와 같이 상기 2차 가압 공정 수행 전 또는 수행 후에 디개싱 공정이 수행될 수 있다. 상기 디개싱을 위해서 가밀봉을 해제하고 전지 케이스를 개방할 수 있으며, 디개싱 공정 이후 전지 케이스를 밀봉하여 전지를 제조한다.
본 발명의 일 실시양태에 있어서, 상기 전극 조립체는 예를 들어 음극, 양극 및 상기 음극과 양극 사이에 개재된 분리막을 포함할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 상기 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머, 유리섬유 또는 폴리에틸렌 등 통상적으로 이차 전지 분야에서 통상적으로 사용되는 고분자 시트나 부직포 등 절연성의 다공성 기재를 포함할 수 있다. 한편, 상기 분리막은 상기 다공성 기재의 표면에 분리막의 내열 안정성을 높이기 위해 무기물 입자를 포함하는 무기 코팅층이 더 형성될 수 있다.
상기 무기 코팅층은 무기물 입자 및 바인더 수지를 포함하는 것으로서, 무기물 입자 사이의 인터스티셜 볼륨에 의한 다공성 구조를 가질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 무기물 입자는 전기화학적으로 안정한 것으로서 무기물 입자가 적용되는 이차 전지의 작동 전압 범위 내에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 한정되는 것은 아니다. 예를 들어 상기 무기물 입자는 SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, AlOOH, Al(OH)3, SiC 및 TiO2 등이 있으며, 이 중 하나 또는 둘 이상을 포함할 수 있다.
한편, 상기 바인더 수지는 PVDF, PVDF-HFP 등 불소 수지, 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리부닐메타아크릴레이트 (polybutylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)등을 들 수 있으나, 특별히 이에 한정되는 것은 아니다.
본 발명에 있어서, 양극은 양극 집전체 및 상기 집전체의 적어도 일측 표면에 양극 활물질, 도전재 및 바인더 수지를 포함하는 양극 활물질층을 구비한다. 상기 양극 활물질은 리튬 망간복합 산화물(LiMn2O4, LiMnO2 등), 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 LixMnyNizCo(1-y-z)O2(x는 0.5 내지 2, x+y+z=1), 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 및 Ga에서 선택된 1종 또는 2종 이상 이고, x = 0.01 ~ 0.3 임)으로 표현되는 리튬 니켈 산화물; 화학식 LiaNixCoyMnzO2(0<a<1.5, 0< [x,y,z]<1, x+y+z=1), 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 음극은 음극 집전체 및 상기 집전체의 적어도 일측 표면에 음극 활물질, 도전재 및 바인더 수지를 포함하는 음극 활물질층을 구비한다. 상기 음극은 음극 활물질로 리튬 금속산화물, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0<x≤1), LixWO2(0<x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는, 예를 들어, 흑연, 카본블랙, 탄소 섬유 또는 금속 섬유, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 활성 카본(activated carbon) 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다. 