WO2022052676A1 - 一种有效抑制表皮生长因子受体表达的siRNA序列 - Google Patents

一种有效抑制表皮生长因子受体表达的siRNA序列 Download PDF

Info

Publication number
WO2022052676A1
WO2022052676A1 PCT/CN2021/110432 CN2021110432W WO2022052676A1 WO 2022052676 A1 WO2022052676 A1 WO 2022052676A1 CN 2021110432 W CN2021110432 W CN 2021110432W WO 2022052676 A1 WO2022052676 A1 WO 2022052676A1
Authority
WO
WIPO (PCT)
Prior art keywords
interfering rna
sirna
egfr
rna
nucleotide sequence
Prior art date
Application number
PCT/CN2021/110432
Other languages
English (en)
French (fr)
Inventor
王根宇
林美娜
赵宣
Original Assignee
北京键凯科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京键凯科技股份有限公司 filed Critical 北京键凯科技股份有限公司
Priority to EP21865732.8A priority Critical patent/EP4194554A1/en
Priority to US18/025,589 priority patent/US20230340494A1/en
Publication of WO2022052676A1 publication Critical patent/WO2022052676A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the invention relates to the technical fields of molecular biology and biomedicine, in particular to a siRNA that effectively inhibits the expression of an epidermal growth factor receptor (epidermal growth factor receptor, referred to as EGFR for short).
  • EGFR epidermal growth factor receptor
  • transmembrane receptors one of which is an important class of receptors that themselves have protein tyrosine kinase activity and belong to the receptor protein tyrosine kinase (RPTK) family, epidermal growth factor receptor (EGFR) It is a typical member of this family, and its function depends on the signal transduction pathway in the cell membrane. Different pathways have different functions, and the same pathway has different functions in different cells or even under different conditions of the same cell.
  • EGFR is a multifunctional transmembrane protein molecule that exists on the cell surface and is widely distributed. Its molecular weight is 170kD and consists of 1186 amino acid residues. It is encoded by the proto-oncogene c-erbB1.
  • the human EGFR gene is located in the p13-q22 region of chromosome 7, and its structure is divided into three regions: the amino-terminal region that extends out of the membrane and recognizes and binds to EGF, the single-stranded a-helix transmembrane region located in the middle of the cell membrane and the The carboxy-terminal region within the cytoplasm of amino acid kinase activity.
  • the intracellular 542 amino acids can be divided into 3 domains: the juxtamembrane region (about 50 amino acids) acts as a negative feedback binding site for PKC (protein kinase C) and erk MAPK (extracellular signal-regulated kinase mitogen-activated protein kinase) At this point, there is evidence that there is a motif in this region that may link heterotrimeric G proteins. This is followed by the approximately 250 amino acid tyrosine kinase domain (SH1), a single 229 amino acid long carboxy-terminal tail containing 5 autophosphorylation motifs.
  • SH1 amino acid tyrosine kinase domain
  • SH2 serosine binding domain 2
  • PTB phosphotyrosine binding domain
  • the ligand of EGFR binds to EGFR on the cell membrane, which can make the receptor form a dimer, and the dimerized receptor activates its tyrosine kinase;
  • the SH2 domain of growth factor receptor-binding protein 2 (Grb2) binds, while the SH3 domain of Grb2 simultaneously binds to the guanylate exchange factor SOS (Son of Sevenless), which makes the small molecule guanylate-binding protein Ras
  • the GDP dissociates and binds to GTP, thereby activating Ras; the activated Ras further binds to the amino terminus of the serine/threonine protein autokinase Raf-1, and activates Raf-1 through an unknown mechanism; Raf-1 can phosphorylate MEK1/MEK2
  • MEK is a specific kinase that phosphorylates serine/threonine and tyrosine, and finally activates ERK1
  • ERKs are proline-directed serine/threonine kinases that phosphorylate serine/threonine adjacent to proline. After mitogen stimulation, ERK receives an upper-level cascade reaction signal and can translocate into the nucleus. Therefore, ERK can not only phosphorylate cytoplasmic proteins, but also phosphorylate some nuclear transcription factors such as c-fos, c-jun, Elk-1, c-myc and ATF2, etc., thereby participating in the regulation of cell proliferation and differentiation.
  • EGFR signaling is of great significance for elucidating various physiological processes such as cell growth, development, division, functional synchronization between cells, and pathological processes such as malignant transformation of cells.
  • EGFR is often found to be overexpressed in many human tumors, and since it was recognized early as a proto-oncogene of the transformed ⁇ -erbB oncogene and in most tumors, EGFR-mediated downstream signaling may represent a new way to overcome tumors.
  • Patent document CN 101671397 B discloses a recombinant immunotoxin targeting epidermal growth factor receptor.
  • the recombinant immunotoxin is expressed by fusion of EGFR single chain antibody and toxin protein Gelonin.
  • the technical scheme utilizes the targeting of single-chain antibodies to tumors with high EGFR expression and the cytotoxic effect of Gelonin to specifically kill tumors, and the effect is obvious.
  • Patent document CN 103333246 B discloses a preparation method of an antibody-drug conjugate that is anti-EGFR receptor and inhibits tumor growth and its use in the treatment of epidermal growth factor receptor antigen-positive cell cancer.
  • RNAi capable of reducing the expression of two or more genes, comprising: reducing a first target gene an expressed first RNAi molecule; a second RNAi molecule that reduces the expression of the first target gene or the second target gene; and optionally reduces the expression of the first target gene, the second target gene or the third target gene
  • the third RNAi molecule wherein the RNAi molecule reduces the expression level of, eg, mutant KRAS, EGFR, PIK3, NCOA3 or ER ⁇ 1.
  • Patent document CN 102993305 A discloses that EGFR and its encoding gene can be used to prepare specific antibody drugs for preventing and treating anti-tumor and other diseases such as inflammation and autoimmune diseases.
  • RNA interference is a new gene silencing technology developed in recent years.
  • siRNA is the effector molecule of RNAi.
  • In vitro synthesis of siRNA is the latest development of RNA interference technology, especially in the specific inhibition of mammalian cell genes In terms of expression, it has opened up new avenues for gene therapy.
