WO2022050103A1 - 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物 - Google Patents

硬化性シリコーンゲル組成物及びシリコーンゲル硬化物 Download PDF

Info

Publication number
WO2022050103A1
WO2022050103A1 PCT/JP2021/030771 JP2021030771W WO2022050103A1 WO 2022050103 A1 WO2022050103 A1 WO 2022050103A1 JP 2021030771 W JP2021030771 W JP 2021030771W WO 2022050103 A1 WO2022050103 A1 WO 2022050103A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
silicone gel
composition
gel composition
curable silicone
Prior art date
Application number
PCT/JP2021/030771
Other languages
English (en)
French (fr)
Inventor
正 荒木
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2022546244A priority Critical patent/JP7439940B2/ja
Priority to CN202180054134.XA priority patent/CN116075551A/zh
Priority to KR1020237010616A priority patent/KR20230061427A/ko
Priority to US18/024,409 priority patent/US20230312924A1/en
Priority to EP21864161.1A priority patent/EP4209544A1/en
Publication of WO2022050103A1 publication Critical patent/WO2022050103A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a curable silicone gel composition having excellent high-temperature storage stability and deep curability, and is a one-component curing method in which properties and physical properties are stably preserved even when exposed to a high temperature exceeding 50 ° C. for a long time.
  • a one-component type silicone gel composition that can be completely cured to a deep part at a relatively low heating temperature of 150 ° C. or lower (more specifically, a heating temperature of 130 ° C. or lower) in an open state.
  • the present invention relates to a curable silicone gel composition and a cured product thereof.
  • the addition-curable silicone gel composition comprises an organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom (that is, a SiH group), an organopolysiloxane having an alkenyl group such as a vinyl group bonded to a silicon atom, and a platinum-based catalyst.
  • an addition reaction curable silicone gel composition which comprises the above and is crosslinked by a hydrosilylation addition reaction of a hydrogen atom bonded to the silicon atom to an alkenyl group to obtain a gel cured product.
  • the silicone gel cured product cured by heating this silicone gel composition has excellent heat resistance, weather resistance, oil resistance, cold resistance, electrical insulation, etc., and has a low elastic modulus and low stress, so that it can be used as an in-vehicle electronic component. It is used to protect electronic parts such as parts and consumer electronic parts.
  • the low elastic modulus and low stress that are characteristic of the cured silicone gel product are not found in other elastomer (elastic body) products such as the cured silicone rubber product.
  • the addition-curable silicone gel composition obtains a cured silicone gel by heating. Therefore, in the case of the one-component type, when exposed to high temperature conditions, property changes such as thickening and gelation and curing are performed. Problems such as changes in the physical properties of the silicone gel cured product obtained later occur. Therefore, in order to avoid such a problem, a method of making a mixed type silicone gel composition in which the components are divided into two-component type or more and mixed immediately before use, or a one-component silicone gel composition is refrigerated. Alternatively, storage means of freezing and transporting are taken.
  • Patent Document 1 proposes a method of adding an amine compound having an ethylenediamine skeleton.
  • Patent Document 2 proposes a method of using a catalyst obtained by heat-aging a specific phosphite ester compound with a platinum catalyst.
  • the silicone gel composition proposed in the above two publications is certainly superior in storage stability as compared with the conventional one-component silicone gel composition, but even in these methods, the temperature exceeds 50 ° C. When exposed to time, thickening and gelation occur, so low temperature conditions are essential for storage and transportation for performance stability.
  • Patent Documents 3 and 4 disclose a method using a platinum-phosphorous acid complex in European Patent Application Publication No. 2050768A1 and US Patent No. 6706840.
  • Patent Documents 3 and 4 propose a method using a platinum-phosphorous acid complex and a tin salt.
  • Patent Document 6 proposes a method using a platinum catalyst, a phosphorus compound, and an organic peroxide containing no hydroperoxide group. Even in the composition proposed in the above publication, if it is exposed to a temperature exceeding 50 ° C. for a long time, thickening and gelation occur. Therefore, in order to stabilize the performance, low temperature conditions are required for storage and transportation. It is mandatory.
  • Patent Document 7 describes a one-component organopolysiloxane gel composition made from a platinum catalyst, a phosphorous acid triester, and an organic peroxide. ing. As this phosphorous acid triester, tris (2,4-di-tert-butylphenyl) is described, and the amount of organic peroxide present is at least based on the phosphorous acid triester. A method of 2 equivalents has been proposed. Further, Japanese Patent Application Laid-Open No. 2018-503709 (Patent Document 8) proposes a method using tris phosphite (2,4-di-tert-butylphenyl).
  • the present invention has been made in view of the above circumstances, and even in a one-component embodiment, an addition-curable silicone gel composition in which properties and physical properties are stably preserved even when exposed to a high-temperature storage environment for a long period of time.
  • a silicone gel composition which is a product and can give a silicone gel cured product completely cured to a deep part even at a relatively low heating temperature, and a silicone gel cured product obtained by curing the curable silicone gel composition. The purpose is to provide.
  • the present inventor has a specific structure in which a linear alkyl group is bonded to an oxygen atom of phosphite in an addition reaction curing type silicone gel composition.
  • the phosphate triester compound is added in an amount in the range of 3 to 15 molecules to 1 atom of platinum in the platinum-based catalyst which is a hydrosilylation addition reaction catalyst, and the half-life temperature (half-life) is relatively high.
  • an organic peroxide having a decomposition temperature in an amount (mass) that is 5 to 50 times the blending amount (mass) of the phosphite triester compound, the temperature is 80 ° C. or higher and 150 ° C.
  • a silicone gel cured product completely cured to a deep part can be given at the following heating temperature (preferably a heating temperature of 100 ° C. or higher and 130 ° C. or lower), and further, by blending an antioxidant, 50 ° C. in a sealed state.
  • the present invention has been found that a curable silicone gel composition having stable properties and physical properties even when exposed to a temperature exceeding 80 ° C. for a long time and having excellent high-temperature storage stability and deep curability can be obtained. It came to make.
  • the present invention provides the following curable silicone gel composition and silicone gel cured product.
  • A The following average composition formula (1) M ⁇ M Vi ⁇ D ⁇ T ⁇ (1) M: R 1 3 SiO (1/2) M Vi : R 1 2 RSiO (1/2) D: R 1 2 SiO (2/2) T: R 1 SiO (3/2)
  • M, M Vi , D, and T are the units shown above, R is an alkenyl group independently, and R 1 is an unsaturated or substituted monovalent independently containing no aliphatic unsaturated bond. It is a hydrocarbon group.
  • (E) Organic peroxide having a 10-hour half-life temperature of 120 ° C. or higher: a mass of 5 times or more and 50 times or less of the mass of the component (D).
  • (E) The component is di-tert-butyl peroxide, [2- (4-methylcyclohexyl) propan-2-yl] hydroperoxide, 2,5-bis (tert-butylperoxy) -2,5-dimethyl-3-.
  • the curable silicone gel composition according to [1] which is hexine, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutylhydroperoxide, cumene hydroperoxide or tert-butyl hydroperoxide.
  • the properties and physical properties are stably preserved even when exposed to a high temperature of more than 50 ° C and less than 80 ° C for a long time.
  • a curable silicone gel composition is provided, and a cured silicone gel is provided that has been deeply cured at a heating temperature of 80 ° C. or higher and 150 ° C. or lower (preferably a heating temperature of 100 ° C. or higher and 130 ° C. or lower) in an open state. be able to.
  • the curable silicone gel composition of the present invention contains the following components (A) to (F) as essential components.
  • the cured silicone gel (silicone gel) is a cured product containing organopolysiloxane as a main component and has a low crosslink density, and is based on the consistency test method (1/4 cone) of JIS K2220. It means that the degree of needle penetration specified in JIS K6249 (synonymous with "cone penetration” specified in JIS K2220) is 10 to 110.
  • the measured value (rubber hardness value) is 0 in the rubber hardness measurement by JIS K6253, and the hardness is so low (that is, soft) that the effective rubber hardness value is not shown, and the stress property is low (low elasticity). In this respect, it is different from the so-called silicone rubber cured product (rubber-like elastic body).
  • the viscosity is a value at 23 ° C.
  • the component (A) used in the present invention is the main agent (base polymer) of the curable silicone gel composition.
  • the component (A) is represented by the following average composition formula (1), and a T unit structure having a branched structure in one molecule (organosylsesquioxane unit represented by T in the following composition formula (1)) is specified.
  • organosylsesquioxane unit represented by T in the following composition formula (1)
  • M Vi of the following composition formula (1), which has an alkenyl group bonded to a silicon atom in the molecule.
  • R a branched organopolysiloxane having a "silicon atom-bonded alkenyl group" in the present specification).
  • M M ⁇ M Vi ⁇ D ⁇ T ⁇
  • R R 1 3 SiO (1/2) M Vi : R 1 2 RSiO (1/2)
  • D R 1 2 SiO (2/2)
  • T R 1 SiO (3/2)
  • R is an alkenyl group independently
  • R 1 is an unsaturated or substituted monovalent independently containing no aliphatic unsaturated bond. It is a hydrocarbon group.
  • is a positive number of 0.01 to 3.6
  • a positive number of 0.01 to 3.6
  • ( ⁇ + ⁇ ) 0.5 to 5.
  • ( ⁇ / ⁇ ) 0.1 to 5.
  • is a positive number of 10 to 1,600
  • is a positive number of 0.5 to 3
  • (( ⁇ + ⁇ ) / ⁇ ) is 0. 8 to 1.7.)
  • R is an independently alkenyl group, and is usually an alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, and more preferably 2 to 3 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group and the like, and a vinyl group is preferable.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond, and the number of carbon atoms thereof is usually 1 to 10, preferably 1 to 6. Specific examples thereof include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, an octyl group and a decyl group; a phenyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, a cycl
  • Aryl groups such as trill groups; Aralkyl groups such as benzyl groups and phenylethyl groups; Chloromethyl groups in which some or all of the hydrogen atoms of these groups are replaced with halogen atoms such as chlorine, bromine and fluorine, 3, Examples thereof include a 3,3-trifluoropropyl group. Of these, a methyl group, a phenyl group or a 3,3,3-trifluoropropyl group is preferable because it is easy to synthesize.
  • is a positive number of 0.01 to 3.6, preferably a positive number of 0.3 to 2.5, more preferably a positive number of 0.5 to 2, and ⁇ .
  • is a positive number of 10 to 1,600, preferably a positive number of 30 to 1,200, more preferably a positive number of 50 to 1,000, and ⁇ is a positive number of 0.5 to 3, preferably. Is a positive number from 1 to 2.5, more preferably a positive number from 1.2 to 2.1, and (( ⁇ + ⁇ ) / ⁇ ) is 0.8 to 1.7, preferably 0.85 to 1. 5, more preferably 0.9 to 1.2.
  • (( ⁇ + ⁇ ) / ⁇ ) is in the range of 0.8 to 1.7. This is because ( ⁇ + ⁇ ), that is, the sum of the non-reactive molecular chain end (M unit) and the reactive molecular chain end (M Vi unit) has already formed a cross-linking point (branched structure) in the base polymer. This is because the uncured silicone gel composition can be imparted with sufficient storage stability and sufficient curability at the time of open heating by setting the unit amount to a constant ratio. If (( ⁇ + ⁇ ) / ⁇ ) is less than 0.8, that is, if the ratio of T units becomes too large, the uncured silicone gel composition has a problem of thickening and gelling over time during high temperature storage.
  • the above-mentioned ⁇ value is a positive number of 10 to 1,600, and is reflected in the viscosity of the branched organopolysiloxane of the component (A). Therefore, use a base polymer having a different ⁇ value depending on the intended use.
  • a positive number of 30 to 1,200 is preferable, and a positive number of 50 to 1,000 is particularly preferable.
  • the viscosity of the component (A) is preferably 10 to 50,000 mPa ⁇ s, more preferably 100 to 10,000 mPa ⁇ s. If the viscosity of the component (A) is too low, the viscosity of the obtained one-component curable silicone gel composition will also be low, resulting in poor workability, and the obtained cured silicone gel may be too hard (A). ) If the viscosity of the component is too high, the viscosity of the resulting one-component curable silicone gel composition will also be high, which may adversely affect workability. In the present invention, the viscosity can usually be measured by a rotational viscometer (BL type, BH type, BS type, cone plate type, rheometer, etc.) (hereinafter, the same).
  • the degree of polymerization for example, the total value of ⁇ + ⁇ + ⁇ + ⁇ in the above average composition formula (1), the value of z in the general formula (2) of the component (B) described later, etc.
  • the molecular weight is usually toluene.
  • Etc. can be obtained as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using the above as a developing solvent (hereinafter, the same applies).
  • the organopolysiloxane of the component (A) may be used alone or in combination of two or more as long as it is within the range of the above formula (1).
  • R 1 is as described above, and z is an integer from 1 to 500.
  • a linear organohydrogenpolysiloxane having a hydrogen atom (SiH group) bonded to a silicon atom only at both ends of the molecular chain that is, diorganohydrogensiloxy group-sealed diorganopoly at both ends of the molecular chain). Siloxane).
  • R 1 is as described above, and the same one as exemplified by R 1 in the above formula (1) can be exemplified. Of these, a methyl group, a phenyl group or a 3,3,3-trifluoropropyl group is preferable.
  • z indicating the number of repetitions (or degree of polymerization) of the bifunctional diorganosiloxane unit (Si (R 1 ) 2 O 2/2 ) in the molecule needs to be an integer of 1 to 500, which is preferable. Is an integer from 5 to 300.
  • z is less than 1, the viscosity of the organohydrogenpolysiloxane of the component (B) becomes low, the workability deteriorates, and the obtained silicone gel cured product may be too hard.
  • z is a value exceeding 500, the viscosity of the organohydrogenpolysiloxane of the component (B) becomes high, which adversely affects workability.
  • the viscosity of the component (B) is preferably 0.1 to 1,000 mPa ⁇ s, more preferably 1 to 500 mPa ⁇ s. If the viscosity of the component (B) is too low, the viscosity of the obtained one-component curable silicone gel composition also becomes low, the workability deteriorates, and the obtained silicone gel cured product may become too hard. B) If the viscosity of the component is too high, the viscosity of the resulting one-component curable silicone gel composition also becomes high, which may adversely affect workability.