더욱 구체적으로는 천연 흑연, 인조 흑연, 슈퍼 피(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카(denka) 블랙, 알루미늄 분말, 니켈 분말, 산화 아연, 티탄산 칼륨 및 산화 티탄으로 이루어진 군으로부터 선택된 1종 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 바인더 수지로는 당업계에서 전극에 통상적으로 사용되는 고분자를 사용할 수 있다. 이러한 바인더 수지의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-cotrichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetatepropionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀 룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.
또한, 본 발명은, 상기 전극 조립체를 포함하는 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
1. 제조예: 전극 조립체의 제조
(1) 양극의 제조
LiNi1/3Mn1/3Co1/3O4, 도전재(카본 블랙), 바인더(SBR/CMC, 70:30 중량비)를 각각 90: 5: 5의 중량비로 DI water에 투입하고 믹싱하여 양극 합제를 제조하고, 제조된 양극 합제를 양극 전류 집전체로서 20 ㎛ 두께의 알루미늄 호일에 60㎛ 두께로 코팅한 후 건조하여 양극을 제조하였다.
(2) 음극의 제조
음극으로는 리튬 금속 박막 (두께 160㎛)을 사용하였다. 상기 음극과 양극 사이에 분리막(폴리에틸렌 소재 분리막, 두께: 20 ㎛)을 개재하여 스택 타입의 전극 조립체를 제조하였다.
(3) 분리막의 제조
Al2O3 및 PVDF-HFP를 아세톤에 투입하여 무기 코팅층 형성용 슬러리를 수득하였다. 상기 슬러리 중 무기물 입자와 바인더 수지의 함량은 중량비로 80:20의 비율로 혼합되었다. 또한, 각 슬러리에서 아세톤을 제외한 고형분의 함량은 약 18wt%로 하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 9㎛) 위에 분리막 면적 대비 15g/m2의 로딩량으로 도포한 후 상대습도 45%의 가습 조건에서 건조하였다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다.
(4) 전해질 전구체의 준비
에틸렌 카보네이트와 에틸메틸카보네이트를 3:7(부피비)로 혼합하고 여기에 리튬염을 1.2M 농도로 투입하였다. 상기 리튬염은 LiPF6와 LiFSI가 0.5몰:0.7몰의 비율로 혼합된 것이다. 다음으로 여기에 PVDF-HFP를 5wt%의 농도로, 중합 개시제인 AIBN을 0.02 wt%의 농도로 투입하여 전해질 전구체를 준비하였다.
(5) 전지의 준비
상기에서 수득된 양극/분리막/음극을 순차적으로 적층하고 라미네이션하여 전극 조립체를 수득하였다. 이를 파우치형 전지 케이스에 장입하고 전해질 전구체를 주액하고 가밀봉하였다.
2. 실시예
상기 제조예에서 수득된 전지에 대해 다음과 같이 활성화 공정을 수행하여 전지 제조를 완료하였다. 우선, 상기에서 수득된 전지를 상온에서 2일 정도 유지 하고 이후 70℃에서 3시간 유지하여 전해질 전구체를 젤 폴리머 전해질로 젤화하는 프리 에이징 단계를 수행하였다. 다음으로, 1차 가압 공정을 수행하였다. 각 실시예의 1차 가압 단계의 공정 조건은 아래 [표 1]과 같았다. 이후, 동일한 압력 조건 및 50℃ 조건 하에서 포메이션을 수행하였다. 상기 포메이션은 0.1C CC/CV 모드 충전, 0.1C CC 모드 방전하여 수행되었으며, 상기 충전은 SOC 30%로 하였다. 이후 전지의 에이징 공정을 수행하였으며, 상기 에이징 공정은 60℃ 에서 1일 동안 유지하였다. 다음으로 2차 가압 공정을 수행하였다. 각 실시예의 2차 가압 단계의 공정 조건은 아래 [표 1]과 같았다. 이후 가밀봉을 해제하여 디개싱 단계를 수행하고 밀봉하여 이차 전지 제조를 완료하였다.
실시예 번호 항목 1차 2차 비고
