WO2021015004A1 - 蛍光体粒子の製造方法 - Google Patents

蛍光体粒子の製造方法 Download PDF

Info

Publication number
WO2021015004A1
WO2021015004A1 PCT/JP2020/026998 JP2020026998W WO2021015004A1 WO 2021015004 A1 WO2021015004 A1 WO 2021015004A1 JP 2020026998 W JP2020026998 W JP 2020026998W WO 2021015004 A1 WO2021015004 A1 WO 2021015004A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor particles
producing phosphor
acid treatment
treatment step
phosphor
Prior art date
Application number
PCT/JP2020/026998
Other languages
English (en)
French (fr)
Inventor
雅斗 赤羽
秀幸 江本
吉松 良
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021533942A priority Critical patent/JPWO2021015004A1/ja
Publication of WO2021015004A1 publication Critical patent/WO2021015004A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium

Definitions

  • the present invention relates to a method for producing phosphor particles.
  • Patent Document 1 describes a method for producing SrLiAl 3 N 4 : Eu (SLAN phosphor) (claim 1, paragraph 0113, etc. of Patent Document 1).
  • the present inventor has found that the emission characteristics of the phosphor such as the internal quantum efficiency may be lowered due to the different phase generated in the manufacturing process of the phosphor particles.
  • the type of flux to be mixed with the raw material mixture of phosphor particles was appropriately selected, and acid treatment using a mixed solution containing acid and alcohol was performed during the manufacturing process.
  • phosphor particles with excellent internal quantum efficiency can be realized, and have completed the present invention.
  • LiF functions as an appropriate flux, so that grain growth can be promoted and the optical properties of the phosphor particles can be improved, and LiF was used by applying an acid treatment. This is thought to be because it is possible to remove the heterogeneous phase that sometimes occurs.
  • a method for producing fluorescent particles having the above is provided.
  • the method for producing the fluorescent particles is as follows: at least one element M 1 selected from the group consisting of Sr, Mg, Ca and Ba, at least one element M 2 selected from the group consisting of Li and Na, Eu and Fluorescent particles (fluorescent particles) having a composition containing at least one element M 3 , Al, and N selected from the group consisting of Ce are produced.
  • the method for producing the phosphor particles can include a mixing step, a firing step, a pulverization step, an acid treatment step, a hydrofluoric acid treatment step, and a heat treatment step. Each step will be described in detail.
  • a raw material mixture containing each element constituting the composition of the phosphor and LiF as a flux are mixed to obtain a mixture.
  • each raw material weighed so as to obtain the desired phosphor particles may be mixed to obtain a powdery mixture.
  • the method of mixing the raw materials is not particularly limited, but for example, there is a method of sufficiently mixing using a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill. It is appropriate to handle strontium nitride, lithium nitride, etc., which react violently with moisture and oxygen in the air, in a glove box whose interior is replaced with an inert atmosphere or by using a mixing device.
  • a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill. It is appropriate to handle strontium nitride, lithium nitride, etc., which react violently with moisture and oxygen in the air, in a glove box whose interior is replaced with an inert atmosphere or by using a mixing device.
  • the amount of M 1 charged when the molar ratio of Al is 3 is 1.10 or more in terms of molar ratio.
  • the charge amount of M 1 it is possible to prevent the shortage of M 1 in the phosphor due to volatilization of M 1 during the firing process, and it is difficult for defects to occur in M 1. , Crystalline is kept good. As a result, a narrow-band fluorescence spectrum can be obtained, and it is presumed that the emission intensity can be increased.
  • the amount of M 1 charged when the molar ratio of Al is 3 is 1.20 or less in terms of molar ratio.
  • Each raw material used in the mixing step can include one or more selected from the group consisting of a simple substance of a metal element contained in the composition of a phosphor and a metal compound containing the metal element.
  • the metal compound include nitrides, hydrides, fluorides, oxides, carbonates, chlorides and the like. Of these, nitrides are preferably used as the metal compound containing M 1 and M 2 from the viewpoint of improving the emission intensity of the phosphor.
  • a metal compound containing M 1, Sr 3 N 2, SrN 2, etc. SrN the like.
  • the metal compound containing M 2 include Li 3 N and Li N 3 .
  • the metal compound containing M 3 include Eu 2 O 3 , Eu N, and Eu F 3 .
  • the metal compound containing Al include AlN, AlH 3 , AlF 3 , LiAlH 4 and the like.
  • the lower limit of the amount of LiF added is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 4% by mass or more, based on 100% by mass of the total of LiF and the raw material mixture.
  • the upper limit of the amount of LiF added may be, for example, 10% by mass or less, preferably 5% by mass or less, based on 100% by mass of the total of LiF and the raw material mixture.
  • the flux LiF may be used alone, or may be used in combination with other fluxes.
  • the content of LiF in the flux used in the mixing step is, for example, 50% by mass or more, preferably 80% by mass or more, and more preferably 100% by mass.
  • the firing step fires the above-mentioned mixture.
  • the mixture filled inside the firing container may be fired.
  • the firing container preferably has a structure that can improve airtightness.
  • the firing vessel is preferably made of a material that is stable under high temperature atmospheric gas and does not easily react with the mixture of raw materials and its reaction products.
  • a vessel made of boron nitride or carbon, molybdenum or tantalum It is preferable to use a container made of a refractory metal such as molybdenum or tungsten.
  • an atmospheric gas of non-oxidizing gas such as argon, helium, hydrogen, and nitrogen.
  • the lower limit of the firing temperature in the firing step is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and even more preferably 1100 ° C. or higher.
  • the upper limit of the firing temperature is preferably 1500 ° C. or lower, more preferably 1400 ° C. or lower, and even more preferably 1300 ° C. or lower.
  • Type of firing atmosphere gas As the type of firing atmosphere gas in the firing step, for example, a gas containing nitrogen as an element can be preferably used. Specific examples include nitrogen and / or ammonia, with nitrogen being particularly preferred. Similarly, an inert gas such as argon or helium can also be preferably used.
  • the firing atmosphere gas may be composed of one type of gas or a mixed gas of a plurality of types of gases.
  • the pressure of the firing atmosphere gas is selected according to the firing temperature, but is usually in a pressurized state in the range of 0.1 MPa ⁇ G or more and 10 MPa ⁇ G or less.
  • the raw material mixture (calcined product) after the firing step is pulverized to obtain a pulverized product.
  • the state of the fired product obtained by the firing process varies from powdery to lumpy depending on the raw material composition and firing conditions.
  • the fired product can be made into a powder of a predetermined size.
  • the member of the device that comes into contact with the fired product is made of ceramics such as silicon nitride, alumina, and sialon in order to prevent impurities derived from the treatment from being mixed.
  • the average particle size of the pulverized product may be adjusted so that the average particle size of the phosphor particles is 5 ⁇ m or more and 30 ⁇ m or less.
