WO2020241482A1 - 表面被覆蛍光体粒子、及び発光装置 - Google Patents

表面被覆蛍光体粒子、及び発光装置 Download PDF

Info

Publication number
WO2020241482A1
WO2020241482A1 PCT/JP2020/020273 JP2020020273W WO2020241482A1 WO 2020241482 A1 WO2020241482 A1 WO 2020241482A1 JP 2020020273 W JP2020020273 W JP 2020020273W WO 2020241482 A1 WO2020241482 A1 WO 2020241482A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor particles
particles
coated
less
emission intensity
Prior art date
Application number
PCT/JP2020/020273
Other languages
English (en)
French (fr)
Inventor
雅斗 赤羽
秀幸 江本
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021522308A priority Critical patent/JP7498171B2/ja
Priority to KR1020217041679A priority patent/KR20220015417A/ko
Priority to CN202080039850.6A priority patent/CN113891926A/zh
Publication of WO2020241482A1 publication Critical patent/WO2020241482A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/644Halogenides
    • C09K11/645Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/77217Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77346Aluminium Nitrides or Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to surface-coated phosphor particles and a light emitting device.
  • Patent Document 1 describes SrLiAl 3 N 4 : Eu, a so-called SLAN phosphor (claim 1, paragraph 0113, etc. of Patent Document 1).
  • the present inventor has found that the emission intensity characteristics in a high temperature and high humidity environment can be enhanced by appropriately heat-treating the surface-coated phosphor particles. Although the detailed mechanism is not clear, it is considered that the surface layer of the phosphor particles is stabilized and the deterioration of the light emitting characteristics is suppressed even under high temperature and high humidity conditions.
  • the phosphor is a general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od (where M 1 is one or more elements selected from Sr, Mg, Ca and Ba, and M 2 Is one or more elements selected from Li, Na and K, and M 3 is one or more elements selected from Eu, Ce and Mn) and has a composition represented by the above a, b.
  • the covering portion constitutes at least a part of the outermost surface of the particles and contains AlF 3 .
  • a light emitting device having the above-mentioned surface-coated phosphor particles and a light emitting element is provided.
  • a surface-coated phosphor particle having excellent emission intensity characteristics in a high-temperature and high-humidity environment, and a light-emitting device using the same are provided.
  • the surface-coated phosphor particles of the present embodiment are phosphor particles containing particles containing a phosphor and a coating portion that covers the surface of the particles.
  • the phosphor contained in the surface-coated phosphor particles has a composition represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od .
  • M 1 is one or more elements selected from Sr, Mg, Ca and Ba
  • M 2 is one or more elements selected from Li, Na and K
  • M 3 is Eu, Ce.
  • Mn is Eu, Ce.
  • a, b, c, 4-d, and d indicate the molar ratio of each element.
  • A, b, c, and d in the general formula satisfy each of the following formulas. 0.850 ⁇ a ⁇ 1.150 0.850 ⁇ b ⁇ 1.150 0.001 ⁇ c ⁇ 0.015 0 ⁇ d ⁇ 0.40 0 ⁇ d / (a + d) ⁇ 0.30
  • M 1 is one or more elements selected from Sr, Mg, Ca and Ba, and preferably contains at least Sr.
  • the lower limit of the molar ratio a of M 1 is preferably 0.850 or more, more preferably 0.950 or more.
  • the upper limit of the molar ratio a of M 1 is preferably 1.150 or less, more preferably 1.100 or less, and even more preferably 1.050 or less.
  • M 2 is one or more elements selected from Li, Na and K, preferably containing at least Li.
  • Molar ratio lower limit of b of M 2 is preferably not less than 0.850, more preferably not less than 0.950.
  • the upper limit of the molar ratio b of M 2 is preferably 1.150 or less, more preferably 1.100 or less, more preferably 1.050 or less.
  • the molar ratio a of M 2 is in the above range, it is possible to improve the crystal structure stability.
  • M 3 is an activator added to the parent crystal, that is, an element constituting the emission center ion of the phosphor, and is one or more elements selected from Eu, Ce and Mn.
  • M 3 can be selected according to the required emission wavelength, and preferably contains at least Eu.
  • the lower limit of the molar ratio c of M 3 is preferably 0.001 or more, and more preferably 0.005 or more.
  • the upper limit of the molar ratio c of M 3 is preferably 0.015 or less, more preferably 0.010 or less.
  • the lower limit of the molar ratio d of oxygen (O) is preferably 0 or more, more preferably 0.05 or more.
  • the upper limit of the molar ratio d of oxygen is preferably 0.40 or less, more preferably 0.35 or less.
  • the lower limit of the molar ratio of M 1 and oxygen that is, the value of d / (a + d) calculated from a and d is preferably 0 or more, and more preferably 0.05 or more.
  • the upper limit of the value of d / (a + d) is preferably less than 0.30, more preferably 0.25 or less.
  • the coating portion constitutes at least a part of the outermost surface of the particles containing the above-mentioned phosphor.
  • the coating contains a fluorine-containing compound containing a fluorine element and an aluminum element.
  • the fluorine-containing compound it is preferable that the fluorine element and the aluminum element are directly covalently bonded, and more specifically, the fluorine-containing compound preferably contains AlF 3 .
  • the fluorine-containing compound may be composed of a single compound containing a fluorine element and an aluminum element.
  • the coating portion containing the fluorine-containing compound constitutes at least a part of the outermost surface of the particles containing the phosphor, the moisture resistance of the phosphor constituting the particles can be improved. From the viewpoint of further improving the moisture resistance of the phosphor, it is more preferable that the coating portion contains AlF 3 .
  • the mode of the covering portion is not particularly limited.
  • Examples of the mode of the coating portion include a mode in which a large number of particulate fluorine-containing compounds are distributed on the surface of the particles containing the phosphor, and a mode in which the fluorine-containing compound continuously covers the surface of the particles containing the phosphor. Can be mentioned.
  • the coating may be configured to cover part or all of the particle surface.
  • An X-ray diffraction pattern is obtained by X-ray diffraction using Cu—K ⁇ rays for the surface-coated phosphor particles.
  • the emission intensity of the 2 [Theta] is the emission intensity of the maximum peak A in the range of 23 ° or more 26 ° or less and I A, the maximum peak B 2 [Theta] is in the range of 36 ° or more 39 ° or less
  • IB the surface-coated phosphor particles of the present embodiment, I A, is I B, satisfies the I A / I B ⁇ 0.10.
  • the diffraction pattern of the surface-coated phosphor particles is measured using an X-ray diffractometer based on the following measurement conditions.
  • Sample preparation Place powdered surface-coated fluorophore particles on the sample holder. The peak intensity is a value obtained by performing background correction.
  • the emission intensity characteristics in a high temperature and high humidity environment can be enhanced by appropriately heat-treating the surface-coated phosphor particles.
  • the detailed mechanism is not clear, it is considered that the surface layer of the phosphor particles is stabilized and the deterioration of the light emitting characteristics is suppressed even under high temperature and high humidity conditions.
  • the X-ray diffraction pattern obtained by X-ray diffraction method the light emission intensity of the maximum peak A 2 [Theta] is in the range of less than 26 ° 23 ° or more and I A, when 2 ⁇ is the emission intensity of the maximum peak B in the range of 36 ° or more 39 ° or less was I B, by an index I a / I B, the stabilization of the surface layer of the surface-coated phosphor particles the degree can be stably evaluated and, moreover, by a within a reasonable numerical range I a / I B, seen to produce excellent surface coverage phosphor particles emission intensity characteristics in a high-temperature and high-humidity environment It was issued.
  • the upper limit of I A / I B is 0.10 or less, preferably 0.09 or less, more preferably 0.08 or less, more preferably 0.07 or less. Thereby, the emission intensity characteristic in a high temperature and high humidity environment can be improved.
  • the lower limit of I A / I B is not particularly limited.
  • the maximum peak A of luminous intensity I A comprises peaks derived SrAlF 5.
  • Maximum peak B of the emission intensity I B comprises peaks from SLAN.
  • the type and amount of raw material components for use in the surface-coated phosphor particles by appropriately selecting the method for producing such a surface-coated phosphor particles, and controls the I A, I A / I B It is possible.
  • performing the acid treatment and the hydrofluoric acid treatment such as by the temperature of the heat treatment within the appropriate range, the I A, the desired numerical value range I A / I B It can be mentioned as an element for.
  • the diffuse reflectance for light irradiation at a wavelength of 300 nm is, for example, 56% or more, preferably 65% or more, and more preferably 70% or more.
  • the diffuse reflectance with respect to light irradiation at the peak wavelength of the fluorescence spectrum is, for example, 80% or more, preferably 83% or more, and more preferably 85% or more.
  • the surface-coated phosphor particles When excited with blue light having a wavelength of 455 nm, the surface-coated phosphor particles are configured so that the peak wavelength is in the range of, for example, 640 nm or more and 670 nm or less, and the half width thereof satisfies, for example, 45 nm or more and 60 nm or less. Good. By providing such characteristics, excellent color rendering and color reproducibility can be expected.