실시예 1 온도(℃) 60℃ 80℃
시간 (min) 10분 10 분
압력
(kfg/cm3)
3 5 kfg/cm3
실시예 2 온도(℃) 60℃ 60℃
시간 (min) 10분 60 분
압력
(kfg/cm3)
3 5 kfg/cm3
실시예 3 온도(℃) 60 60
시간 (min) 10 10
압력
(kfg/cm3)
3 5
실시예 4 온도(℃) 80 80 온도 동일
2차 가압 높음
시간 (min) 10 5
압력
(kfg/cm3)
3 5
실시예 5 온도(℃) 80 60 2차 온도 낮음
시간 (min) 5 10
압력
(kfg/cm3)
3 5
실시예 6 온도(℃) 70 80 2차 온도 및 압력 높음
시간 (min) 10 5
압력
(kfg/cm3)
3 5
실시예 7 온도(℃) 70 80 2차 온도 및 압력 높음
시간 (min) 5 5
압력
(kfg/cm3)
3 5
상기 실시예 3 내지 실시예 7에서 수득된 전지에 대해서 수명특성을 측정하였다. 각각 수득된 리튬 전지에 0.33C로 3.6V에서 전류가 0.05C에 이를 때까지 CC/CV 방식으로 충전하고, 동일한 전류로 전압이 2.5V에 이를 때까지 방전하였다. 이어서 동일한 전류와 전압 구간에서 충전 및 방전을 300회 반복하였다. 도 2는 본 충방전 실험에 따른 사이클 특성을 나타낸 것이다. 한편, 잔존 용량은 하기 수학식 1로부터 산출한 것이다. 도 2는 측정된 실험 결과를 나타낸 것으로서 2차 가압시 압력이 높고 온도가 높은 경우 그렇지 않은 경우에 비해서 사이클 특성이 우수한 것으로 확인되었다. 도 2에서 (1)은 실시예 3, (2) 및 (3)은 각각 실시예 4 및 5, (4)는 실시예 6, 그리고, (5)는 실시예 7을 나타낸다. 그래프 (2) 및 (3)은 결과가 유사한 관계로 중첩되어 표시되었다.
<식 1>
잔존 용량(%)=[300th 사이클 방전 용량/2nd 사이클 방전용량] X 100
3. 비교예
(1) 전지의 제조: 비교예 1 내지 비교예 5
상기 제조예에서 준비된 양극/분리막/음극을 순차적으로 적층하고 라미네이션하여 전극 조립체를 수득하였다. 이를 파우치형 전지 케이스에 장입하고 액체 전해질을 주액하고 가밀봉하였다. 상기 액체 전해질은 에틸렌 카보네이트와 에틸메틸카보네이트를 3:7(부피비)로 혼합하고 여기에 리튬염을 1.2M 농도로 투입하였다. 상기 리튬염은 LiPF6와 LiFSI가 0.5몰:0.7몰의 비율로 혼합된 것이다.
(2) 전지의 제조: 비교예 6 내지 비교예 9
에틸렌 카보네이트와 에틸메틸카보네이트를 3:7(부피비)로 혼합하고 여기에 리튬염을 1.2M 농도로 투입하였다. 상기 리튬염은 LiPF6와 LiFSI가 0.5몰:0.7몰의 비율로 혼합된 것이다. 다음으로 여기에 PVDF-HFP를 5wt%의 농도로, 중합 개시제인 AIBN을 0.02 wt%의 농도로 투입하여 전해질 전구체를 준비하였다. 상기 제조예에서 수득된 양극/분리막/음극을 순차적으로 적층하고 라미네이션하여 전극 조립체를 수득하였다. 이를 파우치형 전지 케이스에 장입하고 상기 전해질 전구체를 주액하고 가밀봉하였다.
(3) 전지의 제조: 비교예 10 내지 비교예 13
1) 양극의 제조
LiNi1/3Mn1/3Co1/3O4, 도전재(카본 블랙), 바인더(SBR/CMC, 70:30 중량비)를 각각 90: 5: 5의 중량비로 DI water에 투입하고 믹싱하여 양극 합제를 제조하고, 제조된 양극 합제를 양극 전류 집전체로서 20 ㎛ 두께의 알루미늄 호일에 60㎛ 두께로 코팅한 후 건조하여 양극을 제조하였다.
2) 음극의 제조
음극으로는 리튬 금속 박막 (두께 160㎛)을 사용하였다. 상기 음극과 양극 사이에 분리막(폴리에틸렌 소재 분리막, 두께: 20 ㎛)을 개재하여 스택 타입의 전극 조립체를 제조하였다.
3) 분리막의 제조
