WO2022044567A1 - 半導体装置の製造方法、半導体装置、および電子機器 - Google Patents

半導体装置の製造方法、半導体装置、および電子機器 Download PDF

Info

Publication number
WO2022044567A1
WO2022044567A1 PCT/JP2021/025959 JP2021025959W WO2022044567A1 WO 2022044567 A1 WO2022044567 A1 WO 2022044567A1 JP 2021025959 W JP2021025959 W JP 2021025959W WO 2022044567 A1 WO2022044567 A1 WO 2022044567A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
lead frame
semiconductor device
main body
columnar
Prior art date
Application number
PCT/JP2021/025959
Other languages
English (en)
French (fr)
Inventor
広陽 細川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/041,081 priority Critical patent/US20230290710A1/en
Priority to CN202180050682.5A priority patent/CN115885380A/zh
Priority to EP21860997.2A priority patent/EP4207266A4/en
Publication of WO2022044567A1 publication Critical patent/WO2022044567A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4828Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4828Etching
    • H01L21/4832Etching a temporary substrate after encapsulation process to form leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip

Definitions

  • This disclosure relates to a method for manufacturing a semiconductor device, a semiconductor device, and an electronic device.
  • WL-CSP wafer level chip size (or scale) package
  • the WL-CSP is manufactured by being individualized according to the size of a chip after being processed to form a package in a wafer state, which greatly contributes to the miniaturization of the device.
  • Patent Document 1 discloses a structure in which a semiconductor element having a circuit element or the like provided on one surface of a semiconductor substrate is joined to a support substrate as a structure of WL-CSP.
  • the semiconductor substrate is provided with a through electrode electrically connected to an electrode pad formed around the circuit element, and external wiring electrically connected to the through electrode is provided on the other surface of the semiconductor substrate. Layers are provided.
  • a metal post as a connection portion for easily connecting the WL-CSP to an external terminal is provided on the other surface of the semiconductor substrate.
  • the metal post is provided so as to project from the surface of the protective film covering the other surface of the semiconductor substrate while being electrically connected to the external wiring layer.
  • the metal post provided as the external connection terminal in the WL-CSP as described above for example, a method using plating of copper (Cu), nickel (Ni), gold (Au) or the like is used as a method for forming the metal post.
  • the protective film having electrical insulation that covers the external wiring layer is partially removed by patterning using photolithography at the formed portion of the metal post, and the external wiring layer is removed from the removed portion. It will be exposed. Then, plating is used so as to fill the removed portion of the protective film with a metal material, and a columnar electrode protruding from the protective film is formed as a metal post.
  • the stress caused by the difference in linear expansion coefficient between the material of WL-CSP and the material of the mounting substrate on which WL-CSP is mounted is absorbed. Sometimes I can't cut it. If the stress between the package and the mounting board cannot be sufficiently absorbed in this way, the reliability of the board mounting evaluated by a temperature cycle test or the like becomes insufficient. It was
  • An object of the present technology is to provide a method for manufacturing a semiconductor device, a semiconductor device, and an electronic device, which can form an external connection terminal in a relatively short time and at low cost and can improve mounting reliability on a mounting board. It is to be.
  • a plate-shaped frame main body portion and a plurality of terminal portions provided in pairs on the plate surfaces on both sides of the frame main body portion so as to overlap at least a part thereof in a plate view.
  • the lead frame is attached to the semiconductor device main body by joining the terminal portion of one plate surface of the frame main body portion to the electrode portion of the semiconductor device main body including the semiconductor element.
  • a step of forming a columnar terminal protruding from the electrode portion by partially removing the frame main body portion by etching using the terminal portion of the other plate surface of the frame main body portion as a mask.
  • Another aspect of the method for manufacturing a semiconductor device according to the present technology is that in the method for manufacturing a semiconductor device, before the mounting step, etching with the terminal portion as a mask with respect to one plate surface side of the frame main body portion.
  • the lead frame and the semiconductor device main body are further provided with a step of partially removing the frame main body portion in the plate thickness direction, and after the mounting step and before the step of forming the columnar terminal.
  • the space between them is further provided with a step of filling a fluid having an insulating property.
  • an integral plate-like body including a plurality of the semiconductor elements formed in an aggregated state is used as the semiconductor device main body.
  • a step of fragmenting the lead frame into a plurality of chips corresponding to the semiconductor element is further provided, and the mounting step is for mounting the plurality of chips on the semiconductor device main body.
  • Another aspect of the method for manufacturing a semiconductor device according to the present technology is that in the method for manufacturing a semiconductor device, a photoresist is used as the fluid in the filling step.
  • the preparation step includes a step of forming the plurality of terminal portions by plating the frame main body portion.
  • the terminal portion formed on one plate surface of the frame main body portion is formed larger than the terminal portion formed on the other plate surface of the frame main body portion. ..
  • Another aspect of the method for manufacturing a semiconductor device according to the present technology is that in the method for manufacturing a semiconductor device, in the step of forming the plurality of terminal portions, the terminal portion formed on one plate surface of the frame main body portion is formed.
  • the terminal portion formed on the other plate surface of the frame main body portion has a circular shape, and the elliptical terminal portion is directed toward the central portion of the semiconductor element in the major axis direction of the elliptical shape. It forms in.
  • the semiconductor device includes a semiconductor element, a semiconductor substrate having a plurality of electrode portions for external connection on one side surface, and a lead provided so as to project from the electrode portion with respect to the semiconductor substrate. It is provided with a columnar terminal formed by a part of the frame.
  • Another aspect of the semiconductor device according to the present technology is that in the semiconductor device, the bonding surface of the columnar terminal with respect to the electrode portion is larger than the end surface on the tip end side of the columnar terminal.
  • the joint surface of the columnar terminal with respect to the electrode portion has an elliptical shape, and the end surface on the tip end side of the columnar terminal has a circular shape.
  • the columnar terminal is provided so that the elliptical major axis direction of the joint surface with respect to the electrode portion faces the central portion of the semiconductor substrate.
  • the semiconductor device further includes a heat dissipation pad provided on one surface of the semiconductor substrate and formed by a part of the lead frame.
  • the semiconductor device is further provided with a reinforcing portion provided on one side of the semiconductor substrate and formed by a part of the lead frame.
  • the semiconductor device further includes a GND plane provided on one side of the semiconductor substrate and formed by a part of the lead frame.
  • Another aspect of the semiconductor device according to the present technology is the second semiconductor element provided on one side surface of the semiconductor substrate and the lead provided on one side surface of the semiconductor substrate in the semiconductor device. It further includes a shield portion formed so as to cover the second semiconductor element by a part of the frame.
  • the electronic device includes a semiconductor element, a semiconductor substrate having a plurality of electrode portions for external connection on one side surface, and a lead provided so as to project from the electrode portion with respect to the semiconductor substrate. It is provided with a semiconductor device including a columnar terminal formed by a part of a frame.
  • FIG. 9A is a cross-sectional view
  • FIG. 9B is a bottom view. It is a figure which shows the structure of the lead frame which concerns on the modification 2 of the solid-state image pickup device which concerns on 1st Embodiment of this technique.
  • 10A is a cross-sectional view
  • FIG. 10B is a bottom view. It is a figure which shows the structure of the modification 3 of the solid-state image pickup device which concerns on 1st Embodiment of this technique.
  • 11A is a cross-sectional view
  • FIG. 11B is a bottom view. It is a figure which shows the structure of the lead frame which concerns on the modification 3 of the solid-state image pickup device which concerns on 1st Embodiment of this technique.
  • FIG. 12A is a cross-sectional view
  • FIG. 12B is a bottom view.
  • 13A is a cross-sectional view
  • FIG. 13B is a bottom view.
  • 14A is a cross-sectional view
  • FIG. 14B is a bottom view.
  • 15A is a cross-sectional view
  • FIG. 15B is a cross-sectional view
  • 15B is a bottom view. It is a figure which shows the structure of the columnar terminal of the modification 5 of the solid-state image pickup device which concerns on 1st Embodiment of this technique.
  • 16A is a bottom view
  • FIG. 16B is a sectional view taken along the line AA in FIG. 16A
  • FIG. 16C is a sectional view taken along the line BB in FIG. 16A.
  • 17A is a cross-sectional view
  • FIG. 17B is a bottom view.
  • This technology reduces manufacturing costs and improves board mounting reliability by using columnar external connection terminals made by processing plate-shaped lead frames by etching, etc., in the package structure of semiconductor devices. It is something to try.
  • Modification example of the semiconductor device according to the fifth embodiment 13.
  • Configuration example of the semiconductor device according to the sixth embodiment 14.
  • Manufacturing method of semiconductor device according to the sixth embodiment Configuration example of the semiconductor device according to the seventh embodiment 16.
  • Method for manufacturing a semiconductor device according to the seventh embodiment Configuration example of the semiconductor device according to the eighth embodiment 18.
  • Method for manufacturing a semiconductor device according to the eighth embodiment 18.
  • Manufacturing method of semiconductor device according to the ninth embodiment 20 Configuration example of the semiconductor device according to the tenth embodiment 21.
  • Configuration example of the semiconductor device according to the first embodiment> A configuration example of the semiconductor device according to the first embodiment of the present technology will be described with reference to FIGS. 1, 2, and 3.
  • a solid-state image pickup device 1 including an image sensor which is a semiconductor element will be described as an example.
  • the vertical direction in FIG. 1 is defined as the vertical direction in the solid-state image sensor 1.
  • the solid-state image sensor 1 includes an image sensor 2 as a solid-state image sensor, a glass 3 as a translucent member, and a rib portion 4 as a support portion for supporting the glass 3 on the image sensor 2. And prepare.
  • the solid-state image sensor 1 has a package structure in which a glass 3 is mounted on an image sensor 2 via a rib portion 4 and a void-shaped cavity 5 is provided as a hollow portion between the image sensor 2 and the glass 3.
  • the solid-state image sensor 1 adopts a so-called WL-CSP structure as a package structure.
  • the image sensor 2 is a rectangular plate-shaped chip containing a semiconductor substrate made of silicon (Si), which is an example of a semiconductor, and has a surface 2a side, which is one plate surface, as a light receiving side, and a plate surface on the opposite side. Is the back surface 2b. A plurality of light receiving elements are formed on the surface 2a side of the image sensor 2.
  • the image sensor 2 is a CMOS (Complementary Metal Oxide Semiconductor) type image sensor. However, the image sensor 2 may be a CCD (Charge Coupled Device) type image sensor.
  • An image sensor element is formed on the surface 2a side of the image sensor 2.
  • the image sensor 2 has a pixel region on the surface 2a side, which is a light receiving region including a large number of pixels formed in a predetermined arrangement such as a Bayer array, as a light receiving portion, and is a region around the pixel region. Is the peripheral area.
  • the pixel area includes an effective pixel area for generating, amplifying, and reading a signal charge by photoelectric conversion in each pixel.
  • the pixel in the pixel region has a photodiode as a photoelectric conversion unit having a photoelectric conversion function, and a plurality of pixel transistors.
  • a color filter and an on-chip lens are attached to each pixel of the semiconductor substrate via an antireflection film made of an oxide film or the like, a flattening film made of an organic material, or the like. Correspondingly formed.
  • the light incident on the on-chip lens is received by the photodiode through a color filter, a flattening film, or the like.
  • the image sensor 2 for example, a surface illumination type (Front Side Illumination) in which a pixel region is formed on the surface side of the semiconductor substrate, a photodiode or the like is arranged in reverse in order to improve the light transmission rate.
  • a surface illumination type Front Side Illumination
  • back-illuminated type Back Side Illumination
  • the image sensor 2 according to the present technology is not limited to those having these configurations.
  • the glass 3 is an example of a transparent member, has a rectangular plate-like outer shape, and has substantially the same outer dimensions as the image sensor 2 in a plan view.
  • the glass 3 is provided on the light receiving side of the image sensor 2 so as to substantially match the outer shape of the image sensor 2 in a plan view and parallel to the image sensor 2 at predetermined intervals.
  • the glass 3 has a lower surface 3b, which is a plate surface on the side facing the image sensor 2, and an upper surface 3a, which is a surface on the opposite side.
  • the glass 3 is supported by the rib portion 4 in a fixed state with respect to the image sensor 2.
  • the glass 3 transmits various types of light incident from an optical system such as a lens located above the glass 3.
  • the light transmitted through the glass 3 reaches the light receiving surface of the image sensor 2 through the cavity 5.
  • the glass 3 has a function of protecting the light receiving surface side of the image sensor 2.
  • a plastic plate, a silicon plate that transmits only infrared light, or the like can be used.
  • the rib portion 4 is provided in a peripheral region excluding the pixel region so as to surround the pixel region on the surface 2a of the image sensor 2.
  • the rib portion 4 is interposed between the surface 2a of the image sensor 2 and the lower surface 3b of the glass 3, and forms a cavity 5 between the image sensor 2 and the glass 3.
  • the rib portion 4 functions as a sealing portion that seals the periphery of the cavity 5, and together with the glass 3, blocks the intrusion of moisture (water vapor), dust, and the like from the outside into the cavity 5.
  • the rib portion 4 is formed in a wall shape over the entire circumference along the outer shape of the glass 3, and is provided so as to form a rectangular frame shape in a plan view.
  • the rib portion 4 is provided at a position within the range of the outer shape of the glass 3 so as to be along the outer edge of the glass 3 in a plan view.
  • the rib portion 4 is provided, for example, so that its outer surface is substantially flush with the outer surface of the glass 3.
  • the material of the rib portion 4 is, for example, a photosensitive adhesive such as a UV (ultraviolet) curable resin which is an acrylic resin, a thermosetting resin such as an epoxy resin, or a mixture thereof.
  • the rib portion 4 is formed on the surface 2a of the image sensor 2 by coating with a dispenser, patterning using photolithography, or the like.
  • a photosensitive resin capable of freely forming a pattern by photolithography is generally preferably used.
  • the rib portion 4 When the rib portion 4 is made of a resin material, the rib portion 4 functions as an adhesive for adhering the image sensor 2 and the glass 3 in a state of being separated from each other.
  • the rib portion 4 is not limited to the one made of resin, and is provided by attaching a structure made of ceramics such as glass or an inorganic material such as metal or silicon to the image sensor 2 and the glass 3 with an adhesive or the like. It may have a different configuration.
  • the cavity 5 is a flat rectangular space portion between the image sensor 2 and the glass 3.
  • the cavity 5 is formed by the surface 2a of the image sensor 2, the lower surface 3b of the glass 3, and the inner side surface 4a of the rib portion 4.
  • a plurality of electrode pads 6 are provided on the surface 2a side of the image sensor 2 as terminals for transmitting and receiving signals to the outside.
  • the electrode pad 6 is provided in a peripheral region on the surface 2a side of the image sensor 2, and is provided, for example, in a portion directly below the rib portion 4.
  • the arrangement position of the electrode pad 6 is not particularly limited.
  • the material of the electrode pad 6, for example, an aluminum material or the like is used.
  • a plurality of electrode terminals 7 are provided as a plurality of electrode portions for external connection.
  • the electrode terminal 7 is formed as a circular layered portion.
  • the plurality of electrode terminals 7 are arranged two-dimensionally in a grid pattern so as to follow the rectangular outer shape of the image sensor 2, for example (see FIG. 2).
  • the electrode terminal 7 is formed by plating, for example, nickel (Ni), gold (Au), or the like.
  • the electrode pad 6 is electrically connected to the electrode terminal 7.
  • the electrode pad 6 is connected to the electrode terminal 7 by a wiring portion (not shown).
  • the electrode pad 6 is connected to the electrode terminal 7 via, for example, a wiring layer formed so as to be embedded in a through via (TSV: Through Silicon Via) formed from the back surface 2b side in the image sensor 2.
  • TSV Through Silicon Via
  • the wiring layer provided for the penetrating via is made of a low resistance metal material such as copper (Cu).
  • the wiring layer was formed in the hole wiring portion arranged in the through via and connected to the back surface side of the electrode pad 6, extending from the hole wiring portion and along the back surface 2b, and connected to the electrode terminal 7. It has a flat wiring portion.
  • the wiring layer has an insulating film interposed between the wiring layer and the silicon substrate forming the image sensor 2. It was
  • solder resist solder mask
  • the solder resist is embedded in the through via and formed to cover the wiring layer.
  • a plurality of columnar terminals 10 are provided as external connection terminals for mounting the image sensor 2.
  • the columnar terminal 10 is formed by processing a plate-shaped lead frame.
  • the columnar terminal 10 is a portion having a substantially cylindrical outer shape with the plate thickness direction of the image sensor 2 as the central axis direction, and is provided in a state of protruding from each electrode terminal 7 provided on the back surface 2b side of the image sensor 2. Has been done.
  • the columnar terminal 10 has a substantially rotating body shape with its central axis as a rotation axis.
  • the columnar terminal 10 is electrically connected to the electrode terminal 7 via the solder portion 9.
  • the solder portion 9 is a circular layer portion and has substantially the same size as the electrode terminal 7.
  • the columnar terminal 10 includes a proximal end side terminal portion 11 forming an end portion on the proximal end side (image sensor 2 side) of the columnar terminal 10, and a distal end side terminal portion 12 forming an end portion on the distal end side of the columnar terminal 10. It has a terminal body portion 13 that is a portion between the end side terminal portion 11 and the tip end side terminal portion 12 and forms the main body portion of the columnar terminal 10.
  • the base end side terminal portion 11 and the tip end side terminal portion 12 are both formed as circular thin layered portions corresponding to the electrode terminals 7.
  • the base end side terminal portion 11 and the tip end side terminal portion 12 are formed by plating, for example, nickel (Ni), gold (Au), or the like.
  • the base end side terminal portion 11 is a portion that receives the connection of the electrode terminal 7 via the solder portion 9. That is, the columnar terminal 10 faces the base end side terminal portion 11 with respect to the electrode terminal 7, and the solder portion 9 is interposed as an electrical connection portion between the electrode terminal 7 and the base end side terminal portion 11. I'm letting you.
  • the terminal body portion 13 is a columnar portion that constitutes most of the columnar terminal 10.
  • the terminal body portion 13 substantially matches the shape and dimensions of the upper surface 13a, which is the joint surface with respect to the proximal end side terminal portion 11, with the lower surface 11b of the proximal end side terminal portion 11, and is a joint surface with respect to the distal end side terminal portion 12.
  • the shape and dimensions of a certain lower surface 13b are substantially matched with the upper surface 12b of the tip end side terminal portion 12.
  • the terminal body 13 is made of a low resistance metal material such as copper (Cu) or a copper alloy, which has a low resistance value and is advantageous for high-speed signal transmission.
  • a low resistance metal material such as copper (Cu) or a copper alloy
  • Examples of the material of the terminal body 13 include tungsten (W), titanium (Ti), tantalum (Ta), titanium-tungsten alloy (TiW), polysilicon, and the like, in addition to copper and the like.
  • a substantially half portion on the upper side is a base end side portion 14, and a substantially half portion on the lower side (tip side) is a tip side portion 15.
  • the base end side portion 14 and the tip end side portion 15 each have a medium-thin shape in which the outer diameter is gradually reduced from both end portions to the center portion in the vertical direction. Therefore, in the vertical cross-sectional view of the columnar terminal 10, each outer peripheral surface of the upper outer peripheral surface 14a which is the outer peripheral surface of the base end side portion 14 and the lower outer peripheral surface 15a which is the outer peripheral surface of the tip end side portion 15 is the columnar terminal 10. It forms a concave curve with the central axis side as the convex side.
  • the radial outer side is convex on the boundary portion between the proximal end side portion 14 and the distal end side portion 15 in the vertical cross-sectional view of the columnar terminal 10.
  • An enlarged diameter portion 16 having a mountain shape is formed.
  • the enlarged diameter portion 16 forms a ridge line 16a along a circular shape around the central axis of the columnar terminal 10.
  • the solid-state image pickup device 1 includes a semiconductor substrate 1A including an image sensor 2 which is a semiconductor element, and a columnar terminal 10 formed by a part of a lead frame.
  • the semiconductor substrate 1A is a structure in which the glass 3 is provided on the front surface 2a side of the image sensor 2 via the rib portion 4, and is for external connection to the back surface 2b of the image sensor 2 which is one side surface. It has a plurality of electrode terminals 7 of the above.
  • the columnar terminals 10 are provided so as to project from the electrode terminals 7 with respect to the semiconductor substrate 1A.
  • the joint surface of the columnar terminal 10 with respect to the electrode terminal 7 is larger than the end surface on the tip end side of the columnar terminal 10.
  • the bonding surface of the columnar terminal 10 with respect to the electrode terminal 7 is the upper surface 11a of the base end side terminal portion 11, and the end surface of the columnar terminal 10 on the distal end side is the lower surface 12a of the distal end side terminal portion 12.
  • the base end side terminal portion 11 and the tip end side terminal portion 12 are both thin film-like portions formed by plating, and both sides of each terminal portion have substantially the same size. Therefore, according to the magnitude relationship between the upper surface 11a of the proximal end side terminal portion 11 and the lower surface 12a of the distal end side terminal portion 12, in the columnar terminal 10, the area of the proximal end side terminal portion 11 is larger than the area of the distal end side terminal portion 12. Is also getting bigger.
  • the columnar terminal 10 has an axial direction.
  • the proximal end side terminal portion 11 has its peripheral edge portion protruding outward from the distal end side terminal portion 12 in an annular shape.
  • the base end side terminal portion 11 is formed so that its diameter D1 is 1.5 to 2 times the diameter D2 of the tip end side terminal portion 12.
  • the solid-state image sensor 1 having the above configuration is mounted on the mounting board 20 with the columnar terminal 10 as a connection terminal.
  • the mounting board 20 is, for example, an interposer board, a board of a semiconductor package that receives bare chip mounting of a semiconductor chip, or the like.
  • the mounting substrate 20 has a land electrode 21 on a mounting surface 20a, which is a plate surface on the side where the solid-state image sensor 1 is connected.
  • the land electrode 21 is a conductor that receives the bonding of the columnar terminals 10.
  • the land electrode 21 is formed of, for example, copper (Cu) as a material, and has a circular shape or a rectangular shape.
  • the land electrode 21 has substantially the same size as, for example, the electrode terminal 7.
  • the land electrode 21 is provided on the mounting surface 20a of the mounting substrate 20 at a position corresponding to the arrangement of the plurality of columnar terminals 10 possessed by the solid-state image sensor 1.
  • the plurality of land electrodes 21 are connected to each other by predetermined wiring provided on the mounting board 20.
  • the columnar terminal 10 is joined to the land electrode 21 by soldering. Therefore, a solder portion 25 exists between the columnar terminal 10 and the land electrode 21. Due to the wettability of the solder to the columnar terminal 10 and the land electrode 21, the solder portion 25 fills the space between the proximal end side terminal portion 11 and the land electrode 21 facing each other with a predetermined gap, and forms a downward spreading shape. It covers the lower part of the columnar terminal 10.
  • the solder portion 25 includes a terminal intervening portion 25a interposed between the columnar terminal 10 and the land electrode 21, a lower end outer peripheral portion 25b outside the terminal intervening portion 25a, and a columnar terminal from the lower end outer peripheral portion 25b. It has a tubular peripheral wall portion 25c extending upward along the peripheral surface of the lower portion of 10.
  • the electrical connection portion between the electrode terminal 7 of the image sensor 2 and the land electrode 21 of the mounting substrate 20 is provided in the upper and lower intermediate portions.
  • a conductor portion having an enlarged diameter on both upper and lower ends is formed. That is, this conductor portion is a portion connecting the electrode terminal 7 and the land electrode 21, and is a columnar portion composed of a solder portion 9, a columnar terminal 10, and a solder portion 25, and is a diameter-enlarged portion in a vertical cross-sectional view. It has a substantially vertically symmetrical shape centered on 16.
  • the method for manufacturing a semiconductor device according to the present embodiment is mainly a method for forming a columnar terminal 10 included in the solid-state image sensor 1, and a method for forming a package terminal by a lead frame.
  • the manufacturing method of the solid-state image sensor 1 of the present embodiment is roughly divided into the following steps. That is, the manufacturing method of the solid-state imaging device 1 is a step of preparing a lead frame and a semiconductor device main body including the image sensor 2 in a state where the prepared lead frame is subjected to predetermined processing or is not processed as it is. It includes a step of mounting and a step of forming a columnar terminal 10 by subjecting a lead frame mounted on a semiconductor device body to a predetermined process.
  • the manufacturing method of the solid-state image sensor 1 of the present embodiment will be described in detail.
  • the lead frame 30 is a plate-shaped member as a whole, and includes a plate-shaped frame main body 33 and plated terminal portions 31 and 32 as a plurality of terminal portions formed on the plate surfaces on both sides of the frame main body 33. Have.
  • the frame main body 33 is made of a low resistance metal material such as copper (Cu) or a copper alloy, which has a low resistance value and is advantageous for high-speed signal transmission.
  • the frame body 33 has a plate thickness similar to that of, for example, the image sensor 2 or the glass 3.
  • the frame main body 33 is a portion of the columnar terminal 10 that forms the terminal main body 13.
  • one plate surface is a facing surface 33a facing the semiconductor device main body side, and the other plate surface on the opposite side is a counter facing surface 33b.
  • the plated terminal portions 31 and 32 are formed as circular thin layered portions by plating, for example, nickel (Ni), gold (Au), or the like.
  • the first plated terminal portion 31 provided on the facing surface 33a side of the frame main body portion 33 is a portion of the columnar terminal 10 that forms the base end side terminal portion 11.
  • the second plated terminal portion 32 provided on the opposite surface 33b side of the frame main body portion 33 is a portion of the columnar terminal 10 that forms the tip end side terminal portion 12.
  • the plated terminal portions 31 and 32 are provided in pairs on the plate surfaces on both sides of the frame main body portion 33 so that at least a part of them overlap each other in view of the plate surface. That is, the first plated terminal portion 31 and the second plated terminal portion 32 are provided so that at least a part of the corresponding plated terminal portions 31 and 32 overlap each other in the plate surface view of the lead frame 30.
  • the plated terminal portions 31 and 32 are both circular plated portions, and are arranged concentrically with the direction perpendicular to the plate surface of the lead frame 30 as the central axis direction. Further, the plated terminal portions 31 and 32 are formed so that the outer diameter of the first plated terminal portion 31 is larger than the outer diameter of the second plated terminal portion 32.
  • the plurality of plated terminal portions 31 and 32 are arranged, for example, two-dimensionally in a grid pattern so as to correspond to the plurality of electrode terminals 7 possessed by the image sensor 2.
  • the step of preparing the lead frame 30 includes a step of forming a plurality of plated terminal portions 31 and 32 by plating the frame main body portion 33. Then, in the step of forming the plurality of plated terminal portions 31, 32, the plated terminal portion 31 formed on the facing surface 33a of the frame main body portion 33 is formed on the opposite surface 33b of the frame main body portion 33. It is formed larger than 32.
  • the plated terminal portions 31 and 32 can be formed as plated portions having a predetermined shape pattern by a known patterning technique using photolithography or the like.
  • a step of preparing a wafer CSP 40 which is a WL-CSP in a wafer state is performed.
  • the wafer CSP 40 is in an assembled state of the semiconductor substrate 1A of the solid-state imaging device 1, and has a disk shape corresponding to the shape of a silicon wafer, which is a semiconductor substrate, for example, as shown in FIG.
  • the wafer CSP 40 has a circular shape that becomes glass 3 via a wall portion 44 that becomes a rib portion 4 with respect to a silicon wafer 42 that has undergone various steps for forming an image sensor 2. It has a structure in which the glass plate 43 of the above is attached.
  • the silicon wafer 42 is a semiconductor wafer in which a plurality of portions serving as an image sensor 2 are formed in a predetermined arrangement.
  • a plurality of electrode terminals 7 serving as external connection terminals are formed in a predetermined arrangement on the plate surface 42b on the side opposite to the glass plate 43 side of the silicon wafer 42.
  • the wall portion 44 is formed and the glass plate 43 is attached to the silicon wafer 42.
  • the wall portion 44 may be formed on the surface 42a of the silicon wafer 42, and then the glass plate 43 may be attached to the surface 42a of the silicon wafer 42. You may paste it.
  • the glass plate 43 is an example of a plate material having translucency.
  • the wall portion 44 is formed along a predetermined arrangement so as to surround the pixel area of each image sensor 2.
  • the wall portion 44 is formed in a grid pattern with a predetermined width in a plan view, corresponding to a rectangular region that will eventually become a solid-state image sensor 1.
  • As a method for forming the wall portion 44 for example, patterning using photolithography, screen printing, etching, coating with a dispenser, or the like is used.
  • a space portion 45 that becomes a cavity 5 is formed in each solid-state image pickup device 1.
  • the wafer CSP 40 which is an integral plate-like body including a plurality of image sensors 2 formed in an assembled state, is used as the semiconductor device main body to which the lead frame 30 is mounted.
  • single-sided half-etching is performed on the lead frame 30 from the facing surface 33a side of the frame main body 33.
  • a step of partially removing the frame main body 33 in the plate thickness direction is performed by etching with the first plating terminal 31 as a mask on the facing surface 33a side of the frame main body 33.
  • This step is performed before the step of mounting the lead frame on the wafer CSP40.
  • the facing surface 33a is formed by dry etching or wet etching so that the frame main body portion 33 has a thickness of about half of the original thickness of the portion other than the formed portion of the first plating terminal portion 31. It is thinned from the side.
  • the formed portion of the first plated terminal portion 31 protrudes relatively with respect to the non-formed portion of the first plated terminal portion 31, and the first plated terminal portion is formed.
  • a protrusion 34 having 31 as an end face portion is formed. That is, the lead frame 30 has an embodiment in which a plurality of protrusions 34 are connected by a thin plate portion 35 which holds the opposite surface 33b and has a plate thickness substantially half of the original plate thickness of the frame main body portion 33. Eggplant.
  • the surface of the columnar terminal 10 that becomes the upper outer peripheral surface 14a of the base end side portion 14 is formed as the outer peripheral surface 34a of the protrusion 34.
  • a step of individualizing the etched lead frame 30 into a plurality of chips corresponding to the image sensor 2 is performed.
  • the lead frame 30 is diced along a predetermined dicing line in a grid pattern, and is divided into individual pieces corresponding to each image sensor 2 formed on the silicon wafer 42.
  • the lead frame 30 is divided into a plurality of lead frame pieces 30X.
  • the lead frame piece 30X is a rectangular plate-shaped chip having a size corresponding to the size of the solid-state image sensor 1 (see FIG. 6).
  • a step of mounting a plurality of lead frame pieces 30X on the wafer CSP40 is performed. That is, by joining the first plating terminal portion 31 of each lead frame piece 30X to the electrode terminal 7 which is a terminal of the wafer CSP 40, a step of mounting the lead frame piece 30X on the wafer CSP40 is performed.
  • a solder paste containing flux is applied to at least one of the first plated terminal portion 31 of the lead frame piece 30X and the electrode terminal 7 by a method such as printing.
  • a plurality of lead frame pieces 30X are mounted on the wafer CSP 40 at predetermined positions corresponding to the electrode terminals 7 by a chip mounter or the like, and reflow is performed at a predetermined temperature. ..
  • a plurality of lead frame pieces 30X are in a state where each first plating terminal portion 31 is bonded to the electrode terminal 7 via the solder portion 9 in which the solder paste is solidified.
  • the lead frame piece 30X which is a plurality of chips obtained by fragmenting the lead frame 30, is reflow-mounted on the wafer CSP 40 (see FIG. 6).
  • FIG. 6 shows an image of mounting the lead frame 30 in this embodiment.
  • the lead frame piece 30X is in a state where the thin plate portion 35 is separated from the silicon wafer 42 due to the protruding shape of the protruding portion 34. That is, in a state where a plurality of lead frame pieces 30X are mounted on the wafer CSP 40, a space 36 is formed between the lead frame pieces 30X and the silicon wafer 42.
  • a step of filling the space 36, which is the space between the lead frame piece 30X and the wafer CSP 40, with the resist 37, which is a fluid having an insulating property, is performed.
  • the step of filling the resist 37 is performed after the step of mounting the lead frame 30 and before the step of forming the columnar terminal 10.
  • the resist 37 is a photoresist made of a predetermined photosensitive material.
  • the resist 37 is discharged from the nozzle of the dispenser, for example, and fills the space 36 which is the gap between the lead frame piece 30X and the silicon wafer 42 from the gap 30Y (see FIG. 4D) between the adjacent lead frame pieces 30X. Is applied.
  • the resist 37 flows in the space 36 due to a capillary phenomenon or the like.
  • the resist 37 is used as a fluid that fills the gap between the lead frame piece 30X and the silicon wafer 42.
  • the lead frame piece 30X mounted on the wafer CPS 40 is etched from the opposite surface 33b side. That is, the columnar column protruding from the electrode terminal 7 by partially removing the frame body 33 of the lead frame piece 30X by etching using the second plating terminal 32 of the opposite surface 33b of the frame body 33 as a mask.
  • the step of forming the terminal 10 is performed.
  • the thin plate portion 35 of the frame main body portion 33 is removed from each lead frame piece 30X by dry etching or wet etching. That is, the portion connecting the plurality of protrusions 34 is removed by etching from the opposite side where the lead frame 30 has not yet been etched.
  • the thin plate portion 35 is removed, so that the portion of the frame main body portion 33 of the lead frame piece 30X between the first plated terminal portion 31 and the second plated terminal portion 32. Remains as a columnar portion 38. That is, the frame main body 33 of the lead frame piece 30X is separated into a plurality of columnar portions 38 remaining between the upper and lower plated terminal portions 31 and 32.
  • the columnar portion formed by the upper and lower plated terminal portions 31, 32 and the columnar portion 38 becomes the columnar terminal 10 erected on the electrode terminal 7 via the solder portion 9.
  • the surface of the columnar terminal 10 that becomes the lower outer peripheral surface 15a of the tip side portion 15 is formed as the outer peripheral surface 38a of the portion of the columnar portion 38 on the second plated terminal portion 32 side. That is, the first plated terminal portion 31 becomes the base end side terminal portion 11, the second plated terminal portion 32 becomes the tip end side terminal portion 12, the columnar portion 38 becomes the terminal main body portion 13, and the columnar terminal 10 is formed.
  • a step of removing the resist 37 is performed.
  • a special stripping liquid, a rinsing liquid, or the like is used to remove the resist 37 remaining on the silicon wafer 42. As a result, the entire columnar terminal 10 is exposed.
  • a step of dicing the wafer CSP40 in which the columnar terminals 10 are formed to individualize them is performed.
  • the silicon wafer 42, the wall portion 44, and the glass plate 43 on which the columnar terminals 10 are formed are cut by a dicing blade along a predetermined grid-shaped dicing line corresponding to the arrangement of the image sensor 2. It is clarified.
  • a plurality of solid-state image sensors 1 can be obtained. That is, the silicon wafer 42 is separated into a plurality of image sensors 2, the glass plate 43 is separated into a plurality of glasses 3, the wall portion 44 is separated into a plurality of rib portions 4, and the space between the image sensor 2 and the glass 3 is separated.
  • a plurality of solid-state image pickup devices 1 having a cavity 5 and a columnar terminal 10 formed for each electrode terminal 7 can be obtained.
  • the external connection terminal can be formed inexpensively in a relatively short time, and the mounting reliability on the mounting board 20 can be improved. Can be done.
  • the solid-state image sensor 1 includes a columnar terminal 10 formed by subjecting a metal lead frame 30 to a process such as etching as an external connection terminal. Therefore, the external connection terminals can be collectively formed by the etching method at low cost and in a short time.
  • the height of the columnar terminal 10 is the plate thickness of the lead frame 30 (for example, about 150 to 200 ⁇ m), so that the height of the columnar terminal 10 can be easily secured.
  • the plurality of columnar terminals 10 can act as a buffer between the semiconductor substrate 1A and the mounting substrate 20, which is caused by the difference in linear expansion coefficient between the material of the image sensor 2 and the material of the mounting substrate 20. The stress generated by this can be absorbed. As a result, the board mounting reliability of the solid-state image sensor 1 can be significantly improved.
  • the columnar terminal 10 is formed by subjecting the lead frame 30 to two-step etching of half etching from one side and etching from the opposite side. Further, the manufacturing method according to the present embodiment includes a step of mounting the lead frame piece 30X on the wafer CSP 40 and then filling the space 36 with the resist 37. According to such a manufacturing method, the diameter-expanded portion 16 can be formed on the terminal body 13 in the columnar terminal 10 as a two-step etching action from both sides of the lead frame 30. Thereby, the strength of the columnar terminal 10 can be improved.
  • the configuration in which the lead frame 30 is mounted is a wafer CSP40 in a wafer state
  • the lead frame piece 30X in which the lead frame 30 is individualized is mounted on the wafer CSP40.
  • the gap 30Y between the adjacent lead frame pieces 30X can be used, so that the resist 37 can be easily filled. This makes it possible to improve the production efficiency of the solid-state image sensor 1.
  • the resist 37 is used as the fluid to be filled in the space 36. According to such a manufacturing method, it becomes possible to relatively easily select a material having properties (for example, fluidity, permeability, etc.) suitable for filling the space 36 with the fluid.
  • the first plated terminal portion 31 is formed larger than the second plated terminal portion 32, and the columnar terminal 10 is a proximal end side terminal portion forming a bonding surface with respect to the electrode terminal 7.
  • 11 has a configuration larger than that of the terminal portion 12 on the distal end side forming the distal end surface.
  • the strength of the conductor portion connecting the electrode terminal 7 of the image sensor 2 and the land electrode 21 of the mounting substrate 20 can be improved.
  • the conductor portion including the solder portion 25 wetted with respect to the columnar terminal 10 is substantially vertically symmetrical as a whole. It can be shaped.
  • the upper and lower cross-sectional sizes of the conductor portion can be balanced, and the structure can be made so that the conductor portion is not easily broken.
  • the solid-state image sensor 1 is a heat dissipation pad provided on one surface of the semiconductor substrate 1A as a functional portion formed by a part of the lead frame 30. 50 is provided.
  • the heat dissipation pad 50 is provided at the center of the back surface 2b of the image sensor 2 together with a plurality of columnar terminals 10 as a rectangular protruding portion.
  • the heat dissipation pad 50 has a layered structure similar to that of the columnar terminal 10. That is, the heat dissipation pad 50 corresponds to the layer structure of the columnar terminal 10, and is the first layer portion 51 which is the same layer portion as the proximal end side terminal portion 11 and the same layer portion as the distal end side terminal portion 12. It has a two-layer portion 52 and an intermediate layer portion 53 which is a portion between these layer portions and is the same layer portion as the terminal main body portion 13.
  • the first layer portion 51 and the second layer portion 52 have substantially the same size in a plane and are provided so as to overlap each other in a plan view.
  • the heat dissipation pad 50 is connected to, for example, a rectangular pad connection portion 57 formed on the back surface 2b side of the image sensor 2 as the same layer portion as the electrode terminal 7 via a solder portion 59.
  • the pad connection portion 57 is formed so as to match the shape and dimensions of the heat dissipation pad 50 in a plan view.
  • the intermediate layer portion 53 of the heat radiating pad 50 has an upper outer peripheral surface 53a and a lower outer peripheral surface 53b that form a concave curve in a vertical cross-sectional view on the outer peripheral side surface portions on all four sides.
  • the upper outer peripheral surface 53a and the lower outer peripheral surface 53b are outer peripheral surfaces of substantially half of the upper and lower portions, and are etched from both sides of the lead frame 30 like the upper outer peripheral surface 14a and the lower outer peripheral surface 15a of the columnar terminal 10. Formed as an action of.
  • the upper outer peripheral surface 53a and the lower outer peripheral surface 53b form a convex ridge line portion 56 on the outer peripheral side over the entire circumference of the intermediate layer portion 53.
  • the lead frame 30A for forming the heat dissipation pad 50 shown in FIGS. 8A and 8B is used as the lead frame 30.
  • the lead frame 30A has a plating layer portion common to the first plating terminal portion 31 on the facing surface 33a of the frame main body portion 33 in which the first plating terminal portion 31 is formed. It has one plating layer portion 61.
  • the first plating layer portion 61 is a portion of the heat dissipation pad 50 that becomes the first layer portion 51.
  • the first plating layer portion 61 is formed simultaneously with the first plating terminal portion 31 as a plating pattern shape in the step of forming the first plating terminal portion 31.
  • the lead frame 30A has a second plating layer portion 62 as a plating layer portion similar to the second plating terminal portion 32 on the opposite surface 33b of the frame main body portion 33 in which the second plating terminal portion 32 is formed.
  • the second plating layer portion 62 is a portion of the heat dissipation pad 50 that becomes the second layer portion 52.
  • the second plating layer portion 62 is formed simultaneously with the second plating terminal portion 32 as a plating pattern shape in the step of forming the second plating terminal portion 32.
  • the first plating layer portion 61 and the second plating layer portion 62 are formed so that the outer shapes of the first plating layer portion 61 and the second plating layer portion 62 match each other in terms of the plate surface of the frame main body portion 33.
  • the intermediate layer portion 53 of the heat dissipation pad 50 is formed by the portion of the frame main body portion 33 sandwiched between the first plating layer portion 61 and the second plating layer portion 62.
  • the configuration of the modified example 1 provided with the heat dissipation pad 50 can be obtained. It was
  • the lead frame 30A makes it possible to simultaneously form the heat dissipation pad 50 together with the plurality of columnar terminals 10.
  • the heat radiating portion can be provided on the semiconductor substrate 1A by a low cost and simple manufacturing method without separately providing heat radiating parts such as a heat radiating plate and a heat sink. As a result, it is possible to easily cope with the heat generation of the image sensor 2.
  • the solid-state image sensor 1 is a reinforcing portion 70 provided on one surface of the semiconductor substrate 1A as a functional portion formed by a part of the lead frame 30.
  • the reinforcing portion 70 is provided as a frame-shaped protruding portion along the peripheral edge portion of the back surface 2b of the image sensor 2.
  • the reinforcing portion 70 has a pair of long side portions 70a along the longitudinal direction of the image sensor 2 (horizontal direction in FIG. 9B) and a pair of long side portions 70a along the lateral direction of the image sensor 2 (vertical direction in FIG. 9B) as a bottom view shape.
  • the reinforcing portion 70 is formed by these four side portions as a rectangular frame-shaped portion along the outer shape of the image sensor 2.