  • the present invention provides an interfering RNA for inhibiting the expression of EGFR.
  • the above-mentioned interfering RNA comprises a sense strand and an antisense strand paired with its reverse complement.
  • interfering RNA is selected from: siRNA, dsRNA, shRNA, aiRNA, miRNA and combinations thereof.
  • the above-mentioned interfering RNA is siRNA.
  • the above-mentioned interfering RNA is chemically synthesized.
  • the above-mentioned interfering RNA comprises the nucleotide sequence shown in SEQ ID NO: 1 or consists of the nucleotide sequence shown in SEQ ID NO: 1.
  • the above-mentioned interfering RNA comprises the nucleotide sequence shown in SEQ ID NO:2 or consists of the nucleotide sequence shown in SEQ ID NO:2.
  • the sense strand of the above-mentioned interfering RNA comprises or consists of the following nucleotide sequence: 5'-GCAACAUGUCGAUGGACUU-3'.
  • the antisense strand of the above-mentioned interfering RNA comprises or consists of the following nucleotide sequence: 5'-AAGUCCAUCGACAUGUUGC-3'.
  • the ends of the sense strand and/or antisense strand (such as the 3' end) of the above-mentioned interfering RNA (such as siRNA) molecule may also be provided with n over-hangs to increase the activity of the interfering RNA .
  • deoxynucleosides such as deoxythymidine (dT), deoxycytidine (dC), deoxyuridine (dU), etc.
  • the 3' ends of the sense strand and the antisense strand of the above-mentioned interfering RNA molecules are both provided with dTdT dangling bases.
  • the sense strand of the above-mentioned interfering RNA comprises or consists of the following nucleotide sequence: 5'-GCAACAUGUCGAUGGACUU dTdT-3'.
  • the antisense strand of the above-mentioned interfering RNA comprises or consists of the following nucleotide sequence: 5'-AAGUCCAUCGACAUGUUGC dTdT-3'.
  • the above-mentioned interfering RNA molecules may further comprise at least one modified nucleotide, and the modified interfering RNAs have better properties than the corresponding unmodified interfering RNAs, such as higher stability and lower immunostimulatory properties. Wait.
  • the present invention also provides a delivery system for the above-mentioned interfering RNA, which comprises the above-mentioned interfering RNA and a carrier.
  • the above-mentioned carrier can adopt any carrier suitable for delivering the above-mentioned interfering RNA of the present invention to the target tissue or target cell, etc., such as the prior art (for example Chen Zhonghua, Zhu Desheng, Li Jun, Huang Zhanqin. "Research on non-viral siRNA carrier” "Progress”. China Pharmacology Bulletin. 2015, 31(7): 910-4; Wang Rui, Qu Bingnan, Yang Jing. "Research progress of siRNA-loaded nano-formulations". China Pharmacy. 2017, 28(31): 4452 -4455) disclosed in.
  • the prior art for example Chen Zhonghua, Zhu Desheng, Li Jun, Huang Zhanqin. "Research on non-viral siRNA carrier” "Progress”. China Pharmacology Bulletin. 2015, 31(7): 910-4; Wang Rui, Qu Bingnan, Yang Jing. "Research progress of siRNA-loaded nano-formulations". China Pharmacy. 2017, 28(31): 44
  • the above-mentioned vector is a viral vector, such as lentivirus, retrovirus, adenovirus, herpes simplex virus, and the like.
  • the above-mentioned carrier is a non-viral carrier, such as liposome, polymer, polypeptide, antibody, aptamer, etc. or a combination thereof; wherein, the weight ratio of the above-mentioned interfering RNA to the non-viral carrier can be 1:1-50 (such as 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, etc.).
  • the above-mentioned liposomes can be cationic lipids (such as lipofectamine series of Invitrogenn company, 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)), neutral ionic liposomes (such as di-oil phosphatidylcholine (DOPC), cholesterol, etc.), anionic liposomes (such as dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylethanolamine (DOPE), etc.) or mixtures thereof.
  • DOTAP 1,2-dioleoyl-3-trimethylammonium propane
  • DOPC di-oil phosphatidylcholine
  • DOPG dioleoylphosphatidylglycerol
  • DOPE dioleoylphosphatidylethanolamine
  • the above-mentioned polymers can be synthetic polymers (eg, polyethyleneimine, cyclodextrin, etc.) or natural polymers (eg, chitosan, telogen, etc.) or mixtures thereof.
  • synthetic polymers eg, polyethyleneimine, cyclodextrin, etc.
  • natural polymers eg, chitosan, telogen, etc.
  • the above-mentioned polypeptide may be a cell penetrating peptide (CPP) (eg, protamine, Tat peptide, transportan peptide, penetratin peptide, oligoarginine peptide, etc.).
  • CPP cell penetrating peptide
  • the above-mentioned antibody can be a single-chain antibody (eg, scFv-tp, scFv-9R, etc.).
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the above-mentioned interfering RNA or its delivery system, and pharmaceutically acceptable excipients.
  • the present invention also provides the application of the above-mentioned interfering RNA or its delivery system and pharmaceutical composition in preparing a medicine for preventing and/or treating EGFR-related diseases.
  • the present invention also provides an application of the above-mentioned interfering RNA or its delivery system in designing a medicine for preventing and/or treating EGFR-related diseases.
  • the present invention also provides the application of the above-mentioned interfering RNA or its delivery system and pharmaceutical composition in inhibiting the expression of EGFR gene in living cells.
  • the present invention also provides a method of inhibiting EGFR expression in a subject in need thereof, comprising the step of administering to the subject a therapeutically effective amount of the above-mentioned interfering RNA of the present invention, or a delivery system or pharmaceutical composition thereof.
  • the present invention also provides a method for preventing and/or treating EGFR-related diseases, comprising the step of administering to a subject a therapeutically effective amount of the above-mentioned interfering RNA or its delivery system and pharmaceutical composition of the present invention.
  • the above-mentioned diseases include, but are not limited to, cancer, inflammation, and the like.
  • the aforementioned cancers include, but are not limited to, lung cancer (eg, non-small cell lung cancer), liver cancer, esophageal cancer, leukemia, cervical cancer, colorectal cancer, pancreatic cancer, kidney cancer, bladder cancer, breast cancer, prostate cancer, gastric cancer , Oral epithelial cancer, ovarian cancer, head and neck cancer, brain tumor, glioblastoma, etc.
  • lung cancer eg, non-small cell lung cancer