  • organohydrogenpolysiloxane of the component (B) may be used alone or in combination of two or more having completely different z values.
  • the amount of the component (B) added is 0.1 to 50 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A), and the range of 3 to 30 parts by mass is more preferable. If it is less than 0.1 part by mass, the obtained cured silicone gel may be too soft, or in the worst case, the cured product may not be obtained. On the other hand, if it exceeds 50 parts by mass, the expected cold resistance performance may not be obtained, or the obtained cured silicone gel may become hard.
  • the component (C) used in the present invention promotes the hydrosilylation addition reaction between the silicon atom-bonded alkenyl group in the component (A) and the silicon atom-bonded hydrogen atom (SiH group) in the component (B). Conventionally, it is usually used as a catalyst for silicon. Further, this component (C) reacts when mixed with the phosphorous acid triester compound of the component (D) described later at the time of preparing the curable silicone gel composition of the present invention at room temperature (23 ° C ⁇ 15 ° C).
  • the platinum-phosphorous acid compound complex is easily and quantitatively formed, and by forming the platinum-phosphorous acid compound complex during storage (sealed state) of the curable silicone gel composition. It is possible to obtain a one-component curable silicone gel composition having stable properties and physical properties even when exposed to a temperature exceeding 50 ° C. and lower than 80 ° C. for a long time.
  • the component (C) is a platinum-based catalyst (platinum or platinum-based compound), and known ones can be used. Specific examples thereof include alcohol-modified products such as platinum black, platinum chloride acid, and platinum chloride acid; complexes of platinum chloride acid with olefins, aldehydes, vinylsiloxanes, acetylene alcohols, and the like.
  • the blending amount of the component (C) may be an effective amount and may be appropriately increased or decreased depending on the desired curing rate, but usually, the total amount of the components (A) and (B) is converted into the mass of platinum atoms. , Usually in the range of 0.1 to 1,000 ppm, preferably 1 to 500 ppm, more preferably 2 to 200 ppm. If the blending amount is too small, the composition may not be sufficiently cured at a heating temperature of 80 to 150 ° C., and if it is too large, the heat resistance of the obtained cured product may be lowered.
  • the phosphorous acid triester compound of the component (D) is platinum with the platinum catalyst of the component (C) during storage of the curable silicone gel composition of the present invention at room temperature (23 ° C. ⁇ 15 ° C.). -By forming a phosphorous acid compound complex, it is possible to obtain a curable silicone gel composition having stable properties and physical properties even when exposed to a temperature of more than 50 ° C and less than 80 ° C for a long time. It is a compound and an essential ingredient for that purpose.
  • the subphosphoric acid triester compound (that is, the tri (alkoxy) phosphorus compound) of the component (D) has the structure of the following general formula (3), that is, three that form the triester structure in the molecule. It is essential that all of the alkoxy groups in the above are phosphite triester compounds having a structure in which a linear alkyl group is bonded to an oxygen atom of phosphite. P (O- (CH 2 ) a -CH 3 ) 3 (3) (In the formula, a is an independent integer of 3 to 7.)
  • a is independently an integer of 3 to 7, preferably an integer of 3 to 5, more preferably 3 or 4, and even more preferably 3.
  • Examples of the phosphite triester compound of the component (D) include phosphite tri (n-butyl), phosphite tri (n-pentyl), phosphite tri (n-hexyl), and phosphite tri. (N-Heptyl), Tri (n-octyl) phosphite, preferably tri (n-butyl) phosphite, tri (n-pentyl) phosphite, tri (n-hexyl) phosphite.
  • tri (n-butyl) phosphite More preferably tri (n-butyl) phosphite, tri (n-pentyl) phosphite, and even more preferably tri (n-butyl) phosphite (hereinafter, simply tributyl phosphite). It is described as).
  • the blending amount of the phosphorous acid triester compound represented by the above is in the range of 3 molecules or more and 15 molecules or less of the phosphorous acid triester compound of the component (D) with respect to 1 atom of platinum in the component (C) described above. It is essential to add the inner amount. This sufficiently reduces the activity of the platinum catalyst when the amount of the phosphorous acid triester compound represented by the general formula (3) (for example, tributyl phosphite) is less than 3 molecules with respect to 1 atom of platinum. Therefore, when exposed for a long period of time under high temperature storage conditions (for example, a temperature environment of more than 50 ° C and less than 80 ° C), the silicone gel composition thickens or gels during storage.
  • high temperature storage conditions for example, a temperature environment of more than 50 ° C and less than 80 ° C
  • the amount of the phosphorous acid triester compound represented by the general formula (3) exceeds 15 molecules with respect to one platinum atom, the phosphorous acid triester compound is added.
  • the amount is too large, and even if it is heated to cure, it does not cure sufficiently, it takes a long time to cure, and in the worst case, a cured product cannot be obtained.
  • the preferable blending amount of the phosphite triester compound is an amount in which the phobic acid triester compound is in the range of 3 to 15 molecules with respect to 1 atom of platinum in the component (C), and more preferably (.
  • the amount of the compound is in the range of 5 to 11 molecules.
  • component (D) may be added after being uniformly mixed with the component (C) in advance, or the component (C) and the component (D) may be added separately and independently.
  • the organic peroxide of the component (E) is a platinum-phosphoric acid triester compound complex formed by reacting the platinum-based catalyst of the component (C) in the present invention with the phosphite triester compound of the component (D). Therefore, it acts as an oxidizing agent for desorbing the phosphite triester compound and increasing the activity of the platinum catalyst.
  • a heating temperature of 80 ° C. or higher and 150 ° C. or lower preferably a heating temperature of 100 ° C. or higher and 130 ° C. or lower
  • it can be completely cured to a deep part in a relatively short time. , A very important essential ingredient.
  • organic peroxide used here one having a relatively high 10-hour half-life temperature is very effective.
  • organic peroxides are compared even under high temperature storage conditions, for example, even when exposed to temperatures above 50 ° C and below 80 ° C for a long time. This is because it is stable, so that it is possible to obtain a one-component curable silicone gel composition in which the properties and physical properties are stably preserved.
  • the organic peroxide of the component (E) is decomposed at a half-life temperature of 10 hours (that is, 10 hours after the start of decomposition corresponds to the half-life (time until 50% by mass of the organic peroxide is decomposed). It is essential that the temperature) is 120 ° C. or higher.
  • the half-life decomposition temperature (10 hours) is preferably 121 ° C. or higher, more preferably 122 ° C. or higher, and even more preferably 123 ° C. or higher.
  • the upper limit of the half-life decomposition temperature (10 hours) is not particularly limited, but is usually 170 ° C. or lower, preferably 150 ° C. or lower, more preferably 140 ° C. or lower, still more preferably 130 ° C. or lower. If the 10-hour half-life temperature is too high, the effect of blending the organic peroxide may not be exhibited.
  • the 10-hour half-life temperature is calculated by thermally decomposing an organic peroxide at a specific temperature and obtaining the thermal decomposition rate constant of the organic peroxide.
  • a solution in which the organic peroxide to be measured is dissolved in a solvent inactive against radicals (for example, benzene) so as to have a concentration of 0.1 mol / L is prepared, and this is sealed in a container.
  • the organic peroxide is thermally decomposed by keeping it at a predetermined temperature in a constant temperature bath, and it is assumed that the decomposition rate is constant from the relationship between the retention time measured at this time and the change in the concentration of the organic peroxide.
  • the thermal decomposition rate constant is obtained, and the temperature at which the half-life is 10 hours is obtained as the 10-hour half-life temperature based on this thermal decomposition rate constant.
  • the organic peroxide of the component (E) is preferably any of the following.
  • the blending amount of the organic peroxide of the component (E) is 5 times or more and 50 times or less with respect to the blending amount (mass) of the subphosphate triester compound (for example, tributyl phosphite) of the component (D) described above.
  • the storage temperature is 50 ° C. It is a one-component curable silicone gel composition having stable properties and physical properties and excellent high-temperature storage even when exposed to an environment exceeding (preferably an environment of less than 80 ° C.) for a long time, and is in an open state.
  • Excellent deep curability that completely cures to a deep part in a relatively short time when exposed to a heating temperature of 150 ° C. or lower (preferably a heating temperature of 80 ° C. or higher, more preferably a heating temperature of 100 ° C. or higher and 130 ° C. or lower) 1.
  • a heating temperature of 150 ° C. or lower preferably a heating temperature of 80 ° C. or higher, more preferably a heating temperature of 100 ° C. or higher and 130 ° C. or lower
  • the blending amount (mass) of the organic peroxide of the component (E) is less than 5 times the blending amount (mass) of the phosphite triester compound (that is, tributyl phosphite) of the component (D).
  • the amount is as high as possible, it becomes difficult to cure the curable silicone gel composition of the present invention to a deep part in a short time even when exposed to a heating temperature of 80 ° C. or higher and 150 ° C. or lower, and conversely, the organic peroxide of the organic peroxide.
  • the platinum-based catalyst of the component (C) and ( D) A radical cross-linking polymerization reaction may occur in addition to the addition reaction that proceeds by desorbing the phosphite triester compound from the platinum-phosphite compound complex formed by the reaction of the phosphite triester compound of the component. Due to its properties, the obtained cured silicone gel becomes brittle or has poor flexibility.
  • the antioxidant component (F) is an essential component added to give hydrogen atoms to the radicals generated by the decomposition of the organic peroxide of the component (E) described above to stop autoxidation.
  • this component (F) is not added to the curable silicone gel composition of the present invention, the temperature exceeds 50 ° C. for a long time regardless of whether the 10-hour half-life temperature of the organic peroxide as the component (E) is high or low. When exposed, it gels in the container. Therefore, although it is a very small amount of addition, it is an essential additive.
  • the antioxidant shall be appropriately selected from conventionally known antioxidants such as phenol compound-based antioxidants, organic sulfur compound-based antioxidants, amine compound-based antioxidants, and phosphorus compound-based antioxidants. However, considering the decrease in activity of the platinum catalyst due to detoxification or the like, it is preferable to use a phenol compound-based antioxidant.
  • phenol compound antioxidant examples include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • 2,2'-Methylenebis- (4-methyl-6-tert-butylphenol) 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane
  • 4,4 '-Thiobis (6-tert-butyl-3-methylphenol
  • tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane
  • the antioxidant used may be used alone or in combination of two or more.
  • the blending amount of the component (F) may be an effective amount and may be appropriately increased or decreased depending on the desired curing rate or storage stability, but is usually 0 with respect to 100 parts by mass of the organic peroxide of the component (E) described above. It is preferably 0.01 to 10 parts by mass, particularly 0.1 to 5 parts by mass. If the amount of the component (F) is too large, the effect of adding the organic peroxide of the component (E) as an oxidizing agent for desorbing the phosphite triester compound and increasing the activity of the platinum catalyst is impaired. Even when exposed to a heating temperature of 80 ° C. or higher and 150 ° C. or lower, it may be difficult to cure the curable silicone gel composition of the present invention to a deep part in a short time. Decomposition of organic peroxide may proceed and the composition may gel.
  • any component can be added to the composition of the present invention as long as the object of the present invention is not impaired.
  • the optional component include a reaction inhibitor, an inorganic filler, an organopolysiloxane containing no silicon atom-bonded hydrogen atom and a silicon atom-bonded alkenyl group, a heat resistance-imparting agent, a flame-retardant-imparting agent, and a thixo property-imparting agent.
  • examples include pigments and dyes.
  • the reaction inhibitor is a component for suppressing the reaction of the above composition, and specific examples thereof include reaction inhibitors such as acetylene-based, amine-based, and carboxylic acid ester-based.
  • inorganic filler examples include fumed silica, crystalline silica, precipitated silica, hollow filler, silsesquioxane, fumed titanium dioxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, magnesium carbonate, and calcium carbonate.
  • Inorganic fillers such as zinc carbonate, layered mica, carbon black, diatomaceous earth, glass fiber; these fillers are made of organic silicon compounds such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane compounds. Examples thereof include fillers that have been surface-hydrophobicized. Further, silicone rubber powder, silicone resin powder and the like may be blended.
  • the silicone gel composition of the present invention can be obtained by mixing the above components (A) to (F) and, if necessary, other optional components according to a conventional method.
  • the silicone gel composition of the present invention is a so-called two-component composition which is divided into two liquids and cured by mixing the two liquids at the time of use, like a normal curable silicone gel composition.
  • it since it is excellent in high-temperature storage, it is possible to obtain a one-component composition having good workability.
  • a cured silicone gel can be obtained by curing the curable silicone gel composition of the present invention under temperature conditions according to the intended use even in the one-component embodiment.
  • the heating temperature is preferably in the range of 80 to 150 ° C., and the more optimum temperature is preferably in the range of 100 to 130 ° C.
  • the heating time is preferably about 10 to 120 minutes, particularly preferably about 20 to 60 minutes.
  • the curable silicone gel composition of the present invention is preferably used for sealing or filling electrical / electronic components.