  • the reinforcing portion 70 has a layered structure similar to that of the upper half of the columnar terminal 10. That is, the reinforcing portion 70 corresponds to the layer structure of the upper half portion of the columnar terminal 10, and includes the first layer portion 71, which is the same layer portion as the base end side terminal portion 11, and the upper half portion of the terminal body portion 13. It has a second layer portion 73, which is the same layer portion.
  • the reinforcing portion 70 is connected to, for example, a rectangular frame-shaped reinforcing frame connecting portion 77 formed on the back surface 2b side of the image sensor 2 as the same layer portion as the electrode terminal 7 via a soldering portion 79.
  • the reinforcing frame connecting portion 77 is formed so as to match the shape and dimensions of the reinforcing portion 70 in a plan view.
  • the lower end surface of the reinforcing portion 70 is the lower surface 73c of the second layer portion 73 formed by the frame main body portion 33.
  • the second layer portion 73 has an inner peripheral surface 73a that forms a concave curve in a vertical cross-sectional view on the inner peripheral side surface portions on all four sides.
  • the inner peripheral surface 73a is formed as an action of half-etching of the lead frame 30, similarly to the upper outer peripheral surface 14a of the columnar terminal 10.
  • the lead frame 30B for forming the reinforcing portion 70 shown in FIGS. 10A and 10B is used as the lead frame 30.
  • the lead frame 30B has a plating layer portion common to the first plating terminal portion 31 on the facing surface 33a of the frame main body portion 33 in which the first plating terminal portion 31 is formed. It has one plating layer portion 81.
  • the first plating layer portion 81 is a portion of the reinforcing portion 70 that becomes the first layer portion 71.
  • the first plating layer portion 81 is formed in a grid pattern with a predetermined width in a plan view corresponding to a rectangular region that finally becomes a solid-state image sensor 1. That is, the first plating layer portion 81 has the first straight line portion 81a along the direction corresponding to the longitudinal direction of the image sensor 2 and the short portion of the image sensor 2 as a plurality of linear portions forming a grid shape orthogonal to each other. It has a second straight line portion 81ba along the direction corresponding to the hand direction.
  • the first plating terminal portion 31 is formed in the region surrounded by the first plating layer portion 81.
  • the first plating layer portion 81 is formed simultaneously with the first plating terminal portion 31 as a plating pattern shape in the step of forming the first plating terminal portion 31.
  • the region portion on the opposite side of the first plating layer portion 81 is a non-forming portion of the plating layer portion. .. That is, in the frame main body 33, the second plating terminal portion 32 and other plating layer portions are not formed on the opposite side of the first plating layer portion 81.
  • the configuration of the modified example 2 provided with the reinforcing portion 70 can be obtained.
  • the first plating layer portion 81 functions as a mask, and the portion to be the second layer portion 73 is relative to each other in a grid pattern by the frame main body portion 33. It is formed as a protruding portion.
  • the portion to be the second layer portion 73 becomes a rectangular frame-shaped protruding portion.
  • the portion of the frame main body portion 33 corresponding to the formation portion of the first plating layer portion 81 is partially removed so as to have a thickness of about half. ..
  • the rectangular frame-shaped second layer portion 73 forming the lower surface 73c is formed, and the reinforcing portion 70 is formed.
  • the lead frame 30B makes it possible to simultaneously form the reinforcing portion 70 together with the plurality of columnar terminals 10.
  • the reinforcing structure portion can be provided on the semiconductor substrate 1A by a low-cost and simple manufacturing method without separately providing reinforcing parts.
  • the strength of the solid-state image sensor 1 can be easily secured, the rigidity of the package can be improved, and deformation such as warpage can be suppressed.
  • the reinforcing portion 70 is not limited to the frame-shaped portion, and may be, for example, a linear portion, a curved portion, or the like.
  • the solid-state image sensor 1 is provided on one surface of the semiconductor substrate 1A as a functional portion formed by a part of the lead frame 30 (ground).
  • the plane 90 is provided. That is, a part of the layer portion formed by the lead frame 30 is a GND layer including the GND plane 90.
  • the GND plane 90 is provided as a frame-shaped protruding portion along the peripheral edge portion of the back surface 2b of the image sensor 2.
  • the GND plane 90 has a pair of long side portions 90a along the longitudinal direction of the image sensor 2 (horizontal direction in FIG. 11B) and a pair of long side portions 90a along the lateral direction of the image sensor 2 (vertical direction in FIG. 11B) as a bottom view shape.
  • the GND plane 90 is formed by these four side portions as a rectangular frame-shaped portion along the outer shape of the image sensor 2.
  • the GND plane 90 has a layered structure similar to that of the upper half of the columnar terminal 10. That is, the GND plane 90 corresponds to the layer structure of the upper half of the columnar terminal 10, and includes the first layer 91, which is the same layer as the base end side terminal portion 11, and the upper half of the terminal body 13. It has a second layer portion 93 which is the same layer portion.
  • the GND plane 90 is connected to, for example, a rectangular frame-shaped GND plane connecting portion 97 formed on the back surface 2b side of the image sensor 2 as the same layer portion as the electrode terminal 7 via a soldering portion 99.
  • the GND plane connecting portion 97 is formed so as to match the shape and dimensions of the GND plane 90 in a plan view.
  • the lower end surface of the GND plane 90 is the lower surface 93c of the second layer portion 93 formed by the frame main body portion 33.
  • the second layer portion 93 has an inner peripheral surface 93a forming a concave curve in a vertical cross-sectional view on the inner peripheral side surface portions on all four sides.
  • the inner peripheral surface 93a is formed as an action of half etching of the lead frame 30, similarly to the upper outer peripheral surface 14a of the columnar terminal 10.
  • the GND terminal 100 formed by a part of the lead frame 30 is provided.
  • the GND terminal 100 is a terminal that receives the supply of the GND potential, and is connected to the GND plane 90.
  • the GND terminal 100 is bridged between the pair of long side portions 90a in parallel with the short side portion 90b with respect to the frame-shaped GND plane 90 in the bottom view. It is formed in a straight line. Further, the GND terminal 100 is formed at a position closer to one side (left side in FIG. 11B) with respect to the center in the longitudinal direction of the image sensor 2.
  • the GND terminal 100 has the same layer structure as the columnar terminal 10. That is, the GND terminal 100 corresponds to the layer structure of the columnar terminal 10, and is the first layer portion 101 which is the same layer portion as the proximal end side terminal portion 11 and the second layer portion which is the same layer portion as the distal end side terminal portion 12. It has a layer portion 102 and a third layer portion 103 which is the same layer portion as the terminal main body portion 13.
  • the first layer portion 101 and the third layer portion 103 are formed as linearly continuous layer portions corresponding to the linear shape of the GND terminal 100.
  • the GND terminal 100 is connected to the GND plane 90 by the first layer portion 101 and the third layer portion 103.
  • the second layer portion 102 has a circular shape like the tip side terminal portion 12, and is linearly arranged at a predetermined interval corresponding to the arrangement of the plurality of columnar terminals 10.
  • the five second layer portions 102 are arranged side by side in a row along the stretching direction of the GND terminal 100.
  • the GND terminal 100 is connected to, for example, a linear GND terminal connection portion 107 formed on the back surface 2b side of the image sensor 2 as the same layer portion as the electrode terminal 7 via a solder portion 109.
  • the GND terminal connection portion 107 is formed so as to match the shape and dimensions of the GND terminal 100 in a plan view.
  • the third layer portion 103 of the GND terminal 100 has an upper side surface 103a forming a concave curve in a vertical cross-sectional view on both the left and right sides of the upper portion thereof.
  • the upper side surface 103a is formed as an action of half etching of the lead frame 30, similarly to the upper outer peripheral surface 14a of the columnar terminal 10.
  • the third layer portion 103 has a lower surface 93c of the GND plane 90 and a lower surface 103c which is a flush surface.
  • the third layer portion 103 projects the forming portion of the second layer portion 102 from the lower surface 103c, and the outer peripheral surface of the protruding portion is viewed in a vertical cross section in the same manner as the lower outer peripheral surface 15a of the columnar terminal 10.
  • the lower outer peripheral surface 103b forming a concave curve is used.
  • the lower outer peripheral surface 103b is formed as an action of etching the opposite surface of the lead frame 30.
  • the GND plane 90 and the lead frame 30C for forming the GND terminal 100 shown in FIGS. 12A and 12B are used.
  • the lead frame 30C has a plating layer portion common to the first plating terminal portion 31 on the facing surface 33a of the frame main body portion 33 in which the first plating terminal portion 31 is formed. It has one plating layer portion 111.
  • the first plating layer portion 111 includes a portion that becomes the first layer portion 91 in the GND plane 90 and a portion that becomes the first layer portion 101 in the GND terminal 100.
  • the first plating layer portion 111 corresponds to a rectangular region that finally becomes the solid-state image pickup device 1 as a portion to be the first layer portion 91 of the GND plane 90, and has a grid having a predetermined width in a plan view. It has a part formed in a shape. That is, the first plating layer portion 111 is the first portion along the direction corresponding to the longitudinal direction of the image sensor 2 as a plurality of linear portions forming a grid pattern orthogonal to each other as a portion to be the first layer portion 91. It has a straight line portion 111a and a second straight line portion 111b along a direction corresponding to the lateral direction of the image sensor 2. Further, the first plating layer portion 111 has a linear third straight line portion 111c parallel to the second straight line portion 111b as a portion to be the first layer portion 101 of the GND terminal 100.
  • the first plating terminal portion 31 is formed in the region surrounded by the first plating layer portion 111.
  • the first plating layer portion 111 is formed simultaneously with the first plating terminal portion 31 as a plating pattern shape in the step of forming the first plating terminal portion 31.
  • the region opposite to the first straight line portion 111a and the second straight line portion 111b of the first plating layer portion 111 becomes a non-forming portion of the plating layer portion. That is, in the frame main body 33, the second plating terminal portion 32 and other plating layer portions are not formed on the opposite sides of the first straight line portion 111a and the second straight line portion 111b.
  • a circular second plating layer portion 112 is formed in an arrangement according to the arrangement of the second plating terminal portion 32. ..
  • the second plating layer portion 112 is a portion that becomes the second layer portion 102 in the GND terminal 100.
  • the configuration of the modified example 3 provided with the GND plane 90 and the GND terminal 100 can be obtained.
  • the first plating layer portion 111 functions as a mask, and the frame main body portion 33 causes the second layer portion 93 and the GND terminal 100 of the GND plane 90.
  • the portion to be the third layer portion 103 of the above is formed as a relatively protruding portion in a grid pattern.
  • the portion of the frame main body 33 corresponding to the formed portions of the first straight line portion 111a and the second straight line portion 111b of the first plating layer portion 111 is approximately half. Is partially removed to the thickness of. Further, in the portion of the frame main body 33 corresponding to the formed portion of the third straight portion 111c, the tip side terminal portion 12 functions as a mask, and the non-formed portion of the second plating layer portion 112 is approximately half. It is partially removed to a thickness, and the formed portion of the second plating layer portion 112 remains as a protruding portion.
  • a rectangular frame-shaped second layer portion 93 forming the lower surface 93c of the GND plane 90 and a linear third layer portion 103 forming the lower surface 103c of the GND terminal 100 are formed, and the GND plane 90 and the GND terminal 100 are formed. It is formed.
  • the lead frame 30C makes it possible to simultaneously form the GND plane 90 and the GND terminal 100 together with the plurality of columnar terminals 10.
  • the GND plane and the GND terminal can be provided to the semiconductor substrate 1A by a low cost and simple manufacturing method without separately providing the GND plane and the GND terminal.
  • the transmission quality of the electric signal in the solid-state image sensor 1 can be improved.
  • the plating pattern shape in the lead frame 30C can be reflected as the shape of the GND plane 90 and the GND terminal 100, a high degree of freedom can be obtained for the shapes of the GND plane 90 and the GND terminal 100.
  • the solid-state image pickup device 1 includes a built-in chip 125, which is a second semiconductor element provided on one surface of the semiconductor substrate 1A.
  • the built-in chip 125 is, for example, a semiconductor chip such as a logic chip or a memory chip having a predetermined integrated circuit.
  • the built-in chip 125 has a rectangular plate-like outer shape, and is mounted on the central portion of the back surface 2b of the image sensor 2 via a predetermined connection layer 125a made of solder or an adhesive. To.
  • the built-in chip 125 is mounted at a predetermined portion on the silicon wafer 42 together with the lead frame 30 in, for example, in the step of reflow mounting the lead frame 30 on the wafer CSP 40.
  • the built-in chip 125 may be mounted in advance during the mounting process of the lead frame 30.
  • the solid-state image sensor 1 having the built-in chip 125 has a shield portion 120 provided so as to cover the built-in chip 125 on one surface of the semiconductor substrate 1A as a functional portion formed by a part of the lead frame 30.
  • the shield portion 120 is provided in the central portion of the back surface 2b of the image sensor 2 together with a plurality of columnar terminals 10 as a cover portion protruding in a rectangular shape.
  • the shield portion 120 has a rectangular flat surface portion 120a provided parallel to the back surface 2b of the image sensor 2 and a peripheral wall portion 120b provided along the outer shape of the flat surface portion 120a.
  • the flat surface portion 120a covers the built-in chip 125 from below.
  • the peripheral wall portion 120b has a pair of longitudinal wall portions along the longitudinal direction of the image sensor 2 and a pair of short wall portions along the lateral direction of the image sensor 2, and the built-in chip 125 is provided by these wall portions. Is surrounded from all sides.
  • the shield portion 120 has a flat box shape due to the flat surface portion 120a and the peripheral wall portion 120b, and forms a space portion 120c accommodating the built-in chip 125 together with the back surface 2b of the image sensor 2.
  • the shield portion 120 has a layered structure similar to that of the columnar terminal 10. That is, the shield portion 120 corresponds to the layer structure of the columnar terminal 10, the first layer portion 121 which is the same layer portion as the base end side terminal portion 11, and the second layer portion which is the same layer portion as the tip end side terminal portion 12. It has a layer portion 122 and an intermediate layer portion 123 which is a portion between these layer portions and is the same layer portion as the terminal main body portion 13.
  • the first layer portion 121 has a pair of long side portions and a pair of short side portions formed with a predetermined width, and these side portions form a rectangular frame shape corresponding to the outer shape of the shield portion 120.
  • the second layer portion 122 forms the lower surface portion of the shield portion 120 and has a rectangular shape corresponding to the outer shape of the shield portion 120.
  • the intermediate layer portion 123 has a rectangular plate-shaped bottom surface portion 123p corresponding to the outer shape of the shield portion 120, and a protruding edge portion 123q formed so as to project in a rectangular frame shape over the entire circumference along the outer edge of the bottom surface portion 123p.
  • the first layer portion 121 is formed on the upper side of the ridge portion 123q
  • the second layer portion 122 is formed on the lower side of the bottom surface portion 123p.
  • the bottom surface portion 123p is a portion forming the flat surface portion 120a of the shield portion 120 together with the second layer portion 122
  • the protruding edge portion 123q is a portion forming the peripheral wall portion 120b of the shield portion 120 together with the first layer portion 121.
  • the shield portion 120 is connected to, for example, a rectangular frame-shaped pad connection portion 127 formed on the back surface 2b side of the image sensor 2 as the same layer portion as the electrode terminal 7 via a solder portion 129.
  • the pad connection portion 127 is formed so as to match the shape and dimensions of the first layer portion 121 of the shield portion 120.
  • the intermediate layer portion 123 of the shield portion 120 has an upper outer peripheral surface 123a and a lower outer peripheral surface 123b that form a concave curve in a vertical cross-sectional view on the outer peripheral side surface portions on all sides.
  • the upper outer peripheral surface 123a and the lower outer peripheral surface 123b are outer surfaces of substantially half of the upper and lower portions, and are etched from both sides of the lead frame 30 like the upper outer peripheral surface 14a and the lower outer peripheral surface 15a of the columnar terminal 10. Formed as an action of.
  • the upper outer peripheral surface 123a and the lower outer peripheral surface 123b form a ridge line portion 126 convex on the outer peripheral side over the entire circumference of the intermediate layer portion 123.
  • the intermediate layer portion 123 of the shield portion 120 has an upper inner peripheral surface 123c that forms a concave curve in a vertical cross-sectional view on the four inner peripheral side surface portions of the ridge portion 123q.
  • the upper surface of the bottom surface portion 123p is a horizontal bottom surface 123d facing the back surface 2b of the image sensor 2.
  • the upper inner peripheral surface 123c and the bottom surface 123d are formed as a half-etching action on the lead frame 30.
  • the lead frame 30D for forming the shield portion 120 shown in FIGS. 14A and 14B is used as the lead frame 30.
  • the lead frame 30D has a plating layer portion common to the first plating terminal portion 31 on the facing surface 33a of the frame main body portion 33 in which the first plating terminal portion 31 is formed. It has one plating layer portion 131.
  • the first plating layer portion 131 is a portion of the shield portion 120 that becomes the first layer portion 121.
  • the first plating layer portion 131 has a pair of long side portions 131a and a pair of short side portions 131b, each having a predetermined width, and is formed as a rectangular frame-shaped portion.
  • the first plating terminal portion 31 is formed so as to surround the periphery of the first plating layer portion 131.
  • the first plating layer portion 131 is formed simultaneously with the first plating terminal portion 31 as a plating pattern shape in the step of forming the first plating terminal portion 31.
  • the lead frame 30D has a second plating layer portion 132 as a plating layer portion similar to the second plating terminal portion 32 on the opposite surface 33b of the frame main body portion 33 in which the second plating terminal portion 32 is formed.
  • the second plating layer portion 132 is a portion of the shield portion 120 that becomes the second layer portion 122, and is a rectangular portion.
  • the second plating terminal portion 32 is formed so as to surround the periphery of the second plating layer portion 132.
  • the second plating layer portion 132 is formed simultaneously with the second plating terminal portion 32 as a plating pattern shape in the step of forming the second plating terminal portion 32.
  • the first plating layer portion 131 and the second plating layer portion 132 are formed so that their outer shapes match each other in the plate surface view of the frame main body portion 33.
  • the intermediate layer portion 123 of the shield portion 120 is formed by the portion of the frame main body portion 33 in which the first plating layer portion 131 and the second plating layer portion 132 are formed.
  • the configuration of the modified example 4 provided with the shield portion 120 can be obtained.
  • the first plating layer portion 131 functions as a mask, and the frame main body portion 33 causes the intermediate layer portion 123 to have the upper inner peripheral surface 123c and the bottom surface 123d.
  • a rectangular recess is formed by the surface to be.
  • the second plating layer portion 132 functions as a mask, and together with the terminal main body portion 13 of the columnar terminal 10, the upper outer peripheral surface 123a and the lower outer peripheral surface 123b of the intermediate layer portion 123 are used. Is formed. As a result, the intermediate layer portion 123 is formed, and the shield portion 120 is formed.
  • the configuration of the modified example 4 is such that a hollow structure is formed on the back surface 2b side of the image sensor 2 by the lead frame 30, a built-in chip 125 is provided inside the hollow structure, and the shield portion 120 shields the image sensor 2.
  • the lead frame 30D makes it possible to simultaneously form the shield portion 120 together with the plurality of columnar terminals 10.
  • the shield structure portion can be provided for the built-in chip 125 of the semiconductor substrate 1A by a low-cost and simple manufacturing method without separately providing a component for the shield structure.
  • the noise generated from the built-in chip 125 can be reduced, so that an effect such as improvement of the degree of freedom of wiring in the mounting board 20 can be obtained.
  • Modification 5 is a modification of the shape of the columnar terminal 10.
  • the bonding surface of the columnar terminal 10A with respect to the electrode terminal 7 has an elliptical shape with respect to the columnar terminal 10A (10).
  • the end face of the columnar terminal 10 on the tip end side has a circular shape.
  • the circular tip surface has a size included in the region of the elliptical joint surface with respect to the electrode terminal 7 in the axial direction of the columnar terminal 10A.
  • 16B is a sectional view taken along the line AA in FIG. 16A
  • FIG. 16C is a sectional view taken along the line BB in FIG. 16A.
  • the columnar terminal 10A has an elliptical shape of the base end side terminal portion 11 having the upper surface 11a as a joining surface with respect to the electrode terminal 7, and a circular shape of the tip end side terminal portion 12 having the lower surface 12a as the tip end surface.
  • the tip end side terminal portion 12 has a size that fits within the range of the outer shape of the base end side terminal portion 11 in the axial direction of the columnar terminal 10A.
  • the diameter of the circular tip end side terminal portion 12 is shorter than the minor diameter of the elliptical base end side terminal portion 11, and these terminal portions are concentrically arranged.
  • the columnar terminal 10A has a terminal body portion 13 having a substantially tapered shape between the terminal portion 11 on the proximal end side and the terminal portion 12 on the distal end side.
  • the electrode terminal 7 to which the columnar terminal 10A is connected has an elliptical shape corresponding to, for example, the base end side terminal portion 11.
  • the solder portion 9 interposed between them is an elliptical layer portion.
  • the base end side portion 14 of the terminal main body portion 13 has an elliptical cross-sectional shape.
  • the tip side portion 15 of the terminal body portion 13 has a shape that gradually changes the cross-sectional shape from an elliptical shape to a circular shape from the upper side to the lower side.
  • the enlarged diameter portion 16 forms an elliptical ridge line 16a along the outer shape of the base end side terminal portion 11.
  • the columnar terminal 10A has a tapered outer shape that is narrowed down as a whole in a vertical cross-sectional view of an elliptical long axis position that is a bottom view of the terminal portion 11 on the proximal end side (see FIG. 16B).
  • the columnar terminal 10A has a substantially cylindrical outer shape as a whole in a vertical cross-sectional view of an elliptical short axis position which is a bottom view of the base end side terminal portion 11 (see FIG. 16C).
  • the plurality of columnar terminals 10A are provided so that the major axis direction of the elliptical shape of the base end side terminal portion 11 faces the central portion of the semiconductor substrate 1A.
  • the columnar terminal 10A is a center point located at the center of the semiconductor substrate 1A in the major axis direction of the elliptical shape of the base end side terminal portion 11 in the bottom view of the solid-state image sensor 1. It is provided so as to face O1.
  • the plurality of columnar terminals 10A arranged two-dimensionally in a grid point shape are provided so as to direct the elliptical major axis direction of the base end side terminal portion 11 toward the center point O1 at an inclination angle according to the arrangement position.
  • the plurality of columnar terminals 10A are provided so as to radiate from the center point O1 in the bottom view of the solid-state imaging device 1 so as to have directivity with respect to the center point O1 in the major axis direction of the elliptical shape which is the bottom view shape.
  • the columnar terminal 10A is provided so that the major axis direction of the elliptical shape, which is the bottom view shape, is along a straight line passing through the center point O1.
  • the lead frame 30E shown in FIGS. 17A and 17B is used as the lead frame 30 for manufacturing the configuration of the modified example 5.
  • the first plated terminal portion 31 has an elliptical shape and the second plated terminal portion 32 has a circular shape.
  • the outer diameter of the second plated terminal portion 32 is smaller than the minor diameter of the first plated terminal portion 31, and the plated terminal portions 31 and 32 are arranged concentrically with the direction perpendicular to the plate surface of the lead frame 30 as the central axis direction. ing.
  • the plurality of first plating terminal portions 31 are formed so that the major axis direction of the ellipse is directed toward the center position O2 of the rectangular region that finally becomes the solid-state imaging device 1. That is, the first plating terminal portion 31 is provided so that the major axis direction of the elliptical shape is along a straight line passing through the center position O2.
  • the lead frame 30E having the above configuration is used, and the configuration of the modified example 5 can be obtained by performing the same manufacturing method as the manufacturing method of the present embodiment described above.
  • the first plated terminal portion 31 formed on the facing surface 33a of the frame main body portion 33 is formed into an elliptical shape, and the frame main body is formed.
  • the second plated terminal portion 32 formed on the opposite surface 33b of the portion 33 has a circular shape.
  • the second plated terminal portion 32 has a circular shape having a size included in the forming region of the corresponding first plated terminal portion 31.
  • the first plated terminal portion 31 is formed so that the major axis direction of the elliptical shape faces the central portion of the image sensor 2.
  • each columnar terminal 10A can be gradually thickened from the distal end side terminal portion 12 side to the proximal end side terminal portion 11 side so as to have a circular shape to an elliptical shape.
  • the root portion can be reinforced, and the strength of the columnar terminal 10A can be improved.
  • by arranging the plurality of columnar terminals 10A in a radial arrangement having directivity it is possible to increase the mechanical strength of the package structure itself of the solid-state image sensor 1. As a result, in the solid-state image sensor 1, it is possible to suppress deformation such as warpage and improve temperature cycle resistance.
  • the degree of freedom in designing the terminal shape is relatively low, so the external connection terminal can be processed into various shapes, or other than the external connection terminal. It becomes difficult to give it a function.
  • the degree of freedom in designing the terminal shape can be improved, and various functional portions can be formed together with the columnar terminal 10 by the lead frame 30. It will be possible.
  • Configuration example of the semiconductor device according to the second embodiment> A configuration example of the semiconductor device according to the second embodiment of the present technology will be described with reference to FIG.
  • the solid-state image sensor 201 according to the present embodiment is an example of a semiconductor device, and the configuration of the semiconductor substrate 1A is different from that of the first embodiment.
  • the vertical direction in FIG. 18 is the vertical direction in the solid-state image sensor 201. Further, in the description of each embodiment described below, the same reference numerals are given to the configurations common to those of other embodiments, and the description thereof will be omitted as appropriate.
  • the solid-state image sensor 201 includes an image sensor 202 as a solid-state image sensor, a glass 203, and a rib resin portion 204 as a support portion for supporting the glass 203 on the image sensor 2.
  • the solid-state image sensor 201 has a package structure in which the glass 203 is mounted on the image sensor 202 via the rib resin portion 204 and the cavity 205 is provided between the image sensor 202 and the glass 203.
  • the image sensor 202 is a rectangular plate-shaped chip, and the upper side is the light receiving surface side.
  • the image sensor 202 is, for example, a CMOS type image sensor.
  • the glass 203 is a transparent member having a rectangular plate-shaped outer shape, and is supported in a fixed state by the rib resin portion 204 with respect to the image sensor 202.
  • the rib resin portion 204 is formed in a wall shape over the entire circumference along the outer shape of the glass 203 so as to surround the pixel region on the light receiving surface of the image sensor 202, and is provided so as to form a rectangular frame shape in a plan view. ing.
  • the rib resin portion 204 functions as a sealing portion that seals the periphery of the cavity 205.
  • the material of the rib resin portion 204 is, for example, a photosensitive adhesive such as a UV (ultraviolet) curable resin which is an acrylic resin, a thermosetting resin such as an epoxy resin, or a mixture thereof.
  • a photosensitive adhesive such as a UV (ultraviolet) curable resin which is an acrylic resin, a thermosetting resin such as an epoxy resin, or a mixture thereof.
  • the rib resin portion 204 is formed on the surface of the image sensor 202 by coating with a dispenser, patterning using photolithography, or the like.
  • the image sensor 202 is mounted on an organic substrate 206 made of an organic material such as plastic.
  • the organic substrate 206 has a front surface 206a on which the image sensor 202 is mounted and a back surface 206b which is a plate surface on the opposite side thereof.
  • the image sensor 202 is die-bonded to the surface 206a side of the organic substrate 206 with an insulating or conductive paste 207.
  • the image sensor 202 and the organic substrate 206 are electrically connected by a plurality of bonding wires 208.
  • the bonding wire 208 is, for example, a fine metal wire made of Au (gold) or Cu (copper), and electrically connects a pad electrode formed on the upper surface of the image sensor 202 and a lead electrode 210 formed on the surface of the organic substrate 206. Connect to the target.
  • the lead electrode 210 on the organic substrate 206 is connected to a plurality of electrode terminals 217 formed on the back surface 206b side of the organic substrate 206 via a wiring pattern or the like formed in the organic substrate 206.
  • the periphery of the bonding wire 208 which is the outer portion of the cavity 205 on the organic substrate 206, is covered and sealed with the mold resin 213.
  • the mold resin 213 is provided on the peripheral edge portion of the organic substrate 206 so as to cover the peripheral edge portions of the image sensor 202 and the glass 203.
  • the mold resin 213 is, for example, a thermosetting resin containing a filler containing a silicon oxide as a main component.
  • the mold resin 213 is formed into a predetermined shape by, for example, injection molding using a mold.
  • the terminal 10 is provided.
  • the columnar terminal 10 is provided so as to protrude from each electrode terminal 217 provided on the back surface 206b side of the organic substrate 206.
  • the columnar terminal 10 is electrically connected to the electrode terminal 217 via the solder portion 219.
  • the solid-state image pickup device 201 includes a semiconductor substrate 201A including an image sensor 202 which is a semiconductor element, and a columnar terminal 10 formed by a part of a lead frame.
  • the semiconductor substrate 201A is a structure in which the image sensor 202 is mounted on the organic substrate 206 and the glass 203 is provided on the surface side of the image sensor 202 via the rib resin portion 204, and the surface on one side thereof.
  • the back surface 206b of the organic substrate 206 is provided with a plurality of electrode terminals 217 for external connection.
  • the columnar terminals 10 are provided so as to project from the electrode terminals 217 with respect to the semiconductor substrate 201A.
  • the manufacturing method of the solid-state image sensor 201 of the present embodiment differs from the manufacturing method of the solid-state image sensor 1 of the first embodiment in terms of the mounting mode of the lead frame 30. That is, in the manufacturing method of the first embodiment, the lead frame piece 30X in which the lead frame 30 is individualized is mounted on the WL-CSP in the wafer state (see FIG. 6), but the manufacturing method of the second embodiment is in the assembled state. The lead frame 30 in the assembled state is mounted on the organic substrate package of No. 21 (see FIG. 21). The other steps are common to the first embodiment.
  • a step of preparing the lead frame 30 is performed.
  • the organic substrate package 240 is an assembled state of the semiconductor substrate 201A of the solid-state image sensor 201, and has a rectangular plate-like outer shape similar to the lead frame 30 as shown in FIG. 21.
  • the organic substrate package 240 has a predetermined arrangement including an image sensor 202, a glass 203, and a rib resin portion 204 with respect to the organic substrate body 246 which is an assembled state of the organic substrate 206.
  • a plurality of bonding wires 208 are arranged for each configuration to form a mold resin portion 243 to be a mold resin 213.
  • the mold resin portion 243 is formed into a predetermined shape by, for example, injection molding using a mold.
  • a plurality of electrode terminals 217 are formed in a predetermined arrangement on the plate surface 246b on the side opposite to the image sensor 202 side of the organic substrate body 246.
  • the organic substrate package 240 which is an integral plate-like body including a plurality of image sensors 202 formed in an assembled state, is used.
  • a step of mounting the lead frame 30 (30P) on the organic substrate package 240 is performed. That is, by joining the first plated terminal portion 31 of the lead frame 30P that has undergone half-etching to the electrode terminal 217 that is the terminal of the organic substrate package 240, the step of mounting the lead frame 30P on the organic substrate package 240 is performed. Will be.
  • the lead frame 30P is mounted on the organic substrate package 240 by reflow solder mounting.
  • the lead frame 30P also in the assembled state is mounted on the organic substrate package 240 in the assembled state.
  • FIG. 21 shows an image of mounting the lead frame 30 in this embodiment.
  • the lead frame 30P is in a state where each first plating terminal portion 31 is bonded to the electrode terminal 217 via the solder portion 219. As shown in FIG. 19C, in a state where the lead frame 30P is mounted on the organic substrate package 240, a space portion 236 is formed between the lead frame 30P and the organic substrate body 246.
  • the step of filling the resist 37 is performed after the step of mounting the lead frame 30P and before the step of forming the columnar terminal 10.
  • the resist 37 is discharged from the nozzle of the dispenser, for example, and is applied so as to fill the space portion 236 from the gap between the lead frame 30P and the organic substrate body 246 at the outer edge portion of the organic substrate package 240.
  • an opening for supplying the resist 37 into the space portion 236 may be formed at a predetermined portion of the lead frame 30P.
  • the opening is formed as a slit-shaped through hole in, for example, a thin plate portion 35 in the lead frame 30P, and the space portion 236 is communicated with the external space.
  • the resist 37 is filled in the space portion 236 from the opening of the lead frame 30P.
  • the resist 37 is used as a fluid that fills the gap between the lead frame 30P and the organic substrate 246.
  • the lead frame 30P mounted on the organic substrate package 240 is etched from the opposite surface 33b side.
  • the thin plate portion 35 of the lead frame 30P is removed, and the columnar portion 38 is formed. That is, the columnar portion formed by the upper and lower plated terminal portions 31, 32 and the columnar portion 38 becomes the columnar terminal 10 erected on the electrode terminal 217 via the solder portion 219.
  • the step of dicing the organic substrate package 240 in the state where the columnar terminals 10 are formed to be individualized is performed.
  • the organic substrate body 246 on which the columnar terminal 10 is formed and the mold resin portion 243 are cut by a dicing blade along a predetermined dicing line in a grid pattern corresponding to the arrangement of the image sensor 202 to be individualized. Will be done.
  • the organic substrate 246 is separated into a plurality of organic substrates 206, and the mold resin portion 243 is separated into a plurality of mold resins 213, so that a plurality of solid-state image sensors 201 can be obtained.
  • the columnar terminal 10 can be formed as an external connection terminal in a short time and at low cost as in the first embodiment, and solid-state imaging can be performed.
  • the mounting reliability of the device 201 can be improved.
  • Configuration example of the semiconductor device according to the third embodiment> A configuration example of the semiconductor device according to the third embodiment of the present technology will be described with reference to FIG. 22.
  • the solid-state image sensor 301 according to the present embodiment is an example of a semiconductor device, and the configuration of the semiconductor substrate 1A is different from that of the first embodiment.
  • the vertical direction in FIG. 22 is the vertical direction in the solid-state image sensor 301.
  • the solid-state image sensor 301 includes an image sensor 302 as a solid-state image sensor, a ceramic package 306, and a glass 303.
  • the solid-state image sensor 301 has a package structure in which the image sensor 302 is mounted in the ceramic package 306, the glass 303 is mounted on the ceramic package 306, and the internal space of the ceramic package 306 is a closed cavity 305. ..
  • the image sensor 302 is a rectangular plate-shaped chip, and the upper side is the light receiving surface side.
  • the image sensor 302 is, for example, a CMOS type image sensor.
  • the glass 303 is a transparent member having a rectangular plate-shaped outer shape.
  • the ceramic package 306 is a package substrate formed of ceramic as a material, and has a rectangular plate-shaped flat surface portion 306a and a wall portion 306b formed so as to form a rectangular frame shape along the edge portion of the flat surface portion 306a. Have.
  • the ceramic package 306 is formed in a flat box shape with the upper side open side by the flat surface portion 306a and the four wall portions 306b (see FIG. 25).
  • the image sensor 302 is mounted on the flat surface portion 306a of the ceramic package 306.
  • the ceramic package 306 has a front surface 306c on which the image sensor 302 is mounted and a back surface 306d which is a plate surface on the opposite side thereof in the flat surface portion 306a.
  • An image sensor 302 is die-bonded to the surface 306c side of the flat surface portion 306a of the ceramic package 306 by an insulating or conductive paste 307.
  • the glass 303 is supported in a fixed state on the wall portion 306b of the ceramic package 306.
  • the wall portion 306b of the ceramic package 306 has an upper surface 306e along a horizontal plane, and the glass 303 is fixed on the upper surface 306e by an adhesive 318.
  • the periphery of the cavity 305 is sealed with the adhesive 318.
  • the image sensor 302 and the ceramic package 306 are electrically connected by a plurality of bonding wires 308.
  • the bonding wire 308 electrically connects the pad electrode 309 formed on the upper surface of the image sensor 302 and the lead electrode 310 formed on the surface 306c of the flat surface portion 306a of the ceramic package 306.
  • the lead electrode 310 on the ceramic package 306 is connected to a plurality of electrode terminals 317 formed on the back surface 306d side of the flat surface portion 306a via a wiring pattern or the like formed in the ceramic package 306. It was
  • the terminal 10 is provided.
  • the columnar terminal 10 is provided in a state of protruding from each electrode terminal 317 provided on the back surface 306d side of the ceramic package 306.
  • the columnar terminal 10 is electrically connected to the electrode terminal 317 via the solder portion 319.
  • the solid-state image pickup device 301 includes a semiconductor substrate 301A including an image sensor 302 which is a semiconductor element, and a columnar terminal 10 formed by a part of a lead frame.
  • the semiconductor substrate 301A is a structure in which the image sensor 302 is mounted on the flat surface portion 306a of the ceramic package 306 and the glass 203 is provided on the wall portion 306b, and the ceramic package 306 is one side surface.
  • a plurality of electrode terminals 317 for external connection are provided on the back surface 306d of the above.
  • the columnar terminal 10 is provided so as to project from each electrode terminal 317 with respect to the semiconductor substrate 301A.
  • the manufacturing method of the solid-state image pickup device 301 of the present embodiment differs from the manufacturing method of the solid-state image pickup device 1 of the first embodiment in terms of the mounting mode of the lead frame 30 and the like.
  • a step of preparing the lead frame 30 is performed.
  • a step of mounting the half-etched lead frame 30 (30P) on the ceramic package 306 is performed.
  • the lead frame 30 is mounted by mounting the ceramic package 306 in the individual piece state on the lead frame 30P in the assembled state. That is, by joining the first plated terminal portion 31 of the lead frame 30P to the electrode terminal 317 which is the terminal of the ceramic package 306, the step of mounting the lead frame 30P on the plurality of ceramic packages 306 is performed.
  • FIG. 25 shows an image of mounting the lead frame 30 in this embodiment.
  • the flux-containing solder paste 311 is applied to the plated terminal portion 31 of the lead frame 30P by a method such as transfer.
  • a plurality of ceramic packages 306 are mounted on the lead frame 30P at a predetermined position corresponding to the first plating terminal portion 31 with each electrode terminal 317 by a chip mounter or the like. Reflow is performed at the temperature of.
  • the lead frame 30P is in a state where each first plating terminal portion 31 is bonded to the electrode terminal 317 via the solder portion 319 in which the solder paste 311 is solidified.
  • a space portion 336 is formed between the lead frame 30P and the ceramic package 306.
  • a step of filling the resist 37 in the space portion 336, which is the space between the lead frame 30P and the ceramic package 306, is performed.
  • the step of filling the resist 37 is performed after the step of mounting the lead frame 30P and before the step of forming the columnar terminal 10.
  • the resist 37 is discharged from the nozzle of the dispenser, for example, and is applied so as to fill the space 336 from the gap 306Y between the adjacent ceramic packages 306. As described above, in the present embodiment, the resist 37 is used as the fluid that fills the gap between the lead frame 30P and the ceramic package 306.
  • etching is performed on the lead frame 30P on which the plurality of ceramic packages 306 are mounted from the opposite surface 33b side.
  • the thin plate portion 35 of the lead frame 30P is removed, and the columnar portion 38 is formed. That is, the columnar portion formed by the upper and lower plated terminal portions 31, 32 and the columnar portion 38 becomes the columnar terminal 10 erected on the electrode terminal 317 via the solder portion 319. Further, the plurality of ceramic packages 306 are connected via the resist 37.
  • a step of removing the resist 37 is performed. As a result, the entire columnar terminal 10 is exposed, and the plurality of ceramic packages 306 connected via the resist 37 are separated.
  • the image sensor 302 is die-bonded onto the ceramic package 306, wire-bonded by the bonding wire 308, and the glass 303 is bonded to the ceramic package 306 to perform glass sealing.
  • a plurality of solid-state image sensors 301 can be obtained.
  • the columnar terminal 10 can be formed as an external connection terminal in a short time and at low cost as in the first embodiment, and solid-state imaging can be performed.
  • the mounting reliability of the device 301 can be improved.
  • Configuration example of the semiconductor device according to the fourth embodiment> A configuration example of the semiconductor device according to the fourth embodiment of the present technology will be described with reference to FIG. 26.
  • the semiconductor device 401 according to the present embodiment has a different configuration of the semiconductor substrate 1A in comparison with the first embodiment.
  • the vertical direction in FIG. 26 is the vertical direction in the semiconductor device 401.
  • the semiconductor device 401 includes an IC chip 402 as a semiconductor element, a rewiring layer 403, and a sealing resin portion 405.
  • the semiconductor device 401 has a so-called FOWLP (Fan Out Wafer Level Package) structure in which the rewiring layer 403 is expanded outside the outer shape of the IC chip 402.
  • FOWLP Field Wafer Level Package
  • the IC chip 402 is a rectangular plate-shaped semiconductor chip having a predetermined circuit structure.
  • the rewiring layer 403 is a rectangular plate-shaped portion for drawing wiring from the terminal of the IC chip 402, and has wiring formed of a low resistance metal material such as copper (Cu).
  • the rewiring layer 403 is formed on the lower surface 402a side of the IC chip 402, and has an extending portion 403a protruding from the outer shape of the IC chip 402.
  • the extending portion 403a is formed in all directions so as to surround the IC chip 402 in a plan view.
  • the sealing resin portion 405 is, for example, a thermosetting resin containing a filler containing a silicon oxide as a main component.
  • the sealing resin portion 405 is formed so as to cover the entire rewiring layer 403 and the IC chip 402 from above.
  • the sealing resin portion 405 is formed into a predetermined shape by, for example, injection molding using a mold.
  • a plurality of electrode terminals 417 are provided as a plurality of electrode portions for external connection.
  • the electrode terminal 417 is connected to the terminal of the IC chip 402 by the wiring of the rewiring layer 403.
  • the columnar terminal 10 is provided so as to protrude from each electrode terminal 417 provided on the back surface 403b side of the rewiring layer 403.
  • the columnar terminal 10 is electrically connected to the electrode terminal 417 via the solder portion 419.
  • the semiconductor device 401 includes a semiconductor substrate 401A including an IC chip 402 which is a semiconductor element, and a columnar terminal 10 formed by a part of a lead frame.
  • the semiconductor substrate 401A is a structure including an IC chip 402, a rewiring layer 403, and a sealing resin portion 405, and a plurality of semiconductor substrates 401A for external connection to the back surface 303b of the rewiring layer 403, which is one side surface. It has an electrode terminal 417 of.
  • the columnar terminal 10 is provided so as to project from each electrode terminal 417 with respect to the semiconductor substrate 401A.
  • Manufacturing method of semiconductor device according to the fourth embodiment> A method for manufacturing a semiconductor device according to a fourth embodiment of the present technology will be described with reference to FIGS. 27, 28, and 29.