  • liver cancer esophageal cancer
  • leukemia e.g., cervical cancer
  • colorectal cancer pancreatic cancer
  • kidney cancer bladder cancer
  • breast cancer breast cancer
  • prostate cancer gastric cancer
  • Oral epithelial cancer ovarian cancer
  • head and neck cancer brain tumor
  • brain tumor glioblastoma
  • the present invention also provides a method for introducing the above-mentioned interfering RNA of the present invention into a cell, comprising the step of contacting the cell with the interfering RNA delivery system.
  • the above-mentioned cells are in a subject.
  • the above-mentioned step of contacting the cells with the interfering RNA delivery system is a step of contacting the cells by administering the interfering RNA delivery system into a subject through a systemic route or a local route.
  • the inventors of the present invention obtained an interfering RNA (eg, siRNA) through design and synthesis, which can effectively inhibit the expression of EGFR, providing a new option for preventing or treating EGFR-related diseases (especially EGFR-related cancers).
  • interfering RNA eg, siRNA
  • Figure 1 shows the mass spectrum of the sense strand of EGFR siRNA.
  • Figure 2 shows the mass spectrum of the antisense strand of EGFR siRNA.
  • Figure 3 shows the expression levels of EGFR mRNA in cells.
  • interfering RNA or "RNAi” or “interfering RNA sequence” as used herein includes single-stranded RNA (eg, mature miRNA, ssRNAi oligonucleotides, ssDNAi oligonucleotides) or double-stranded RNA (ie, , duplex RNAs such as siRNA, dsRNA, shRNA, aiRNA, or precursor miRNAs) that, when the interfering RNA is in the same cell as the target gene or sequence, can reduce or inhibit the expression of the target gene or sequence (e.g., by mediates degradation and inhibits translation of mRNAs complementary to interfering RNA sequences).
  • Interfering RNA therefore refers to a single-stranded RNA complementary to the target mRNA sequence or a double-stranded RNA formed from two complementary strands or from a single self-complementary strand. Specifically, interfering RNA molecules are chemically synthesized.
  • Interfering RNA includes "small interfering RNA” or “siRNA", each strand of the siRNA molecule comprising about 15 to about 60 nucleotides in length (eg, about 15-60, 15-50, 15-40, 15 in length) -30, 15-25, or 19-25 nucleotides, or 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length).
  • the siRNA is chemically synthesized.
  • the siRNA molecules of the present invention are capable of silencing the expression of target sequences in vitro and/or in vivo.
  • the siRNA comprises at least one modified nucleotide, eg, the siRNA comprises one, two, three, four, five, six, seven, eight, nine, Ten or more modified nucleotides.
  • dsRNA or "precursor RNAi molecule” is intended to include any precursor molecule that is processed in vivo by endonucleases to produce active siRNA.
  • small hairpin RNA or “short hairpin RNA” or “shRNA” includes short RNA sequences that generate tight hairpin turns that can be used to silence gene expression by RNA interference .
  • shRNA hairpins can be cleaved into siRNA by cellular machinery.
  • microRNAs are single-stranded RNA molecules about 21-23 nucleotides in length that regulate gene expression.
  • the term "therapeutically effective amount” refers to the amount of a subject compound that will elicit the biological or medical response of the tissue, system or subject being sought by the researcher, veterinarian, medical physician or other clinician.
  • the term "therapeutically effective amount” includes an amount of active ingredient that, when administered, is sufficient to prevent the development of one or more of the signs or symptoms of the disorder or disease being treated, or to alleviate to some extent the disorder or disease being treated one or more of the signs or symptoms.
  • a therapeutically effective amount will vary depending on the active ingredient, the disease to be treated and its severity, and the age, weight, sex, etc. of the subject.
  • the subject can be a mammal, such as a human, a monkey, a dog, a rabbit, a mouse, a rat, and the like.
  • oligonucleotides containing 2'-hydroxyl ribonucleotides in the present invention are all synthesized according to the theoretical yield of 1 ⁇ mol. Weigh 1 ⁇ mol of the universal solid support 3'-cholesterol modified CPG (Chemgenes product), 2'- The monomer of O-TBDMS-protected RNA phosphoramidite was dissolved in anhydrous acetonitrile solution to a concentration of 0.2M.
  • a solution of 5-ethylthio-1H-tetrazole (Chemgenes product) in acetonitrile was prepared as activator (0.25M), 0.02M iodine in pyridine/water solution was prepared as oxidant, and a 3% solution of trichloroacetic acid in dichloromethane was used as deprotection reagent , placed in the designated position of the reagent corresponding to the ABI 394 DNA/RNA automatic synthesizer.
  • Set the synthesis program to input the specified oligonucleotide base sequence, and start the cycle of oligonucleotide synthesis.
  • the coupling time of each step is 6 minutes, and the coupling time of the galactose ligand corresponding to the L and S monomers is 10-20 minutes.
  • the oligonucleotide solid-phase synthesis is completed. Dry the CPG with dry nitrogen, transfer it to a 5ml EP tube, add 2ml of ammonia water/ethanol solution (3/1), and heat at 55°C for 16-18 hours. Centrifuge at 10,000 rpm for 10 min, take the supernatant, and drain concentrated ammonia/ethanol to obtain a white colloidal solid. The solid was dissolved in 200 ⁇ l of 1 M TBAF THF solution and shaken at room temperature for 20 hours.
  • siRNA sense strand is: 5′-GCAACAUGUCGAUGGACUU dTdT-3′
  • the sequence of the siRNA antisense strand is: 5'-AAGUCCAUCGACAUGUUGC dTdT-3'.
  • 293T cells were routinely cultured at 37°C and 5% CO ;
  • the 12-well plate was taken out of the incubator at 37°C, 5% CO2 for RNA extraction for subsequent detection.
  • Trizol lysis completely remove the cell culture medium, add 1 mL of TrizolTM Reagent, pipette 3-5 times to fully lyse the cells, and leave at room temperature for 3-5 minutes;
  • RNA quality inspection RNA content was detected by Nanodrop, and RNA integrity was detected by 1% agarose gel electrophoresis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供了一种抑制表皮生长因子受体(epidermal growth factor receptor,简称为EGFR)基因表达的干扰RNA及其应用。该干扰RNA为siRNA,其包 GCAACAUGUCGAUGGACUU和/或AAGUCCAUCGACAUGUUGC的核苷酸序列,其可有效抑制EGFR基因表达,为预防或治疗EGFR相关疾病(特别是EGFR相关的癌症)提供了新的选择。