  • the phosphor particles have excellent absorption efficiency and luminous efficiency of excitation light, and therefore can be suitably used for LEDs and the like.
  • the pulverized product is acid-treated with a mixed solution containing an acid and an alcohol.
  • the acid treatment may be added to the pulverized product in a mixed solution containing the acid and alcohol, or the acid may be added to the pulverized product in alcohol.
  • the mixed solution may be allowed to stand during the acid treatment, or may be stirred under appropriate conditions.
  • decantation solid-liquid separation treatment
  • Decantation may be performed once or more than once. As a result, the acid can be washed and removed from the pulverized product. Then, the pulverized product is filtered and dried.
  • the mixed solution may contain an aqueous solvent.
  • an aliphatic alcohol specifically, MeOH, EtOH, IPA and the like are used.
  • the alcohol and the acid may be mixed so that the concentration of the acid in the mixed solution is, for example, 0.1% by mass to 5% by mass, preferably 0.5% by mass to 3% by mass.
  • impurity elements contained in the raw material, impurity elements derived from the firing container, different phases generated in the firing process, and impurity elements mixed in the crushing process can be dissolved and removed. That is, the acid treatment can wash foreign substances and the like. As a result, the internal quantum efficiency of the phosphor can be improved.
  • the pulverized product may be dispersed and immersed in a mixed solution containing an acid and an alcohol for, for example, 0.5 hours or more and 5 hours or less.
  • hydrofluoric acid treatment process In the hydrofluoric acid treatment, the pulverized product after the acid treatment step is subjected to the hydrofluoric acid treatment.
  • an aqueous solution containing hydrogen fluoride is preferably used as the compound containing a fluorine element.
  • hydrofluoric acid treatment for example, a pulverized product may be added to the hydrofluoric acid.
  • the lower limit of the concentration of hydrofluoric acid (HF) in hydrofluoric acid is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more.
  • the upper limit of the concentration of hydrogen fluoride in hydrofluoric acid is preferably 40% by mass or less, more preferably 38% by mass or less, still more preferably 35% by mass or less.
  • a coating portion containing (NH 4 ) 3 AlF 6 can be formed on at least a part of the outermost surface of the particles containing the phosphor.
  • concentration of hydrogen fluoride it is possible to prevent the reaction between the particles and hydrofluoric acid from becoming too violent.
  • the type of acid and solvent in the acid treatment step, the acid concentration, the hydrofluoric acid concentration in the hydrofluoric acid treatment step, the hydrofluoric acid treatment time, the heating temperature and the heating time in the heat treatment step performed after the hydrofluoric acid treatment.
  • Heat treatment process In the heat treatment, the pulverized product after the hydrofluoric acid treatment is heated in the air.
  • the lower limit of the heating temperature in the heat treatment step is preferably 220 ° C. or higher, more preferably 250 ° C. or higher.
  • the upper limit of the heating temperature is preferably 380 ° C. or lower, more preferably 350 ° C. or lower, and even more preferably 330 ° C. or lower.
  • the heating temperature to the above upper limit or less, the crystal structure of the phosphor can be maintained well and the emission intensity can be increased.
  • the lower limit of the heating time is preferably 1 hour or more, more preferably 1.5 hours or more, still more preferably 2 hours or more.
  • the upper limit of the heating time is preferably 6 hours or less, more preferably 5.5 hours or less, and even more preferably 5 hours or less.
  • the heat treatment step is preferably carried out in the air or in a nitrogen atmosphere. According to this, the target substance can be produced without the substance itself in the heating atmosphere hindering the above reaction formula (1).
  • the phosphor particles of the present embodiment will be described.
  • the phosphor particles of the present embodiment may be composed of surface-coated phosphor particles containing particles containing a phosphor and a coating portion that covers the surface of the particles.
  • the phosphor contained in the phosphor particles has a composition represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od .
  • M 1 is one or more elements selected from Sr, Mg, Ca and Ba
  • M 2 is one or more elements selected from Li and Na
  • M 3 is selected from Eu and Ce. It is one or more elements.
  • a, b, c, 4-d, and d indicate the molar ratio of each element.
  • A, b, c, and d in the general formula satisfy each of the following formulas. 0.850 ⁇ a ⁇ 1.150 0.850 ⁇ b ⁇ 1.150 0.001 ⁇ c ⁇ 0.015 0 ⁇ d ⁇ 0.40 0 ⁇ d / (a + d) ⁇ 0.30
  • M 1 is one or more elements selected from Sr, Mg, Ca and Ba, and preferably contains at least Sr.
  • the lower limit of the molar ratio a of M 1 is preferably 0.850 or more, more preferably 0.950 or more.
  • the upper limit of the molar ratio a of M 1 is preferably 1.150 or less, more preferably 1.100 or less, and even more preferably 1.050 or less.
  • M 2 is one or more elements selected from Li and Na, preferably containing at least Li.
  • Molar ratio lower limit of b of M 2 is preferably not less than 0.850, more preferably not less than 0.950.
  • the upper limit of the molar ratio b of M 2 is preferably 1.150 or less, more preferably 1.100 or less, more preferably 1.050 or less.
  • the molar ratio a of M 2 is in the above range, it is possible to improve the crystal structure stability.
  • M 3 is an activator added to the parent crystal, that is, an element constituting the emission center ion of the phosphor, and is one or more elements selected from Eu and Ce. M 3 can be selected according to the required emission wavelength, and preferably contains at least Eu.
  • the lower limit of the molar ratio c of M 3 is preferably 0.001 or more, and more preferably 0.005 or more.
  • the upper limit of the molar ratio c of M 3 is preferably 0.015 or less, more preferably 0.010 or less.
  • the lower limit of the molar ratio d of oxygen (O) is preferably 0 or more, more preferably 0.05 or more.
  • the upper limit of the molar ratio d of oxygen is preferably 0.40 or less, more preferably 0.35 or less.
  • the lower limit of the molar ratio of M 1 and oxygen that is, the value of d / (a + d) calculated from a and d is preferably 0 or more, and more preferably 0.05 or more.
  • the upper limit of the value of d / (a + d) is preferably less than 0.30, more preferably 0.25 or less.
  • the coating portion constitutes at least a part of the outermost surface of the particles containing the above-mentioned phosphor.
  • the coating contains a fluorine-containing compound containing a fluorine element and an aluminum element.
  • the fluorine-containing compound it is preferable that the fluorine element and the aluminum element are directly covalently bonded, and more specifically, the fluorine-containing compound is one or both of (NH 4 ) 3 AlF 6 and AlF 3. Is preferably included.
  • the fluorine-containing compound may be composed of a single compound containing a fluorine element and an aluminum element.
  • the coating portion containing the fluorine-containing compound constitutes at least a part of the outermost surface of the particles containing the phosphor, the moisture resistance of the phosphor constituting the particles can be improved. From the viewpoint of further improving the moisture resistance of the phosphor, it is more preferable that the coating portion contains AlF 3 .