  • the manufacturing method of the semiconductor device 401 of the present embodiment is the same as the manufacturing method of the solid-state imaging device 1 of the first embodiment, in which the lead frame piece 30X in which the lead frame 30 is individualized is mounted on the FOWLP in the wafer state. (See FIG. 29).
  • a step of preparing the lead frame 30 is performed.
  • a step of preparing a wafer FOWLP440 which is a FOWLP in a wafer state is performed.
  • the wafer FOWLP440 is an assembled state of the semiconductor substrate 401A of the semiconductor device 401, and has, for example, a circular plate-like outer shape as shown in FIG. 29.
  • the wafer FOWLP440 forms a mold resin portion 445 that serves as a sealing resin portion 405 so as to form a disk-shaped outer shape with respect to the IC chips 402 arranged at predetermined intervals.
  • the rewiring layer portion 443, which is the rewiring layer 403, is formed in a disk shape on the lower surface 402a side of the IC chip 402.
  • the mold resin portion 445 is formed into a predetermined shape by, for example, injection molding using a mold.
  • a plurality of electrode terminals 417 are formed in a predetermined arrangement on the plate surface 443b on the side opposite to the IC chip 402 side of the rewiring layer portion 443. It was
  • the wafer FOWLP440 which is an integral plate-like body including a plurality of IC chips 402 formed in an assembled state, is used as the semiconductor device main body to which the lead frame 30 is mounted.
  • a step of individualizing the etched lead frame 30 into a plurality of chips corresponding to the IC chip 402 is performed.
  • the lead frame 30 is divided into a plurality of lead frame pieces 30X corresponding to each IC chip 402.
  • the lead frame piece 30X is a rectangular plate-shaped chip having a size corresponding to the size of the semiconductor device 401 (see FIG. 29).
  • a step of mounting a plurality of lead frame pieces 30X on the wafer FOWLP440 is performed. That is, by joining the first plating terminal portion 31 of each lead frame piece 30X to the electrode terminal 417 which is a terminal of the wafer FOWLP440, a step of mounting the lead frame piece 30X on the wafer FOWLP440 is performed.
  • FIG. 29 shows an image of mounting the lead frame 30 in this embodiment.
  • a plurality of lead frame pieces 30X are in a state where each first plating terminal portion 31 is bonded to the electrode terminal 417 via the solder portion 419.
  • a space portion 436 is formed between the lead frame piece 30X and the rewiring layer portion 443.
  • a step of filling the space portion 436, which is the space between the lead frame piece 30X and the wafer FOWLP440, with the resist 37 is performed.
  • the step of filling the resist 37 is performed after the step of mounting the lead frame 30 and before the step of forming the columnar terminal 10.
  • the resist 37 is discharged from the nozzle of the dispenser, for example, and is a space portion 436 which is a gap between the lead frame piece 30X and the rewiring layer portion 443 from the gap 30Y (see FIG. 27D) between the adjacent lead frame pieces 30X. It is applied to fill the space. As described above, in the present embodiment, the resist 37 is used as a fluid that fills the gap between the lead frame piece 30X and the rewiring layer portion 443.
  • the lead frame piece 30X mounted on the wafer FOWLP440 is etched from the opposite surface 33b side.
  • the thin plate portion 35 of the lead frame piece 30X is removed, and the columnar portion 38 is formed. That is, the columnar portion formed by the upper and lower plated terminal portions 31, 32 and the columnar portion 38 becomes the columnar terminal 10 erected on the electrode terminal 417 via the solder portion 419.
  • the step of dicing the wafer FOWLP440 in a state where the columnar terminals 10 are formed to be individualized is performed.
  • the rewiring layer portion 443 and the mold resin portion 445 on which the columnar terminals 10 are formed are cut by a dicing blade along a predetermined grid-shaped dicing line corresponding to the arrangement of the IC chips 402 to form individual pieces. Is made.
  • the rewiring layer portion 443 is separated into a plurality of rewiring layers 403, and the mold resin portion 445 is separated into a plurality of sealing resin portions 405, so that a plurality of semiconductor devices 401 can be obtained.
  • the columnar terminal 10 can be formed as an external connection terminal in a short time and at low cost as in the first embodiment, and the semiconductor device 401 can be formed. Implementation reliability can be improved.
  • Configuration example of the semiconductor device according to the fifth embodiment> A configuration example of the semiconductor device according to the fifth embodiment of the present technology will be described with reference to FIG. As shown in FIG. 30, the solid-state image sensor 501 according to the present embodiment has a sealing resin portion on the back surface 2b side of the image sensor 2 in the configuration of the solid-state image sensor 1 according to the first embodiment (see FIG. 1). 505 is provided.
  • the sealing resin portion 505 is provided as a layered portion on the back surface 2b side of the image sensor 2 so as to fill the upper half of the electrode terminal 7, the solder portion 9, and the columnar terminal 10.
  • the lower half of the columnar terminal 10 projects downward from the lower surface 505a of the sealing resin portion 505.
  • the portion above (base end side) from the base end side portion 14 of the terminal body portion 13 is buried in the sealing resin portion 505, and is located below the tip end side portion 15 (the base end side).
  • the portion (on the tip side) protrudes from the sealing resin portion 505.
  • the sealing resin portion 505 includes a curved surface portion 505b along the upper outer peripheral surface 14a as a contact surface with respect to the columnar terminal 10.
  • sealing resin portion 505 for example, a thermosetting liquid resin such as an epoxy resin is used.
  • the sealing resin portion 505 is formed into a predetermined shape by, for example, coating with a dispenser, injection molding using a mold mold and a mold release film, or the like.
  • the sealing resin portion 505 is sealed instead of the resist 37 to be filled between the lead frame piece 30X and the silicon wafer 42 before the step of etching the opposite surface of the lead frame 30. It is formed by using a stop resin and leaving the sealing resin without removing it.
  • Manufacturing method of semiconductor device according to the fifth embodiment> A method for manufacturing a semiconductor device according to a fifth embodiment of the present technology will be described with reference to FIGS. 4 and 31.
  • a step of preparing the lead frame 30 is performed as in the first embodiment (see FIG. 4A). Further, a step of preparing the wafer CSP40 is performed (see FIGS. 4C and 6). Next, single-sided half-etching is performed on the lead frame 30 (see FIG. 4B). After that, a step of individualizing the etched lead frame 30 into a plurality of lead frame pieces 30X is performed (see FIG. 4C). Next, a step of mounting a plurality of lead frame pieces 30X on the wafer CSP 40 is performed (see FIG. 4D). By this step, a space 36 is formed between the lead frame piece 30X and the silicon wafer 42.
  • the sealing resin 537 is discharged from, for example, a nozzle of a dispenser, and is a space 36 which is a gap between the lead frame piece 30X and the silicon wafer 42 from a gap 30Y (see FIG. 4D) between adjacent lead frame pieces 30X. It is applied to fill the space. Further, the space 36 may be filled with the sealing resin 537 by injection molding using a mold mold and a release film. As described above, in the present embodiment, the sealing resin 537 is used as the fluid that fills the gap between the lead frame piece 30X and the silicon wafer 42.
  • the sealing resin 537 filled in the space 36 is solidified at a predetermined timing.
  • the sealing resin 537 is a thermosetting resin
  • a step of heating the sealing resin 537 at a predetermined temperature to cure it is performed.
  • the sealing resin 537 having fluidity becomes a cured sealing resin 537A by being cured.
  • the lead frame piece 30X mounted on the wafer CPS 40 is etched from the opposite surface 33b side.
  • the portion corresponding to the adjacent lead frame pieces 30X in the sealing resin 537A is provided as a protruding portion.
  • the convex portion 537X of the above is present.
  • the convex portion 537X is a portion formed by the sealing resin 537 that fills the gap 30Y between the adjacent lead frame pieces 30X, and is formed in a grid pattern corresponding to the arrangement of the lead frame pieces 30X.
  • the step of removing the convex portion 537X is performed with respect to the convex portion 537X appearing on the surface of the sealing resin 537A in this way.
  • the convex portion 537X is removed by cutting using, for example, a predetermined dicing blade or the like corresponding to the width of the convex portion 537X.
  • the method for removing the convex portion 537X is not particularly limited.
  • a step of dicing the wafer CPS 40 in a state where the columnar terminal 10 is formed and individualizing the wafer CPS 40 is performed.
  • the cured sealing resin 537A is separated together with the silicon wafer 42, the glass plate 43, and the wall portion 44 to become the sealing resin portion 505, and a plurality of solid-state imaging devices 501 having the sealing resin portion 505 are provided. can get.
  • the columnar terminal 10 can be formed as an external connection terminal in a short time and at low cost as in the first embodiment, and solid-state imaging can be performed.
  • the mounting reliability of the device 501 can be improved.
  • the sealing resin portion 505 can cover the back surface 2b side of the image sensor 2 and the root side portion of the columnar terminal 10.
  • the connection portion of the columnar terminal 10 to the electrode terminal 7 and the portion on the root side of the columnar terminal 10 can be protected and reinforced, so that the temperature cycle resistance can be improved and the board mounting reliability can be improved. ..
  • the heat dissipation pad 50 formed by the lead frame 30 is provided on the back surface 2b side of the image sensor 2, and the heat dissipation pad 50 is sealed on the back surface 2b side of the image sensor 2.
  • a resin portion 505 is provided. The sealing resin portion 505 covers the upper half of the columnar terminal 10 and the upper half of the heat dissipation pad 50.
  • the sealing resin portion 505 is provided as a layered portion on the back surface 2b side of the image sensor 2 so as to fill the pad connecting portion 57, the solder portion 59, and the upper half of the heat dissipation pad 50.
  • the lower half of the heat dissipation pad 50 projects downward from the lower surface 505a of the sealing resin portion 505.
  • the portion above the formation portion of the upper outer peripheral surface 53a of the intermediate layer portion 53 is buried in the sealing resin portion 505, and the lower outer peripheral surface 53b of the intermediate layer portion 53 is embedded.
  • the lower portion from the forming portion of the above protrudes from the sealing resin portion 505.
  • the sealing resin portion 505 includes a curved surface portion 505c along the upper outer peripheral surface 53a of the intermediate layer portion 53 in the contact surface with respect to the heat dissipation pad 50.
  • the sealing resin portion 505 can cover the upper portion of the heat radiating pad 50, and can protect and reinforce the heat radiating pad 50.
  • Modification 2 As shown in FIGS. 33A and 33B, in the modification 2, in the configuration in which the frame-shaped reinforcing portion 70 formed by the lead frame 30 is provided on the back surface 2b side of the image sensor 2, the back surface 2b side of the image sensor 2 is provided. A sealing resin portion 505 is provided. The sealing resin portion 505 covers the upper half portion of the columnar terminal 10 and the inner portion of the reinforcing portion 70.
  • the sealing resin portion 505 is provided as a layered portion on the back surface 2b side of the image sensor 2 so as to project the lower half portion of the columnar terminal 10 and fill the entire inner region of the frame-shaped reinforcing portion 70. There is.
  • the sealing resin portion 505 is formed so that the lower surface 505a is located at substantially the same height as the lower surface 73c of the reinforcing portion 70 and is flush with the reinforcing portion 70.
  • the sealing resin portion 505 includes a curved surface portion 505d along the inner peripheral surface 73a of the second layer portion 73 in the contact surface with respect to the reinforcing portion 70.
  • the sealing resin portion 505 can cover the inner portion of the reinforcing portion 70, and can protect and reinforce the reinforcing portion 70. As a result, the effect of improving the rigidity of the package by the reinforcing portion 70 can be effectively obtained.
  • Modification 3 As shown in FIGS. 34A and 34B, in the modification 3, in the configuration in which the frame-shaped GND plane 90 and the GND terminal 100 formed by the lead frame 30 are provided on the back surface 2b side of the image sensor 2, the image sensor 2 is provided. A sealing resin portion 505 is provided on the back surface 2b side. The sealing resin portion 505 covers the upper half portion of the columnar terminal 10, the inner portion of the GND plane 90, and the upper half portion of the GND terminal 100.
  • the sealing resin portion 505 is layered so as to project the lower half of each of the columnar terminal 10 and the GND terminal 100 on the back surface 2b side of the image sensor 2 and to fill the entire inner region of the frame-shaped GND plane 90. It is provided as a part.
  • the sealing resin portion 505 is provided so as to fill the upper half of the GND terminal connection portion 107, the solder portion 109, and the GND terminal 100.
  • the sealing resin portion 505 is formed so that the lower surface 505a is located at substantially the same height as the lower surface 93c of the GND plane 90 and is flush with the GND plane 90.
  • the sealing resin portion 505 includes a curved surface portion 505e along the inner peripheral surface 93a of the second layer portion 93 in the contact surface with respect to the GND plane 90.
  • the portion above the formation portion of the upper side surface 103a of the third layer portion 103 is buried in the sealing resin portion 505, and the formation portion of the lower outer peripheral surface 103b of the third layer portion 103.
  • the lower portion protrudes from the sealing resin portion 505.
  • the sealing resin portion 505 includes a curved surface portion 505f along the upper side surface 103a of the third layer portion 103 on the contact surface with respect to the GND terminal 100.
  • the sealing resin portion 505 can cover the inner portion of the GND plane 90 and the upper portion of the GND terminal 100, and protect and reinforce the GND plane 90 and the GND terminal 100. Can be done.
  • Modification example 4 As shown in FIGS. 35A and 35B, in the modified example 4, in the configuration provided with the shield portion 120 formed by the lead frame 30 on the back surface 2b side of the image sensor 2 and covering the built-in chip 125, the back surface 2b side of the image sensor 2 is provided. Is provided with a sealing resin portion 505. The sealing resin portion 505 covers the outside of the upper half portion of the columnar terminal 10 and the upper half portion of the shield portion 120.
  • the sealing resin portion 505 is provided as a layered portion on the back surface 2b side of the image sensor 2 so as to cover the pad connection portion 127, the solder portion 129, and the upper half portion of the shield portion 120 from the outer peripheral side of the shield portion 120. Has been done.
  • the lower half of the shield portion 120 projects downward from the lower surface 505a of the sealing resin portion 505.
  • the portion above the formation portion of the upper outer peripheral surface 123a of the intermediate layer portion 123 is buried in the sealing resin portion 505, and the lower outer peripheral surface 123b of the intermediate layer portion 123.
  • the portion below the forming portion protrudes from the sealing resin portion 505.
  • the sealing resin portion 505 includes a curved surface portion 505 g along the upper outer peripheral surface 123a of the intermediate layer portion 123 in the contact surface with respect to the shield portion 120.
  • the sealing resin portion 505 can cover the upper portion of the shield portion 120 from the outside, and can protect and reinforce the shield portion 120.
  • Modification 5 As shown in FIGS. 36A and 36B, in the modified example 5, in the configuration in which the columnar terminals 10A having an elliptical root portion are arranged radially from the center point O1, the sealing resin portion 505 is located on the back surface 2b side of the image sensor 2. Is provided. The sealing resin portion 505 covers the upper half portion of the columnar terminal 10A.
  • the sealing resin portion 505 is provided as a layered portion on the back surface 2b side of the image sensor 2 so as to fill the upper half of the electrode terminal 7, the solder portion 9, and the columnar terminal 10A.
  • the lower half of the columnar terminal 10A projects downward from the lower surface 505a of the sealing resin portion 505.
  • the portion above the base end side portion 14 of the terminal body portion 13 is buried in the sealing resin portion 505, and the portion below the tip end side portion 15 is sealed. It protrudes from the resin portion 505.
  • the sealing resin portion 505 includes a curved surface portion 505h along the upper outer peripheral surface 14a in the contact surface with respect to the columnar terminal 10A. It was
  • the sealing resin portion 505 can cover the back surface 2b side of the image sensor 2 and the root side portion of the columnar terminal 10A.
  • the connection portion of the columnar terminal 10A with respect to the electrode terminal 7 and the portion on the root side of the columnar terminal 10A can be protected and reinforced.
  • This effect combined with the thickened root side of the columnar terminal 10A and the radial arrangement of the plurality of columnar terminals 10A, can effectively improve the mechanical strength of the package structure and the temperature cycle.
  • the resistance and board mounting reliability can be effectively improved.
  • the image sensor 2 has the image sensor 2 according to the shapes of the various functional portions and the columnar terminals 10 formed by the lead frame 30.
  • the sealing resin portion 505 can be provided on the back surface 2b side.
  • the solid-state image sensor 601 according to the present embodiment has a sealing resin portion on the back surface 206b side of the organic substrate 206 in the configuration of the solid-state image sensor 201 according to the second embodiment (see FIG. 18).
  • 605 is provided.
  • the sealing resin portion 605 is a portion formed by the same material and manufacturing method as the sealing resin portion 505 according to the fifth embodiment.
  • the sealing resin portion 605 is provided as a layered portion on the back surface 206b side of the organic substrate 206 so as to fill the upper half of the electrode terminal 217, the solder portion 219, and the columnar terminal 10.
  • the lower half of the columnar terminal 10 projects downward from the lower surface 605a of the sealing resin portion 605.
  • the portion above the base end side portion 14 of the terminal body portion 13 is buried in the sealing resin portion 605, and the portion below the tip end side portion 15 is sealed. It protrudes from the resin portion 605.
  • the sealing resin portion 605 includes a curved surface portion 605b along the upper outer peripheral surface 14a as a contact surface with respect to the columnar terminal 10.
  • the sealing resin portion 605 is used instead of the resist 37 to be filled between the lead frame piece 30X and the organic substrate 246 before the step of etching the opposite surface of the lead frame 30. It is formed by using a sealing resin and leaving the sealing resin without removing it.
  • a step of preparing the lead frame 30 is performed (see FIG. 19A). Further, a step of preparing the organic substrate package 240 is performed (see FIGS. 19B and 21). Next, single-sided half-etching is performed on the lead frame 30 (see FIG. 19B). After that, a step of mounting the etched lead frame 30 (30P) on the organic substrate package 240 is performed (see FIG. 19C). By this step, a space portion 236 is formed between the lead frame 30P and the organic substrate body 246.
  • the sealing resin 537 is discharged from the nozzle of the dispenser, for example, and is applied so as to fill the space 236 from the gap between the lead frame 30P and the organic substrate 246 at the outer edge of the organic substrate package 240.
  • an opening for supplying the sealing resin 537 into the space portion 236 may be formed at a predetermined portion of the lead frame 30P.
  • the opening is formed as a slit-shaped through hole in, for example, a thin plate portion 35 in the lead frame 30P, and the space portion 236 is communicated with the external space.
  • the sealing resin 537 is filled in the space 236 from the opening of the lead frame 30P.
  • the space portion 236 may be filled with the sealing resin 537 by injection molding using a mold mold and a release film. Also in this case, a slit-shaped opening may be formed in the lead frame 30P.
  • the sealing resin 537 is used as the fluid that fills the gap between the lead frame 30P and the organic substrate 246.
  • the sealing resin 537 filled in the space portion 236 is solidified at a predetermined timing.
  • the sealing resin 537 is a thermosetting resin
  • a step of filling the space 236 with the sealing resin 537 and then a step of heating the sealing resin 537 at a predetermined temperature to cure the sealing resin 537 is performed.
  • the sealing resin 537 having fluidity becomes a cured sealing resin 537A by being cured.
  • the lead frame 30P mounted on the organic substrate package 240 is etched from the opposite surface 33b side.
  • a step of dicing the organic substrate package 240 in which the columnar terminal 10 is formed and individualizing the organic substrate package 240 is performed.
  • the cured sealing resin 537A is separated together with the organic substrate 246 and the molding resin portion 243 to become the sealing resin portion 605, and a plurality of solid-state image pickup devices 601 having the sealing resin portion 605 can be obtained.
  • connection portion and the columnar terminal 10 of the columnar terminal 10 to the electrode terminal 7 are provided by the sealing resin portion 605 as in the fifth embodiment. It is possible to protect and reinforce the part on the root side, improve the temperature cycle resistance, and improve the board mounting reliability.
  • the solid-state image sensor 701 according to the present embodiment has a rectangular plate shape instead of the ceramic package 306 in comparison with the configuration of the solid-state image sensor 301 according to the third embodiment (see FIG. 22).
  • the ceramic substrate 706 is provided.
  • a sealing resin portion 705 is provided from the back surface side to the peripheral portion of the ceramic substrate 706.
  • the sealing resin portion 705 is a portion formed by the same material and manufacturing method as the sealing resin portion 505 according to the fifth embodiment.
  • the ceramic substrate 706 is a substrate formed of ceramic as a material, and has an embodiment in which the wall portion 306b of the box-shaped ceramic package 306 of the third embodiment is omitted.
  • the ceramic substrate 706 has a front surface 706a which is an upper plate surface, a back surface 706b which is a lower plate surface, and four side surfaces 706c.
  • a plurality of electrode terminals 317 are formed on the back surface 706b side of the ceramic substrate 706.
  • the solid-state image sensor 701 supports the glass 303 above the ceramic substrate 706 by a part of the sealing resin portion 705. That is, the solid-state image sensor 701 has a wall-shaped portion on the upper side of the peripheral portion of the ceramic substrate 706 by a part of the sealing resin portion 705 as a portion that supports the glass 303 instead of the wall portion 306b of the ceramic package 306. Is forming.
  • the sealing resin portion 705 is above the lower layer portion 705p provided on the back surface 706b side of the ceramic substrate 706, the surrounding portion 705q provided on the side surface 706c side of the ceramic substrate 706, and the front surface 706a of the ceramic substrate 706. It has a wall portion 705r provided in the above.
  • the lower layer portion 705p, the surrounding portion 705q, and the wall portion 705r form a sealing resin portion 705 as an integral continuous portion.
  • the lower layer portion 705p is provided as a layered portion on the back surface 706b side of the ceramic substrate 706 so as to fill the upper half of the electrode terminal 317, the solder portion 319, and the columnar terminal 10.
  • the lower half of the columnar terminal 10 projects downward from the lower surface 705a of the lower layer portion 705p, which is the lower surface of the ceramic substrate 706.
  • the portion above the base end side portion 14 of the terminal body portion 13 is buried in the lower layer portion 705p, and the portion below the tip side portion 15 is the lower side. It protrudes from the layer portion 705p.
  • the lower layer portion 705p includes a curved surface portion 705b along the upper outer peripheral surface 14a as a contact surface with respect to the columnar terminal 10.
  • the surrounding portion 705q is formed so as to cover the rectangular plate-shaped ceramic substrate 706 on the outer side (side surface 706c side) of the lower layer portion 705p and the ceramic substrate 706 so as to cover the entire circumference.
  • the lower layer portion 705p is formed along the four side surfaces 705c of the ceramic substrate 706 and surrounds the outside of the ceramic substrate 706.
  • the wall portion 705r is formed in all directions so as to form a rectangular frame along the edge portion of the ceramic substrate 706.
  • the wall portion 705r is formed together with the ceramic substrate 706 so as to form a flat box shape with the upper side as the open side.
  • the wall portion 706r is a portion that supports the glass 303 above the image sensor 302.
  • the glass 303 is supported in a fixed state on the wall portion 705r of the ceramic substrate 706.
  • the wall portion 705r has an upper surface 705d along a horizontal plane, and glass 303 is fixed on the upper surface 705d by an adhesive 318.
  • the periphery of the cavity 305 is sealed by the sealing resin portion 705 and the adhesive 318.
  • the sealing resin portion 705 covers the lower part and the side surface of the ceramic substrate 706 as a whole, and protrudes in a frame shape on the upper side of the peripheral portion of the ceramic substrate 706.
  • the sealing resin portion 705 forms a support portion of the glass 303 by a frame-shaped protruding portion upward from the surface 706a of the ceramic substrate 706.
  • the sealing resin portion 705 is sealed in place of the resist 37 to be filled between the lead frame 30 and the ceramic package 306 before the step of etching the opposite surface of the lead frame 30. It is formed by using a resin and leaving the sealing resin in a predetermined shape without removing it.
  • Manufacturing method of semiconductor device according to the seventh embodiment> A method for manufacturing a semiconductor device according to a seventh embodiment of the present technology will be described with reference to FIGS. 40 and 41.
  • a step of preparing the lead frame 30 is performed, as in the third embodiment.
  • single-sided half-etching is performed on the lead frame 30.
  • the lead frame 30 is mounted by mounting the ceramic substrate 706 in the individual piece state on the lead frame 30P in the assembled state in the same manner as the mode shown in FIG. 25.
  • the solder paste 311 is applied to the plated terminal portion 31 of the lead frame 30P.
  • a plurality of ceramic substrates 706 are reflow-mounted on the lead frame 30P.
  • a space portion 736 is formed between the lead frame 30P and the ceramic substrate 706.
  • the space portion 736 which is the space between the lead frame 30P and the ceramic substrate 706, is filled with the sealing resin 537, and the surrounding portion 705q and the wall portion of the sealing resin portion 705 are filled.
  • the resin wall portion 746 is formed as a grid-like portion having a predetermined width in a plan view corresponding to the rectangular region of the ceramic substrate 706.
  • the filling of the sealing resin 537 into the space portion 736 and the formation of the resin wall portion 746 are performed by injection molding using a mold mold and a mold release film. As described above, in the present embodiment, the sealing resin 537 is used as the fluid that fills the gap between the lead frame 30P and the ceramic substrate 706.
  • the sealing resin 537 that is filled in the space portion 736 and forms the resin wall portion 746 is solidified at a predetermined timing after the injection process into the mold.
  • the sealing resin 537 becomes a cured sealing resin 537A by being cured.
  • the sealing resin 537A includes a portion filled in the space portion 736 and a resin wall portion 746.
  • etching is performed on the lead frame 30P on which the plurality of ceramic packages 306 are mounted from the opposite surface 33b side.
  • the image sensor 302 is die-bonded on the ceramic substrate 706 and wire-bonded by the bonding wire 308. Further, the glass 303 is adhered to the upper surface 746a of the resin wall portion 746 with the adhesive 318 to seal the glass.
  • the upper surface 746a of the resin wall portion 746 is a surface of the sealing resin portion 705 that becomes the upper surface 705d of the wall portion 705r.
  • a step of dicing the package to individualize it is performed.
  • the cured sealing resin 537A including the filling portion in the space portion 736 and the resin wall portion 746 is separated into the sealing resin portion 705, and a plurality of solid-state image pickup devices 701 having the sealing resin portion 705 are provided. can get.
  • connection portion and the columnar terminal 10 of the columnar terminal 10 to the electrode terminal 7 are provided by the sealing resin portion 705 as in the fifth embodiment. It is possible to protect and reinforce the part on the root side, improve the temperature cycle resistance, and improve the board mounting reliability. Further, by using the plate-shaped ceramic substrate 706, it can be manufactured at a lower cost than the ceramic package 306 of the third embodiment, and the cost can be suppressed.
  • the semiconductor device 801 according to the present embodiment has a sealing resin portion 805 on the back surface 403b side of the rewiring layer 403. Is provided.
  • the sealing resin portion 805 is a portion formed by the same material and manufacturing method as the sealing resin portion 505 according to the fifth embodiment.
  • the sealing resin portion 805 is provided as a layered portion on the back surface 403b side of the rewiring layer 403 so as to fill the upper half of the electrode terminal 417, the solder portion 419, and the columnar terminal 10.
  • the lower half of the columnar terminal 10 projects downward from the lower surface 805a of the sealing resin portion 805.
  • the portion above the base end side portion 14 of the terminal body portion 13 is buried in the sealing resin portion 805, and the portion below the tip end side portion 15 is sealed. It protrudes from the resin portion 805.
  • the sealing resin portion 805 includes a curved surface portion 805b along the upper outer peripheral surface 14a as a contact surface with respect to the columnar terminal 10.
  • the sealing resin portion 805 is used instead of the resist 37 to be filled between the lead frame piece 30X and the rewiring layer portion 443 before the step of etching the opposite surface of the lead frame 30. It is formed by using a sealing resin and leaving the sealing resin without removing it.
  • a step of preparing the lead frame 30 is performed as in the fourth embodiment (see FIG. 27A). Further, a step of preparing the wafer FOWLP440 is performed (see FIGS. 27C and 29). Next, single-sided half-etching is performed on the lead frame 30 (see FIG. 27B). Subsequently, a step of individualizing the etched lead frame 30 into a plurality of lead frame pieces 30X corresponding to the IC chip 402 is performed (see FIG. 27C).
  • a step of mounting the etched lead frame 30 (30P) on the wafer FOWLP440 is performed (see FIG. 27D). By this step, a space portion 436 is formed between the lead frame piece 30X and the wafer FOWLP440.
  • the sealing resin 537 is discharged from the nozzle of the dispenser, for example, and is a space that is a gap between the lead frame piece 30X and the rewiring layer portion 443 from the gap 30Y (see FIG. 27D) between the adjacent lead frame pieces 30X. It is applied so as to fill the portion 436. Further, the space portion 436 may be filled with the sealing resin 537 by injection molding using a mold mold and a release film. As described above, in the present embodiment, the sealing resin 537 is used as the fluid that fills the gap between the lead frame piece 30X and the rewiring layer portion 443.
  • the sealing resin 537 filled in the space 436 is solidified at a predetermined timing.
  • the sealing resin 537 having fluidity becomes a cured sealing resin 537A by being cured. It was
  • the lead frame piece 30X mounted on the wafer FOWLP440 is etched from the opposite surface 33b side. After that, a step of removing the convex portion 537X of the sealing resin 537A is performed.
  • a step of dicing the wafer FOWLP440 in a state where the columnar terminal 10 is formed and individualizing the wafer is performed.
  • the cured sealing resin 537A is separated together with the rewiring layer portion 443 and the molding resin portion 445 to become the sealing resin portion 805, and a plurality of semiconductor devices 801 having the sealing resin portion 805 are obtained.
  • the sealing resin portion 805 connects the columnar terminal 10 to the electrode terminal 7 and the columnar terminal 10.
  • the part on the root side can be protected and reinforced, and the temperature cycle resistance can be improved and the board mounting reliability can be improved.
  • the manufacturing method of the present embodiment differs from the manufacturing method of the solid-state image sensor 1 of the first embodiment in terms of the mounting mode of the lead frame 30. That is, in the manufacturing method of the first embodiment, the lead frame piece 30X in which the lead frame 30 is individualized is mounted on the WL-CSP in the wafer state (see FIG. 6), but the manufacturing method of the ninth embodiment is in the wafer state. The lead frame 30 (30P) in the assembled state is mounted on the WL-CSP of the above (see FIG. 46). The other steps are common to the first embodiment.
  • a step of preparing the lead frame 30 is performed as in the first embodiment (see FIG. 44A). Further, a step of preparing the wafer CSP40 is performed (see FIGS. 44B and 46). Next, single-sided half-etching is performed on the lead frame 30 (see FIG. 44B).
  • FIG. 44C a step of mounting the lead frame 30P that has undergone half-etching is performed on the wafer CSP 40.
  • the lead frame 30P is mounted on the wafer CSP 40 in an assembled state without being separated into individual pieces.
  • a space portion 936 is formed between the lead frame 30P and the silicon wafer 42.
  • FIG. 46 shows an image of mounting the lead frame 30 in this embodiment.
  • the resist 37 is discharged from the nozzle of the dispenser, for example, and is applied so as to fill the space portion 936 from the gap between the lead frame 30P and the silicon wafer 42 at the outer edge portion of the wafer CSP 40.
  • an opening for supplying the resist 37 into the space portion 936 may be formed at a predetermined portion of the lead frame 30P.
  • the opening is formed as a slit-shaped through hole in, for example, a thin plate portion 35 in the lead frame 30P, and the space portion 936 is communicated with the external space.
  • the resist 37 is filled in the space portion 936 through the opening of the lead frame 30P.
  • the lead frame 30P mounted on the wafer CSP 40 is etched from the opposite surface 33b side.
  • the step of removing the resist 37 is performed, the step of dicing the wafer CSP40 in the state where the columnar terminals 10 are formed to be individualized is performed. As a result, a plurality of solid-state image pickup devices 1 can be obtained.
  • the columnar terminal 10 can be formed as an external connection terminal in a short time and at low cost as in the first embodiment, and the solid-state image pickup device can be formed.
  • the mounting reliability of 1 can be improved.
  • Configuration example of the semiconductor device according to the tenth embodiment> A configuration example of the semiconductor device according to the tenth embodiment of the present technology will be described with reference to FIGS. 47 and 48.
  • the solid-state image sensor 1001 of the present embodiment has a different shape of the terminal body 13 of the columnar terminal 10 in comparison with the solid-state image sensor 1 of the first embodiment. Other configurations are common to the first embodiment.
  • the solid-state image sensor 1001 includes a semiconductor substrate 1A including an image sensor 2 and a columnar terminal 10B (10) formed by a part of the lead frame 30.
  • the columnar terminal 10B is a portion between the proximal end side terminal portion 11, the distal end side terminal portion 12, and the proximal end side terminal portion 11 and the distal end side terminal portion 12, and forms the main body portion of the columnar terminal 10B. It has a portion 1013.
  • the terminal body portion 1013 is a columnar portion that constitutes most of the columnar terminal 10B.
  • the terminal body portion 1013 substantially matches the shape and dimensions of the upper surface 1013a, which is the joint surface with respect to the proximal end side terminal portion 11, with the lower surface 11b of the proximal end side terminal portion 11, and is a joint surface with respect to the distal end side terminal portion 12.
  • the shape and dimensions of a certain lower surface 1013b are substantially matched with the upper surface 12b of the tip end side terminal portion 12.
  • the terminal main body 1013 is formed by a part of the frame main body 33 like the terminal main body 13 of the above-described embodiment.
  • the joint surface of the columnar terminal 10B with respect to the electrode terminal 7 is larger than the end surface on the tip end side of the columnar terminal 10B. That is, in the columnar terminal 10B, the area of the base end side terminal portion 11 is larger than the area of the tip end side terminal portion 12.
  • the terminal body portion 1013 has a substantially tapered outer diameter in which the outer diameter is gradually reduced from the proximal end side terminal portion 11 side to the distal end side terminal portion 12 side according to the size relationship between the proximal end side terminal portion 11 and the distal end side terminal portion 12.
  • the outer peripheral surface 1013c of the terminal body 1013 forms a concave curve with the central axis side of the columnar terminal 10B as the convex side.
  • the terminal body portion 1013 has a gentle reverse taper shape whose outer diameter is gradually increased from the upper side to the lower side with respect to the lower portion thereof.
  • the solid-state image sensor 1001 having the above configuration is mounted on the mounting substrate 20 having the land electrode 21 with the columnar terminal 10B as a connection terminal.
  • the columnar terminal 10B is joined to the land electrode 21 via the solder portion 25.
  • the solder portion 25 fills the space between the base end side terminal portion 11 and the land electrode 21 and covers the lower portion of the columnar terminal 10B while forming a downward spreading shape. It has an intervening portion 25a, a lower end outer peripheral portion 25b, and a peripheral wall portion 25c.
  • the electrical connection portion between the electrode terminal 7 of the image sensor 2 and the land electrode 21 of the mounting substrate 20 is provided in the upper and lower intermediate portions.
  • a conductor portion having an enlarged diameter on both upper and lower ends is formed.
  • This conductor portion is a portion connecting the electrode terminal 7 and the land electrode 21, and is a columnar portion including a solder portion 9, a columnar terminal 10B, and a solder portion 25.
  • the conductor portion has a medium-thin shape in which the outer diameter is gradually reduced from both ends to the center portion in the vertical direction, and is substantially vertically symmetrical with the vertical center portion of the terminal body portion 1013 as the center in the vertical cross-sectional view. Has a shape.
  • the terminal body portion 1013 is mounted with the lead frame 30 at the original plate thickness without half-etching the lead frame 30, and then the plated terminal portions 31 and 32 are used as masks. It is formed all at once by performing full etching at once.
  • a step of preparing the lead frame 30 and a step of preparing the wafer CSP 40 are performed.
  • a step of mounting the lead frame 30 on the wafer CSP 40 is performed without performing half etching on the lead frame 30.
  • the lead frame 30 is reflow-mounted on the wafer CSP 40 in an assembled state without being fragmented (see FIG. 46).
  • the lead frame 30 is in a state where each first plating terminal portion 31 is bonded to the electrode terminal 7 via the solder portion 9.
  • etching is performed on the lead frame 30 mounted on the wafer CPS 40 from the opposite surface 33b side.
  • full etching is performed to remove the portion of the frame main body 33 other than the formed regions of the plated terminal portions 31 and 32 as a whole in the plate thickness direction of the frame main body 33.
  • the frame body 33 of the lead frame 30 is partially removed by etching with the second plated terminal 32 and the first plated terminal 31 of the frame body 33 as masks, thereby removing the frame body 33 from the electrode terminal 7.
  • a step of forming the protruding columnar terminal 10B is performed.
  • the portion of the frame body 33 of the lead frame 30 other than the portion between the first plated terminal portion 31 and the second plated terminal portion 32 is removed.
  • the portion of the frame main body portion 33 between the first plated terminal portion 31 and the second plated terminal portion 32 remains as the columnar portion 1038.
  • the columnar portion formed by the upper and lower plated terminal portions 31, 32 and the columnar portion 1038 becomes the columnar terminal 10B erected on the electrode terminal 7 via the solder portion 9.
  • the surface of the columnar terminal 10B that becomes the outer peripheral surface 1013c of the terminal body portion 1013 is formed as the outer peripheral surface 1038c of the columnar portion 1038. That is, the first plated terminal portion 31 becomes the base end side terminal portion 11, the second plated terminal portion 32 becomes the tip end side terminal portion 12, the columnar portion 1038 becomes the terminal main body portion 1013, and the columnar terminal 10B is formed.
  • the columnar terminal 10B can be formed as an external connection terminal in a short time and at low cost as in the first embodiment, and solid-state imaging can be performed.
  • the mounting reliability of the device 1001 can be improved.
  • the strength of the conductor portion for connecting the electrode terminal 7 of the image sensor 2 and the land electrode 21 of the mounting substrate 20 is determined by the size relationship between the first plating terminal portion 31 and the second plating terminal portion 32. Can be improved. That is, as shown in FIG. 48, in a state where the solid-state imaging device 1001 is mounted on the mounting substrate 20, the conductor portion including the solder portion 25 wetted with respect to the columnar terminal 10B has a substantially vertically symmetrical shape as a whole. be able to. As a result, the upper and lower cross-sectional sizes of the conductor portion can be balanced, and the structure can be made so that the conductor portion is not easily broken.
  • the manufacturing step can be simplified. This makes it possible to reduce the manufacturing cost.
  • the solid-state image pickup device 1 is used as an image capture unit (photoelectric conversion unit) such as an image pickup device such as a digital still camera or a video camera, a portable terminal device having an image pickup function, or a copier using a solid-state image sensor as an image reading unit. It can be applied to all electronic devices that use a solid-state image sensor.
  • the solid-state image sensor may be in the form of one chip, or may be in the form of a module having an image pickup function in which an image pickup unit and a signal processing unit or an optical system are packaged together. You may.
  • the image pickup device 2100 as an electronic device includes an optical unit 2102, a solid-state image pickup device 1, a DSP (Digital Signal Processor) circuit 2103 which is a camera signal processing circuit, a frame memory 2104, and a display unit. It includes a 2105, a recording unit 2106, an operation unit 2107, and a power supply unit 2108.
  • the DSP circuit 2103, the frame memory 2104, the display unit 2105, the recording unit 2106, the operation unit 2107, and the power supply unit 2108 are connected to each other via the bus line 2109.
  • the optical unit 2102 includes a plurality of lenses, captures incident light (image light) from the subject, and forms an image on the image pickup surface of the solid-state image pickup device 1.
  • the solid-state imaging device 1 converts the amount of incident light imaged on the imaging surface by the optical unit 2102 into an electric signal in pixel units and outputs it as a pixel signal.
  • the display unit 2105 comprises a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the solid-state image sensor 1.
  • the recording unit 2106 records the moving image or still image captured by the solid-state image sensor 1 on a recording medium such as a hard disk or a semiconductor memory.
  • the operation unit 2107 issues operation commands for various functions of the image pickup apparatus 2100 under the operation of the user.
  • the power supply unit 2108 appropriately supplies various power sources that serve as operating power sources for the DSP circuit 2103, the frame memory 2104, the display unit 2105, the recording unit 2106, and the operation unit 2107.
  • the package size can be reduced and the transmission delay of the high-speed interface can be suppressed by a simple structure in dealing with the heat generation of the solid-state image pickup apparatus 1. can do.
  • the miniaturization of the image pickup device 2100 can be promoted.
  • the lead frame 30 has plated terminal portions 31 and 32 formed by plating as its terminal portions, but the terminal portion of the lead frame 30 is a portion formed by a method other than plating. You may.
  • the present technology can have the following configurations. (1) A step of preparing a lead frame having a plate-shaped frame main body and a plurality of terminal parts provided in pairs so as to overlap at least a part of the plate surfaces on both sides of the frame main body in view of the plate surface. A step of mounting the lead frame on the semiconductor device main body by joining the terminal portion of one plate surface of the frame main body portion to an electrode portion of the semiconductor device main body including a semiconductor element. A semiconductor including a step of forming a columnar terminal protruding from the electrode portion by partially removing the frame main body portion by etching using the terminal portion of the other plate surface of the frame main body portion as a mask. Manufacturing method of the device.
  • a step of partially removing the frame main body portion in the plate thickness direction by etching the terminal portion with respect to one plate surface side of the frame main body portion as a mask is further provided.
  • the step of filling the space between the lead frame and the semiconductor device main body with an insulating fluid is further provided (1).
  • the method for manufacturing a semiconductor device As the semiconductor device main body, an integral plate-like body including a plurality of the semiconductor elements formed in an aggregated state is used.
  • a step of separating the lead frame into a plurality of chips corresponding to the semiconductor element is further provided.
  • the mounting step is the method for manufacturing a semiconductor device according to (2) above, wherein the plurality of chips are mounted on the semiconductor device main body.
  • the preparation step includes a step of forming the plurality of terminal portions by plating the frame main body portion. In the step of forming the plurality of terminal portions, the terminal portion formed on one plate surface of the frame main body portion is formed larger than the terminal portion formed on the other plate surface of the frame main body portion. 2) The method for manufacturing a semiconductor device according to any one of (4).
  • the terminal portion formed on one plate surface of the frame main body portion has an elliptical shape, and the terminal portion formed on the other plate surface of the frame main body portion is circular.
  • the joint surface of the columnar terminal with respect to the electrode portion has an elliptical shape, and the end surface on the tip end side of the columnar terminal has a circular shape.
  • Solid-state image sensor (semiconductor device) 1A, 201A, 301A, 401A Semiconductor substrate 2,202,302 Image sensor (semiconductor element) 7,217,317,417 Electrode terminal (electrode part) 10 Columnar terminal 11 Base end side terminal part 12 Tip side terminal part 13 Terminal body part 30 Lead frame 30X Lead frame piece 31 First plated terminal part (terminal part) 32 2nd plated terminal part (terminal part) 33 Frame body 33a Facing surface (one plate surface) 33b Opposite surface (the other plate surface) 36,236,336,436,736,936 Space 37 Resist (fluid, photoresist) 40 Wafer CSP (semiconductor device body, plate-shaped body) 50 Heat dissipation pad 70 Reinforcing part 90 GND plane 120 Shielding part 125 Built-in chip (second semiconductor element) 240 Organic substrate package (semiconductor device body) 240 Organic substrate package (semiconductor device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