Description

一种有效抑制表皮生长因子受体表达的siRNA序列 技术领域
本发明涉及分子生物学与生物医药技术领域,具体涉及一种有效抑制表皮生长因子受体(epidermal growth factor receptor,简称为EGFR)基因表达的siRNA。
背景技术
脊椎动物细胞的许多生命活动受细胞外信号分子调控。这些信号通常由一些跨膜受体传过细胞膜,其中一类重要受体自身具有蛋白酪氨酸激酶活性,归属于受体蛋白酪氨酸激酶(RPTK)家族,表皮生长因子受体(EGFR)即是这一家族典型成员,其作用有赖于细胞膜内的信号传导通路,不同的通路其功能不同,相同的通路在不同的细胞甚至同一细胞的不同条件下具有不同的功能。
EGFR是一种存在于细胞表面的多功能跨膜蛋白分子,分布很广,其分子量为170kD,由1186个氨基酸残基构成,为原癌基因c-erbB1所编码。人EGFR基因位于第7号染色体p13-q22区,其结构分为3个区域:伸向膜外与EGF识别并结合的氨基端区域,位于细胞膜中间单链的a-螺旋跨膜区以及具有酪氨酸激酶活性的细胞质内的羧基端区域。细胞内542个氨基酸可分成3个结构域:近膜区(约50个氨基酸)起与PKC(蛋白激酶C)和erk MAPK(细胞外信号调节激酶丝裂素活化蛋白激酶)负反馈的结合位点,有证据表明这个区域有一基序(motif)可能联结异源三聚体G蛋白。紧接着是约250个氨基酸酪氨酸激酶区(SH1),一个单一229个氨基酸长的羧基末端尾部包含5个自动磷酸化基序。它与含有SH2(src同源结构域2)或PTB(磷酸酪氨酸结合结构域)连接,至少有3个内在化基元包含一个牢固的转角、转磷酸位点、蛋自分解及降解位点。EGFR自动磷酸化基元结构相似、功能余冗,不同于其他的RPTK,简单的结构和复杂余冗基序的交替发生表示出一个原始型基因。
EGFR的配体与细胞膜上的EGFR结合,可使受体形成二聚体,二聚化的受体使其白身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域结合,而Grb2的SH3结构域则同时与鸟苷酸交换因子SOS(Son of Sevenless)结合,后者使小分子鸟苷酸结合蛋白Ras的GDP解离而结合GTP,从而激活Ras;激活的Ras进一步与丝/苏氨酸蛋自激酶Raf-1的氨基端结合,通过未知机制激活Raf-1;Raf-1可磷酸化MEKl/MEK2 MAP kinase/ERK kinade上两个调节性丝氨酸,从而激活MEK;MEK为特异性激酶,可以使丝/苏氨酸和酪氨酸发生磷酸化,最终高度选择性地激活ERK1和ERK2。 ERKs为脯氨酸导向的丝/苏氨酸激酶,可以磷酸化与脯氨酸相邻的丝/苏氨酸。在丝裂原刺激后,ERK接受上级的级联反应信号,可以转位进人细胞核。因此,ERK不仅可以磷酸化胞浆蛋白,而且可以磷酸化一些核内的转录因子如c-fos,c-jun,Elk-1,c-myc和ATF2等,从而参与细胞增殖与分化的调控。
EGFR信号传导的深入研究,对于阐明细胞生长、发育、分裂、细胞间功能同步等多种生理过程及细胞恶性转化等病理过程有重要的意义。EGFR在人类许多肿瘤中常发现有过度表达,由于它是早期作为转化γ-erbB癌基因的原癌基因和多数肿瘤发生而被识别,因而EGFR介导的下游信号可能代表了攻克肿瘤的新途径。
专利文献CN 101671397 B公开了一种以表皮生长因子受体为靶点的重组免疫毒素。该重组免疫毒素是由EGFR的单链抗体与毒素蛋白Gelonin融合表达而成。该技术方案利用单链抗体对EGFR高表达肿瘤的靶向性和Gelonin的细胞毒作用对肿瘤起到特异的杀伤作用,效果明显。
专利文献CN 103333246 B公开了一种抗EGFR受体并抑制肿瘤生长的抗体药物偶联物的制备方法及在治疗表皮生长因子受体抗原阳性细胞癌症的用途。
专利文献CN 106661576 A中斯特里克生物公司和贝勒医学院公开了用于制备和使用能够降低两个或更多个基因的表达的RNAi的组合物和方法,其包括:降低第一靶基因表达的第一RNAi分子;降低所述第一靶基因或第二靶基因的表达的第二RNAi分子;和任选地降低所述第一靶基因、第二靶基因或第三靶基因的表达的第三RNAi分子,其中所述RNAi分子降低例如突变KRAS、EGFR、PIK3、NCOA3或ERα1的表达水平。
(付建华等.“EGFR和E-cadherin与肿瘤的发生发展及其调控机制的研究进展”.实用癌症杂志.2008,23(1):107-109;)中公开:EGFR过度表达与肿瘤的形成有一定的正相关,对肿瘤的分裂增殖起重要作用。
专利文献CN 102993305 A中公开:EGFR及其编码基因可用于制备预防和治疗抗肿瘤及其他疾病如炎症及自身免疫性疾病的特异性抗体药物。
RNA干扰(RNA interference,RNAi)是近年发展起来的一项新的基因沉默技术,siRNA是RNAi的效应分子,体外合成siRNA则是RNA干扰技术的最新发展,尤其是在特异性抑制哺乳动物细胞基因表达方面,为基因治疗开创了新的道路。
发明内容
本发明提供一种抑制EGFR表达的干扰RNA。
具体地,上述干扰RNA包含正义链和与其反向互补配对的反义链。
具体地,上述干扰RNA选自:siRNA、dsRNA、shRNA、aiRNA、miRNA及其组合。
在本发明的一个实施方式中,上述干扰RNA为siRNA。
在本发明的一个实施方式中,上述干扰RNA是化学合成的。
具体地,上述干扰RNA包含如SEQ ID NO:1所示的核苷酸序列或由如SEQ ID NO:1所示的核苷酸序列组成。
具体地,上述干扰RNA包含如SEQ ID NO:2所示的核苷酸序列或由如SEQ ID NO:2所示的核苷酸序列组成。
具体地,上述干扰RNA的正义链包含如下核苷酸序列或由以下核苷酸序列组成:5′-GCAACAUGUCGAUGGACUU-3′。
具体地,上述干扰RNA的反义链包含如下核苷酸序列或由以下核苷酸序列组成:5′-AAGUCCAUCGACAUGUUGC-3′。