  • the mode of the covering portion is not particularly limited.
  • Examples of the mode of the coating portion include a mode in which a large number of particulate fluorine-containing compounds are distributed on the surface of the particles containing the phosphor, and a mode in which the fluorine-containing compound continuously covers the surface of the particles containing the phosphor. Can be mentioned.
  • the coating may be configured to cover part or all of the particle surface.
  • the diffuse reflectance with respect to light irradiation having a wavelength of 300 nm is, for example, 56% or more, preferably 65% or more, and more preferably 70% or more. Further, in the phosphor particles, the diffuse reflectance with respect to light irradiation at the peak wavelength of the fluorescence spectrum is, for example, 80% or more, preferably 83% or more, and more preferably 85% or more. By providing such a diffuse reflectance, the luminous efficiency is further increased and the emission intensity is improved.
  • the phosphor particles When excited with blue light having a wavelength of 455 nm, the phosphor particles may be configured so that the peak wavelength is in the range of, for example, 640 nm or more and 670 nm or less, and the half width thereof satisfies, for example, 45 nm or more and 60 nm or less. By providing such characteristics, excellent color rendering and color reproducibility can be expected.
  • the phosphor particles When excited with blue light having a wavelength of 455 nm, the phosphor particles may be configured such that the x value in the CIE-xy chromaticity diagram satisfies, for example, 0.680 ⁇ x ⁇ 0.735. By providing such characteristics, excellent color rendering and color reproducibility can be expected. If the x value is 0.680 or more, red emission with good color purity can be further expected, and if the x value is 0.735 or more, it exceeds the maximum value in the CIE-xy chromaticity diagram, so the above range is satisfied. Is preferable.
  • the light emitting device according to the present embodiment includes phosphor particles and a light emitting element.
  • the phosphor particles in addition to the phosphor particles, fluorescent particles having other emission colors may be used in combination.
  • the phosphor particles having other emission colors include blue emission phosphor particles, green emission phosphor particles, yellow emission phosphor particles, orange emission phosphor particles, and red phosphor.
  • Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, ⁇ -SiAlON: Eu, Y 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, La 3 Si 6 N 11 : Ce, ⁇ -SiAlON: Eu, Sr 2 Si 5 N 8 : Eu and the like can be mentioned.
  • the other phosphor particles are not particularly limited, and can be appropriately selected according to the brightness, color rendering properties, etc. required for the light emitting device. By mixing the phosphor particles and the phosphor particles of other emission colors, it is possible to realize white at various color temperatures such as neutral white and light bulb color.
  • the light emitting device include a lighting device, a backlight device, an image display device, a signal device, and the like.
  • the light emitting device By providing the light emitting device with phosphor particles, it is possible to improve the reliability while realizing high light emitting intensity.
  • Example 1 5 g of the phosphor powder obtained in the same manner as in Comparative Example 1 was mixed with 500 ml of MeOH (purity 99%) (manufactured by Kokusan Kagaku Co., Ltd.) and 10 ml of nitric acid (HNO 3 concentration 60%) (manufactured by Wako Pure Chemical Industries, Ltd.). After adding to the added mixed solution and stirring for 3 hours, the mixture was neutralized by decantation with MeOH, and then filtered and dried to obtain a phosphor powder.
  • MeOH purity 99%
  • HNO 3 concentration 60% manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 2 The phosphor powder obtained in the same manner as in Comparative Example 1 was added to a mixed solution of EtOH with nitric acid (HNO 3 concentration 60%) (manufactured by Wako Pure Chemical Industries, Ltd.) and stirred for 3 hours.
  • the phosphor powder of Example 2 was obtained by the same raw material charge amount and procedure as in Example 1.
  • Example 3 The phosphor powder obtained in the same manner as in Comparative Example 1 was added to a mixed solution of IPA containing nitric acid (HNO 3 concentration 60%) (manufactured by Wako Pure Chemical Industries, Ltd.) and stirred for 3 hours.
  • the phosphor powder of Example 3 was obtained by the same raw material charge amount and procedure as in Example 1.
  • Comparative Example 2 The phosphor powder of Comparative Example 2 was obtained by the same raw material charge amount and procedure as in Example 1 except that SrF 2 was used as the flux instead of LiF.
  • the obtained phosphor particles were determined Sr a Li b Eu c Al 3 N 4-d O subscripts a ⁇ d of each element d. Specifically, for Sr, Li, Al and Eu, an ICP emission spectroscopic analyzer (CIROS-120, manufactured by SPECTRO) was used, and for O and N, an oxygen nitrogen analyzer (EMGA-920, manufactured by Horiba Seisakusho) was used. Subscripts a to d were calculated using the analysis results used. The numerical values of a to d of each phosphor particle are shown in Table 1.
  • the obtained phosphor particles were evaluated based on the following evaluation items.
  • a concave cell filled with a phosphor so as to have a smooth surface is set in the opening of the integrating sphere, monochromatic light having a wavelength of 455 nm is irradiated, and the spectrum of the reflected light of excitation and the fluorescence is spectrophotometer. Measured by meter. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of excited reflected light photons was calculated in the same wavelength range as the number of excited light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
  • the internal quantum efficiency Qem / (Qex-Qref) ⁇ 100 was obtained from the obtained three types of photon numbers.
  • the peak wavelength, full width at half maximum, and chromaticity x value were obtained from the fluorescence spectrum obtained by this measurement.
  • the chromaticity is calculated according to JIS Z 8724 (color measurement method-light source color-), and the chromaticity coordinates (x, y) are calculated by the calculation method in the XYZ color system defined in JIS Z 8701. did.
  • the wavelength range used for calculating the chromaticity coordinates was 550 to 780 nm.