半導体装置の製造方法において、比較的短時間で安価に外部接続端子を形成することを可能とし、実装基板に対する実装信頼性を向上する。 板状のフレーム本体部、およびフレーム本体部の両側の板面に板面視で少なくとも一部同士を重ねるように対で設けられた複数の端子部を有するリードフレームを準備する工程と、フレーム本体部の一方の板面の端子部を、半導体素子を含む半導体装置本体の電極部に接合することで、リードフレームを半導体装置本体に実装する工程と、フレーム本体部の他方の板面の端子部をマスクとしたエッチングにより、フレーム本体部を部分的に除去することで、半導体装置本体の電極部から突出した柱状端子を形成する工程と、を備える。

Description

半導体装置の製造方法、半導体装置、および電子機器
 本開示は、半導体装置の製造方法、半導体装置、および電子機器に関する。
 近年、半導体装置のパッケージ構造として、WL-CSP(ウェーハレベルチップサイズ(またはスケール)パッケージ)と呼ばれる構造が普及している。WL-CSPは、ウェーハ状態でパッケージを作り込む加工が施された後に、チップの大きさで個片化されて製造されるものであり、装置の小型化に大きく寄与する。
 特許文献1には、WL-CSPの構造として、支持基板に対して、半導体基板の一方の面に回路素子等を設けた半導体素子を接合した構成が開示されている。半導体基板には、回路素子の周囲に形成された電極パッドと電気的に接続された貫通電極が設けられており、半導体基板の他方の面には、貫通電極と電気的に接続された外部配線層が設けられている。
 このような構成において、半導体基板の他方の面には、WL-CSPに対する外部端子との接続を容易に行うための接続部としての金属ポストが設けられている。金属ポストは、外部配線層に電気的に接続された状態で、半導体基板の他方の面を被覆する保護膜の表面から突出するように設けられている。
 このようにWL-CSPにおいて外部接続端子として設けられる金属ポストについては、その形成方法として、例えば、銅(Cu)、ニッケル(Ni)、金(Au)等のメッキを用いた方法が用いられている。具体的には、例えば、外部配線層を被覆する電気絶縁性を有する保護膜が、金属ポストの形成部位について、フォトリソグラフィを用いたパターニングにより部分的に除去され、その除去部分から外部配線層が露出した状態となる。そして、金属材料によって保護膜の除去部分を埋めるようにメッキが用いられ、金属ポストとして、保護膜から突出した柱状の電極が形成される。
特開2009-194396号公報
 上述したようにメッキを用いて外部接続端子としての金属ポストを形成する技術によれば、次のような問題がある。
 まず、メッキを行うに際して、保護膜を部分的に除去する工程として、フォトリソグラフィによる露光・現像等の工程が必要となるため、工程数が増えるという問題がある。また、メッキの工程では、メッキの積み上げにより工程数が多くなるという問題がある。特に、金属ポストの高さが高いほど、メッキの工程数が増え、時間とコストが増大することになる。
 また、金属ポストの高さが低い(例えば数10μm)と、WL-CSPの材料と、WL-CSPが実装される実装基板の材料との線膨張係数の差に起因して生じる応力を吸収しきれないことがある。このようにパッケージと実装基板との間の応力が十分に吸収できない場合、温度サイクル試験等によって評価される基板実装の信頼性が不十分となる。 
 本技術の目的は、比較的短時間で安価に外部接続端子を形成することができるとともに、実装基板に対する実装信頼性を向上することができる半導体装置の製造方法、半導体装置、および電子機器を提供することである。
 本技術に係る半導体装置の製造方法は、板状のフレーム本体部、および前記フレーム本体部の両側の板面に板面視で少なくとも一部同士を重ねるように対で設けられた複数の端子部を有するリードフレームを準備する工程と、前記フレーム本体部の一方の板面の前記端子部を、半導体素子を含む半導体装置本体の電極部に接合することで、前記リードフレームを前記半導体装置本体に実装する工程と、前記フレーム本体部の他方の板面の前記端子部をマスクとしたエッチングにより、前記フレーム本体部を部分的に除去することで、前記電極部から突出した柱状端子を形成する工程と、を備えるものである。
 本技術に係る半導体装置の製造方法の他の態様は、前記半導体装置の製造方法において、前記実装する工程の前に、前記フレーム本体部の一方の板面側に対する前記端子部をマスクとしたエッチングにより、前記フレーム本体部をその板厚方向について部分的に除去する工程をさらに備え、前記実装する工程の後、かつ前記柱状端子を形成する工程の前に、前記リードフレームと前記半導体装置本体との間の空間に、絶縁性を有する流動体を充填する工程をさらに備えるものである。
 本技術に係る半導体装置の製造方法の他の態様は、前記半導体装置の製造方法において、前記半導体装置本体として、集合状態で形成された複数の前記半導体素子を含む一体の板状体を用い、前記除去する工程の後に、前記リードフレームを前記半導体素子に対応した複数のチップに個片化する工程をさらに備え、前記実装する工程は、前記複数のチップを前記半導体装置本体に実装するものである。
 本技術に係る半導体装置の製造方法の他の態様は、前記半導体装置の製造方法において、前記充填する工程では、前記流動体として、フォトレジストを用いるものである。
 本技術に係る半導体装置の製造方法の他の態様は、前記半導体装置の製造方法において、前記準備する工程は、前記フレーム本体部に対するメッキにより、前記複数の端子部を形成する工程を含み、前記複数の端子部を形成する工程では、前記フレーム本体部の一方の板面に形成する前記端子部を、前記フレーム本体部の他方の板面に形成する前記端子部よりも大きく形成するものである。
 本技術に係る半導体装置の製造方法の他の態様は、前記半導体装置の製造方法において、前記複数の端子部を形成する工程では、前記フレーム本体部の一方の板面に形成する前記端子部を楕円形状とするとともに、前記フレーム本体部の他方の板面に形成する前記端子部を円形状とし、前記楕円形状の前記端子部を、楕円形状の長径方向を前記半導体素子の中央部に向けるように形成するものである。
 本技術に係る半導体装置は、半導体素子を含み、一側の面に外部接続用の複数の電極部を有する半導体基体と、前記半導体基体に対して前記電極部から突出するように設けられ、リードフレームの一部により形成された柱状端子と、を備えるものである。
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記電極部に対する前記柱状端子の接合面は、前記柱状端子の先端側の端面よりも大きいものである。
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記電極部に対する前記柱状端子の接合面は楕円形状であり、前記柱状端子の先端側の端面は円形状であり、複数の前記柱状端子は、前記電極部に対する接合面の楕円形状の長径方向を前記半導体基体の中央部に向けるように設けられているものである。
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成された放熱用パッドをさらに備えるものである。
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成された補強部をさらに備えるものである。
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成されたGNDプレーンをさらに備えるものである。
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記半導体基体の一側の面に設けられた第2の半導体素子と、前記半導体基体の一側の面に設けられ、前記リードフレームの一部により前記第2の半導体素子を覆うように形成されたシールド部と、をさらに備えるものである。
 本技術に係る電子機器は、半導体素子を含み、一側の面に外部接続用の複数の電極部を有する半導体基体と、前記半導体基体に対して前記電極部から突出するように設けられ、リードフレームの一部により形成された柱状端子と、を備える半導体装置を備えたものである。
本技術の第1実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第1実施形態に係る固体撮像装置の裏面側を示す図である。 本技術の第1実施形態に係る柱状端子の構成および基板実装の態様を示す断面図である。 本技術の第1実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第1実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第1実施形態に係るウェーハCSPに対するリードフレームの実装態様を示す図である。 本技術の第1実施形態に係る固体撮像素子の変形例1の構成を示す図である。図7Aは断面図、図7Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例1に係るリードフレームの構成を示す図である。図8Aは断面図、図8Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例2の構成を示す図である。図9Aは断面図、図9Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例2に係るリードフレームの構成を示す図である。図10Aは断面図、図10Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例3の構成を示す図である。図11Aは断面図、図11Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例3に係るリードフレームの構成を示す図である。図12Aは断面図、図12Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例4の構成を示す図である。図13Aは断面図、図13Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例4に係るリードフレームの構成を示す図である。図14Aは断面図、図14Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例5の構成を示す図である。図15Aは断面図、図15Bは底面図である。 本技術の第1実施形態に係る固体撮像素子の変形例5の柱状端子の構成を示す図である。図16Aは底面図、図16Bは図16AにおけるA-A断面図、図16Cは図16AにおけるB-B断面図である。 本技術の第1実施形態に係る固体撮像素子の変形例5に係るリードフレームの構成を示す図である。図17Aは断面図、図17Bは底面図である。 本技術の第2実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第2実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第2実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第2実施形態に係る有機基板パッケージに対するリードフレームの実装態様を示す図である。 本技術の第3実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第3実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第3実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第3実施形態に係るセラミックパッケージに対するリードフレームの実装態様を示す図である。 本技術の第4実施形態に係る半導体装置の構成を示す断面図である。 本技術の第4実施形態に係る半導体装置の製造方法についての説明図である。 本技術の第4実施形態に係る半導体装置の製造方法についての説明図である。 本技術の第4実施形態に係るウェーハFOWLPに対するリードフレームの実装態様を示す図である。 本技術の第5実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第5実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第5実施形態に係る固体撮像素子の変形例1の構成を示す図である。図32Aは断面図、図32Bは底面図である。 本技術の第5実施形態に係る固体撮像素子の変形例2の構成を示す図である。図33Aは断面図、図33Bは底面図である。 本技術の第5実施形態に係る固体撮像素子の変形例3の構成を示す図である。図34Aは断面図、図34Bは底面図である。 本技術の第5実施形態に係る固体撮像素子の変形例4の構成を示す図である。図35Aは断面図、図35Bは底面図である。 本技術の第5実施形態に係る固体撮像素子の変形例5の構成を示す図である。図36Aは断面図、図36Bは底面図である。 本技術の第6実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第6実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第7実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第7実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第7実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第8実施形態に係る半導体装置の構成を示す断面図である。 本技術の第8実施形態に係る半導体装置の製造方法についての説明図である。 本技術の第9実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第9実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の第9実施形態に係るウェーハCSPに対するリードフレームの実装態様を示す図である。 本技術の第10実施形態に係る固体撮像装置の構成を示す断面図である。 本技術の第10実施形態に係る柱状端子の構成および基板実装の態様を示す断面図である。 本技術の第10実施形態に係る固体撮像装置の製造方法についての説明図である。 本技術の実施形態に係る半導体装置を備えた電子機器の構成例を示すブロック図である。
 本技術は、半導体装置のパッケージ構造において、板状のリードフレームをエッチング等によって加工したものを柱状の外部接続端子とすることで、製造コストの低減を図るとともに、基板実装信頼性の向上を図ろうとするものである。
 以下、図面を参照して、本技術を実施するための形態(以下「実施形態」と称する。)を説明する。なお、実施形態の説明は以下の順序で行う。
 1.第1実施形態に係る半導体装置の構成例
 2.第1実施形態に係る半導体装置の製造方法
 3.第1実施形態に係る半導体装置の変形例
 4.第2実施形態に係る半導体装置の構成例
 5.第2実施形態に係る半導体装置の製造方法
 6.第3実施形態に係る半導体装置の構成例
 7.第3実施形態に係る半導体装置の製造方法
 8.第4実施形態に係る半導体装置の構成例
 9.第4実施形態に係る半導体装置の製造方法
 10.第5実施形態に係る半導体装置の構成例
 11.第5実施形態に係る半導体装置の製造方法
 12.第5実施形態に係る半導体装置の変形例
 13.第6実施形態に係る半導体装置の構成例
 14.第6実施形態に係る半導体装置の製造方法
 15.第7実施形態に係る半導体装置の構成例
 16.第7実施形態に係る半導体装置の製造方法
 17.第8実施形態に係る半導体装置の構成例
 18.第8実施形態に係る半導体装置の製造方法
 19.第9実施形態に係る半導体装置の製造方法
 20.第10実施形態に係る半導体装置の構成例
 21.第10実施形態に係る半導体装置の製造方法
 22.電子機器の構成例
 <1.第1実施形態に係る半導体装置の構成例> 
 本技術の第1実施形態に係る半導体装置の構成例について、図1、図2および図3を参照して説明する。本実施形態では、半導体装置の一例として、半導体素子であるイメージセンサを含む固体撮像装置1を例にとって説明する。なお、図1における上下方向を固体撮像装置1における上下方向とする。
 図1に示すように、固体撮像装置1は、固体撮像素子としてのイメージセンサ2と、透光性部材としてのガラス3と、イメージセンサ2上にガラス3を支持する支持部としてのリブ部4とを備える。固体撮像装置1は、イメージセンサ2上にリブ部4を介してガラス3をマウントし、イメージセンサ2とガラス3との間に中空部として空隙状のキャビティ5を有するパッケージ構造を備えている。固体撮像装置1は、パッケージ構造としていわゆるWL-CSP構造を採用したものである。
 イメージセンサ2は、半導体の一例であるシリコン(Si)により構成された半導体基板を含む矩形板状のチップであり、一方の板面である表面2a側を受光側とし、その反対側の板面を裏面2bとする。イメージセンサ2の表面2a側には、複数の受光素子が形成されている。イメージセンサ2は、CMOS(Complementary Metal Oxide Semiconductor)型のイメージセンサである。ただし、イメージセンサ2はCCD(Charge Coupled Device)型のイメージセンサであってもよい。
 イメージセンサ2の表面2a側には、イメージセンサ素子が形成されている。イメージセンサ2は、表面2a側に、受光部として、例えばベイヤ(Bayer)配列等の所定の配列で形成された多数の画素を含む受光領域である画素領域を有し、画素領域の周囲の領域を周辺領域とする。画素領域は、各画素における光電変換により信号電荷の生成、増幅、および読み出しを行う有効画素領域を含む。画素領域の画素は、光電変換機能を有する光電変換部としてのフォトダイオードと、複数の画素トランジスタとを有する。
 イメージセンサ2の表面2a側においては、半導体基板に対して、酸化膜等からなる反射防止膜や、有機材料により形成された平坦化膜等を介して、カラーフィルタおよびオンチップレンズが各画素に対応して形成されている。オンチップレンズに入射した光が、カラーフィルタや平坦化膜等を介してフォトダイオードで受光される。
 イメージセンサ2の構成としては、例えば、半導体基板の表面側に画素領域を形成した表面照射型(Front Side Illumination)のものや、光の透過率を向上させるためにフォトダイオード等を逆に配置し半導体基板の裏面側を受光面側とした裏面照射型(Back Side Illumination)のものや、画素群の周辺回路を積層した1つのチップとしたもの等がある。ただし、本技術に係るイメージセンサ2は、これらの構成のものに限定されない。
 ガラス3は、透明部材の一例であり、矩形板状の外形を有し、平面視でイメージセンサ2と略同じ外形寸法を有する。ガラス3は、イメージセンサ2の受光側において、平面視でイメージセンサ2の外形に略一致するように、かつ、イメージセンサ2に対して平行状に所定の間隔を隔てて設けられている。ガラス3は、イメージセンサ2に対向する側の板面である下面3bと、その反対側の面である上面3aとを有する。ガラス3は、イメージセンサ2に対してリブ部4により固定状態で支持されている。
 ガラス3は、その上方に位置するレンズ等の光学系から入射する各種光を透過させる。ガラス3を透過した光は、キャビティ5を介してイメージセンサ2の受光面に到達する。ガラス3は、イメージセンサ2の受光面側を保護する機能を有する。なお、ガラス3の代わりに、例えば、プラスチック板、あるいは赤外光のみを透過するシリコン板等を用いることができる。
 リブ部4は、イメージセンサ2の表面2aにおいて画素領域を囲むように、画素領域を除いた周辺領域に設けられている。リブ部4は、イメージセンサ2の表面2aとガラス3の下面3bとの間に介在し、イメージセンサ2とガラス3との間にキャビティ5を形成する。リブ部4は、キャビティ5の周囲を封止する封止部として機能し、ガラス3とともに、キャビティ5に対する外部からの水分(水蒸気)やダスト等の侵入を遮断する。
 リブ部4は、ガラス3の外形に沿って全周にわたって壁状に形成されており、平面視で矩形枠状をなすように設けられている。リブ部4は、平面視でガラス3の外縁に沿うようにガラス3の外形の範囲内の位置に設けられている。リブ部4は、例えば、その外側面をガラス3の外側面と略面一とするように設けられる。
 リブ部4の材料は、例えば、アクリル系樹脂であるUV(紫外線)硬化性樹脂等の感光性接着剤や、エポキシ系樹脂等の熱硬化性樹脂、あるいはこれらの混合剤である。リブ部4は、イメージセンサ2の表面2aに対して、ディスペンサによる塗布や、フォトリソグラフィを用いたパターニング等により形成される。リブ部4の材料としては、一般的にパターンをフォトリソグラフィで自由に形成できる感光性樹脂が好適に用いられる。
 リブ部4が樹脂材料からなるものである場合、リブ部4は、イメージセンサ2とガラス3とを互いに離間した状態で接着させる接着剤として機能する。ただし、リブ部4は、樹脂製のものに限らず、例えばガラス等のセラミックスや金属やシリコン等の無機材料からなる構造体を接着剤等でイメージセンサ2およびガラス3に貼り付けることで設けられた構成であってもよい。
 キャビティ5は、イメージセンサ2とガラス3との間における扁平矩形状の空間部分である。キャビティ5は、イメージセンサ2の表面2aと、ガラス3の下面3bと、リブ部4の内側面4aとにより形成されている。
 また、固体撮像装置1において、イメージセンサ2の表面2a側には、外部に対する信号の送受信のための端子として、複数の電極パッド6が設けられている。電極パッド6は、イメージセンサ2の表面2a側における周辺領域に設けられるものであり、例えば、リブ部4の直下の部位に設けられる。ただし、電極パッド6の配置位置は特に限定されない。電極パッド6の材料としては、例えばアルミニウム材料等が用いられる。
 一方、イメージセンサ2の裏面2b側には、外部接続用の複数の電極部として、複数の電極端子7が設けられている。電極端子7は、円形の層状の部分として形成されている。複数の電極端子7は、例えば、イメージセンサ2の矩形状の外形に沿うように2次元的に格子点状に配置される(図2参照)。電極端子7は、例えばニッケル(Ni)、金(Au)等のメッキにより形成されている。電極端子7に対して、電極パッド6が電気的に接続されている。
 電極パッド6は、不図示の配線部により電極端子7に接続されている。電極パッド6は、例えば、イメージセンサ2において裏面2b側から形成された貫通ビア(TSV:Through Silicon Via)に埋め込むように形成された配線層を介して、電極端子7に接続されている。
 貫通ビアに対して設けられた配線層は、例えば銅(Cu)等の低抵抗金属材料により形成されている。配線層は、貫通ビア内に配されて電極パッド6の裏面側に接続された孔内配線部と、孔内配線部から延出して裏面2bに沿うように形成され電極端子7に接続された平面状配線部とを有する。なお、配線層は、イメージセンサ2をなすシリコン基板との間に絶縁膜を介在させる。 
 また、イメージセンサ2の裏面2b側には、電極端子7を露出させながら裏面2b全体をカバーするように、絶縁性の樹脂からなる不図示のソルダーレジスト(ソルダーマスク)が形成されている。ソルダーレジストは、貫通ビア内に埋め込まれ、配線層を覆うように形成される。
 以上のような構成を備えた固体撮像装置1においては、イメージセンサ2を実装するための外部接続端子として、複数の柱状端子10が設けられている。柱状端子10は、板状のリードフレームを加工することにより形成されたものである。
 柱状端子10は、イメージセンサ2の板厚方向を中心軸方向とする略筒状の外形を有する部分であり、イメージセンサ2の裏面2b側に設けられた各電極端子7から突出した状態で設けられている。柱状端子10は、その中心軸を回転軸とした略回転体の形状を有する。
 柱状端子10は、半田部9を介して、電極端子7に電気的に接続されている。半田部9は、円形の層部分であり、電極端子7と略同じ大きさを有する。
 柱状端子10は、柱状端子10の基端側(イメージセンサ2側)の端部をなす基端側端子部11と、柱状端子10の先端側の端部をなす先端側端子部12と、基端側端子部11と先端側端子部12との間の部分であって柱状端子10の本体部分をなす端子本体部13とを有する。
 基端側端子部11および先端側端子部12は、いずれも電極端子7に対応して円形の薄層状の部分として形成されている。基端側端子部11および先端側端子部12は、例えばニッケル(Ni)、金(Au)等のメッキにより形成されている。基端側端子部11が、半田部9を介して電極端子7の接続を受ける部分となる。すなわち、柱状端子10は、電極端子7に対して基端側端子部11を対向させており、電極端子7と基端側端子部11との間に電気的な接続部として半田部9を介在させている。
 端子本体部13は、柱状端子10の大部分を構成する柱状の部分である。端子本体部13は、基端側端子部11に対する接合面である上面13aの形状・寸法を、基端側端子部11の下面11bに略一致させており、先端側端子部12に対する接合面である下面13bの形状・寸法を、先端側端子部12の上面12bに略一致させている。
 端子本体部13は、例えば、銅(Cu)や銅合金等、抵抗値が低く高速信号の伝送に有利な低抵抗金属材料により形成されている。なお、端子本体部13の材料としては、銅等のほか、例えば、タングステン(W)、チタン(Ti)、タンタル(Ta)、チタンタングステン合金(TiW)、ポリシリコン等が挙げられる。
 端子本体部13は、上側(基端側)の略半分の部分を基端側部14とし、下側(先端側)の略半分の部分を先端側部15としている。基端側部14および先端側部15は、それぞれ、上下方向について両端部から中央部にかけて外径を徐々に小さくした中細りの形状を有する。したがって、柱状端子10の縦断面視において、基端側部14の外周面である上部外周面14a、および先端側部15の外周面である下部外周面15aの各外周面は、柱状端子10の中心軸側を凸側とした凹状の曲線をなす。
 このように上部および下部のそれぞれを中細り形状とした端子本体部13においては、基端側部14と先端側部15の境界部に、柱状端子10の縦断面視で径方向外側を凸側とした山形状をなす拡径部16が形成されている。拡径部16は、柱状端子10の中心軸回りに円形状に沿う稜線16aを形成している。
 以上のように、固体撮像装置1は、半導体素子であるイメージセンサ2を含む半導体基体1Aと、リードフレームの一部により形成された柱状端子10とを備える。本実施形態において、半導体基体1Aは、イメージセンサ2の表面2a側にリブ部4を介してガラス3を設けた構造体であり、一側の面であるイメージセンサ2の裏面2bに外部接続用の複数の電極端子7を有する。そして、柱状端子10は、半導体基体1Aに対して各電極端子7から突出するように設けられている。
 また、柱状端子10に関し、電極端子7に対する柱状端子10の接合面は、柱状端子10の先端側の端面よりも大きくなっている。本実施形態では、柱状端子10の電極端子7に対する接合面は、基端側端子部11の上面11aであり、柱状端子10の先端側の端面は、先端側端子部12の下面12aである。
 基端側端子部11および先端側端子部12は、いずれもメッキにより形成された薄膜状の部分であり、各端子部の両面は実質的に同一の大きさである。したがって、基端側端子部11の上面11aと先端側端子部12の下面12aの大小関係によると、柱状端子10においては、基端側端子部11の面積が、先端側端子部12の面積よりも大きくなっている。
 このような端子部同士の大小関係によれば、基端側端子部11および先端側端子部12は、いずれも円形状を有し互いに同心配置された部分であるため、柱状端子10の軸方向視において、基端側端子部11は、その周縁部を先端側端子部12の外側に円環状にはみ出させることになる。あくまでも一例であるが、基端側端子部11は、その直径D1が先端側端子部12の直径D2の1.5~2倍の大きさとなるように形成される。
 以上のような構成を備えた固体撮像装置1は、図3に示すように、柱状端子10を接続端子として実装基板20に実装される。実装基板20は、例えば、インターポーザ基板や、半導体チップのベアチップ実装を受ける半導体パッケージの基板等である。実装基板20は、固体撮像装置1の接続を受ける側の板面である実装面20aに、ランド電極21を有する。
 ランド電極21は、柱状端子10の接合を受ける導電体である。ランド電極21は、例えば、銅(Cu)を材料として形成されており、円形状または矩形状を有する。ランド電極21は、例えば電極端子7と略同じ大きさを有する。ランド電極21は、実装基板20の実装面20aにおいて、固体撮像装置1が有する複数の柱状端子10の配置に対応した位置に設けられている。複数のランド電極21は、実装基板20に設けられた所定の配線により互いに接続されている。
 柱状端子10は、半田によりランド電極21に接合されている。このため、柱状端子10とランド電極21との間には、半田部25が存在する。半田部25は、柱状端子10およびランド電極21に対する半田の濡れ性により、所定の隙間を隔てて対向した基端側端子部11とランド電極21の間を埋めるとともに、下広がりの形状をなしながら柱状端子10の下部を被覆している。詳細には、半田部25は、柱状端子10とランド電極21との間に介在する端子間介在部25aと、端子間介在部25aの外側の下端外周部25bと、下端外周部25bから柱状端子10の下部の周面に沿って上側に延びた筒状の周壁部25cとを有する。
 以上のような柱状端子10による固体撮像装置1の実装態様によれば、イメージセンサ2の電極端子7と実装基板20のランド電極21との間の電気的な接続部として、上下の中間部に対して上下の両端側を拡径させた形態を有する導体部が形成されている。すなわち、この導体部は、電極端子7とランド電極21とを繋ぐ部分であって、半田部9、柱状端子10、および半田部25からなる柱状の部分であり、縦断面視において、拡径部16を中心として略上下対称の形状を有する。
 <2.第1実施形態に係る半導体装置の製造方法>
 本技術の第1実施形態に係る半導体装置の製造方法について、図4、図5および図6を参照して説明する。本実施形態に係る半導体装置の製造方法は、主に、固体撮像装置1が有する柱状端子10を形成する方法であり、リードフレームによるパッケージ端子の形成方法である。
 本実施形態の固体撮像装置1の製造方法は、大きく分けると次のような工程を備える。すなわち、固体撮像装置1の製造方法は、リードフレームを準備する工程と、準備したリードフレームに所定の加工を施して、あるいは加工せずにそのままの状態で、イメージセンサ2を含む半導体装置本体に実装する工程と、半導体装置本体に実装したリードフレームに所定の加工を施すことで柱状端子10を形成する工程とを備える。本実施形態の固体撮像装置1の製造方法について詳細に説明する。
 固体撮像装置1の製造方法においては、図4Aに示すように、まず、リードフレーム30を準備する工程が行われる。リードフレーム30は、全体として板状の部材であり、板状のフレーム本体部33と、フレーム本体部33の両側の板面に形成された複数の端子部としてのメッキ端子部31,32とを有する。
 フレーム本体部33は、銅(Cu)や銅合金等、抵抗値が低く高速信号の伝送に有利な低抵抗金属材料により形成されている。フレーム本体部33は、例えばイメージセンサ2またはガラス3と同程度の板厚を有する。フレーム本体部33は、柱状端子10において端子本体部13を形成する部分となる。フレーム本体部33は、一方の板面を、半導体装置本体側に対向する対向面33aとし、その反対側の他方の板面を反対向面33bとする。
 メッキ端子部31,32は、例えばニッケル(Ni)、金(Au)等のメッキにより、円形の薄層状の部分として形成されている。メッキ端子部31,32のうち、フレーム本体部33の対向面33a側に設けられた第1メッキ端子部31は、柱状端子10において基端側端子部11を形成する部分となる。また、メッキ端子部31,32のうち、フレーム本体部33の反対向面33b側に設けられた第2メッキ端子部32は、柱状端子10において先端側端子部12を形成する部分となる。
 メッキ端子部31,32は、フレーム本体部33の両側の板面に板面視で少なくとも一部同士を重ねるように対で設けられている。すなわち、第1メッキ端子部31および第2メッキ端子部32は、リードフレーム30の板面視において、対応するメッキ端子部31,32同士で少なくとも一部同士を重複させるように設けられている。
 本実施形態では、メッキ端子部31,32は、いずれも円形状のメッキ部であり、リードフレーム30の板面に垂直な方向を中心軸方向として同心配置されている。また、メッキ端子部31,32は、第1メッキ端子部31の外径が第2メッキ端子部32の外径よりも大きくなるように形成されている。複数のメッキ端子部31,32は、イメージセンサ2が有する複数の電極端子7に対応するように、例えば2次元的に格子点状に配置されている。
 リードフレーム30を準備する工程は、フレーム本体部33に対するメッキにより、複数のメッキ端子部31,32を形成する工程を含む。そして、複数のメッキ端子部31,32を形成する工程では、フレーム本体部33の対向面33aに形成するメッキ端子部31が、フレーム本体部33の反対向面33bに形成する第2メッキ端子部32よりも大きく形成される。メッキ端子部31,32は、フォトリソグラフィ等を用いた公知のパターニング技術により、所定の形状パターンのメッキ部分として形成することができる。
 また、固体撮像装置1の製造方法においては、ウェーハ状態のWL-CSPであるウェーハCSP40を準備する工程が行われる。ウェーハCSP40は、固体撮像装置1の半導体基体1Aの集合状態のものであり、図6に示すように、例えば半導体基板であるシリコンウェーハの形状に対応して円板形状を有する。
 図4Cおよび図6に示すように、ウェーハCSP40は、イメージセンサ2を形成するための各種工程を経たシリコンウェーハ42に対し、リブ部4となる壁部44を介して、ガラス3となる円形状のガラス板43を貼り付けた構成を有する。シリコンウェーハ42は、イメージセンサ2となる部分が所定の配列で複数形成された半導体ウェーハである。シリコンウェーハ42のガラス板43側と反対側の板面42bには、外部接続端子となる複数の電極端子7が所定の配列で形成されている。
 シリコンウェーハ42に対し、壁部44の形成、およびガラス板43の貼付けが行われる。ここでは、シリコンウェーハ42の表面42aに壁部44を形成した後、ガラス板43を貼り付けてもよく、ガラス板43側に予め壁部44を形成したものを、シリコンウェーハ42の表面42aに貼り付けてもよい。
 ガラス板43は、透光性を有する板材の一例である。壁部44は、各イメージセンサ2の画素領域を囲むように所定の配列に沿って形成される。壁部44は、最終的に固体撮像装置1となる矩形状の領域に対応して、平面視で所定の幅を持って格子状に形成される。壁部44の形成方法としては、例えば、フォトリソグラフィを用いたパターニング、スクリーン印刷、エッチング、ディスペンサによる塗布等が用いられる。壁部44を介してシリコンウェーハ42とガラス板43を接合することで、各固体撮像装置1においてキャビティ5となる空間部45が形成される。
 このように、本実施形態では、リードフレーム30の実装を受ける半導体装置本体として、集合状態で形成された複数のイメージセンサ2を含む一体の板状体であるウェーハCSP40が用いられる。
 次に、図4Bに示すように、リードフレーム30に対し、フレーム本体部33の対向面33a側から、片面ハーフエッチングが行われる。ここでは、フレーム本体部33の対向面33a側に対する第1メッキ端子部31をマスクとしたエッチングにより、フレーム本体部33をその板厚方向について部分的に除去する工程が行われる。
 本工程は、リードフレームをウェーハCSP40に実装する工程の前に行われる。このハーフエッチングの工程では、ドライエッチングあるいはウエットエッチングにより、フレーム本体部33が、第1メッキ端子部31の形成部位以外の部分について、元の厚さの半分程度の厚さとなるように対向面33a側から薄くされる。
 本工程により、図4Bに示すように、リードフレーム30において、第1メッキ端子部31の形成部位が、第1メッキ端子部31の非形成部位に対して相対的に突出し、第1メッキ端子部31を端面部とする突起部34が形成される。すなわち、リードフレーム30は、反対向面33bを保持するとともにフレーム本体部33の元の板厚に対して略半分の板厚となった薄板部35により、複数の突起部34を繋げた態様をなす。本工程のエッチングにより、柱状端子10において基端側部14の上部外周面14aとなる面が、突起部34の外周面34aとして形成される。
 ハーフエッチングの工程の後に、図4Cに示すように、エッチングを受けたリードフレーム30をイメージセンサ2に対応した複数のチップに個片化する工程が行われる。
 この個片化の工程では、リードフレーム30が、格子状の所定のダイシングラインに沿ってダイシングされ、シリコンウェーハ42に形成された各イメージセンサ2に対応する個片に分割される。本工程により、リードフレーム30は、複数のリードフレーム片30Xに分割される。リードフレーム片30Xは、固体撮像装置1のサイズに対応した大きさの矩形板状のチップとなる(図6参照)。
 次に、図4Dに示すように、ウェーハCSP40に対して、複数のリードフレーム片30Xを実装する工程が行われる。すなわち、各リードフレーム片30Xの第1メッキ端子部31を、ウェーハCSP40の端子である電極端子7に接合することで、リードフレーム片30XをウェーハCSP40に実装する工程が行われる。