  • the cured product (cured product of silicone gel) of the curable silicone gel composition of the present invention preferably has a needle penetration of 10 to 110, more preferably 10 to 100, with a 1/4 cone defined by JIS K6249. , More preferably 15-90. If the degree of needle penetration is less than 10, the silicone gel composition may not be able to withstand the stress when it is cured, and a part of the electronic circuit may be broken or cracks may be generated inside the cured silicone gel composition. Further, if the degree of needle insertion exceeds 110, the cured silicone gel may fall off or fall due to vibration.
  • curable silicone gel composition of the present invention even when exposed to a temperature exceeding 50 ° C. and lower than 80 ° C. for a long period of time, the properties and physical properties are stable, excellent in high-temperature storage stability, and in an open state. It is possible to give a silicone gel cured product cured to a deep part at a relatively low temperature, that is, a heating temperature of 80 ° C. or higher and 150 ° C. or lower (preferably a heating temperature of 100 ° C. or higher and 130 ° C. or lower).
  • a liquid-type curable silicone gel composition that is, even if the curable silicone gel composition of the present invention is stored as a one-component type at 70 ° C.
  • the composition does not gel and the liquid state is maintained as its properties, and its viscosity is also the initial value. It is kept within 2 times, preferably 1.1 times or less, and its curability (particularly deep curability) is also kept unchanged from the initial state. Further, even if the curable silicone gel composition of the present invention is stored as a one-component type at 70 ° C. for 30 days, the physical properties of the cured product (silicone gel cured product) are maintained almost unchanged from the initial state, and is concrete.
  • the degree of needle penetration (1/4 cone specified by JIS K2220) of the cured product of the curable silicone gel composition of the present invention after storage at 70 ° C. for 30 days is 10 to 110, and the needle at the initial stage of production. It is kept within ⁇ 5 points, preferably within ⁇ 2 points from the degree of entry.
  • the degree of needle insertion is the degree of needle insertion with a 1/4 cone defined by JIS K6249, and was measured using an automatic needle insertion degree meter RPM-101 manufactured by Rigo Co., Ltd.
  • the obtained composition 1 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes to obtain a cured product having a needle insertion degree of 45.
  • the obtained composition 2 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes to obtain a cured product having a needle insertion degree of 55.
  • the obtained composition 3 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes to obtain a cured product having a needle insertion degree of 43.
  • the obtained composition 4 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes to obtain a cured product having a needle insertion degree of 50.
  • Example 1 a linear base polymer that does not contain a T unit structure in the average composition formula (4) that is the component (A) (that is, the following average composition formula (7)).
  • the composition 5 was obtained in the same manner except that 100 parts of a linear organopolysiloxane having a viscosity at 23 ° C. of 600 mPa ⁇ s was used. When this composition 5 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heated at 120 ° C. for 40 minutes, thickening
  • Example 2 the branched-chain base polymer having a T unit structure of 4.0 in the average composition formula (4) which is the component (A) (that is, the following average composition formula (8)).
  • M Vi : (CH 3 ) 2 (CH 2 CH) SiO (1/2)
  • Composition 6 was obtained in the same manner except that 100 parts of a branched chain organopolysiloxane (with a viscosity of 800 mPa ⁇ s
  • Example 3 the branched-chain base polymer having a T unit structure of 0.3 in the average composition formula (4) which is the component (A) (that is, the following average composition formula (9)).
  • the composition 7 was obtained in the same manner except that 100 parts of the branched chain organopolysiloxane (branched chain organopolysiloxane) having a visco
  • composition 7 550 mPa ⁇ s was used.
  • this composition 7 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heated at 120 ° C. for 40 minutes, thickening was confirmed, but it was uncured.
  • Example 4 a branched chain base polymer (that is, the following average composition formula (10)) in which ⁇ in the average composition formula (4) which is the component (A) is 0 (not including M units) is used.
  • M Vi : (CH 3 ) 2 (CH 2 CH) SiO (1/2)
  • Composition 8 was obtained in the same manner except that 100 parts of a branched chain organopolysiloxane (with a viscosity of 700 mPa ⁇ s at 23 ° C.
  • Example 5 In Example 1, instead of using the two-ended dimethylhydrogensiloxy group-blocked dimethylpolysiloxane represented by the general formula (5) which is the component (B) and having a viscosity at 23 ° C. of 18 mPa ⁇ s, the following general formula ( 11) The composition 9 was obtained in the same manner except that 2.0 parts of a double-ended trimethylsiloxy group-sealed dimethylsiloxane / methylhydrogensiloxane copolymer having a viscosity at 23 ° C. of 100 mPa ⁇ s was used. When this composition 9 was heat-cured at 120 ° C. for 40 minutes, a cured product having a needle penetration degree of 38 was obtained.
  • Example 6 In Example 1, instead of using tributyl phosphite as the component (D), 0.01658 parts of tris (2,4-tert-butylphenyl) phosphite (5.0 molecules per 1 atom of platinum) The composition 10 was obtained in the same manner except that it was used. When this composition 10 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heated at 120 ° C. for 40 minutes, only the surface was cured and the deep portion was uncured. The degree of needle insertion was 76.
  • composition 11 was obtained in the same manner except that 0.00354 parts (amount of 2.0 molecules per platinum atom) of tributyl phosphite as a component (D) was used.
  • this composition 11 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes, a cured product having a needle insertion degree of 45 was obtained.
  • composition 12 was obtained in the same manner except that 0.03540 parts (amount of 20.0 molecules per 1 atom of platinum) of tributyl phosphite as a component (D) was used in Example 1.
  • this composition 12 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heated at 120 ° C. for 40 minutes, only the surface was cured and the inside was uncured. The degree of needle insertion was 52.
  • Example 9 In Example 1, instead of the component (E), di-tert-butyl peroxide, di-tert-hexyl peroxide (product name: Perhexyl D (manufactured by NOF CORPORATION), 10-hour half-life temperature: 116.4 ° C.)
  • the composition 13 was obtained in the same manner except that 0.30 part (amount of 24.2 times the blending amount of the component (D)) was used.
  • this composition 13 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes, a cured product having a needle insertion degree of 44 was obtained.
  • Example 10 In Example 1, the composition was similarly prepared except that 0.050 part of di-tert-butyl peroxide as the component (E) was used (4.0 times the amount of the component (D)). I got 14. When this composition 14 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heated at 120 ° C. for 40 minutes, thickening was confirmed, but it was uncured.
  • Example 11 In Example 1, the composition was similarly prepared except that 0.7 part of di-tert-butyl peroxide as the component (E) was used (56.5 times the amount of the component (D)). I got 15. When this composition 15 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heat-cured at 120 ° C. for 40 minutes, a cured product having a needle insertion degree of 43 was obtained.
  • Example 12 the composition 16 was obtained in the same manner except that the component (E), di-tert-butyl peroxide, was removed (not added). When this composition 16 was placed in a container (dimensions: diameter 30 mm ⁇ ⁇ depth 15 mm) and heated at 120 ° C. for 40 minutes, it was uncured.
  • Example 13 the composition 17 was obtained in the same manner except that a 1% by mass ethanol solution of 2,6-di-tert-butyl-4-methylphenol (F) was not added.
  • F 2,6-di-tert-butyl-4-methylphenol
  • Needle insertion degree The hardness of the cured product obtained in the above Examples and Comparative Examples was evaluated by measuring the needle insertion degree.
  • the degree of needle insertion is the degree of needle insertion with a 1/4 cone defined by JIS K6249, and was measured using an automatic needle insertion degree meter RPM-101 manufactured by Rigo Co., Ltd.
  • Viscosity The viscosities of the compositions obtained in the above Examples and Comparative Examples were measured using a rotational viscometer under a temperature condition of 23 ° C. Deep Curability The compositions obtained in the above Examples and Comparative Examples were placed in a container (dimensions: diameter 30 mm ⁇ x depth 15 mm) and cured at 120 ° C.
  • the degree of needle insertion was measured in the same manner as above. At that time, those within ⁇ 5 points from the needle insertion degree at the initial stage of production were judged to be acceptable, those below -5 points, those exceeding +5 points, or those that could not be measured were judged to be unacceptable.
  • compositions of Examples 1 to 4 satisfy the requirements of the present invention, and can be cured to a deep part by exposing them to 120 ° C. for 40 minutes in an open state, and further, the physical characteristics and properties at the initial stage of production are reduced to 70 ° C. Since it was retained even in the stored sample for 10 days, it can be seen that the composition is cured at a relatively low temperature and in a short time, and has good storage stability even at a high temperature. On the other hand, since the composition of Comparative Example 1 does not contain a T unit in the structure of the organopolysiloxane as the component (A), no cross-linking point is formed, so that the composition is exposed to a heating temperature of 120 ° C. for 40 minutes.
  • the base oil does not contain ⁇ in the structure of the organopolysiloxane which is the component (A), that is, the monofunctional syroxy unit constituting the end of the molecular chain consists only of the M Vi unit having crosslinkability. Therefore, there are too many cross-linking points, and the initial needle insertion degree is 4, that is, the needle insertion degree is 5 or less in which the measurement accuracy is questioned. Moreover, it has gelled during storage at 70 ° C. for 10 days. In Comparative Example 5, the structure of the organohydrogenpolysiloxane as the component (B) is different, and an organohydrogensiloxane having a SiH group only in the side chain is used.
  • Comparative Example 6 is an example in which a phosphorous acid triester compound having a structure different from that of the component (D) of the present invention is used, but when such a phosphorous acid triester compound is used, it is 40 at 120 ° C. It can be seen that the composition has not been cured to the bottom of the container (dimensions 30 mm ⁇ ⁇ 15 mm) under the curing conditions for 1 minute. Moreover, it has gelled during storage at 70 ° C. for 10 days. In Comparative Examples 7 and 8, the amount of the phosphorous acid triester compound added as the component (D) is out of the specified value of the present invention.
  • Comparative Example 7 since the amount of the phosphorous acid triester compound added was as small as 2.0 molecules per platinum molecule, gelation occurred during storage at 70 ° C. for 10 days. Further, in Comparative Example 8 which is the opposite, the amount of the phosphorous acid triester compound added is too large to be 20.0 molecules with respect to one molecule of platinum, so that the compound is exposed to a heating temperature of 120 ° C. for 40 minutes. However, under these curing conditions, the inside of the container (dimensions 30 mm ⁇ ⁇ 15 mm) is not sufficiently cured, and an uncured portion is confirmed inside.
  • Comparative Example 9 is an example in which an organic peroxide having a structure different from that of the component (E) of the present invention and having a 10-hour half-life temperature of less than 120 ° C. is used. Such an organic peroxide is used. In this case, the 10-hour half-life temperature (116.4 ° C.) of the organic peroxide is lower than the 10-hour half-life temperature (123.7 ° C.) of di-tert-butyl peroxide, which is good in the present invention. However, a good composition that cures to a deep part by being exposed to a heating temperature of 120 ° C. for 40 minutes is gelled during storage at 70 ° C. for 10 days, so that high temperature storage stability is not achieved.
  • the amount of the organic peroxide added as the component (E) is out of the specified value of the present invention.
  • the platinum-based catalyst of the component (C) and ( D) Sufficient oxidizing agent for desorbing the phosphite triester compound from the platinum-phosphite triester compound complex formed by the reaction of the phosphite triester compound of the component to enhance the activity of the platinum catalyst was exposed to a heating temperature of 120 ° C. for 40 minutes, it was only thickened and uncured.
  • the amount of the organic peroxide added is 56.5 times as large as the amount of the phosphite triester compound added as the component (D), so that the temperature is 120 ° C. Although it can be a good composition that cures deeply by exposing it to the heating temperature of 40 minutes, the organic peroxide decomposes during storage at 70 ° C for 10 days and acts as an oxidant, so the gel Conversion occurs and storage stability is not achieved. In Comparative Example 12, since the organic peroxide as the component (E) was not added, it was not cured by being exposed to a heating temperature of 120 ° C. for 40 minutes.
  • the organic peroxide of the component (E) is decomposed at a temperature of about 120 ° C. and acts as an effective oxidizing agent of the phosphorous acid triester compound of the component (D).
  • the antioxidant of the component (F) which is added to give a hydrogen atom to the radical generated by the decomposition of the organic peroxide of the component (E) to stop the autoxidation, is not added. Therefore, although it can be a good composition that cures deeply by being exposed to a heating temperature of 120 ° C. for 40 minutes, decomposition of organic peroxides progresses during storage at 70 ° C. for 10 days and gelation occurs. It has been done. From the above results, the effectiveness of the present invention can be confirmed.
  • the one-component curable silicone gel composition having good storage stability of the present invention does not need to be mixed because it is a one-component type, and is a material having extremely high robustness against environmental changes in transportation and storage. It is a heat-curable material that is extremely advantageous for long-term transportation and storage. Therefore, the material does not change in physical properties for a long period of time, which is advantageous for the user. It can be said that it is a material that can save refrigeration / transportation costs and storage labor. Further, when exposed to a temperature of 80 ° C. or higher and 150 ° C. or lower for a short time, it can be cured to a deep part, which is useful in terms of environment such as reduction of manufacturing cost and reduction of CO 2 by shortening the manufacturing speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)特定構造を有する分岐鎖状オルガノポリシロキサン:100質量部、 (B)分子鎖両末端ジオルガノハイドロジェンシロキシ基封鎖ジオルガノポリシロキサン:0.1~50質量部、 (C)白金系触媒、 (D)鎖状アルキル基が亜リン酸の酸素原子に結合した構造を有する亜リン酸トリエステル化合物:(C)成分中の白金1原子に対して3~15分子となる量、 (E)10時間半減期温度が120℃以上である有機過酸化物:(D)成分の量に対して、5~50倍の量、 (F)酸化防止剤 を含有する硬化性シリコーンゲル組成物であり、高温保存性及び深部硬化性に優れる。