  • the diffuse reflectance was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet-visible spectrophotometer (V-550 manufactured by JASCO Corporation). Baseline correction was performed with a standard reflector (Spectralon), and a solid sample holder filled with the obtained phosphor particles was attached, and the diffuse reflectance for light of 300 nm and peak wavelength was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本発明の蛍光体粒子の製造方法は、Sr、Mg、CaおよびBaからなる群より選択される少なくとも1種の元素M、Li、およびNaからなる群より選択される少なくとも1種の元素M、Eu、およびCeからなる群より選択される少なくとも1種の元素M、Al、及びNからなる群を含む組成を有する蛍光体粒子の製造方法であって、その組成を構成する各元素を含む原料混合物とLiFとを混合して混合物を得る混合工程と、混合物を焼成する焼成工程と、混合物を粉砕して粉砕物を得る粉砕工程と、粉砕物に酸とアルコールと含む混合液を用いて酸処理を施す酸処理工程と、粉砕物にフッ酸処理を施すフッ酸処理工程と、粉砕物を大気中で加熱する加熱処理工程と、を有するものである。

Description

蛍光体粒子の製造方法
 本発明は、蛍光体粒子の製造方法に関する。
 これまで蛍光体について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、SrLiAl:Eu(SLAN蛍光体)の製造方法について記載されている(特許文献1の請求項1、段落0113など)。
国際公開第2013/175336号
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の蛍光体粒子の製造方法において、内部量子効率の点で改善の余地があることが判明した。
 本発明者は検討したところ、蛍光体粒子の製造過程で生じる異相によって、内部量子効率などの蛍光体の発光特性が低下することがあることを見出した。
 このような知見に基づきさらに鋭意研究したところ、蛍光体粒子の原料混合物に混合するフラックスの種類を適切に選択し、製造過程中に酸とアルコールとを含む混合液を用いた酸処理を行うことによって、内部量子効率に優れた蛍光体粒子を実現できることを見出し、本発明を完成するに至った。
 詳細なメカニズムは定かではないが、LiFが適切なフラックスとして機能するため、粒成長が促進し蛍光体粒子の光学特性を向上させることができる、そして、酸処理を施すことで、LiFを使用したときに生じる異相を除去することが可能であるため、と考えられる。
 一方、フラックスとしてSrFを使用した場合、反応後に残存する異相の残存量がLiFと比べて多くなるため、たとえ酸処理を施したとしても、その除去が困難になるため、内部量子効率が低下する結果が得られている。
 本発明によれば、
 Sr、Mg、CaおよびBaからなる群より選択される少なくとも1種の元素M、Li、およびNaからなる群より選択される少なくとも1種の元素M、Eu、およびCeからなる群より選択される少なくとも1種の元素M、Al、及びNからなる群を含む組成
を有する蛍光体粒子の製造方法であって、
 前記組成を構成する各元素を含む原料混合物とLiFとを混合して混合物を得る混合工程と、
 前記混合物を焼成する焼成工程と、
 前記焼成工程後の前記混合物を、粉砕して粉砕物を得る粉砕工程と、
 前記粉砕物に、酸とアルコールと含む混合液を用いて酸処理を施す酸処理工程と、
 前記酸処理工程後の前記粉砕物に、フッ酸処理を施すフッ酸処理工程と、
 前記フッ酸処理工程後の前記粉砕物を、大気中で加熱する加熱処理工程と、
を有する蛍光体粒子の製造方法が提供される。
 本発明によれば、内部量子効率に優れた蛍光体粒子の製造方法が提供される。
 本実施形態の蛍光体粒子の製造方法について説明する。
 蛍光体粒子の製造方法は、Sr、Mg、CaおよびBaからなる群より選択される少なくとも1種の元素M、LiおよびNaからなる群より選択される少なくとも1種の元素M、EuおよびCeからなる群より選択される少なくとも1種の元素M、Al、及びNからなる群を含む組成を有する蛍光体粒子(蛍光体粒子)を製造するものである。
 蛍光体粒子の製造方法は、混合工程、焼成工程、粉砕工程、酸処理工程、フッ酸処理工程、及び加熱処理工程を含むことができる。
 各工程について詳述する。
(混合工程)
 混合工程は、蛍光体の組成を構成する各元素を含む原料混合物と、フラックスとしてLiFとを混合して混合物を得る。例えば、目的とする蛍光体粒子が得られるように秤量した各原料を混合して粉末状の混合物を得てもよい。
 原料を混合する方法は、特に限定されないが、たとえば、乳鉢、ボールミル、V型混合機、遊星ミルなどの混合装置を用いて十分に混合する方法がある。
 なお、空気中の水分や酸素と激しく反応する窒化ストロンチウム、窒化リチウム等は、内部が不活性雰囲気で置換されたグローブボックス内や混合装置を用いて取り扱うことが適切である。
 混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.10以上であることが好ましい。Mの仕込み量をモル比で1.10以上とすることにより、焼成工程中のMの揮発などにより蛍光体中のMが不足することが抑制され、Mに欠陥が生じにくくなり、結晶性が良好に保たれる。この結果、狭帯域の蛍光スペクトルが得られ、発光強度を高めることができると推測される。また、混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.20以下であることが好ましい。Mの仕込み量をモル比で1.20以下とすることにより、Mを含む異相の増加を抑制し、酸処理工程により異相の除去が容易になり、発光強度を高めることができる。
 混合工程において用いられる各原料は、蛍光体の組成に含まれる金属元素の金属単体および当該金属元素を含む金属化合物からなる群より選ばれる1種以上を含むことができる。金属化合物としては、窒化物、水素化物、フッ化物、酸化物、炭酸塩、塩化物等が挙げられる。このうち、蛍光体の発光強度を向上させる観点から、MおよびMを含む金属化合物として窒化物が好ましく用いられる。具体的には、Mを含む金属化合物として、Sr、SrN、SrNなどが挙げられる。Mを含む金属化合物として、LiN、LiNなどが挙げられる。Mを含む金属化合物としては、Eu、EuN、EuFが挙げられる。Alを含む金属化合物としては、AlN、AlH、AlF、LiAlHなどが挙げられる。
 混合工程において、LiFの添加量の下限は、LiFと原料混合物との合計100質量%に対して、例えば、1質量%以上、好ましくは2質量%以上、より好ましくは4質量%以上である。これにより、内部量子効率に優れた蛍光体粒子を実現できる。一方、LiFの添加量の上限は、LiFと原料混合物との合計100質量%に対して、例えば、10質量%以下でもよく、好ましくは5質量%以下でもよい。
 フラックスとして、LiF単独で使用してもよいが、他のフラックスと併用して使用してもよい。
 混合工程で使用されるフラックス中のLiFの含有量は、例えば、50質量%以上、好ましくは80質量%以上、より好ましくは100質量%である。
(焼成工程)
 焼成工程は、上述した混合物を焼成する。例えば焼成容器の内部に充填した混合物を焼成してもよい。
 焼成容器は、気密性を高められる構造を備えていることが好ましい。焼成容器は、高温の雰囲気ガス下において安定で、原料の混合体及びその反応生成物と反応しにくい材質で構成されることが好ましく、たとえば、窒化ホウ素製、カーボン製の容器や、モリブデンやタンタルやタングステン等の高融点金属製の容器を使用することが好ましい。
