WO2022044792A1 - 蛍光体粉末の製造方法、蛍光体粉末、及び発光装置 - Google Patents

蛍光体粉末の製造方法、蛍光体粉末、及び発光装置 Download PDF

Info

Publication number
WO2022044792A1
WO2022044792A1 PCT/JP2021/029494 JP2021029494W WO2022044792A1 WO 2022044792 A1 WO2022044792 A1 WO 2022044792A1 JP 2021029494 W JP2021029494 W JP 2021029494W WO 2022044792 A1 WO2022044792 A1 WO 2022044792A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
producing
fluorescent
less
raw material
Prior art date
Application number
PCT/JP2021/029494
Other languages
English (en)
French (fr)
Inventor
広樹 坂野
広朗 豊島
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to DE112021003788.9T priority Critical patent/DE112021003788T5/de
Priority to JP2022545622A priority patent/JP7466659B2/ja
Priority to KR1020237006885A priority patent/KR20230054680A/ko
Priority to US18/022,278 priority patent/US11952520B2/en
Priority to CN202180051446.5A priority patent/CN115917773A/zh
Publication of WO2022044792A1 publication Critical patent/WO2022044792A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0822Chalcogenides with rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for producing a fluorescent substance powder, a fluorescent substance powder, and a light emitting device.
  • Patent Document 1 describes that near-infrared light is emitted by activating Eu in Ba 26 Si 51 O 2 N 84 (paragraph 0001, Example 1, paragraph 0090 of Patent Document 1). ⁇ 0092 etc.).
  • the orange-emitting heterogeneous phase contained in the above fluorescent powder was a fluorescent substance in which Eu was activated in Ba 2 Si 5 N 8 . It was found that this orange-emitting heterogeneous phase can be reduced by calcining after designing the composition so that Ba in the stoichiometric ratio becomes excessive.
  • the above-mentioned method for reducing the different phase that emits orange light is adopted, a new different phase that emits red light is generated.
  • the heterogeneous phase that emits red light is a fluorescent substance in which Eu is activated in Ba 3 Si 3 O 3 N 4 . It was found that this red emission heterogeneous phase can be reduced by washing with an acid or the like.
  • the present inventor calcins the raw material mixed powder whose composition is designed to have an excess of Ba, and cleans the obtained calcined product by acid treatment and / or water treatment to obtain an orange emission different phase and a red emission outer phase. We have found that it can be reduced, and have completed the present invention.
  • the present invention contains an inorganic compound in which Eu is solid-solved as an activator in an inorganic crystal having the same crystal structure as the crystal shown by Ba 26 Si 51 O 2 N 84 or the crystal shown by Ba 26 Si 51 O 2 N 84 . It is a method for producing a phosphor powder.
  • a firing step of calcining the raw material mixed powder to obtain a calcined product In the mixing step of obtaining a raw material mixed powder blended so as to satisfy / 51, A firing step of calcining the raw material mixed powder to obtain a calcined product, Provided is a method for producing a fluorescent substance powder, which comprises a cleaning treatment step of treating the fired product with acid and / or water.
  • It contains an inorganic compound in which Eu is solid-solved as an activator in an inorganic crystal having the same crystal structure as the crystal shown by Ba 26 Si 51 O 2 N 84 or the crystal shown by Ba 26 Si 51 O 2 N 84 .
  • It ’s a phosphor powder, In the emission spectrum obtained by irradiating the phosphor powder with excitation light having a wavelength of 450 nm, the emission intensity at the peak wavelength in the range of 700 nm or more and 1500 nm or less is P0, and the emission intensity at the peak wavelength in the range of 500 nm or more and less than 700 nm is P1.
  • a fluorescent powder is provided in which P0 and P1 satisfy P1 / P0 ⁇ 0.20.
  • a light emitting device including a light emitting element that emits primary light and a wavelength converter that absorbs a part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light.
  • a light emitting device is provided in which the wavelength converter contains the phosphor powder.
  • a method for producing a fluorescent substance powder capable of reducing different phases, a fluorescent substance powder having excellent light emitting characteristics, and a light emitting device having excellent light emitting characteristics are provided.
  • the method for producing the fluorescent powder of the present embodiment will be outlined.
  • Eu is added to an inorganic crystal having the same crystal structure as the crystal shown by Ba 26 Si 51 O 2 N 84 or the crystal shown by Ba 26 Si 51 O 2 N 84 .
  • It is a method for producing a fluorescent substance powder containing an inorganic compound dissolved as an activator.
  • the reason why the Eu-activated phosphor was by-produced in Ba 2 Si 5 N 8 was that the Ba element was insufficient due to the vaporization of the raw material.
  • a raw material containing a Ba element such as Ba 2N may vaporize depending on the firing conditions and may dissipate to the outside from the reaction vessel.
  • the synthesis condition is such that Ba 2 Si 5 N 8 which is a compound having a smaller Ba amount than Ba 26 Si 51 O 2 N 84 is easily produced. Therefore, it was found that the formation of an orange-emitting heterogeneous phase can be suppressed by firing after designing the composition so that Ba is excessive so as to make up for the shortage due to vaporization.
  • composition ratios of Ba / Si of the three compounds of the different phase Ba 2 Si 5 N 8 , Ba 26 Si 51 O 2 N 84 , and the different phase Ba 3 Si 3 O 3 N 4 , respectively, are 0.4, respectively. Since it is 0.51 and 1.0, it is difficult to reduce both of the two different phases by controlling the composition design.
  • the color is orange by firing in a state where Ba is charged in excess of the stoichiometric composition shown in (Ba, Eu) 26 Si 51 O 2 N 84 , and then acid-treated and / or water-treated. It has been found that the heterogeneous phase that emits light and the heterogeneous phase that emits red light can be reduced.
  • a phosphor powder that can be excited by visible light from ultraviolet light such as about 300 nm to 650 nm and can emit light having a peak in the near infrared region of 700 nm to 1500 nm.
  • the wavelength converter containing the phosphor powder of the present embodiment is composed of a member that converts the irradiated light (excitation light) and emits light having an emission peak in a wavelength range different from that of the excitation light.
  • the wavelength converter may constitute at least a part of the following light emitting device.
  • the wavelength converter may emit light having an emission peak in a wavelength range of 700 nm or more and 1500 nm or less, for example.
  • the wavelength converter may contain one or more phosphors other than the fluorophore powder of the present embodiment.
  • the wavelength converter may be composed only of the fluorescent material powder, or may contain a base material in which the fluorescent material powder is dispersed.
  • the base material known materials can be used, and examples thereof include glass, resin, and inorganic materials.
  • the shape of the wavelength converter is not particularly limited, and may be configured in a plate shape, or may be configured to seal a part of a light emitting element or the entire light emitting surface, for example.
