WO2022045337A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2022045337A1
WO2022045337A1 PCT/JP2021/031764 JP2021031764W WO2022045337A1 WO 2022045337 A1 WO2022045337 A1 WO 2022045337A1 JP 2021031764 W JP2021031764 W JP 2021031764W WO 2022045337 A1 WO2022045337 A1 WO 2022045337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
positive electrode
flame retardant
active material
secondary battery
Prior art date
Application number
PCT/JP2021/031764
Other languages
English (en)
French (fr)
Inventor
修平 内田
貴仁 中山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/023,531 priority Critical patent/US20230318129A1/en
Priority to EP21861758.7A priority patent/EP4207347A4/en
Priority to CN202180052636.9A priority patent/CN115997298A/zh
Priority to JP2022545759A priority patent/JPWO2022045337A1/ja
Publication of WO2022045337A1 publication Critical patent/WO2022045337A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to secondary batteries.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries have high output and high energy density. Therefore, non-aqueous electrolyte secondary batteries are used as power sources for small consumer applications, power storage devices, and electric vehicles.
  • Patent Document 1 describes a lithium-transition metal composite oxide containing at least one of lithium and cobalt (Co), nickel (Ni), iron (Fe), manganese (Mn), and copper (Cu).
  • the main material is a positive electrode in which a halogen-substituted cyclic organic compound substituted with one or more chlorine or bromine is added to the main positive electrode active material, and a lithium metal, a lithium alloy, or a material capable of storing and releasing lithium.
  • Patent Document 2 “includes a battery electrode and a functional coating layer composited on the surface of the battery electrode, the functional coating layer is manufactured from a functional substance and a bonding agent, and the functional substance contains phosphorus.
  • a composite electrode plate for a lithium ion battery which is one or more selected from a compound, a nitrogen-containing compound, and an inorganic silicon compound, and the battery electrode plate is a battery positive electrode and / or a battery negative electrode. ing.
  • the secondary battery is a secondary battery including a positive electrode and a negative electrode, wherein the positive electrode contains a first layer containing a positive electrode active material, and the first layer is a flame retardant containing a halogen atom and carbon nanotubes. And further include.
  • the secondary battery according to the present embodiment includes a positive electrode and a negative electrode.
  • the positive electrode includes a first layer containing a positive electrode active material.
  • the first layer contains a flame retardant containing a halogen atom.
  • the first layer may further contain carbon nanotubes.
  • the flame retardant and the halogen atom may be referred to as "flame retardant (R)” and “halogen atom (X)", respectively.
  • the secondary battery according to this embodiment may be referred to as a "secondary battery (S)” below.
  • the first layer may be a positive electrode active material layer (positive electrode mixture layer) containing a positive electrode active material, a flame retardant (R), and carbon nanotubes as a conductive material.
  • the flame retardant (R) exhibits a flame retardant effect by releasing a halogen atom (X) at a high temperature. Therefore, according to the secondary battery (S), excessive heat generation and ignition at the time of abnormality can be suppressed.
  • the flame retardant (R) may satisfy at least one of the following conditions (1) and (2).
  • the flame retardant (R) preferably satisfies both of the following conditions (1) and (2).
  • the flame retardant (R) contains a cyclic structure to which a halogen atom (X) is bonded.
  • the cyclic structure may or may not be an aromatic ring. In this case, all halogen atoms (X) may be bonded to the cyclic structure, or only some halogen atoms (X) may be bonded to the cyclic structure.
  • a structure in which the halogen atom (X) is bonded to the cyclic structure is preferable because the content of the halogen atom can be easily increased.
  • the proportion of the halogen atom (X) in the flame retardant (R) is 45% by mass or more. This ratio may be 60% by mass or more (for example, 70% by mass or more).
  • the upper limit is not particularly limited, but may be 95% by mass or less (for example, 90% by mass or more). These lower and upper limits can be combined arbitrarily.
  • Ethylene-1,2-bispentabromophenyl which is an example of the flame retardant (R), is shown below.
  • the halogen atom (X) is not particularly limited, but preferred examples of the halogen atom (X) include bromine (Br), chlorine (F), and fluorine (F).
  • the halogen atom (X) may be bromine and / or chlorine, or may be bromine, in that a flame-retardant effect can be expected from the initial stage of abnormal heat generation.
  • the flame retardant (R) containing such a halogen atom (X) has a larger specific gravity than the conventionally used phosphorus-based flame retardant, the volume can be reduced with respect to the added mass. This makes it possible to obtain a sufficient heat generation suppressing effect while reducing the thickness of the flame retardant layer. Therefore, it is possible to suppress the limitation of the thickness of the active material layer by the flame retardant layer, and to realize a high capacity by using the thick active material layer.
  • the flame retardant (R) preferably contains bromine (Br) because of its high specific gravity. Further, the larger the number of halogen atoms (X) bonded to the flame retardant (R), the better.
  • the flame retardant (R) tends to have a large specific gravity due to the fact that the halogen atom (X) is bonded to the cyclic structure.
  • the specific gravity of the flame retardant (R) may be, for example, 2.7 or more, preferably 3.0 or more.
  • the flame retardant (R) preferably does not contain a water-generating moiety and / or a hydrophilic group in the structure of the compound.
  • a secondary battery having excellent reliability because it is difficult for water to enter the battery in the manufacturing process of the secondary battery.
  • the portion that generates water include a hydroxy group (-OH), a carboxyl group (-COOH), a carbonyl group (-CO-), and an oxo acid group such as a sulfo group and a phosphoric acid group.
  • the hydrophilic group include an amino group and the like in addition to the above functional group.
  • the flame retardant (R) may emit a halogen atom (X) at a temperature of 180 ° C. or higher (for example, 250 ° C. or higher).
  • a halogen atom (X) may be released in a non-abnormal state, and the characteristics of the battery may be deteriorated. Therefore, it is preferable that the flame retardant (R) does not substantially emit the halogen atom (X) at a temperature of less than 180 ° C.
  • the flame retardant (R) is ethylene-1,2-bispentabromophenyl, ethylenebistetrabromophthalimide, tetrabisbromobisphenol A, hexabromocyclododecane, 2,4,6-tribromophenol, 1,6,7. , 8,9,14,15,16,17,17,18,18-dodecachloropentacyclo (12.2.1.16,9.02,13.05,10) octadeca-7,15-diene (12.2.1.16,9.02,13.05,10) It may be at least one selected from the group consisting of trade name: dechloran plus) and tris (2,2,2-trifluoroethyl) phosphate. As these flame retardants (R), commercially available ones may be used. Alternatively, the flame retardant (R) may be synthesized by a known synthesis method.
  • the value of a may be 0.1 or more, 0.3 or more, 0.5 or more, or 1.0 or more.
  • the value of a may be less than 7.0, less than 4.5, 3.0 or less, 2.0 or less, 1.5 or less, or 1.0 or less.
  • the value of a is 0.1 or more and less than 7 (for example, 0.1 or more and less than 4.5, 0.1 to 3.0, 0.1 to 2.0). It may be in the range (range 0.1 to 1.0, range 0.5 to 2.0, range 0.5 to 1.0).
  • the first layer may or may not contain acetylene black.
  • b and c may satisfy 0 ⁇ b ⁇ 3 and b + c ⁇ 5, and may satisfy 0 ⁇ b ⁇ 1 and 0.02 ⁇ b + c ⁇ 5 (for example, 0.1 ⁇ b + c ⁇ 1). ..
  • the value of c is in the range 0.02 to 3.0 (eg, 0.02 to 2.0, 0.05 to 1.0, 0.05 to 0.5, or 0. It may be in the range of 1 to 0.5).
  • the value of b may be in the range of 0 to 3.0 (eg, in the range of 0 to 2.0, in the range of 0 to 1.0, or in the range of 0 to 0.5).
  • the value of the above a is in the range of 0.5 to 1.0, the above b is in the range of 0 to 0.5, and the above c is 0.02 to 0. It is in the range of 5 (for example, 0.1 to 0.5).
  • the flame retardant (R) of this example may be ethylene-1,2-bispentabromophenyl and / or ethylene bistetrabromophthalimide.
  • the carbon nanotubes form a conductive path between the particles of the positive electrode active material and function as a conductive material for enhancing the conductivity of the positive electrode active material layer (for example, the first layer or the second layer described later) containing the positive electrode active material. do.
  • the aspect ratio (ratio of length to diameter) of carbon nanotubes is extremely large. Therefore, carbon nanotubes exhibit high conductivity even in a small amount. Further, by using carbon nanotubes as the conductive material, it is possible to increase the ratio of the positive electrode active material in the positive electrode active material layer. Therefore, the capacity of the secondary battery (S) can be increased.
  • the content of carbon nanotubes in the positive electrode active material layer may be 0.01% by mass or more, 0.3% by mass or more, or 0.1% by mass or more from the viewpoint of reducing battery resistance.
  • the content of the carbon nanotubes may be 10% by mass or less, 3% by mass or less, or 1% by mass or less from the viewpoint of realizing a high capacity and suppressing an increase in the battery temperature at the time of abnormality.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is obtained from the sample obtained by taking out only the positive electrode active material layer from the secondary battery in the discharged state. Specifically, first, the discharged secondary battery is disassembled and the positive electrode is taken out. Next, the positive electrode is washed with an organic solvent, further vacuum dried, and then only the positive electrode active material layer is peeled off to obtain a sample. By performing thermal analysis such as TG-DTA on the sample, the ratio of the binder component and the conductive material component other than the positive electrode active material can be calculated.
  • the proportion of carbon nanotubes among them can be calculated by performing micro-Raman spectroscopy on the cross section of the positive electrode active material layer. Is. Further, the ratio of the flame retardant (R) to the positive electrode active material layer can be obtained by elemental analysis such as EDS with respect to the cross section of the positive electrode active material layer.
  • the outer diameter and length of carbon nanotubes can be determined by image analysis using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the length is determined by arbitrarily selecting a plurality of (for example, 100 to 1000) carbon nanotubes, measuring the length and diameter, and averaging them.
  • carbon nanotubes examples include carbon nanofibers. Since various carbon nanotubes are commercially available, commercially available carbon nanotubes may be used. Alternatively, the carbon nanotubes may be synthesized by a known synthesis method.
  • the carbon nanotube may be a single layer (Single Wall), a double layer (Double Wall), or a multilayer (Multi Wall).
  • Single-walled carbon nanotubes are preferable because they can obtain a large effect with a small amount.
  • Carbon nanotubes having a diameter of 5 nm or less contain a large amount of single-walled carbon nanotubes.
  • the single-walled carbon nanotubes may be 50% by mass or more of the total carbon nanotubes.
  • the diameter of the carbon nanotube is not particularly limited and may be in the range of 0.001 to 0.05 ⁇ m.
  • the length of the carbon nanotubes is not particularly limited, but may be 0.5 ⁇ m or more from the viewpoint of ensuring electron conduction in the positive electrode active material layer.
  • the particle size of the positive electrode active material is generally 1 ⁇ m or more and 20 ⁇ m or less
  • the length of the carbon nanotubes may be about the same. That is, the length of the carbon nanotubes may be, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the length of 50% or more (number ratio) of the carbon nanotubes may be 1 ⁇ m or more. It may be 1 ⁇ m or more and 20 ⁇ m or less.
  • the length of 80% or more of the carbon nanotubes may be 1 ⁇ m or more, or 1 ⁇ m or more and 20 ⁇ m or less.
  • the flame retardant (R) may be unevenly distributed on the surface side of the first layer.
  • the first layer is, for example, a second layer containing at least a positive electrode active material and carbon nanotubes, and a third layer on the surface side of the positive electrode with respect to the second layer and containing at least a flame retardant (R). including.
  • the content of the flame retardant in the third layer is larger than the content of the flame retardant in the second layer.
  • the content of the flame retardant means the number of moles of the flame retardant contained in the unit volume (apparent volume) of the second layer or the third layer, and the first layer (second layer and third layer).
  • the second layer is a positive electrode active material layer (positive electrode mixture layer) containing at least a positive electrode active material and carbon nanotubes as a conductive material
  • the third layer is a flame retardant (R). It may be a flame retardant layer containing at least.
  • the second layer may further contain carbon nanotubes.
  • the resistance of the battery can be reduced and deterioration due to repeated charging and discharging can be suppressed.
  • a secondary battery in which carbon nanotubes are added to the positive electrode active material layer has an abnormal event accompanied by heat generation such as an internal short circuit as compared with a secondary battery in which a conductive material such as acetylene black is added in the same amount. It is easy to occur.
  • the third layer containing the flame retardant (R) between the separator and the second layer which is the positive electrode active material layer and adding carbon nanotubes to the second layer high battery characteristics are maintained and the battery characteristics are maintained. It is possible to suppress the rise in battery temperature at the time of abnormality.
  • the second layer may not substantially contain the flame retardant (R).
  • the third layer as the flame retardant layer contains a flame retardant (R) containing a halogen atom (X), and exhibits a flame retardant effect by releasing the halogen atom (X) at a high temperature. Therefore, according to the secondary battery (S), excessive heat generation at the time of abnormality can be suppressed. Further, since the third layer, which is the flame retardant layer, does not have electron conductivity, a short circuit may occur inside the battery by interposing between the second layer, which is the positive electrode active material layer, and the separator. Also acts as a resistance layer that suppresses short circuits. This can effectively suppress heat generation.
  • the secondary battery in another embodiment of the present disclosure is a secondary battery including a positive electrode and a negative electrode, and the positive electrode includes a first layer containing a positive electrode active material.
  • the first layer contains at least a positive electrode active material and a flame retardant (R) containing a halogen atom (X), and the flame retardant (R) is unevenly distributed on the surface side of the first layer in the first layer.
  • the first layer includes a second layer containing at least a positive electrode active material and a flame retardant (R), and a third layer on the surface side of the positive electrode with respect to the second layer and containing at least the flame retardant (R). , including.
  • the content of the flame retardant in the third layer is larger than the content of the flame retardant in the second layer.