  • the surface-coated phosphor particles When excited with blue light having a wavelength of 455 nm, the surface-coated phosphor particles may be configured such that the x value in the CIE-xy chromaticity diagram satisfies, for example, 0.680 ⁇ x ⁇ 0.735. By having such characteristics, excellent color reproducibility can be expected. If the x value is 0.680 or more, red light emission with good color purity can be further expected, and if the x value is 0.735 or more, it exceeds the maximum value in the CIE-xy chromaticity diagram, so the above range is satisfied. Is preferable.
  • the method for producing the surface-coated phosphor particles is a method of producing at least one element M 1 selected from the group consisting of Sr, Mg, Ca and Ba, and at least one element M selected from the group consisting of Li, Na and K. 2.
  • a phosphor particle (surface-coated phosphor particle) having a composition containing a group consisting of at least one element M 3 , Al, and N selected from the group consisting of Eu, Ce, and Mn is produced. ..
  • the method for producing the surface-coated phosphor particles can include a mixing step, a firing step, a pulverization step, an acid treatment step, a hydrofluoric acid treatment step, and a heat treatment step. Each step will be described in detail.
  • each raw material weighed so as to obtain the desired surface-coated phosphor particles is mixed to obtain a powdery raw material mixture.
  • the method of mixing the raw materials is not particularly limited, but for example, there is a method of sufficiently mixing using a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill. It is appropriate to handle strontium nitride, lithium nitride, etc., which react violently with moisture and oxygen in the air, in a glove box in which the inside is replaced with an inert atmosphere or by using a mixing device.
  • a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill. It is appropriate to handle strontium nitride, lithium nitride, etc., which react violently with moisture and oxygen in the air, in a glove box in which the inside is replaced with an inert atmosphere or by using a mixing device.
  • the amount of M 1 charged when the molar ratio of Al is 3 is 1.10 or more in terms of molar ratio.
  • the amount of M 1 charged when the molar ratio of Al is 3 is 1.20 or less in terms of molar ratio.
  • Each raw material used in the mixing step can include one or more selected from the group consisting of a simple substance of a metal element contained in the composition of a phosphor and a metal compound containing the metal element.
  • the metal compound include nitrides, hydrides, fluorides, oxides, carbonates, chlorides and the like. Of these, nitrides are preferably used as the metal compound containing M 1 and M 2 from the viewpoint of improving the emission intensity of the phosphor.
  • a metal compound containing M 1, Sr 3 N 2, Sr 2 N, SrN 2, etc. SrN the like.
  • the metal compound containing M 2 include Li 3 N and Li N 3 .
  • the metal compound containing M 3 include Eu 2 O 3 , Eu N, and Eu F 3 .
  • the metal compound containing Al include AlN, AlH 3 , AlF 3 , LiAlH 4 and the like.
  • flux may be added.
  • the flux include LiF, SrF 2 , BaF 2 , AlF 3, and the like. These may be used alone or in combination of two or more.
  • firing process for example, the above-mentioned raw material mixture is filled inside a firing container and fired.
  • the firing container preferably has a structure that can improve airtightness.
  • the firing vessel is preferably made of a material that is stable under high temperature atmospheric gas and does not easily react with the mixture of raw materials and its reaction products.
  • a vessel made of boron nitride or carbon, molybdenum or tantalum It is preferable to use a container made of a refractory metal such as molybdenum or tungsten.
  • an atmospheric gas of non-oxidizing gas such as argon, helium, hydrogen, and nitrogen.
  • the lower limit of the firing temperature in the firing step is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and even more preferably 1100 ° C. or higher.
  • the upper limit of the firing temperature is preferably 1500 ° C. or lower, more preferably 1400 ° C. or lower, and even more preferably 1300 ° C. or lower.
  • Type of firing atmosphere gas As the type of firing atmosphere gas in the firing step, for example, a gas containing nitrogen as an element can be preferably used. Specific examples include nitrogen and / or ammonia, with nitrogen being particularly preferred. Similarly, an inert gas such as argon or helium can also be preferably used.
  • the firing atmosphere gas may be composed of one type of gas or may be a mixed gas of a plurality of types of gases.
  • the pressure of the firing atmosphere gas is selected according to the firing temperature, but is usually in a pressurized state in the range of 0.1 MPa ⁇ G or more and 10 MPa ⁇ G or less.
  • the firing time in the firing step a time range is selected in which a large amount of unreacted substances are not present, the phosphor particles are insufficiently grown, or the productivity is not lowered.
  • the lower limit of the firing time is preferably 0.5 hours or more, more preferably 1 hour or more, and even more preferably 2 hours or more.
  • the upper limit of the firing time is preferably 48 hours or less, more preferably 36 hours or less, and even more preferably 24 hours or less.
  • the raw material mixture (calcined product) after the firing step is pulverized to obtain a pulverized product.
  • the state of the fired product obtained by the firing process varies from powdery to lumpy depending on the raw material composition and firing conditions.
  • the fired product can be made into a powder of a predetermined size.
  • the member of the device that comes into contact with the fired product is made of silicon nitride, alumina, sialon or the like in order to prevent impurities derived from the treatment from being mixed.
  • the average particle size of the pulverized product may be adjusted so that the average particle size of the surface-coated phosphor particles is 5 ⁇ m or more and 30 ⁇ m or less.
  • the surface-coated phosphor particles are excellent in absorption efficiency and luminous efficiency of excitation light, and therefore can be suitably used for LEDs and the like.
  • the ground product is acid-treated with a solution containing an acid.
  • a mixed solution containing an acid and a solvent may be used, preferably a mixed solution of an acid and an organic solvent, and more preferably a mixed aqueous solution of an acid and an organic solvent.
  • an inorganic acid for example, an inorganic acid may be used, and specific examples thereof include nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid, and phosphoric acid. These may be used alone or in combination of two or more.
  • an aqueous solvent or an organic solvent is used as the solvent.
  • organic solvent examples include alcohol, acetone and the like. Of these, alcohol is preferable.
  • alcohol for example, methanol, ethanol, 2-propanol and the like are used.
  • the mixing ratio of the organic solvent in the mixed solution may be adjusted so that the acid content is 0.1% by volume or more and 3% by volume or less with respect to 100% by volume of the mixed solution containing the acid and the solvent.
  • impurity elements contained in the raw material, impurity elements derived from the firing container, different phases generated in the firing process, and impurity elements mixed in the crushing process can be dissolved and removed. Since it is possible to remove fine powder at the same time, light scattering can be suppressed and the light absorption rate of the phosphor can be improved. That is, the acid treatment can wash foreign substances and the like.
  • cleaning may be performed with an organic solvent, or cleaning may be performed with a mixed solution containing an acid and an organic solvent.
  • the pulverized product may be dispersed and immersed in a solution containing an acid for, for example, about 0.5 to 5 hours.
  • hydrofluoric acid treatment process In the hydrofluoric acid treatment, the pulverized product after the acid treatment step is subjected to the hydrofluoric acid treatment.
  • an aqueous hydrofluoric acid solution is preferably used as a compound containing a fluorine element.
  • the lower limit of the concentration of the hydrofluoric acid aqueous solution is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more.
  • the upper limit of the concentration of the hydrofluoric acid aqueous solution is preferably 40% by mass or less, more preferably 38% by mass or less, and further preferably 35% by mass or less.
  • a coating portion containing (NH 4 ) 3 AlF 6 can be formed on at least a part of the outermost surface of the particles containing the phosphor.
  • concentration of the hydrofluoric acid aqueous solution it is possible to prevent the reaction between the particles and hydrofluoric acid from becoming too violent.
  • the pulverized product and the aqueous hydrofluoric acid solution can be mixed by a stirring means such as a stirrer.
  • the lower limit of the mixing time of the pulverized product and the aqueous hydrofluoric acid solution is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more.
  • the upper limit of the mixing time of the fired product and the hydrofluoric acid aqueous solution is preferably 30 minutes or less, more preferably 25 minutes or less, still more preferably 20 minutes or less.
  • a coating portion containing (NH 4 ) 3 AlF 6 is stably formed on at least a part of the outermost surface of the particles containing the phosphor. Can be done.
  • the type of acid and solvent in the acid treatment step, the acid concentration, the hydrofluoric acid concentration in the hydrofluoric acid treatment step, the hydrofluoric acid treatment time, the heating temperature and the heating time in the heat treatment step performed after the hydrofluoric acid treatment.