 焼成容器の内部はアルゴン、ヘリウム、水素、窒素等の非酸化性ガスの雰囲気ガスで満たすことが好ましい。
[焼成温度]
 焼成工程における焼成温度の下限は、900℃以上が好ましく、1000℃以上がより好ましく、1100℃以上がさらに好ましい。一方、焼成温度の上限は、1500℃以下が好ましく、1400℃以下がより好ましく、1300℃以下がさらに好ましい。焼成温度を上記範囲とすることにより、焼成工程終了後の未反応原料を少なくでき、また主結晶相の分解を抑制することができる。
[焼成雰囲気ガスの種類]
 焼成工程における焼成雰囲気ガスの種類としては、例えば元素としての窒素を含むガスを好ましく用いることができる。具体的には、窒素および/またはアンモニアを挙げることができ、特に窒素が好ましい。また同様に、アルゴン、ヘリウム等の不活性ガスも好ましく用いることができる。なお焼成雰囲気ガスは1種類のガスで構成されていても、複数の種類のガスの混合ガスであっても構わない。
[焼成雰囲気ガスの圧力]
 焼成雰囲気ガスの圧力は、焼成温度に応じて選択されるが、通常0.1MPa・G以上10MPa・G以下の範囲の加圧状態である。焼成雰囲気ガスの圧力が高いほど、蛍光体の分解温度は高くなるが、工業的生産性を考慮すると0.5MPa・G以上1MPa・G以下とすることが好ましい。
[焼成時間]
 焼成工程における焼成時間は、未反応物が多く存在したり、蛍光体の粒子が成長不足であったり、或いは生産性の低下という不都合が生じない時間範囲が選択される。焼成時間の下限は、0.5時間以上が好ましく、1時間以上がより好ましく、2時間以上がさらに好ましい。また、焼成時間の上限は、48時間以下が好ましく、36時間以下がより好ましく、24時間以下がさらに好ましい。
(粉砕工程)
 粉砕工程は、焼成工程後の原料混合物(焼成物)を、粉砕して粉砕物を得る。
 焼成工程により得られる焼成物の状態は、原料配合や焼成条件によって、粉体状、塊状と様々である。解砕・粉砕工程及び/又は分級操作工程によって、焼成物を、所定のサイズの粉末状にできる。
 上述の解砕・粉砕工程では、その処理に由来する不純物の混入を防ぐため、焼成物と接触する機器の部材が、窒化ケイ素、アルミナ、サイアロンといったセラミックス製であることが好ましい。
 なお、粉砕物の平均粒子径は、蛍光体粒子の平均粒子径が5μm以上30μm以下となるように調整されてもよい。これによって、蛍光体粒子は、励起光の吸収効率および発光効率に優れたものとなるため、LED用等に好適に用いることができる。
(酸処理工程)
 酸処理工程は、粉砕物に対して、酸とアルコールと含む混合液を用いて酸処理する。
 酸処理は、酸とアルコールと含む混合液中に粉砕物に加えてもよく、アルコール中の粉砕物に酸を加えてもよい。酸処理中、混合液を静置してもよいが、適当な条件で攪拌してもよい。
 また、酸処理後、必要に応じて、アルコールを用いてデカンテーション(固液分離処理)を施してもよい。デカンテーションは、1回又は2回以上行ってもよい。これにより、粉砕物中から酸を洗浄除去できる。
 その後、粉砕物に対して、ろ過、乾燥する。
 酸は、例えば、無機酸を使用してもよく、具体的には、硝酸、塩酸、酢酸、硫酸、蟻酸、及びリン酸等が挙げられる。無機酸の中でも、硝酸または塩酸の少なくとも一方を含むことが好ましい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 混合液は、水溶媒を含んでもよい。
 アルコールとしては、例えば、脂肪族アルコール、具体的には、MeOH、EtOH、IPAなどが用いられる。
 混合液中の酸の濃度が、例えば、0.1質量%~5質量%、好ましくは0.5質量%~3質量%となるようにアルコールと酸とを混合してもよい。
 酸処理によって、原料に含まれる不純物元素、焼成容器に由来する不純物元素、焼成工程で生じた異相、粉砕工程にて混入した不純物元素を溶解除去できる。すなわち、酸処理は、異物等を洗浄できる。これにより、蛍光体の内部量子効率を向上できる。
 酸処理の一例として、酸とアルコールとを含む混合液に、例えば0.5時間以上5時間以下程度、粉砕物を分散・浸漬させてもよい。
(フッ酸処理工程)
 フッ酸処理は、酸処理工程後の粉砕物に、フッ酸処理を施す。
 フッ酸処理には、フッ素元素を含む化合物として、フッ化水素を含む水溶液、いわゆるフッ酸が好ましく用いられる。
 フッ酸処理は、例えば、フッ酸中に粉砕物を加えてもよい。
 フッ酸中のフッ化水素(HF)の濃度の下限は、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、フッ酸中のフッ化水素の濃度の上限は、40%質量以下が好ましく、38質量%以下がより好ましく、35質量%以下がさらに好ましい。
 フッ化水素の濃度を上記下限値以上とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を形成することができる。一方、フッ化水素の濃度を上記上限値以下とすることにより、粒子とフッ酸との反応が激しくなり過ぎることを抑制することができる。
 粉砕物とフッ酸との混合は、スターラーなどの攪拌手段により行うことができる。
 上記粉砕物とフッ酸との混合時間の下限は、5分以上が好ましく10分以上がより好ましく、15分以上がさらに好ましい。一方、上記焼成物とフッ酸との混合時間の上限は、30分以下が好ましく、25分以下がより好ましく、20分以下がさらに好ましい。
 上記粉砕物とフッ酸との混合時間を上記範囲とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を安定的に形成することができる。
 本実施形態において、酸処理工程における酸および溶媒の種類、酸の濃度、フッ酸処理工程における、フッ酸の濃度、フッ酸処理の時間、フッ酸処理後に行う加熱処理工程における加熱温度および加熱時間等を適切に調整することにより、蛍光体を含む粒子の表面を被覆する被覆部を形成できる。
(加熱処理工程)
 加熱処理は、フッ酸処理後の粉砕物を、大気中で加熱する。
 フッ酸処理により得られる結果物が被覆部として(NHAlFを含む場合、加熱処理工程を実施することにより、(NHAlFの一部または全部を、AlFに変更できる。
 加熱処理工程における加熱温度の下限は220℃以上が好ましく、250℃以上がより好ましい。一方、上記加熱温度の上限は、380℃以下が好ましく、350℃以下がより好ましく、330℃以下がさらに好ましい。
 加熱温度を上記下限以上とすることにより、下記反応式(1)を進行させることにより、(NHAlFをAlFに変えることができる。
(NHAlF→AlF+3NH+3HF・・・(1)
 一方、加熱温度を上記上限以下とすることにより、蛍光体の結晶構造を良好に維持し、発光強度を高めることができる。
 加熱時間の下限は、1時間以上が好ましく、1.5時間以上がより好ましく、2時間以上がさらに好ましい。一方、加熱時間の上限は、6時間以下が好ましく、5.5時間以下がより好ましく、5時間以下がさらに好ましい。加熱時間を上記範囲とすることにより、(NHAlFを耐湿性がより高いAlFに確実に変えることができる。
 なお、加熱処理工程は大気中あるいは窒素雰囲気下で実施することが好ましい。これによれば、加熱雰囲気の物質自身が上記の反応式(1)を阻害することなく、目的の物質を生成することができる。
 本実施形態の蛍光体粒子について説明する。
 本実施形態の蛍光体粒子は、蛍光体を含む粒子と、粒子の表面を被覆する被覆部と、を含む表面被覆蛍光体粒子で構成されてもよい。
 蛍光体粒子に含まれる蛍光体は、一般式M Al4-dで表される組成を有する。一般式中、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLiおよびNaから選ばれる1種以上の元素であり、MはEuおよびCeから選ばれる1種以上の元素である。一般式中、a、b、c、4-d、およびdは、各元素のモル比を示す。
 一般式中のa、b、c、およびdが次の各式を満たすものである。
0.850≦a≦1.150
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