  • the content of the flame retardant means the number of moles of the flame retardant contained in the unit volume (apparent volume) of the second layer or the third layer, and is measured by elemental analysis such as EDS.
  • the battery in the second layer located on the current collector side of the positive electrode By making the content of the flame retardant in the second layer located on the current collector side of the positive electrode smaller than the content of the flame retardant (R) in the third layer located on the surface side of the positive electrode, the battery in the second layer The increase in resistance is suppressed, and deterioration due to repeated charging and discharging can be suppressed. Further, the third layer having a large flame retardant content can suppress an increase in the battery temperature at the time of abnormality. Therefore, it is possible to easily realize a secondary battery that has both high battery characteristics and suppression of a rise in battery temperature in the event of an abnormality. In this case, it is not essential to add carbon nanotubes to the second layer (and the third layer), and a material generally used as a conductive material such as carbon black may be added.
  • the third layer may contain a positive electrode active material.
  • the mass-based content of the positive electrode active material in the third layer is preferably smaller than the mass-based content of the positive electrode active material in
  • the third layer is arranged on the surface of the second layer so as to contact the surface of the second layer containing the positive electrode active material and cover at least a part of the second layer.
  • the third layer may contain a binder in addition to the flame retardant (R).
  • the binding property of the flame retardant (R) particles to each other and the binding property of the flame retardant (R) to the second layer, which is the positive electrode active material layer can be enhanced. .. That is, the third layer can be brought into close contact with the second layer.
  • the binder is not particularly limited, and examples thereof include polyvinylidene fluoride (PVdF), ethylene dimethacrylate, allyl methacrylate, t-dodecyl mercaptan, ⁇ -methylstyrene dimer, and methacrylic acid.
  • PVdF polyvinylidene fluoride
  • ethylene dimethacrylate, allyl methacrylate, t-dodecyl mercaptan, ⁇ -methylstyrene dimer, and methacrylic acid are used as binders, pressure and / or heat is applied to the third layer. By being added, the positive electrode can be adhered to the separator.
  • the third layer may contain particles other than the flame retardant (R) and the binder.
  • examples of other particles include inorganic particles containing metal oxides such as alumina, boehmite, and titania.
  • Inorganic particles containing metal oxides function as spacers and can suppress the amount of flame retardant added.
  • the average particle size of the inorganic particles is preferably 0.01 ⁇ m to 5 ⁇ m, and more preferably 1/2 or less of the average particle size of the flame retardant (R).
  • the flame retardant (R) exists in the form of an aggregate in which the particles of the flame retardant (R) are aggregated, or an aggregate in which the particles of the flame retardant (R) are aggregated via a binder. Can be.
  • the third layer may partially cover the surface of the second layer, or the third layer may cover almost all of the surface of the second layer.
  • the coverage (area standard) of the third layer with respect to the surface of the second layer may be 5% or more, 10% or more, or 30% or more, and may be 50%, in terms of suppressing an increase in the battery temperature at the time of abnormality. The above is preferable.
  • the coverage of the third layer with respect to the surface of the second layer is 100% and the surface of the second layer is completely covered by the third layer, the space between the particles of the third layer is reached. Since the gap is sufficiently large compared to the size of the lithium ion, the lithium ion can move through the gap and does not interfere with charging / discharging. However, from the viewpoint of suppressing an increase in battery resistance, the coverage of the third layer with respect to the surface of the second layer may be 90% or less or 80% or less.
  • the coverage of the third layer on the surface of the second layer is 5% or more and 90% or less, 10% or more and 90% or less, 30% or more and 90% or less, 50% or more and 90% or less, or 50% or more and 80% or less. There may be.
  • the coverage of the third layer is determined by elemental mapping of the electrode surface with SEM-EDX (Energy Dispersive X-ray spectroscopy) or the like.
  • the coverage of the third layer on the surface of the second layer can be calculated by elementally mapping the particles of the flame retardant (R) and the positive electrode active material by element mapping.
  • the average particle size of the particles of the flame retardant (R) in the third layer may be 0.01 ⁇ m to 5 ⁇ m, and 0. It may be 05 ⁇ m to 3 ⁇ m.
  • the average particle size of the flame retardant (R) is obtained as follows. First, 20 flame retardant (R) particles are randomly selected from the SEM image of the positive electrode surface. Next, after observing the grain boundaries of the selected 20 particles and specifying the outer shape of the particles, the major axis of each of the 20 particles is obtained, and the average value thereof is the average particle of the flame retardant (R) particles. The diameter. When the third layer contains particles other than the flame retardant (R), the average particle diameter of the other particles can be determined by the same method.
  • the thickness of the third layer is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more or 3 ⁇ m or more, in terms of suppressing an increase in the battery temperature at the time of abnormality.
  • the thickness of the third layer is preferably 10 ⁇ m or less in terms of suppressing an increase in battery resistance. These lower and upper limits can be combined arbitrarily as long as there is no contradiction.
  • the thickness of the third layer is the average thickness in the region where the surface of the second layer is covered with the third layer, and is obtained from the SEM image of the cross section of the positive electrode.
  • the third layer can be formed by depositing a mixture containing at least the particles of the flame retardant (R) and the binder on the surface of the second layer.
  • the mixture may be a slurry containing particles of the flame retardant (R), a binder, and a solvent (dispersion medium).
  • the third layer can be formed by spraying, dropping, or applying the slurry to the surface of the second layer and drying it.
  • the coverage and thickness of the third layer can be controlled by adjusting the amount of the solvent and / or the coating amount of the slurry with respect to the amount of the particles of the flame retardant (R) in the slurry.
  • the content of the flame retardant (R) in the entire third layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. May be good.
  • the content of the flame retardant (R) in the entire third layer may be 100% by mass or less, or 95% by mass or less.
  • the content of the flame retardant (R) in the entire second layer in the second layer is 0.1% by mass or more, 0.3% by mass or more, or It may be 0.5% by mass or more.
  • the content of the flame retardant (R) in the entire second layer may be 5% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the loading amount (coating amount) per unit area of the positive electrode active material layer provided on the surface of the positive electrode current collector may be 250 g / m 2 or more.
  • the secondary battery (S) includes, for example, an exterior body (battery case) and a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator arranged inside the exterior body.
  • the separator is arranged between the positive electrode and the negative electrode.
  • the shape of the secondary battery (S) is not limited, and may be cylindrical, square, coin-shaped, button-shaped, or the like.
  • the battery case is selected according to the shape of the secondary battery (S).
  • the positive electrode includes a first layer containing a positive electrode active material, and further includes a positive electrode current collector if necessary.
  • the positive electrode comprises a positive electrode current collector and a first layer disposed on the surface of the positive electrode current collector.
  • the first layer may be a positive electrode active material layer (positive electrode mixture layer).
  • the first layer contains a positive electrode active material, a flame retardant (R), and, if necessary, other substances (conductive material, binder, thickener, etc.).
  • R flame retardant
  • conductive material conductive material, binder, thickener, etc.
  • Known substances may be used for other substances (conductive materials, binders, thickeners, etc.).
  • the first layer preferably contains carbon nanotubes as a conductive material.
  • the first layer may have a laminated structure of a second layer (positive electrode active material layer) containing at least a positive electrode active material and carbon nanotubes and a third layer (flame retardant layer) containing at least a flame retardant (R). ..
  • the third layer is arranged on the surface of the second layer on the side not facing the positive electrode current collector.
  • the second layer contains the positive electrode active material, carbon nanotubes, and optionally other components. Examples of other components include conductive materials, binders, thickeners and the like. As those other components, components used in known secondary batteries may be used.
  • the first layer is a laminated structure of a second layer containing at least a positive electrode active material and a flame retardant (R) and a third layer containing at least a positive electrode active material and a flame retardant (R).
  • the content of the flame retardant (R) in the third layer on the surface side of the positive electrode (the side not facing the positive electrode current collector) may be higher than the content of the flame retardant (R) in the second layer.
  • the second and third layers contain a positive electrode active material, a flame retardant (R), and, if necessary, other substances (conductive material, binder, thickener, etc.). Known substances may be used for other substances (conductive materials, binders, thickeners, etc.). In this case, the second layer and the third layer do not have to contain carbon nanotubes as the conductive material.
  • binder examples include fluororesin, polyolefin resin, polyamide resin, polyimide resin, vinyl resin, styrene-butadiene copolymer rubber (SBR), polyacrylic acid and derivatives thereof.
  • thickeners include carboxymethyl cellulose (CMC), polyvinyl alcohol and the like. For these components, one kind of material may be used alone, or two or more kinds of materials may be used in combination.
  • the first layer (or the second layer) may or may not further contain a conductive material other than the carbon nanotubes.
  • the first layer (or the third layer) may or may not contain a flame retardant other than the flame retardant (R).
  • R flame retardant
  • the mass of the conductive material contained in the first layer (or the second layer) other than the carbon nanotubes is the first layer (or the second layer).
  • the mass of the carbon nanotubes contained in the second layer may be 10 times or less (for example, in the range of 0 to 5 times, 0 to 1 times, or 0 to 0.5 times).
  • Examples of conductive materials other than carbon nanotubes include acetylene black.
  • the mass of the flame retardant contained in the first layer (or the third layer) other than the flame retardant (R) is the same as that of the flame retardant (R) contained in the first layer (or the third layer). It may be in the range of 2 times or less of the mass (for example, 0 to 1 times, 0 to 0.5 times, or 0 to 0.1 times).
  • a positive electrode slurry is prepared by dispersing the material of the first layer in a dispersion medium.
  • the ratios of the positive electrode active material, the flame retardant (R) and the carbon nanotubes in the positive electrode slurry are selected to correspond to those ratios in the first layer to be produced.
  • the positive electrode slurry is applied to the surface of the positive electrode current collector and dried.
  • the dried coating film may be rolled if necessary. In this way, the positive electrode can be manufactured.
  • the positive electrode active material layer may be formed on only one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the material of the second layer is dispersed in a dispersion medium to prepare a positive electrode slurry.
  • the ratio of the positive electrode active material to the carbon nanotubes in the positive electrode slurry is selected to correspond to those ratios in the second layer produced.
  • the positive electrode slurry is applied to the surface of the positive electrode current collector and dried. The dried coating film may be rolled if necessary.
  • the second layer as the positive electrode active material layer can be formed on the surface of the positive electrode current collector.
  • the positive electrode active material layer may be formed on only one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the third layer is formed on the surface of the second layer that does not face the positive electrode current collector.
  • the second layer may contain a flame retardant.
  • the second layer may be a layer of a mixture containing a positive electrode active material and a flame retardant.
  • the flame retardant contained in the second layer the compound mentioned in the above-mentioned flame retardant (R) may be used, or a known flame retardant other than the flame retardant (R) may be used.
  • the flame retardant contained in the second layer is preferably a flame retardant containing a halogen atom, like the flame retardant (R).
  • the flame retardant contained in the second layer is a flame retardant containing a halogen atom, it may be a compound different from the flame retardant (R) or the same compound.
  • the ratio of the flame retardant (R) to the second layer can be determined by elemental analysis such as fluorescent X-ray analysis (XRF) with respect to the cross section of the second layer.
  • XRF fluorescent X-ray analysis
  • a lithium-containing composite oxide having a layered structure for example, a rock salt type crystal structure
  • the lithium-containing composite oxide is, for example, Li a Ni x M 1-x O 2 (where 0 ⁇ a ⁇ 1.2, 0.8 ⁇ x ⁇ 1 and M is Co, Al, Mn, Fe. , Ti, Sr, Na, Mg, Ca, Sc, Y, Cu, Zn, Cr and at least one selected from the group consisting of B). good.
  • M preferably contains at least one selected from the group consisting of Co, Mn, and Fe.
  • Al may be contained as M.
  • the a value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
  • Specific examples of such a composite oxide include lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.9 Co 0.05 Al 0.05 O 2 and the like).
  • the larger the Ni ratio x the more lithium ions can be extracted from the lithium-nickel composite oxide during charging, and the capacity can be increased.
  • Ni in the lithium-nickel composite oxide having such an increased capacity tends to have a high valence.
  • the crystal structure tends to become unstable, especially in a fully charged state, and the crystal structure tends to change (inactivate) to a crystal structure in which reversible occlusion and release of lithium ions are difficult due to repeated charging and discharging.
  • the cycle characteristics tend to deteriorate.
  • lithium ions and / or electrons are used during the charge / discharge reaction.
  • the flow is likely to be obstructed, and unevenness is likely to occur in the charge / discharge reaction. If the charge / discharge reaction is uneven, the crystal structure may be inactivated in a part of the region where the amount of lithium ions extracted is large, and the cycle characteristics may be deteriorated.
  • the positive electrode active material layer of the secondary battery (S) contains carbon nanotubes, unevenness in the charge / discharge reaction is suppressed even when the loading amount (coating amount) per unit area of the positive electrode active material layer is increased. To. Therefore, even when a lithium-containing composite oxide having a large Ni ratio x is used, deterioration of cycle characteristics is suppressed. Therefore, it is possible to realize a secondary battery having excellent cycle characteristics and a high energy density.
  • the Ni ratio x in the lithium-containing composite oxide may be 0.85 or more (x ⁇ 0.85) or 0.9 or more (x ⁇ 0.9). ..
  • the shape and thickness of the positive electrode current collector can be selected from the shape and range according to the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • Another aspect of the present disclosure relates to a positive electrode having a first layer containing the flame retardant, the carbon nanotubes, and the positive electrode active material.
  • the negative electrode includes a negative electrode active material layer and, if necessary, a negative electrode current collector.
  • the negative electrode active material layer contains a negative electrode active material, and further contains other substances (such as a binder) as needed.
  • a negative electrode slurry is prepared by dispersing the material of the negative electrode active material layer in a dispersion medium.
  • the negative electrode slurry is applied to the surface of the negative electrode current collector and dried.
  • the dried coating film may be rolled if necessary.
  • the dispersion medium include water, alcohol, ether, N-methyl-2-pyrrolidone (NMP), and a mixed solvent thereof.
  • the ratio of the components in the negative electrode active material layer can be adjusted by changing the mixing ratio of the negative electrode active material. In this way, the negative electrode can be manufactured.