  • An example of a light emitting device including the phosphor powder of the present embodiment is a light emitting element that emits primary light and the above wavelength that absorbs a part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. It is equipped with a transformant.
  • a light emitting device it can be used for various purposes such as sensor / inspection / analysis, security, optical communication, medical use, food, etc.
  • Devices, medical / healthcare devices, infrared cameras, moisture measuring devices, gas detecting devices, etc. may be mentioned.
  • An example of a method for producing a phosphor is an inorganic crystal having the same crystal structure as the crystal shown by Ba 26 Si 51 O 2 N 84 or the crystal shown by Ba 26 Si 51 O 2 N 84 , in which Eu is used as an activator.
  • the raw material containing the Ba element is a single substance or a mixture of two or more selected from metals, silicates, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, and acid fluorides containing Ba. And so on.
  • the raw material containing the Si element is a single substance or a mixture of two or more selected from metals, silicates, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, and acid fluorides containing Si. And so on.
  • the raw material containing the Eu element is a single substance or a mixture of two or more selected from metals, silicates, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, and acid fluorides containing Eu. Etc. are used.
  • the raw material mixed powder for example, those containing a nitride of Ba, a nitride and / or an oxide of Si, and a nitride and / or an oxide of Eu may be used. Thereby, the reaction at the time of firing can be promoted.
  • Ba is excessively blended in the raw material mixed powder.
  • the a, b and c further satisfy 0.51 ⁇ a / b ⁇ 1.
  • the lower limit of a / b may be, for example, more than 0.51, 0.55 or more, or 0.60 or more.
  • the upper limit of a / b may be, for example, less than 1.0, 0.8 or less, or 0.7 or less.
  • the molar ratio of Ba in the charged composition is more than 1.0 times, preferably more than 1.0 times the stoichiometric ratio, in the composition represented by the general formula: (Ba 1-x , Eu x ) 26 Si 51 O 2 N 84 . It is 1.5 times or more, more preferably 1.8 times or more, still more preferably 2.0 times or more.
  • the molar ratio of x in the above general formula, that is, Eu is not particularly limited, but may be 0.0001 or more, 0.0005 or more, 0.001 or more, and 0.5 or less, 0. It may be 0.3 or less, or 0.2 or less. By setting it within an appropriate range, the absorption rate, the internal quantum efficiency, and the external quantum efficiency can be improved.
  • the method of mixing the raw materials is not particularly limited, but for example, there is a method of sufficiently mixing using a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill.
  • a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill.
  • the obtained raw material mixed powder is fired (firing step).
  • a reaction product (calcined product) after the firing step can be obtained.
  • a firing furnace such as an electric furnace may be used.
  • the raw material mixed powder filled inside the firing container may be fired.
  • the firing vessel is preferably made of a material that is stable under high temperature atmospheric gas and does not easily react with the mixture of raw materials and its reaction products, for example, a vessel made of boron nitride or carbon, molybdenum or tantalum. It is preferable to use a container made of a refractory metal such as molybdenum or tungsten.
  • a gas containing nitrogen as an element can be preferably used.
  • Specific examples include nitrogen and / or ammonia, with nitrogen being particularly preferred.
  • an inert gas such as argon or helium can also be preferably used. Of these, nitrogen gas is preferable.
  • the firing atmosphere gas may be composed of one type of gas or may be a mixed gas of a plurality of types of gases.
  • the inside of the firing container may be filled with the above-mentioned firing atmosphere gas.
  • An appropriate temperature range is selected for the firing temperature in the firing step from the viewpoint of reducing unreacted raw materials after the firing step and suppressing decomposition of the main component.
  • the lower limit of the firing temperature in the firing step is preferably 1500 ° C. or higher, more preferably 1600 ° C. or higher, and even more preferably 1700 ° C. or higher.
  • the upper limit of the firing temperature is preferably 2200 ° C. or lower, more preferably 2000 ° C. or lower, and even more preferably 1900 ° C. or lower.
  • the pressure of the firing atmosphere gas is selected according to the firing temperature, but is usually in a pressurized state in the range of 0.1 MPa or more and 10 MPa or less. Considering industrial productivity, it is preferably 0.5 MPa or more and 1 MPa or less.
  • the lower limit of the firing time is preferably 0.5 hours or more, more preferably 1 hour or more.
  • the upper limit of the firing time is preferably 48 hours or less, more preferably 24 hours or less, and even more preferably 16 hours or less.
  • reaction product (calcined product) after the firing step may be subjected to powder treatment in which at least one of crushing, crushing, and / or sieving is performed (powder processing step).
  • the state of the calcined product obtained by the calcining step varies from powdery to lumpy depending on the raw material composition and the calcining conditions.
  • the fired product can be made into a powder of a predetermined size.
  • a process known in the field of phosphor may be added.
  • the cleaning treatment step comprises contacting the calcined product with at least one of an acid, an acidic solution containing an acid, water, and / or a neutral aqueous solution.
  • the acid treatment is preferably carried out using an acidic solution. This makes it possible to reduce the heterogeneous phase of (Ba, Eu) 3 Si 3 O 3 N 4 while retaining the main phase of (Ba, Eu) 26 Si 51 O 2 N 84 . Further, the heterogeneous phase of (Ba, Eu) SiN 2 can be reduced.
  • neutral means that the pH is 7 when a measurement target having a liquid temperature of 23 ° C. ⁇ 0.5 ° C. is measured using a pH meter.
  • the calcined product may be added to the acid solution and / or water, and the calcined product in the solution may be added with acid and / or water.
  • the acid solution and / or water may be allowed to stand during the treatment, but may be stirred under appropriate conditions.
  • decantation solid-liquid separation treatment
  • Decantation may be performed once or more than once. This makes it possible to remove the acid from the fired product. After that, the fired product may be filtered, dried or the like.
  • an inorganic acid for example, an inorganic acid may be used, and specific examples thereof include HNO 3 , HCl, H 2 SO 4 , and H 3 P 04 . These may be used alone or in combination of two or more.
  • the inorganic acids it is preferable to contain at least one of HNO 3 and HCl, and it is preferable to contain HNO 3 .
  • the acid solution may contain water or alcohol as a solvent.
  • the concentration of the acid in the acid solution may be, for example, 0.1% by mass to 20% by mass, preferably 0.5% by mass to 10% by mass.
  • the phosphor particles of the present embodiment can be obtained. Then, if necessary, post-treatment such as crushing / classification treatment, purification treatment, and drying treatment may be performed.