Al2O3 및 PVDF-HFP를 아세톤에 투입하여 무기 코팅층 형성용 슬러리를 수득하였다. 상기 슬러리 중 무기물 입자와 바인더 수지의 함량은 중량비로 80:20의 비율로 혼합되었다. 또한, 각 슬러리에서 아세톤을 제외한 고형분의 함량은 약 18wt%로 하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 9㎛) 위에 분리막 면적 대비 15g/m2의 로딩량으로 도포한 후 상대습도 45%의 가습 조건에서 건조하였다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다.
4) 전해질 전구체의 준비
에틸렌 카보네이트와 에틸메틸카보네이트를 3:7(부피비)로 혼합하고 여기에 리튬염을 1.2M 농도로 투입하였다. 상기 리튬염은 LiPF6와 LiFSI가 0.5몰:0.7몰의 비율로 혼합된 것이다. 다음으로 여기에 PVDF-HFP를 5wt%의 농도로, 중합 개시제인 AIBN을 0.02 wt%의 농도로 투입하여 전해질 전구체를 준비하였다.
5) 전지의 준비
상기에서 수득된 양극/분리막/음극을 순차적으로 적층하고 라미네이션하여 전극 조립체를 수득하였다. 이를 파우치형 전지 케이스에 장입하고 전해질 전구체를 주액하고 가밀봉하였다.
(4) 활성화 공정 수행
1) 비교예 1 및 비교예 9
(1 액체 전해질 전지, 9 겔 고분자 전해질 전지, 가압 공정이 수행되지 않음)
60℃에서 1일 동안 에이징 단계를 수행한 후 3kfg, 50℃의 조건하에서 포메이션을 수행하였다. 상기 포메이션은 0.1C CC/CV 모드 충전, 0.1C CC 모드 방전하여 수행되었으며, 상기 충전은 SOC 30%로 하였다. 이후 가밀봉을 해제하여 디개싱 단계를 수행하고 밀봉하여 이차 전지 제조를 완료하였다.
2) 비교예 2 내지 비교예 5 (액체 전해질 전지, 2차 가압 수행)
상기 제조예에서 수득된 전지에 대해 다음과 같이 활성화 공정을 수행하여 전지 제조를 완료하였다. 우선, 상기에서 수득된 전지를 상온에서 2일 정도 유지하여 프리 에이징 단계를 수행하였다. 다음으로 60℃ 및 3kgf의 압력 조건 하에서 10분 동안 유지하였으며 동일한 압력 조건 및 50℃ 조건 하에서 포메이션을 수행하였다. 상기 포메이션은 0.1C CC/CV 모드 충전, 0.1C CC 모드 방전하여 수행되었으며, 상기 충전은 SOC 30%로 하였다. 이후 전지의 에이징 공정을 수행하였으며, 상기 에이징 공정은 60℃에서 1일 동안 유지하였다. 다음으로 2차 가압 공정을 수행하였다. 각 실시예의 2차 가압 단계의 공정 조건은 아래 [표 2]와 같았다. 이후 가밀봉을 해제하여 디개싱 단계를 수행하고 밀봉하여 이차 전지 제조를 완료하였다.
3) 비교예 6 내지 비교예 8 (겔전해질 2차 가압)
상기 제조예에서 수득된 전지에 대해 다음과 같이 활성화 공정을 수행하여 전지 제조를 완료하였다. 우선, 상기에서 수득된 전지를 상온에서 2일 정도 유지하고 이후 60℃에서 3시간 유지하여 전해질 전구체를 젤 폴리머 전해질로 젤화하는 프리 에이징 단계를 수행한 후 1차 가압 공정 없이 포메이션을 수행하였다. 상기 포메이션은 0.1C CC/CV 모드 충전, 0.1C CC 모드 방전하여 수행되었으며, 상기 충전은 SOC 30%로 하였다. 이후 전지의 에이징 공정을 수행하였으며, 상기 에이징 공정은 60℃에서 1일 동안 유지하였다. 다음으로 2차 가압 공정을 수행하였다. 각 실시예의 2차 가압 단계의 공정 조건은 아래 [표 3]과 같았다. 이후 가밀봉을 해제하여 디개싱 단계를 수행하고 밀봉하여 이차 전지 제조를 완료하였다.
4) 비교예 10 내지 비교예 13 (겔 전해질 2차 가압)
상기 제조예에서 수득된 전지에 대해 다음과 같이 활성화 공정을 수행하여 전지 제조를 완료하였다. 우선, 상기에서 수득된 전지를 상온에서 2일 정도 유지하고 이후 60℃에서 3시간 유지하여 전해질 전구체를 젤 폴리머 전해질로 젤화하는 프리 에이징 단계를 수행하였다. 다음으로 60℃ 및 3kgf의 압력 조건 하에서 10분 동안 유지하였으며 동일한 압력 조건 및 50℃ 조건 하에서 포메이션을 수행하였다. 상기 포메이션은 0.1C CC/CV 모드 충전, 0.1C CC 모드 방전하여 수행되었으며, 상기 충전은 SOC 30%로 하였다. 이후 전지의 에이징 공정을 수행하였으며, 상기 에이징 공정은 60℃에서 1일 동안 유지하였다. 다음으로 2차 가압 공정을 수행하였다. 각 실시예의 2차 가압 단계의 공정 조건은 아래 [표 4]와 같았다. 이후 가밀봉을 해제하여 디개싱 단계를 수행하고 밀봉하여 이차 전지 제조를 완료하였다.