  • the negative electrode active material layer may be formed on only one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode active material layer contains the negative electrode active material as an essential component, and may contain a binder, a conductive material, a thickener, and the like as optional components. Known materials can be used as the binder, the conductive material, and the thickener.
  • the negative electrode active material at least one selected from a material that electrochemically occludes and releases lithium ions, a lithium metal, and a lithium alloy can be used.
  • a material that electrochemically occludes and releases lithium ions a carbon material, an alloy-based material, or the like is used.
  • the carbon material include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon). Of these, graphite, which has excellent charge / discharge stability and has a small irreversible capacity, is preferable.
  • the alloy-based material examples include those containing at least one kind of metal capable of forming an alloy with lithium, and examples thereof include silicon, tin, silicon alloys, tin alloys, and silicon compounds. Silicon oxide, tin oxide, or the like in which these are combined with oxygen may be used.
  • a lithium ion conductive phase and a silicon composite material in which silicon particles are dispersed in the lithium ion conductive phase can be used.
  • the lithium ion conductive phase for example, a silicon oxide phase, a silicate phase and / or a carbon phase can be used.
  • the main component of the silicon oxide phase eg, 95-100% by weight
  • a composite material composed of a silicate phase and silicon particles dispersed in the silicate phase is preferable in that it has a high capacity and a small irreversible capacity.
  • the silicate phase may contain, for example, at least one selected from the group consisting of Group 1 elements and Group 2 elements in the long periodic table.
  • Examples of the Group 1 element of the long-periodic table and the Group 2 element of the long-periodic table include lithium (Li), potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca).
  • Strontium (Sr), barium (Ba) and the like can be used.
  • Other elements may include aluminum (Al), boron (B), lanthanum (La), phosphorus (P), zirconium (Zr), titanium (Ti) and the like.
  • a silicate phase containing lithium hereinafter, also referred to as a lithium silicate phase
  • a silicate phase containing lithium is preferable because the irreversible capacity is small and the initial charge / discharge efficiency is high.
  • the lithium silicate phase may be an oxide phase containing lithium (Li), silicon (Si), and oxygen (O), and may contain other elements.
  • Atomic ratio of O to Si in lithium silicate phase: O / Si is, for example, greater than 2 and less than 4.
  • O / Si is greater than 2 and less than 3.
  • Atomic ratio of Li to Si in lithium silicate phase: Li / Si is, for example, greater than 0 and less than 4.
  • Elements other than Li, Si and O that can be contained in the lithium silicate phase include, for example, iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), molybdenum (Mo), and the like. Examples thereof include zinc (Zn) and aluminum (Al).
  • the carbon phase may be composed of, for example, amorphous carbon having low crystallinity (that is, amorphous carbon).
  • amorphous carbon may be, for example, hard carbon, soft carbon, or other carbon.
  • the negative electrode current collector a non-perforated conductive substrate (metal foil or the like), a porous conductive substrate (mesh body, net body, punching sheet, etc.) or the like is used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • an electrolytic solution containing a solvent and a solute dissolved in the solvent can be used.
  • the solute is an electrolyte salt that ionically dissociates in the electrolytic solution.
  • the solute may include, for example, a lithium salt.
  • the components of the electrolytic solution other than the solvent and solute are additives.
  • the electrolytic solution may contain various additives.
  • a non-aqueous solvent is used as the solvent.
  • a cyclic carbonate ester for example, a chain carbonate ester, a cyclic carboxylic acid ester, a chain carboxylic acid ester and the like are used.
  • the cyclic carbonic acid ester include propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC) and the like.
  • the chain carbonate ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate (EP) and the like.
  • non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • non-aqueous solvent examples include cyclic ethers, chain ethers, nitriles such as acetonitrile, and amides such as dimethylformamide.
  • cyclic ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4-.
  • examples thereof include dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether and the like.
  • chain ethers examples include 1,2-dimethoxyethane, dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether and butyl phenyl ether.
  • Pentyl phenyl ether methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o- Dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, Examples thereof include tetraethylene glycol dimethyl ether.
  • These solvents may be fluorinated solvents in which a part of hydrogen atoms is replaced with fluorine atoms.
  • fluorination solvent fluoroethylene carbonate (FEC) may be used.
  • lithium salt examples include a lithium salt of a chlorine-containing acid (LiClO 4 , LiAlCl 4 , LiB 10 Cl 10 , etc.) and a lithium salt of a fluorine-containing acid (LiPF 6 , LiPF 2 O 2 , LiBF 4 , LiSbF 6 , LiAsF 6 ).
  • LiN (FSO 2 ) 2 LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO) 2 ), LiN (C 2 F 5 SO 2 ) 2 , etc.
  • LiCl, LiBr, LiI, etc. LiCl, LiBr, LiI, etc.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • the concentration of the lithium salt in the electrolytic solution may be 1 mol / liter or more and 2 mol / liter or less, or 1 mol / liter or more and 1.5 mol / liter or less.
  • the lithium salt concentration is not limited to the above.
  • the electrolytic solution may contain other known additives.
  • the additive include 1,3-propanesarton, methylbenzenesulfonate, cyclohexylbenzene, biphenyl, diphenyl ether, fluorobenzene and the like.
  • a separator may be arranged between the positive electrode and the negative electrode.
  • a member having high ion permeability and having appropriate mechanical strength and insulating property can be applied.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • aramid fiber or the like may be used to increase the mechanical strength.
  • An example of the secondary battery (S) includes an exterior body, an electrode group housed in the exterior body, and a non-aqueous electrolyte.
  • the structure of the electrode group is not particularly limited.
  • An example of the electrode group is formed by winding the positive electrode, the negative electrode, and the separator so that the separator is arranged between the positive electrode and the negative electrode.
  • Another example of the electrode group is formed by laminating the positive electrode, the negative electrode, and the separator so that the separator is arranged between the positive electrode and the negative electrode.
  • the form of the secondary battery (S) is not limited, and may be a cylindrical shape, a square shape, a coin shape, a button shape, a laminated shape, or the like.
  • An example of the secondary battery (S) includes an exterior body, an electrode group housed in the exterior body, and a non-aqueous electrolyte.
  • the structure of the electrode group is not particularly limited.
  • An example of the electrode group is formed by winding the positive electrode, the negative electrode, and the separator so that the separator is arranged between the positive electrode and the negative electrode.
  • Another example of the electrode group is formed by laminating the positive electrode, the negative electrode, and the separator so that the separator is arranged between the positive electrode and the negative electrode.
  • the form of the secondary battery (S) is not limited, and may be a cylindrical shape, a square shape, a coin shape, a button shape, a laminated shape, or the like.
  • the manufacturing method of the secondary battery (S) is not particularly limited, and a known manufacturing method may be applied, or at least a part of the known manufacturing method may be modified and applied.
  • FIG. 1 is a schematic perspective view in which a part of a square non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure is cut out.
  • the secondary battery 1 shown in FIG. 1 includes a bottomed square battery case 11, an electrode group 10 housed in the battery case 11, and a non-aqueous electrolyte (not shown).
  • the electrode group 10 includes a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between them and prevents direct contact.
  • the electrode group 10 is formed by winding a negative electrode, a positive electrode, and a separator around a flat plate-shaped winding core and pulling out the winding core.
  • the positive electrode includes the first layer according to the present disclosure.
  • the first layer contains a positive electrode active material, a flame retardant (R), and carbon nanotubes.
  • One end of the negative electrode lead 15 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • One end of the positive electrode lead 14 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the negative electrode lead 15 is electrically connected to the negative electrode terminal 13 provided on the sealing plate 12.
  • a gasket 16 is arranged between the sealing plate 12 and the negative electrode terminal 13 to insulate them.
  • the other end of the positive electrode lead 14 is connected to the sealing plate 12 and electrically connected to the battery case 11 that also serves as the positive electrode terminal.
  • a resin frame 18 is arranged on the upper part of the electrode group 10.
  • the frame body 18 separates the electrode group 10 and the sealing plate 12, and also separates the negative electrode lead 15 and the battery case 11.
  • the opening of the battery case 11 is sealed with a sealing plate 12.
  • a liquid injection hole 17a is formed in the sealing plate 12. The electrolyte is injected into the battery case 11 from the injection hole 17a. After that, the liquid injection hole 17a is
  • FIG. 2 is a cross-sectional view showing a configuration example of a positive electrode 3 constituting the secondary battery according to the embodiment of the present disclosure.
  • the positive electrode active material layer (second layer) 31 is arranged on the surface of the positive electrode current collector 30, and the flame retardant layer (third layer) 32 is arranged on the surface of the positive electrode active material layer 31.
  • the flame retardant layer 32 contains the flame retardant (R).
  • the positive electrode active material layer 31 and the flame retardant layer 32 form the first layer.
  • FIG. 2 is an example in which the flame retardant layer 32 is formed so as to cover the entire surface of the positive electrode active material layer 31.
  • the secondary battery according to the present disclosure will be described in more detail by way of examples.
  • Example 1 In Example 1, a plurality of secondary batteries were prepared and evaluated. A secondary battery was manufactured by the following procedure.
  • a negative electrode active material, sodium carboxymethyl cellulose (CMC-Na), styrene-butadiene rubber (SBR), and water were mixed at a predetermined mass ratio to prepare a negative electrode slurry.
  • a coating film was formed by applying a negative electrode slurry to the surface of a copper foil (negative electrode current collector). After the coating film was dried, it was rolled to form negative electrode active material layers on both sides of the copper foil.
  • LiNi 0.88 Co 0.09 Al 0.03 O 2 was used as the positive electrode active material.
  • Positive electrode active material, polyvinylidene fluoride, N-methyl-2-pyrrolidone (NMP), and optionally flame retardant, acetylene black, and carbon nanotube (CNT) are mixed in a predetermined mass ratio to form a positive electrode.
  • a slurry was prepared.
  • the carbon nanotubes used had an average diameter of about 1.5 nm and a length of about 1 ⁇ m to 5 ⁇ m.
  • a positive electrode slurry was applied to the surface of the aluminum foil (positive electrode current collector) to form a coating film. After the coating film was dried, it was rolled to form a first layer on both sides of the aluminum foil.
  • LiPF 6 was added as a lithium salt to a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7, to prepare an electrolytic solution.
  • the concentration of LiPF 6 in the non-aqueous electrolytic solution was 1.0 mol / liter.
  • a lead tab was attached to each electrode.
  • the positive electrode and the negative electrode were spirally wound via the separator so that the lead was located at the outermost peripheral portion.
  • the electrode group was prepared in this way.
  • the electrode group was inserted into the exterior body made of a laminated film having an aluminum foil as a barrier layer, and vacuum dried.
  • the electrolytic solution was injected into the outer body to seal the opening of the outer body. In this way, a secondary battery was obtained.
  • a plurality of secondary batteries (batteries A1 to A8, C1 to C3) were produced by changing the type of the flame retardant used in the first layer and the ratio of the substances in the first layer. Specifically, the ratios of the positive electrode active material, the flame retardant, the acetylene black, and the carbon nanotubes in the positive electrode active material layer were changed. Their ratio was varied by varying their mixing ratio when preparing the positive electrode slurry. Their ratios are shown in Table 1 below. Ethylene-1,2-bispentabromophenyl or ethylenebistetrabromophthalimide was used as the flame retardant.
  • the first layer of each battery was formed to have the same thickness. Therefore, when the ratio of the flame retardant and the conductive material to the first layer is high, the amount of the positive electrode active material contained in the first layer is reduced, and as a result, the capacity is lowered.
  • (1) Measurement of initial discharge capacity and capacity retention rate The discharge capacity of the manufactured secondary battery was measured by the following method. First, in an environment of 25 ° C., the battery was charged with a constant current of 40 mA until the battery voltage reached 4.2 V, and then charging was continued at a constant voltage until the current value reached 10 mA. After leaving the charged battery for 20 minutes, the battery was discharged at a constant current of 60 mA until the battery voltage reached 2.5 V. Then, it was left for 20 minutes. This operation (charging / discharging cycle) was repeated 100 times.
  • Capacity retention rate (%) 100 x DC1 / DC0
  • Table 1 shows some of the battery manufacturing conditions and the evaluation results.
  • the flame retardant R1 represents ethylene-1,2-bispentabromophenyl.
  • the flame retardant R2 represents ethylene bistetrabromophthalimide.
  • the initial discharge capacity and capacity retention rate shown in Table 1 are preferably high, and the calorific value is preferably low.
  • the positive electrode active material layer (first layer) of the batteries A1 to A8 contains a flame retardant (R) and carbon nanotubes.
  • the positive electrode active material layer (first layer) of the batteries C1 to C3 does not contain at least one of the flame retardant (R) and the carbon nanotube.
  • the batteries A1 to A8 had a higher initial discharge capacity and a lower calorific value than the batteries C1. Comparing the batteries A2, the battery A4, and the battery C2 having the same type and amount of the flame retardant (R), the batteries A2 and A4 have a higher initial discharge capacity and a lower calorific value than the battery C2.
  • the capacity retention rate was high. As described above, according to the present embodiment, a battery capable of achieving both high capacity and safety can be obtained.
  • the positive electrode active material layer (first layer) of the battery A2 has a configuration in which the acetylene black of the positive electrode active material layer (first layer) of the battery A4 is replaced with carbon nanotubes.
  • the calorific value of the battery A2 was lower than the calorific value of the battery A4.
  • the positive electrode active material layer (first layer) of the battery A6 has a configuration in which the acetylene black of the positive electrode active material layer (first layer) of the battery A8 is replaced with carbon nanotubes.
  • the calorific value of the battery A6 was lower than the calorific value of the battery A8.
  • the carbon nanotubes are arranged in a network on the surface of the positive electrode active material.