  • the fluorescent powder of this embodiment will be described in detail.
  • Eu is solidified as an activator in an inorganic crystal having the same crystal structure as the crystal shown by Ba 26 Si 51 O 2 N 84 or the crystal shown by Ba 26 Si 51 O 2 N 84 . Contains dissolved inorganic compounds.
  • the phosphor powder has a peak wavelength in the range of 700 nm or more and 1500 nm or less in the emission spectrum obtained by irradiating the phosphor powder with excitation light having a wavelength of 450 nm.
  • the half width of the emission spectrum having a peak wavelength in the range of 700 nm or more and 1500 nm or less is, for example, 100 nm or more and 400 nm or less, preferably 150 nm or more and 350 nm or less, and more preferably 200 nm or more and 300 nm or less. This makes it possible to increase the emission intensity.
  • the emission intensity at the peak wavelength in the range of 700 nm or more and 1500 nm or less is set to P0, and the maximum emission intensity at the peak wavelength in the range of 500 nm or more and less than 700 nm is defined as P0. Let it be P1.
  • the range of 700 nm or more and 1500 nm or less includes the main peak attributed to (Ba, Eu) 26 Si 51 O 2 N 84 .
  • the range of 500 nm or more and less than 700 nm includes peaks attributed to different phases such as (Ba, Eu) 3 Si 3 O 3 N 4 and (Ba, Eu) Si N 2 .
  • the upper limit of P1 / P0 calculated from P0 and P1 is 0.20 or less, preferably 0.15 or less, and more preferably 0.12 or less.
  • a fluorescent powder having reduced heterogeneous phases such as (Ba, Eu) 3 Si 3 O 3 N 4 , (Ba, Eu) SiN 2 , and (Ba, Eu) 2 Si 5 N 8 .
  • the lower limit of P1 / P0 is preferably 0, but it is permissible to include unavoidable different phases within a range where there is no practical problem, and for example, it may be 0.001 or more.
  • P1 / P0 it is possible to control P1 / P0, for example, by appropriately selecting a method for preparing fluorescent powder.
  • a method for preparing fluorescent powder for example, calcining the blended raw material mixed powder, acid-treating the calcined product, and the like can be mentioned as factors for setting P1 / P0 in the desired numerical range.
  • the particle size having a cumulative value of 50% is D50
  • the particle size having a cumulative value of 10% is D10
  • the cumulative value is 90%.
  • the particle size is D90.
  • D50 is, for example, 1 ⁇ m or more and 50 ⁇ m or less, preferably 5 ⁇ m or more and 45 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less. By setting it within the above range, it is possible to balance the light emission characteristics.
  • the lower limit of ((D90-D10) / D50) is, for example, 1.00 or more, preferably 1.20 or more, and more preferably 1.30 or more.
  • the upper limit of ((D90-D10) / D50) is 3.00 or less, preferably 2.50 or less, and more preferably 2.00 or less.
  • Barium Nitride (Ba 2N, manufactured by Pacific Cement Co., Ltd.), Europium Oxide (Eu 2 O 3 , manufactured by Shinetsu Chemical Industry Co., Ltd.), (Si 3 N 4 , manufactured by Ube Kosan Co., Ltd.), and Oxidation Silicon (SiO 2 , manufactured by High Purity Chemical Co., Ltd.) was weighed and mixed for 10 minutes using a silicon nitride sintered dairy rod and a dairy pot in a glove box with a nitrogen atmosphere to obtain a powdery raw material mixture (a powdery raw material mixture). Mixing process).
  • Table 1 the molar ratios of Ba, Si, and Eu in the raw material mixture are represented by a, b, and c, respectively.
  • the raw material mixture was put into a crucible made of a boron nitride sintered body.
  • the pot containing the raw material mixture is placed in a graphite resistance heating type electric furnace, and the firing atmosphere is set to a vacuum of 1 ⁇ 10 -1 Pa or less using an oil rotary pump and an oil diffusion pump to create a vacuum of 1 ⁇ 10 -1 Pa or less, from room temperature to 600 ° C per hour at 500 ° C.
  • the pressure in the furnace was set to 0.8 MPa by introducing nitrogen having a purity of 99.999% by volume at 600 ° C., the temperature was raised to 1800 ° C. at 600 ° C. per hour, and firing was performed for 8 hours. Baking process).
  • the obtained calcined product was crushed in an alumina mortar, sieved with a sieve having an opening of 150 ⁇ m (# 100 mesh), and the portion passing through the sieve was recovered (powder treatment step).
  • the calcined product passed through the sieve was immersed in 300 ml of nitric acid (HNO 3 concentration 7.5%) and stirred at room temperature at a stirring speed of 350 rpm for 30 minutes (cleaning treatment step with acid). Then, the supernatant was reduced, washed with distilled water, suction filtered and dried to obtain a fluorescent powder.
  • nitric acid HNO 3 concentration 7.5%
  • the main phase was Ba 26 Si 51 O 2 N 84
  • the by-produced heterogeneous phase was Ba 3 Si 3 O 3 N 4
  • a peak attributed to Ba 2 Si 5 N 8 was observed. Therefore, it was found that it is possible to reduce the heterogeneous phase Ba 2 Si 5 N 8 by firing the raw material powder mixed at a specific compounding ratio.
  • an emission peak attributed to the main phase (Ba, Eu) 26 Si 51 O 2 N 84 is present at 700 nm to 1500 nm, and an emission peak of 500 nm to 700 nm is present. It was confirmed that there is an emission peak attributed to (Ba, Eu) 3 Si 3 O 3 N 4 which is out of phase in the range. Further, the emission intensity of the peak of 500 nm to 700 nm showed a very high value in Comparative Example 1 as compared with Examples 1 to 5.
  • the fluorescence peak intensity of the phosphor powder of the fired product after the acid treatment of Examples 1 to 5 was measured using a spectral fluorometer (Fluorolog-3, manufactured by Horiba, Ltd.) corrected by a substandard light source. went.
  • the square cell holder attached to the photometer was used for the measurement, and the excitation light having a wavelength of 450 nm was irradiated to obtain an emission spectrum.
  • FIG. 2 shows the emission spectra of the phosphor powder of the fired product after the acid treatment, which is normalized by the emission intensity at the peak wavelength in Examples 1, 2, 5, and Comparative Example 1.
  • the peak position, full width at half maximum, and emission intensity (P0) for the peak wavelength in the range of 700 nm or more and 1500 nm or less, and the emission intensity (P1) at the peak wavelength in the range of 500 nm or more and less than 700 nm are obtained and shown in the table. Shown in 2.
  • the peak intensity at each wavelength is a relative value when the peak intensity of Example 3 is 1.00.
  • the fluorescent powders of Examples 1 to 5 have a lower emission intensity of a peak of 500 nm to 700 nm due to emission of a different phase than that of Comparative Example 1, and emit light having a peak in the near infrared region of 700 nm to 1500 nm. The strength has improved.
  • the particle size distribution of the phosphor powders of Examples 1 to 5 was measured by a laser diffraction / scattering method particle size distribution measuring device (manufactured by Beckman Coulter, LC13 320). Water was used as the measurement solvent. A small amount of phosphor powder was added to an aqueous solution containing 0.05% by weight of sodium hexametaphosphate as a dispersant, and dispersion treatment was performed with a horn-type ultrasonic homogenizer (output 300 W, horn diameter 26 mm) to obtain a particle size distribution. It was measured.