 Mは、Sr、Mg、CaおよびBaから選ばれる1種以上の元素であり、好ましくは、少なくともSrを含む。Mのモル比aの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比aの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。
 MはLiおよびNaから選ばれる1種以上の元素であり、好ましくは、少なくともLiを含む。Mのモル比bの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比bの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。
 Mは、母体結晶に添加される賦活剤、すなわち蛍光体の発光中心イオンを構成する元素であり、EuおよびCeから選ばれる1種以上の元素である。Mは、求められる発光波長によって選択することができ、好ましくは少なくともEuを含む。
 Mのモル比cの下限は0.001以上が好ましく、0.005以上がより好ましい。一方、Mのモル比cの上限は0.015以下が好ましく、0.010以下がより好ましい。Mのモル比cの下限を上記範囲とすることにより、十分な発光強度を得ることができる。また、Mのモル比cの上限を上記範囲とすることにより、濃度消光を抑制し、発光強度を十分な値に保つことができる。
 酸素(O)のモル比dの下限は0以上が好ましく、0.05以上がより好ましい。一方、酸素のモル比dの上限は、0.40以下が好ましく、0.35以下がより好ましい。酸素のモル比dを上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 また、蛍光体中の酸素元素の含有量は2質量%未満が好ましく、1.8質量%以下がより好ましい。酸素元素の含有量を2質量%未満とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 Mおよび酸素のモル比、即ちa、dから算出されるd/(a+d)の値の下限は、0以上が好ましく、0.05以上がより好ましい。一方、d/(a+d)の値の上限は、0.30未満が好ましく、0.25以下がより好ましい。d/(a+d)を上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 被覆部は、上述した蛍光体を含む粒子の最表面の少なくとも一部を構成する。当該被覆部は、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含む。
 フッ素含有化合物において、フッ素元素とアルミニウム元素とが直接に共有結合していることが好ましく、より具体的には、フッ素含有化合物は、(NHAlFまたはAlFのいずれか一方または両方を含むことが好ましい。なお、フッ素含有化合物は、フッ素元素およびアルミニウム元素を含有する単一の化合物により構成されていてもよい。
 フッ素含有化合物を含む被覆部が蛍光体を含む粒子の最表面の少なくとも一部を構成することにより、粒子を構成する蛍光体の耐湿性を向上させることができる。なお、蛍光体の耐湿性をより一層向上させる観点から、被覆部がAlFを含むことがより好ましい。
 被覆部の態様は特に制限されない。被覆部の態様として、たとえば、粒子状のフッ素含有化合物が蛍光体を含む粒子の表面に多数分布している態様や、フッ素含有化合物が蛍光体を含む粒子の表面を連続的に被覆する態様が挙げられる。被覆部は、粒子表面の一部または全体を覆うように構成してもよい。
 以下、蛍光体粒子の特性について説明する。
 蛍光体粒子において、波長300nmの光照射に対する拡散反射率が、例えば、56%以上、好ましくは65%以上、より好ましくは70%以上である。
 また、蛍光体粒子において、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が、例えば、80%以上、好ましくは83%以上、より好ましくは85%以上である。
 このような拡散反射率を備えることにおり、さらに発光効率が高くなり発光強度が向上する。
 波長455nmの青色光で励起したとき、蛍光体粒子は、ピーク波長が、例えば640nm以上670nm以下の範囲にあり、その半値幅が、例えば、45nm以上60nm以下を満たすように構成されてもよい。このような特性を備えることにより、優れた演色性や色再現性が期待できる。
 波長455nmの青色光で励起した場合、蛍光体粒子は、CIE-xy色度図におけるx値が、例えば、0.680≦x<0.735を満たすように構成されてもよい。
 このような特性を備えることにより、優れた演色性や色再現性が期待できる。x値が0.680以上であれば色純度の良い赤色発光をさらに期待でき、x値が0.735以上の値はCIE-xy色度図内の最大値を超えるため、上記範囲を満たすことが好ましい。
 以下、本実施形態に係る発光装置について説明する。
 本実施形態に係る発光装置は、蛍光体粒子と発光素子とを有する。
 発光素子として、紫外LED、青色LED、蛍光ランプの単体又はこれらの組み合わせを用いることができる。発光素子は、250nm以上550nm以下の波長の光を発するものが望ましく、なかでも420nm以上500nm以下の青色LED発光素子が好ましい。
 蛍光体粒子として、蛍光体粒子の他に、他の発光色を持つ蛍光体粒子を併用してもよい。
 他の発光色の蛍光体粒子として、青色発光蛍光体粒子、緑色発光蛍光体粒子、黄色発光蛍光体粒子、橙色発光蛍光体粒子、赤色蛍光体があり、例えば、CaScSi12:Ce、CaSc:Ce、β-SiAlON:Eu、YAl12:Ce、TbAl12:Ce、(Sr、Ca、Ba)SiO:Eu、LaSi11:Ce、α-SiAlON:Eu、SrSi:Eu等が挙げられる。
 他の蛍光体粒子は、特に限定されるものではなく、発光装置に要求される輝度や演色性等に応じて適宜選択可能である。蛍光体粒子と他の発光色の蛍光体粒子とを混在させることにより、昼白色や電球色などの様々な色温度の白色を実現することができる。
 発光装置の具体例として、例えば、照明装置、バックライト装置、画像表示装置、信号装置等が挙げられる。
 発光装置は、蛍光体粒子を備えることにより、高い発光強度を実現しつつ、信頼性を高めることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<蛍光体粒子の作製>
(比較例1)
[混合工程]
 大気中で、AlN(トクヤマ社製)、Eu(信越化学工業社製)およびLiF(和光純薬製)を秤量、混合したのち、目開き150μmのナイロン篩で凝集を解砕し、プレ混合物を得た。
 プレ混合物を、水分1ppm以下、酸素1ppm以下とした窒素雰囲気を保持しているグローブボックス中に移動させた。その後、化学量論比(a=1、b=1)でaの値が15%過剰、bの値が20%過剰になるように、Sr(太平洋セメント社製)およびLiN(Materion社製)を秤量後、追加配合して混合後、目開き150μmのナイロン篩で凝集を解砕して蛍光体の原料混合物を得た。SrおよびLiは焼成中に飛散しやすいため、理論値より多めに配合した。
 ここで、Alのモル比を3としたときのSrの仕込み量をモル比で1.15とするとともに、Euの仕込み量をモル比で0.01とした。前記原料混合物とフラックスの合計量100質量%に対して、5質量%のLiFをフラックスとして添加した。なお、Euは前述したようにAlのモル比を3としたときの仕込み量をモル比で0.01とした。
[焼成工程]
 次いで、原料混合物を蓋付きの円筒型BN製容器(デンカ社製)に充填した。
 次いで、蛍光体の原料混合物を充填した容器をグローブボックスから取り出した後、グラファイト断熱材を備えたカーボンヒーター付きの電気炉(富士電波工業社製)にセットし、焼成工程を実施した。
 焼成工程の開始にあっては、電気炉内を真空状態まで一旦脱ガスしたのち、室温から0.8MPa・Gの加圧窒素雰囲気下で焼成を開始した。電気炉内の温度が1100℃に到達後は、8時間温度を保ちながら焼成を続け、その後室温まで冷却した。
[粉砕工程]
 得られた焼成物は乳鉢で粉砕後、目開き75μmのナイロン篩で分級し、比較例1の蛍光体粉末を得た。
(実施例1)