  • the battery A2 contains more carbon nanotubes than the battery A4, the battery A2 forms a net-like conductive network in which the carbon nanotubes cover the surface of the positive electrode active material more than the battery A4, and the battery A2 covers the carbon nanotubes. It is considered that the distribution of the flame-retardant agent became uniform along with the specific arrangement. It is considered that the battery A2 has a lower calorific value than the battery A4 because the distribution of the flame retardant is more uniform. It is considered that the reason why the calorific value of the battery A6 is lower than the calorific value of the battery A8 is also due to the uniform distribution of the flame retardant accompanying the comprehensive distribution of carbon nanotubes on the surface of the positive electrode active material.
  • the capacity retention rate of the batteries A1 to A8 was equal to or higher than the capacity retention rate of the batteries C1 to C3.
  • Carbon nanotubes have a large aspect ratio and excellent conductivity. By arranging such carbon nanotubes between the particles of the positive electrode active material, the variation in potential between the positive electrode active material particles is reduced, and the non-uniformity of the charge / discharge reaction is suppressed. Further, carbon nanotubes having a large aspect ratio occupy a small volume in the positive electrode active material layer. Therefore, it is also suppressed that the carbon nanotubes reduce the liquid circulation property of the electrolytic solution.
  • the carbon nanotubes are fibrous, it is easy to secure a gap between the electrolytic solutions even when the positive electrode active material is densely arranged in the positive electrode active material layer. Therefore, it is considered that the capacity retention rate is improved by adding carbon nanotubes.
  • the capacity retention rate of the batteries A1, A2, A5, A6 is the capacity maintenance of the battery C3, even though the amount of carbon nanotubes is the same. It was higher than the rate.
  • the reason for this is not clear, but it may be a synergistic effect due to the addition of both the flame retardant (R) and the carbon nanotubes.
  • the flame retardant (R) containing a halogen atom is a low dielectric constant material and has good wettability with components of an electrolytic solution (chain carbonate or the like). Therefore, it is considered that the liquid circulation property of the electrolytic solution is improved by adding the flame retardant (R). It is considered that the improvement of the liquid circulation property of the electrolytic solution is one of the factors for the improvement of the capacity retention rate.
  • the flame retardant (R) and the carbon nanotubes each have poor dispersibility, when they are added alone to the positive electrode slurry, the uniformity of the positive electrode active material layer tends to decrease.
  • the two when both of them are added to the positive electrode slurry, the two may be easily dispersed for unknown reasons. Therefore, when both of them are used, the time required for preparing the positive electrode slurry can be shortened, and it becomes easy to prepare the positive electrode active material layer having high uniformity.
  • One of the reasons why the batteries A1 to A8 show good characteristics may be the improvement of the uniformity of the positive electrode active material layer (first layer) by using both the flame retardant (R) and the carbon nanotubes. .. For example, by using both, the dispersibility of the flame retardant (R) is improved, and there is a possibility that a high flame retardant effect is exhibited.
  • Example 2 In Example 2, a plurality of secondary batteries were prepared and evaluated. In Example 2, a plurality of secondary batteries were produced under the same conditions and methods as those of the battery produced in Example 1, except that the amount of the flame retardant was increased. The manufactured battery was subjected to a nail piercing test by the method described above. Table 2 shows some of the production conditions and the calorific value during the nail piercing test.
  • Example 3 LiNi 0.88 Co 0.09 Al 0.03 O 2 was used as the positive electrode active material, and the positive electrode active material was polyvinylidene fluoride (PVdF), N-methyl-2-pyrrolidone (NMP), and acetylene black. (AB) and, if necessary, carbon nanotubes (CNT) were mixed at a predetermined mass ratio to prepare a positive electrode slurry.
  • the carbon nanotubes used had an average diameter of about 1.5 nm and a length of about 1 ⁇ m to 5 ⁇ m.
  • a positive electrode slurry was applied to the surface of the aluminum foil (positive electrode current collector) to form a coating film. After the coating film was dried, it was rolled to form a second layer, which is a positive electrode active material layer, on both surfaces of the aluminum foil.
  • the flame retardant (R), polyvinylidene fluoride (PVdF), N-methyl-2-pyrrolidone (NMP), and if necessary, alumina particles ( Al2O3 ) are added in a predetermined mass ratio.
  • Mixing was performed to prepare a slurry for the third layer.
  • the obtained slurry was applied to the surface of the second layer and dried to form the third layer, which is a flame retardant layer.
  • the first layer having the second layer and the third layer was formed on the surface of the positive electrode current collector.
  • a plurality of secondary batteries (batteries A9 to A13, C4, by changing the ratio of the substance in the second layer, the type of the flame retardant contained in the third layer, and the ratio of the substance in the third layer, C5) was produced.
  • the ratios of the positive electrode active material, the flame retardant, the acetylene black, and the carbon nanotubes in the second layer were changed. Their ratio was varied by varying their mixing ratio when preparing the positive electrode slurry.
  • the ratio of the flame retardant (R) and the binder (PVdF) in the third layer was changed by changing the mixing ratio thereof when preparing the slurry for the third layer.
  • the battery temperature after the nail piercing test was measured by the following procedure.
  • A In an environment of 25 ° C., the battery is charged with a constant current of 0.5 C until the battery voltage reaches 4.2 V, and then continuously charged with a constant voltage until the current value reaches 0.02 C. rice field.
  • B In an environment of 25 ° C., the tip of a round nail (diameter 2.7 mm) is brought into contact with the center of the battery charged in (a) and pierced at a speed of 1 mm / sec, resulting in a battery voltage drop due to an internal short circuit. Immediately after detecting, the piercing of the round nail was stopped. Then, the surface temperature of the battery was measured 1 minute after the battery was short-circuited.
  • Table 3 shows some of the battery manufacturing conditions, and Table 4 shows the evaluation results.
  • the ratio of the flame retardant layer in Table 3 shows the content of the flame retardant and the binder (PVdF) in the slurry for the flame retardant layer, respectively.
  • the flame retardant r1 represents ethylene-1,2-bispentabromophenyl (SAYTEX®-8010 manufactured by Albemarle Japan Co., Ltd.).
  • the flame retardant r2 represents ethylene bistetraphthalimide.
  • the battery C4 in which carbon nanotubes are not added to the second layer, which is the positive electrode active material layer has a large battery resistance.
  • the battery resistance can be reduced in the battery C5, but the battery temperature after the nailing test becomes high.
  • the battery temperature after the nailing test of the battery C5 is significantly higher than the battery temperature after the nailing test of the battery C4 to which carbon nanotubes are not added.
  • the battery resistance is reduced.