Abstract

本発明の蛍光体粉末の製造方法は、Ba26Si5184で示される結晶、又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶された無機化合物を含有する蛍光体粉末の製造方法であって、記無機化合物を構成する各元素を含む原料を混合し、原料混合粉末中のBa、Si、Euのモル比をそれぞれ、a、b、cとしたとき、b=51、a/b>(26-c)/51を満たすように配合された原料混合粉末を得る混合工程と、原料混合粉末を焼成して焼成物を得る焼成工程と、焼成物を酸処理及び/又は水処理する洗浄処理工程と、を含むものである。

Description

蛍光体粉末の製造方法、蛍光体粉末、及び発光装置
 本発明は、蛍光体粉末の製造方法、蛍光体粉末、及び発光装置に関する。
 これまでBa26Si5184系蛍光体について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、Ba26Si5184にEuが賦活されることにより、近赤外光を発光することが記載されている(特許文献1の段落0001、実施例1、段落0090~0092等)。
特許6684412号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載のBa26Si5184で示される結晶にEuが賦活した無機化合物を含む蛍光体粉末において、橙色発光する異相が多量に副生成することにより光学特性が低下するため、蛍光体粉末を実用上で使用するためには、異相の低減及び発光特性の点で改善の余地があることが判明した。
 本発明者によるさらなる検討により以下の知見が得られた。
 まず蛍光体粉末中に含まれる蛍光体粒子を解析したところ、上記の蛍光体粉末中に含まれる橙色発光する異相はBaSiにEuが賦活した蛍光体であることが判明した。この橙色発光する異相は、化学量論比においてのBaが過剰となる組成設計とした上で焼成することにより、低減可能であることが分かった。
 しかしながら上記の橙色発光する異相を低減する手法を採用すると、赤色発光する異相が新たに発生することになった。解析した結果、赤色発光する異相は、BaSiにEuが賦活した蛍光体であることが判明した。この赤色発光異相は、酸等を用いた洗浄により低減可能であることが分かった。
 このように本発明者は、Ba過剰となる組成設計した原料混合粉末を焼成し、得られた焼成物を酸処理及び/又は水処理による洗浄をすることによって、橙色発光異相及び赤色発光異相を低減できることを見出し、本発明を完成するに至った。
 本発明によれば、
 Ba26Si5184で示される結晶、又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶された無機化合物を含有する蛍光体粉末の製造方法であって、
 前記無機化合物を構成する各元素を含む原料を混合し、原料混合粉末中のBa、Si、Euのモル比をそれぞれ、a、b、cとしたとき、b=51、a/b>(26-c)/51を満たすように配合された原料混合粉末を得る混合工程と、
 前記原料混合粉末を焼成して焼成物を得る焼成工程と、
 前記焼成物を酸処理及び/又は水処理する洗浄処理工程と、を含む、蛍光体粉末の製造方法が提供される。
 また本発明によれば、
 Ba26Si5184で示される結晶、又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶された無機化合物を含有する蛍光体粉末であって、
 波長450nmの励起光を当該蛍光体粉末に照射して得られる発光スペクトルにおいて、700nm以上1500nm以下の範囲にあるピーク波長における発光強度をP0とし、500nm以上700nm未満にあるピーク波長における発光強度をP1としたとき、
 P0、P1が、P1/P0≦0.20を満たす、蛍光体粉末が提供される。
 また本発明によれば、
 一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体とを備える発光装置であって、
 前記波長変換体は上記蛍光体粉末を含む、発光装置が提供される。
 本発明によれば、異相低減可能な蛍光体粉末の製造方法、発光特性に優れた蛍光体粉末、及び発光特性に優れた発光装置が提供される。
実施例1、2、5の酸処理前の焼成物における発光スペクトルを示す図である。 実施例1、2、5、比較例1の蛍光体粉末における発光スペクトルを示す図である。
 本実施形態の蛍光体粉末の製造方法を概説する。
 本実施形態の蛍光体粉末の製造方法は、Ba26Si5184で示される結晶、又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶された無機化合物を含有する蛍光体粉末を製造するための方法である。
 蛍光体粉末の製造方法は、無機化合物を構成する各元素を含む原料を混合し、Ba、Si、Euのモル比をそれぞれ、a、b、cとしたとき、b=51、a/b>(26-c)/51を満たすように配合された原料混合粉末を得る混合工程と、原料混合粉末を焼成して焼成物を得る焼成工程と、焼成物を酸処理及び/又は水処理する洗浄処理工程と、を含む。
 本発明者によれば、以下のような知見が見出された。
 (Ba,Eu)26Si5184組成となるように原料組成を設計し、原料混合し、原料混合粉末を焼成して、蛍光体粉末を合成すると、目的とするBa26Si5184で示される結晶以外に、橙色発光する異相が多量に副生成されることが判明した。解析の結果、この橙色発光する異相はBaSiにEuが賦活した蛍光体であることが分かった。
 BaSiにEuが賦活した蛍光体が副生成した原因は、検討の結果、原料の気化により、Ba元素が不足するためであると考えられた。BaN等のBa元素を含む原料は、焼成条件次第で気化し、反応容器から外部に散逸してしまうことがある。原料からBa元素が減少すると、Ba26Si5184よりもBa量が少ない化合物のBaSiが生成されやすい合成条件となる。
 そこで、気化による不足分を補うように、Baが過剰となる組成設計とした上で焼成することにより、橙色発光異相の生成を抑制できることが判明した。
 一方、Ba等のBa元素を含む原料を過剰に仕込み、Ba過剰となる組成設計した原料混合粉末を焼成すると、橙色発光する異相は確認されなかったものの、新たに、赤色発光する異相が生じることが確認された。
 この赤色発光する異相は、解析の結果、BaSiにEuが賦活した蛍光体であることがわかった。
 しかしながら、異相BaSi、Ba26Si5184、及び異相BaSiの、3種の化合物のBa/Siの組成比は、それぞれ、0.4、0.51、及び1.0であることから、組成設計を制御することでの、2種の異相の両方を低減することは困難であった。
 そこで、異相BaSiについて、組成設計制御以外の方法で低減する方法を検討した結果、硝酸などの酸もしくは水を用いた洗浄処理を施すことによって、BaSiを低減できることが判明した。なお、Ba26Si5184は、硝酸に殆ど溶解しない特徴を有している。
 以上にように、(Ba,Eu)26Si5184で示される化学量論組成よりも過剰にBaを仕込んだ状態で焼成を行い、酸処理及び/又は水処理することによって、橙色発光する異相及び赤色発光する異相を低減できることが見出された。
 本実施形態の製造方法によれば、異相が低減されており、発光特性に優れた蛍光体粉末を実現できる。
 本実施形態によれば、約300nm~650nm等の紫外光から可視光で励起可能であり、700nm~1500nmの近赤外領域の範囲にピークを有する光を発光できる蛍光体粉末を実現できる。
 本実施形態の蛍光体粉末を含む波長変換体としては、照射された光(励起光)を変換して、励起光とは異なる波長範囲に発光ピークを有する光を発光する部材で構成される。波長変換体は、下記の発光装置の少なくとも一部を構成してもよい。波長変換体は、例えば、700nm以上1500nm以下の波長範囲に発光ピークを有する光を発光してもよい。波長変換体は、本実施形態の蛍光体粉末以外の蛍光体を一または二以上含んでもよい。