 本工程では、まず、リードフレーム片30Xの第1メッキ端子部31、および電極端子7の少なくともいずれか一方に対して、印刷等の方法でフラックス入りの半田ペーストが塗布される。その後、複数のリードフレーム片30Xが、ウェーハCSP40に対して、チップマウンタ等によって、各第1メッキ端子部31が電極端子7に対応する所定の位置に搭載され、所定の温度でリフローが行われる。
 本工程によれば、複数のリードフレーム片30Xが、半田ペーストが固化した半田部9を介して、各第1メッキ端子部31を電極端子7に接合させた状態となる。このように、本実施形態では、リードフレーム30を実装する工程は、リードフレーム30を個片化した複数のチップであるリードフレーム片30XをウェーハCSP40にリフロー実装する(図6参照)。図6は、本実施形態でのリードフレーム30の搭載イメージを示している。
 図4Dに示すように、リードフレーム片30Xは、突起部34の突出形状により、薄板部35をシリコンウェーハ42に対して離した状態となる。すなわち、複数のリードフレーム片30XがウェーハCSP40に実装された状態において、リードフレーム片30Xとシリコンウェーハ42との間に空間部36が形成される。
 続いて、図5Aに示すように、リードフレーム片30XとウェーハCSP40との間の空間である空間部36に、絶縁性を有する流動体であるレジスト37を充填する工程が行われる。このレジスト37を充填する工程は、リードフレーム30を実装する工程の後、かつ柱状端子10を形成する工程の前に行われる。
 レジスト37は、所定の感光性材料からなるフォトレジストである。レジスト37は、例えば、ディスペンサのノズルから吐出され、隣り合うリードフレーム片30X間の隙間30Y(図4D参照)から、リードフレーム片30Xとシリコンウェーハ42との間の隙間である空間部36を埋めるように塗布される。レジスト37は、毛細管現象等により流動して空間部36内に充填される。このように、本実施形態では、リードフレーム片30Xとシリコンウェーハ42との間の隙間を埋める流動体として、レジスト37が用いられている。
 次に、図5Bに示すように、ウェーハCPS40に実装されたリードフレーム片30Xに対し、反対向面33b側からエッチングが行われる。すなわち、フレーム本体部33の反対向面33bの第2メッキ端子部32をマスクとしたエッチングにより、リードフレーム片30Xのフレーム本体部33を部分的に除去することで、電極端子7から突出した柱状端子10を形成する工程が行われる。
 この反対面エッチングの工程では、ドライエッチングあるいはウエットエッチングにより、各リードフレーム片30Xにおいて、フレーム本体部33のうちの薄板部35が除去される。すなわち、リードフレーム30がまだエッチングを受けていない反対面側からのエッチングにより、複数の突起部34を繋ぐ部分が除去される。
 本工程により、図5Bに示すように、薄板部35が除去されることで、リードフレーム片30Xのフレーム本体部33のうち、第1メッキ端子部31と第2メッキ端子部32の間の部分が柱状部38として残る。すなわち、リードフレーム片30Xのフレーム本体部33が、上下のメッキ端子部31,32間に残存した複数の柱状部38に分離した状態となる。
 この上下のメッキ端子部31,32および柱状部38によって形成された柱状の部分が、半田部9を介して電極端子7上に立設された柱状端子10となる。本工程のエッチングにより、柱状端子10において先端側部15の下部外周面15aとなる面が、柱状部38の第2メッキ端子部32側の部分の外周面38aとして形成される。すなわち、第1メッキ端子部31が基端側端子部11となり、第2メッキ端子部32が先端側端子部12となり、柱状部38が端子本体部13となり、柱状端子10が形成される。
 次に、図5Cに示すように、レジスト37を除去する工程が行われる。ここでは、例えば専用の剥離液やリンス液等が用いられ、シリコンウェーハ42上に残存するレジスト37が除去される。これにより、柱状端子10の全体が露出した状態となる。
 以上の工程を経た後、図5Dに示すように、柱状端子10が形成された状態のウェーハCSP40をダイシングして個片化する工程が行われる。この工程では、柱状端子10が形成されたシリコンウェーハ42、壁部44、およびガラス板43が、イメージセンサ2の配列に対応した格子状の所定のダイシングラインに沿ってダイシングブレードにより切断されて個片化される。
 このダイシングの工程により、複数の固体撮像装置1が得られる。すなわち、シリコンウェーハ42が複数のイメージセンサ2に分離され、ガラス板43が複数のガラス3に分離され、壁部44が複数のリブ部4に分離され、イメージセンサ2とガラス3との間にキャビティ5をなすとともに各電極端子7に対して形成された柱状端子10を有する複数の固体撮像装置1が得られる。
 以上のような本実施形態に係る固体撮像装置1およびその製造方法によれば、比較的短時間で安価に外部接続端子を形成することができるとともに、実装基板20に対する実装信頼性を向上することができる。
 外部接続端子の形成に関し、例えばメッキの積み上げによって外部接続端子としての柱状の金属端子を形成する場合、工程数が多くなり、柱状の金属端子の高さが高いほど時間とコストが増大する。一方で、柱状の金属端子の高さが十分でない場合(例えば数10μmの場合)、金属端子が、イメージセンサ2の材料と実装基板20の材料との線膨張係数の差に起因して生じる応力を吸収しきれないため、十分な基板実装信頼性を得ることが困難となる。
 これに対し、本実施形態に係る固体撮像装置1は、外部接続端子として、金属製のリードフレーム30に対してエッチング等の加工を施すことにより形成された柱状端子10を備える。このため、外部接続端子をエッチング工法によって一括して安価かつ短時間で形成することができる。
 また、本技術によれば、柱状端子10の高さは、リードフレーム30の板厚(例えば150~200μm程度)となるため、柱状端子10の高さを容易に確保することができる。これにより、複数の柱状端子10を、半導体基体1Aと実装基板20との間において緩衝部として作用させることができ、イメージセンサ2の材料と実装基板20の材料との線膨張係数の差に起因して生じる応力を吸収することができる。結果として、固体撮像装置1の基板実装信頼性を大幅に向上させることができる。
 また、本実施形態に係る製法は、リードフレーム30に対し、一側からのハーフエッチングと反対側からのエッチングとの2段階のエッチングを施すことにより、柱状端子10を形成している。また、本実施形態に係る製法は、ウェーハCSP40にリードフレーム片30Xを実装した後に空間部36内にレジスト37を充填する工程を有する。このような製法によれば、リードフレーム30の両面側からの2段階のエッチングの作用として、柱状端子10において端子本体部13に拡径部16を形成することができる。これにより、柱状端子10の強度を向上させることができる。
 また、本実施形態に係る製法は、リードフレーム30の実装を受ける構成を、ウェーハ状態のウェーハCSP40とし、ウェーハCSP40に対して、リードフレーム30を個片化したリードフレーム片30Xを実装する。このような製法によれば、空間部36内にレジスト37を充填させるに際し、隣り合うリードフレーム片30X間の隙間30Yを利用することができるので、レジスト37を容易に充填させることができる。これにより、固体撮像装置1の生産効率を向上することが可能となる。
 また、本実施形態に係る製法は、空間部36に充填させる流動体として、レジスト37を用いている。このような製法によれば、流動体について、空間部36に充填させるために適した性質(例えば流動性や浸透性等)を有する材料の選択を比較的容易に行うことが可能となる。
 また、本実施形態では、リードフレーム30において、第1メッキ端子部31が、第2メッキ端子部32よりも大きく形成され、柱状端子10は、電極端子7に対する接合面をなす基端側端子部11を、先端面をなす先端側端子部12に対して大きくした構成を有する。
 このような構成によれば、イメージセンサ2の電極端子7と実装基板20のランド電極21とを接続させる導体部について、強度を向上することができる。具体的には、図3に示すように、固体撮像装置1を実装基板20に実装した状態において、柱状端子10に対して濡れ上がった半田部25を含む導体部を全体的に略上下対称の形状とすることができる。これにより、導体部について上下の断面サイズをバランスさせることができ、導体部を破壊しにくい構造とすることができる。
 <3.第1実施形態に係る半導体装置の変形例>
 リードフレーム30において、第1メッキ端子部31および第2メッキ端子部32のメッキの形成パターンを工夫することで、リードフレーム30の一部により、種々の機能部を形成したり、柱状端子10の形状を調整したりすることができる。以下では、固体撮像装置1の変形例として、リードフレーム30によって形成される各種機能部のバリエーションおよび柱状端子10の他の形状について説明する。
 (変形例1)
 図7Aおよび図7Bに示すように、変形例1では、固体撮像装置1は、リードフレーム30の一部により形成された機能部として、半導体基体1Aの一側の面に設けられた放熱用パッド50を備える。図7Aおよび図7Bに示す例では、放熱用パッド50は、イメージセンサ2の裏面2bの中央部に、複数の柱状端子10とともに、矩形状の突出部分として設けられている。
 放熱用パッド50は、柱状端子10と同様の層構造を有する。すなわち、放熱用パッド50は、柱状端子10の層構造に対応して、基端側端子部11と同じ層部分である第1層部51と、先端側端子部12と同じ層部分である第2層部52と、これらの層部の間の部分であって端子本体部13と同じ層部分である中間層部53とを有する。第1層部51および第2層部52は、平面的に互いに略同じ大きさを有し、平面視で重なるように設けられている。
 放熱用パッド50は、例えば電極端子7と同じ層部分としてイメージセンサ2の裏面2b側に形成された矩形状のパッド接続部57に、半田部59を介して接続されている。パッド接続部57は、放熱用パッド50の平面視の形状・寸法に整合するように形成されている。
 放熱用パッド50の中間層部53は、四方の外周側面部において、縦断面視で凹状の曲線をなす上部外周面53aおよび下部外周面53bを有する。上部外周面53aおよび下部外周面53bは、上下それぞれの略半分の部分の外周面であり、柱状端子10の上部外周面14aおよび下部外周面15aと同様に、リードフレーム30の両面側からのエッチングの作用として形成される。上部外周面53aおよび下部外周面53bにより、外周側に凸の稜線部56が中間層部53の全周にわたって形成されている。
 変形例1の構成の製造には、リードフレーム30として、図8Aおよび図8Bに示す放熱用パッド50形成用のリードフレーム30Aが用いられる。
 図8Aおよび図8Bに示すように、リードフレーム30Aは、第1メッキ端子部31が形成されるフレーム本体部33の対向面33aに、第1メッキ端子部31と共通のメッキ層部分として、第1メッキ層部61を有する。第1メッキ層部61は、放熱用パッド50において第1層部51となる部分である。第1メッキ層部61は、第1メッキ端子部31を形成する工程において、メッキのパターン形状として、第1メッキ端子部31と同時的に形成される。
 リードフレーム30Aは、第2メッキ端子部32が形成されるフレーム本体部33の反対向面33bに、第2メッキ端子部32と同様のメッキ層部分として、第2メッキ層部62を有する。第2メッキ層部62は、放熱用パッド50において第2層部52となる部分である。第2メッキ層部62は、第2メッキ端子部32を形成する工程において、メッキのパターン形状として、第2メッキ端子部32と同時的に形成される。
 第1メッキ層部61および第2メッキ層部62は、フレーム本体部33の板面視で互いに外形を一致させるように形成されている。フレーム本体部33のうち、第1メッキ層部61と第2メッキ層部62に挟まれた部分により、放熱用パッド50の中間層部53が形成される。
 以上のような構成を有するリードフレーム30Aが用いられ、上述した本実施形態の製法と同様の製法が行われることで、放熱用パッド50を備えた変形例1の構成が得られる。 
 変形例1の構成によれば、リードフレーム30Aにより、放熱用パッド50を、複数の柱状端子10とともに同時的に形成することが可能となる。これにより、放熱板やヒートシンク等の放熱用の部品を別途設けることなく、低コストかつ簡略な製法により、半導体基体1Aに対して放熱部を設けることができる。これにより、イメージセンサ2の発熱への対応を容易に行うことができる。
 (変形例2)
 図9Aおよび図9Bに示すように、変形例2では、固体撮像装置1は、リードフレーム30の一部により形成された機能部として、半導体基体1Aの一側の面に設けられた補強部70を備える。図9Aおよび図9Bに示す例では、補強部70は、イメージセンサ2の裏面2bの周縁部に沿う枠状の突出部分として設けられている。
 補強部70は、底面視形状として、イメージセンサ2の長手方向(図9Bにおける左右方向)に沿う一対の長辺部70aと、イメージセンサ2の短手方向(図9Bにおける上下方向)に沿う一対の短辺部70bとを有する。補強部70は、これら4つの辺部により、イメージセンサ2の外形に沿った矩形枠状の部分として形成されている。
 補強部70は、柱状端子10の上半部と同様の層構造を有する。すなわち、補強部70は、柱状端子10の上半部の層構造に対応して、基端側端子部11と同じ層部分である第1層部71と、端子本体部13の上半部と同じ層部分である第2層部73とを有する。
 補強部70は、例えば電極端子7と同じ層部分としてイメージセンサ2の裏面2b側に形成された矩形枠状の補強枠接続部77に、半田部79を介して接続されている。補強枠接続部77は、補強部70の平面視の形状・寸法に整合するように形成されている。
 補強部70は、下側の端面を、フレーム本体部33により形成された第2層部73の下面73cとしている。また、第2層部73は、四方の内周側面部において、縦断面視で凹状の曲線をなす内周面73aを有する。内周面73aは、柱状端子10の上部外周面14aと同様に、リードフレーム30のハーフエッチングの作用として形成される。
 変形例2の構成の製造には、リードフレーム30として、図10Aおよび図10Bに示す補強部70形成用のリードフレーム30Bが用いられる。
 図10Aおよび図10Bに示すように、リードフレーム30Bは、第1メッキ端子部31が形成されるフレーム本体部33の対向面33aに、第1メッキ端子部31と共通のメッキ層部分として、第1メッキ層部81を有する。第1メッキ層部81は、補強部70において第1層部71となる部分である。
 第1メッキ層部81は、最終的に固体撮像装置1となる矩形状の領域に対応して、平面視で所定の幅を持って格子状に形成される。すなわち、第1メッキ層部81は、互いに直交して格子状をなす複数の直線状の部分として、イメージセンサ2の長手方向に対応する方向に沿う第1直線部81aと、イメージセンサ2の短手方向に対応する方向に沿う第2直線部81baとを有する。
 第1メッキ層部81によって囲まれた領域内に、第1メッキ端子部31が形成されている。第1メッキ層部81は、第1メッキ端子部31を形成する工程において、メッキのパターン形状として、第1メッキ端子部31と同時的に形成される。
 リードフレーム30Bにおいて、第2メッキ端子部32が形成されるフレーム本体部33の反対向面33bのうち、第1メッキ層部81の反対側の領域部分は、メッキ層部の非形成部位となる。すなわち、フレーム本体部33において、第1メッキ層部81の反対側には、第2メッキ端子部32その他のメッキ層部が形成されていない。
 以上のような構成を有するリードフレーム30Bが用いられ、上述した本実施形態の製法と同様の製法が行われることで、補強部70を備えた変形例2の構成が得られる。
 変形例2の構成の場合、ハーフエッチングの工程(図4B参照)において、第1メッキ層部81がマスクとして機能し、フレーム本体部33により、第2層部73となる部分が格子状に相対的に突出した部分として形成される。その後、リードフレーム30Bを個片化する工程(図4C参照)により、各リードフレーム片30Xにおいて、第2層部73となる部分が矩形枠状の突出部分となる。
 そして、反対面エッチングの工程(図5B参照)により、フレーム本体部33のうち、第1メッキ層部81の形成部位に対応する部分が、略半分の厚さとなるように部分的に除去される。これにより、下面73cをなす矩形枠状の第2層部73が形成され、補強部70が形成される。
 変形例2の構成によれば、リードフレーム30Bにより、補強部70を、複数の柱状端子10とともに同時的に形成することが可能となる。これにより、補強用の部品を別途設けることなく、低コストかつ簡略な製法により、半導体基体1Aに対して補強構造部を設けることができる。これにより、固体撮像装置1の強度の確保を容易に行うことができ、パッケージの剛性を向上させることができ、反り等の変形を抑制することができる。なお、補強部70としては、枠形状の部分に限らず、例えば直線状の部分や曲線状の部分等であってもよい。
 (変形例3)
 図11Aおよび図11Bに示すように、変形例3では、固体撮像装置1は、リードフレーム30の一部により形成された機能部として、半導体基体1Aの一側の面に設けられたGND(グランド)プレーン90を備える。すなわち、リードフレーム30により形成された層部分の一部が、GNDプレーン90を含むGND層となっている。図11Aおよび図11Bに示す例では、GNDプレーン90は、イメージセンサ2の裏面2bの周縁部に沿う枠状の突出部分として設けられている。
 GNDプレーン90は、底面視形状として、イメージセンサ2の長手方向(図11Bにおける左右方向)に沿う一対の長辺部90aと、イメージセンサ2の短手方向(図11Bにおける上下方向)に沿う一対の短辺部90bとを有する。GNDプレーン90は、これら4つの辺部により、イメージセンサ2の外形に沿った矩形枠状の部分として形成されている。
 GNDプレーン90は、柱状端子10の上半部と同様の層構造を有する。すなわち、GNDプレーン90は、柱状端子10の上半部の層構造に対応して、基端側端子部11と同じ層部分である第1層部91と、端子本体部13の上半部と同じ層部分である第2層部93とを有する。
 GNDプレーン90は、例えば電極端子7と同じ層部分としてイメージセンサ2の裏面2b側に形成された矩形枠状のGNDプレーン接続部97に、半田部99を介して接続されている。GNDプレーン接続部97は、GNDプレーン90の平面視の形状・寸法に整合するように形成されている。
 GNDプレーン90は、下側の端面を、フレーム本体部33により形成された第2層部93の下面93cとしている。また、第2層部93は、四方の内周側面部において、縦断面視で凹状の曲線をなす内周面93aを有する。内周面93aは、柱状端子10の上部外周面14aと同様に、リードフレーム30のハーフエッチングの作用として形成される。
 また、変形例3の構成においては、リードフレーム30の一部により形成されたGND端子100が設けられている。GND端子100は、GND電位の供給を受ける端子であり、GNDプレーン90に接続されている。図11Aおよび図11Bに示す例では、GND端子100は、底面視において、枠状のGNDプレーン90に対して、短辺部90bと平行状に一対の長辺部90a間に橋架された態様で直線状に形成されている。また、GND端子100は、イメージセンサ2の長手方向について中心に対して一側(図11Bにおいて左側)寄りの位置に形成されている。
 GND端子100は、柱状端子10と同様の層構造を有する。すなわち、GND端子100は、柱状端子10の層構造に対応して、基端側端子部11と同じ層部分である第1層部101と、先端側端子部12と同じ層部分である第2層部102と、端子本体部13と同じ層部分である第3層部103とを有する。
 第1層部101および第3層部103は、GND端子100の直線状の形状に対応して直線状に連続した層部分として形成されている。GND端子100は、第1層部101および第3層部103によりGNDプレーン90と接続されている。一方、第2層部102は、先端側端子部12と同様に円形状を有し、複数の柱状端子10の配列に対応して所定の間隔をあけて直線状に配列されている。図11Bに示す例では、5つの第2層部102がGND端子100の延伸方向に沿って一列に並んで配置されている。
 GND端子100は、例えば電極端子7と同じ層部分としてイメージセンサ2の裏面2b側に形成された直線状のGND端子接続部107に、半田部109を介して接続されている。GND端子接続部107は、GND端子100の平面視の形状・寸法に整合するように形成されている。
 GND端子100の第3層部103は、その上部の左右両側方において、縦断面視で凹状の曲線をなす上部側面103aを有する。上部側面103aは、柱状端子10の上部外周面14aと同様に、リードフレーム30のハーフエッチングの作用として形成される。また、第3層部103は、GNDプレーン90の下面93cと面一状の面である下面103cを有する。また、第3層部103は、第2層部102の形成部位を、下面103cから突出させており、その突出部の外周面を、柱状端子10の下部外周面15aと同様に縦断面視で凹状の曲線をなす下部外周面103bとしている。下部外周面103bは、リードフレーム30の反対面エッチングの作用として形成される。
 変形例3の構成の製造には、リードフレーム30として、図12Aおよび図12Bに示すGNDプレーン90およびGND端子100形成用のリードフレーム30Cが用いられる。
 図12Aおよび図12Bに示すように、リードフレーム30Cは、第1メッキ端子部31が形成されるフレーム本体部33の対向面33aに、第1メッキ端子部31と共通のメッキ層部分として、第1メッキ層部111を有する。第1メッキ層部111は、GNDプレーン90において第1層部91となる部分と、GND端子100において第1層部101となる部分とを含む。
 第1メッキ層部111は、GNDプレーン90の第1層部91となる部分として、最終的に固体撮像装置1となる矩形状の領域に対応して、平面視で所定の幅を持って格子状に形成された部分を有する。すなわち、第1メッキ層部111は、第1層部91となる部分として、互いに直交して格子状をなす複数の直線状の部分として、イメージセンサ2の長手方向に対応する方向に沿う第1直線部111aと、イメージセンサ2の短手方向に対応する方向に沿う第2直線部111bとを有する。また、第1メッキ層部111は、GND端子100の第1層部101となる部分として、第2直線部111bと平行な直線状の第3直線部111cを有する。
 第1メッキ層部111によって囲まれた領域内に、第1メッキ端子部31が形成されている。第1メッキ層部111は、第1メッキ端子部31を形成する工程において、メッキのパターン形状として、第1メッキ端子部31と同時的に形成される。
 リードフレーム30Cにおいて、第2メッキ端子部32が形成されるフレーム本体部33の反対向面33bのうち、第1メッキ層部111の第1直線部111aおよび第2直線部111bの反対側の領域部分は、メッキ層部の非形成部位となる。すなわち、フレーム本体部33において、第1直線部111aおよび第2直線部111bの反対側には、第2メッキ端子部32その他のメッキ層部が形成されていない。
 一方、反対向面33bにおいて、第3直線部111cの形成部位の反対側には、第2メッキ端子部32の配列に準じた配列で、円形状の第2メッキ層部112が形成されている。第2メッキ層部112は、GND端子100において第2層部102となる部分である。
 以上のような構成を有するリードフレーム30Cが用いられ、上述した本実施形態の製法と同様の製法が行われることで、GNDプレーン90およびGND端子100を備えた変形例3の構成が得られる。
 変形例3の構成の場合、ハーフエッチングの工程(図4B参照)において、第1メッキ層部111がマスクとして機能し、フレーム本体部33により、GNDプレーン90の第2層部93およびGND端子100の第3層部103となる部分が格子状に相対的に突出した部分として形成される。その後、リードフレーム30Cを個片化する工程(図4C参照)により、各リードフレーム片30Xにおいて、GNDプレーン90の第2層部93となる部分が矩形枠状の突出部分となり、GND端子100の第3層部103となる部分が直線状の突出部分となる。
 そして、反対面エッチングの工程(図5B参照)により、フレーム本体部33のうち、第1メッキ層部111の第1直線部111aおよび第2直線部111bの形成部位に対応する部分が、略半分の厚さとなるように部分的に除去される。また、フレーム本体部33のうち、第3直線部111cの形成部位に対応する部分については、先端側端子部12がマスクとして機能し、第2メッキ層部112の非形成部位が、略半分の厚さとなるように部分的に除去され、第2メッキ層部112の形成部位は、突出部分として残ることになる。これにより、GNDプレーン90の下面93cをなす矩形枠状の第2層部93、およびGND端子100の下面103cをなす直線状の第3層部103が形成され、GNDプレーン90およびGND端子100が形成される。
 変形例3の構成によれば、リードフレーム30Cにより、GNDプレーン90およびGND端子100を、複数の柱状端子10とともに同時的に形成することが可能となる。これにより、GNDプレーンおよびGND端子を別途設けることなく、低コストかつ簡略な製法により、半導体基体1Aに対してGNDプレーンおよびGND端子を設けることができる。結果として、固体撮像装置1における電気信号の伝送品質を高めることができる。また、リードフレーム30Cにおけるメッキのパターン形状をGNDプレーン90およびGND端子100の形状として反映させることができるため、GNDプレーン90およびGND端子100の形状について高い自由度を得ることができる。
 (変形例4)
 図13Aおよび図13Bに示すように、変形例4では、固体撮像装置1は、半導体基体1Aの一側の面に設けられた第2の半導体素子である内蔵チップ125を備える。内蔵チップ125は、例えば所定の集積回路を有するロジックチップやメモリチップ等の半導体チップである。
 図13Aおよび図13Bに示す例では、内蔵チップ125は、矩形板状の外形を有し、半田や接着剤による所定の接続層125aを介して、イメージセンサ2の裏面2bの中央部に実装される。内蔵チップ125は、例えば、ウェーハCSP40に対してリードフレーム30をリフロー実装する工程において、リードフレーム30とともに、シリコンウェーハ42における所定の部位に実装される。なお、内蔵チップ125は、リードフレーム30の実装工程に際して事前に実装されていてもよい。
 このように内蔵チップ125を有する固体撮像装置1は、リードフレーム30の一部により形成された機能部として、半導体基体1Aの一側の面に内蔵チップ125を覆うように設けられたシールド部120を備える。シールド部120は、イメージセンサ2の裏面2bの中央部に、複数の柱状端子10とともに、矩形状に突出したカバー部分として設けられている。
 シールド部120は、イメージセンサ2の裏面2bと平行状に設けられた矩形状の平面部120aと、平面部120aの外形に沿うように設けられた周壁部120bとを有する。平面部120aは、内蔵チップ125を下側から覆っている。周壁部120bは、イメージセンサ2の長手方向に沿う一対の長手状壁部と、イメージセンサ2の短手方向に沿う一対の短手状壁部とを有し、これらの壁部によって内蔵チップ125を四方から囲んでいる。シールド部120は、平面部120aおよび周壁部120bにより扁平な箱状をなし、イメージセンサ2の裏面2bとともに、内蔵チップ125を収容した空間部120cを形成している。
 シールド部120は、柱状端子10と同様の層構造を有する。すなわち、シールド部120は、柱状端子10の層構造に対応して、基端側端子部11と同じ層部分である第1層部121と、先端側端子部12と同じ層部分である第2層部122と、これらの層部の間の部分であって端子本体部13と同じ層部分である中間層部123とを有する。
 第1層部121は、所定の幅で形成された一対の長辺部および一対の短辺部を有し、これらの辺部によってシールド部120の外形に対応した矩形枠状をなしている。第2層部122は、シールド部120の下面部をなし、シールド部120の外形に対応した矩形状を有する。
 中間層部123は、シールド部120の外形に対応した矩形板状の底面部123pと、底面部123pの外縁に沿って全周にわたって矩形枠状に突出形成された突縁部123qとを有する。突縁部123qの上側に、第1層部121が形成されており、底面部123pの下側に、第2層部122が形成されている。底面部123pは、第2層部122とともにシールド部120の平面部120aをなす部分であり、突縁部123qは、第1層部121とともにシールド部120の周壁部120bをなす部分である。
 シールド部120は、例えば電極端子7と同じ層部分としてイメージセンサ2の裏面2b側に形成された矩形枠状のパッド接続部127に、半田部129を介して接続されている。パッド接続部127は、シールド部120の第1層部121の形状・寸法に整合するように形成されている。
 シールド部120の中間層部123は、四方の外周側面部において、縦断面視で凹状の曲線をなす上部外周面123aおよび下部外周面123bを有する。上部外周面123aおよび下部外周面123bは、上下それぞれの略半分の部分の外側面であり、柱状端子10の上部外周面14aおよび下部外周面15aと同様に、リードフレーム30の両面側からのエッチングの作用として形成される。上部外周面123aおよび下部外周面123bにより、外周側に凸の稜線部126が中間層部123の全周にわたって形成されている。
 また、シールド部120の中間層部123は、突縁部123qの四方の内周側面部において、縦断面視で凹状の曲線をなす上部内周面123cを有する。さらに、シールド部120の中間層部123は、底面部123pの上面を、イメージセンサ2の裏面2bに対向する水平な底面123dとしている。上部内周面123cおよび底面123dは、リードフレーム30に対するハーフエッチングの作用として形成される。
 変形例4の構成の製造には、リードフレーム30として、図14Aおよび図14Bに示すシールド部120形成用のリードフレーム30Dが用いられる。
 図14Aおよび図14Bに示すように、リードフレーム30Dは、第1メッキ端子部31が形成されるフレーム本体部33の対向面33aに、第1メッキ端子部31と共通のメッキ層部分として、第1メッキ層部131を有する。第1メッキ層部131は、シールド部120において第1層部121となる部分である。
 第1メッキ層部131は、それぞれ所定の幅を有する一対の長辺部131aおよび一対の短辺部131bを有し、矩形枠状の部分として形成されている。第1メッキ層部131の周囲を囲むように、第1メッキ端子部31が形成されている。第1メッキ層部131は、第1メッキ端子部31を形成する工程において、メッキのパターン形状として、第1メッキ端子部31と同時的に形成される。
 リードフレーム30Dは、第2メッキ端子部32が形成されるフレーム本体部33の反対向面33bに、第2メッキ端子部32と同様のメッキ層部分として、第2メッキ層部132を有する。第2メッキ層部132は、シールド部120において第2層部122となる部分であり、矩形状の部分である。第2メッキ層部132の周囲を囲むように、第2メッキ端子部32が形成されている。第2メッキ層部132は、第2メッキ端子部32を形成する工程において、メッキのパターン形状として、第2メッキ端子部32と同時的に形成される。
 第1メッキ層部131および第2メッキ層部132は、フレーム本体部33の板面視で互いに外形を一致させるように形成されている。フレーム本体部33のうち、第1メッキ層部131および第2メッキ層部132の形成範囲の部分により、シールド部120の中間層部123が形成される。
 以上のような構成を有するリードフレーム30Dが用いられ、上述した本実施形態の製法と同様の製法が行われることで、シールド部120を備えた変形例4の構成が得られる。
 変形例4の構成の場合、ハーフエッチングの工程(図4B参照)において、第1メッキ層部131がマスクとして機能し、フレーム本体部33により、中間層部123において上部内周面123cおよび底面123dとなる面による矩形状の凹部が形成される。
 そして、反対面エッチングの工程(図5B参照)により、第2メッキ層部132がマスクとして機能し、柱状端子10の端子本体部13とともに、中間層部123の上部外周面123aおよび下部外周面123bが形成される。これにより、中間層部123が形成され、シールド部120が形成される。
 以上のように、変形例4の構成は、リードフレーム30によってイメージセンサ2の裏面2b側に中空構造をなし、その内部に内蔵チップ125を設けてシールド部120によってシールドしたものである。変形例4の構成によれば、リードフレーム30Dにより、シールド部120を、複数の柱状端子10とともに同時的に形成することが可能となる。これにより、シールド構造用の部品を別途設けることなく、低コストかつ簡略な製法により、半導体基体1Aの内蔵チップ125に対してシールド構造部を設けることができる。結果として、内蔵チップ125から発せられるノイズを低減することができるため、例えば、実装基板20における配線の自由度の向上といった効果を得ることができる。
 (変形例5)
 変形例5は、柱状端子10の形状についての変形例である。図15A、図15B、図16A、図16B、および図16Cに示すように、変形例5では、柱状端子10A(10)について、電極端子7に対する柱状端子10Aの接合面が楕円形状となっており、柱状端子10の先端側の端面が円形状となっている。柱状端子10Aにおいて、円形状の先端面は、柱状端子10Aの軸方向視で、電極端子7に対する楕円形状の接合面の領域に含まれる大きさを有する。なお、図16Bは、図16AにおけるA-A方向断面図であり、図16Cは、図16AにおけるB-B方向断面図である。
 柱状端子10Aは、上面11aを電極端子7に対する接合面とする基端側端子部11を楕円形状とし、下面12aを先端側の端面とする先端側端子部12を円形状としている。先端側端子部12は、柱状端子10Aの軸方向視で、基端側端子部11の外形の範囲内に収まる大きさを有する。円形状の先端側端子部12の直径は、楕円形状の基端側端子部11の短径よりも短く、これらの端子部同士は同心配置されている。そして、柱状端子10Aは、基端側端子部11と先端側端子部12との間に、略先細り状の端子本体部13を有する。
 柱状端子10Aが接続される電極端子7は、例えば基端側端子部11に対応して楕円形状を有する。基端側端子部11および電極端子7の形状に対応し、これらの間に介在する半田部9は、楕円形の層部分となる。
 変形例5の構成において、端子本体部13の基端側部14は、横断面形状を楕円形状とする。また、端子本体部13の先端側部15は、上側から下側にかけて横断面形状を楕円形状から円形状に徐々に変化させる形状を有する。柱状端子10Aにおいて、拡径部16は、基端側端子部11の外形に沿う楕円形状の稜線16aを形成している。
 柱状端子10Aは、基端側端子部11の底面視である楕円形状の長軸位置の縦断面視において、全体的に下窄まりのテーパ状の外形を有する(図16B参照)。柱状端子10Aは、基端側端子部11の底面視である楕円形状の短軸位置の縦断面視において、全体的に略円筒状の外形を有する(図16C参照)。
 変形例5の構成において、複数の柱状端子10Aは、基端側端子部11の楕円形状の長径方向を半導体基体1Aの中央部に向けるように設けられている。図15Bに示すように、本実施形態では、柱状端子10Aは、基端側端子部11の楕円形状の長径方向を、固体撮像装置1の底面視において半導体基体1Aの中央部に位置する中心点O1に向けるように設けられている。
 2次元的に格子点状に配置された複数の柱状端子10Aは、その配置位置に応じた傾斜角度で、基端側端子部11の楕円形状の長径方向を中心点O1に指向させるように設けられている。言い換えると、複数の柱状端子10Aは、固体撮像装置1の底面視において中心点O1から放射状となるように、底面視形状である楕円形状の長径方向について、中心点O1に対する指向性を持って設けられている。すなわち、固体撮像装置1の底面視において、柱状端子10Aは、底面視形状である楕円形状の長径方向を、中心点O1を通る直線に沿わせるように設けられている。
 変形例5の構成の製造には、リードフレーム30として、図17Aおよび図17Bに示すリードフレーム30Eが用いられる。
 図17Aおよび図17Bに示すように、リードフレーム30Eは、第1メッキ端子部31を楕円形状とし、第2メッキ端子部32を円形状としている。第2メッキ端子部32の外径は、第1メッキ端子部31の短径よりも小さく、メッキ端子部31,32は、リードフレーム30の板面に垂直な方向を中心軸方向として同心配置されている。
 そして、複数の第1メッキ端子部31は、楕円形状の長径方向を、最終的に固体撮像装置1となる矩形状の領域の中心位置O2に向けるように形成されている。つまり、第1メッキ端子部31は、楕円形状の長径方向を、中心位置O2を通る直線に沿わせるように設けられている。
 以上のような構成を有するリードフレーム30Eが用いられ、上述した本実施形態の製法と同様の製法が行われることで、変形例5の構成が得られる。
 変形例5の構成の製法において、複数のメッキ端子部31,32を形成する工程では、フレーム本体部33の対向面33aに形成する第1メッキ端子部31が楕円形状とされるとともに、フレーム本体部33の反対向面33bに形成する第2メッキ端子部32が円形状とされる。ここで、第2メッキ端子部32は、対応する第1メッキ端子部31の形成領域に含まれる大きさの円形状とされる。そして、第1メッキ端子部31は、楕円形状の長径方向をイメージセンサ2の中央部に向けるように形成される。