(액체 전해질 전지, 1차 가압 조건 60℃ 및 3kgf의 압력 조건 하에서 10분 동안 유지)
1차 2차 비고
비교예 2 온도(℃) 60 80 액체 전해질 사용
시간 (min) 10 10
압력
(kfg/cm3)
3 5
비교예 3 온도(℃) 60 80 액체 전해질 사용
시간 (min) 10 60
압력
(kfg/cm3)
3 5
비교예 4 온도(℃) 60 80 액체 전해질 사용
시간 (min) 10 60
압력
(kfg/cm3)
3 3
비교예 5 온도(℃) 60 60 액체 전해질 사용
시간 (min) 10 60
압력
(kfg/cm3)
3 3
항목 1차 2차 비고
비교예 6 온도(℃) - 60 1차 가압
없음
시간 (min) - 60
압력
(kfg/cm3)
- 5
비교예 7 온도(℃) - 80 1차 가압
없음
시간 (min) - 60
압력
(kfg/cm3)
- 5
비교예 8 온도(℃) - 80 1차 가압
없음
시간 (min) - 10
압력
(kfg/cm3)
- 5
1차 2차 비고
비교예 10 온도(℃) 60 80 압력 동일
시간 (min) 10 60
압력
(kfg/cm3)
3 3
비교예 11 온도(℃) 60 60 압력 동일
시간 (min) 10 60
압력
(kfg/cm3)
3 3
비교예 12 온도(℃) 60 80 2차 압력 낮음
시간 (min) 10 60
압력
(kfg/cm3)
3 1
비교예 13 온도(℃) 60 60 2차 압력 낮음
시간 (min) 10 60
압력
(kfg/cm3)
3 1
4. 물성 평가
(1) 저항 특성 평가
전지를 SOC 100%인 상태에서 SOC 100 ~SOC 0 구간까지 SOC10 간격마다 2.5C 펄스로 충방전하여 그때의 순간 저항을 충방전 장비를 이용하여 측정하였다.
(2) 강성 평가
UTM 장비에 stiffness 지그를 체결하였다. 지그의 상판/하판 지름은 모두 5mm 로 하였으며, 하판 지그의 span 크기는 시편 두께의 16배로 하였다. 이후 3점 굽힘 파괴 실험을 진행하였다. 시편에 가하여지는 작업로드는 30gf이며, 속도는 5mm/min으로 설정하였다. 실제 측정 테스트 속도는 10mm/min이며, 압축길이는 최대 2mm로 하였다.
(3) 안전성 평가(못 관통 실험)
3mm 굵기의 못을 80mm/sec의 속도로 완전히 관통하였다. 관통 후 1시간 정도 관찰한 후 폭발 여부에 따라 pass(폭발 없음)/fail(폭발)을 평가하였다.
저항(%) 강성(stiffness)
(%)
안전성 실험
(Pass/Total)
실시예 1 104.6 150.4 3/3
실시예 2 108.3 138.1 3/3
저항(%) 강성(stiffness)
(%)
안전성 실험
(Pass/Total)
비교예 1 100 100.0 0/3
비교예 2 98.3 110.0 0/3
비교예 3 99.5 115.8 0/3
비교예 4 99.6 113.5 0/3
비교예 5 97.8 112.6 0/3
비교예 6 115.1 109.8 0/3
비교예 7 113.6 112.8 0/3
비교예 8 112.4 107.5 0/3
비교예 9 113.6 105.3 1/3
비교예 10 107.8 118.2 1/3
비교예 11 108.1 116.3 1/3
비교예 12 110.3 106.3 0/3
비교예 13 109.8 104.4 0/3
상기 [표 5] 및 [표 6]을 확인해 본 바 본 발명의 제조 방법에 따라 제조된 실시예 1 및 실시예 2의 전지는 비교예의 전지에 비해 강성 및 안전성이 우수한 것을 확인할 수 있었다. 또한, 본 발명의 제조 방법에 따라 제조된 실시예 1 및 실시예 2의 전지는 비교예 중 고체 전해질 재료를 사용한 전지(비교예 6 내지 비교예 13)에 비해 저항 특성이 우수한 것이 확인되었다.