Description

硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
 本発明は、高温保存性及び深部硬化性に優れた硬化性シリコーンゲル組成物に関し、特に50℃を超える高温に長時間晒されても、性状や物性が安定して保存される1液型硬化性シリコーンゲル組成物であり、さらに開放状態にて150℃以下の比較的低温の加熱温度(より具体的には130℃以下の加熱温度)で深部まで完全に硬化させることができる1液型の硬化性シリコーンゲル組成物及びその硬化物に関する。
 付加硬化型シリコーンゲル組成物は、ケイ素原子に結合した水素原子(すなわち、SiH基)を有するオルガノハイドロジェンポリシロキサン、ケイ素原子に結合したビニル基等のアルケニル基を有するオルガノポリシロキサン及び白金系触媒を含有し、前記ケイ素原子に結合した水素原子のアルケニル基へのヒドロシリル化付加反応により架橋してゲル硬化物を得る付加反応硬化型シリコーンゲル組成物として調製される。このシリコーンゲル組成物を加熱することにより硬化したシリコーンゲル硬化物は、耐熱性、耐候性、耐油性、耐寒性、電気絶縁性等に優れ、低弾性率かつ低応力であることにより、車載電子部品、民生用電子部品等の電子部品の保護に用いられている。シリコーンゲル硬化物の特徴である低弾性率かつ低応力であることは、シリコーンゴム硬化物をはじめとする他のエラストマー(弾性体)製品には見られない。
 上記のように付加硬化型シリコーンゲル組成物は、加熱することでシリコーンゲル硬化物を得るため、1液型の場合では高温条件に晒された場合、増粘やゲル化などの性状変化や硬化後に得られるシリコーンゲル硬化物の物性値が変化してしまうなどの不具合が生じる。そのため、このような問題を回避するために、2液型もしくはそれ以上に成分を分け、使用直前に混合するという混合型のシリコーンゲル組成物にする方法や、1液型シリコーンゲル組成物を冷蔵もしくは冷凍して輸送するという保存手段がとられている。前者においては、配合ブレや混合ブレにより得られるシリコーンゲル硬化物の物性値が変動する懸念があり、非常に高度な配合技術・混合技術が必要となるため、万人が同様に使用できるという材料ではない。また、後者においては、保管時から使用するまでの間、冷蔵もしくは冷凍条件が必要となるため、輸送や保管費用が非常に大きくなり、商業的に不利となる材料であった。このような背景の中、近年では常温において長期間保管しても性状や性能が変わらない保存安定性に優れた1液型の付加硬化型シリコーンゲル組成物の要求が高まっている。
 そのような背景の中、特許第2849027号公報(特許文献1)においては、エチレンジアミン骨格のアミン化合物を添加する方法が提案されている。また、特許第4530147号公報(特許文献2)においては、特定の亜リン酸エステル化合物を白金触媒と加熱熟成させた触媒を使用する方法が提案されている。上記2公報で提案されたシリコーンゲル組成物は、確かに従来の1液型のシリコーンゲル組成物と比較すると保存安定性に優れているが、これらの方法においても、50℃を超える温度に長時間晒されると、増粘やゲル化が起こってしまうため、性能安定性のために保管や輸送においては低温条件が必須となっている。
 また海外においては、欧州特許出願公開第2050768A1号公報、米国特許第6706840号明細書(特許文献3、4)において、白金-亜リン酸錯体を使用する方法が提案されている。また、米国特許第4256616号明細書(特許文献5)においては、白金-亜リン酸錯体及びスズ塩を使用する方法が提案されている。さらに米国特許第4329275号明細書(特許文献6)には、白金触媒とリン化合物、及びヒドロペルオキシド基を含まない有機過酸化物を使用する方法が提案されている。上記の公報にて提案された組成物においても、50℃を超える温度に長時間晒されると、増粘やゲル化が起こってしまうため、性能安定性のために保管や輸送においては低温条件が必須となっている。
 また近年、独国特許出願公表第60316102T2号公報(特許文献7)には、白金触媒、亜リン酸トリエステル、及び有機過酸化物から作られた1液型オルガノポリシロキサンゲル組成物が記載されている。この亜リン酸トリエステルとしては、亜リン酸トリス(2,4-ジ-tert-ブチルフェニル)について述べられており、存在する有機過酸化物の量は、亜リン酸トリエステルを基準として少なくとも2当量であるという方法が提案されている。また、特表2018-503709号公報(特許文献8)においては、亜リン酸トリス(2,4-ジ-tert-ブチルフェニル)を使用する方法が提案されている。しかし、これらの方法においても、50℃を超える温度に長時間晒されると、増粘やゲル化が起こってしまうため、性能安定性のために保管や輸送などの保存状態においては低温条件が必須となっており、低温保管不要で、かつ50℃を超えかつ80℃未満の温度に長期間晒されても性状や物性が安定して保存され、さらに開放状態にて80℃以上150℃以下の加熱温度(好ましくは100℃以上130℃以下の加熱温度)で深部まで完全に硬化させることができるシリコーンゲル組成物が要望されていた。
特許第2849027号公報 特許第4530147号公報 欧州特許出願公開第2050768A1号公報 米国特許第6706840号明細書 米国特許第4256616号明細書 米国特許第4329275号明細書 独国特許出願公表第60316102T2号公報 特表2018-503709号公報
 本発明は、上記事情に鑑みなされたもので、1液型の実施態様においても、高温保存環境に長時間晒されても性状や物性が安定して保存される付加硬化型硬化性シリコーンゲル組成物であり、さらに比較的低温の加熱温度でも深部まで完全に硬化したシリコーンゲル硬化物を与えることができるシリコーンゲル組成物、及び該硬化性シリコーンゲル組成物を硬化してなるシリコーンゲル硬化物の提供を目的とする。
 本発明者は、上記目的を達成するために鋭意検討を行った結果、付加反応硬化型のシリコーンゲル組成物に、直鎖状アルキル基が亜リン酸の酸素原子に結合した特定構造を有する亜リン酸トリエステル化合物を、ヒドロシリル化付加反応触媒である白金系触媒中の白金1原子に対して3~15分子の範囲内となる量を添加し、かつ比較的高温の半減期温度(半減期分解温度ともいう)を有する有機過酸化物を上記亜リン酸トリエステル化合物の配合量(質量)に対して、5~50倍となる量(質量)を配合することで、80℃以上150℃以下の加熱温度(好ましくは100℃以上130℃以下の加熱温度)で深部まで完全に硬化したシリコーンゲル硬化物を与えることができ、さらに、酸化防止剤を配合することにより、密閉状態で50℃を超えかつ80℃未満の温度に長時間晒された状態においても性状や物性が安定したものとなり、高温保存性及び深部硬化性に優れる硬化性シリコーンゲル組成物が得られることを見出し、本発明をなすに至った。
 従って、本発明は、下記の硬化性シリコーンゲル組成物及びシリコーンゲル硬化物を提供する。
[1]
 (A)下記平均組成式(1)
  MαVi βγδ     (1)
M:R1 3SiO(1/2)
Vi:R1 2RSiO(1/2)
D:R1 2SiO(2/2)
T:R1SiO(3/2)
(式中、M、MVi、D、Tはそれぞれ上記に示す単位であり、Rは独立にアルケニル基であり、R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基である。αは0.01~3.6の正数であり、βは0.01~3.6の正数であり、かつ、(α+β)=0.5~5であり、(α/β)=0.1~5である。γは10~1,600の正数であり、δは0.5~3の正数であり、((α+β)/δ)は0.8~1.7である。)
で表される分岐鎖状オルガノポリシロキサン: 100質量部、
(B)下記一般式(2)
Figure JPOXMLDOC01-appb-C000002
(式中、R1は上記のとおりであり、zは1~500の整数である。)
で表されるオルガノハイドロジェンポリシロキサン: 0.1~50質量部、
(C)白金系触媒: 有効量、
(D)下記一般式(3)
  P(O-(CH2a-CH33   (3)
(式中、aは独立に3~7の整数である。)
で示される亜リン酸トリエステル化合物:(C)成分中の白金1原子に対して(D)成分の亜リン酸トリエステル化合物が3分子以上15分子以下となる量、
(E)10時間半減期温度が120℃以上である有機過酸化物:(D)成分の質量に対して5倍以上50倍以下の質量、
(F)酸化防止剤:有効量
を含有する硬化性シリコーンゲル組成物。
[2]
 (E)成分がジ-tert-ブチルペルオキシド、[2-(4-メチルシクロヘキシル)プロパン-2-イル]ヒドロペルオキシド、2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン、ジイソプロピルベンゼンヒドロペルオキシド、1,1,3,3-テトラメチルブチルヒドロペルオキシド、クメンヒドロペルオキシド又はtert-ブチルヒドロペルオキシドである[1]に記載の硬化性シリコーンゲル組成物。
[3]
 硬化してJIS K6249で規定される針入度が10~110であるシリコーンゲル硬化物を与えるものである[1]又は[2]に記載の硬化性シリコーンゲル組成物。
[4]
 [1]~[3]のいずれかに記載の硬化性シリコーンゲル組成物を硬化してなるシリコーンゲル硬化物。
 本発明の硬化性シリコーンゲル組成物によれば、1液型の実施態様においても、50℃を超えかつ80℃未満の高温に長時間晒されても性状や物性が安定して保存される付加硬化型の硬化性シリコーンゲル組成物を与え、かつ開放状態にて80℃以上150℃以下の加熱温度(好ましくは100℃以上130℃以下の加熱温度)で深部まで硬化したシリコーンゲル硬化物を与えることができる。
 本発明の硬化性シリコーンゲル組成物は、下記の(A)~(F)成分を必須成分として含有してなるものである。なお、本発明において、シリコーンゲル硬化物(シリコーンゲル)とは、オルガノポリシロキサンを主成分とする架橋密度の低い硬化物であって、JIS K2220のちょう度試験方法(1/4コーン)に基づくJIS K6249に規定される針入度(JIS K2220に規定される稠度(cone penetration)と同義語である)が10~110のものを意味する。これは、JIS K6253によるゴム硬度測定では測定値(ゴム硬度値)が0となり、有効なゴム硬度値を示さない程低硬度(すなわち、軟らか)であり、かつ低応力性(低弾性)であるものに相当し、この点において、いわゆるシリコーンゴム硬化物(ゴム状弾性体)とは別異のものである。
 以下、各成分について詳細に説明する。なお、本明細書において、粘度は23℃における値である。
〔(A)オルガノポリシロキサン〕
 本発明に用いられる(A)成分は、硬化性シリコーンゲル組成物の主剤(ベースポリマー)である。該(A)成分は、下記平均組成式(1)で表され、一分子中に分岐構造となるT単位構造(下記組成式(1)のTで示されるオルガノシルセスキオキサン単位)を特定の比率で有していると共に、分子中にケイ素原子に結合したアルケニル基(下記組成式(1)のMViで示されるトリオルガノシロキシ単位(R1 2RSiO(1/2)単位)中のR、本明細書中において「ケイ素原子結合アルケニル基」ともいう)を有する分岐鎖状のオルガノポリシロキサンである。
  MαVi βγδ     (1)
M:R1 3SiO(1/2)
Vi:R1 2RSiO(1/2)
D:R1 2SiO(2/2)
T:R1SiO(3/2)
(式中、M、MVi、D、Tはそれぞれ上記に示す単位であり、Rは独立にアルケニル基であり、R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基である。αは0.01~3.6の正数であり、βは0.01~3.6の正数であり、かつ、(α+β)=0.5~5であり、(α/β)=0.1~5である。γは10~1,600の正数であり、δは0.5~3の正数であり、((α+β)/δ)は0.8~1.7である。)
 上記式(1)中、Rは独立にアルケニル基であり、通常、炭素原子数2~6、好ましくは炭素原子数2~4、より好ましくは炭素原子数2~3のアルケニル基である。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等が挙げられ、好ましくはビニル基である。
 R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部を、塩素、臭素、フッ素等のハロゲン原子で置換したクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられる。中でも合成が容易であることから、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。
 また、上記式(1)中、αは0.01~3.6の正数、好ましくは0.3~2.5の正数、より好ましくは0.5~2の正数であり、βは0.01~3.6の正数、好ましくは0.3~2.5の正数、より好ましくは0.5~2の正数であり、かつ、(α+β)=0.5~5、好ましくは0.6~4、より好ましくは0.8~3であり、(α/β)=0.1~5、好ましくは0.2~4、より好ましくは0.5~2である。
 また、γは10~1,600の正数、好ましくは30~1,200の正数、より好ましくは50~1,000の正数であり、δは0.5~3の正数、好ましくは1~2.5の正数、より好ましくは1.2~2.1の正数であり、((α+β)/δ)は0.8~1.7、好ましくは0.85~1.5、より好ましくは0.9~1.2である。
 ここで、分子中の分岐構造(T単位)の比率を示すδが大きすぎると(T単位が3を超える場合)、ベースポリマー中の分岐構造(架橋点)が多すぎてしまい、未硬化状態のシリコーンゲル組成物が経時で増粘・ゲル化を起こす不具合が起こりやすくなる。また、逆に分岐構造(T単位)の比率を示すδが小さすぎると(T単位が0.5未満である場合)、分岐構造(架橋点)が少なすぎるため、加熱後に十分な硬度を有するシリコーンゲル硬化物が得られなかったり、未硬化となる場合がある。
 また、((α+β)/δ)は0.8~1.7の範囲内であることが必須である。これは、(α+β)すなわち無反応性の分子鎖末端(M単位)と反応性の分子鎖末端(MVi単位)の合計がすでにベースポリマー中で架橋点(分岐構造)を形成しているT単位の量と一定の比率とすることで、未硬化状態のシリコーンゲル組成物に十分な保存安定性と開放加熱時に十分な硬化性とを付与させることができるからである。((α+β)/δ)が0.8未満である場合、すなわちT単位の比率が大きくなりすぎると、未硬化状態のシリコーンゲル組成物は高温保管時に経時で増粘・ゲル化を起こす不具合が起こりやすくなる。また、((α+β)/δ)が1.7を超える場合、すなわちT単位の比率が小さくなりすぎると、ベースポリマー中の架橋点(分岐構造)が少なすぎるため、加熱後に十分な硬度を有するシリコーンゲル硬化物が得られなかったり、未硬化となる場合がある。