 波長変換体は、蛍光体粉末からのみで構成されてもよく、蛍光体粉末が分散した母材を含んでもよい。母材としては、公知のものを使用できるが、例えば、ガラス、樹脂、無機材料などが挙げられる。波長変換体は、その形状は特に限定されず、プレート状に構成されてもよく、例えば、発光素子の一部または発光面全体を封止するように構成されてもよい。
 本実施形態の蛍光体粉末を備える発光装置の一例は、一次光を発する発光素子と、一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する上記波長変換体とを備える。
 発光装置として、センサー・検査・分析用、セキュリティ用、光通信用、医療用、食品などの各種の用途に用いることができるが、例えば、LEDパッケージ、光源、分光光度計、食品分析計、ウェアラブルデバイス、医療用・ヘルスケア用デバイス、赤外線カメラ、水分測定装置、ガス検出装置等が挙げられる。
 以下、本実施形態の蛍光体粉末の製造方法を詳述する。
 蛍光体の製造方法の一例は、Ba26Si5184で示される結晶又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶に、Euが賦活剤として固溶された無機化合物を構成する各元素を含む原料混合粉末を得る混合工程と、原料混合粉末を焼成して焼成物を得る焼成工程と、焼成物を酸処理及び/又は水処理する洗浄処理工程と、を含む。
 Ba元素を含む原料としては、Baを含む、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、及び酸フッ化物から選ばれる単体または2種以上の混合物等が挙げられる。
 Si元素を含む原料としては、Siを含む、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、及び酸フッ化物から選ばれる単体または2種以上の混合物等が挙げられる。
 Eu元素を含む原料としては、Euを含む、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、及び酸フッ化物から選ばれる単体または2種以上の混合物等が用いられる。
 原料混合粉末は、例えば、Baの窒化物、Siの窒化物及び/又は酸化物、Euの窒化物及び/又は酸化物を含むものを用いてもよい。これにより、焼成時における反応促進させることができる。
 混合工程において、原料混合粉末中の仕込み組成において、Ba、Si、Euのモル比をそれぞれ、a、b、cとしたとき、b=51、a/b>(26-c)/51を満たすように、原料混合粉末中にBaを過剰に配合する。このような仕込み組成の原料混合粉末を焼成することにより、(Ba,Eu)Siなどの異相を低減することが可能である。
 また、前記a、b、cは0.51<a/b<1をさらに満たすことが好ましい。具体的には、a/bの下限は、例えば、0.51超でもよく、0.55以上でもよく、0.60以上でもよい。このような仕込み組成の原料混合粉末を焼成することにより、(Ba,Eu)Siの異相を低減することが可能である。
 一方、a/bの上限は、例えば、1.0未満でもよく、0.8以下でもよく、0.7以下でもよい。このような仕込み組成の原料混合粉末を焼成することにより、(Ba,Eu)Siの異相を低減することが可能である。
 また、仕込み組成中のBaのモル比は、一般式:(Ba1-x,Eu26Si5184で示される組成において、化学量論比の1.0倍超、好ましくは1.5倍以上、より好ましくは1.8倍以上、さらに好ましくは2.0倍以上である。このような仕込み組成の原料混合粉末を焼成することにより、(Ba,Eu)Siの異相を低減することが可能である。
 上記一般式中x、すなわち、Euのモル比は、特に限定されないが、0.0001以上でもよく、0.0005以上でもよく、0.001以上でもよく、一方、0.5以下でもよく、0.3以下でもよく、0.2以下でもよい。適切な範囲内とすることにより、吸収率、内部量子効率、外部量子効率を向上させることができる。
 原料を混合する方法は、特に限定されないが、たとえば、乳鉢、ボールミル、V型混合機、遊星ミルなどの混合装置を用いて十分に混合する方法がある。
 次に、得られた原料混合粉末を焼成する(焼成工程)。これにより、焼成工程後の反応生成物(焼成物)が得られる。
 焼成工程は、例えば、電気炉等の焼成炉を用いてもよい。一例として、焼成容器の内部に充填した原料混合粉末を焼成してもよい。
 焼成容器は、高温の雰囲気ガス下において安定で、原料の混合体及びその反応生成物と反応しにくい材質で構成されることが好ましく、たとえば、窒化ホウ素製、カーボン製の容器や、モリブデンやタンタルやタングステン等の高融点金属製の容器を使用することが好ましい。
 焼成工程における焼成雰囲気ガスの種類としては、例えば元素としての窒素を含むガスを好ましく用いることができる。具体的には、窒素および/またはアンモニアを挙げることができ、特に窒素が好ましい。また同様に、アルゴン、ヘリウム等の不活性ガスも好ましく用いることができる。この中でも、窒素ガスが好ましい。なお焼成雰囲気ガスは1種類のガスで構成されていても、複数の種類のガスの混合ガスであっても構わない。
 焼成容器の内部は、上記の焼成雰囲気ガスで満たしてもよい。
 焼成工程における焼成温度は、焼成工程終了後の未反応原料の低減、主成分の分解抑制の観点から、適当な温度範囲が選択される。
 焼成工程における焼成温度の下限は、1500℃以上が好ましく、1600℃以上がより好ましく、1700℃以上がさらに好ましい。一方、焼成温度の上限は、2200℃以下が好ましく、2000℃以下がより好ましく、1900℃以下がさらに好ましい。
 焼成雰囲気ガスの圧力は、焼成温度に応じて選択されるが、通常0.1MPa以上10MPa以下の範囲の加圧状態である。工業的生産性を考慮すると0.5MPa以上1MPa以下とすることが好ましい。
 焼成工程における焼成時間は、未反応物の低減、生産性の向上の観点から、適当な時間範囲が選択される。
 焼成時間の下限は、0.5時間以上が好ましく、1時間以上がより好ましい。また、焼成時間の上限は、48時間以下が好ましく、24時間以下がより好ましく、16時間以下がさらに好ましい。
 次に、焼成工程後の反応生成物(焼成物)について、粉砕、解砕、及び/又は篩分の少なくとも一以上を行う粉体処理を実施してもよい(粉体処理工程)。
 焼成工程により得られる焼成物の状態は、原料配合や焼成条件によって、粉体状、塊状と様々である。解砕・粉砕工程及び/又は分級操作工程によって、焼成物を、所定のサイズの粉体状にできる。
 なお、上記の他に、蛍光体の分野で公知の工程を追加してもよい。
 次に、焼成物に酸処理及び/又は水処理を施す(洗浄処理工程)。
 洗浄処理工程は、焼成物を、酸、酸を含む酸性溶液、水、及び/又は中性の水溶液の少なくとも一以上に接触させる工程を含む。好ましくは酸性溶液を用いて酸処理を行う。
 これにより、(Ba,Eu)26Si5184の主相を残存させつつも、(Ba,Eu)Siの異相を低減することが可能である。また、(Ba,Eu)SiNの異相も低減できる。
 なお、中性とは、pHメータ計を用いて、液温23℃±0.5℃の測定対象を測定したとき、pHが7であることを意味する。
 酸処理及び/又は水処理は、焼成物を酸溶液及び/又は水中に加えてもよく、溶液中の焼成物に酸及び/又は水を加えてもよい。処理中、酸溶液及び/又は水を静置してもよいが、適当な条件で攪拌してもよい。
 また、酸処理後、必要に応じて、水やアルコールを用いてデカンテーション(固液分離処理)を施してもよい。デカンテーションは、1回又は2回以上行ってもよい。これにより、焼成物中から酸を除去できる。その後、焼成物に対して、ろ過、乾燥等を施してもよい。