 変形例5の構成によれば、各柱状端子10Aについて、先端側端子部12側から基端側端子部11側にかけて円形状から楕円形状となるように徐々に太くした形状とすることができるため、根元部分を補強することができ、柱状端子10Aの強度を向上させることができる。また、複数の柱状端子10Aについて指向性を持った放射状の配置とすることにより、固体撮像装置1のパッケージ構造自体の機械的強度を上げることが可能となる。これにより、固体撮像装置1において、反り等の変形の抑制や温度サイクル耐性の向上を図ることができる。
 以上説明した各変形例のように、本実施形態に係る固体撮像装置1およびその製法によれば、リードフレーム30のエッチングにおいてマスクとして機能する、フレーム本体部33の両面のメッキ部分のデザイン設計だけで、メッキプロセスでは形成できない様々な形状、構造体を作ることができる。
 例えばメッキの積み上げによって外部接続端子としての柱状の金属端子を形成する場合、端子形状についてのデザインの自由度が比較的低いため、外部接続端子を色々な形状に加工したり、外部接続端子以外の機能を持たせたりすることが困難となる。この点、リードフレーム30により柱状端子10を形成する技術によれば、端子形状についてのデザインの自由度を向上させることができ、リードフレーム30により柱状端子10とともに種々の機能部を形成することが可能となる。
 <4.第2実施形態に係る半導体装置の構成例>
 本技術の第2実施形態に係る半導体装置の構成例について、図18を参照して説明する。本実施形態に係る固体撮像装置201は、半導体装置の一例であり、第1実施形態との対比において、半導体基体1Aの構成が異なる。なお、図18における上下方向を固体撮像装置201における上下方向とする。また、以下に説明する各実施形態の説明では、他の実施形態と共通の構成については同一の符号を付して適宜説明を省略する。
 図18に示すように、固体撮像装置201は、固体撮像素子としてのイメージセンサ202と、ガラス203と、イメージセンサ2上にガラス203を支持する支持部としてのリブ樹脂部204とを備える。固体撮像装置201は、イメージセンサ202上にリブ樹脂部204を介してガラス203をマウントし、イメージセンサ202とガラス203との間にキャビティ205を有するパッケージ構造を備えている。
 イメージセンサ202は、矩形板状のチップであり、上側を受光面側とする。イメージセンサ202は、例えばCMOS型のイメージセンサである。ガラス203は、矩形板状の外形を有する透明部材であり、イメージセンサ202に対してリブ樹脂部204により固定状態で支持されている。
 リブ樹脂部204は、イメージセンサ202の受光面において画素領域を囲むように、ガラス203の外形に沿って全周にわたって壁状に形成されており、平面視で矩形枠状をなすように設けられている。リブ樹脂部204は、キャビティ205の周囲を封止する封止部として機能する。
 リブ樹脂部204の材料は、例えば、アクリル系樹脂であるUV(紫外線)硬化性樹脂等の感光性接着剤や、エポキシ系樹脂等の熱硬化性樹脂、あるいはこれらの混合剤である。リブ樹脂部204は、イメージセンサ202の表面に対して、ディスペンサによる塗布や、フォトリソグラフィを用いたパターニング等により形成される。
 イメージセンサ202は、プラスチック等の有機材料等からなる有機基板206上に実装されている。有機基板206は、イメージセンサ202の実装を受ける表面206aと、その反対側の板面である裏面206bとを有する。有機基板206の表面206a側には、イメージセンサ202が、絶縁性または導電性のペースト207によってダイボンドされている。
 イメージセンサ202と有機基板206とは、複数のボンディングワイヤ208により電気的に接続されている。ボンディングワイヤ208は、例えばAu(金)やCu(銅)からなる金属細線であり、イメージセンサ202の上面に形成されたパッド電極と、有機基板206の表面に形成されたリード電極210とを電気的に接続する。
 有機基板206上のリード電極210は、有機基板206内に形成された配線パターン等を介して、有機基板206の裏面206b側に形成された複数の電極端子217に接続される。
 有機基板206上におけるキャビティ205の外側の部分であるボンディングワイヤ208の周囲は、モールド樹脂213により覆われて封止されている。モールド樹脂213は、有機基板206の周縁部上であってイメージセンサ202およびガラス203の周縁部分を覆うように設けられている。
 モールド樹脂213は、例えば、ケイ素酸化物を主成分とするフィラーを含有した熱硬化性樹脂である。モールド樹脂213は、例えばモールド金型を用いた射出成形等によって所定の形状に形成される。
 以上のような構成を備えた固体撮像装置201において、固体撮像装置201が実装される所定の実装基板に対する電気的な接続を行うための外部接続端子として、リードフレーム30により形成された複数の柱状端子10が設けられている。
 柱状端子10は、有機基板206の裏面206b側に設けられた各電極端子217から突出した状態で設けられている。柱状端子10は、半田部219を介して、電極端子217に電気的に接続されている。
 以上のように、固体撮像装置201は、半導体素子であるイメージセンサ202を含む半導体基体201Aと、リードフレームの一部により形成された柱状端子10とを備える。本実施形態において、半導体基体201Aは、有機基板206上にイメージセンサ202を実装するとともにイメージセンサ202の表面側にリブ樹脂部204を介してガラス203を設けた構造体であり、一側の面である有機基板206の裏面206bに外部接続用の複数の電極端子217を有する。そして、柱状端子10は、半導体基体201Aに対して各電極端子217から突出するように設けられている。
 <5.第2実施形態に係る半導体装置の製造方法>
 本技術の第2実施形態に係る半導体装置の製造方法について、図19、図20および図21を参照して説明する。
 本実施形態の固体撮像装置201の製法は、第1実施形態の固体撮像装置1の製法との対比において、リードフレーム30の実装態様の点で異なる。すなわち、第1実施形態の製法は、ウェーハ状態のWL-CSPに、リードフレーム30を個片化したリードフレーム片30Xを実装するが(図6参照)、第2実施形態の製法は、集合状態の有機基板パッケージに、同じく集合状態のリードフレーム30を搭載する(図21参照)。他の工程は、第1実施形態と共通である。
 固体撮像装置201の製造方法においては、図19Aに示すように、まず、リードフレーム30を準備する工程が行われる。
 また、固体撮像装置201の製造方法においては、集合状態の有機基板パッケージ240を準備する工程が行われる。有機基板パッケージ240は、固体撮像装置201の半導体基体201Aの集合状態のものであり、図21に示すように、リードフレーム30と同様に矩形板状の外形を有する。
 図19Bおよび図21に示すように、有機基板パッケージ240は、有機基板206の集合状態である有機基板体246に対し、イメージセンサ202、ガラス203、およびリブ樹脂部204を含む構成を所定の配列で複数実装し、各構成に対してボンディングワイヤ208を配し、モールド樹脂213となるモールド樹脂部243を形成したものである。モールド樹脂部243は、例えばモールド金型を用いた射出成形等によって所定の形状に形成される。有機基板体246のイメージセンサ202側と反対側の板面246bには、複数の電極端子217が所定の配列で形成されている。
 このように、本実施形態では、リードフレーム30の実装を受ける半導体装置本体として、集合状態で形成された複数のイメージセンサ202を含む一体の板状体である有機基板パッケージ240が用いられる。
 次に、図19Bに示すように、リードフレーム30に対し、フレーム本体部33の対向面33a側から、片面ハーフエッチングが行われる。本工程は、リードフレーム30を有機基板パッケージ240に実装する工程の前に行われる。本工程により、図19Bに示すように、リードフレーム30において、突起部34および薄板部35が形成される。
 次に、図19Cに示すように、有機基板パッケージ240に対して、リードフレーム30(30P)を実装する工程が行われる。すなわち、ハーフエッチングを受けたリードフレーム30Pの第1メッキ端子部31を、有機基板パッケージ240の端子である電極端子217に接合することで、リードフレーム30Pを有機基板パッケージ240に実装する工程が行われる。
 本工程では、リフロー半田実装により、リードフレーム30Pが有機基板パッケージ240に実装される。ここでは、図21に示すように、集合状態の有機基板パッケージ240に、同じく集合状態のリードフレーム30Pが搭載される。図21は、本実施形態でのリードフレーム30の搭載イメージを示している。
 本工程により、リードフレーム30Pが、半田部219を介して、各第1メッキ端子部31を電極端子217に接合させた状態となる。図19Cに示すように、リードフレーム30Pが有機基板パッケージ240に実装された状態において、リードフレーム30Pと有機基板体246との間に空間部236が形成される。
 続いて、図20Aに示すように、リードフレーム30Pと有機基板パッケージ240との間の空間である空間部236に、レジスト37を充填する工程が行われる。このレジスト37を充填する工程は、リードフレーム30Pを実装する工程の後、かつ柱状端子10を形成する工程の前に行われる。
 レジスト37は、例えば、ディスペンサのノズルから吐出され、有機基板パッケージ240の外縁部におけるリードフレーム30Pと有機基板体246との間の隙間から、空間部236を埋めるように塗布される。ここで、リードフレーム30Pにおける所定の部位に、レジスト37を空間部236内に供給するための開口部を形成してもよい。開口部は、リードフレーム30Pにおいて例えば薄板部35等にスリット状の貫通孔部として形成され、空間部236を外部空間に連通させる。レジスト37は、リードフレーム30Pの開口部から空間部236内に充填される。リードフレーム30Pに開口部を形成することで、レジスト37の塗布を容易にかつ効率的に行うことが可能となる。
 このように、本実施形態では、リードフレーム30Pと有機基板体246との間の隙間を埋める流動体として、レジスト37が用いられている。
 次に、図20Bに示すように、有機基板パッケージ240に実装されたリードフレーム30Pに対し、反対向面33b側からエッチングが行われる。本工程により、リードフレーム30Pの薄板部35が除去され、柱状部38が形成される。すなわち、上下のメッキ端子部31,32および柱状部38によって形成された柱状の部分が、半田部219を介して電極端子217上に立設された柱状端子10となる。
 次に、図20Dに示すように、レジスト37を除去する工程が行われた後、柱状端子10が形成された状態の有機基板パッケージ240をダイシングして個片化する工程が行われる。ダイシングの工程では、柱状端子10が形成された有機基板体246およびモールド樹脂部243が、イメージセンサ202の配列に対応した格子状の所定のダイシングラインに沿ってダイシングブレードにより切断されて個片化される。これにより、有機基板体246が複数の有機基板206に分離されるとともに、モールド樹脂部243が複数のモールド樹脂213に分離され、複数の固体撮像装置201が得られる。
 以上のような本実施形態に係る固体撮像装置201およびその製造方法によれば、第1実施形態と同様に、短時間かつ安価に外部接続端子として柱状端子10を形成することができ、固体撮像装置201の実装信頼性を向上することができる。
 <6.第3実施形態に係る半導体装置の構成例>
 本技術の第3実施形態に係る半導体装置の構成例について、図22を参照して説明する。本実施形態に係る固体撮像装置301は、半導体装置の一例であり、第1実施形態との対比において、半導体基体1Aの構成が異なる。なお、図22における上下方向を固体撮像装置301における上下方向とする。
 図22に示すように、固体撮像装置301は、固体撮像素子としてのイメージセンサ302と、セラミックパッケージ306と、ガラス303とを備える。固体撮像装置301は、セラミックパッケージ306内にイメージセンサ302を実装するとともに、セラミックパッケージ306上にガラス303をマウントし、セラミックパッケージ306の内部空間を密閉状のキャビティ305としたパッケージ構造を備えている。
 イメージセンサ302は、矩形板状のチップであり、上側を受光面側とする。イメージセンサ302は、例えばCMOS型のイメージセンサである。ガラス303は、矩形板状の外形を有する透明部材である。
 セラミックパッケージ306は、セラミックスを材料として形成されたパッケージ基板であり、矩形板状の平面部306aと、平面部306aの縁部に沿って矩形枠状をなすように形成された壁部306bとを有する。セラミックパッケージ306は、平面部306aおよび四方の壁部306bにより、上側を開放側とした扁平な箱状に構成されている(図25参照)。
 イメージセンサ302は、セラミックパッケージ306の平面部306a上に実装されている。セラミックパッケージ306は、平面部306aにおいて、イメージセンサ302の実装を受ける表面306cと、その反対側の板面である裏面306dとを有する。セラミックパッケージ306の平面部306aの表面306c側には、イメージセンサ302が、絶縁性または導電性のペースト307によってダイボンドされている。
 ガラス303は、セラミックパッケージ306の壁部306b上に固定状態で支持されている。セラミックパッケージ306の壁部306bは、水平面に沿う上面306eを有し、上面306e上に、ガラス303が接着剤318により固定されている。接着剤318により、キャビティ305の周囲が封止されている。
 イメージセンサ302とセラミックパッケージ306とは、複数のボンディングワイヤ308により電気的に接続されている。ボンディングワイヤ308は、イメージセンサ302の上面に形成されたパッド電極309と、セラミックパッケージ306の平面部306aの表面306cに形成されたリード電極310とを電気的に接続する。
 セラミックパッケージ306上のリード電極310は、セラミックパッケージ306内に形成された配線パターン等を介して、平面部306aの裏面306d側に形成された複数の電極端子317に接続される。 
 以上のような構成を備えた固体撮像装置301において、固体撮像装置301が実装される所定の実装基板に対する電気的な接続を行うための外部接続端子として、リードフレーム30により形成された複数の柱状端子10が設けられている。
 柱状端子10は、セラミックパッケージ306の裏面306d側に設けられた各電極端子317から突出した状態で設けられている。柱状端子10は、半田部319を介して、電極端子317に電気的に接続されている。
 以上のように、固体撮像装置301は、半導体素子であるイメージセンサ302を含む半導体基体301Aと、リードフレームの一部により形成された柱状端子10とを備える。本実施形態において、半導体基体301Aは、セラミックパッケージ306の平面部306a上にイメージセンサ302を実装するとともに壁部306b上にガラス203を設けた構造体であり、一側の面であるセラミックパッケージ306の裏面306dに外部接続用の複数の電極端子317を有する。そして、柱状端子10は、半導体基体301Aに対して各電極端子317から突出するように設けられている。
 <7.第3実施形態に係る半導体装置の製造方法>
 本技術の第3実施形態に係る半導体装置の製造方法について、図23、図24および図25を参照して説明する。
 本実施形態の固体撮像装置301の製法は、第1実施形態の固体撮像装置1の製法との対比において、リードフレーム30の実装態様の点等で異なる。
 固体撮像装置301の製造方法においては、図23Aに示すように、まず、リードフレーム30を準備する工程が行われる。
 次に、図23Bに示すように、リードフレーム30に対し、フレーム本体部33の対向面33a側から、片面ハーフエッチングが行われる。本工程は、リードフレーム30をセラミックパッケージ306に実装する工程の前に行われる。本工程により、図23Bに示すように、リードフレーム30において、突起部34および薄板部35が形成される。
 次に、セラミックパッケージ306に対して、ハーフエッチングを受けたリードフレーム30(30P)を実装する工程が行われる。本実施形態では、図25に示すように、集合状態のリードフレーム30Pに、個片状態のセラミックパッケージ306を搭載することにより、リードフレーム30の実装が行われる。すなわち、リードフレーム30Pの第1メッキ端子部31を、セラミックパッケージ306の端子である電極端子317に接合することで、リードフレーム30Pを複数のセラミックパッケージ306に実装する工程が行われる。図25は、本実施形態でのリードフレーム30の搭載イメージを示している。
 図23Cに示すように、リードフレーム30Pの実装に際しては、リードフレーム30Pのメッキ端子部31に、転写等の方法でフラックス入りの半田ペースト311が塗布される。
 その後、図23Dに示すように、複数のセラミックパッケージ306が、リードフレーム30Pに対して、チップマウンタ等によって、各電極端子317が第1メッキ端子部31に対応する所定の位置に搭載され、所定の温度でリフローが行われる。
 本工程により、リードフレーム30Pが、半田ペースト311が固化した半田部319を介して、各第1メッキ端子部31を電極端子317に接合させた状態となる。図23Dに示すように、リードフレーム30Pが複数のセラミックパッケージ306に実装された状態において、リードフレーム30Pとセラミックパッケージ306との間に空間部336が形成される。
 続いて、図24Aに示すように、リードフレーム30Pとセラミックパッケージ306との間の空間である空間部336に、レジスト37を充填する工程が行われる。このレジスト37を充填する工程は、リードフレーム30Pを実装する工程の後、かつ柱状端子10を形成する工程の前に行われる。
 レジスト37は、例えば、ディスペンサのノズルから吐出され、隣り合うセラミックパッケージ306間の隙間306Yから、空間部336を埋めるように塗布される。このように、本実施形態では、リードフレーム30Pとセラミックパッケージ306との間の隙間を埋める流動体として、レジスト37が用いられている。
 次に、図24Bに示すように、複数のセラミックパッケージ306を搭載したリードフレーム30Pに対し、反対向面33b側からエッチングが行われる。本工程により、リードフレーム30Pの薄板部35が除去され、柱状部38が形成される。すなわち、上下のメッキ端子部31,32および柱状部38によって形成された柱状の部分が、半田部319を介して電極端子317上に立設された柱状端子10となる。また、複数のセラミックパッケージ306が、レジスト37を介して繋がった状態となる。
 次に、図24Cに示すように、レジスト37を除去する工程が行われる。これにより、柱状端子10の全体が露出した状態となるとともに、レジスト37を介して繋がっていた複数のセラミックパッケージ306が分離される。
 その後、図24Dに示すように、セラミックパッケージ306上にイメージセンサ302がダイボンドされ、ボンディングワイヤ308によりワイヤボンド結線され、ガラス303がセラミックパッケージ306に接着されてガラス封止が行われる。これにより、複数の固体撮像装置301が得られる。
 以上のような本実施形態に係る固体撮像装置301およびその製造方法によれば、第1実施形態と同様に、短時間かつ安価に外部接続端子として柱状端子10を形成することができ、固体撮像装置301の実装信頼性を向上することができる。
 <8.第4実施形態に係る半導体装置の構成例>
 本技術の第4実施形態に係る半導体装置の構成例について、図26を参照して説明する。本実施形態に係る半導体装置401は、第1実施形態との対比において、半導体基体1Aの構成が異なる。なお、図26における上下方向を半導体装置401における上下方向とする。
 図26に示すように、半導体装置401は、半導体素子としてのICチップ402と、再配線層403と、封止樹脂部405とを備える。半導体装置401は、再配線層403をICチップ402の外形よりも外側に拡張させたいわゆるFOWLP(Fan Out Wafer Level Package)の構造を有する。
 ICチップ402は、所定の回路構造を有する矩形板状の半導体チップである。再配線層403は、ICチップ402の端子から配線を引き出す矩形板状の部分であり、例えば銅(Cu)等の低抵抗金属材料により形成された配線を有する。再配線層403は、ICチップ402の下面402a側に形成されており、ICチップ402の外形からはみ出た延出部403aを有する。延出部403aは、平面視でICチップ402を囲むように四方に形成されている。
 封止樹脂部405は、例えば、ケイ素酸化物を主成分とするフィラーを含有した熱硬化性樹脂である。封止樹脂部405は、再配線層403およびICチップ402の全体を上側から覆うように形成されている。封止樹脂部405は、例えばモールド金型を用いた射出成形等によって所定の形状に形成される。
 再配線層403の裏面403b側には、外部接続用の複数の電極部として、複数の電極端子417が設けられている。電極端子417は、再配線層403の配線によりICチップ402の端子に接続されている。
 以上のような構成を備えた半導体装置401において、半導体装置401が実装される所定の実装基板に対する電気的な接続を行うための外部接続端子として、リードフレーム30により形成された複数の柱状端子10が設けられている。
 柱状端子10は、再配線層403の裏面403b側に設けられた各電極端子417から突出した状態で設けられている。柱状端子10は、半田部419を介して、電極端子417に電気的に接続されている。
 以上のように、半導体装置401は、半導体素子であるICチップ402を含む半導体基体401Aと、リードフレームの一部により形成された柱状端子10とを備える。本実施形態において、半導体基体401Aは、ICチップ402、再配線層403、および封止樹脂部405含む構造体であり、一側の面である再配線層403の裏面303bに外部接続用の複数の電極端子417を有する。そして、柱状端子10は、半導体基体401Aに対して各電極端子417から突出するように設けられている。
 <9.第4実施形態に係る半導体装置の製造方法>
 本技術の第4実施形態に係る半導体装置の製造方法について、図27、図28、および図29を参照して説明する。
 本実施形態の半導体装置401の製法は、第1実施形態の固体撮像装置1の製法と同様に、ウェーハ状態のFOWLPに、リードフレーム30を個片化したリードフレーム片30Xを実装するものである(図29参照)。
 半導体装置401の製造方法においては、図27Aに示すように、まず、リードフレーム30を準備する工程が行われる。
 また、半導体装置401の製造方法においては、ウェーハ状態のFOWLPであるウェーハFOWLP440を準備する工程が行われる。ウェーハFOWLP440は、半導体装置401の半導体基体401Aの集合状態のものであり、図29に示すように、例えば円形板状の外形を有する。
 図27Cおよび図29に示すように、ウェーハFOWLP440は、所定の間隔で配列されたICチップ402に対して円板状の外形をなすように封止樹脂部405となるモールド樹脂部445を形成し、ICチップ402の下面402a側に、再配線層403となる再配線層部443を円板状に形成したものである。モールド樹脂部445は、例えばモールド金型を用いた射出成形等によって所定の形状に形成される。再配線層部443のICチップ402側と反対側の板面443bには、複数の電極端子417が所定の配列で形成されている。 
 このように、本実施形態では、リードフレーム30の実装を受ける半導体装置本体として、集合状態で形成された複数のICチップ402を含む一体の板状体であるウェーハFOWLP440が用いられる。
 次に、図27Bに示すように、リードフレーム30に対し、フレーム本体部33の対向面33a側から、片面ハーフエッチングが行われる。本工程は、リードフレーム30をウェーハFOWLP440に実装する工程の前に行われる。本工程により、図27Bに示すように、リードフレーム30において、突起部34および薄板部35が形成される。
 ハーフエッチングの工程の後に、図27Cに示すように、エッチングを受けたリードフレーム30をICチップ402に対応した複数のチップに個片化する工程が行われる。本工程により、リードフレーム30は、各ICチップ402に対応する複数のリードフレーム片30Xに分割される。リードフレーム片30Xは、半導体装置401のサイズに対応した大きさの矩形板状のチップとなる(図29参照)。
 次に、図27Dに示すように、ウェーハFOWLP440に対して、複数のリードフレーム片30Xを実装する工程が行われる。すなわち、各リードフレーム片30Xの第1メッキ端子部31を、ウェーハFOWLP440の端子である電極端子417に接合することで、リードフレーム片30XをウェーハFOWLP440に実装する工程が行われる。
 本工程では、リフロー半田実装により、複数のリードフレーム片30XがウェーハFOWLP440に実装される。ここでは、図29に示すように、集合状態のウェーハFOWLP440に、個片状態の複数のリードフレーム片30Xが搭載される。図29は、本実施形態でのリードフレーム30の搭載イメージを示している。
 本工程により、複数のリードフレーム片30Xが、半田部419を介して、各第1メッキ端子部31を電極端子417に接合させた状態となる。図27Dに示すように、複数のリードフレーム片30XがウェーハFOWLP440に実装された状態において、リードフレーム片30Xと再配線層部443との間に空間部436が形成される。
 続いて、図28Aに示すように、リードフレーム片30XとウェーハFOWLP440との間の空間である空間部436に、レジスト37を充填する工程が行われる。このレジスト37を充填する工程は、リードフレーム30を実装する工程の後、かつ柱状端子10を形成する工程の前に行われる。
 レジスト37は、例えば、ディスペンサのノズルから吐出され、隣り合うリードフレーム片30X間の隙間30Y(図27D参照)から、リードフレーム片30Xと再配線層部443との間の隙間である空間部436を埋めるように塗布される。このように、本実施形態では、リードフレーム片30Xと再配線層部443との間の隙間を埋める流動体として、レジスト37が用いられている。
 次に、図28Bに示すように、ウェーハFOWLP440に実装されたリードフレーム片30Xに対し、反対向面33b側からエッチングが行われる。本工程により、リードフレーム片30Xの薄板部35が除去され、柱状部38が形成される。すなわち、上下のメッキ端子部31,32および柱状部38によって形成された柱状の部分が、半田部419を介して電極端子417上に立設された柱状端子10となる。
 次に、図28Cに示すように、レジスト37を除去する工程が行われた後、柱状端子10が形成された状態のウェーハFOWLP440をダイシングして個片化する工程が行われる。ダイシングの工程では、柱状端子10が形成された再配線層部443およびモールド樹脂部445が、ICチップ402の配列に対応した格子状の所定のダイシングラインに沿ってダイシングブレードにより切断されて個片化される。これにより、再配線層部443が複数の再配線層403に分離されるとともに、モールド樹脂部445が複数の封止樹脂部405に分離され、複数の半導体装置401が得られる。
 以上のような本実施形態に係る半導体装置401およびその製造方法によれば、第1実施形態と同様に、短時間かつ安価に外部接続端子として柱状端子10を形成することができ、半導体装置401の実装信頼性を向上することができる。
 <10.第5実施形態に係る半導体装置の構成例>
 本技術の第5実施形態に係る半導体装置の構成例について、図30を参照して説明する。図30に示すように、本実施形態に係る固体撮像装置501は、第1実施形態に係る固体撮像装置1の構成(図1参照)において、イメージセンサ2の裏面2b側に、封止樹脂部505を設けたものである。
 封止樹脂部505は、イメージセンサ2の裏面2b側において、電極端子7、半田部9、および柱状端子10の上半部を埋めるように層状の部分として設けられている。封止樹脂部505の下面505aから、柱状端子10の下半部が下方に向けて突出している。
 具体的には、柱状端子10のうち、端子本体部13の基端側部14から上側(基端側)の部分が、封止樹脂部505内に埋もれおり、先端側部15から下側(先端側)の部分が、封止樹脂部505から突出している。封止樹脂部505は、柱状端子10に対する接触面に、上部外周面14aに沿う湾曲面部505bを含む。
 封止樹脂部505は、例えば、エポキシ系樹脂等の熱硬化性の液状樹脂等が用いられる。封止樹脂部505は、例えば、ディスペンサによる塗布や、モールド金型および離型フィルムを用いた射出成形等によって所定の形状に形成される。
 封止樹脂部505は、上述した固体撮像装置1の製法において、リードフレーム30の反対面エッチングの工程の前に、リードフレーム片30Xとシリコンウェーハ42との間に充填するレジスト37の代わりに封止樹脂を用い、その封止樹脂を除去せずに残存させることにより形成される。
 <11.第5実施形態に係る半導体装置の製造方法>
 本技術の第5実施形態に係る半導体装置の製造方法について、図4および図31を参照して説明する。
 固体撮像装置501の製造方法においては、第1実施形態と同様に、まず、リードフレーム30を準備する工程が行われる(図4A参照)。また、ウェーハCSP40を準備する工程が行われる(図4C、図6参照)。次に、リードフレーム30に対して片面ハーフエッチングが行われる(図4B参照)。その後、エッチングを受けたリードフレーム30を複数のリードフレーム片30Xに個片化する工程が行われる(図4C参照)。次に、ウェーハCSP40に複数のリードフレーム片30Xを実装する工程が行われる(図4D参照)。本工程により、リードフレーム片30Xとシリコンウェーハ42との間に空間部36が形成される。
 続いて、図31Aに示すように、リードフレーム片30XとウェーハCSP40との間の空間である空間部36に、封止樹脂537を充填する工程が行われる。
 封止樹脂537は、例えば、ディスペンサのノズルから吐出され、隣り合うリードフレーム片30X間の隙間30Y(図4D参照)から、リードフレーム片30Xとシリコンウェーハ42との間の隙間である空間部36を埋めるように塗布される。また、モールド金型および離型フィルムを用いた射出成形により、空間部36内に封止樹脂537を充填させてもよい。このように、本実施形態では、リードフレーム片30Xとシリコンウェーハ42との間の隙間を埋める流動体として、封止樹脂537が用いられている。
 空間部36内に充填された封止樹脂537は、所定のタイミングで固化させられる。封止樹脂537が熱硬化性の樹脂の場合、空間部36に封止樹脂537を充填する工程の後に、封止樹脂537を所定の温度で加熱して硬化させる工程が行われる。流動性を有する封止樹脂537は、硬化させられることで、硬化状態の封止樹脂537Aとなる。
 次に、図31Bに示すように、ウェーハCPS40に実装されたリードフレーム片30Xに対し、反対向面33b側からエッチングが行われる。
 図31Bに示すように、エッチングによってリードフレーム片30Xのフレーム本体部33が部分的に除去された状態において、封止樹脂537Aにおける隣り合うリードフレーム片30X間に対応する部位には、出っ張り部としての凸部537Xが存在している。凸部537Xは、隣り合うリードフレーム片30X間の隙間30Yを埋めていた封止樹脂537により形成された部分であり、リードフレーム片30Xの配置に対応して格子状に形成される。
 このように封止樹脂537Aの表面に現れた凸部537Xに対し、凸部537Xを除去する工程が行われる。凸部537Xは、例えば、凸部537Xの幅に対応した所定のダイシングブレード等を用いて切削されて除去される。ただし、凸部537Xを除去する方法は特に限定されるものではない。凸部537Xを除去することにより、図31Cに示すように、封止樹脂537Aの表面が平坦な面となる。
 その後、図31Dに示すように、柱状端子10が形成された状態のウェーハCPS40をダイシングして個片化する工程が行われる。この工程により、硬化状態の封止樹脂537Aが、シリコンウェーハ42、ガラス板43、および壁部44とともに分離されて封止樹脂部505となり、封止樹脂部505を有する複数の固体撮像装置501が得られる。
 以上のような本実施形態に係る固体撮像装置501およびその製造方法によれば、第1実施形態と同様に、短時間かつ安価に外部接続端子として柱状端子10を形成することができ、固体撮像装置501の実装信頼性を向上することができる。また、封止樹脂部505により、イメージセンサ2の裏面2b側および柱状端子10の根元側の部分を覆うことができる。これにより、柱状端子10の電極端子7に対する接続部および柱状端子10の根元側の部分を保護・補強することができるので、温度サイクル耐性の向上、および基板実装信頼性の向上を図ることができる。
 <12.第5実施形態に係る半導体装置の変形例>
 第1実施形態の固体撮像装置1の変形例1~5の各構成の製造工程において、レジスト37の代わりに封止樹脂537を用い、その封止樹脂を除去せずに残存させることにより、イメージセンサ2の裏面2b側に封止樹脂部505を設けることができる。以下では各変形例の構成について説明する。
 (変形例1)
 図32Aおよび図32Bに示すように、変形例1では、イメージセンサ2の裏面2b側にリードフレーム30により形成された放熱用パッド50を備えた構成において、イメージセンサ2の裏面2b側に封止樹脂部505が設けられている。封止樹脂部505は、柱状端子10の上半部と放熱用パッド50の上半部を覆っている。
 封止樹脂部505は、イメージセンサ2の裏面2b側において、パッド接続部57、半田部59、および放熱用パッド50の上半部を埋めるように層状の部分として設けられている。封止樹脂部505の下面505aから、放熱用パッド50の下半部が下方に向けて突出している。
 具体的には、放熱用パッド50のうち、中間層部53の上部外周面53aの形成部位から上側の部分が、封止樹脂部505内に埋もれており、中間層部53の下部外周面53bの形成部位から下側の部分が、封止樹脂部505から突出している。封止樹脂部505は、放熱用パッド50に対する接触面に、中間層部53の上部外周面53aに沿う湾曲面部505cを含む。
 変形例1の構成によれば、封止樹脂部505により、放熱用パッド50の上側の部分を覆うことができ、放熱用パッド50を保護・補強することができる。
 (変形例2)
 図33Aおよび図33Bに示すように、変形例2では、イメージセンサ2の裏面2b側にリードフレーム30により形成された枠状の補強部70を備えた構成において、イメージセンサ2の裏面2b側に封止樹脂部505が設けられている。封止樹脂部505は、柱状端子10の上半部と補強部70の内側の部分を覆っている。
 封止樹脂部505は、イメージセンサ2の裏面2b側において、柱状端子10の下半部を突出させるとともに枠状の補強部70の内側の領域の全体を埋めるように層状の部分として設けられている。
 具体的には、封止樹脂部505は、下面505aを補強部70の下面73cと略同じ高さに位置させ、補強部70に対して面一状をなすように形成されている。封止樹脂部505は、補強部70に対する接触面に、第2層部73の内周面73aに沿う湾曲面部505dを含む。
 変形例2の構成によれば、封止樹脂部505により、補強部70の内側の部分を覆うことができ、補強部70を保護・補強することができる。これにより、補強部70によるパッケージの剛性の向上作用を効果的に得ることができる。
 (変形例3)
 図34Aおよび図34Bに示すように、変形例3では、イメージセンサ2の裏面2b側にリードフレーム30により形成された枠状のGNDプレーン90およびGND端子100を備えた構成において、イメージセンサ2の裏面2b側に封止樹脂部505が設けられている。封止樹脂部505は、柱状端子10の上半部とGNDプレーン90の内側の部分とGND端子100の上半部を覆っている。
 封止樹脂部505は、イメージセンサ2の裏面2b側において、柱状端子10およびGND端子100それぞれの下半部を突出させるとともに枠状のGNDプレーン90の内側の領域の全体を埋めるように層状の部分として設けられている。封止樹脂部505は、GND端子接続部107、半田部109、およびGND端子100の上半部を埋めるように設けられている。
 具体的には、封止樹脂部505は、下面505aをGNDプレーン90の下面93cと略同じ高さに位置させ、GNDプレーン90に対して面一状をなすように形成されている。封止樹脂部505は、GNDプレーン90に対する接触面に、第2層部93の内周面93aに沿う湾曲面部505eを含む。
 また、GND端子100のうち、第3層部103の上部側面103aの形成部位から上側の部分が、封止樹脂部505内に埋もれており、第3層部103の下部外周面103bの形成部位から下側の部分が、封止樹脂部505から突出している。封止樹脂部505は、GND端子100に対する接触面に、第3層部103の上部側面103aに沿う湾曲面部505fを含む。
 変形例3の構成によれば、封止樹脂部505により、GNDプレーン90の内側の部分およびGND端子100の上側の部分を覆うことができ、GNDプレーン90およびGND端子100を保護・補強することができる。
 (変形例4)
 図35Aおよび図35Bに示すように、変形例4では、イメージセンサ2の裏面2b側にリードフレーム30により形成され内蔵チップ125を覆うシールド部120を備えた構成において、イメージセンサ2の裏面2b側に封止樹脂部505が設けられている。封止樹脂部505は、柱状端子10の上半部とシールド部120の上半部の外側を覆っている。