 上記のγの値は10~1,600の正数であり、(A)成分の分岐鎖状オルガノポリシロキサンの粘度に反映されるため、使用用途によりγの数値の異なるベースポリマーを使用することが有利であるが、広域に使用される(A)成分の粘度を考慮すると、好ましくは30~1,200の正数、その中でも50~1,000の正数が特に好ましい。
 (A)成分の粘度は、10~50,000mPa・sであることが好ましく、より好ましくは100~10,000mPa・sである。(A)成分の粘度が低すぎると得られる1液型硬化性シリコーンゲル組成物の粘度も低くなり、作業性が悪くなるほか、得られるシリコーンゲル硬化物が硬くなりすぎる場合があり、(A)成分の粘度が高すぎると、結果として得られる1液型硬化性シリコーンゲル組成物の粘度も高くなり、作業性に悪影響を与える場合がある。
 なお、本発明において、粘度は、通常、回転粘度計(BL型、BH型、BS型、コーンプレート型、レオメータ等)により測定することができる(以下、同じ)。
 また、本発明において、重合度(例えば、上記平均組成式(1)におけるα+β+γ+δの合計値や、後述する(B)成分の一般式(2)におけるzの値等)又は分子量は、通常、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる(以下、同じ)。
 (A)成分のオルガノポリシロキサンは、上記式(1)の範囲であれば、1種単独で用いても2種以上を組み合わせて用いてもよい。
〔(B)ケイ素原子に結合した水素原子を分子鎖両末端にのみ有するオルガノハイドロジェンポリシロキサン〕
 本発明に用いられる(B)成分は、(B)成分中のケイ素原子に結合した水素原子が上記(A)成分中のケイ素原子結合アルケニル基とヒドロシリル化付加反応し、架橋構造を形成する硬化剤(架橋剤)として作用する2官能性のオルガノハイドロジェンポリシロキサンである。該(B)成分は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000003
(式中、R1は上記のとおりであり、zは1~500の整数である。)
で表される、ケイ素原子に結合した水素原子(SiH基)を分子鎖両末端にのみ有する直鎖状のオルガノハイドロジェンポリシロキサン(すなわち、分子鎖両末端ジオルガノハイドロジェンシロキシ基封鎖ジオルガノポリシロキサン)である。
 上記式(2)中、R1は上記のとおりであり、上記式(1)のR1で例示したものと同様のものが例示できる。中でもメチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。
 また、分子中の2官能性ジオルガノシロキサン単位(Si(R122/2)の繰り返し数(又は重合度)を示すzは1~500の整数であることが必要であり、好ましくは5~300の整数である。zが1未満であると、(B)成分のオルガノハイドロジェンポリシロキサンの粘度が低くなり、作業性が悪くなるほか、得られるシリコーンゲル硬化物が硬すぎたりするおそれがある。またzが500を超える数値であると、(B)成分のオルガノハイドロジェンポリシロキサンの粘度が高くなってしまうため、作業性に悪影響を与える。
 (B)成分の粘度は、0.1~1,000mPa・sであることが好ましく、より好ましくは1~500mPa・sである。(B)成分の粘度が低すぎると、得られる1液型硬化性シリコーンゲル組成物の粘度も低くなり、作業性が悪くなるほか、得られるシリコーンゲル硬化物が硬くなりすぎる場合があり、(B)成分の粘度が高すぎると、結果として得られる1液型硬化性シリコーンゲル組成物の粘度も高くなり、作業性に悪影響を与える場合がある。
 ここで、(B)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いてもよいし、zの数値が全く異なる2種以上を組み合わせて用いてもよい。
 (B)成分の添加量は、(A)成分のオルガノポリシロキサン100質量部に対し、0.1~50質量部であり、3~30質量部の範囲がより好ましい。0.1質量部未満であると、得られるシリコーンゲル硬化物が軟らかすぎたり、最悪の場合は硬化物が得られないおそれがある。また、50質量部を超えると、期待する耐寒性能を得ることができなかったり、得られるシリコーンゲル硬化物が硬くなるおそれがある。
〔(C)白金系触媒〕
 本発明に用いられる(C)成分は、前記(A)成分中のケイ素原子結合アルケニル基と前記(B)成分中のケイ素原子結合水素原子(SiH基)とのヒドロシリル化付加反応を促進させるための触媒として従来から通常使用されるものである。また、この(C)成分は、室温(23℃±15℃)における本発明の硬化性シリコーンゲル組成物の調製時に、後述する(D)成分の亜リン酸トリエステル化合物と混合すると、反応して容易にかつ定量的に白金-亜リン酸化合物錯体を形成するものであり、該白金-亜リン酸化合物錯体を形成することで、該硬化性シリコーンゲル組成物の保存中(密閉状態)において50℃を超えかつ80℃未満の温度に長時間晒されても、性状や物性が安定した1液型の硬化性シリコーンゲル組成物とすることが可能となる。
 該(C)成分は白金系触媒(白金又は白金系化合物)であり、公知のものを使用することができる。その具体例としては、白金ブラック、塩化白金酸、塩化白金酸等のアルコール変性物;塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体などが例示される。
 (C)成分の配合量は有効量でよく、所望の硬化速度により適宜増減することができるが、通常、(A)成分及び(B)成分の合計量に対して、白金原子の質量換算で、通常0.1~1,000ppm、好ましくは1~500ppm、より好ましくは2~200ppmの範囲である。この配合量が少なすぎると80~150℃の加熱温度では組成物の硬化が十分に進行しない場合があり、多すぎると得られる硬化物の耐熱性が低下する場合がある。
〔(D)亜リン酸トリエステル化合物〕
 (D)成分の亜リン酸トリエステル化合物は、室温(23℃±15℃)における本発明の硬化性シリコーンゲル組成物の保存中において、前記(C)成分の白金触媒との間で、白金-亜リン酸化合物錯体を形成させることで、50℃を超えかつ80℃未満の温度に長時間晒された状態においても、性状や物性が安定した硬化性シリコーンゲル組成物を得られるようにするものであり、そのための必須成分である。さらに(D)成分の亜リン酸トリエステル化合物(すなわち、トリ(アルコキシ)リン化合物)としては、下記一般式(3)の構造を有すること、すなわち、分子中のトリエステル構造を形成する3個のアルコキシ基がいずれも直鎖状のアルキル基が亜リン酸の酸素原子に結合した構造のアルコキシ基となった亜リン酸トリエステル化合物であることが必須である。
  P(O-(CH2a-CH33   (3)
(式中、aは独立に3~7の整数である。)
 上記式中、aは独立に3~7の整数であり、好ましくは3~5の整数であり、より好ましくは3又は4であり、さらに好ましくは3である。
 (D)成分の亜リン酸トリエステル化合物としては、例えば、亜リン酸トリ(n-ブチル)、亜リン酸トリ(n-ペンチル)、亜リン酸トリ(n-ヘキシル)、亜リン酸トリ(n-ヘプチル)、亜リン酸トリ(n-オクチル)が挙げられるが、好ましくは亜リン酸トリ(n-ブチル)、亜リン酸トリ(n-ペンチル)、亜リン酸トリ(n-ヘキシル)であり、より好ましくは亜リン酸トリ(n-ブチル)、亜リン酸トリ(n-ペンチル)であり、さらに好ましくは亜リン酸トリ(n-ブチル)(以下、単に、亜リン酸トリブチルと記載する)である。
 上記で表される亜リン酸トリエステル化合物の配合量は、前述する(C)成分中の白金1原子に対し、(D)成分の亜リン酸トリエステル化合物が3分子以上15分子以下の範囲内となる量を添加することが必須である。これは、白金1原子に対し、一般式(3)で示される亜リン酸トリエステル化合物(例えば、亜リン酸トリブチル)が3分子未満となる量の場合、白金触媒の活性を十分に低下させることができないため、高温保存条件(例えば50℃超80℃未満の温度環境)下において長期間晒されると、シリコーンゲル組成物が増粘したり、保存中にゲル化したりする。また、白金1原子に対し、一般式(3)で示される亜リン酸トリエステル化合物(例えば、亜リン酸トリブチル)が15分子を超える量となってしまうと、亜リン酸トリエステル化合物の添加量が多すぎてしまい、硬化させるために加熱しても、十分に硬化しなかったり、硬化に長時間かかったり、最悪の場合は硬化物を得ることができなくなる。
 また、上記亜リン酸トリエステル化合物の好ましい配合量は、(C)成分中の白金1原子に対し、亜リン酸トリエステル化合物が3~15分子の範囲内となる量、より好ましくは、(C)成分中の白金1原子に対し、亜リン酸トリエステル化合物が4~13分子の範囲内となる量、さらに好ましくは、(C)成分中の白金1原子に対し、亜リン酸トリエステル化合物が5~11分子の範囲内となる量である。
 また、(D)成分は予め(C)成分と均一に混合したのちに添加しても、あるいは、(C)成分と(D)成分をそれぞれ別々に単独で添加してもよい。
〔(E)有機過酸化物〕
 (E)成分の有機過酸化物は、本発明における(C)成分の白金系触媒と、(D)成分の亜リン酸トリエステル化合物が反応して生成する白金-亜リン酸トリエステル化合物錯体から、亜リン酸トリエステル化合物を脱離させて白金触媒の活性を高めるための酸化剤として作用するものである。この(E)成分を添加することで80℃以上150℃以下の加熱温度(好ましくは100℃以上130℃以下の加熱温度)に晒すと比較的短時間で深部まで完全に硬化することができることから、非常に重要な必須成分である。ここで使用される有機過酸化物は、10時間半減期温度が有機過酸化物の中でも比較的高いものが非常に有効である。その理由は、後述する(F)成分の酸化防止剤と併用することで、高温保存条件、例えば50℃を超えかつ80℃未満の温度に長時間晒された状態においても有機過酸化物が比較的安定であるため、性状や物性が安定して保存される1液型の硬化性シリコーンゲル組成物を得ることが可能になるからである。
 従って、(E)成分の有機過酸化物は、10時間半減期温度(すなわち、分解開始から10時間後が半減期(有機過酸化物の50質量%が分解するまでの時間)に相当する分解温度)が120℃以上であることを必須とするものである。この半減期分解温度(10時間)は、好ましくは121℃以上、より好ましくは122℃以上、さらに好ましくは123℃以上である。なお、この半減期分解温度(10時間)の上限は特に制限されないが、通常、170℃以下、好ましくは150℃以下、より好ましくは140℃以下、更に好ましくは130℃以下であればよい。この10時間半減期温度が高すぎると、有機過酸化物を配合した効果が発現されない場合がある。
 なお、10時間半減期温度は、有機過酸化物を特定の温度で熱分解させて、該有機過酸化物の熱分解速度定数を求めることにより算出される。具体的には、測定対象の有機過酸化物を濃度が0.1mol/Lとなるようにラジカルに対して不活性な溶媒(例えばベンゼン)に溶解させた溶液を調製し、これを容器に密封し、恒温槽中で所定温度に保持して有機過酸化物を熱分解させ、このときに測定される保持時間と有機過酸化物の濃度変化との関係から分解速度が一定であるという前提で熱分解速度定数を求め、この熱分解速度定数に基づき半減期が10時間となる温度を10時間半減期温度として求めるものである。
 (E)成分の有機過酸化物は、以下に示すいずれかであることが好ましい。
・ジ-tert-ブチルペルオキシド(10時間半減期温度:123.7℃)
Figure JPOXMLDOC01-appb-C000004
・[2-(4-メチルシクロヘキシル)プロパン-2-イル]ヒドロペルオキシド(10時間半減期温度:128.0℃)
Figure JPOXMLDOC01-appb-C000005
・2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン(10時間半減期温度:128.4℃)
Figure JPOXMLDOC01-appb-C000006
・ジイソプロピルベンゼンヒドロペルオキシド(10時間半減期温度:145.1℃)
Figure JPOXMLDOC01-appb-C000007
・1,1,3,3-テトラメチルブチルヒドロペルオキシド(10時間半減期温度:152.9℃)
Figure JPOXMLDOC01-appb-C000008
・クメンヒドロペルオキシド(10時間半減期温度:157.9℃)
Figure JPOXMLDOC01-appb-C000009
・tert-ブチルヒドロペルオキシド(10時間半減期温度:166.5℃)
Figure JPOXMLDOC01-appb-C000010
 (E)成分の有機過酸化物の配合量は、前述した(D)成分の亜リン酸トリエステル化合物(例えば、亜リン酸トリブチル)の配合量(質量)に対し、5倍以上50倍以下となる量(質量)、好ましくは8倍以上40倍以下となる量(質量)、より好ましくは12倍以上38倍以下となる量(質量)の範囲で添加することで、保管温度が50℃を超える環境(好ましくは80℃未満の環境)に長時間晒されても、性状や物性が安定した高温保存性に優れた1液型の硬化性シリコーンゲル組成物であり、かつ開放状態にて150℃以下の加熱温度(好ましくは80℃以上の加熱温度、より好ましくは100℃以上130℃以下の加熱温度)に晒すと比較的短時間で深部まで完全に硬化する深部硬化性に優れた1液型の硬化性シリコーンゲル組成物となり得る。ここで(E)成分の有機過酸化物の配合量(質量)が、(D)成分の亜リン酸トリエステル化合物(すなわち亜リン酸トリブチル)の配合量(質量)に対し、5倍未満となる量である場合は、80℃以上150℃以下の加熱温度に晒しても本発明の硬化性シリコーンゲル組成物において短時間で深部まで硬化することが難しくなり、また逆に有機過酸化物の配合量が、(D)成分の亜リン酸トリエステル化合物(すなわち亜リン酸トリブチル)の配合量に対して50倍を超える量となった場合は、(C)成分の白金系触媒と、(D)成分の亜リン酸トリエステル化合物が反応して生成する白金-亜リン酸化合物錯体から、亜リン酸トリエステル化合物を脱離させて進行する付加反応以外にラジカル的架橋重合反応も起こる可能性があるため、得られるシリコーンゲル硬化物が脆くなったり、柔軟性が乏しくなる。
〔(F)酸化防止剤〕
 (F)成分の酸化防止剤は、前述する(E)成分の有機過酸化物の分解により生成するラジカルに水素原子を与え自動酸化を止める働きをさせるために添加する必須成分である。本発明の硬化性シリコーンゲル組成物においてこの(F)成分を添加しない場合、(E)成分である有機過酸化物の10時間半減期温度の高低にかかわらず、50℃を超える温度に長時間晒されると容器内でゲル化してしまう。そのため、非常に微量の添加ではあるが、必須の添加剤である。
 この酸化防止剤としては、フェノール化合物系酸化防止剤、有機硫黄化合物系酸化防止剤、アミン化合物系酸化防止剤、リン化合物系酸化防止剤等の従来公知の酸化防止剤から適宜選択して用いることができるが、付加毒などによる白金触媒の活性低下を考えるとフェノール化合物系酸化防止剤を用いることが好ましい。