  • Heat treatment process In the heat treatment, the pulverized product after the hydrofluoric acid treatment is heated in the air.
  • the lower limit of the heating temperature in the heat treatment step is preferably 220 ° C. or higher, more preferably 250 ° C. or higher.
  • the upper limit of the heating temperature is preferably 380 ° C. or lower, more preferably 350 ° C. or lower, and even more preferably 330 ° C. or lower.
  • the heating temperature to the above upper limit or less, the crystal structure of the phosphor can be maintained well and the emission intensity can be increased.
  • the lower limit of the heating time is preferably 1 hour or more, more preferably 1.5 hours or more, still more preferably 2 hours or more.
  • the upper limit of the heating time is preferably 6 hours or less, more preferably 5.5 hours or less, and even more preferably 5 hours or less.
  • the heat treatment step is preferably carried out in the air or in a nitrogen atmosphere. According to this, the target substance can be produced without the substance itself in the heating atmosphere hindering the above reaction formula (1).
  • the light emitting device according to the present embodiment has surface-coated phosphor particles and a light emitting element.
  • the light emitting element an ultraviolet LED, a blue LED, a fluorescent lamp alone, or a combination thereof can be used.
  • the light emitting element is preferably one that emits light having a wavelength of 250 nm or more and 550 nm or less, and particularly preferably a blue LED light emitting element of 420 nm or more and 500 nm or less.
  • fluorescent particles having other emission colors may be used in combination.
  • Examples of phosphor particles having other emission colors include blue emission phosphor particles, green emission phosphor particles, yellow emission phosphor particles, orange emission phosphor particles, and red phosphor.
  • Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, ⁇ -SiAlON: Eu, Y 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, La 3 Si 6 N 11 : Ce, ⁇ -SiAlON: Eu, Sr 2 Si 5 N 8 : Eu and the like can be mentioned.
  • the other phosphor particles are not particularly limited, and can be appropriately selected according to the brightness, color rendering properties, etc. required for the light emitting device.
  • the light emitting device include a lighting device, a backlight device, an image display device, a signal device, and the like.
  • the raw material mixture was filled in a cylindrical BN container with a lid (manufactured by Denka Co., Ltd.).
  • a firing step was carried out.
  • the inside of the electric furnace was once degassed to a vacuum state, and then firing was started in a pressurized nitrogen atmosphere of 0.8 MPa ⁇ G from room temperature. After the temperature in the electric furnace reached 1100 ° C., firing was continued while maintaining the temperature for 8 hours, and then cooled to room temperature.
  • Comparative Example 2 Except for the fact that the fluorescent powder, which had been subjected to hydrofluoric acid treatment and then passed through a sieve having a mesh size of 45 ⁇ m to disaggregate, was heat-treated at 200 ° C. for 4 hours in an air atmosphere.
  • the phosphor particles of Comparative Example 2 were obtained by the same amount and procedure of charging raw materials as in Comparative Example 1.
  • Example 1 Except for the fact that the fluorescent powder, which had been subjected to hydrofluoric acid treatment and then passed through a sieve having a mesh size of 45 ⁇ m to disaggregate, was heat-treated at 250 ° C. for 4 hours in an air atmosphere.
  • the phosphor particles of Example 1 were obtained by the same amount and procedure of charging raw materials as in Comparative Example 1.
  • Example 2 Except for the fact that the fluorescent powder, which had been subjected to hydrofluoric acid treatment and then passed through a sieve having a mesh size of 45 ⁇ m to disaggregate, was heat-treated at 300 ° C. for 4 hours in an air atmosphere.
  • the phosphor particles of Example 2 were obtained by the same raw material charge amount and procedure as in Comparative Example 1.
  • Comparative Example 3 Except for the fact that the fluorescent powder, which had been subjected to hydrofluoric acid treatment and then passed through a sieve having a mesh size of 45 ⁇ m to disaggregate, was heat-treated at 400 ° C. for 4 hours in an air atmosphere.
  • the phosphor particles of Comparative Example 3 were obtained by the same amount and procedure of charging raw materials as in Comparative Example 1.
  • the resulting phosphor particles the chemical composition which is the sum of all crystalline phases (i.e., Sr a Li b Eu c Al 3 N 4-d O d) was determined subscripts a ⁇ d of each element. Specifically, for Sr, Li, Al and Eu, an ICP emission spectrophotometer (CIROS-120, manufactured by SPECTRO) was used, and for O and N, an oxygen nitrogen analyzer (EMGA-920, manufactured by Horiba Seisakusho) was used. Subscripts a to d were calculated using the analysis results used. The numerical values of a to d of each phosphor particle are shown in Table 1.
  • Sample preparation Powdered fluorophore particles were placed on the sample holder. The peak intensity was a value obtained by performing background correction.
  • Examples 1 and 2 and Comparative Example 3 a peak (maximum peak A) corresponding to SrAlF 5 was confirmed in the range where 2 ⁇ was 24.5 ° or more and 25.5 ° or less. In Comparative Examples 1 and 2, no peak corresponding to SrAlF 5 was confirmed. In Examples 1 and 2 and Comparative Examples 1 to 3, a peak (maximum peak B) corresponding to SLAN was confirmed in the range where 2 ⁇ was 36.5 ° or more and 37.5 ° or less. The emission intensity of the maximum peak A and I A, the emission intensity of the maximum peak B of when the I B, was calculated I A / I B. The results are shown in Table 1.
  • Examples 1 and 2 and Comparative Example 3 a peak corresponding to AlF 3 was confirmed in the range where 2 ⁇ was 14 ° or more and 15 ° or less.
  • a peak corresponding to (NH 4 ) 3 AlF 6 was confirmed in the range where 2 ⁇ was 16.5 ° or more and 17.5 ° or less.
  • a small peak corresponding to (NH 4 ) 3 AlF 6 was observed.
  • Examples 1 and 2 were surface-coated phosphor particles in which at least a part of the outermost surface of the phosphor particles was composed of AlF 3 .
  • Comparative Example 1 was a surface-coated fluorescent particle in which at least a part of the outermost surface of the fluorescent particle was composed of (NH 4 ) 3 AlF 6 .
  • the obtained phosphor particles were evaluated based on the following evaluation items.
  • the diffuse reflectance was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction was performed with a standard reflector (Spectralon), and a solid sample holder filled with the obtained phosphor particles was attached, and the diffuse reflectance for light of 300 nm and peak wavelength was measured.
  • the chromaticity x was measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) and calculated by the following procedure.
  • the obtained phosphor particles were filled so that the surface of the concave cell was smooth, and an integrating sphere was attached.
  • Blue monochromatic light dispersed at a wavelength of 455 nm from a light source (Xe lamp) was introduced into this integrating sphere using an optical fiber.
  • Xe lamp blue monochromatic light as an excitation source
  • the sample of the phosphor was irradiated, and the fluorescence spectrum of the sample was measured. The peak wavelength and the half width of the peak were obtained from the obtained fluorescence spectrum data.
  • the chromaticity x is the CIE chromaticity coordinate x value in the XYZ color system defined by JIS Z 8781-3: 2016 according to JIS Z 8724: 2015 from the wavelength range data in the range of 465 nm to 780 nm of the fluorescence spectrum data. (Saturation x) was calculated.
  • the emission intensity (I 0 ) before starting the high temperature and high humidity test was measured by the following procedure. Subsequently, it was placed in an environment of 60 ° C. and 90% RH for 100 hours or 200 hours (high temperature and high humidity test). The emission intensity (I 100 ) after the high temperature and high humidity test for 100 hours and the emission intensity (I 200 ) after the high temperature and high humidity test for 200 hours were measured by the following procedure. Using the obtained measured values, the emission intensity ratio was calculated from the following formulas: I 100 / I 0 (%) and I 200 / I 0 (%). The results of the emission intensity ratio are shown in Table 1.
  • the emission intensity of phosphor particles was measured using a spectral fluorometer (F-7000 manufactured by Hitachi High-Technologies Corporation) corrected by Rhodamine B and a sub-standard light source.
  • the solid sample holder attached to the spectrofluorometer was used, and the fluorescence spectrum at an excitation wavelength of 455 nm was used.
  • the peak wavelength of the fluorescence spectrum of the phosphor particles of each Example and each Comparative Example was 656 nm.
  • the intensity value at the peak wavelength of the fluorescence spectrum was defined as the emission intensity of the phosphor particles.
  • the phosphor particles of Examples 1 and 2 suppressed the decrease in emission intensity after the high temperature and high humidity test as compared with Comparative Examples 1 to 3. Therefore, the phosphor particles of Examples 1 and 2 can realize surface-coated phosphor particles having excellent emission intensity characteristics in a high-temperature and high-humidity environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本発明の表面被覆蛍光体粒子は、蛍光体を含む粒子と、粒子の表面を被覆する被覆部と、を含み、蛍光体は、所定の組成を有し、被覆部は、粒子の最表面の少なくとも一部を構成するとともに、AlFを含み、Cu-Kα線を用いて測定した当該表面被覆蛍光体粒子のX線回折パターンにおいて、2θが23°以上26°以下の範囲内ある最大ピークAの発光強度をIとし、2θが36°以上39°以下の範囲内ある最大ピークBの発光強度をIとしたとき、I、Iが、I/I≦0.10を満たすものである。