 比較例1と同様にして得られた蛍光体粉体5gを、500mlのMeOH(純度99%)(国産化学社製)に10mlの硝酸(HNO濃度60%)(和光純薬社製)を加えた混合溶液中に加えて3時間撹拌した後、MeOHによるデカンテーションで中性とした後、ろ過、乾燥し、蛍光体粉末を得た。
[フッ酸処理工程]
 得られた蛍光体粉末を、フッ化水素の濃度が30%のフッ酸中に加え、15分間撹拌することでフッ酸処理工程を実施した。フッ酸処理工程の後、目開き45μmの篩を全通させることで、凝集を解いた。
[加熱処理]
 凝集を解いた蛍光体粉末に対して、大気雰囲気下で300℃、4時間の加熱処理を実施して、実施例1の蛍光体粉末を得た。
(実施例2)
 比較例1と同様にして得られた蛍光体粉体を、EtOHに硝酸(HNO濃度60%)(和光純薬社製)を加えた混合溶液中に加えて3時間撹拌した以外は、実施例1と同様な原料の仕込み量および手順にて実施例2の蛍光体粉末を得た。
(実施例3)
 比較例1と同様にして得られた蛍光体粉体を、IPAに硝酸(HNO濃度60%)(和光純薬社製)を加えた混合溶液中に加えて3時間撹拌した以外は、実施例1と同様な原料の仕込み量および手順にて実施例3の蛍光体粉末を得た。
(比較例2)
 フラックスとして、LiFに代えて、SrFを使用した以外は、実施例1と同様な原料の仕込み量および手順にて比較例2の蛍光体粉末を得た。
 実施例1~3、比較例1で得られた蛍光体粉末について、Cu-Kα線を用いた粉末X線回折測定(XRD測定)により結晶相を調べたところ、結晶相は、いずれも、SrLiEuAl4-dで表される組成を有する蛍光体であることを確認した。
 得られた蛍光体粒子について、SrLiEuAl4-dの各元素の添字a~dを求めた。具体的に、Sr、Li、Al及びEuについて、ICP発光分光分析装置(SPECTRO社製、CIROS-120)を用い、O及びNについて、酸素窒素分析計(堀場製作所社製、EMGA-920)を用いた分析結果を用いて、添字a~dを算出した。
 各蛍光体粒子のa~dの数値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 得られた蛍光体粒子について、以下の評価項目に基づいて評価を行った。
(内部量子効率、ピーク波長、半値幅、色度x)
 積分球(φ60mm)の側面開口部(φ10mm)に反射率が99%の標準反射板(Labsphere社製、スペクトラロン)をセットした。この積分球に、発光光源としてのXeランプから455nmの波長に分光した単色光を光ファイバーにより導入し、反射光のスペクトルを分光光度計(大塚電子社製、MCPD-7000)により測定した。その際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次に、凹型のセルに表面が平滑になるように蛍光体を充填したものを積分球の開口部にセットし、波長455nmの単色光を照射し、励起の反射光及び蛍光のスペクトルを分光光度計により測定した。得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。得られた三種類のフォトン数から内部量子効率=Qem/(Qex-Qref)×100を求めた。
 また、この測定で得られた蛍光スペクトルからピーク波長、半値幅及び色度x値を求めた。尚、色度はJIS Z 8724(色の測定方法-光源色-)に準じた方法で、JIS Z 8701に規定されるXYZ表色系における算出法により、色度座標(x、y)を算出した。但し、色度座標算出に用いる波長範囲は550~780nmとした。
(700nmの吸収率)
 発光光源としてのXeランプから700nmの波長に分光した単色光を用いた以外は前記と同様の測定を行った。標準反射板及び蛍光体の反射スペクトルに対して、695~710nmの波長範囲のスペクトルからそれぞれQex、Qrefを算出し、吸収率=(Qex-Qref)/Qex×100を求めた。
(拡散反射率)
 拡散反射率は、紫外可視分光光度計(日本分光社製、V-550)に積分球装置(ISV-469)を取り付けて測定した。標準反射板(スペクトラロン)でベースライン補正を行い、得られた蛍光体粒子を充填した固体試料ホルダーを取り付けて、300nmおよびピーク波長の光に対する拡散反射率の測定を行った。
 実施例1~3の粉末状の蛍光体粒子において、比較例1、2と比べて、内部量子効率が向上するという結果が示された。
 この出願は、2019年7月22日に出願された日本出願特願2019-134712号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  Sr、Mg、CaおよびBaからなる群より選択される少なくとも1種の元素M、Li、およびNaからなる群より選択される少なくとも1種の元素M、Eu、およびCeからなる群より選択される少なくとも1種の元素M、Al、及びNからなる群を含む組成
    を有する蛍光体粒子の製造方法であって、
     前記組成を構成する各元素を含む原料混合物とLiFとを混合して混合物を得る混合工程と、
     前記混合物を焼成する焼成工程と、
     前記焼成工程後の前記混合物を、粉砕して粉砕物を得る粉砕工程と、
     前記粉砕物に、酸とアルコールと含む混合液を用いて酸処理を施す酸処理工程と、
     前記酸処理工程後の前記粉砕物に、フッ酸処理を施すフッ酸処理工程と、
     前記フッ酸処理工程後の前記粉砕物を、大気中で加熱する加熱処理工程と、
    を有する蛍光体粒子の製造方法。
  2.  請求項1に記載の蛍光体粒子の製造方法であって、
     前記混合工程において、前記LiFの添加量は、前記LiFと前記原料混合物との合計100質量%に対して、1質量%以上である、蛍光体粒子の製造方法。
  3.  請求項1又は2に記載の蛍光体粒子の製造方法であって、
     前記アルコールが、MeOH、EtOHおよびIPAからなる群より選ばれる一種以上を含む、蛍光体粒子の製造方法。
  4.  請求項1~3のいずれか一項に記載の蛍光体粒子の製造方法であって、
     前記酸処理工程において、前記酸が無機酸を含む、蛍光体粒子の製造方法。
  5.  請求項4に記載の蛍光体粒子の製造方法であって、
     前記無機酸が、硝酸を含む、蛍光体粒子の製造方法。
  6.  請求項1~5のいずれか一項に記載の蛍光体粒子の製造方法であって、
     前記酸処理工程において、0.5時間以上5時間以下の間、前記粉砕物を前記混合液中に入れる、蛍光体粒子の製造方法。
  7.  請求項1~6のいずれか一項に記載の蛍光体粒子の製造方法であって、
     前記フッ酸処理工程において、フッ化水素の濃度が20質量%以上40質量%以下のフッ酸を、前記粉砕物に処理する、蛍光体粒子の製造方法。
  8.  請求項1~7のいずれか一項に記載の蛍光体粒子の製造方法であって、
     前記蛍光体粒子に含まれる蛍光体が、一般式M Al4-d(ただし、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLiおよびNaから選ばれる1種以上の元素であり、MはEuおよびCeから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式を満たすものである、蛍光体粒子の製造方法。
    0.850≦a≦1.150
    0.850≦b≦1.150
    0.001≦c≦0.015
    0≦d≦0.40
    0≦d/(a+d)<0.30
  9.  請求項8に記載の蛍光体粒子の製造方法であって、
     前記Mは、少なくともSrを含み、前記Mは、少なくともLiを含み、前記Mは、少なくともEuを含む、蛍光体粒子の製造方法。
  10.  請求項1~9のいずれか一項に記載の蛍光体粒子の製造方法であって、
     前記焼成工程において、1時間以上10時間以下の間、加熱時間を900℃以上1300℃以下の範囲の一定温度で保つ、蛍光体粒子の製造方法。
  11.  請求項1~10のいずれか一項に記載の蛍光体粒子の製造方法であって、
     前記加熱処理工程において、加熱温度が220℃以上380℃以下である、蛍光体粒子の製造方法。