 フェノール化合物系酸化防止剤の具体例としては、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-tert-ブチルフェノール)、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、4,4’-ブチリデンビス-(6-tert-ブチル-3-メチルフェノール)、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,2-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、4,6-ビス(ドデシルチオメチル)-o-クレゾール、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、2,2’-メチレンビス-(4-エチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-エチルフェノール、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、トリエチレングリコール-ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、ジエチル[〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル]ホスホネート、2,5,7,8-テトラメチル-2(4’,8’,12’-トリメチルトリデシル)クロマン-6-オール、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン等が挙げられる。
 ここで、使用する酸化防止剤は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
 (F)成分の配合量は有効量でよく、所望の硬化速度あるいは保存安定性により適宜増減することができるが、通常、前述した(E)成分の有機過酸化物100質量部に対して0.01~10質量部、特に0.1~5質量部であることが好ましい。(F)成分の配合量が多すぎると亜リン酸トリエステル化合物を脱離させて白金触媒の活性を高めるための酸化剤としての(E)成分の有機過酸化物の添加効果が損なわれるため、80℃以上150℃以下の加熱温度に晒しても本発明の硬化性シリコーンゲル組成物を短時間で深部まで硬化することが難しくなるおそれがあり、少なすぎると保存中に(E)成分の有機過酸化物の分解が進行してしまい組成物がゲル化する場合がある。
〔その他の任意成分〕
 本発明の組成物には、上記(A)~(F)成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、反応抑制剤、無機質充填剤、ケイ素原子結合水素原子及びケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、耐熱性付与剤、難燃性付与剤、チクソ性付与剤、顔料、染料等が挙げられる。
 反応抑制剤は、上記組成物の反応を抑制するための成分であって、具体的には、例えば、アセチレン系、アミン系、カルボン酸エステル系等の反応抑制剤が挙げられる。
 無機質充填剤としては、例えば、ヒュームドシリカ、結晶性シリカ、沈降性シリカ、中空フィラー、シルセスキオキサン、ヒュームド二酸化チタン、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、層状マイカ、カーボンブラック、ケイ藻土、ガラス繊維等の無機質充填剤;これらの充填剤をオルガノアルコキシシラン化合物、オルガノクロロシラン化合物、オルガノシラザン化合物、低分子量シロキサン化合物等の有機ケイ素化合物で表面疎水化処理した充填剤等が挙げられる。また、シリコーンゴムパウダー、シリコーンレジンパウダー等を配合してもよい。
 本発明のシリコーンゲル組成物は、上記成分(A)~(F)、及び必要に応じてその他の任意成分を常法に準じて混合することにより得ることができる。
 この場合、本発明のシリコーンゲル組成物は、通常の硬化性シリコーンゲル組成物と同様に、2液に分け、使用時にこの2液を混合して硬化させる所謂2液型の組成物とすることもできるが、高温保存性に優れることから作業性のよい1液型の組成物とすることが可能である。
〔組成物の硬化〕
 本発明の硬化性シリコーンゲル組成物は、1液型の実施態様においても、本発明の硬化性シリコーンゲル組成物を用途に応じた温度条件下で硬化させることによりシリコーンゲル硬化物が得られる。加熱温度としては80~150℃の範囲内、より最適な温度は100~130℃の範囲内が好ましい。また、加熱時間としては、10分~120分程度、特には20分~60分程度が好ましい。
 本発明の硬化性シリコーンゲル組成物は、電気・電子部品の封止もしくは充填に用いることが好適である。
 本発明の硬化性シリコーンゲル組成物の硬化物(シリコーンゲル硬化物)は、JIS K6249で規定される1/4コーンによる針入度が10~110であることが好ましく、より好ましくは10~100、さらに好ましくは15~90である。針入度が10未満になると、シリコーンゲル組成物が硬化する際の応力に耐えきれず、電子回路の一部が破断したり、シリコーンゲル硬化物内部にクラックが生成したりする場合がある。また、針入度が110を超えると、振動によりシリコーンゲル硬化物が脱落したり、落下したりする場合がある。
 以上の本発明の硬化性シリコーンゲル組成物によれば、50℃を超えかつ80℃未満の温度に長時間晒された状態においても、性状や物性が安定した高温保存性に優れ、かつ開放状態にて比較的低温、すなわち80℃以上150℃以下の加熱温度(好ましくは100℃以上130℃以下の加熱温度)で深部まで硬化したシリコーンゲル硬化物を与えることができる深部硬化性に優れた1液型の硬化性シリコーンゲル組成物となる。すなわち、本発明の硬化性シリコーンゲル組成物を1液型としても70℃で30日間保管しても該組成物がゲル化することなくその性状として液体の状態が保たれ、その粘度も初期値の2倍以内、好ましくは1.1倍以内に保たれ、さらにはその硬化性(特に深部硬化性)も初期状態から変わらず保たれる。また、本発明の硬化性シリコーンゲル組成物を1液型としても70℃で30日間保管しても、その硬化物(シリコーンゲル硬化物)の物性が初期状態とほとんど変わらず保たれ、具体的には70℃で30日間保管後の本発明の硬化性シリコーンゲル組成物の硬化物の針入度(JIS K2220で規定される1/4コーン)が10~110であって、製造初期の針入度から±5ポイント以内、好ましくは±2ポイント以内に保たれる。
 以下、実施例及び比較例により本発明を具体的に説明するが、下記の実施例は本発明を何ら制限するものではない。なお、実施例中、「部」は「質量部」を表す。また、針入度は、JIS K6249で規定される1/4コーンによる針入度であり、株式会社離合社製自動針入度計RPM-101を用いて測定した。
[実施例1]
 (A)成分である分岐型オルガノポリシロキサン
下記平均組成式(4)
  M1.21Vi 0.8897.72.0     (4)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=1.21、β=0.88、γ=97.7、δ=2.0、(α+β)=2.09、(α/β)=1.375、((α+β)/δ)=1.045)
で示される25℃での粘度が800mPa・sの分岐鎖状オルガノポリシロキサン100部、
(B)成分である下記式(5)
Figure JPOXMLDOC01-appb-C000011
で示され、25℃での粘度が18mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン10.0部を添加し、均一攪拌したのち、
(C)成分である白金原子を1.0質量%含有する塩化白金酸ビニルシロキサン錯体のジメチルポリシロキサン溶液を0.138部、
(D)成分である亜リン酸トリブチル(一般式(3)においてa=3に相当する、品名;JP-304(東京化成工業株式会社製))を0.0124部(上記(C)成分中の白金1原子に対して7.0分子となる量)、
(E)成分であるジ-tert-ブチルペルオキシド(品名;パーブチルD(日油株式会社製)、10時間半減期温度;123.7℃)を0.30部(上記(D)成分の配合量に対し24.2倍の量)、
(F)成分である2,6-ジ-tert-ブチル-4-メチルフェノールの1質量%エタノール溶液を0.25部(酸化防止剤としての配合量は0.0025部)、
及び任意成分であるエチニルシクロヘキサノールを0.10部添加し、均一に混合した組成物1を得た。得られた組成物1を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度45の硬化物を得た。
[実施例2]
 (A)成分である下記平均組成式(6)
  M0.83Vi 0.8498.2φ 2.21.5     (6)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
φ:(C652SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=0.83、β=0.84、γ=100.4、δ=1.5、(α+β)=1.67、(α/β)=0.988、((α+β)/δ)=1.11)
で示される25℃での粘度が1,000mPa・sの分岐鎖状オルガノポリシロキサン100部、
(B)成分である下記式(5)
Figure JPOXMLDOC01-appb-C000012
で示され、25℃での粘度が18mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン9.0部を添加し、均一攪拌したのち、
(C)成分である白金原子を1.0質量%含有する塩化白金酸ビニルシロキサン錯体のジメチルポリシロキサン溶液を0.138部、
(D)成分である亜リン酸トリブチル(一般式(3)においてa=3に相当する、品名;JP-304(東京化成工業株式会社製))を0.0124部(上記(C)成分中の白金1原子に対して7.0分子となる量)、
(E)成分であるジ-tert-ブチルペルオキシド(品名;パーブチルD(日油株式会社製)、10時間半減期温度;123.7℃)を0.30部(上記(D)成分の配合量に対し24.2倍の量)、
(F)成分である2,6-ジ-tert-ブチル-4-メチルフェノールの1質量%エタノール溶液を0.15部(酸化防止剤としての配合量は0.0015部)、
及び任意成分であるエチニルシクロヘキサノールを0.10部添加し、均一に混合した組成物2を得た。得られた組成物2を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度55の硬化物を得た。
[実施例3]
 (A)成分である分岐型オルガノポリシロキサン
下記平均組成式(4)
  M1.21Vi 0.8897.72.0     (4)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=1.21、β=0.88、γ=97.7、δ=2.0、(α+β)=2.09、(α/β)=1.375、((α+β)/δ)=1.045)
で示される25℃での粘度が800mPa・sの分岐鎖状オルガノポリシロキサン100部、
(B)成分である下記式(5)
Figure JPOXMLDOC01-appb-C000013
で示され、25℃での粘度が18mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン10.0部を添加し、均一攪拌したのち、
(C)成分である白金原子を1.0質量%含有する塩化白金酸ビニルシロキサン錯体のジメチルポリシロキサン溶液を0.144部、
(D)成分である亜リン酸トリブチル(一般式(3)においてa=3に相当する、品名;JP-304(東京化成工業株式会社製))を0.00556部(上記(C)成分中の白金1原子に対して3.0分子となる量)、
(E)成分であるジ-tert-ブチルペルオキシド(品名;パーブチルD(日油株式会社製)、10時間半減期温度;123.7℃)を0.20部(上記(D)成分の配合量に対し36.0倍の量)、
(F)成分である2,6-ジ-tert-ブチル-4-メチルフェノールの1質量%エタノール溶液を0.10部(酸化防止剤としての配合量は0.0010部)、
及び任意成分であるエチニルシクロヘキサノールを0.10部添加し、均一に混合した組成物3を得た。得られた組成物3を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度43の硬化物を得た。
[実施例4]
 (A)成分である分岐型オルガノポリシロキサン
下記平均組成式(4)
  M1.21Vi 0.8897.72.0     (4)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=1.21、β=0.88、γ=97.7、δ=2.0、(α+β)=2.09、(α/β)=1.375、((α+β)/δ)=1.045)
で示される25℃での粘度が800mPa・sの分岐鎖状オルガノポリシロキサン100部、
(B)成分である下記式(5)
Figure JPOXMLDOC01-appb-C000014
で示され、25℃での粘度が18mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン10.0部を添加し、均一攪拌したのち、
(C)成分である白金原子を1.0質量%含有する塩化白金酸ビニルシロキサン錯体のジメチルポリシロキサン溶液を0.126部、
(D)成分である亜リン酸トリブチル(一般式(3)においてa=3に相当する、品名;JP-304(東京化成工業株式会社製))を0.0242部(上記(C)成分中の白金1原子に対して15.0分子となる量)、
(E)成分であるジ-tert-ブチルペルオキシド(品名;パーブチルD(日油株式会社製)、10時間半減期温度;123.7℃)を0.30部(上記(D)成分の配合量に対し12.4倍の量)、
(F)成分である2,6-ジ-tert-ブチル-4-メチルフェノールの1質量%エタノール溶液を0.10部(酸化防止剤としての配合量は0.0010部)、
及び任意成分であるエチニルシクロヘキサノールを0.10部添加し、均一に混合した組成物4を得た。得られた組成物4を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度50の硬化物を得た。
[比較例1]
 実施例1において、(A)成分である平均組成式(4)においてT単位構造を含まない直鎖状ベースポリマー(すなわち、下記平均組成式(7)
  M1.21Vi 0.8897.7     (7)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