  • the temperature rise after the nail piercing test From Table 3, it is possible to obtain a sufficient effect of suppressing the temperature rise with a relatively thin film thickness of about 3 ⁇ m in the third layer.
  • the battery A12 corresponds to a battery A9 in which the content of the flame retardant (R) is reduced by replacing a part of the flame retardant (R) contained in the third layer with alumina particles.
  • the alumina particles function as spacers, the gaps through which lithium ions can move are increased, and the amount of the flame retardant added is suppressed, so that the increase in battery resistance is suppressed as compared with the battery A9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

開示される二次電池は、正極と負極とを含む非水電解質二次電池である。正極は、正極活物質を含む第1層を含み、第1層は、ハロゲン原子を含む難燃剤と、カーボンナノチューブとをさらに含む。

Description

二次電池
 本開示は、二次電池に関する。
 リチウムイオン二次電池などの非水電解質二次電池は、高出力かつ高エネルギー密度を有する。そのため、非水電解質二次電池は、小型民生用途、電力貯蔵装置、および電気自動車の電源として利用されている。
 非水電解質二次電池の正極活物質層には、従来から様々な添加剤が添加されてきた。例えば、特許文献1は、「リチウムと、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)、銅(Cu)のうち少なくとも一種以上を含むリチウム-遷移金属複合酸化物を主体とする正極活物質に、一つ以上の塩素又は臭素により置換されたハロゲン置換環状有機化合物を添加した正極と、リチウム金属、リチウム合金、あるいはリチウムを吸蔵・放出が可能な材料を主材とする化合物からなる負極と、非水系電解液とを有する非水系電解液二次電池。」を開示している。
 特許文献2は、「電池極板及び前記電池極板の表面に複合された機能性コーティング層を含み、前記機能性コーティング層が機能性物質及び接合剤から製造され、前記機能性物質がリン含有化合物、窒素含有化合物及び無機ケイ素類化合物から選ばれる一種又は複数種であり、前記電池極板が電池正極及び/又は電池負極である」ことを特徴とするリチウムイオン電池用複合極板を提案している。
特開2010-212228号公報 特表2017-534138号公報
 近年、非水電解質二次電池の高エネルギー密度化に対する要求は、ますます高まっている。しかし、リチウムイオン二次電池のエネルギー密度を高くする場合、異常時における電池の安全対策が高いレベルで求められる。
 本開示に係る一局面は、二次電池に関する。当該二次電池は、正極と負極とを含む二次電池であって、前記正極は、正極活物質を含む第1層を含み、前記第1層は、ハロゲン原子を含む難燃剤と、カーボンナノチューブとをさらに含む。
 本開示によれば、高い安全性を有する二次電池を実現できる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係る二次電池の一部を切欠いた概略斜視図である。 本開示の一実施形態に係る二次電池を構成する正極の構成の一例を示す模式的な断面図である。
 以下、本開示に係る実施形態の例について説明する。なお、以下では、本開示に係る実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や他の材料を適用してもよい。この明細書において、「数値A~数値Bの範囲」という場合、当該範囲には数値Aおよび数値Bが含まれる。
 (二次電池)
 本実施形態に係る二次電池は、正極と負極とを含む。正極は、正極活物質を含む第1層を含む。第1層は、ハロゲン原子を含む難燃剤を含む。第1層は、カーボンナノチューブをさらに含み得る。当該難燃剤およびハロゲン原子をそれぞれ、以下では「難燃剤(R)」および「ハロゲン原子(X)」と称する場合がある。また、本実施形態に係る二次電池を、以下では「二次電池(S)」と称する場合がある。一実施形態において、第1層は、正極活物質と、難燃剤(R)と、導電材としてのカーボンナノチューブと、を含む正極活物質層(正極合剤層)であってもよい。
 検討した結果、本発明者らは、特定の難燃剤とカーボンナノチューブとを組み合わせて用いることによって、高容量化と安全性とを両立させることが可能であり、さらに他の特性(充放電サイクルにおける容量維持率)にも優れる二次電池が得られることを新たに見出した。本開示は、この新たな知見に基づくものである。
 (難燃剤(R))
 難燃剤(R)は、高温時にハロゲン原子(X)を放出することによって難燃効果を発現する。そのため、二次電池(S)によれば、異常時における過剰な発熱や発火を抑制できる。
 難燃剤(R)は、以下の(1)および(2)の条件のうちの少なくとも1つを満たしてもよい。難燃剤(R)は、以下の(1)および(2)の条件の両方を満たすことが好ましい。
(1)難燃剤(R)は、ハロゲン原子(X)が結合した環状構造を含む。当該環状構造は、芳香環であってもよいし、芳香環でなくてもよい。この場合、すべてのハロゲン原子(X)が環状構造に結合していてもよいし、一部のハロゲン原子(X)のみが環状構造に結合していてもよい。ハロゲン原子(X)が環状構造に結合している構造は、ハロゲン原子の含有率を高めやすい点で好ましい。
(2)難燃剤(R)に占めるハロゲン原子(X)の割合は45質量%以上である。この割合は、60質量%以上(例えば70質量%以上)であってもよい。上限に特に限定はないが、95質量%以下(例えば90質量%以上)であってもよい。これらの下限と上限とは任意に組み合わせることができる。
 難燃剤(R)の一例であるエチレン-1,2-ビスペンタブロモフェニルの構造式を、以下に示す。エチレン-1,2-ビスペンタブロモフェニルの分子量は971.2であり、それには10個の臭素原子(原子量:79.9)が含まれている。そのため、エチレン-1,2-ビスペンタブロモフェニルに占めるハロゲン原子(X)の割合は、100×10×79.9/971.2=82.3質量%である。
Figure JPOXMLDOC01-appb-C000001
 ハロゲン原子(X)に特に限定はないが、好ましいハロゲン原子(X)の例には、臭素(Br)、塩素(F)、およびフッ素(F)が含まれる。異常発熱の初期から難燃効果が期待できる点で、ハロゲン原子(X)は、臭素および/または塩素であってもよいし、臭素であってもよい。
 このようなハロゲン原子(X)を含む難燃剤(R)は、従来用いられているリン系の難燃剤と比べて比重が大きいため、添加質量に対して体積を小さくできる。これにより、難燃剤層の厚みを薄くしながら十分な発熱抑制効果を得ることができる。よって、難燃剤層により活物質層の厚みが制限されることが抑制され、厚い活物質層を用いて高容量を実現できる。比重が大きい点で、難燃剤(R)は臭素(Br)を含むことが好ましい。また、難燃剤(R)に結合するハロゲン原子(X)の数は多ければ多いほどよい。難燃剤(R)は、環状構造にハロゲン原子(X)が結合することで、比重を大きくし易い。難燃剤(R)の比重は、例えば、2.7以上であってもよく、3.0以上が好ましい。
 難燃剤(R)は、化合物の構造において水分を発生させる部分および/または親水性基を含まないことが好ましい。この場合、二次電池の製造工程で水分が電池内に混入し難く、信頼性に優れた二次電池を実現できる。なお、水分を発生させる部分の例には、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、カルボニル基(-CO-)、および、スルホ基、リン酸基などのオキソ酸基が含まれる。親水性基の例としては、上記官能基のほか、アミノ基などが含まれる。
 難燃剤(R)は、180℃以上(例えば250℃以上)の温度でハロゲン原子(X)を放出してもよい。比較的低い温度で難燃剤がハロゲン原子(X)を放出すると、異常時ではない状態でハロゲン原子(X)が放出されて電池の特性が低下する場合がある。そのため、難燃剤(R)は180℃未満の温度では実質的にハロゲン原子(X)を放出しないことが好ましい。
 難燃剤(R)は、エチレン-1,2-ビスペンタブロモフェニル、エチレンビステトラブロモフタルイミド、テトラビスブロモビスフェノールA、ヘキサブロモシクロドデカン、2,4,6-トリブロモフェノール、1,6,7,8,9,14,15,16,17,17,18,18-ドデカクロロペンタシクロ(12.2.1.16,9.02,13.05,10)オクタデカ-7,15-ジエン(商品名:デクロランプラス)、およびトリス(2,2,2-トリフルオロエチル)ホスフェイトからなる群より選択される少なくとも1つであってもよい。これらの難燃剤(R)は、市販されているものを用いてもよい。あるいは難燃剤(R)は、公知の合成方法で合成してもよい。
 第1層における正極活物質と難燃剤(R)との質量比を、正極活物質:難燃剤(R)=100:aで表したとき、aは0より大きく7未満であってもよい。この構成によれば、電池容量を大きく低下させることなく安全性を高めることができる。当該aの値は、0.1以上、0.3以上、0.5以上、または1.0以上であってもよい。当該aの値は、7.0未満、4.5未満、3.0以下、2.0以下、1.5以下、または1.0以下であってもよい。これらの下限と上限とは矛盾がない限り任意に組み合わせることができる。例えば、当該aの値は、0.1以上で7未満の範囲(例えば、0.1以上で4.5未満の範囲、0.1~3.0の範囲、0.1~2.0の範囲、0.1~1.0の範囲、0.5~2.0の範囲、0.5~1.0の範囲)にあってもよい。
 第1層は、アセチレンブラックを含んでもよいし、含まなくてもよい。第1層における正極活物質とアセチレンブラックとカーボンナノチューブとの質量比を、正極活物質:アセチレンブラック:カーボンナノチューブ=100:b:cで表したとき、bおよびcは、0≦b<5、b+c<10を満たしてもよい。この構成によれば、高容量化と高いサイクル性能とを実現できる。bおよびcは、0≦b<3、およびb+c<5を満たしてもよく、0≦b<1、および0.02<b+c<5(例えば0.1<b+c<1)を満たしてもよい。cの値は、0.02~3.0の範囲(例えば、0.02~2.0の範囲、0.05~1.0の範囲、0.05~0.5の範囲、または0.1~0.5の範囲)にあってもよい。bの値は、0~3.0の範囲(例えば、0~2.0の範囲、0~1.0の範囲、または0~0.5の範囲)にあってもよい。
 二次電池(S)の好ましい一例では、上記aの値が0.5~1.0の範囲にあり、上記bが0~0.5の範囲にあり、上記cが0.02~0.5(例えば0.1~0.5)の範囲にある。この一例の難燃剤(R)は、エチレン-1,2-ビスペンタブロモフェニル、および/または、エチレンビステトラブロモフタルイミドであってもよい。
 (カーボンナノチューブ)
 カーボンナノチューブは、正極活物質の粒子間で導電パスを形成し、正極活物質を含む正極活物質層(例えば、第1層または後述する第2層)の導電性を高めるための導電材として機能する。カーボンナノチューブのアスペクト比(直径に対する長さの比)は、極めて大きい。そのため、カーボンナノチューブは、わずかな量でも高い導電性を発揮する。また、導電材としてカーボンナノチューブを用いることによって、正極活物質層中の正極活物質の割合を高くすることが可能である。そのため、二次電池(S)は、高容量化が可能である。
 正極活物質層に占めるカーボンナノチューブの含有率は、電池抵抗を低減する点から、0.01質量%以上、0.3質量%以上もしくは0.1質量%以上であってもよい。一方、高容量を実現するとともに、異常時の電池温度の上昇を抑制する点から、カーボンナノチューブの含有率は、10質量%以下、3質量%以下もしくは1質量%以下であってもよい。これらの下限と上限とは、矛盾がない限り、任意に組み合わせることができる。
 正極活物質層に占める正極活物質の含有割合は、放電状態の二次電池から正極活物質層のみを取り出して得られたサンプルから求められる。具体的には、まず、放電状態の二次電池を解体して正極を取り出す。次に、その正極を有機溶媒を用いて洗浄し、さらに真空乾燥した後、正極活物質層のみを剥離することによってサンプルを得る。当該サンプルに対してTG-DTA等の熱分析を行うことによって、正極活物質以外の結着剤成分および導電材成分の比率を算出することができる。結着剤成分および導電材成分に複数種の炭素材料が含まれている場合、このうちカーボンナノチューブが占める割合は、正極活物質層の断面に対し顕微ラマン分光を行うことによって算出することが可能である。また、正極活物質層に占める難燃剤(R)の割合は、正極活物質層の断面に対するEDS等の元素分析によって求めることができる。
 カーボンナノチューブの外径および長さは、走査型電子顕微鏡(SEM)を用いた画像解析によって求めることができる。例えば、長さは、複数本(例えば100~1000本)程度のカーボンナノチューブを任意に選出して長さおよび径を測定し、それらを平均して求められる。
 カーボンナノチューブの例には、カーボンナノファイバーが含まれる。カーボンナノチューブは、様々なものが市販されているため、市販のものを用いてもよい。あるいは、カーボンナノチューブは、公知の合成方法で合成してもよい。
 カーボンナノチューブは、単層(Single Wall)であってもよいし、二層(Double Wall)であってもよいし、多層(Multi Wall)であってもよい。少量で大きな効果が得られる点で、単層カーボンナノチューブが好ましい。直径が5nm以下のカーボンナノチューブには、単層カーボンナノチューブが多く含まれている。単層カーボンナノチューブは、カーボンナノチューブの全体の50質量%以上であってもよい。
 カーボンナノチューブの直径に特に限定はなく、0.001~0.05μmの範囲にあってもよい。カーボンナノチューブの長さに特に限定はないが、正極活物質層における電子伝導を担保する観点から、0.5μm以上であってもよい。一方、正極内部で適正に配置される限りカーボンナノチューブの長さに上限は存在しない。正極活物質の粒子径が一般に1μm以上20μm以下である事を鑑みると、カーボンナノチューブの長さは、それと同等程度の長さであってもよい。すなわち、カーボンナノチューブの長さは、例えば、1μm以上20μm以下であってもよい。例えば、正極活物質層内で任意に複数本(例えば、100本以上)のカーボンナノチューブを選択したとき、このうち50%以上(数比)のカーボンナノチューブの長さが1μm以上であってもよく、1μm以上20μm以下であってもよい。80%以上のカーボンナノチューブの長さが1μm以上であってもよく、1μm以上20μm以下であってもよい。
 本開示の一実施形態において、難燃剤(R)は、第1層の表面側に偏在していてもよい。この場合、第1層は、例えば、正極活物質およびカーボンナノチューブを少なくとも含む第2層と、第2層よりも正極の表面側にあって、難燃剤(R)を少なくとも含む第3層と、を含む。第3層における難燃剤の含有率は、第2層における難燃剤の含有率よりも大きい。ここで、難燃剤の含有率とは、第2層または第3層の単位体積(見かけの体積)に含まれる難燃剤のモル数を意味し、第1層(第2層および第3層)の断面に対して例えばEDS等の元素分析を行い、難燃剤の深さ方向の分布を求めることにより難燃剤が第2層側に偏在しているかを測定できる。一実施形態において、第2層は、正極活物質と、導電材としてのカーボンナノチューブと、を少なくとも含む正極活物質層(正極合剤層)であり、第3層は、難燃剤(R)を少なくとも含む難燃剤層であってもよい。
 第2層は、さらにカーボンナノチューブを含み得る。カーボンナノチューブを、正極活物質を含む第2層に添加することによって電池の抵抗が低減され、充放電の繰り返しによる劣化を抑制できる。一方で、正極活物質層に対してカーボンナノチューブを添加した二次電池は、同量のアセチレンブラックなどの導電材が添加された二次電池と比較すると、内部短絡などの発熱を伴う異常事象が発生し易くなる。しかしながら、難燃剤(R)を含む第3層をセパレータと正極活物質層である第2層の間に配置するとともに、カーボンナノチューブを第2層に加えることによって、高い電池特性を維持し、且つ異常時の電池温度の上昇を抑制できる。この場合、第2層には、難燃剤(R)が実質的に含まれていなくてもよい。
 難燃剤層としての第3層は、ハロゲン原子(X)を含む難燃剤(R)を含み、高温時にハロゲン原子(X)を放出することによって難燃効果を発現する。そのため、二次電池(S)によれば、異常時における過剰な発熱を抑制できる。また、難燃剤層である第3層は、電子伝導性を持たないため、正極活物質層である第2層とセパレータとの間に介在することによって、電池内部において短絡が発生し得る状況においても、短絡を抑制する抵抗層としても作用する。これにより発熱を効果的に抑制できる。
 本開示の他の実施形態における二次電池は、正極と負極とを含む二次電池であって、正極は、正極活物質を含む第1層を含む。第1層は、正極活物質とハロゲン原子(X)を含む難燃剤(R)と、を少なくとも含み、第1層内において難燃剤(R)は第1層の表面側に偏在している。例えば、第1層は、正極活物質と難燃剤(R)とを少なくとも含む第2層と、第2層よりも正極の表面側にあって、難燃剤(R)を少なくとも含む第3層と、を含む。第3層における難燃剤の含有率は、第2層における難燃剤の含有率よりも大きい。ここで、難燃剤の含有率とは、第2層または第3層の単位体積(見かけの体積)に含まれる難燃剤のモル数を意味し、例えばEDS等の元素分析により測定される。