Description

表面被覆蛍光体粒子、及び発光装置
 本発明は、表面被覆蛍光体粒子、及び発光装置に関する。
 これまで蛍光体について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、SrLiAl:Eu、いわゆるSLAN蛍光体について記載されている(特許文献1の請求項1、段落0113など)。
国際公開第2013/175336号
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の蛍光体粒子において、高温高湿環境下での発光強度特性の点で改善の余地があることが判明した。
 焼成により得られた蛍光体粒子について、高温高湿環境下で使用したときに発光強度が大幅に低下することが判明した。
 本発明者はさらに検討したところ、表面被覆蛍光体粒子に対して適切な加熱処理を施すことによって、高温高湿環境下での発光強度特性を高められることを見出した。詳細なメカニズムは定かではないが、蛍光体粒子の表面層が安定化して、高温高湿条件下でも発光特性の低下が抑制されるため、と考えられる。
 このような知見に基づいて鋭意検討した結果、Cu-Kα線を用いて測定した当該表面被覆蛍光体粒子のX線回折パターンにおいて、2θが23°以上26°以下の範囲内ある最大ピークAの発光強度をIとし、2θが36°以上39°以下の範囲内ある最大ピークBの発光強度をIとしたときの、I/Iを指標とすることによって、表面被覆蛍光体粒子の表面層の安定化の度合いについて安定的に評価でき、その上、I/Iを適当な数値範囲内とすることで、高温高湿環境下での発光強度特性に優れた表面被覆蛍光体粒子を実現できることを見出し、本発明を完成するに至った。
 本発明によれば、
 蛍光体を含む粒子と、
 前記粒子の表面を被覆する被覆部と、
を含む表面被覆蛍光体粒子であって、
 前記蛍光体は、一般式M Al4-d(ただし、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLi、NaおよびKから選ばれる1種以上の元素であり、MはEu、CeおよびMnから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式を満たすものであり、
0.850≦a≦1.150
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
 前記被覆部は、前記粒子の最表面の少なくとも一部を構成するとともに、AlFを含み、
 Cu-Kα線を用いて測定した当該表面被覆蛍光体粒子のX線回折パターンにおいて、2θが23°以上26°以下の範囲内ある最大ピークAの発光強度をIとし、2θが36°以上39°以下の範囲内ある最大ピークBの発光強度をIとしたとき、
 I、Iが、I/I≦0.10を満たすものである、
表面被覆蛍光体粒子が提供される。
 また本発明によれば、上記の表面被覆蛍光体粒子と、発光素子とを有する発光装置が提供される。
 本発明によれば、高温高湿環境下での発光強度特性に優れた表面被覆蛍光体粒子、及びそれを用いた発光装置が提供される。
 本実施形態の表面被覆蛍光体粒子について説明する。
 本実施形態の表面被覆蛍光体粒子は、蛍光体を含む粒子と、粒子の表面を被覆する被覆部と、を含む蛍光体粒子である。
 表面被覆蛍光体粒子に含まれる蛍光体は、一般式M Al4-dで表される組成を有する。一般式中、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLi、NaおよびKから選ばれる1種以上の元素であり、MはEu、CeおよびMnから選ばれる1種以上の元素である。一般式中、a、b、c、4-d、およびdは、各元素のモル比を示す。
 一般式中のa、b、c、およびdが次の各式を満たすものである。
0.850≦a≦1.150
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
 Mは、Sr、Mg、CaおよびBaから選ばれる1種以上の元素であり、好ましくは、少なくともSrを含む。Mのモル比aの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比aの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。
 MはLi、NaおよびKから選ばれる1種以上の元素であり、好ましくは、少なくともLiを含む。Mのモル比bの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比bの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。
 Mは、母体結晶に添加される賦活剤、すなわち蛍光体の発光中心イオンを構成する元素であり、Eu、CeおよびMnから選ばれる1種以上の元素である。Mは、求められる発光波長によって選択することができ、好ましくは少なくともEuを含む。
 Mのモル比cの下限は0.001以上が好ましく、0.005以上がより好ましい。一方、Mのモル比cの上限は0.015以下が好ましく、0.010以下がより好ましい。Mのモル比cの下限を上記範囲とすることにより、十分な発光強度を得ることができる。また、Mのモル比cの上限を上記範囲とすることにより、濃度消光を抑制し、発光強度を十分な値に保つことができる。
 酸素(O)のモル比dの下限は0以上が好ましく、0.05以上がより好ましい。一方、酸素のモル比dの上限は、0.40以下が好ましく、0.35以下がより好ましい。酸素のモル比dを上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 また、蛍光体中の酸素元素の含有量は2質量%未満が好ましく、1.8質量%以下がより好ましい。酸素元素の含有量を2質量%未満とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 Mおよび酸素のモル比、即ちa、dから算出されるd/(a+d)の値の下限は、0以上が好ましく、0.05以上がより好ましい。一方、d/(a+d)の値の上限は、0.30未満が好ましく、0.25以下がより好ましい。d/(a+d)を上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 被覆部は、上述した蛍光体を含む粒子の最表面の少なくとも一部を構成する。当該被覆部は、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含む。
 フッ素含有化合物において、フッ素元素とアルミニウム元素とが直接に共有結合していることが好ましく、より具体的には、フッ素含有化合物は、AlFを含むことが好ましい。なお、フッ素含有化合物は、フッ素元素およびアルミニウム元素を含有する単一の化合物により構成されていてもよい。
 フッ素含有化合物を含む被覆部が蛍光体を含む粒子の最表面の少なくとも一部を構成することにより、粒子を構成する蛍光体の耐湿性を向上させることができる。なお、蛍光体の耐湿性をより一層向上させる観点から、被覆部がAlFを含むことがより好ましい。
 被覆部の態様は特に制限されない。被覆部の態様として、たとえば、粒子状のフッ素含有化合物が蛍光体を含む粒子の表面に多数分布している態様や、フッ素含有化合物が蛍光体を含む粒子の表面を連続的に被覆する態様が挙げられる。被覆部は、粒子表面の一部または全体を覆うように構成してもよい。
 表面被覆蛍光体粒子について、Cu-Kα線を用いるX線回折によりX線回折パターンを得る。得られたX線回折パターンにおいて、2θが23°以上26°以下の範囲内ある最大ピークAの発光強度をIとし、2θが36°以上39°以下の範囲内ある最大ピークBの発光強度をIとする。
 このとき、本実施形態の表面被覆蛍光体粒子において、I、Iが、I/I≦0.10を満たすものである。
(X線回折パターンの測定方法)
 表面被覆蛍光体粒子について、下記の測定条件に基づいてX線回折装置を用いて回折パターンを測定する。
(測定条件)
X線源:Cu-Kα線(λ=1.54184Å)、
出力設定:40kV・40mA
光学系:集中法
検出器:半導体検出器
測定時光学条件:発散スリット=2/3°
散乱スリット=8mm
受光スリット=開放
回折ピークの位置=2θ(回折角)
測定範囲:2θ=20°~70°
スキャン速度:2度(2θ)/sec,連続スキャン
走査軸:2θ/θ
試料調製:粉末状の表面被覆蛍光体粒子をサンプルホルダーに載せる。
ピーク強度はバックグラウンド補正を行って得た値とする。
 本発明者の知見によれば、表面被覆蛍光体粒子に対して適切な加熱処理を施すことによって、高温高湿環境下での発光強度特性を高められることを見出した。
 詳細なメカニズムは定かではないが、蛍光体粒子の表面層が安定化して、高温高湿条件下でも発光特性の低下が抑制されるため、と考えられる。
 このような知見に基づいて鋭意検討した結果、X線回析法により得られるX線回析パターンにおいて、2θが23°以上26°以下の範囲内ある最大ピークAの発光強度をIとし、2θが36°以上39°以下の範囲内ある最大ピークBの発光強度をIとしたときの、I/Iを指標とすることによって、表面被覆蛍光体粒子の表面層の安定化の度合いについて安定的に評価でき、その上、I/Iを適当な数値範囲内とすることで、高温高湿環境下での発光強度特性に優れた表面被覆蛍光体粒子を実現できることが見出された。
 I/Iの上限は、0.10以下であり、0.09以下が好ましく、0.08以下がより好ましく、0.07以下がさらに好ましい。これにより、高温高湿環境下での発光強度特性を向上できる。一方、I/Iの下限は、特に限定されない。
 ここで、発光強度Iの最大ピークAは、SrAlF由来のピークを含む。発光強度Iの最大ピークBは、SLANに由来のピークを含む。
 本実施形態では、たとえば表面被覆蛍光体粒子に用いる原料成分の種類や配合量、表面被覆蛍光体粒子の製造方法等を適切に選択することにより、上記I、I/Iを制御することが可能である。これらの中でも、たとえば、焼成処理の後、酸処理およびフッ酸処理を行うこと、加熱処理の温度を適切な範囲内とすること等が、上記I、I/Iを所望の数値範囲とするための要素として挙げられる。
 以下、表面被覆蛍光体粒子の特性について説明する。
 表面被覆蛍光体粒子において、波長300nmの光照射に対する拡散反射率が、例えば、56%以上、好ましくは65%以上、より好ましくは70%以上である。
 また、表面被覆蛍光体粒子において、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が、例えば、80%以上、好ましくは83%以上、より好ましくは85%以上である。
 このような拡散反射率を備えることにおり、さらに発光効率が高くなり発光強度が向上する。
 波長455nmの青色光で励起したとき、表面被覆蛍光体粒子は、ピーク波長が、例えば640nm以上670nm以下の範囲にあり、その半値幅が、例えば、45nm以上60nm以下を満たすように構成されてもよい。このような特性を備えることにより、優れた演色性や色再現性が期待できる。