PCT/JP2020/026998 2019-07-22 2020-07-10 蛍光体粒子の製造方法 WO2021015004A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533942A JPWO2021015004A1 (ja) 2019-07-22 2020-07-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019134712 2019-07-22
JP2019-134712 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021015004A1 true WO2021015004A1 (ja) 2021-01-28

Family

ID=74193917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026998 WO2021015004A1 (ja) 2019-07-22 2020-07-10 蛍光体粒子の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021015004A1 (ja)
WO (1) WO2021015004A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080263A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、蛍光体の製造方法、及び発光装置
WO2022080265A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置
WO2022080262A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置
WO2023063251A1 (ja) * 2021-10-11 2023-04-20 三菱ケミカル株式会社 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236035A (ja) * 1994-12-16 1996-09-13 Philips Electron Nv ディスプレイスクリーン
JP2008274254A (ja) * 2007-03-30 2008-11-13 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2012082269A (ja) * 2010-10-07 2012-04-26 Mitsubishi Chemicals Corp 高温焼成蛍光体の製造方法と蛍光体
JP2015193857A (ja) * 2014-01-30 2015-11-05 信越化学工業株式会社 複フッ化物蛍光体の製造方法
JP2015224339A (ja) * 2014-05-30 2015-12-14 株式会社東芝 蛍光体、その製造方法及び発光装置
JP2018090819A (ja) * 2012-06-13 2018-06-14 アルパッド株式会社 蛍光体および発光装置
JP2018095769A (ja) * 2016-12-15 2018-06-21 日亜化学工業株式会社 窒化物蛍光体の製造方法
WO2019188377A1 (ja) * 2018-03-28 2019-10-03 デンカ株式会社 蛍光体、その製造方法及び発光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236035A (ja) * 1994-12-16 1996-09-13 Philips Electron Nv ディスプレイスクリーン
JP2008274254A (ja) * 2007-03-30 2008-11-13 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2012082269A (ja) * 2010-10-07 2012-04-26 Mitsubishi Chemicals Corp 高温焼成蛍光体の製造方法と蛍光体
JP2018090819A (ja) * 2012-06-13 2018-06-14 アルパッド株式会社 蛍光体および発光装置
JP2015193857A (ja) * 2014-01-30 2015-11-05 信越化学工業株式会社 複フッ化物蛍光体の製造方法
JP2015224339A (ja) * 2014-05-30 2015-12-14 株式会社東芝 蛍光体、その製造方法及び発光装置
JP2018095769A (ja) * 2016-12-15 2018-06-21 日亜化学工業株式会社 窒化物蛍光体の製造方法
WO2019188377A1 (ja) * 2018-03-28 2019-10-03 デンカ株式会社 蛍光体、その製造方法及び発光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080263A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、蛍光体の製造方法、及び発光装置
WO2022080265A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置
WO2022080262A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置
WO2023063251A1 (ja) * 2021-10-11 2023-04-20 三菱ケミカル株式会社 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯

Also Published As

Publication number Publication date
JPWO2021015004A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2021015004A1 (ja) 蛍光体粒子の製造方法
WO2022080263A1 (ja) 蛍光体、蛍光体の製造方法、及び発光装置
WO2022080262A1 (ja) 蛍光体、及び発光装置
WO2022080265A1 (ja) 蛍光体、及び発光装置
JP7498171B2 (ja) 表面被覆蛍光体粒子、及び発光装置
JP7507149B2 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
JP7507150B2 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
JP2018109080A (ja) 緑色蛍光体、発光素子及び発光装置
JPWO2019073864A1 (ja) 赤色蛍光体及び発光装置
KR20230145138A (ko) 형광체 분말, 파장 변환체 및 발광 장치
US11952520B2 (en) Method for manufacturing phosphor powder, phosphor powder, and light emitting device
US12006459B2 (en) Phosphor powder and light emitting device
JP7453377B2 (ja) 蛍光体、波長変換体、及び発光装置
JP2018109075A (ja) 緑色蛍光体、その製造方法、発光素子及び発光装置
JP2022146262A (ja) Cr賦活蛍光体、波長変換体、及び発光装置
JP2022146260A (ja) Mn賦活蛍光体、波長変換体、及び発光装置
JP2023082287A (ja) 蛍光体粉末の製造方法
JP2018109077A (ja) 緑色蛍光体、発光素子及び発光装置
JP2018109076A (ja) 緑色蛍光体、発光素子及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844751

Country of ref document: EP

Kind code of ref document: A1