 正極の集電体側に位置する第2層における難燃剤の含有率を、正極の表面側に位置する第3層における難燃剤(R)の含有率よりも小さくすることで、第2層における電池抵抗の上昇が抑制され、充放電の繰り返しによる劣化を抑制できる。また、難燃剤含有率の大きな第3層により、異常時の電池温度の上昇を抑制できる。よって、高い電池特性と、異常時における電池温度の上昇抑制と、が両立した二次電池を容易に実現できる。この場合、第2層(および第3層)にカーボンナノチューブを加えることは必須ではなく、カーボンブラックなどの導電材として一般的に用いられている材料を加えてもよい。第3層は、正極活物質を含んでいてもよい。第3層における正極活物質の質量基準の含有率は、第2層における正極活物質の質量基準の含有率より小さいことが好ましい
 第3層は、正極活物質を含む第2層の表面に接触して第2層の少なくとも一部を覆うように、第2層の表面に配置されていることが好ましい。
 第3層は、難燃剤(R)の他に、結着剤を含んでいてもよい。第3層が結着剤を含むことにより、難燃剤(R)の粒子同士の結着性および難燃剤(R)の正極活物質層である第2層への結着性を高めることができる。すなわち、第3層を、第2層に密着させることができる。結着材は、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、エチレンジメタクリレート、メタクリル酸アリル、t-ドデシルメルカブタン、α-メチルスチレンダイマー、メタアクリル酸等が挙げられる。なお、ポリフッ化ビニリデン(PVdF)、エチレンジメタクリレート、メタクリル酸アリル、t-ドデシルメルカブタン、α-メチルスチレンダイマー、メタアクリル酸を結着剤に用いる場合、第3層に圧力および/または熱が加えられることで、正極をセパレータに接着させ得る。
 第3層は、難燃剤(R)および結着剤以外の他の粒子を含んでいてもよい。他の粒子の例として、アルミナ、ベーマイト、チタニア等の金属酸化物を含む無機粒子が挙げられる。金属酸化物を含む無機粒子はスペーサーとして機能し、難燃剤の添加量を抑制できる。無機粒子の平均粒子径は、0.01μm~5μmであることが好ましく、難燃剤(R)の平均粒子径の1/2以下であることがより好ましい。
 第3層において、難燃剤(R)は、難燃剤(R)の粒子同士が凝集した集合体、あるいは結着剤を介して難燃剤(R)の粒子同士が凝集した集合体の形で存在し得る。第3層が第2層の表面を部分的に被覆してもよいし、第3層が第2層の表面の殆ど全てを被覆してもよい。第2層の表面に対する第3層の被覆率(面積基準)は、異常時における電池温度の上昇を抑える点で、5%以上、10%以上、もしくは30%以上であってもよく、50%以上が好ましい。
 なお、第2層の表面に対する第3層の被覆率が100%であり、第2層の表面が第3層で完全に覆われる場合であっても、第3層の粒子と粒子の間の隙間はリチウムイオンのサイズに比べて十分大きいため、隙間を介してリチウムイオンが移動でき、充放電の妨げになることはない。しかしながら、電池抵抗の上昇を抑える観点から、第2層の表面に対する第3層の被覆率を90%以下もしくは80%以下としてもよい。
 第2層の表面に対する第3層の被覆率は、5%以上90%以下、10%以上90%以下、30%以上90%以下、50%以上90%以下、もしくは50%以上80%以下であってもよい。
 第3層の被覆率は、SEM-EDX(Energy Dispersive X-ray spectrometry)等により、電極表面の元素マッピングを行うことで求められる。例えば、元素マッピングにより、難燃剤(R)の粒子と正極活物質を元素マッピングすることにより、第2層の表面に対する第3層の被覆率を算出できる。
 第3層における難燃剤(R)の粒子の平均粒子径(集合体を構成する場合、集合体を構成する一次粒子の平均粒子径)は、0.01μm~5μmであってもよく、0.05μm~3μmであってもよい。難燃剤(R)の平均粒子径は以下のようにして求められる。まず、正極表面のSEM画像から、ランダムに20個の難燃剤(R)の粒子を選択する。次に、選択した20個の粒子の粒界を観察し、粒子の外形を特定した上で、20個の粒子それぞれの長径を求め、それらの平均値を難燃剤(R)の粒子の平均粒径とする。第3層に難燃剤(R)以外の他の粒子が含まれる場合、他の粒子の平均粒子径についても同様の方法で求められる。
 第3層の厚みは、異常時における電池温度の上昇を抑える点で、0.1μm以上が好ましく、1μm以上もしくは3μm以上がより好ましい。第3層の厚みは、電池抵抗の上昇を抑える点で、10μm以下が好ましい。これらの下限と上限とは、矛盾がない限り、任意に組み合わせることができる。第3層の厚みは、第2層の表面が第3層で被覆されている領域における平均の厚みであり、正極の断面のSEM画像から求められる。
 第3層は、少なくとも難燃剤(R)の粒子と結着剤とを含む混合物を第2層の表面に堆積させることにより形成され得る。混合物は、難燃剤(R)の粒子と結着剤、および溶媒(分散媒)を含むスラリーであってもよい。スラリーを第2層の表面に噴霧、滴下、または塗布し、乾燥させることにより、第3層が形成され得る。スラリーに占める難燃剤(R)の粒子の量に対する溶媒の量および/またはスラリーの塗布量等を調整することで、第3層の被覆率及び厚みを制御することができる。
 第3層において、第3層の全体に占める難燃剤(R)の含有率は、50質量%以上、60質量%以上、70%質量以上、80%質量以上、もしくは90質量%以上であってもよい。第3層の全体に占める難燃剤(R)の含有率は、100質量%以下、もしくは95質量%以下であってもよい。これらの下限と上限とは、矛盾がない限り、任意に組み合わせることができる。第3層に占める難燃剤(R)の割合は、第3層の断面に対するEDS等の元素分析によって求めることができる。
 第2層が難燃剤(R)を含む場合、第2層において、第2層の全体に占める難燃剤(R)の含有率は、0.1質量%以上、0.3質量%以上、もしくは0.5質量%以上であってもよい。第2層の全体に占める難燃剤(R)の含有率は、5質量%以下、3質量%以下、2質量%以下、1質量%以下、もしくは0.5質量%以下であってもよい。これらの下限と上限とは、矛盾がない限り、任意に組み合わせることができる。第2層に占める難燃剤(R)の割合は、第2層の断面に対するEDS等の元素分析によって求めることができる。
 高容量化のため、正極集電体の表面に設けられる正極活物質層の単位面積当たりの搭載量(塗布量)は、250g/m以上であってもよい。
 以下に、本実施形態に係る二次電池(S)の例およびその構成要素の例について以下に説明する。なお、本開示に特徴的な部分ではない構成要素については、公知の構成要素を適用してもよい。二次電池(S)は、例えば、外装体(電池ケース)と、外装体内に配置された正極、負極、非水電解質、およびセパレータとを含む。セパレータは、正極と負極との間に配置されている。
 二次電池(S)の形状は限定されず、円筒形、角形、コイン形、ボタン形などであってもよい。電池ケースは、二次電池(S)の形状に応じて選択される。
 [正極]
 正極は、正極活物質を含む第1層を含み、必要に応じて正極集電体をさらに含む。典型的には、正極は、正極集電体と、正極集電体の表面に配置された第1層を含む。第1層は、正極活物質層(正極合剤層)であってもよい。その場合、第1層は、正極活物質、難燃剤(R)、および必要に応じて他の物質(導電材、結着剤、増粘剤など)を含む。他の物質(導電材、結着剤、増粘剤など)には、公知の物質を用いてもよい。第1層は、カーボンナノチューブを導電材として含むことが好ましい。
 第1層は、正極活物質およびカーボンナノチューブを少なくとも含む第2層(正極活物質層)と、難燃剤(R)を少なくとも含む第3層(難燃剤層)との積層構造であってもよい。その場合、第3層は、第2層の正極集電体と対向しない側の表面に配置される。第2層は、正極活物質、カーボンナノチューブ、および必要に応じて他の成分を含む。他の成分の例には、導電材、結着剤、増粘剤などが含まれる。それらの他の成分には、公知の二次電池に用いられている成分を用いてもよい。
 他の例として、第1層は、正極活物質と難燃剤(R)とを少なくとも含む第2層と、正極活物質と難燃剤(R)とを少なくとも含む第3層との積層構造であり、正極の表面側(正極集電体と対向しない側)の第3層における難燃剤(R)の含有率を、第2層における難燃剤(R)の含有率よりも高めてもよい。第2層および第3層は、正極活物質、難燃剤(R)、および必要に応じて他の物質(導電材、結着剤、増粘剤など)を含む。他の物質(導電材、結着剤、増粘剤など)には、公知の物質を用いてもよい。この場合、第2層および第3層は、カーボンナノチューブを導電材として含んでいなくてもよい。
 結着剤の例には、フッ素樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ビニル樹脂、スチレン-ブタジエン共重合ゴム(SBR)、ポリアクリル酸およびその誘導体などが含まれる。増粘剤の例には、カルボキシメチルセルロース(CMC)、ポリビニルアルコールなどが含まれる。これらの成分には、1種の材料を単独で用いてもよいし、2種以上の材料を組み合わせて用いてもよい。
 第1層(または第2層)がカーボンナノチューブを含む場合、第1層(または第2層)は、カーボンナノチューブ以外の導電材をさらに含んでもよいし、含まなくてもよい。第1層(または第3層)は、難燃剤(R)以外の難燃剤を含んでもよいし、含まなくてもよい。ただし、それらを多量に含むと正極活物質の割合が低下する。そのため、第1層(または第2層)がカーボンナノチューブを含む場合、第1層(または第2層)に含まれる導電材であってカーボンナノチューブ以外の導電材の質量は、第1層(または第2層)に含まれるカーボンナノチューブの質量の10倍以下(例えば0~5倍、0~1倍、または0~0.5倍の範囲)にあってもよい。カーボンナノチューブ以外の導電材の例には、アセチレンブラックが含まれる。また、第1層(または第3層)に含まれる難燃剤であって難燃剤(R)以外の難燃剤の質量は、第1層(または第3層)に含まれる難燃剤(R)の質量の2倍以下(例えば0~1倍、0~0.5倍、または0~0.1倍)の範囲にあってもよい。
 正極の作製方法の一例では、まず、第1層の材料を分散媒に分散させることによって正極スラリーを調製する。正極スラリーにおける正極活物質と難燃剤(R)とカーボンナノチューブとの比率は、作製される第1層におけるそれらの比率に対応するように選択される。次に、正極スラリーを正極集電体の表面に塗布して乾燥させる。乾燥後の塗膜を、必要に応じて圧延してもよい。このようにして正極を作製できる。正極活物質層は、正極集電体の一方の表面のみに形成してもよいし、両方の表面に形成してもよい。
 第2層および第3層を含む第1層を正極集電体の表面に形成する場合、まず、第2層の材料を分散媒に分散させることによって正極スラリーを調製する。正極スラリーにおける正極活物質とカーボンナノチューブとの比率は、作製される第2層におけるそれらの比率に対応するように選択される。次に、正極スラリーを正極集電体の表面に塗布して乾燥させる。乾燥後の塗膜を、必要に応じて圧延してもよい。このようにして正極集電体の表面に正極活物質層としての第2層を形成できる。正極活物質層は、正極集電体の一方の表面のみに形成してもよいし、両方の表面に形成してもよい。続いて、第2層の正極集電体と対向しない表面に第3層を形成する。
 第2層に、難燃剤を含ませてもよい。第2層は、正極活物質と、難燃剤とを含む合剤の層であってもよい。第2層に含まれる難燃剤は、上述の難燃剤(R)で挙げた化合物を用いてもよいし、難燃剤(R)以外の他の公知の難燃剤を用いてもよい。第2層に含まれる難燃剤は、難燃剤(R)と同様、ハロゲン原子を含む難燃剤であることが好ましい。しかしながら、第2層に含まれる難燃剤は、ハロゲン原子を含む難燃剤である場合において、難燃剤(R)と異なる化合物であってもよいし、同じ化合物であってもよい。第2層に占める難燃剤(R)の割合は、第2層の断面に対する蛍光X線分析(XRF)等の元素分析によって求めることができる。
 (正極活物質)
 正極活物質としては、リチウムと遷移金属とを含む層状構造(例えば、岩塩型結晶構造)を有するリチウム含有複合酸化物が用いられ得る。リチウム含有複合酸化物は、例えば、LiNi1-x(ただし、0<a≦1.2、0.8≦x<1であり、Mは、Co、Al、Mn、Fe、Ti、Sr、Na、Mg、Ca、Sc、Y、Cu、Zn、CrおよびBからなる群より選択された少なくとも1種を含む。)で表されるリチウム-ニッケル複合酸化物であってもよい。なかでも、Mは、Co、Mn、Feからなる群より選択される少なくとも1種を含むことが好ましい。結晶構造の安定性の観点から、MとしてAlを含んでいてもよい。なお、リチウムのモル比を示すa値は、充放電により増減する。このような複合酸化物の具体例として、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.9Co0.05Al0.05など)が挙げられる。
 上記のリチウム-ニッケル複合酸化物は、Ni比率xが多いほど、充電時に多くのリチウムイオンをリチウム-ニッケル複合酸化物から引き抜くことができ、容量を高めることができる。しかしながら、このように容量を高めたリチウム-ニッケル複合酸化物中のNiはその価数が高くなる傾向にある。結果、特に満充電状態において結晶構造が不安定になり易く、充放電の繰り返しによってリチウムイオンの可逆的な吸蔵および放出が困難な結晶構造に変化(不活性化)し易くなる。結果、サイクル特性が低下し易い。特に、正極活物質層の厚みを厚くし、および/または、正極活物質層を圧縮して面積当たりの正極活物質量を高める構成を採用する場合、充放電反応時にリチウムイオンおよび/または電子の流れが阻害されやすくなり、充放電反応にムラが発生し易い。充放電反応にムラが生じると、充電反応が過剰に進行したリチウムイオンの引き抜き量が大きい一部領域で結晶構造の不活性化が進行し、サイクル特性が低下する場合がある。
 しかしながら、二次電池(S)の正極活物質層はカーボンナノチューブを含むため、正極活物質層の単位面積当たりの搭載量(塗布量)を高めた場合においても、充放電反応のムラが抑制される。よって、Ni比率xの大きなリチウム含有複合酸化物を採用する場合であっても、サイクル特性の低下が抑制される。よって、サイクル特性に優れ、且つ、高エネルギー密度の二次電池を実現できる。
 高容量を得る観点から、リチウム含有複合酸化物におけるNi比率xは0.85以上(x≧0.85)であってもよく、0.9以上(x≧0.9)であってもよい。
 正極集電体の形状および厚さは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 本開示に係る他の一局面は、上記難燃剤、上記カーボンナノチューブ、および正極活物質を含む第1層を有する正極に関する。
 [負極]
 負極は、負極活物質層を含み、必要に応じて負極集電体をさらに含む。負極活物質層は、負極活物質を含み、必要に応じて他の物質(結着剤など)をさらに含む。負極の作製方法の一例では、まず、負極活物質層の材料を分散媒に分散させることによって負極スラリーを調製する。次に、負極スラリーを負極集電体の表面に塗布して乾燥させる。乾燥後の塗膜を、必要に応じて圧延してもよい。分散媒としては、水、アルコール、エーテル、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。負極活物質層中の成分の比率は、負極活物質の材料の混合比率を変えることによって調製できる。このようにして負極を作製できる。負極活物質層は、負極集電体の一方の表面のみに形成してもよいし、両方の表面に形成してもよい。
 負極活物質層は、負極活物質を必須成分として含み、任意成分として、結着剤、導電材、増粘剤などを含むことができる。結着剤、導電材、増粘剤としては、公知の材料を利用できる。
 (負極活物質)
 負極活物質には、電気化学的にリチウムイオンを吸蔵および放出する材料、リチウム金属、およびリチウム合金から選択される少なくとも1種を用いることができる。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料、合金系材料などが用いられる。炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。合金系材料としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられ、ケイ素、スズ、ケイ素合金、スズ合金、ケイ素化合物などが挙げられる。これらが酸素と結合した酸化ケイ素や酸化スズ等を用いてもよい。
 ケイ素を含む合金系材料としては、例えば、リチウムイオン導電相と、リチウムイオン導電相にケイ素粒子が分散したケイ素複合材料を用いることができる。リチウムイオン導電相としては、例えば、ケイ素酸化物相、シリケート相および/または炭素相等を用いることができる。ケイ素酸化物相の主成分(例えば95~100質量%)は二酸化ケイ素であり得る。なかでも、シリケート相とそのシリケート相に分散したケイ素粒子とで構成される複合材料は、高容量であり、かつ不可逆容量が少ない点で好ましい。
 シリケート相は、例えば、長周期型周期表の第1族元素および第2族元素からなる群より選択される少なくとも1種を含んでもよい。長周期型周期表の第1族元素および長周期型周期表の第2族元素としては、例えば、リチウム(Li)、カリウム(K)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用い得る。その他の元素としてアルミニウム(Al)、ホウ素(B)、ランタン(La)、リン(P)、ジルコニウム(Zr)、チタン(Ti)等を含んでも良い。中でも、不可逆容量が小さく、初期の充放電効率が高いことから、リチウムを含むシリケート相(以下、リチウムシリケート相とも称する。)が好ましい。
 リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相であればよく、他の元素を含んでもよい。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2より大きく、4未満である。好ましくは、O/Siは、2より大きく、3未満である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0より大きく、4未満である。リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。リチウムシリケート相に含まれ得るLi、SiおよびO以外の元素としては、例えば、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)等が挙げられる。