 波長455nmの青色光で励起した場合、表面被覆蛍光体粒子は、CIE-xy色度図におけるx値が、例えば、0.680≦x<0.735を満たすように構成されてもよい。
 このような特性を備えることにより、優れた色再現性が期待できる。x値が0.680以上であれば色純度の良い赤色発光をさらに期待でき、x値が0.735以上の値はCIE-xy色度図内の最大値を超えるため、上記範囲を満たすことが好ましい。
 以下、本実施形態の表面被覆蛍光体粒子の製造方法について説明する。
 表面被覆蛍光体粒子の製造方法は、Sr、Mg、CaおよびBaからなる群より選択される少なくとも1種の元素M、Li、NaおよびKからなる群より選択される少なくとも1種の元素M、Eu、CeおよびMnからなる群より選択される少なくとも1種の元素M、Al、及びNからなる群を含む組成を有する蛍光体粒子(表面被覆蛍光体粒子)を製造するものである。
 表面被覆蛍光体粒子の製造方法は、混合工程、焼成工程、粉砕工程、酸処理工程、フッ酸処理工程、及び加熱処理工程を含むことができる。
 各工程について詳述する。
(混合工程)
 混合工程は、目的とする表面被覆蛍光体粒子が得られるように秤量した各原料を混合して粉末状の原料混合物を得る。
 原料を混合する方法は、特に限定されないが、たとえば、乳鉢、ボールミル、V型混合機、遊星ミルなどの混合装置を用いて十分に混合する方法がある。
 なお、空気中の水分や酸素と激しく反応する窒化ストロンチウム、窒化リチウム等は、内部が不活性雰囲気で置換されたグローブボックス内や混合装置を用いて取り扱うことが適切である。
 混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.10以上であることが好ましい。Mの仕込み量をモル比で1.10以上とすることにより、焼成工程中のMの揮発などにより蛍光体中のMが不足することが抑制され、Mに欠陥が生じにくくなり、結晶性が良好に保たれる。この結果、狭帯域の蛍光スペクトルが得られ、発光強度を高めることができると推測される。また、混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.20以下であることが好ましい。Mの仕込み量をモル比で1.20以下とすることにより、Mを含む異相の増加を抑制し、酸処理工程により異相の除去が容易になり、発光強度を高めることができる。
 混合工程において用いられる各原料は、蛍光体の組成に含まれる金属元素の金属単体および当該金属元素を含む金属化合物からなる群より選ばれる1種以上を含むことができる。金属化合物としては、窒化物、水素化物、フッ化物、酸化物、炭酸塩、塩化物等が挙げられる。このうち、蛍光体の発光強度を向上させる観点から、MおよびMを含む金属化合物として窒化物が好ましく用いられる。具体的には、Mを含む金属化合物として、Sr、SrN、SrN、SrNなどが挙げられる。Mを含む金属化合物として、LiN、LiNなどが挙げられる。Mを含む金属化合物としては、Eu、EuN、EuFが挙げられる。Alを含む金属化合物としては、AlN、AlH、AlF、LiAlHなどが挙げられる。
 必要に応じて、フラックスを添加してもよい。フラックスとしては、LiF、SrF、BaF、AlFなどが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(焼成工程)
 焼成工程は、上述した原料混合物を、例えば焼成容器の内部に充填して焼成する。
 焼成容器は、気密性を高められる構造を備えていることが好ましい。焼成容器は、高温の雰囲気ガス下において安定で、原料の混合体及びその反応生成物と反応しにくい材質で構成されることが好ましく、たとえば、窒化ホウ素製、カーボン製の容器や、モリブデンやタンタルやタングステン等の高融点金属製の容器を使用することが好ましい。
 焼成容器の内部はアルゴン、ヘリウム、水素、窒素等の非酸化性ガスの雰囲気ガスで満たすことが好ましい。
[焼成温度]
 焼成工程における焼成温度の下限は、900℃以上が好ましく、1000℃以上がより好ましく、1100℃以上がさらに好ましい。一方、焼成温度の上限は、1500℃以下が好ましく、1400℃以下がより好ましく、1300℃以下がさらに好ましい。焼成温度を上記範囲とすることにより、焼成工程終了後の未反応原料を少なくでき、また主結晶相の分解を抑制することができる。
[焼成雰囲気ガスの種類]
 焼成工程における焼成雰囲気ガスの種類としては、例えば元素としての窒素を含むガスを好ましく用いることができる。具体的には、窒素および/またはアンモニアを挙げることができ、特に窒素が好ましい。また同様に、アルゴン、ヘリウム等の不活性ガスも好ましく用いることができる。なお焼成雰囲気ガスは1種類のガスで構成されていても、複数の種類のガスの混合ガスであっても構わない。
[焼成雰囲気ガスの圧力]
 焼成雰囲気ガスの圧力は、焼成温度に応じて選択されるが、通常0.1MPa・G以上10MPa・G以下の範囲の加圧状態である。焼成雰囲気ガスの圧力が高いほど、蛍光体の分解温度は高くなるが、工業的生産性を考慮すると0.5MPa・G以上1MPa・G以下とすることが好ましい。
[焼成時間]
 焼成工程における焼成時間は、未反応物が多く存在したり、蛍光体の粒子が成長不足であったり、或いは生産性の低下という不都合が生じない時間範囲が選択される。焼成時間の下限は、0.5時間以上が好ましく、1時間以上がより好ましく、2時間以上がさらに好ましい。また、焼成時間の上限は、48時間以下が好ましく、36時間以下がより好ましく、24時間以下がさらに好ましい。
(粉砕工程)
 粉砕工程は、焼成工程後の原料混合物(焼成物)を、粉砕して粉砕物を得る。
 焼成工程により得られる焼成物の状態は、原料配合や焼成条件によって、粉体状、塊状と様々である。解砕・粉砕工程及び/又は分級操作工程によって、焼成物を、所定のサイズの粉末状にできる。
 上述の解砕・粉砕工程では、その処理に由来する不純物の混入を防ぐため、焼成物と接触する機器の部材が、窒化ケイ素、アルミナ、サイアロン等で構成されることが好ましい。
 なお、粉砕物の平均粒子径は、表面被覆蛍光体粒子の平均粒子径が5μm以上30μm以下となるように調整されてもよい。これによって、表面被覆蛍光体粒子は、励起光の吸収効率および発光効率に優れたものとなるため、LED用等に好適に用いることができる。
(酸処理工程)
 酸処理工程は、粉砕物に対して、酸を含む溶液を用いて酸処理する。
 酸を含む溶液は、酸と溶媒を含む混合液を用いてもよく、好ましくは酸と有機溶媒との混合液、より好ましくは酸と有機溶媒との混合水溶液である。
 酸は、例えば、無機酸を使用してもよく、具体的には、硝酸、塩酸、酢酸、硫酸、蟻酸、及びリン酸等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 溶媒は、水溶媒、有機溶媒が用いられる。
 有機溶媒は、例えば、アルコール、アセトン等が挙げられる。この中でも、アルコールが好ましい。アルコールとしては、例えば、メタノール、エタノール、2-プロパノールなどが用いられる。
 混合液中の有機溶媒の混合比率は、例えば、酸と溶媒とを含む混合液100体積%に対して、酸が0.1体積%以上3体積%以下となるように調製してもよい。
 酸処理によって、原料に含まれる不純物元素、焼成容器に由来する不純物元素、焼成工程で生じた異相、粉砕工程にて混入した不純物元素を溶解除去できる。同時に微粉を取り除くことも可能なため、光の散乱を抑えられ、蛍光体の光吸収率も向上する。すなわち、酸処理は、異物等を洗浄できる。
 酸処理の一例として、酸を用いて洗浄した後、有機溶媒で洗浄してもよいが、酸と有機溶媒とを含む混合液を用いて洗浄を行ってもよい。また、酸を含む溶液中に、例えば0.5時間~5時間程度、粉砕物を分散・浸漬させてもよい。
(フッ酸処理工程)
 フッ酸処理は、酸処理工程後の粉砕物に、フッ酸処理を施す。
 フッ酸処理には、フッ素元素を含む化合物として、フッ酸水溶液が好ましく用いられる。
 フッ酸水溶液の濃度の下限は、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、フッ酸水溶液の濃度の上限は、40%質量以下が好ましく、38質量%以下がより好ましく、35質量%以下がさらに好ましい。
 フッ酸水溶液の濃度を上記下限値以上とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を形成することができる。一方、フッ酸水溶液の濃度を上記上限値以下とすることにより、粒子とフッ酸との反応が激しくなり過ぎることを抑制することができる。
 粉砕物とフッ酸水溶液との混合は、スターラーなどの攪拌手段により行うことができる。
 上記粉砕物とフッ酸水溶液との混合時間の下限は、5分以上が好ましく10分以上がより好ましく、15分以上がさらに好ましい。一方、上記焼成物とフッ酸水溶液との混合時間の上限は、30分以下が好ましく、25分以下がより好ましく、20分以下がさらに好ましい。
 上記粉砕物とフッ酸水溶液との混合時間を上記範囲とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を安定的に形成することができる。
 本実施形態において、酸処理工程における酸および溶媒の種類、酸の濃度、フッ酸処理工程における、フッ酸の濃度、フッ酸処理の時間、フッ酸処理後に行う加熱処理工程における加熱温度および加熱時間等を適切に調整することにより、蛍光体を含む粒子の表面を被覆する被覆部を形成できる。
(加熱処理工程)
 加熱処理は、フッ酸処理後の粉砕物を、大気中で加熱する。
 フッ酸処理により得られる結果物が被覆部として(NHAlFを含む場合、加熱処理工程を実施することにより、(NHAlFの一部または全部を、AlFに変更できる。
 加熱処理工程における加熱温度の下限は220℃以上が好ましく、250℃以上がより好ましい。一方、上記加熱温度の上限は、380℃以下が好ましく、350℃以下がより好ましく、330℃以下がさらに好ましい。
 加熱温度を上記下限以上とすることにより、下記反応式(1)を進行させることにより、(NHAlFをAlFに変えることができる。
(NHAlF→AlF+3NH+3HF・・・(1)
 一方、加熱温度を上記上限以下とすることにより、蛍光体の結晶構造を良好に維持し、発光強度を高めることができる。
 加熱時間の下限は、1時間以上が好ましく、1.5時間以上がより好ましく、2時間以上がさらに好ましい。一方、加熱時間の上限は、6時間以下が好ましく、5.5時間以下がより好ましく、5時間以下がさらに好ましい。加熱時間を上記範囲とすることにより、(NHAlFを耐湿性がより高いAlFに確実に変えることができる。
 なお、加熱処理工程は大気中あるいは窒素雰囲気下で実施することが好ましい。これによれば、加熱雰囲気の物質自身が上記の反応式(1)を阻害することなく、目的の物質を生成することができる。