具体地,上述干扰RNA(如siRNA)分子的正义链和/或反义链的末端(如3′末端)还可设有n个悬挂碱基(Over-hang),以增加该干扰RNA的活性。其中,悬挂碱基可以为相同或不同的脱氧核苷(如脱氧胸苷(dT)、脱氧胞苷(dC)、脱氧尿苷(dU)等),n为1-10的整数(如1、2、3、4、5、6、7、8、9、10),特别是2-4的整数;在本发明的一个实施例中,n=2,悬挂碱基可以为dTdT、dTdC或dUdU,等等。
具体地,上述干扰RNA分子的正义链和反义链的3′末端均设有悬挂碱基dTdT。
具体地,上述干扰RNA的正义链包含如下核苷酸序列或由以下核苷酸序列组成:5′-GCAACAUGUCGAUGGACUU dTdT-3′。
具体地,上述干扰RNA的反义链包含如下核苷酸序列或由以下核苷酸序列组成:5′-AAGUCCAUCGACAUGUUGC dTdT-3′。
具体地,上述干扰RNA分子中还可包含至少一个修饰的核苷酸,修饰的干扰RNA具有比相应未修饰的干扰RNA具有更佳的性质,如更高的稳定性,更低的免疫刺激性等。
本发明还提供一种上述干扰RNA的递送系统,其包含上述干扰RNA和载体。
具体地,上述载体可以采用任何适于将本发明上述干扰RNA递送于靶组织或靶细胞等的载体,如现有技术(例如陈中华,朱德生,李军,黄展勤.“非病毒siRNA载体研究进展”.中国药理学通报.2015,31(7):910-4;王锐,曲炳楠,杨婧.“载siRNA的纳米制剂研究进展”.中国药房.2017,28(31):4452-4455)中公开的那些。
具体地,上述载体为病毒载体,具体如慢病毒、逆转录病毒、腺病毒、单纯疱疹病毒等。
具体地,上述载体为非病毒载体,具体如脂质体、聚合物、多肽、抗体、适配体等或其 组合;其中,上述干扰RNA与非病毒载体的重量比可以为1:1-50(如1:1、1:5、1:10、1:15、1:20、1:25、1:30、1:35、1:40、1:45、1:50等)。
具体地,上述脂质体可以为阳离子脂质(如Invitrogenn公司的lipofectamine系列、1,2-二油酰基-3-三甲基铵丙烷(DOTAP))、中性离子脂质体(如二油酰磷脂酰胆碱(DOPC)、胆固醇等)、阴离子脂质体(如二油酰磷脂酰甘油(DOPG)、二油酰磷脂酰乙醇胺(DOPE)等)或其混合物。
具体地,上述聚合物可以为合成型聚合物(如聚乙烯亚胺、环糊精等)或天然型聚合物(如壳聚糖、端胶原等)或其混合物。
具体地,上述多肽可以为细胞穿透肽(CPP)(如鱼精蛋白、Tat肽、transportan肽、penetratin肽、寡聚精氨酸肽等)。
具体地,上述抗体可以为单链抗体(如scFv-tp、scFv-9R等)。
本发明还提供一种药物组合物,其包括上述干扰RNA或其递送系统,以及药学上可接受的辅料。
本发明还提供一种上述干扰RNA或其递送系统、药物组合物在制备预防和/或治疗EGFR相关的疾病的药物中的应用。
本发明还提供一种上述干扰RNA或其递送系统在设计用于预防和/或治疗EGFR相关的疾病的药物中的应用。
本发明还提供一种上述干扰RNA或其递送系统、药物组合物在抑制活细胞中EGFR基因表达的应用。
本发明还提供一种在需要其的受试者中抑制EGFR表达的方法,其包括向该受试者施用治疗有效量的本发明上述干扰RNA或其递送系统、药物组合物的步骤。
本发明还提供一种预防和/或治疗EGFR相关的疾病的方法,其包括向受试者施用治疗有效量的本发明上述干扰RNA或其递送系统、药物组合物的步骤。
具体地,上述疾病包括,但不限于,癌症、炎症等。
具体地,上述癌症包括,但不限于,肺癌(如非小细胞肺癌)、肝癌、食管癌、白血病、宫颈癌、结直肠癌、胰腺癌、肾癌、膀胱癌、乳腺癌、前列腺癌、胃癌、口腔上皮癌、卵巢癌、头颈癌、脑瘤、胶质细胞瘤等。
本发明还提供一种将本发明上述干扰RNA引入细胞的方法,其包括使该细胞与该干扰RNA的递送系统接触的步骤。
具体地,上述细胞在受试者体内。
具体地,上述使细胞与干扰RNA的递送系统接触的步骤为将干扰RNA的递送系统通过全身途径或局部途径施用至受试者体内来接触所述细胞的步骤。
本发明的发明人通过设计、合成,得到一种干扰RNA(例如,siRNA),其可有效抑制EGFR表达,为预防或治疗EGFR相关疾病(特别是EGFR相关的癌症)提供了新的选择。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1所示为EGFR siRNA正义链质谱图谱。
图2所示为EGFR siRNA反义链的质谱图谱。
图3所示为EGFR mRNA在细胞中的表达水平。
具体实施方式
除非另有定义,本发明中所使用的所有科学和技术术语具有与本发明涉及技术领域的技术人员通常理解的相同的含义。
如在本文中所使用的术语“干扰RNA”或“RNAi”或“干扰RNA序列”包括单链RNA(例如,成熟miRNA、ssRNAi寡核苷酸、ssDNAi寡核苷酸)或双链RNA(即,双链体RNA如siRNA、dsRNA、shRNA、aiRNA、或前体miRNA),其在当干扰RNA与靶基因或序列处于相同细胞中时,能够降低或抑制靶基因或序列的表达(例如,通过介导降解和抑制与干扰RNA序列互补的mRNA的翻译)。干扰RNA因此是指与靶mRNA序列互补的单链RNA或者由两条互补链或由单条自互补链形成的双链RNA。具体地,干扰RNA分子是化学合成的。
干扰RNA包括“小干扰RNA”或“siRNA”,siRNA分子的每条链包含长度为约15至约60的核苷酸(例如,长度为约15-60、15-50、15-40、15-30、15-25、或19-25的核苷酸,或者长度为15、16、17、18、19、20、21、22、23、24、或25的核苷酸)。在一个具体实施方式中,siRNA是化学合成的。本发明的siRNA分子能够体外和/或体内沉默靶序列的表达。在其他实施方式中,siRNA包含至少一个修饰的核苷酸,例如siRNA在双链区中包含一个、两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个修饰的核苷酸。
如在本文中所用,术语“dsRNA”或“前体RNAi分子”意在包括在体内由核酸内切酶加工以产生活性siRNA的任何前体分子。
如在本文中所用,术语“小发夹RNA”或“短发夹RNA”或“shRNA”包括产生 紧密发夹转角的短RNA序列,所述发夹转角可以用于通过RNA干扰来沉默基因表达。shRNA发夹结构可由细胞机器裂解为siRNA。