Claims (12)

  1. (S1) 전극 조립체를 외장재에 수납하고 전해질 전구체를 주액하고 상기 전해질 전구체를 젤 폴리머 전해질로 젤화하는 프리 에이징 단계;
    (S2) 상기 (S1)의 결과물을 가압하는 1차 가압 단계;
    (S3) 상기 (S2)의 결과물을 충방전하는 포메이션 단계;
    (S4) 상기 (S3)의 결과물을 소정 시간 정치하는 에이징 단계; 및
    (S5) 상기 (S4)의 결과물을 가압하는 2차 가압 단계;를 포함하며,
    상기 (S5) 단계는 (S2) 단계보다 높은 압력 조건하에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  2. 제1항에 있어서,
    상기 제1 가압 단계는 3kgf/cm2 이하의 범위에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  3. 제1항에 있어서,
    상기 전해질 전구체는 유기 용매, 리튬염, 가교 가능한 고분자 및/또는 올리고머, 및 가교 개시제를 포함하는 것인 젤 폴리머 전해질 전지 제조 방법.
  4. 제3항에 있어서,
    상기 가교 가능한 고분자는 불화비닐리덴 단위를 포함하는 PVDF계 고분자 및/또는 가교 가능한 기능기를 갖는 아크릴계 고분자를 포함하는 것인 젤 폴리머 전해질 전지 제조 방법.
  5. 제1항에 있어서,
    상기 전해질 전구체의 젤화는 가교가 이루어지는 온도 범위에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  6. 제1항에 있어서,
    상기 (S2) 단계는 1 시간 이내의 시간 동안 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  7. 제1항에 있어서,
    상기 (S3) 단계는 (S2)에서 가하여진 압력을 해제하지 않고 동일한 압력 조건하에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  8. 제1항에 있어서,
    상기 (S3) 단계는 전지 용량의 30% 내지 100%의 범위로 충전되는 것을 포함하는 것인 젤 폴리머 전해질 전지 제조 방법.
  9. 제1항에 있어서,
    상기 (S5) 단계는 상기 (S2) 단계의 온도 조건 이상의 범위에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  10. 제1항에 있어서,
    상기 (S5) 단계는 상기 (S2) 단계의 온도보다 높은 온도에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  11. 제1항에 있어서,
    상기 (S2) 단계는 30℃ 내지 70℃의 온도 조건에서 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
  12. 제1항에 있어서,
    상기 (S5) 단계 이후 디개싱 공정이 더 수행되는 것인 젤 폴리머 전해질 전지 제조 방법.
PCT/KR2021/012447 2020-09-14 2021-09-13 이차 전지 제조 방법 WO2022055324A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022577374A JP7467690B2 (ja) 2020-09-14 2021-09-13 二次電池の製造方法
CN202180048029.5A CN115769412A (zh) 2020-09-14 2021-09-13 制造二次电池的方法
EP21867189.9A EP4184651A4 (en) 2020-09-14 2021-09-13 METHOD FOR MANUFACTURING A SECONDARY BATTERY
US18/009,661 US20230275267A1 (en) 2020-09-14 2021-09-13 Method for manufacturing secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200117965 2020-09-14
KR10-2020-0117965 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022055324A1 true WO2022055324A1 (ko) 2022-03-17