 以下、本実施形態に係る発光装置について説明する。
 本実施形態に係る発光装置は、表面被覆蛍光体粒子と発光素子とを有する。
 発光素子として、紫外LED、青色LED、蛍光ランプの単体又はこれらの組み合わせを用いることができる。発光素子は、250nm以上550nm以下の波長の光を発するものが望ましく、なかでも420nm以上500nm以下の青色LED発光素子が好ましい。
 蛍光体粒子として、表面被覆蛍光体粒子の他に、他の発光色を持つ蛍光体粒子を併用してもよい。
 他の発光色の蛍光体粒子として、青色発光蛍光体粒子、緑色発光蛍光体粒子、黄色発光蛍光体粒子、橙色発光蛍光体粒子、赤色蛍光体があり、例えば、CaScSi12:Ce、CaSc:Ce、β-SiAlON:Eu、YAl12:Ce、TbAl12:Ce、(Sr、Ca、Ba)SiO:Eu、LaSi11:Ce、α-SiAlON:Eu、SrSi:Eu等が挙げられる。
 他の蛍光体粒子は、特に限定されるものではなく、発光装置に要求される輝度や演色性等に応じて適宜選択可能である。表面被覆蛍光体粒子と他の発光色の蛍光体粒子とを混在させることにより、昼白色や電球色などの様々な色温度の白色を実現することができる。
 発光装置の具体例として、例えば、照明装置、バックライト装置、画像表示装置、信号装置等が挙げられる。
 発光装置は、表面被覆蛍光体粒子を備えることにより、高い発光強度を実現しつつ、信頼性を高めることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<蛍光体粒子の作製>
(比較例1)
[混合工程]
 大気中で、AlN(トクヤマ社製)、Eu(信越化学工業社製)およびLiF(富士フィルム和光純薬製)を秤量、混合したのち、目開き150μmのナイロン篩で凝集を解砕し、プレ混合物を得た。
 プレ混合物を、水分1ppm以下、酸素1ppm以下とした不活性雰囲気を保持しているグローブボックス中に移動させた。その後、化学量論比(a=1、b=1)でaの値が15%過剰、bの値が20%過剰になるように、Sr(太平洋セメント社製)およびLiN(Materion社製)を秤量後、追加配合して混合後、目開き150μmのナイロン篩で凝集を解砕して蛍光体の原料混合物を得た。SrおよびLiは焼成中に飛散しやすいため、理論値より多めに配合した。
 ここで、Alのモル比を3としたときのSrの仕込み量をモル比で1.15とするとともに、Euの仕込み量をモル比で0.01とした。前記原料混合物とフラックスの合計量100質量%に対して、5質量%のLiFを添加した。なお、Euは前述したようにAlのモル比を3としたときの仕込み量をモル比で0.01とした。
[焼成工程]
 次いで、原料混合物を蓋付きの円筒型BN製容器(デンカ株式会社製)に充填した。
 次いで、蛍光体の原料混合物を充填した容器をグローブボックスから取り出した後、グラファイト断熱材を備えたカーボンヒーター付きの電気炉(富士電波工業社製)にセットし、焼成工程を実施した。
 焼成工程の開始にあっては、電気炉内を真空状態まで一旦脱ガスしたのち、室温から0.8MPa・Gの加圧窒素雰囲気下で焼成を開始した。電気炉内の温度が1100℃に到達後は、8時間温度を保ちながら焼成を続け、その後室温まで冷却した。
[粉砕工程]
 得られた焼成物は乳鉢で粉砕後、目開き75μmのナイロン篩で分級し、回収した。
[酸処理工程]
 得られた焼成物の粉体を、MeOH(99%)(国産化学株式会社製)にHNO(60%)(和光純薬社)を加えた混合溶液中に加えて3時間撹拌した後、分級し、蛍光体粉末を得た。
[フッ酸処理工程]
 得られた蛍光体粉末を30%フッ酸水溶液中に加え、15分間撹拌することでフッ酸処理工程を実施した。フッ酸処理工程の後、目開き45μmの篩を全通させることで、凝集を解き、比較例1の蛍光体粒子を得た。
(比較例2)
 フッ酸処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で200℃、4時間の加熱処理を実施したこと以外は、比較例1と同様な原料の仕込み量および手順にて比較例2の蛍光体粒子を得た。
(実施例1)
 フッ酸処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で250℃、4時間の加熱処理を実施したこと以外は、比較例1と同様な原料の仕込み量および手順にて実施例1の蛍光体粒子を得た。
(実施例2)
 フッ酸処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で300℃、4時間の加熱処理を実施したこと以外は、比較例1と同様な原料の仕込み量および手順にて実施例2の蛍光体粒子を得た。
(比較例3)
 フッ酸処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で400℃、4時間の加熱処理を実施したこと以外は、比較例1と同様な原料の仕込み量および手順にて比較例3の蛍光体粒子を得た。
 実施例1,2、比較例1~3で得られた蛍光体粒子について、Cu-Kα線を用いた粉末X線回折測定(XRD測定)により結晶相を調べたところ、結晶相は、いずれも、SrLiEuAl4-dで表される組成を有する蛍光体であることを確認した。
 得られた蛍光体粒子について、全結晶相を合計した化学組成(即ち、SrLiEuAl4-d)の各元素の添字a~dを求めた。具体的に、Sr、Li、Al及びEuについて、ICP発光分光分析装置(SPECTRO社製、CIROS-120)を用い、O及びNについて、酸素窒素分析計(堀場製作所社製、EMGA-920)を用いた分析結果を用いて、添字a~dを算出した。
 各蛍光体粒子のa~dの数値を表1に示す。
(X線回折法による分析)
 得られた蛍光体粒子について、X線回折装置(株式会社リガク製UltimaIV)を用い、Cu-Kα線を用いて、下記の測定条件でX線回折パターン測定した。また、得られたX線回折パターンから蛍光体粒子の結晶構造を確認した。
(測定条件)
X線源:Cu-Kα線(λ=1.54184Å)、
出力設定:40kV・40mA
光学系:集中法
検出器:半導体検出器
測定時光学条件:発散スリット=2/3°
散乱スリット=8mm
受光スリット=開放
回折ピークの位置=2θ(回折角)
測定範囲:2θ=20°~70°
スキャン速度:2度(2θ)/sec,連続スキャン
走査軸:2θ/θ
試料調製:粉末状の蛍光体粒子をサンプルホルダーに載せた。
ピーク強度はバックグラウンド補正を行って得た値とした。
 実施例1,2、及び比較例3において、2θが24.5°以上25.5°以下の範囲に、SrAlFに対応するピーク(最大ピークA)が確認された。比較例1,2において、SrAlFに対応するピークは確認されなかった。
 実施例1,2、及び比較例1~3において、2θが36.5°以上37.5°以下の範囲に、SLANに対応するピーク(最大ピークB)が確認された。
 最大ピークAの発光強度をIとし、最大ピークBの発光強度をIとしたときの、I/Iを算出した。結果を表1に示す。
 また、実施例1,2、及び比較例3ついて、2θが14°以上15°以下の範囲にAlFに対応するピークが確認された。比較例1について、2θが16.5°以上17.5°以下の範囲に(NHAlFに対応するピークが確認された。比較例1では、(NHAlFに対応する小さいピークが観察された。
(XPSによる表面分析)
 得られた蛍光体粒子について、XPSによる表面分析を実施した。
 実施例1,2、及び比較例1について、蛍光体粒子の最表面において、AlとFが存在し、AlとFとが共有結合していることが確認された。
 XPSによる表面分析結果と、上記のX線回折法による分析により、次のことが示された。
 実施例1、及び実施例2は、蛍光体粒子の最表面の少なくとも一部をAlFが構成した表面被覆蛍光体粒子であった。
 比較例1は、蛍光体粒子では、蛍光体粒子の最表面の少なくとも一部を(NHAlFが構成した表面被覆蛍光体粒子であった。
Figure JPOXMLDOC01-appb-T000001
 表1中、「-」は、得られなかったことを意味し、「※」は未実施であることを意味する。
 得られた蛍光体粒子について、以下の評価項目に基づいて評価を行った。
(拡散反射率)
 拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けて測定した。標準反射板(スペクトラロン)でベースライン補正を行い、得られた蛍光体粒子を充填した固体試料ホルダーを取り付けて、300nmおよびピーク波長の光に対する拡散反射率の測定を行った。
(発光特性)
 色度xは、分光光度計(大塚電子株式会社製MCPD-7000)により測定し、以下の手順で算出した。
 得られた蛍光体粒子を凹型セルの表面が平滑になるように充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した青色単色光を、光ファイバーを用いて導入した。この青色単色光を励起源として、蛍光体の試料に照射し、試料の蛍光スペクトル測定を行った。
 得られた蛍光スペクトルデータからピーク波長およびピークの半値幅を求めた。
 また、色度xは蛍光スペクトルデータの465nmから780nmの範囲の波長域データからJIS Z 8724:2015に準じ、JIS Z 8781-3:2016で規定されるXYZ表色系におけるCIE色度座標x値(色度x)を算出した。
(高温高湿試験前後の発光強度比)
 実施例1,2、比較例1~3で得られた蛍光体粒子について、高温高湿試験を開始する前の発光強度(I)を下記の手順で測定した。
 続いて、60℃、90%RHの環境下で、100時間又は200時間載置した(高温高湿試験)。
 100時間の高温高湿試験後の発光強度(I100)、200時間の高温高湿試験後の発光強度(I200)を下記の手順で測定した。
 得られた測定値を用いて発光強度比を、次の式:I100/I(%)、I200/I(%)から算出した。発光強度比の結果を表1に示す。
・発光強度の測定手順
 ローダミンBと副標準光源により補正した分光蛍光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて、蛍光体粒子の発光強度を測定した。なお、分光蛍光光度計に付属の固体試料ホルダーを使用し、励起波長455nmでの蛍光スペクトルを使用した。
 各実施例および各比較例の蛍光体粒子の蛍光スペクトルのピーク波長は656nmであった。蛍光スペクトルのピーク波長における強度値を蛍光体粒子の発光強度とした。
 実施例1,2の蛍光体粒子において、比較例1~3と比べて、高温高湿試験後の発光強度の低下が抑制されるという結果が示された。したがって、実施例1,2の蛍光体粒子により、高温高湿環境下での発光強度特性に優れた表面被覆蛍光体粒子を実現できる。 
 この出願は、2019年5月31日に出願された日本出願特願2019-102122号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (6)