 酸は、例えば、無機酸を使用してもよく、具体的には、HNO、HCl、HSO、及びHP0等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。無機酸の中でも、HNO、及びHClの少なくとも一方を含むことが好ましく、HNOを含むことが好ましい。
 酸溶液は、溶媒として、水やアルコールを含んでもよい。
 酸溶液中の酸の濃度は、例えば、0.1質量%~20質量%、好ましくは0.5質量%~10質量%でもよい。
 以上により、本実施形態の蛍光体粒子が得られる。
 その後、必要において、例えば、破砕・分級処理、精製処理、乾燥処理などの後処理を行ってもよい。
 本実施形態の蛍光体粉末について詳述する。
 本実施形態の蛍光体粉末は、Ba26Si5184で示される結晶又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶した無機化合物を含有する。
 蛍光体粉末は、波長450nmの励起光を当該蛍光体粉末に照射して得られる発光スペクトルにおいて、700nm以上1500nm以下の範囲にピーク波長を有する。
 700nm以上1500nm以下の範囲にピーク波長を有する発光スペクトルの半値幅は、例えば、100nm以上400nm以下、好ましくは150nm以上350nm以下、より好ましくは200nm以上300nm以下である。これにより、発光強度を高めることが可能になる。
 波長450nmの励起光を当該蛍光体粉末に照射して得られる発光スペクトルにおいて、700nm以上1500nm以下の範囲にあるピーク波長における発光強度をP0とし、500nm以上700nm未満にあるピーク波長における最大発光強度をP1とする。
 700nm以上1500nm以下の範囲には、(Ba,Eu)26Si5184に帰属されるメインピークが含まれる。500nm以上700nm未満の範囲には、(Ba,Eu)Si、(Ba,Eu)SiN等の異相に帰属されるピークが含まれる。
 P0、P1から算出されるP1/P0の上限は、0.20以下であり、好ましくは0.15以下であり、より好ましくは0.12以下である。これにより、(Ba,Eu)Si、(Ba,Eu)SiN、(Ba,Eu)Siなどの異相が低減された蛍光体粉末を実現できる。また、発光特性を高め、実用上における使用可能な蛍光体粉末を提供できる。
 一方、P1/P0の下限は、0が好ましいが、実用上問題ない範囲で不可避の異相が含まれることを許容でき、例えば、0.001以上でもよい。
 本実施形態では、たとえば蛍光体粉末の調製方法等を適切に選択することにより、上記P1/P0、を制御することが可能である。これらの中でも、たとえば、配合された原料混合粉末を焼成することや、焼成物を酸処理すること等が、上記P1/P0を所望の数値範囲とするための要素として挙げられる。
 蛍光体粉末について、レーザー回折散乱法を用いて測定した体積頻度粒度分布において、累積値が50%となる粒子径をD50、累積値が10%となる粒子径をD10、累積値が90%となる粒子径をD90とする。
 D50は、例えば、1μm以上50μm以下、好ましくは5μm以上45μm以下、より好ましくは10μm以上40μm以下である。上記の範囲内とすることで、発光特性のバランスを図ることができる。
 ((D90-D10)/D50)の下限は、例えば、1.00以上、好ましくは1.20以上、より好ましくは1.30以上である。一方、((D90-D10)/D50)の上限は、3.00以下、好ましくは2.50以下、より好ましくは2.00以下である。上記の範囲内とすることで、発光特性のバランスを図ることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
(蛍光体粉末の製造)
[実施例1~5、比較例1]
 表1の仕込み組成に示すように、一般式:(Ba1-x,Eu26Si5184において、xを実施例1~5の順で0.002,0.005,0.008,0.01,0.02とし、実施例1~5においてはBaを化学量論比に対して1.2倍過剰、比較例1においてはBaを化学量論比に対して1倍となる目的組成を設計し、窒化バリウム(BaN、太平洋セメント社製)、酸化ユーロピウム(Eu、信越化学工業社製)、(Si、宇部興産社製)、及び酸化ケイ素(SiO、高純度化学社製)を秤量し、窒素雰囲気のグローブボックス中で窒化ケイ素焼結体製乳棒と乳鉢とを用いて10分間混合を行い、粉末状の原料混合物を得た(混合工程)。
 表1中、原料混合物中のBa、Si、Euのモル比をそれぞれ、a、b、cで表す。
 次いで、原料混合物を、窒化ホウ素焼結体製るつぼに投入した。原料混合物が入ったるつぼを、黒鉛抵抗加熱方式の電気炉に入れ、油回転ポンプ及び油拡散ポンプにより焼成雰囲気を圧力として1×10-1Pa以下の真空とし、室温から600℃まで毎時500℃の速度で加熱し、600℃で純度が99.999体積%の窒素を導入して炉内の圧力を0.8MPaとし、毎時600℃で1800℃まで昇温し、8時間焼成を行った(焼成工程)。
 得られた焼成物を、アルミナ製乳鉢で粉砕後、目開き150μm(#100メッシュ)の篩で篩分けを行い、篩通過分を回収した(粉体処理工程)。
 篩通過分の焼成物を、300mlの硝酸(HNO濃度7.5%)に浸漬させ、室温下、攪拌速度350rpmで30分間攪拌させた(酸による洗浄処理工程)。
 その後、上澄みを低減し、蒸留水で洗浄し、吸引ろ過、乾燥し、蛍光体粉末を得た。
Figure JPOXMLDOC01-appb-T000001
 得られた焼成物、蛍光体粉末について、以下の項目について評価を行った。
[XRD測定]
 実施例1~5、比較例1の酸処理前後の焼成物について、粉末X線回折装置(製品名:UltimaIV、リガク社製)を用いて、下記の測定条件で回折パターンを測定した。
(測定条件)
X線源:Cu-Kα線(λ=1.54184Å)、
出力設定:40kV・40mA
測定時光学条件:発散スリット=2/3°
散乱スリット=8mm
受光スリット=開放
回折ピークの位置=2θ(回折角)
測定範囲:2θ=10°~90°
スキャン速度:2度(2θ)/sec,連続スキャン
走査軸:2θ/θ
試料調製:蛍光体粉末をサンプルホルダーに載せた。
ピーク強度はバックグラウンド補正を行って得た値とした。
 X線回折パターンの結果から、実施例1~5の酸処理前の焼成物において、主相がBa26Si5184であり、副生成した異相がBaSi、BaSiNの1種又は2種以上であることが示された。すなわち、副生成した異相にはBaSiが含まれないことが分かった。
 一方、比較例1の酸処理前の焼成物においてはBaSiに帰属されるピークが観測された。
 したがって、特定の配合比にて混合した原料粉末を焼成することにより、異相BaSiを低減させることが可能であることが判明した。
 また、実施例1~5の酸処理後のX線回折パターンからはBaSiに帰属されるピークは観測されず、酸処理によりBaSiが除去できることが判明した。
[蛍光測定]
(蛍光ピーク強度、ピーク波長、半値幅)
 実施例1~5の酸処理前の焼成物の蛍光体粉末について、YAG蛍光体(P46Y3)と副標準光源により補正を行った分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)を用いて、蛍光ピーク強度測定を行った。測定には、光度計に付属の角セルホルダーを使用し、波長450nmの励起光を照射し、発光スペクトルを得た。図1に、実施例1、2、5における、ピーク波長における発光強度で規格化した酸処理前の焼成物の蛍光体粉末の発光スペクトルを示す。
 実施例1~5の酸処理前の焼成物における発光スペクトルにおいて、700nm~1500nmに主相(Ba,Eu)26Si5184に帰属される発光ピークが存在するとともに、500nm~700nmの範囲に異相である(Ba,Eu)Siに帰属される発光ピークが存在することが確認された。
 また、500nm~700nmのピークの発光強度は、比較例1が、実施例1~5と比べて非常に高い値を示した。