通常,微RNA(miRNA)是长度为约21-23个核苷酸的调节基因表达的单链RNA分子。
本发明中,术语“治疗有效量”指的是将引起由研究者、兽医、医学医生或其他临床医生正在寻找的组织、系统或对象的生物学或医学应答的对象化合物的量。术语“治疗有效量”包括以下的活性成分的量:当被施用时,其足以预防治疗的紊乱或疾病的迹象或症状中的一个或多个的发展,或以一定程度减轻治疗的紊乱或疾病的迹象或症状中的一个或多个。治疗有效量将根据活性成分、待治疗的疾病及其严重程度、以及受试者的年龄、体重、性别等而变化。
本发明中,受试者可以为哺乳动物,如,人类、猴、狗、兔、小鼠、大鼠等。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。
实施例1 siRNA的合成方法
本发明中含有2’-羟基的核糖核苷酸的寡聚核苷酸均按照理论产量1μmol合成规格完成,称取1μmol通用固相支持物3’-胆固醇修饰CPG(Chemgenes产品),2’-O-TBDMS保护RNA亚磷酰胺的单体溶解于无水乙腈溶液中,使其浓度达到0.2M。配制5-乙硫基-1H-四唑(Chemgenes产品)乙腈溶液作为活化剂(0.25M),配制0.02M碘的吡啶/水溶液作为氧化剂,以及3%三氯乙酸二氯甲烷溶液作为脱保护试剂,放置于ABI 394型号DNA/RNA自动合成仪对应的试剂指定位置。设置合成程序输入指定的寡聚核苷酸碱基序列,开始循环寡聚核苷酸合成,每步偶合时间6分钟,半乳糖配体对应L和S单体偶合时间10-20分钟。经自动循环后,完成寡核苷酸固相合成。以干燥氮气吹干CPG,转移到5ml EP管中,加入氨水/乙醇溶液(3/1)2ml,55℃加热16~18小时。在10000rpm的转速下离心10min,取上清液,抽干浓氨水/乙醇后得到白色胶状固体。将固体溶于200μl 1M TBAF THF溶液,室温震荡20小时。加入0.5ml 1M Tris-HCl缓冲液(pH 7.4),室温震荡15分钟,置于离心抽干机抽至体积为原体积1/2,除去THF。溶液用0.5ml氯仿萃取2次,加入1ml 0.1M TEAA上样液,将混合溶液倒入固相萃取柱,在HTCS LC-MS system(Novatia)系统上,完成质谱检测分析。质谱鉴定结果如图1(正义链,sense)、图2(反义链,antisense)所示。一级扫描后以Promass软件归一化计算核酸分子量。上述方法分别合成两条单链,质谱鉴定正确后,两条单链以等摩尔比例混合,退火成双链,即为siRNA序列。
siRNA正义链序列为:5′-GCAACAUGUCGAUGGACUU dTdT-3′
siRNA反义链序列为:5′-AAGUCCAUCGACAUGUUGC dTdT-3′。
实施例2 EGFR siRNA抑制效果
1、细胞培养
细胞名称:293T
a)293T细胞常规培养于37℃,5%的CO 2的条件下;
b)取50μL OPTI-MEM培养基稀释5μL siRNA(或siRNA NC,浓度20μM),50μL OPTI-MEM培养基稀释3μL Lipofectamine RNAiMAX转染试剂,二者混合,轻轻摇匀,静置15min;此外,设置Mock及blank对照组;
c)各孔加入上述108μL混合液;
d)取对数生长期的293T细胞,以每孔1.2×10 5细胞接种于12孔板中,每孔体积892μL,最终每孔总体积1000μL;siRNA(或siRNA NC)转染浓度均为100nM;
e)转染48h后将12孔板从37℃,5%CO 2的培养箱中取出,用于提取RNA进行后续检测。
2、RNA提取
a)Trizol裂解:彻底去除细胞培养液,加入1mL TrizolTM Reagent,移液枪吸打3-5次,让细胞充分裂解,室温放置3~5分钟;
b)加入0.2体积(0.2mL/1mL Trizol)的氯仿,votex震荡15s,室温静置5min;
c)4℃,12000rpm离心15min,出现分层,小心吸取上层水相(水相体积约占Magzol体积的60%)到新的1.5mL离心管中;
d)加入与上清液等体积的异丙醇(约0.6mL),上下颠倒混匀,-20℃沉淀1h以上;
e)4℃,12000rpm离心30min,管底可见白色沉淀,去掉上清;
f)加75%的乙醇1mL,轻轻吹吸使沉淀飘浮,4℃12000rpm离心5min;
g)重复步骤f;
h)去掉上清液后短暂离心,使用10μL枪吸干,将离心管盖打开干燥,待沉淀干燥至半透明状即加入适量RNase-free H 2O溶解。
I)RNA质检,Nanodrop检测RNA含量,1%琼脂糖凝胶电泳检测RNA的完整性。
3、Q-PCR检测流程
3.1 RNA反转录
a)以样品提取的总RNA作为模板,建立如下反应体系:
表1 反应体系
Figure PCTCN2021110432-appb-000001
b)以上体系混匀,离心收集液体至管底,42℃ 60min,72℃ 10min;产物即为cDNA模板。
3.2定量PCR
a)按下表建立反应体系:
表2 反应体系
Figure PCTCN2021110432-appb-000002
其中EGFR引物和内标基因GAPDH引物序列见表3。
表3 引物序列
Figure PCTCN2021110432-appb-000003
b)按如下程序进行real-time PCR扩增:
95℃预变性10min,然后进入如下循环
*95℃10s
60℃20s
70℃10s
读板
返回*共进行40个循环
制作熔解曲线:70℃至95℃之间,每0.5℃读板一次并停5s。
4、抑制效果
以GAPDH为内标基因,通过ΔΔCt计算EGFR mRNA的相对表达量。与转染NC siRNA相比,EGFR siRNA对EGFR mRNA的抑制率达87%。各组细胞mRNA的表达水平见表4,图3。
表4 mRNA表达水平
Figure PCTCN2021110432-appb-000004
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。
本文描述的前述实施例和方法可以基于本领域技术人员的能力、经验和偏好而有所不同。
本发明中,仅按一定顺序列出方法的步骤并不构成对方法步骤顺序的任何限制。