(式(1)において、α=1.21、β=0.88、γ=97.7、δ=0、(α+β)=2.09、(α/β)=1.375)
で示される23℃での粘度が600mPa・sの直鎖状オルガノポリシロキサン)を100部用いた以外は同様にして、組成物5を得た。この組成物5を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱したところ、増粘は確認されたが未硬化であった。
[比較例2]
 実施例1において、(A)成分である平均組成式(4)におけるT単位構造が4.0である分岐鎖状ベースポリマー(すなわち、下記平均組成式(8)
  M1.21Vi 0.8897.74.0     (8)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=1.21、β=0.88、γ=97.7、δ=4.0、(α+β)=2.09、(α/β)=1.375、((α+β)/δ)=0.52となり本発明の規定外)
で示される23℃での粘度が800mPa・sの分岐鎖状オルガノポリシロキサン)を100部用いた以外は同様にして、組成物6を得た。この組成物6を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度18の硬化物を得た。
[比較例3]
 実施例1において、(A)成分である平均組成式(4)におけるT単位構造が0.3である分岐鎖状ベースポリマー(すなわち、下記平均組成式(9)
  M1.21Vi 0.8897.70.3     (9)
M:(CH33SiO(1/2)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=1.21、β=0.88、γ=97.7、δ=0.3、(α+β)=2.09、(α/β)=1.375、((α+β)/δ)=6.97となり本発明の規定外)
で示される23℃での粘度が550mPa・sの分岐鎖状オルガノポリシロキサン)を100部用いた以外は同様にして、組成物7を得た。この組成物7を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱したところ、増粘は確認されたが未硬化であった。
[比較例4]
 実施例1において、(A)成分である平均組成式(4)におけるαが0である(M単位を含まない)分岐鎖状ベースポリマー(すなわち、下記平均組成式(10)
  MVi 0.8897.72.0     (10)
Vi:(CH32(CH2=CH)SiO(1/2)
D:(CH32SiO(2/2)
T:(CH3)SiO(3/2)
(式(1)において、α=0、β=0.88、γ=97.7、δ=2.0、(α+β)=0.88、(α/β)=0、((α+β)/δ)=0.44となり本発明の規定外)
で示される23℃での粘度が700mPa・sの分岐鎖状オルガノポリシロキサン)を100部用いた以外は同様にして、組成物8を得た。この組成物8を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、得られたシリコーンゲル硬化物が硬すぎてしまい、針入度が4を示した。
[比較例5]
 実施例1において、(B)成分である一般式(5)で示され、23℃での粘度が18mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサンを用いる代わりに、下記一般式(11)
Figure JPOXMLDOC01-appb-C000015
で示され、23℃での粘度が100mPa・sの両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体を2.0部用いた以外は同様にして、組成物9を得た。この組成物9を120℃で40分間加熱硬化したところ、針入度38の硬化物を得た。
[比較例6]
 実施例1において、(D)成分である亜リン酸トリブチルを用いる代わりに、亜リン酸トリス(2,4-tert-ブチルフェニル)を0.01658部(白金1原子に対して5.0分子となる量)用いた以外は同様にして、組成物10を得た。この組成物10を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱したところ、表面のみ硬化し、深部は未硬化であった。なお、針入度は76を示した。
[比較例7]
 実施例1において、(D)成分である亜リン酸トリブチルを0.00354部(白金1原子に対して2.0分子となる量)用いた以外は同様にして、組成物11を得た。この組成物11を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度45の硬化物を得た。
[比較例8]
 実施例1において、(D)成分である亜リン酸トリブチルを0.03540部(白金1原子に対して20.0分子となる量)用いた以外は同様にして、組成物12を得た。この組成物12を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱したところ、表面のみ硬化し、内部は未硬化であった。なお、針入度は52を示した。
[比較例9]
 実施例1において、(E)成分であるジ-tert-ブチルペルオキシドの代わりにジ-tert-ヘキシルペルオキシド(品名;パーヘキシルD(日油株式会社製)、10時間半減期温度:116.4℃)を0.30部((D)成分の配合量に対し24.2倍となる量)用いた以外は同様にして、組成物13を得た。この組成物13を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度44の硬化物を得た。
[比較例10]
 実施例1において、(E)成分であるジ-tert-ブチルペルオキシドを0.050部((D)成分の配合量に対し4.0倍となる量)用いた以外は同様にして、組成物14を得た。この組成物14を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱したところ、増粘は確認されたが未硬化であった。
[比較例11]
 実施例1において、(E)成分であるジ-tert-ブチルペルオキシドを0.7部((D)成分の配合量に対し56.5倍となる量)用いた以外は同様にして、組成物15を得た。この組成物15を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度43の硬化物を得た。
[比較例12]
 実施例1において、(E)成分であるジ-tert-ブチルペルオキシドを除いた(未添加とした)以外は同様にして、組成物16を得た。この組成物16を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱したところ、未硬化であった。
[比較例13]
 実施例1において、(F)成分である2,6-ジ-tert-ブチル-4-メチルフェノールの1質量%エタノール溶液を未添加とした以外は同様にして、組成物17を得た。この組成物17を容器(寸法:直径30mmφ×深さ15mm)に入れて120℃で40分間加熱硬化したところ、針入度45の硬化物を得た。
[試験]
 上記実施例1~4及び比較例1~13で得られた組成物を用いて、以下の試験を実施した。これらの結果を表1、2に示す。
(1)初期物性の評価:
針入度
 上記実施例及び比較例で得られた硬化物の硬さは、針入度を測定することで評価した。なお、針入度は、JIS K6249で規定される1/4コーンによる針入度であり、株式会社離合社製自動針入度計RPM-101を用いて測定した。
粘度
 上記実施例及び比較例で得られた組成物の粘度は、回転粘度計を用いて23℃の温度条件にて行った。
深部硬化性
 上記実施例及び比較例で得られた組成物を、容器(寸法:直径30mmφ×深さ15mm)に入れて120℃にて40分間硬化させたのち、硬化したシリコーンゲル硬化物を掻き出して深部まで硬化しているかを評価した。15mmの深さ(つまり底部)まで硬化しているものを合格、深さ15mmより浅い部分(すなわち、内部)や深部(底部)が液状(未硬化)であるものを不合格と判定した。
(2)高温保存性の評価:
70℃保存性
 容量120mlのガラス製容器に組成物を100g入れ、空隙を窒素にて置換したのち密閉した。その後、充填した容器を70℃の乾燥機に入れ、10日間保管した。この時の空間に占める酸素濃度は計算上50ppm以下になるように窒素で置換した。その後、目視にて性状を確認し、液状を保てたものを合格とした。
70℃×10日後針入度
 上記70℃保存性の試験において、70℃にて10日間放置後に性状が液状である組成物を、120℃で40分間加熱硬化して硬化物を作製し、上記と同様に針入度を測定した。その際、製造初期の針入度から±5ポイント以内のものを合格、-5ポイントを下回るもの、+5ポイントを超えるものあるいは測定不可能であったものを不合格と判定した。
70℃×10日後粘度
 また、上記70℃保存性の試験において、70℃にて10日間放置後に性状が液状である組成物を、回転粘度計を用いて23℃の温度条件にて粘度測定を行い、初期値と比較した。その際、粘度が初期値の2倍以内であるものを合格、粘度が初期値の2倍を超えるもの、及びすでにゲル化したものを保存性不合格と判定した。
70℃×10日後深部硬化性
 上記70℃保存性の試験において、70℃にて10日間放置後に性状が液状である組成物の深部硬化性を、上記と同様にして測定し、評価した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
[評価結果]
 実施例1~4の組成物は、本発明の要件を満たすものであり、開放状態において120℃に40分間晒すことで深部まで硬化することができ、さらに製造初期の物性と性状が70℃にて10日間の保管サンプルにおいても保持されていることから、比較的低温・短時間で硬化し、高温においても保存性が良好な組成物であることが分かる。
 これに対し、比較例1の組成物は、(A)成分であるオルガノポリシロキサンの構造中にT単位を含まないことから架橋点が形成されないため、120℃の加熱温度に40分間晒すことでは増粘したのみで未硬化であった。比較例2、3においては、(A)成分であるオルガノポリシロキサンの構造中のT単位数が、本発明の規定値を逸脱している。そのため、比較例2ではT単位数が多すぎるため、70℃にて10日間の保管中にゲル化してしまっている。その逆に、比較例3においては、T単位数が少なすぎるため、比較例1と同様に120℃の加熱温度に40分間晒すことでは増粘したのみで未硬化であった。比較例4においては、(A)成分であるオルガノポリシロキサンの構造中のαを含まない、すなわち分子鎖末端を構成する単官能性シロキシ単位が付加硬化性を有するMVi単位のみからなるベースオイルとなるため、架橋点が多すぎて初期針入度が4、すなわち測定精度が疑問視される5以下の針入度となってしまう。その上、70℃にて10日間の保管中にゲル化してしまっている。比較例5においては、(B)成分であるオルガノハイドロジェンポリシロキサンの構造が異なり、側鎖のみにSiH基を有するオルガノハイドロジェンシロキサンを使用した例であるが、この場合も同様に70℃にて10日間の保管中にゲル化してしまった。比較例6は、本発明の(D)成分とは構造が異なる亜リン酸トリエステル化合物を使用した例であるが、このような亜リン酸トリエステル化合物を使用した場合では、120℃で40分間の硬化条件では容器(寸法30mmφ×15mm)の底部まで組成物が硬化していないことが分かる。その上、70℃にて10日間の保管中にゲル化してしまっている。比較例7、8においては、(D)成分である亜リン酸トリエステル化合物の添加量が本発明の規定値を外れている。比較例7においては、亜リン酸トリエステル化合物の添加量が白金1分子に対して2.0分子となる量と少ないため、70℃にて10日間の保管中にゲル化してしまった。また、その逆である比較例8においては、亜リン酸トリエステル化合物の添加量が白金1分子に対して20.0分子となる量と多すぎるため、120℃の加熱温度に40分間晒すことで硬化はするものの、この硬化条件では容器(寸法30mmφ×15mm)の内部が十分に硬化しておらず、内部に未硬化部分が確認される。比較例9は、本発明の(E)成分とは構造が異なり、10時間半減期温度が120℃未満である有機過酸化物を使用した例であるが、このような有機過酸化物を使用した場合、有機過酸化物の10時間半減期温度(116.4℃)が本発明で良好であるジ-tert-ブチルペルオキシドの10時間半減期温度(123.7℃)より低いため、製造当初においては120℃の加熱温度に40分間晒すことで深部まで硬化する良好な組成物となるが、70℃にて10日間の保管中にゲル化してしまっているため、高温保存性が達成されない。比較例10、11においては、(E)成分である有機過酸化物の添加量が本発明の規定値を外れている。比較例10においては、有機過酸化物の添加量が(D)成分である亜リン酸トリエステル化合物の添加量に対し4.0倍と少ないため、(C)成分の白金系触媒と、(D)成分の亜リン酸トリエステル化合物が反応して生成する白金-亜リン酸トリエステル化合物錯体から、亜リン酸トリエステル化合物を脱離させて白金触媒の活性を高めるための十分な酸化剤として作用が得られず、120℃の加熱温度に40分間晒すことでは増粘したのみで未硬化であった。また、その逆である比較例11においては、有機過酸化物の添加量が(D)成分である亜リン酸トリエステル化合物の添加量に対し56.5倍と大過剰であるため、120℃の加熱温度に40分間晒すことで深部まで硬化する良好な組成物となり得るものの、70℃にて10日間の保管中に有機過酸化物が分解し、酸化剤として作用してしまっているためゲル化が起こり、保存性が達成されない。比較例12においては、(E)成分である有機過酸化物が未添加であるため、120℃の加熱温度に40分間晒すことでは硬化していない。よって、(E)成分の有機過酸化物が120℃程度の温度により分解し、(D)成分の亜リン酸トリエステル化合物の有効な酸化剤として作用していることが分かる。比較例13においては、(E)成分の有機過酸化物の分解により生成するラジカルに水素原子を与え自動酸化を止める働きをさせるために添加する(F)成分の酸化防止剤が未添加となっているため、120℃の加熱温度に40分間晒すことで深部まで硬化する良好な組成物となり得るものの、70℃にて10日間の保管中に有機過酸化物の分解が進行してしまいゲル化してしまっている。
 上記の結果から、本発明の有効性が確認できる。
 本発明の保存性良好な1液型硬化性シリコーンゲル組成物は、1液型のため混合不要であり、輸送・保管における環境変化に対するロバスト性が非常に高い材料であるため、使用するユーザーや長期間の輸送・保管に対して非常に有利な加熱硬化性の材料となる。そのため、長期間物性変化がない材料となり、使用者にとっても有利な材料となる。冷蔵・輸送コスト、保管の手間が省略できる材料であるといえる。
 また、80℃以上150℃以下の温度に短時間に晒すと深部まで硬化することができるため、製造スピード短縮による製造コスト削減やCO2削減などの環境面においても有用である。