 実施例1~5の酸処理後の焼成物の蛍光体粉末について、副標準光源により補正を行った分光蛍光光度計(株式会社堀場製作所製、Fluorolog-3)を用いて、蛍光ピーク強度測定を行った。測定には、光度計に付属の角セルホルダーを使用し、波長450nmの励起光を照射し、発光スペクトルを得た。図2に、実施例1、2、5、比較例1における、ピーク波長における発光強度で規格化した酸処理後の焼成物の蛍光体粉末の発光スペクトルを示す。
 実施例1~5の酸処理後の蛍光体粉末における発光スペクトルにおいて、500nm~700nmの範囲に(Ba,Eu)Si、及び(Ba,Eu)SiNに帰属されるピークは確認されず、830nm~850nm近傍に主相(Ba,Eu)26Si5184に帰属されるメインピークが存在することが確認された。
 得られた発光スペクトルから、700nm以上1500nm以下の範囲にあるピーク波長について、ピーク位置、半値幅、及び発光強度(P0)、500nm以上700nm未満にあるピーク波長における発光強度(P1)を求め、表2に示す。
 各波長におけるピーク強度は、実施例3のピーク強度を1.00としたときの相対的な値である。
Figure JPOXMLDOC01-appb-T000002
(ピーク強度)
 実施例1~5の蛍光体粉末は、比較例1よりも、異相の発光による500nm~700nmのピークの発光強度を低減し、700nm~1500nmの近赤外領域の範囲にピークを有する光の発光強度が向上した。
[粒度分布測定]
 実施例1~5の蛍光体粉末の粒子径分布を、レーザー回折・散乱法の粒子径分布測定装置(ベックマン・コールター社製、LC13 320)で測定した。測定溶媒には水を使用した。分散剤としてヘキサメタりん酸ナトリウムを0.05重量%加えた水溶液に少量の蛍光体粉末を投入し、ホーン式の超音波ホモジナイザー(出力300W、ホーン径26mm)で分散処理を行い、粒子径分布を測定した。得られた体積頻度粒度分布曲線から、10体積%径(D10)、50体積%径(D50)、90体積%径(D90)を求め、得られた値から粒子径分布のスパン値((D90-D10)/D50)を求めた。粒子径分布の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~5の蛍光体粉末は、比較例1と比べて異相が低減されており、発光特性に優れることが分かった。
 この出願は、2020年8月25日に出願された日本出願特願2020-141748号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  Ba26Si5184で示される結晶、又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶された無機化合物を含有する蛍光体粉末の製造方法であって、
     前記無機化合物を構成する各元素を含む原料を混合し、原料混合粉末中のBa、Si、Euのモル比をそれぞれ、a、b、cとしたとき、b=51、a/b>(26-c)/51を満たすように配合された原料混合粉末を得る混合工程と、
     前記原料混合粉末を焼成して焼成物を得る焼成工程と、
     前記焼成物を酸処理及び/又は水処理する洗浄処理工程と、を含む、蛍光体粉末の製造方法。
  2.  請求項1に記載の蛍光体粉末の製造方法であって、
     前記混合工程は、a、bが、0.51<a/b<1を満たすように配合された前記原料混合粉末を得る、蛍光体粉末の製造方法。
  3.  請求項1又は2に記載の蛍光体粉末の製造方法であって、
     酸処理に用いる酸が、無機酸を含む、蛍光体粉末の製造方法。
  4.  請求項3に記載の蛍光体粉末の製造方法であって、
     前記酸が、HNOを含む、蛍光体粉末の製造方法。
  5.  請求項1~4のいずれか一項に記載の蛍光体粉末の製造方法であって、
     前記焼成工程で得られた前記焼成物について、前記洗浄処理工程の前に、粉砕、解砕、及び/又は篩分の少なくとも一以上を行う粉体処理工程を含む、蛍光体粉末の製造方法。
  6.  請求項1~5のいずれか一項に記載の蛍光体粉末の製造方法であって、
     レーザー回折散乱法で測定される前記蛍光体粉末の積頻度粒度分布において、累積値が50%となる粒子径をD50としたとき、D50が1μm以上50μm以下を満たす前記蛍光体粉末を得る、蛍光体粉末の製造方法。
  7.  Ba26Si5184で示される結晶、又はBa26Si5184で示される結晶と同一の結晶構造を有する無機結晶にEuが賦活剤として固溶された無機化合物を含有する蛍光体粉末であって、
     波長450nmの励起光を当該蛍光体粉末に照射して得られる発光スペクトルにおいて、700nm以上1500nm以下の範囲にあるピーク波長における発光強度をP0とし、500nm以上700nm未満にあるピーク波長における発光強度をP1としたとき、
     P0、P1が、P1/P0≦0.20を満たす、蛍光体粉末。
  8.  請求項7に記載の蛍光体粉末であって、
     レーザー回折散乱法で測定される、当該蛍光体粉末の体積頻度粒度分布において、累積値が50%となる粒子径をD50としたとき、D50が、1μm以上50μm以下である、蛍光体粉末。
  9.  請求項7又は8に記載の蛍光体粉末であって、
     レーザー回折散乱法で測定される当該蛍光体粉末の体積頻度粒度分布において、累積値が10%となる粒子径をD10、累積値が50%となる粒子径をD50、90%となる粒子径をD90としたとき、
     ((D90-D10)/D50)が、1.00以上3.00以下である、蛍光体粉末。
  10.  請求項7~9のいずれか一項に記載の蛍光体粉末であって、
     前記発光スペクトルにおいて、700nm以上1500nm以下の範囲にあるピーク波長における半値幅が100nm以上400nm以下である、蛍光体粉末。
  11.  一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体とを備える発光装置であって、
     前記波長変換体は請求項7~10のいずれか一項に記載の蛍光体粉末を含む、発光装置。
PCT/JP2021/029494 2020-08-25 2021-08-10 蛍光体粉末の製造方法、蛍光体粉末、及び発光装置 WO2022044792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021003788.9T DE112021003788T5 (de) 2020-08-25 2021-08-10 Verfahren zur Herstellung von Leuchtstoffpulver, Leuchtstoffpulver und lichtemittierende Vorrichtung
JP2022545622A JP7466659B2 (ja) 2020-08-25 2021-08-10 蛍光体粉末の製造方法、蛍光体粉末、及び発光装置
KR1020237006885A KR20230054680A (ko) 2020-08-25 2021-08-10 형광체 분말의 제조 방법, 형광체 분말 및 발광 장치
US18/022,278 US11952520B2 (en) 2020-08-25 2021-08-10 Method for manufacturing phosphor powder, phosphor powder, and light emitting device
CN202180051446.5A CN115917773A (zh) 2020-08-25 2021-08-10 荧光体粉末的制造方法、荧光体粉末以及发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141748 2020-08-25
JP2020141748 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044792A1 true WO2022044792A1 (ja) 2022-03-03