Claims (11)

  1. 一种干扰RNA,其包含如SEQ ID NO:1和/或SEQ ID NO:2所示的核苷酸序列。
  2. 如权利要求1所述的干扰RNA,其特征在于,所述干扰RNA选自:siRNA、dsRNA、shRNA、aiRNA、miRNA及其组合。
  3. 如权利要求1所述的干扰RNA,其特征在于,所述干扰RNA为siRNA。
  4. 如权利要求3所述的干扰RNA,其特征在于,所述干扰RNA正义链包含如下核苷酸序列:5′-GCAACAUGUCGAUGGACUU-3′;和/或,
    所述干扰RNA的反义链包含如下核苷酸序列:5′-AAGUCCAUCGACAUGUUGC-3′。
  5. 如权利要求1所述的干扰RNA,其特征在于,所述干扰RNA还包含悬挂碱基;
    优选地,所述悬挂碱基数目为1-10,更优选为2-4;
    优选地,所述悬挂碱基为脱氧核苷;
    优选地,所述悬挂碱基位于所述RNA的正义链和/或反义链的3′末端。
  6. 如权利要求5所述的干扰RNA,其特征在于,所述悬挂碱基为dTdT、dTdC或dUdU。
  7. 如权利要求5所述的干扰RNA,其特征在于,所述干扰RNA的正义链包含如下核苷酸序列:5′-GCAACAUGUCGAUGGACUU dTdT-3′;和/或,
    所述干扰RNA的反义链包含如下核苷酸序列:5′-AAGUCCAUCGACAUGUUGC dTdT-3′。
  8. 如权利要求1-7任一项所述的干扰RNA,其特征在于,所述干扰RNA是化学合成的。
  9. 一种权利要求1-8任一项所述的干扰RNA的递送系统,其包含权利要求1-8任一项所述的干扰RNA和载体;
    优选地,所述载体为病毒载体或非病毒载体。
  10. 一种药物组合物,其包含权利要求1-8任一项所述的干扰RNA或权利要求9所述的递送系统,以及药学上可接受的辅料。
  11. 一种权利要求1-8任一项所述的干扰RNA、权利要求9所述的递送系统、权利要求10所述的药物组合物在制备预防和/或治疗表皮生长因子受体相关的疾病的药物中的应用;
    优选地,所述疾病为癌症、炎症。
PCT/CN2021/110432 2020-09-11 2021-08-04 一种有效抑制表皮生长因子受体表达的siRNA序列 WO2022052676A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21865732.8A EP4194554A1 (en) 2020-09-11 2021-08-04 Sirna sequence for effectively inhibiting expression of epidermal growth factor receptor
US18/025,589 US20230340494A1 (en) 2020-09-11 2021-08-04 Sirna sequence for effectively inhibiting expression of epidermal growth factor receptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010953769.0A CN111996193B (zh) 2020-09-11 2020-09-11 一种有效抑制表皮生长因子受体表达的siRNA序列
CN202010953769.0 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052676A1 true WO2022052676A1 (zh) 2022-03-17

Family

ID=73470197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110432 WO2022052676A1 (zh) 2020-09-11 2021-08-04 一种有效抑制表皮生长因子受体表达的siRNA序列

Country Status (4)

Country Link
US (1) US20230340494A1 (zh)
EP (1) EP4194554A1 (zh)
CN (1) CN111996193B (zh)
WO (1) WO2022052676A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996193B (zh) * 2020-09-11 2024-02-20 北京键凯科技股份有限公司 一种有效抑制表皮生长因子受体表达的siRNA序列