Claims (4)

  1.  (A)下記平均組成式(1)
      MαVi βγδ     (1)
    M:R1 3SiO(1/2)
    Vi:R1 2RSiO(1/2)
    D:R1 2SiO(2/2)
    T:R1SiO(3/2)
    (式中、M、MVi、D、Tはそれぞれ上記に示す単位であり、Rは独立にアルケニル基であり、R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基である。αは0.01~3.6の正数であり、βは0.01~3.6の正数であり、かつ、(α+β)=0.5~5であり、(α/β)=0.1~5である。γは10~1,600の正数であり、δは0.5~3の正数であり、((α+β)/δ)は0.8~1.7である。)
    で表される分岐鎖状オルガノポリシロキサン: 100質量部、
    (B)下記一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は上記のとおりであり、zは1~500の整数である。)
    で表されるオルガノハイドロジェンポリシロキサン: 0.1~50質量部、
    (C)白金系触媒: 有効量、
    (D)下記一般式(3)
      P(O-(CH2a-CH33   (3)
    (式中、aは独立に3~7の整数である。)
    で示される亜リン酸トリエステル化合物:(C)成分中の白金1原子に対して(D)成分の亜リン酸トリエステル化合物が3分子以上15分子以下となる量、
    (E)10時間半減期温度が120℃以上である有機過酸化物:(D)成分の質量に対して5倍以上50倍以下の質量、
    (F)酸化防止剤:有効量
    を含有する硬化性シリコーンゲル組成物。
  2.  (E)成分がジ-tert-ブチルペルオキシド、[2-(4-メチルシクロヘキシル)プロパン-2-イル]ヒドロペルオキシド、2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン、ジイソプロピルベンゼンヒドロペルオキシド、1,1,3,3-テトラメチルブチルヒドロペルオキシド、クメンヒドロペルオキシド又はtert-ブチルヒドロペルオキシドである請求項1に記載の硬化性シリコーンゲル組成物。
  3.  硬化してJIS K6249で規定される針入度が10~110であるシリコーンゲル硬化物を与えるものである請求項1又は2に記載の硬化性シリコーンゲル組成物。
  4.  請求項1~3のいずれか1項に記載の硬化性シリコーンゲル組成物を硬化してなるシリコーンゲル硬化物。
PCT/JP2021/030771 2020-09-03 2021-08-23 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物 WO2022050103A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022546244A JP7439940B2 (ja) 2020-09-03 2021-08-23 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
CN202180054134.XA CN116075551A (zh) 2020-09-03 2021-08-23 固化性有机硅凝胶组合物及有机硅凝胶固化物
KR1020237010616A KR20230061427A (ko) 2020-09-03 2021-08-23 경화성 실리콘 겔 조성물 및 실리콘 겔 경화물
US18/024,409 US20230312924A1 (en) 2020-09-03 2021-08-23 Curable silicone gel composition and silicone gel cured product
EP21864161.1A EP4209544A1 (en) 2020-09-03 2021-08-23 Curable silicone gel composition and silicone gel cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148123 2020-09-03
JP2020-148123 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022050103A1 true WO2022050103A1 (ja) 2022-03-10

Family

ID=80490894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030771 WO2022050103A1 (ja) 2020-09-03 2021-08-23 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物

Country Status (7)

Country Link
US (1) US20230312924A1 (ja)
EP (1) EP4209544A1 (ja)
JP (1) JP7439940B2 (ja)
KR (1) KR20230061427A (ja)
CN (1) CN116075551A (ja)
TW (1) TW202225326A (ja)
WO (1) WO2022050103A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256616A (en) 1978-11-22 1981-03-17 Masayuki Hatanaka Platinum complexes for silicone compositions
US4329275A (en) 1979-07-27 1982-05-11 Toshiba Silicone Co., Ltd. Heat-curable polysiloxane composition
JP2849027B2 (ja) 1993-06-10 1999-01-20 信越化学工業株式会社 1液性硬化性シリコーン組成物
US6706840B1 (en) 2002-10-07 2004-03-16 General Electric Company Method for preparing oxirane-containing organosilicon compositions
JP2006063142A (ja) * 2004-08-25 2006-03-09 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
DE60316102T2 (de) 2002-12-10 2008-06-05 Shin-Etsu Chemical Co., Ltd. Einkomponentige Organopolysiloxangelzusammensetzung
EP2050768A1 (de) 2007-10-02 2009-04-22 Wacker Chemie AG Härtbare Siliconzusammensetzungen
JP2018503709A (ja) 2014-11-21 2018-02-08 エランタス ゲゼルシャフト ミット ベシュレンクテル ハフツングELANTAS GmbH 貯蔵時に安定な1液型硬化性シリコーン組成物
WO2018056297A1 (ja) * 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 硬化反応性シリコーンゲルおよびその用途
WO2021014970A1 (ja) * 2019-07-25 2021-01-28 信越化学工業株式会社 1液型硬化性シリコーンゲル組成物及びシリコーンゲル硬化物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2050768A (en) 1935-05-09 1936-08-11 Nat Mfg Co Cutter for paper tubes
JP4520137B2 (ja) 2002-12-10 2010-08-04 信越化学工業株式会社 一液型オルガノポリシロキサンゲル組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256616A (en) 1978-11-22 1981-03-17 Masayuki Hatanaka Platinum complexes for silicone compositions
US4329275A (en) 1979-07-27 1982-05-11 Toshiba Silicone Co., Ltd. Heat-curable polysiloxane composition
JP2849027B2 (ja) 1993-06-10 1999-01-20 信越化学工業株式会社 1液性硬化性シリコーン組成物
US6706840B1 (en) 2002-10-07 2004-03-16 General Electric Company Method for preparing oxirane-containing organosilicon compositions
DE60316102T2 (de) 2002-12-10 2008-06-05 Shin-Etsu Chemical Co., Ltd. Einkomponentige Organopolysiloxangelzusammensetzung
JP2006063142A (ja) * 2004-08-25 2006-03-09 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP4530147B2 (ja) 2004-08-25 2010-08-25 信越化学工業株式会社 一液型オルガノポリシロキサンゲル組成物
EP2050768A1 (de) 2007-10-02 2009-04-22 Wacker Chemie AG Härtbare Siliconzusammensetzungen
JP2018503709A (ja) 2014-11-21 2018-02-08 エランタス ゲゼルシャフト ミット ベシュレンクテル ハフツングELANTAS GmbH 貯蔵時に安定な1液型硬化性シリコーン組成物
WO2018056297A1 (ja) * 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 硬化反応性シリコーンゲルおよびその用途
WO2021014970A1 (ja) * 2019-07-25 2021-01-28 信越化学工業株式会社 1液型硬化性シリコーンゲル組成物及びシリコーンゲル硬化物

Also Published As

Publication number Publication date
JP7439940B2 (ja) 2024-02-28
US20230312924A1 (en) 2023-10-05
EP4209544A1 (en) 2023-07-12
KR20230061427A (ko) 2023-05-08
TW202225326A (zh) 2022-07-01
CN116075551A (zh) 2023-05-05
JPWO2022050103A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
US7829648B2 (en) Silicone gel composition
JP2008291148A (ja) 耐熱性に優れたシリコーンゲル組成物
JP2008255227A (ja) 付加硬化型シリコーンゴム組成物及びその硬化物
JP5962599B2 (ja) 耐熱性に優れたシリコーンゲル組成物
JP7156219B2 (ja) 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
JP6863109B2 (ja) 自己接着性シリコーンゲル組成物及びその硬化物
JP7192993B2 (ja) 1液型硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
JP4703374B2 (ja) シリコーンゲル組成物
JP6699569B2 (ja) 自己接着性シリコーンゲル組成物及びその硬化物、並びに封止方法及び充填方法
US10662331B2 (en) Silicone gel composition and silicone gel cured product
JPH08253685A (ja) 硬化性シリコーン組成物
WO2022050103A1 (ja) 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
JP6465219B2 (ja) 自己接着性シリコーンゲル組成物及びシリコーンゲル
JP2018009127A (ja) シリコーンゲル組成物
JP2021187877A (ja) 二液付加硬化型シリコーンゴム組成物
JP7004936B2 (ja) シリコーンゲル組成物及びその硬化物並びにパワーモジュール
JP2017179038A (ja) 熱硬化性オルガノポリシロキサン組成物
EP1717274A1 (en) Silicone gel composition
JPH0995614A (ja) 硬化性シリコーン組成物
WO2022172614A1 (ja) 硬化性シリコーン組成物及び接着剤
CN115885014A (zh) 可固化组合物和双组分可固化组合物
JP2015224274A (ja) 難燃性シリコーンゲル組成物及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546244

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010616

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864161

Country of ref document: EP

Effective date: 20230403