  1.  蛍光体を含む粒子と、
     前記粒子の表面を被覆する被覆部と、
    を含む表面被覆蛍光体粒子であって、
     前記蛍光体は、一般式M Al4-d(ただし、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLi、NaおよびKから選ばれる1種以上の元素であり、MはEu、CeおよびMnから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式を満たすものであり、
    0.850≦a≦1.150
    0.850≦b≦1.150
    0.001≦c≦0.015
    0≦d≦0.40
    0≦d/(a+d)<0.30
     前記被覆部は、前記粒子の最表面の少なくとも一部を構成するとともに、AlFを含み、
     Cu-Kα線を用いて測定した当該表面被覆蛍光体粒子のX線回折パターンにおいて、2θが23°以上26°以下の範囲内ある最大ピークAの発光強度をIとし、2θが36°以上39°以下の範囲内ある最大ピークBの発光強度をIとしたとき、
     I、Iが、I/I≦0.10を満たすものである、
    表面被覆蛍光体粒子。
  2.  請求項1に記載の表面被覆蛍光体粒子であって、
     前記Mは、少なくともSrを含み、前記Mは、少なくともLiを含み、前記Mは、少なくともEuを含む、表面被覆蛍光体粒子。
  3.  請求項1または2に記載の表面被覆蛍光体粒子であって、
     波長300nmの光照射に対する拡散反射率が56%以上であり、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が80%以上である、表面被覆蛍光体粒子。
  4.  請求項1~3のいずれか一項に記載の表面被覆蛍光体粒子であって、
     波長455nmの青色光で励起した場合、ピーク波長が640nm以上670nm以下の範囲にあり、半値幅が45nm以上60nm以下である、表面被覆蛍光体粒子。
  5.  請求項1~4のいずれか一項に記載の表面被覆蛍光体粒子であって、
     波長455nmの青色光で励起した場合、発光色の色純度がCIE-xy色度図において、x値が0.680≦x<0.735を満たす、表面被覆蛍光体粒子。
  6.  請求項1~5のいずれか一項に記載の表面被覆蛍光体粒子と、発光素子とを有する発光装置。
PCT/JP2020/020273 2019-05-31 2020-05-22 表面被覆蛍光体粒子、及び発光装置 WO2020241482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021522308A JP7498171B2 (ja) 2019-05-31 2020-05-22 表面被覆蛍光体粒子、及び発光装置
KR1020217041679A KR20220015417A (ko) 2019-05-31 2020-05-22 표면 피복 형광체 입자 및 발광 장치
CN202080039850.6A CN113891926A (zh) 2019-05-31 2020-05-22 表面被覆荧光体粒子和发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102122 2019-05-31
JP2019-102122 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241482A1 true WO2020241482A1 (ja) 2020-12-03