 炭素相は、例えば、結晶性の低い無定形炭素(すなわちアモルファス炭素)で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)などが使用される。負極集電体の材質としては
、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。
 [電解質]
 電解質には、溶媒と、溶媒に溶解した溶質とを含む電解液を用いることができる。溶質は、電解液中でイオン解離する電解質塩である。溶質は、例えば、リチウム塩を含み得る。溶媒および溶質以外の電解液の成分は添加剤である。電解液には、様々な添加剤が含まれ得る。
 溶媒は、非水溶媒が用いられる。非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。また、環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水溶媒として、他に、環状エーテル類、鎖状エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
 環状エーテルの例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
 鎖状エーテルの例としては、1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-
ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 これらの溶媒は、水素原子の一部がフッ素原子で置換されたフッ素化溶媒であってもよい。フッ素化溶媒としては、フルオロエチレンカーボネート(FEC)を用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO、LiAlCl、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF、LiPF、LiBF、LiSbF、LiAsF、LiCFSO、LiCFCOなど)、フッ素含有酸イミドのリチウム塩(LiN(FSO、LiN(CFSO、LiN(CFSO)(CSO)、LiN(CSOなど)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液におけるリチウム塩の濃度は、1mol/リットル以上2mol/リットル以下であってもよく、1mol/リットル以上1.5mol/リットル以下であってもよい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する電解液を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
 電解液は、他の公知の添加剤を含有してもよい。添加剤としては、1,3-プロパンサルトン、メチルベンゼンスルホネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、フルオロベンゼンなどが挙げられる。
 [セパレータ]
 正極と負極との間には、セパレータが配置されてもよい。セパレータには、イオン透過度が高く、適度な機械的強度および絶縁性を備えている部材を適用できる。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。また、機械的強度を上げるためにアラミド繊維などを用いてもよい。
 二次電池(S)の一例は、外装体と、外装体に収容された電極群および非水電解質とを含む。電極群の構造に特に限定はない。電極群の一例は、正極と負極との間にセパレータが配置されるように正極と負極とセパレータとを巻回することによって形成される。電極群の他の一例は、正極と負極との間にセパレータが配置されるように正極と負極とセパレータとを積層することによって形成される。二次電池(S)の形態に限定はなく、円筒形、角形、コイン形、ボタン形、ラミネート形などであってもよい。
 二次電池(S)の一例は、外装体と、外装体に収容された電極群および非水電解質とを含む。電極群の構造に特に限定はない。電極群の一例は、正極と負極との間にセパレータが配置されるように正極と負極とセパレータとを巻回することによって形成される。電極群の他の一例は、正極と負極との間にセパレータが配置されるように正極と負極とセパレータとを積層することによって形成される。二次電池(S)の形態に限定はなく、円筒形、角形、コイン形、ボタン形、ラミネート形などであってもよい。
 二次電池(S)の製造方法に特に限定はなく、公知の製造方法を適用してもよいし、公知の製造方法の少なくとも一部を変更して適用してもよい。
 本開示に係る実施形態の例について、図面を参照して以下に具体的に説明する。以下で説明する例の構成要素には、上述した構成要素を適用できる。また、以下で説明する例は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、以下で説明する実施形態において、本開示に係る二次電池に必須ではない構成要素は省略してもよい。
 図1は、本開示の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。図1に示す二次電池1は、有底角形の電池ケース11と、電池ケース11内に収容された電極群10および非水電解質(図示せず)とを含む。電極群10は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを含む。電極群10は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることによって形成される。上述したように、正極は、本開示に係る第1層を含む。第1層は、正極活物質と、難燃剤(R)と、カーボンナノチューブとを含む。
 負極の負極集電体には、負極リード15の一端が溶接などにより取り付けられている。正極の正極集電体には、正極リード14の一端が溶接などにより取り付けられている。負極リード15の他端は、封口板12に設けられた負極端子13に電気的に接続されている。封口板12と負極端子13との間には、ガスケット16が配置され、両者を絶縁している。正極リード14の他端は、封口板12と接続され、正極端子を兼ねる電池ケース11と電気的に接続されている。電極群10の上部には、樹脂製の枠体18が配置されている。枠体18は、電極群10と封口板12とを隔離するとともに負極リード15と電池ケース11とを隔離する。電池ケース11の開口部は、封口板12で封口されている。封口板12には、注液孔17aが形成されている。電解質は、注液孔17aから電池ケース11内に注液される。その後、注液孔17aは封栓17によって塞がれる。
 図2は、本開示の一実施形態に係る二次電池を構成する正極3の構成例を示す断面図である。正極集電体30の表面に、正極活物質層(第2層)31が配置され、正極活物質層31の表面に、難燃剤層(第3層)32が配置されている。難燃剤層32は、難燃剤(R)を含む。正極活物質層31および難燃剤層32は、第1層を構成する。図2は、難燃剤層32が正極活物質層31の表面の全面を覆うように形成された例である。
 本開示に係る二次電池について、実施例によってさらに詳細に説明する。
 (実施例1)
 実施例1では、複数の二次電池を作製して評価した。以下の手順で二次電池を作製した。
 [負極の作製]
 負極活物質には、ケイ素複合材料と黒鉛とを、ケイ素複合材料:黒鉛=5:95の質量比で混合した混合物を用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)と、水とを所定の質量比で混合し、負極スラリーを調製した。次に、銅箔(負極集電体)の表面に負極スラリーを塗布することによって塗膜を形成した。その塗膜を乾燥させた後、圧延して、銅箔の両面に負極活物質層を形成した。
 [正極の作製]
 正極活物質として、LiNi0.88Co0.09Al0.03を用いた。正極活物質、ポリフッ化ビニリデン、N-メチル-2-ピロリドン(NMP)、および必要に応じて、難燃剤、アセチレンブラック、およびカーボンナノチューブ(CNT)を、所定の質量比で混合することによって、正極スラリーを調製した。カーボンナノチューブには、平均径が約1.5nmであり、長さが1μm~5μm程度のものを用いた。
 次に、アルミニウム箔(正極集電体)の表面に正極スラリーを塗布して塗膜を形成した。その塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に第1層を形成した。
 [電解液の調製]
 エチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)を3:7の体積比で含む混合溶媒に、リチウム塩としてLiPFを加え、電解液を調製した。非水電解液におけるLiPFの濃度は1.0mol/リットルとした。
 [二次電池の作製]
 各電極にリードタブをそれぞれ取り付けた。次に、リードが最外周部に位置するように、セパレータを介して正極と負極とを渦巻き状に巻回した。このようにして電極群を作製した。次に、アルミニウム箔をバリア層とするラミネートフィルム製の外装体内に電極群を挿入し、真空乾燥した。次に、外装体内に電解液を注入し、外装体の開口部を封止した。このようにして、二次電池を得た。
 この実施例では、第1層に用いた難燃剤の種類と、第1層中の物質の比率とを変化させて複数の二次電池(電池A1~A8、C1~C3)を作製した。具体的には、正極活物質層中の、正極活物質、難燃剤、アセチレンブラック、およびカーボンナノチューブの比率を変化させた。それらの比率は、正極スラリーを調製する際にそれらの混合比を変化させることによって、変化させた。それらの比率は、後掲の表1に示す。難燃剤には、エチレン-1,2-ビスペンタブロモフェニルまたはエチレンビステトラブロモフタルイミドを用いた。
 なお、それぞれの電池の第1層は同じ厚さとなるように形成した。そのため、第1層に占める難燃剤および導電材の割合が高くなると、第1層に含まれる正極活物質の量が減り、その結果、容量が低下する。
 作製された二次電池について、以下の評価を行った。
 (1)初期放電容量および容量維持率の測定
 作製された二次電池の放電容量を以下の方法で測定した。まず、25℃の環境下で、40mAの定電流で電池電圧が4.2Vになるまで電池を充電し、その後、電流値が10mAになるまで定電圧で充電を継続した。充電後の電池を20分間放置した後、60mAの定電流で電池電圧が2.5Vになるまで放電した。その後、20分間放置した。この操作(充放電サイクル)を100回繰り返した。
 初回の放電時の放電容量DC0と、上記の充放電サイクルを100回繰り返した後の放電容量DC1とを測定した。そして、以下の式から容量維持率を求めた。
容量維持率(%)=100×DC1/DC0
 (2)釘刺し試験
 作製された二次電池について、下記の手順で釘刺し試験を行った。
(a)25℃の環境下で、60mAの定電流で電池電圧が4.2Vになるまで電池を充電し、その後、引き続き、電流値が10mAになるまで定電圧で充電を行った。
(b)25℃の環境下で、(a)で充電した電池の中央部に、丸釘(直径2.7mm)の先端を接触させた。そして、電池の極板群の積層方向に丸釘を突き刺した。丸釘は、1mm/秒の速度で突き刺した。突き刺した丸釘は、内部短絡による電池電圧の降下を検出した直後に停止した。
(c)丸釘によって電池が短絡してから1秒間、短絡電流の電流値Iの測定と電池の電圧Vの測定とを続けた。そして、電流値Iと電圧Vとの積(電力)を時間積算することによって、1秒間の発熱量を求めた。
 電池の作製条件の一部および評価結果を、表1に示す。表1の量a、量b、および量cは、第1層における、正極活物質、難燃剤、アセチレンブラック(AB)、およびカーボンナノチューブ(CNT)の質量比を、正極活物質:難燃剤:AB:CNT=100:a:b:cで表したときの値である。
(*1)表1および表2中、難燃剤R1は、エチレン-1,2-ビスペンタブロモフェニルを表す。
(*2)表1および表2中、難燃剤R2は、エチレンビステトラブロモフタルイミドを表す。
Figure JPOXMLDOC01-appb-T000002
 表1に示す初期放電容量および容量維持率は高い方が好ましく、発熱量は低い方が好ましい。表1に示すように、電池A1~A8の正極活物質層(第1層)は、難燃剤(R)とカーボンナノチューブとを含む。一方、電池C1~C3の正極活物質層(第1層)は、難燃剤(R)およびカーボンナノチューブのうちの少なくとも一方を含まない。電池A1~A8は、電池C1に比べて初期放電容量が高く、発熱量が低かった。難燃剤(R)の種類および添加量が同じである電池A2、電池A4、および電池C2を比較すると、電池A2およびA4は、電池C2に比べて、初期放電容量が高く、発熱量が低く、容量維持率が高かった。このように、本実施形態によれば、高容量化および安全性を両立させることが可能な電池が得られる。
 電池A2の正極活物質層(第1層)は、電池A4の正極活物質層(第1層)のアセチレンブラックをカーボンナノチューブに置き換えた構成を有する。電池A2の発熱量は、電池A4の発熱量よりも低かった。同様に、電池A6の正極活物質層(第1層)は、電池A8の正極活物質層(第1層)のアセチレンブラックをカーボンナノチューブに置き換えた構成を有する。電池A6の発熱量は、電池A8の発熱量よりも低かった。カーボンナノチューブは、正極活物質の表面に網状に配置される。電池A2は電池A4よりも多くのカーボンナノチューブを含むことから、電池A2では電池A4よりも正極活物質の表面でカーボンナノチューブが網羅的な網状の導電ネットワークを構成し、電池A2ではカーボンナノチューブの網羅的な配置に付随して難燃剤の分布も均一化したものと考えられる。難燃剤の分布がより均一化されたことで、電池A2は電池A4よりも発熱量が抑制されたと考えられる。電池A6の発熱量が電池A8の発熱量よりも低くなった理由も、正極活物質の表面におけるカーボンナノチューブの網羅的な分布に付随した難燃剤の分布の均一化によるものと考えられる。
 さらに、電池A1~A8の容量維持率は、電池C1~C3の容量維持率と同等かそれ以上であった。カーボンナノチューブはアスペクト比が大きく導電性に優れる。そのようなカーボンナノチューブを正極活物質の粒子の間に配置することによって、正極活物質粒子の間の電位のばらつきが低減され、充放電反応の不均一が抑制される。さらに、アスペクト比が大きいカーボンナノチューブが正極活物質層内において占める体積は僅かである。そのため、カーボンナノチューブが電解液の液回り性を低下させることも抑制される。また、カーボンナノチューブは繊維状であるため、正極活物質層内において正極活物質が密に配される場合においても電解液の隙間が確保されやすい。そのため、カーボンナノチューブを添加することによって、容量維持率が向上していると考えられる。
 一方、電池A1、A2、A5、A6と電池C3とを比較すると、カーボンナノチューブの量が同じであるにも拘わらず、電池A1、A2、A5、A6の容量維持率は、電池C3の容量維持率よりも高かった。この理由は明確ではないが、難燃剤(R)およびカーボンナノチューブの両方を添加することによる相乗効果である可能性がある。ハロゲン原子を含む難燃剤(R)は、低誘電率材料であり、電解液の成分(鎖状カーボネート等)との濡れ性が良い。そのため、難燃剤(R)を加えることによって、電解液の液回り性が向上すると考えられる。この電解液の液回り性の向上が、容量維持率の向上の1つの要因であると考えられる。
 さらに、難燃剤(R)およびカーボンナノチューブはそれぞれ分散性が悪いため、それらを単独で正極スラリーに添加した場合には正極活物質層の均一性が低下しやすくなる。一方、それらの両方を正極スラリーに添加した場合には、理由は不明であるが両者が分散しやすくなる場合がある。そのため、それらの両方を用いる場合には、正極スラリーの調製に要する時間を短縮できるとともに、均一性が高い正極活物質層を作製しやすくなる。電池A1~A8が良好な特性を示す理由の1つが、難燃剤(R)およびカーボンナノチューブの両方を用いることによる、正極活物質層(第1層)の均一性の向上である可能性がある。例えば、両方を用いることによって難燃剤(R)の分散性が向上し、それによって高い難燃効果が奏されている可能性がある。
 (実施例2)
 実施例2では、複数の二次電池を作製して評価した。実施例2では、難燃剤の量を多くしたことを除いて、実施例1で作製した電池と同様の条件および方法で複数の二次電池を作製した。作製した電池について、上述した方法で釘刺し試験を行った。作製条件の一部と釘刺し試験時の発熱量を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表1および表2の結果に示されるように、難燃剤の量が多い方が、発熱量が低かった。一方、難燃剤が多いと、初期放電容量および容量維持率が低くなる場合がある。
 (実施例3)
 正極の作製において、正極活物質としてLiNi0.88Co0.09Al0.03を用い、正極活物質、ポリフッ化ビニリデン(PVdF)、N-メチル-2-ピロリドン(NMP)、アセチレンブラック(AB)、および、必要に応じて、カーボンナノチューブ(CNT)を、所定の質量比で混合することによって、正極スラリーを調製した。カーボンナノチューブには、平均径が約1.5nmであり、長さが1μm~5μm程度のものを用いた。
 次に、アルミニウム箔(正極集電体)の表面に正極スラリーを塗布して塗膜を形成した。その塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に正極活物質層である第2層を形成した。
 続いて、難燃剤(R)と、ポリフッ化ビニリデン(PVdF)と、N-メチル-2-ピロリドン(NMP)と、必要に応じてアルミナ粒子(Al)と、を所定の質量比で混合し、第3層用のスラリーを調製した。得られたスラリーを第2層の表面に塗布し、乾燥させ、難燃剤層である第3層を形成した。このようにして、第2層および第3層を有する第1層を、正極集電体の表面に形成した。