 封止樹脂部505は、イメージセンサ2の裏面2b側において、パッド接続部127、半田部129、およびシールド部120の上半部を、シールド部120の外周側から覆うように層状の部分として設けられている。封止樹脂部505の下面505aから、シールド部120の下半部が下方に向けて突出している。
 具体的には、シールド部120のうち、中間層部123の上部外周面123aの形成部位から上側の部分が、封止樹脂部505内に埋もれており、中間層部123の下部外周面123bの形成部位から下側の部分が、封止樹脂部505から突出している。封止樹脂部505は、シールド部120に対する接触面に、中間層部123の上部外周面123aに沿う湾曲面部505gを含む。
 変形例4の構成によれば、封止樹脂部505により、シールド部120の上側の部分を外側から覆うことができ、シールド部120を保護・補強することができる。
 (変形例5)
 図36Aおよび図36Bに示すように、変形例5では、根元部分を楕円形状とした柱状端子10Aを中心点O1から放射状に配置した構成において、イメージセンサ2の裏面2b側に封止樹脂部505が設けられている。封止樹脂部505は、柱状端子10Aの上半部を覆っている。
 封止樹脂部505は、イメージセンサ2の裏面2b側において、電極端子7、半田部9、および柱状端子10Aの上半部を埋めるように層状の部分として設けられている。封止樹脂部505の下面505aから、柱状端子10Aの下半部が下方に向けて突出している。
 具体的には、柱状端子10Aのうち、端子本体部13の基端側部14から上側の部分が、封止樹脂部505内に埋もれおり、先端側部15から下側の部分が、封止樹脂部505から突出している。封止樹脂部505は、柱状端子10Aに対する接触面に、上部外周面14aに沿う湾曲面部505hを含む。 
 変形例5の構成によれば、封止樹脂部505により、イメージセンサ2の裏面2b側および柱状端子10Aの根元側の部分を覆うことができる。これにより、柱状端子10Aの電極端子7に対する接続部および柱状端子10Aの根元側の部分を保護・補強することができる。かかる作用効果が、柱状端子10Aの根元側を太くした形状および複数の柱状端子10Aの放射状の配置と相俟って、パッケージ構造の機械的強度を効果的に向上させることができるとともに、温度サイクル耐性および基板実装信頼性を効果的に向上させることができる。
 以上説明した各変形例のように、本実施形態に係る固体撮像装置501およびその製法によれば、リードフレーム30により形成された各種機能部および柱状端子10の形状に応じて、イメージセンサ2の裏面2b側に封止樹脂部505を設けることができる。
 <13.第6実施形態に係る半導体装置の構成例>
 本技術の第6実施形態に係る半導体装置の構成例について、図37を参照して説明する。図37に示すように、本実施形態に係る固体撮像装置601は、第2実施形態に係る固体撮像装置201の構成(図18参照)において、有機基板206の裏面206b側に、封止樹脂部605を設けたものである。封止樹脂部605は、第5実施形態に係る封止樹脂部505と同様の材料、製法によって形成される部分である。
 封止樹脂部605は、有機基板206の裏面206b側において、電極端子217、半田部219、および柱状端子10の上半部を埋めるように層状の部分として設けられている。封止樹脂部605の下面605aから、柱状端子10の下半部が下方に向けて突出している。
 具体的には、柱状端子10のうち、端子本体部13の基端側部14から上側の部分が、封止樹脂部605内に埋もれおり、先端側部15から下側の部分が、封止樹脂部605から突出している。封止樹脂部605は、柱状端子10に対する接触面に、上部外周面14aに沿う湾曲面部605bを含む。
 封止樹脂部605は、上述した固体撮像装置201の製法において、リードフレーム30の反対面エッチングの工程の前に、リードフレーム片30Xと有機基板体246との間に充填するレジスト37の代わりに封止樹脂を用い、その封止樹脂を除去せずに残存させることにより形成される。
 <14.第6実施形態に係る半導体装置の製造方法>
 本技術の第6実施形態に係る半導体装置の製造方法について、図19および図38を参照して説明する。
 固体撮像装置601の製造方法においては、第2実施形態と同様に、まず、リードフレーム30を準備する工程が行われる(図19A参照)。また、有機基板パッケージ240を準備する工程が行われる(図19B、図21参照)。次に、リードフレーム30に対して片面ハーフエッチングが行われる(図19B参照)。その後、エッチングを受けたリードフレーム30(30P)を有機基板パッケージ240に実装する工程が行われる(図19C参照)。本工程により、リードフレーム30Pと有機基板体246との間に空間部236が形成される。
 続いて、図38Aに示すように、リードフレーム30Pと有機基板体246との間の空間である空間部236に、封止樹脂537を充填する工程が行われる。
 封止樹脂537は、例えば、ディスペンサのノズルから吐出され、有機基板パッケージ240の外縁部におけるリードフレーム30Pと有機基板体246との間の隙間から、空間部236を埋めるように塗布される。ここで、リードフレーム30Pにおける所定の部位に、封止樹脂537を空間部236内に供給するための開口部を形成してもよい。開口部は、リードフレーム30Pにおいて例えば薄板部35等にスリット状の貫通孔部として形成され、空間部236を外部空間に連通させる。封止樹脂537は、リードフレーム30Pの開口部から空間部236内に充填される。リードフレーム30Pに開口部を形成することで、封止樹脂537の塗布を容易にかつ効率的に行うことが可能となる。また、モールド金型および離型フィルムを用いた射出成形により、空間部236内に封止樹脂537を充填させてもよい。この場合においても、リードフレーム30Pにスリット状の開口部を形成してもよい。
 このように、本実施形態では、リードフレーム30Pと有機基板体246との間の隙間を埋める流動体として、封止樹脂537が用いられている。
 空間部236内に充填された封止樹脂537は、所定のタイミングで固化させられる。封止樹脂537が熱硬化性の樹脂の場合、空間部236に封止樹脂537を充填する工程の後に、封止樹脂537を所定の温度で加熱して硬化させる工程が行われる。流動性を有する封止樹脂537は、硬化させられることで、硬化状態の封止樹脂537Aとなる。
 次に、図38Bに示すように、有機基板パッケージ240に実装されたリードフレーム30Pに対し、反対向面33b側からエッチングが行われる。
 その後、図38Cに示すように、柱状端子10が形成された状態の有機基板パッケージ240をダイシングして個片化する工程が行われる。この工程により、硬化状態の封止樹脂537Aが、有機基板体246およびモールド樹脂部243とともに分離されて封止樹脂部605となり、封止樹脂部605を有する複数の固体撮像装置601が得られる。
 以上のような本実施形態に係る固体撮像装置601およびその製造方法によれば、第5実施形態と同様に、封止樹脂部605により、柱状端子10の電極端子7に対する接続部および柱状端子10の根元側の部分を保護・補強することができ、温度サイクル耐性の向上、および基板実装信頼性の向上を図ることができる。
 <15.第7実施形態に係る半導体装置の構成例>
 本技術の第7実施形態に係る半導体装置の構成例について、図39を参照して説明する。図39に示すように、本実施形態に係る固体撮像装置701は、第3実施形態に係る固体撮像装置301の構成(図22参照)との対比において、セラミックパッケージ306の代わりに、矩形板状のセラミック基板706を備える。そして、セラミック基板706の裏面側から周縁部上にかけて封止樹脂部705が設けられている。封止樹脂部705は、第5実施形態に係る封止樹脂部505と同様の材料、製法によって形成される部分である。
 セラミック基板706は、セラミックスを材料として形成された基板であり、第3実施形態の箱状のセラミックパッケージ306の壁部306bを省略した態様のものである。セラミック基板706は、上側の板面である表面706aと、下側の板面である裏面706bと、四方の側面706cとを有する。セラミック基板706の裏面706b側には、複数の電極端子317が形成されている。
 固体撮像装置701は、封止樹脂部705の一部により、セラミック基板706の上方にガラス303を支持している。すなわち、固体撮像装置701は、セラミックパッケージ306の壁部306bの代わりに、ガラス303を支持する部分として、封止樹脂部705の一部により、セラミック基板706の周縁部の上側に壁状の部分を形成している。
 封止樹脂部705は、セラミック基板706の裏面706b側に設けられた下側層部705pと、セラミック基板706の側面706c側に設けられた囲繞部705qと、セラミック基板706の表面706aよりも上側に設けられた壁部705rとを有する。これらの下側層部705p、囲繞部705q、および壁部705rは、一体の連続した部分として封止樹脂部705を形成している。
 下側層部705pは、セラミック基板706の裏面706b側において、電極端子317、半田部319、および柱状端子10の上半部を埋めるように層状の部分として設けられている。セラミック基板706の下面となる下側層部705pの下面705aから、柱状端子10の下半部が下方に向けて突出している。
 具体的には、柱状端子10のうち、端子本体部13の基端側部14から上側の部分が、下側層部705p内に埋もれおり、先端側部15から下側の部分が、下側層部705pから突出している。下側層部705pは、柱状端子10に対する接触面に、上部外周面14aに沿う湾曲面部705bを含む。
 囲繞部705qは、下側層部705pおよびセラミック基板706の外側(側面706c側)において、矩形板状のセラミック基板706を全周にわたって覆うように形成されている。下側層部705pは、セラミック基板706の四方の側面705cに沿って形成され、セラミック基板706の外側を囲繞している。
 壁部705rは、セラミック基板706の縁部に沿って矩形枠状をなすように四方に形成されている。壁部705rは、セラミック基板706とともに、上側を開放側とした扁平な箱状をなすように形成されている。壁部706rは、イメージセンサ302の上方にガラス303を支持する部分となる。
 ガラス303は、セラミック基板706の壁部705r上に固定状態で支持されている。壁部705rは、水平面に沿う上面705dを有し、上面705d上に、ガラス303が接着剤318により固定されている。封止樹脂部705および接着剤318により、キャビティ305の周囲が封止されている。
 以上のように、封止樹脂部705は、セラミック基板706の下方および側方を全体的に覆うとともに、セラミック基板706の周縁部の上側に枠状に突出している。そして、封止樹脂部705は、セラミック基板706の表面706aから上方への枠状の突出部分により、ガラス303の支持部を形成している。
 封止樹脂部705は、上述した固体撮像装置301の製法において、リードフレーム30の反対面エッチングの工程の前に、リードフレーム30とセラミックパッケージ306との間に充填するレジスト37の代わりに封止樹脂を用い、その封止樹脂を所定の形状として除去せずに残存させることにより形成される。
 <16.第7実施形態に係る半導体装置の製造方法>
 本技術の第7実施形態に係る半導体装置の製造方法について、図40および図41を参照して説明する。
 固体撮像装置701の製造方法においては、第3実施形態と同様に、まず、図40Aに示すように、リードフレーム30を準備する工程が行われる。次に、図40Bに示すように、リードフレーム30に対して片面ハーフエッチングが行われる。
 次に、セラミック基板706に対して、エッチングを受けたリードフレーム30(30P)を実装する工程が行われる。ここで、図25に示す態様と同様の態様で、集合状態のリードフレーム30Pに、個片状態のセラミック基板706を搭載することにより、リードフレーム30の実装が行われる。
 図40Cに示すように、リードフレーム30Pの実装に際しては、リードフレーム30Pのメッキ端子部31に半田ペースト311が塗布される。その後、図40Dに示すように、複数のセラミック基板706がリードフレーム30Pに対してリフロー実装される。本工程により、リードフレーム30Pとセラミック基板706との間に空間部736が形成される。
 続いて、図41Aに示すように、リードフレーム30Pとセラミック基板706との間の空間である空間部736に、封止樹脂537を充填するとともに、封止樹脂部705の囲繞部705qおよび壁部705rとなる部分である樹脂壁部746を形成する工程が行われる。樹脂壁部746は、セラミック基板706の矩形状の領域に対応して、平面視で所定の幅を持った格子状の部分として形成される。
 空間部736内への封止樹脂537の充填および樹脂壁部746の形成は、モールド金型および離型フィルムを用いた射出成形により行われる。このように、本実施形態では、リードフレーム30Pとセラミック基板706との間の隙間を埋める流動体として、封止樹脂537が用いられている。
 空間部736内に充填されるとともに樹脂壁部746をなす封止樹脂537は、モールド金型内への射出工程の後の所定のタイミングで固化させられる。封止樹脂537は、硬化させられることで、硬化状態の封止樹脂537Aとなる。封止樹脂537Aは、空間部736内に充填された部分と樹脂壁部746とを含む。
 次に、図41Bに示すように、複数のセラミックパッケージ306を搭載したリードフレーム30Pに対し、反対向面33b側からエッチングが行われる。
 次に、図41Cに示すように、セラミック基板706上にイメージセンサ302がダイボンドされ、ボンディングワイヤ308によりワイヤボンド結線される。また、樹脂壁部746の上面746aに対して、接着剤318によりガラス303が接着されてガラス封止が行われる。樹脂壁部746の上面746aは、封止樹脂部705において壁部705rの上面705dとなる面である。
 その後、図41Dに示すように、パッケージをダイシングして個片化する工程が行われる。この工程により、空間部736内の充填部および樹脂壁部746を含む硬化状態の封止樹脂537Aが分離されて封止樹脂部705となり、封止樹脂部705を有する複数の固体撮像装置701が得られる。
 以上のような本実施形態に係る固体撮像装置701およびその製造方法によれば、第5実施形態と同様に、封止樹脂部705により、柱状端子10の電極端子7に対する接続部および柱状端子10の根元側の部分を保護・補強することができ、温度サイクル耐性の向上、および基板実装信頼性の向上を図ることができる。また、板状のセラミック基板706を用いることで、第3実施形態のセラミックパッケージ306と比べて、安価に製造することが可能となり、コストを抑えることが可能となる。
 <17.第8実施形態に係る半導体装置の構成例>
 本技術の第8実施形態に係る半導体装置の構成例について、図42を参照して説明する。図42に示すように、本実施形態に係る半導体装置801は、第4実施形態に係る半導体装置401の構成(図26参照)において、再配線層403の裏面403b側に、封止樹脂部805を設けたものである。封止樹脂部805は、第5実施形態に係る封止樹脂部505と同様の材料、製法によって形成される部分である。
 封止樹脂部805は、再配線層403の裏面403b側において、電極端子417、半田部419、および柱状端子10の上半部を埋めるように層状の部分として設けられている。封止樹脂部805の下面805aから、柱状端子10の下半部が下方に向けて突出している。
 具体的には、柱状端子10のうち、端子本体部13の基端側部14から上側の部分が、封止樹脂部805内に埋もれおり、先端側部15から下側の部分が、封止樹脂部805から突出している。封止樹脂部805は、柱状端子10に対する接触面に、上部外周面14aに沿う湾曲面部805bを含む。
 封止樹脂部805は、上述した半導体装置401の製法において、リードフレーム30の反対面エッチングの工程の前に、リードフレーム片30Xと再配線層部443との間に充填するレジスト37の代わりに封止樹脂を用い、その封止樹脂を除去せずに残存させることにより形成される。
 <18.第8実施形態に係る半導体装置の製造方法>
 本技術の第8実施形態に係る半導体装置の製造方法について、図27および図43を参照して説明する。
 半導体装置801の製造方法においては、第4実施形態と同様に、まず、リードフレーム30を準備する工程が行われる(図27A参照)。また、ウェーハFOWLP440を準備する工程が行われる(図27C、図29参照)。次に、リードフレーム30に対して片面ハーフエッチングが行われる(図27B参照)。続いて、エッチングを受けたリードフレーム30をICチップ402に対応した複数のリードフレーム片30Xに個片化する工程が行われる(図27C参照)。
 その後、エッチングを受けたリードフレーム30(30P)をウェーハFOWLP440に実装する工程が行われる(図27D参照)。本工程により、リードフレーム片30XとウェーハFOWLP440との間に空間部436が形成される。
 続いて、図43Aに示すように、リードフレーム片30XとウェーハFOWLP440との間の空間である空間部436に、封止樹脂537を充填する工程が行われる。
 封止樹脂537は、例えば、ディスペンサのノズルから吐出され、隣り合うリードフレーム片30X間の隙間30Y(図27D参照)から、リードフレーム片30Xと再配線層部443との間の隙間である空間部436を埋めるように塗布される。また、モールド金型および離型フィルムを用いた射出成形により、空間部436内に封止樹脂537を充填させてもよい。このように、本実施形態では、リードフレーム片30Xと再配線層部443との間の隙間を埋める流動体として、封止樹脂537が用いられている。
 空間部436内に充填された封止樹脂537は、所定のタイミングで固化させられる。流動性を有する封止樹脂537は、硬化させられることで、硬化状態の封止樹脂537Aとなる。 
 次に、図43Bに示すように、ウェーハFOWLP440に実装されたリードフレーム片30Xに対し、反対向面33b側からエッチングが行われる。その後、封止樹脂537Aの凸部537Xを除去する工程が行われる。
 そして、図43Cに示すように、柱状端子10が形成された状態のウェーハFOWLP440をダイシングして個片化する工程が行われる。この工程により、硬化状態の封止樹脂537Aが、再配線層部443およびモールド樹脂部445とともに分離されて封止樹脂部805となり、封止樹脂部805を有する複数の半導体装置801が得られる。
 以上のような本実施形態に係る半導体装置801およびその製造方法によれば、第5実施形態と同様に、封止樹脂部805により、柱状端子10の電極端子7に対する接続部および柱状端子10の根元側の部分を保護・補強することができ、温度サイクル耐性の向上、および基板実装信頼性の向上を図ることができる。
 <19.第9実施形態に係る半導体装置の製造方法>
 本技術の第9実施形態に係る半導体装置の製造方法について、図44、図45および図46を参照して説明する。
 本実施形態の製法は、第1実施形態の固体撮像装置1の製法との対比において、リードフレーム30の実装態様の点で異なる。すなわち、第1実施形態の製法は、ウェーハ状態のWL-CSPに、リードフレーム30を個片化したリードフレーム片30Xを実装するが(図6参照)、第9実施形態の製法は、ウェーハ状態のWL-CSPに、同じく集合状態のリードフレーム30(30P)を搭載する(図46参照)。他の工程は、第1実施形態と共通である。
 本実施形態の製造方法においては、第1実施形態と同様に、まず、リードフレーム30を準備する工程が行われる(図44A参照)。また、ウェーハCSP40を準備する工程が行われる(図44B、図46参照)。次に、リードフレーム30に対して片面ハーフエッチングが行われる(図44B参照)。
 次に、図44Cに示すように、ウェーハCSP40に対して、ハーフエッチングを受けたリードフレーム30Pを実装する工程が行われる。本工程では、図46に示すように、リードフレーム30Pが個片化されることなく集合状態のままウェーハCSP40に実装される。本工程により、リードフレーム30Pとシリコンウェーハ42との間に空間部936が形成される。図46は、本実施形態でのリードフレーム30の搭載イメージを示している。
 続いて、図45Aに示すように、リードフレーム30PとウェーハCSP40との間の空間である空間部936に、レジスト37を充填する工程が行われる。
 レジスト37は、例えば、ディスペンサのノズルから吐出され、ウェーハCSP40の外縁部におけるリードフレーム30Pとシリコンウェーハ42との間の隙間から、空間部936を埋めるように塗布される。ここで、リードフレーム30Pにおける所定の部位に、レジスト37を空間部936内に供給するための開口部を形成してもよい。開口部は、リードフレーム30Pにおいて例えば薄板部35等にスリット状の貫通孔部として形成され、空間部936を外部空間に連通させる。レジスト37は、リードフレーム30Pの開口部から空間部936内に充填される。リードフレーム30Pに開口部を形成することで、レジスト37の塗布を容易にかつ効率的に行うことが可能となる。
 次に、図45Bに示すように、ウェーハCSP40に実装されたリードフレーム30Pに対し、反対向面33b側からエッチングが行われる。次に、図45Cに示すように、レジスト37を除去する工程が行われた後、柱状端子10が形成された状態のウェーハCSP40をダイシングして個片化する工程が行われる。これにより、複数の固体撮像装置1が得られる。
 以上のような本実施形態に係る固体撮像装置1の製造方法によれば、第1実施形態と同様に、短時間かつ安価に外部接続端子として柱状端子10を形成することができ、固体撮像装置1の実装信頼性を向上することができる。
 <20.第10実施形態に係る半導体装置の構成例>
 本技術の第10実施形態に係る半導体装置の構成例について、図47および図48を参照して説明する。本実施形態の固体撮像装置1001は、第1実施形態の固体撮像装置1との対比において、柱状端子10の端子本体部13の形状を異にするものである。他の構成は第1実施形態と共通である。
 固体撮像装置1001は、イメージセンサ2を含む半導体基体1Aと、リードフレーム30の一部により形成された柱状端子10B(10)とを備える。柱状端子10Bは、基端側端子部11と、先端側端子部12と、基端側端子部11と先端側端子部12との間の部分であって柱状端子10Bの本体部分をなす端子本体部1013とを有する。
 端子本体部1013は、柱状端子10Bの大部分を構成する柱状の部分である。端子本体部1013は、基端側端子部11に対する接合面である上面1013aの形状・寸法を、基端側端子部11の下面11bに略一致させており、先端側端子部12に対する接合面である下面1013bの形状・寸法を、先端側端子部12の上面12bに略一致させている。端子本体部1013は、上述した実施形態の端子本体部13と同様にフレーム本体部33の一部により形成されている。
 また、図48に示すように、柱状端子10Bに関し、電極端子7に対する柱状端子10Bの接合面は、柱状端子10Bの先端側の端面よりも大きくなっている。すなわち、柱状端子10Bにおいては、基端側端子部11の面積が、先端側端子部12の面積よりも大きくなっている。
 端子本体部1013は、基端側端子部11および先端側端子部12の大小関係に対応して、基端側端子部11側から先端側端子部12側にかけて外径を徐々に小さくした略先細りの形状(略テーパ形状)を有する。したがって、柱状端子10Bは、端子本体部1013の形状に倣って全体として略先細りの形状を有する。
 柱状端子10Bの縦断面視において、端子本体部1013の外周面1013cは、柱状端子10Bの中心軸側を凸側とした凹状の曲線をなす。図48に示す例では、端子本体部1013は、その下部について、上側から下側にかけて外径を徐々にわずかに大きくした緩やかな逆テーパ形状を有する。
 以上のような構成を備えた固体撮像装置1001は、図48に示すように、柱状端子10Bを接続端子として、ランド電極21を有する実装基板20に実装される。柱状端子10Bは、半田部25を介してランド電極21に接合されている。半田部25は、第1実施形態の場合と同様に、基端側端子部11とランド電極21の間を埋めるとともに、下広がりの形状をなしながら柱状端子10Bの下部を被覆しており、端子間介在部25a、下端外周部25b、および周壁部25cを有する。
 以上のような柱状端子10Bによる固体撮像装置1001の実装態様によれば、イメージセンサ2の電極端子7と実装基板20のランド電極21との間の電気的な接続部として、上下の中間部に対して上下の両端側を拡径させた形態を有する導体部が形成されている。この導体部は、電極端子7とランド電極21とを繋ぐ部分であって、半田部9、柱状端子10B、および半田部25からなる柱状の部分である。そして、この導体部は、上下方向について両端部から中央部にかけて外径を徐々に小さくした中細りの形状を有し、縦断面視において端子本体部1013の上下中央部を中心として略上下対称の形状を有する。
 端子本体部1013は、上述した固体撮像装置1の製法において、リードフレーム30のハーフエッチングを行わず、リードフレーム30を当初の板厚のまま実装し、その後、メッキ端子部31,32をマスクとして一気にフルエッチングを行うことにより一括して形成される。
 <21.第10実施形態に係る半導体装置の製造方法>
 本技術の第10実施形態に係る半導体装置の製造方法について、図49を参照して説明する。
 固体撮像装置1001の製造方法においては、第1実施形態と同様に、まず、図49Aに示すように、リードフレーム30を準備する工程と、ウェーハCSP40を準備する工程が行われる。
 次に、図49Bに示すように、リードフレーム30に対してハーフエッチングを行うことなく、ウェーハCSP40に対して、リードフレーム30を実装する工程が行われる。本工程では、リードフレーム30が個片化されることなく集合状態のままウェーハCSP40にリフロー実装される(図46参照)。本工程により、リードフレーム30が、半田部9を介して各第1メッキ端子部31を電極端子7に接合させた状態となる。
 次に、図49Cに示すように、ウェーハCPS40に実装されたリードフレーム30に対し、反対向面33b側からエッチングが行われる。ここでは、フレーム本体部33のメッキ端子部31,32の形成領域以外の部分について、フレーム本体部33の板厚方向に全体的に除去するフルエッチングが行われる。このように、フレーム本体部33の第2メッキ端子部32および第1メッキ端子部31をマスクとしたエッチングにより、リードフレーム30のフレーム本体部33を部分的に除去することで、電極端子7から突出した柱状端子10Bを形成する工程が行われる。
 本工程により、リードフレーム30のフレーム本体部33のうち、第1メッキ端子部31と第2メッキ端子部32の間の部分以外の部分が除去される。これにより、フレーム本体部33のうち、第1メッキ端子部31と第2メッキ端子部32の間の部分が、柱状部1038として残る。
 このように、上下のメッキ端子部31,32および柱状部1038によって形成された柱状の部分が、半田部9を介して電極端子7上に立設された柱状端子10Bとなる。本工程のエッチングにより、柱状端子10Bにおいて端子本体部1013の外周面1013cとなる面が、柱状部1038の外周面1038cとして形成される。すなわち、第1メッキ端子部31が基端側端子部11となり、第2メッキ端子部32が先端側端子部12となり、柱状部1038が端子本体部1013となり、柱状端子10Bが形成される。
 その後、図49Dに示すように、柱状端子10Bが形成された状態のウェーハCPS40をダイシングして個片化する工程が行われる。これにより、複数の固体撮像装置1001が得られる。 
 以上のような本実施形態に係る固体撮像装置1001およびその製造方法によれば、第1実施形態と同様に、短時間かつ安価に外部接続端子として柱状端子10Bを形成することができ、固体撮像装置1001の実装信頼性を向上することができる。
 また、本実施形態においても、第1メッキ端子部31と第2メッキ端子部32の大小関係により、イメージセンサ2の電極端子7と実装基板20のランド電極21とを接続させる導体部について、強度を向上することができる。すなわち、図48に示すように、固体撮像装置1001を実装基板20に実装した状態において、柱状端子10Bに対して濡れ上がった半田部25を含む導体部を全体的に略上下対称の形状とすることができる。これにより、導体部について上下の断面サイズをバランスさせることができ、導体部を破壊しにくい構造とすることができる。
 また、本実施形態の製造方法によれば、リードフレーム30に対するハーフエッチングの工程が省略されているため、製造工程を簡略化することができる。これにより、製造コストを低減することが可能となる。
 <22.電子機器の構成例>
 上述した実施形態に係る固体撮像装置の電子機器への適用例について、図50を用いて説明する。なお、ここでは第1実施形態に係る固体撮像装置1の適用例について説明する。
 固体撮像装置1は、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置や、画像読取部に固体撮像素子を用いる複写機など、画像取込部(光電変換部)に固体撮像素子を用いる電子機器全般に対して適用可能である。固体撮像素子は、ワンチップとして形成された形態のものであってもよいし、撮像部と信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態のものであってもよい。
 図50に示すように、電子機器としての撮像装置2100は、光学部2102と、固体撮像装置1と、カメラ信号処理回路であるDSP(Digital Signal Processor)回路2103と、フレームメモリ2104と、表示部2105と、記録部2106と、操作部2107と、電源部2108とを備える。DSP回路2103、フレームメモリ2104、表示部2105、記録部2106、操作部2107および電源部2108は、バスライン2109を介して相互に接続されている。
 光学部2102は、複数のレンズを含み、被写体からの入射光(像光)を取り込んで固体撮像装置1の撮像面上に結像する。固体撮像装置1は、光学部2102によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
 表示部2105は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、固体撮像装置1で撮像された動画または静止画を表示する。記録部2106は、固体撮像装置1で撮像された動画または静止画を、ハードディスクや半導体メモリ等の記録媒体に記録する。
 操作部2107は、ユーザによる操作の下に、撮像装置2100が持つ様々な機能について操作指令を発する。電源部2108は、DSP回路2103、フレームメモリ2104、表示部2105、記録部2106および操作部2107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 以上のような撮像装置2100によれば、固体撮像装置1において、固体撮像装置1の発熱の対応において、簡単な構造により、パッケージサイズを小型にすることができるとともに、高速インターフェースの伝送遅延を抑制することができる。固体撮像装置1の小型化にともない、撮像装置2100の小型化を進めることができる。
 上述した実施形態の説明は本技術の一例であり、本技術は上述の実施形態に限定されることはない。このため、上述した実施形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。また、本開示に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。また、上述した各実施形態の構成および変形例の構成は適宜組み合せることができる。
 上述した実施形態では、リードフレーム30は、その端子部としてメッキにより形成されたメッキ端子部31,32を有するが、リードフレーム30が有する端子部は、メッキ以外の方法によって形成された部分であってもよい。
 なお、本技術は、以下のような構成を取ることができる。
 (1)
 板状のフレーム本体部、および前記フレーム本体部の両側の板面に板面視で少なくとも一部同士を重ねるように対で設けられた複数の端子部を有するリードフレームを準備する工程と、
 前記フレーム本体部の一方の板面の前記端子部を、半導体素子を含む半導体装置本体の電極部に接合することで、前記リードフレームを前記半導体装置本体に実装する工程と、
 前記フレーム本体部の他方の板面の前記端子部をマスクとしたエッチングにより、前記フレーム本体部を部分的に除去することで、前記電極部から突出した柱状端子を形成する工程と、を備える
 半導体装置の製造方法。
 (2)
 前記実装する工程の前に、前記フレーム本体部の一方の板面側に対する前記端子部をマスクとしたエッチングにより、前記フレーム本体部をその板厚方向について部分的に除去する工程をさらに備え、
 前記実装する工程の後、かつ前記柱状端子を形成する工程の前に、前記リードフレームと前記半導体装置本体との間の空間に、絶縁性を有する流動体を充填する工程をさらに備える
 前記(1)に記載の半導体装置の製造方法。
 (3)
 前記半導体装置本体として、集合状態で形成された複数の前記半導体素子を含む一体の板状体を用い、
 前記除去する工程の後に、前記リードフレームを前記半導体素子に対応した複数のチップに個片化する工程をさらに備え、
 前記実装する工程は、前記複数のチップを前記半導体装置本体に実装する
 前記(2)に記載の半導体装置の製造方法。
 (4)
 前記充填する工程では、前記流動体として、フォトレジストを用いる
 前記(2)または前記(3)に記載の半導体装置の製造方法。
 (5)
 前記準備する工程は、前記フレーム本体部に対するメッキにより、前記複数の端子部を形成する工程を含み、
 前記複数の端子部を形成する工程では、前記フレーム本体部の一方の板面に形成する前記端子部を、前記フレーム本体部の他方の板面に形成する前記端子部よりも大きく形成する
 前記(2)~(4)のいずれかに記載の半導体装置の製造方法。
 (6)
 前記複数の端子部を形成する工程では、前記フレーム本体部の一方の板面に形成する前記端子部を楕円形状とするとともに、前記フレーム本体部の他方の板面に形成する前記端子部を円形状とし、
 前記楕円形状の前記端子部を、楕円形状の長径方向を前記半導体素子の中央部に向けるように形成する
 前記(5)に記載の半導体装置の製造方法。
 (7)
 半導体素子を含み、一側の面に外部接続用の複数の電極部を有する半導体基体と、
 前記半導体基体に対して前記電極部から突出するように設けられ、リードフレームの一部により形成された柱状端子と、を備える
 半導体装置。
 (8)
 前記電極部に対する前記柱状端子の接合面は、前記柱状端子の先端側の端面よりも大きい
 前記(7)に記載の半導体装置。
 (9)
 前記電極部に対する前記柱状端子の接合面は楕円形状であり、前記柱状端子の先端側の端面は円形状であり、
 複数の前記柱状端子は、前記電極部に対する接合面の楕円形状の長径方向を前記半導体基体の中央部に向けるように設けられている
 前記(7)または前記(8)に記載の半導体装置。
 (10)
 前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成された放熱用パッドをさらに備える
 前記(7)~(9)のいずれかに記載の半導体装置。
 (11)
 前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成された補強部をさらに備える
 前記(7)~(10)のいずれかに記載の半導体装置。
 (12)
 前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成されたGNDプレーンをさらに備える
 前記(7)~(11)のいずれかに記載の半導体装置。
 (13)
 前記半導体基体の一側の面に設けられた第2の半導体素子と、
 前記半導体基体の一側の面に設けられ、前記リードフレームの一部により前記第2の半導体素子を覆うように形成されたシールド部と、をさらに備える
 前記(7)~(12)のいずれかに記載の半導体装置。
 (14)
 半導体素子を含み、一側の面に外部接続用の複数の電極部を有する半導体基体と、
 前記半導体基体に対して前記電極部から突出するように設けられ、リードフレームの一部により形成された柱状端子と、を備える
 半導体装置を備えた
 電子機器。
 1,201,301,501,601,701,1001 固体撮像装置(半導体装置)
 1A,201A,301A,401A 半導体基体
 2,202,302 イメージセンサ(半導体素子)
 7,217,317,417 電極端子(電極部)
 10   柱状端子
 11   基端側端子部
 12   先端側端子部
 13   端子本体部
 30   リードフレーム
 30X  リードフレーム片
 31   第1メッキ端子部(端子部)
 32   第2メッキ端子部(端子部)
 33   フレーム本体部
 33a  対向面(一方の板面)
 33b  反対向面(他方の板面)
 36,236,336,436,736,936 空間部
 37   レジスト(流動体、フォトレジスト)
 40   ウェーハCSP(半導体装置本体、板状体)
 50   放熱用パッド
 70   補強部
 90   GNDプレーン
 120  シールド部
 125  内蔵チップ(第2の半導体素子)
 240  有機基板パッケージ(半導体装置本体)
 401,801 半導体装置
 402  ICチップ(半導体素子)
 440  ウェーハFOWLP(半導体装置本体、板状体)
 537  封止樹脂(流動体)
 2100 撮像装置(電子機器)