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070912A2 (en) * 2001-06-06 2003-08-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF EPIDERMAL GROWTH FACTOR RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050176024A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of epidermal growth factor receptor (EGFR) gene expression using short interfering nucleic acid (siNA)
CN101225403A (zh) * 2007-01-17 2008-07-23 复旦大学附属中山医院 靶向表皮生长因子受体的小干扰rna重组腺病毒及其用途
CN101353656A (zh) * 2008-07-24 2009-01-28 中国科学院广州生物医药与健康研究院 抑制表皮生长因子受体基因表达的siRNA及其应用
CN101671397A (zh) 2008-10-09 2010-03-17 四川大学 抗EGFR单链抗体融合Gelonin重组免疫毒素及其制备方法与用途
CN102993305A (zh) 2012-11-16 2013-03-27 上海赛伦生物技术有限公司 人源抗人表皮生长因子受体抗体及其编码基因与应用
CN103333246A (zh) 2012-12-21 2013-10-02 百奥泰生物科技(广州)有限公司 一种抗egfr受体的肿瘤生长抑制剂及其制备方法和用途
CN105985961A (zh) * 2016-07-22 2016-10-05 广西师范大学 抑制EGFR基因表达的siRNA及其应用
CN106661576A (zh) 2014-04-25 2017-05-10 斯特里克生物公司 用于癌症治疗的多靶向RNAi
CN111996193A (zh) * 2020-09-11 2020-11-27 北京键凯科技股份有限公司 一种有效抑制表皮生长因子受体表达的siRNA序列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186909A1 (en) * 1997-01-27 2003-10-02 Ribozyme Pharmaceuticals, Inc. Nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors
US20030170891A1 (en) * 2001-06-06 2003-09-11 Mcswiggen James A. RNA interference mediated inhibition of epidermal growth factor receptor gene expression using short interfering nucleic acid (siNA)
ES2741573T3 (es) * 2004-03-31 2020-02-11 Massachusetts Gen Hospital Método para determinar la respuesta del cáncer a tratamientos dirigidos al receptor del factor de crecimiento epidérmico
CN104225618B (zh) * 2013-06-09 2017-05-03 上海吉凯基因化学技术有限公司 人nlk基因和egfr基因治疗肿瘤的用途及其相关药物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176024A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of epidermal growth factor receptor (EGFR) gene expression using short interfering nucleic acid (siNA)
WO2003070912A2 (en) * 2001-06-06 2003-08-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF EPIDERMAL GROWTH FACTOR RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
CN101225403A (zh) * 2007-01-17 2008-07-23 复旦大学附属中山医院 靶向表皮生长因子受体的小干扰rna重组腺病毒及其用途
CN101353656A (zh) * 2008-07-24 2009-01-28 中国科学院广州生物医药与健康研究院 抑制表皮生长因子受体基因表达的siRNA及其应用
CN101671397A (zh) 2008-10-09 2010-03-17 四川大学 抗EGFR单链抗体融合Gelonin重组免疫毒素及其制备方法与用途
CN102993305A (zh) 2012-11-16 2013-03-27 上海赛伦生物技术有限公司 人源抗人表皮生长因子受体抗体及其编码基因与应用
CN103333246A (zh) 2012-12-21 2013-10-02 百奥泰生物科技(广州)有限公司 一种抗egfr受体的肿瘤生长抑制剂及其制备方法和用途
CN106661576A (zh) 2014-04-25 2017-05-10 斯特里克生物公司 用于癌症治疗的多靶向RNAi
CN105985961A (zh) * 2016-07-22 2016-10-05 广西师范大学 抑制EGFR基因表达的siRNA及其应用
CN111996193A (zh) * 2020-09-11 2020-11-27 北京键凯科技股份有限公司 一种有效抑制表皮生长因子受体表达的siRNA序列

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN ZHONGHUAZHU DESHENGLI JUNHUANG ZHANQIN: "Advances in non-viral vector research of siRNA", CHINESE PHARMACOLOGICAL BULLETIN, vol. 31, no. 7, 2015, pages 910 - 4
FA ZHENZHONG: "Effect of EGFR Gene Inhibition by lentivirus-Mediated Small Interfering RNA on the Proliferation and Apoptosis of Human Pancreatic Cancer Cells", ZHONGHUA GANZANG WAIKE SHOUSHUXUE DIANZI ZAZHI - CHINESE JOURNAL OF HEPATIC SURGERY (ELECTRONIC EDITION, ZHONGHUA YIXUE DIANZI YINXIANG CHUBANSHE, CN, vol. 2, no. 2, 30 April 2013 (2013-04-30), CN , XP055911914, ISSN: 2095-3232 *
FU JIANHUA ET AL.: "Research progress of EGFR and E-cadherin on tumorigenesis and tumor development and regulation mechanism thereof", THE PRACTICAL JOURNAL OF CANCER, vol. 23, no. 1, 2008, pages 107 - 109
SATPATHY MINATI, MEZENCEV ROMAN, WANG LIJUAN, MCDONALD JOHN F.: "Targeted in vivo delivery of EGFR siRNA inhibits ovarian cancer growth and enhances drug sensitivity", SCIENTIFIC REPORTS, vol. 6, no. 1, 1 December 2016 (2016-12-01), XP055911918, DOI: 10.1038/srep36518 *
WANG RUIQU BINGNANYANG JING: "Advances in research of siRNA-carrying nano preparation", CHINA PHARMACY, vol. 28, no. 31, 2017, pages 4452 - 4455

Also Published As

Publication number Publication date
CN111996193B (zh) 2024-02-20
EP4194554A1 (en) 2023-06-14
US20230340494A1 (en) 2023-10-26
CN111996193A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
JP6959293B2 (ja) B型肝炎ウイルスの遺伝子発現を阻害するための組成物および方法
JP6865169B2 (ja) P21遺伝子調節のためのrna干渉剤
CN105018492B (zh) 不对称干扰rna的组合物及其用途
CN102575254B (zh) 利用不对称双链rna特异性抑制kras的方法和组合物
US9297013B2 (en) pRNA multivalent junction domain for use in stable multivalent RNA nanoparticles
CN102497870A (zh) 肽-dicer底物试剂及其特异性抑制基因表达的方法
TW201136594A (en) Modulation of hsp47 expression
WO2019196887A1 (zh) 一种新型小激活rna
BR112016000160B1 (pt) estrutura de oligonucleotídeo tipo nanopartícula melhorada tendo alta eficiência e método para a preparação da mesma
CN101801418A (zh) 包括人类EGFR-siRNA的组合物及使用方法
CN102089429A (zh) 用于抑制TGF-β受体基因表达的组合物和方法
CN106661576A (zh) 用于癌症治疗的多靶向RNAi
WO2022052676A1 (zh) 一种有效抑制表皮生长因子受体表达的siRNA序列
Cerchia et al. Nucleic acid aptamers against protein kinases
TW201437368A (zh) 藉由雙股rna之ckap5之專一性抑制之方法和組成物
WO2013056670A1 (zh) 小干扰RNA及其应用和抑制plk1基因表达的方法
EP4317440A1 (en) Viral vector-based rna delivery system and use thereof
TW201903149A (zh) 抑制apcs之表現的核酸
CN113444723A (zh) 一种抑制血管内皮生长因子受体2基因表达的干扰rna及其应用
JP2022541212A (ja) 治療的使用のための、ヒト遺伝子JAK1又はJAK3の発現を標的とするSiRNA配列
WO2011074652A1 (ja) HIF-2αの発現を抑制する核酸
CN116144661A (zh) 一种抑制hsa_circ_0000825基因表达的干扰RNA及其应用
CN105002181B (zh) 一种大鼠Kif11基因干扰shRNA及其重组腺相关病毒和抗肿瘤应用
CN114686481B (zh) 一种抑制cfd表达的干扰rna及其制备方法和应用
AU2006219666B2 (en) Inhibition of SPAG9 expression with siRNAs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021865732

Country of ref document: EP

Effective date: 20230310

NENP Non-entry into the national phase

Ref country code: DE