 これ以外については、実施例1および2と同様にして、複数の二次電池を作製し、以下の評価を行った。
 この実施例では、第2層中の物質の比率、第3層に含まれる難燃剤の種類および第3層中の物質の比率を変化させて複数の二次電池(電池A9~A13、C4、C5)を作製した。具体的には、第2層中の、正極活物質、難燃剤、アセチレンブラック、およびカーボンナノチューブの比率を変化させた。それらの比率は、正極スラリーを調製する際にそれらの混合比を変化させることによって、変化させた。また、第3層中の難燃剤(R)と結着剤(PVdF)との比率を、第3層用のスラリーを調製する際にそれらの混合比を変化させることによって、変化させた。それらの比率の一部を、後掲の表3に示す。難燃剤の種類については後述する。
 (1)電池抵抗
 25℃の環境下で、40mAの定電流で電池電圧が4.2Vになるまで電池を充電し、その後、電流値が10mAになるまで定電圧で充電を継続した。充電後の電池をテスターに接続し、内部抵抗を測定した。
 (2)釘刺し試験
 作製された二次電池について、下記の手順で釘刺し試験後の電池温度を測定した。
(a)25℃の環境下で、0.5Cの定電流で電池電圧が4.2Vになるまで電池を充電し、その後、引き続き、電流値が0.02Cになるまで定電圧で充電を行った。
(b)25℃の環境下で、(a)で充電した電池の中央部に、丸釘(直径2.7mm)の先端を接触させ、1mm/秒の速度で突き刺し、内部短絡による電池電圧降下を検出した直後に、丸釘の突き刺しを停止した。そして、電池が短絡して1分後の電池の表面温度を測定した。
 電池の作製条件の一部を表3に、評価結果を表4に示す。表3の難燃剤層の比率は、難燃剤層用のスラリーに占める難燃剤および結着剤(PVdF)の含有率をそれぞれ示している。表3中、難燃剤r1は、エチレン-1,2-ビスペンタブロモフェニル(アルベマール日本株式会社製のSAYTEX(登録商標)-8010)を表す。難燃剤r2は、エチレンビステトラフタルイミドを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3および表4より、電池C4とC5とを比較すると、正極活物質層である第2層にカーボンナノチューブを添加していない電池C4は、電池抵抗が大きい。これに対し、正極活物質層である第2層にカーボンナノチューブを添加することで、電池C5では、電池抵抗を低減できるが、釘差し試験後の電池温度が高くなる。電池C5の釘差し試験後の電池温度は、カーボンナノチューブを添加していない電池C4の釘差し試験後の電池温度よりも顕著に高い。
 しかしながら、正極活物質層である第2層にカーボンナノチューブを添加するとともに、第2層の表面に上述した難燃剤(R)を含む第3層を設けた電池A9~A13では、電池抵抗を低減できるとともに、釘刺し試験後の温度上昇を抑制できる。表3より、第3層の厚みが3μm程度の比較的薄い膜厚で、十分な温度上昇の抑制効果が得られる。
 電池A12は、電池A9において第3層に含まれる難燃剤(R)の一部をアルミナ粒子で置き換えることで、難燃剤(R)の含有率を低減させたものに相当する。この場合、アルミナ粒子はスペーサーとして機能し、リチウムイオンが移動できる隙間が多くなるとともに、難燃剤の添加量が抑制されたため、電池A9と比べて電池抵抗の上昇が抑制されたと考えられる。
 本開示は、二次電池に利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1:二次電池、3:正極、10:電極群、11:電池ケース、12:封口板、13:負極端子、14:正極リード、15:負極リード、16:ガスケット、17:封栓、17a:注液孔、18:枠体、30:正極集電体、31:正極活物質層、32:難燃剤層

Claims (19)

  1.  正極と負極とを含む二次電池であって、
     前記正極は、正極活物質を含む第1層を含み、
     前記第1層は、ハロゲン原子を含む難燃剤と、カーボンナノチューブとをさらに含む、二次電池。
  2.  前記難燃剤は、前記ハロゲン原子が結合した環状構造を含み、
     前記難燃剤に占める前記ハロゲン原子の割合は45質量%以上である、請求項1に記載の二次電池。
  3.  前記難燃剤は、180℃以上の温度で前記ハロゲン原子を放出する、請求項1または2に記載の二次電池。
  4.  前記難燃剤は、エチレン-1,2-ビスペンタブロモフェニル、エチレンビステトラブロモフタルイミド、テトラビスブロモビスフェノールA、ヘキサブロモシクロドデカン、2,4,6-トリブロモフェノール、1,6,7,8,9,14,15,16,17,17,18,18-ドデカクロロペンタシクロ(12.2.1.16,9.02,13.05,10)オクタデカ-7,15-ジエン、およびトリス(2,2,2-トリフルオロエチル)ホスフェイトからなる群より選択される少なくとも1つである、請求項1に記載の二次電池。
  5.  前記第1層における前記正極活物質と前記難燃剤との質量比を、前記正極活物質:前記難燃剤=100:aで表したとき、前記aは0より大きく7未満である、請求項1~4のいずれか1項に記載の二次電池。
  6.  前記第1層は、アセチレンブラックを含み、
     前記第1層における前記正極活物質と前記アセチレンブラックと前記カーボンナノチューブとの質量比を、前記正極活物質:前記アセチレンブラック:前記カーボンナノチューブ=100:b:cで表したとき、前記bおよび前記cは、0≦b<3、b+c<5を満たす、請求項1~5のいずれか1項に記載の二次電池。
  7.  前記第1層は、前記正極活物質および前記カーボンナノチューブを少なくとも含む第2層と、前記第2層よりも前記正極の表面側にあって、前記難燃剤を少なくとも含む第3層と、を含み、
     前記第3層における前記難燃剤の含有率は、前記第2層における前記難燃剤の含有率よりも大きい、請求項1~6のいずれか1項に記載の二次電池。
  8.  前記第3層は、前記第2層の表面に配置されている、請求項7に記載の二次電池。
  9.  前記第2層に占める前記カーボンナノチューブの含有率は、0.01質量%以上10質量%以下である、請求項7または8に記載の二次電池。
  10.  前記第3層の厚みは、0.1μm以上10μm以下である、請求項7~9のいずれか1項に記載の二次電池。
  11.  前記第3層の全体に占める前記難燃剤の含有率は、50質量%以上である、請求項7~10のいずれか1項に記載の二次電池。
  12.  正極と負極とを含む二次電池であって、
     前記正極は、正極活物質を含む第1層を含み、
     前記第1層は、前記正極活物質とハロゲン原子を含む難燃剤と、を少なくとも含む第2層と、前記第2層よりも前記正極の表面側にあって、前記難燃剤を少なくとも含む第3層と、を含み、
     前記第3層における前記難燃剤の含有率は、前記第2層における前記難燃剤の含有率よりも大きい、二次電池。
  13.  前記難燃剤は、前記ハロゲン原子が結合した環状構造を含み、
     前記難燃剤に占める前記ハロゲン原子の割合は45質量%以上である、請求項12に記載の二次電池。
  14.  前記難燃剤は、180℃以上の温度で前記ハロゲン原子を放出する、請求項12または13に記載の二次電池。
  15.  前記難燃剤は、エチレン-1,2-ビスペンタブロモフェニル、エチレンビステトラブロモフタルイミド、テトラビスブロモビスフェノールA、ヘキサブロモシクロドデカン、2,4,6-トリブロモフェノール、1,6,7,8,9,14,15,16,17,17,18,18-ドデカクロロペンタシクロ(12.2.1.16,9.02,13.05,10)オクタデカ-7,15-ジエン、およびトリス(2,2,2-トリフルオロエチル)ホスフェイトからなる群より選択される少なくとも1つである、請求項12に記載の二次電池。
  16.  前記第1層における前記正極活物質と前記難燃剤との質量比を、前記正極活物質:前記難燃剤=100:aで表したとき、前記aは0より大きく7未満である、請求項12~15のいずれか1項に記載の二次電池。
  17.  前記第3層は、前記第2層の表面に配置されている、請求項12~16のいずれか1項に記載の二次電池。
  18.  前記第3層の厚みは、0.1μm以上10μm以下である、請求項12~17のいずれか1項に記載の二次電池。
  19.  前記第3層の全体に占める前記難燃剤の含有率は、50質量%以上である、請求項12~18のいずれか1項に記載の二次電池。
PCT/JP2021/031764 2020-08-31 2021-08-30 二次電池 WO2022045337A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/023,531 US20230318129A1 (en) 2020-08-31 2021-08-30 Secondary battery
EP21861758.7A EP4207347A4 (en) 2020-08-31 2021-08-30 SECONDARY BATTERY
CN202180052636.9A CN115997298A (zh) 2020-08-31 2021-08-30 二次电池
JP2022545759A JPWO2022045337A1 (ja) 2020-08-31 2021-08-30

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020145196 2020-08-31
JP2020-145196 2020-08-31
JP2020-199072 2020-11-30
JP2020199072 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022045337A1 true WO2022045337A1 (ja) 2022-03-03

Family

ID=80353471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031764 WO2022045337A1 (ja) 2020-08-31 2021-08-30 二次電池

Country Status (5)

Country Link
US (1) US20230318129A1 (ja)
EP (1) EP4207347A4 (ja)
JP (1) JPWO2022045337A1 (ja)
CN (1) CN115997298A (ja)
WO (1) WO2022045337A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046015A (ja) * 1996-08-07 1998-02-17 Teijin Chem Ltd 難燃性樹脂組成物及びそれから成形されたリチウムイオンバッテリーケース
US20030134203A1 (en) * 2002-01-11 2003-07-17 Jiang Fan Fire and corrosion resistant thermally stable electrodes and batteries and method for manufacturing same
JP2010212228A (ja) 2009-02-13 2010-09-24 Hitachi Maxell Ltd 非水二次電池
JP2012059392A (ja) * 2010-09-06 2012-03-22 Ntt Facilities Inc 非水電解液電池
JP2014011095A (ja) * 2012-07-02 2014-01-20 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
JP2017534138A (ja) 2015-10-14 2017-11-16 中航▲里電▼(洛▲陽▼)有限公司China Aviation Lithium Battery Co., Ltd. リチウムイオン電池用複合極板及びその製造方法並びにリチウムイオン電池
CN108736013A (zh) * 2018-05-30 2018-11-02 桑德集团有限公司 一种用于电池的功能涂层、制备方法、电池模块和电池模组
CN108987793A (zh) * 2018-06-26 2018-12-11 桑顿新能源科技有限公司 一种高安全性锂离子电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102328648B1 (ko) * 2018-07-04 2021-11-18 주식회사 엘지에너지솔루션 리튬 금속 전지용 음극, 이의 제조 방법, 및 이를 포함하는 리튬 금속 전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046015A (ja) * 1996-08-07 1998-02-17 Teijin Chem Ltd 難燃性樹脂組成物及びそれから成形されたリチウムイオンバッテリーケース
US20030134203A1 (en) * 2002-01-11 2003-07-17 Jiang Fan Fire and corrosion resistant thermally stable electrodes and batteries and method for manufacturing same
JP2010212228A (ja) 2009-02-13 2010-09-24 Hitachi Maxell Ltd 非水二次電池
JP2012059392A (ja) * 2010-09-06 2012-03-22 Ntt Facilities Inc 非水電解液電池
JP2014011095A (ja) * 2012-07-02 2014-01-20 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
JP2017534138A (ja) 2015-10-14 2017-11-16 中航▲里電▼(洛▲陽▼)有限公司China Aviation Lithium Battery Co., Ltd. リチウムイオン電池用複合極板及びその製造方法並びにリチウムイオン電池
CN108736013A (zh) * 2018-05-30 2018-11-02 桑德集团有限公司 一种用于电池的功能涂层、制备方法、电池模块和电池模组
CN108987793A (zh) * 2018-06-26 2018-12-11 桑顿新能源科技有限公司 一种高安全性锂离子电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207347A4

Also Published As

Publication number Publication date
CN115997298A (zh) 2023-04-21
EP4207347A1 (en) 2023-07-05
EP4207347A4 (en) 2024-03-20
US20230318129A1 (en) 2023-10-05
JPWO2022045337A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
US20160248090A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6847665B2 (ja) 非水電解質二次電池
US20230246168A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2019179724A (ja) 二次電池
JP2009043477A (ja) 正極活物質、これを用いた正極および非水電解質電池
JPWO2020003642A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2018003477A1 (ja) 正極活物質、正極、及び非水電解質二次電池
US9812702B2 (en) Lithium ion secondary battery having positive electrode that comprises thermal run-away suppressing layer on positive electrode active material layer
US11296327B2 (en) Positive electrode active material, positive electrode, lithium-ion secondary battery, and method of producing positive electrode active material
WO2021172441A1 (ja) 二次電池用正極および二次電池
WO2022045337A1 (ja) 二次電池
WO2021241078A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021065173A1 (ja) 非水電解質二次電池
CN111033820B (zh) 非水电解质二次电池用正极及非水电解质二次电池
JP2013137939A (ja) 非水電解質二次電池
WO2022113855A1 (ja) 二次電池
WO2022092214A1 (ja) 二次電池用正極および二次電池
WO2022071324A1 (ja) 二次電池
US20210202937A1 (en) Lithium-ion battery and method of manufacturing the same
WO2024116782A1 (ja) リチウム二次電池
US20240047686A1 (en) Negative-electrode material for secondary battery, and secondary battery
WO2024070706A1 (ja) 非水電解質二次電池用の正極、それを用いた非水電解質二次電池、および、導電材分散液
WO2023189682A1 (ja) 非水電解質二次電池
WO2023100748A1 (ja) 非水電解質二次電池
WO2023181848A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861758

Country of ref document: EP

Effective date: 20230331