Family

ID=80632025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012447 WO2022055324A1 (ko) 2020-09-14 2021-09-13 이차 전지 제조 방법

Country Status (6)

Country Link
US (1) US20230275267A1 (ko)
EP (1) EP4184651A4 (ko)
JP (1) JP7467690B2 (ko)
KR (1) KR20220035855A (ko)
CN (1) CN115769412A (ko)
WO (1) WO2022055324A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079310A (ja) * 2002-08-15 2004-03-11 Toshiba Corp ポリマーリチウム二次電池の製造方法
KR20170003614A (ko) * 2014-05-20 2017-01-09 다이슨 테크놀러지 리미티드 전기화학 전지의 제조 방법
KR20190012843A (ko) * 2017-07-28 2019-02-11 주식회사 엘지화학 이차전지의 제조방법
KR20190062280A (ko) * 2017-11-27 2019-06-05 도요타 지도샤(주) 비수 전해액 이차전지의 제조 방법
WO2020054546A1 (ja) * 2018-09-14 2020-03-19 株式会社クレハ 樹脂分散電解液、ポリマーゲル電解質およびその製造方法、ならびに、二次電池およびその製造方法
KR20200117965A (ko) 2020-10-06 2020-10-14 고려대학교 산학협력단 퇴행성 신경질환 치료제 스크리닝용 아밀로이드 베타 올리고머-금 나노입자 복합체 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179235A (ja) 2004-12-21 2006-07-06 Nissan Motor Co Ltd 電池
KR100906251B1 (ko) 2006-09-25 2009-07-07 주식회사 엘지화학 디아크릴 아마이드계 중합성 물질을 포함하고 있는 젤폴리머 전해액 및 이를 포함하는 전기화학 소자
JP2008097940A (ja) 2006-10-10 2008-04-24 Nissan Motor Co Ltd 双極型二次電池
CN102771002A (zh) * 2010-02-18 2012-11-07 Nec能源元器件株式会社 聚合物二次电池及其制造方法
JPWO2013047379A1 (ja) 2011-09-26 2015-03-26 日本電気株式会社 リチウム二次電池及びその製造方法
US9793575B2 (en) * 2012-09-10 2017-10-17 Nec Energy Devices, Ltd. Polymer gel electrolyte, lithium ion battery and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079310A (ja) * 2002-08-15 2004-03-11 Toshiba Corp ポリマーリチウム二次電池の製造方法
KR20170003614A (ko) * 2014-05-20 2017-01-09 다이슨 테크놀러지 리미티드 전기화학 전지의 제조 방법
KR20190012843A (ko) * 2017-07-28 2019-02-11 주식회사 엘지화학 이차전지의 제조방법
KR20190062280A (ko) * 2017-11-27 2019-06-05 도요타 지도샤(주) 비수 전해액 이차전지의 제조 방법
WO2020054546A1 (ja) * 2018-09-14 2020-03-19 株式会社クレハ 樹脂分散電解液、ポリマーゲル電解質およびその製造方法、ならびに、二次電池およびその製造方法
KR20200117965A (ko) 2020-10-06 2020-10-14 고려대학교 산학협력단 퇴행성 신경질환 치료제 스크리닝용 아밀로이드 베타 올리고머-금 나노입자 복합체 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184651A4

Also Published As

Publication number Publication date
JP2023530326A (ja) 2023-07-14
US20230275267A1 (en) 2023-08-31
EP4184651A4 (en) 2024-08-14
EP4184651A1 (en) 2023-05-24
KR20220035855A (ko) 2022-03-22
CN115769412A (zh) 2023-03-07
JP7467690B2 (ja) 2024-04-15

Similar Documents

Publication Publication Date Title
WO2020130695A1 (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
WO2020067778A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2019212314A1 (ko) 고분자계 고체 전해질을 포함하는 전고체 전지의 제조 방법 및 그 방법으로 제조된 전고체 전지
WO2018101800A1 (ko) 리튬 금속 이차전지용 음극 및 상기 음극의 제조방법
WO2021071125A1 (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조방법
WO2020067792A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021206430A1 (ko) 전고체 전지 및 상기 전고체 전지를 제조하는 방법
WO2019182242A1 (ko) 리튬 이차 전지의 제조방법 및 이에 의해 제조된 리튬 이차 전지
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2021045581A1 (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2020190101A1 (ko) 전기화학소자용 분리막 및 이의 제조 방법
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2023008952A1 (ko) 습윤 접착력이 우수한 전극용 절연 조성물, 및 이의 제조방법
WO2023008953A1 (ko) 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2022114538A1 (ko) 리튬 이차전지의 제조 방법 및 이에 의하여 제조된 리튬 이차전지
WO2022055324A1 (ko) 이차 전지 제조 방법
WO2022203149A1 (ko) 리튬 이차전지용 양극 및 리튬 이차전지
WO2020091515A1 (ko) 리튬 이차전지
WO2021086132A1 (ko) 음극의 제조 방법
WO2023243804A1 (ko) 전기화학소자용 폴리올레핀 분리막 및 이를 구비한 전기화학소자
WO2022211215A1 (ko) 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21867189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577374

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317013483

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021867189

Country of ref document: EP

Effective date: 20230216

NENP Non-entry into the national phase

Ref country code: DE