Family

ID=80353198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029494 WO2022044792A1 (ja) 2020-08-25 2021-08-10 蛍光体粉末の製造方法、蛍光体粉末、及び発光装置

Country Status (7)

Country Link
US (1) US11952520B2 (ja)
JP (1) JP7466659B2 (ja)
KR (1) KR20230054680A (ja)
CN (1) CN115917773A (ja)
DE (1) DE112021003788T5 (ja)
TW (1) TW202212537A (ja)
WO (1) WO2022044792A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230873A (ja) * 2007-03-19 2008-10-02 Osaka Univ 蛍光体原料用金属材料、及び蛍光体の製造方法、蛍光体、並びに蛍光体含有組成物、発光装置、画像表示装置及び照明装置
JP2018512481A (ja) * 2015-03-06 2018-05-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 保護層を有する蛍光体粒子および保護層を有する蛍光体粒子の製造方法
JP6684412B1 (ja) * 2019-06-27 2020-04-22 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法および発光装置
JP2020083945A (ja) * 2018-11-19 2020-06-04 デンカ株式会社 β型サイアロン蛍光体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012024582A2 (en) 2010-08-20 2012-02-23 Research Triangle Institute, International Color-tunable lighting devices and methods for tunning color output of lighting devices
WO2012046288A1 (ja) 2010-10-04 2012-04-12 電気化学工業株式会社 β型サイアロン蛍光体とその製造方法、およびその用途
US11236269B2 (en) 2018-03-29 2022-02-01 Denka Company Limited Alpha-Sialon fluorescent body and light-emitting device
JP7078509B2 (ja) 2018-10-04 2022-05-31 デンカ株式会社 複合体、発光装置および複合体の製造方法
JP2020141748A (ja) 2019-03-04 2020-09-10 富士フイルム株式会社 巡回撮影管理装置、巡回撮影管理装置の作動方法、巡回撮影管理装置の作動プログラム、データ構造、および記録装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230873A (ja) * 2007-03-19 2008-10-02 Osaka Univ 蛍光体原料用金属材料、及び蛍光体の製造方法、蛍光体、並びに蛍光体含有組成物、発光装置、画像表示装置及び照明装置
JP2018512481A (ja) * 2015-03-06 2018-05-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 保護層を有する蛍光体粒子および保護層を有する蛍光体粒子の製造方法
JP2020083945A (ja) * 2018-11-19 2020-06-04 デンカ株式会社 β型サイアロン蛍光体の製造方法
JP6684412B1 (ja) * 2019-06-27 2020-04-22 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法および発光装置

Also Published As

Publication number Publication date
KR20230054680A (ko) 2023-04-25
DE112021003788T5 (de) 2023-06-01
TW202212537A (zh) 2022-04-01
US20230323199A1 (en) 2023-10-12
JPWO2022044792A1 (ja) 2022-03-03
JP7466659B2 (ja) 2024-04-12
US11952520B2 (en) 2024-04-09
CN115917773A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP5504178B2 (ja) α型サイアロン蛍光体、その製造法及び発光装置
JP2013173868A (ja) βサイアロン蛍光体の製造方法
WO2021015004A1 (ja) 蛍光体粒子の製造方法
JP2012046625A (ja) 蛍光体の製造方法
KR20130138744A (ko) 규질화물 형광체용 질화규소 분말 및 그것을 이용한 Sr3Al3Si13O2N21계 형광체, β-사이알론 형광체, 그리고 그들의 제조방법
WO2020241482A1 (ja) 表面被覆蛍光体粒子、及び発光装置
WO2020209147A1 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
WO2020209148A1 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
JP6354325B2 (ja) 窒化物蛍光体粉末の製造方法、および顔料の製造方法
WO2022080262A1 (ja) 蛍光体、及び発光装置
WO2022080265A1 (ja) 蛍光体、及び発光装置
WO2022080263A1 (ja) 蛍光体、蛍光体の製造方法、及び発光装置
JP2008045080A (ja) 無機化合物の製造方法
WO2022044792A1 (ja) 蛍光体粉末の製造方法、蛍光体粉末、及び発光装置
WO2022044793A1 (ja) 蛍光体粉末、及び発光装置
CN116018388A (zh) 铕活化β型塞隆荧光体和发光装置
JP7453377B2 (ja) 蛍光体、波長変換体、及び発光装置
JP6902368B2 (ja) 赤色蛍光体の製造方法
WO2023153157A1 (ja) ユウロピウム賦活βサイアロン蛍光体
JP2022146262A (ja) Cr賦活蛍光体、波長変換体、及び発光装置
JP2023082287A (ja) 蛍光体粉末の製造方法
WO2022080097A1 (ja) ユーロピウム賦活β型サイアロン蛍光体
JP2022064478A (ja) β型サイアロン蛍光体の製造方法
JP2022146260A (ja) Mn賦活蛍光体、波長変換体、及び発光装置
JPWO2019220816A1 (ja) 赤色蛍光体及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545622

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006885

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21861220

Country of ref document: EP

Kind code of ref document: A1