Family

ID=73552232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020273 WO2020241482A1 (ja) 2019-05-31 2020-05-22 表面被覆蛍光体粒子、及び発光装置

Country Status (5)

Country Link
JP (1) JP7498171B2 (ja)
KR (1) KR20220015417A (ja)
CN (1) CN113891926A (ja)
TW (1) TWI844681B (ja)
WO (1) WO2020241482A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080263A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、蛍光体の製造方法、及び発光装置
WO2022080262A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置
WO2022080265A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166423A (ja) * 2014-03-04 2015-09-24 パナソニック株式会社 蛍光体及びこれを用いた発光装置
JP2017155209A (ja) * 2016-02-29 2017-09-07 日亜化学工業株式会社 窒化物蛍光体の製造方法、窒化物蛍光体及び発光装置
JP2018030938A (ja) * 2016-08-24 2018-03-01 日亜化学工業株式会社 窒化物蛍光体及び発光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851428A (en) * 1996-03-15 1998-12-22 Kabushiki Kaisha Toshiba Phosphor and manufacturing method thereof
JP2008218485A (ja) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp 発光装置
CN104183688B (zh) * 2007-07-26 2017-05-24 晶元光电股份有限公司 波长转换系统
CN101353572B (zh) * 2007-07-26 2014-08-20 晶元光电股份有限公司 波长转换系统
KR20090016416A (ko) * 2007-08-10 2009-02-13 우베 마테리알즈 가부시키가이샤 청색 발광 형광체
DE102011115879A1 (de) * 2011-10-12 2013-04-18 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Leuchtstoffe
JP6335884B2 (ja) 2012-05-22 2018-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 固体照明のための新規狭帯域赤色発光蛍光体のような新規蛍光体
JP2015126423A (ja) * 2013-12-26 2015-07-06 キヤノン株式会社 撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166423A (ja) * 2014-03-04 2015-09-24 パナソニック株式会社 蛍光体及びこれを用いた発光装置
JP2017155209A (ja) * 2016-02-29 2017-09-07 日亜化学工業株式会社 窒化物蛍光体の製造方法、窒化物蛍光体及び発光装置
JP2018030938A (ja) * 2016-08-24 2018-03-01 日亜化学工業株式会社 窒化物蛍光体及び発光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080263A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、蛍光体の製造方法、及び発光装置
WO2022080262A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置
WO2022080265A1 (ja) * 2020-10-13 2022-04-21 デンカ株式会社 蛍光体、及び発光装置

Also Published As

Publication number Publication date
TWI844681B (zh) 2024-06-11
JP7498171B2 (ja) 2024-06-11
TW202106858A (zh) 2021-02-16
KR20220015417A (ko) 2022-02-08
CN113891926A (zh) 2022-01-04
JPWO2020241482A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP4422653B2 (ja) 蛍光体およびその製造方法、並びに光源
TWI404792B (zh) A phosphor and a method for manufacturing the same, and a light-emitting device using the same
JP5140061B2 (ja) 蛍光体およびその製造方法、並びに光源
WO2022080263A1 (ja) 蛍光体、蛍光体の製造方法、及び発光装置
WO2022080265A1 (ja) 蛍光体、及び発光装置
WO2021015004A1 (ja) 蛍光体粒子の製造方法
WO2022080262A1 (ja) 蛍光体、及び発光装置
WO2020241482A1 (ja) 表面被覆蛍光体粒子、及び発光装置
JP7507149B2 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
JP7507150B2 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
JP7453377B2 (ja) 蛍光体、波長変換体、及び発光装置
US11952520B2 (en) Method for manufacturing phosphor powder, phosphor powder, and light emitting device
WO2022044793A1 (ja) 蛍光体粉末、及び発光装置
WO2023120038A1 (ja) 蛍光体
JP2018109075A (ja) 緑色蛍光体、その製造方法、発光素子及び発光装置
JP2022146262A (ja) Cr賦活蛍光体、波長変換体、及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041679

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20812703

Country of ref document: EP

Kind code of ref document: A1