Claims (14)

  1.  板状のフレーム本体部、および前記フレーム本体部の両側の板面に板面視で少なくとも一部同士を重ねるように対で設けられた複数の端子部を有するリードフレームを準備する工程と、
     前記フレーム本体部の一方の板面の前記端子部を、半導体素子を含む半導体装置本体の電極部に接合することで、前記リードフレームを前記半導体装置本体に実装する工程と、
     前記フレーム本体部の他方の板面の前記端子部をマスクとしたエッチングにより、前記フレーム本体部を部分的に除去することで、前記電極部から突出した柱状端子を形成する工程と、を備える
     半導体装置の製造方法。
  2.  前記実装する工程の前に、前記フレーム本体部の一方の板面側に対する前記端子部をマスクとしたエッチングにより、前記フレーム本体部をその板厚方向について部分的に除去する工程をさらに備え、
     前記実装する工程の後、かつ前記柱状端子を形成する工程の前に、前記リードフレームと前記半導体装置本体との間の空間に、絶縁性を有する流動体を充填する工程をさらに備える
     請求項1に記載の半導体装置の製造方法。
  3.  前記半導体装置本体として、集合状態で形成された複数の前記半導体素子を含む一体の板状体を用い、
     前記除去する工程の後に、前記リードフレームを前記半導体素子に対応した複数のチップに個片化する工程をさらに備え、
     前記実装する工程は、前記複数のチップを前記半導体装置本体に実装する
     請求項2に記載の半導体装置の製造方法。
  4.  前記充填する工程では、前記流動体として、フォトレジストを用いる
     請求項2に記載の半導体装置の製造方法。
  5.  前記準備する工程は、前記フレーム本体部に対するメッキにより、前記複数の端子部を形成する工程を含み、
     前記複数の端子部を形成する工程では、前記フレーム本体部の一方の板面に形成する前記端子部を、前記フレーム本体部の他方の板面に形成する前記端子部よりも大きく形成する
     請求項2に記載の半導体装置の製造方法。
  6.  前記複数の端子部を形成する工程では、前記フレーム本体部の一方の板面に形成する前記端子部を楕円形状とするとともに、前記フレーム本体部の他方の板面に形成する前記端子部を円形状とし、
     前記楕円形状の前記端子部を、楕円形状の長径方向を前記半導体素子の中央部に向けるように形成する
     請求項5に記載の半導体装置の製造方法。
  7.  半導体素子を含み、一側の面に外部接続用の複数の電極部を有する半導体基体と、
     前記半導体基体に対して前記電極部から突出するように設けられ、リードフレームの一部により形成された柱状端子と、を備える
     半導体装置。
  8.  前記電極部に対する前記柱状端子の接合面は、前記柱状端子の先端側の端面よりも大きい
     請求項7に記載の半導体装置。
  9.  前記電極部に対する前記柱状端子の接合面は楕円形状であり、前記柱状端子の先端側の端面は円形状であり、
     複数の前記柱状端子は、前記電極部に対する接合面の楕円形状の長径方向を前記半導体基体の中央部に向けるように設けられている
     請求項7に記載の半導体装置。
  10.  前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成された放熱用パッドをさらに備える
     請求項7に記載の半導体装置。
  11.  前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成された補強部をさらに備える
     請求項7に記載の半導体装置。
  12.  前記半導体基体の一側の面に設けられ、前記リードフレームの一部により形成されたGNDプレーンをさらに備える
     請求項7に記載の半導体装置。
  13.  前記半導体基体の一側の面に設けられた第2の半導体素子と、
     前記半導体基体の一側の面に設けられ、前記リードフレームの一部により前記第2の半導体素子を覆うように形成されたシールド部と、をさらに備える
     請求項7に記載の半導体装置。
  14.  半導体素子を含み、一側の面に外部接続用の複数の電極部を有する半導体基体と、
     前記半導体基体に対して前記電極部から突出するように設けられ、リードフレームの一部により形成された柱状端子と、を備える
     半導体装置を備えた
     電子機器。
PCT/JP2021/025959 2020-08-31 2021-07-09 半導体装置の製造方法、半導体装置、および電子機器 WO2022044567A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/041,081 US20230290710A1 (en) 2020-08-31 2021-07-09 Manufacturing method of semiconductor device, semiconductor device, and electronic apparatus
CN202180050682.5A CN115885380A (zh) 2020-08-31 2021-07-09 半导体设备的制造方法、半导体设备及电子装置
EP21860997.2A EP4207266A4 (en) 2020-08-31 2021-07-09 METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146202 2020-08-31
JP2020146202A JP2022041152A (ja) 2020-08-31 2020-08-31 半導体装置の製造方法、半導体装置、および電子機器

Publications (1)

Publication Number Publication Date
WO2022044567A1 true WO2022044567A1 (ja) 2022-03-03

Family

ID=80353227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025959 WO2022044567A1 (ja) 2020-08-31 2021-07-09 半導体装置の製造方法、半導体装置、および電子機器

Country Status (5)

Country Link
US (1) US20230290710A1 (ja)
EP (1) EP4207266A4 (ja)
JP (1) JP2022041152A (ja)
CN (1) CN115885380A (ja)
WO (1) WO2022044567A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187980A (ja) * 2008-02-01 2009-08-20 Mitsui High Tec Inc 半導体装置の製造方法
JP2012209343A (ja) * 2011-03-29 2012-10-25 Dainippon Printing Co Ltd 半導体装置および半導体装置の製造方法
JP2017034094A (ja) * 2015-07-31 2017-02-09 Shマテリアル株式会社 半導体素子搭載用基板、半導体装置及びそれらの製造方法
JP2017130576A (ja) * 2016-01-21 2017-07-27 Shマテリアル株式会社 リードフレーム及びこれを用いた半導体装置、並びにそれらの製造方法
JP2018037504A (ja) * 2016-08-31 2018-03-08 新光電気工業株式会社 リードフレーム及び電子部品装置とそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723324B2 (en) * 2010-12-06 2014-05-13 Stats Chippac Ltd. Integrated circuit packaging system with pad connection and method of manufacture thereof
US9564387B2 (en) * 2014-08-28 2017-02-07 UTAC Headquarters Pte. Ltd. Semiconductor package having routing traces therein
US10529672B2 (en) * 2017-08-31 2020-01-07 Stmicroelectronics, Inc. Package with interlocking leads and manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187980A (ja) * 2008-02-01 2009-08-20 Mitsui High Tec Inc 半導体装置の製造方法
JP2012209343A (ja) * 2011-03-29 2012-10-25 Dainippon Printing Co Ltd 半導体装置および半導体装置の製造方法
JP2017034094A (ja) * 2015-07-31 2017-02-09 Shマテリアル株式会社 半導体素子搭載用基板、半導体装置及びそれらの製造方法
JP2017130576A (ja) * 2016-01-21 2017-07-27 Shマテリアル株式会社 リードフレーム及びこれを用いた半導体装置、並びにそれらの製造方法
JP2018037504A (ja) * 2016-08-31 2018-03-08 新光電気工業株式会社 リードフレーム及び電子部品装置とそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207266A4 *

Also Published As

Publication number Publication date
EP4207266A4 (en) 2024-02-28
JP2022041152A (ja) 2022-03-11
US20230290710A1 (en) 2023-09-14
CN115885380A (zh) 2023-03-31
EP4207266A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
KR100616670B1 (ko) 웨이퍼 레벨의 이미지 센서 모듈 및 그 제조방법
TWI278121B (en) FBGA and COB package structure for image sensor
JP4542768B2 (ja) 固体撮像装置及びその製造方法
JP4951989B2 (ja) 半導体装置
US7863105B2 (en) Image sensor package and forming method of the same
TW200835318A (en) Image sensor module and the method of the same
TWI582916B (zh) 多晶片封裝結構、晶圓級晶片封裝結構及其製程
JP2009088459A (ja) ウェハーレベルのイメージセンサモジュール、その製造方法、及びカメラモジュール
JP2009016839A (ja) 除去可能な保護膜を利用する画像センサパッケージ及び該画像センサパッケージの作製方法
WO2014083750A1 (ja) 光学装置及びその製造方法
KR20080084759A (ko) 빌드인 패키지 캐비티를 갖는 이미지 센서 모듈 및 그 방법
US20140312506A1 (en) Semiconductor device and method for manufacturing same
JP2007142058A (ja) 半導体撮像素子およびその製造方法並びに半導体撮像装置とその製造方法
US20140264697A1 (en) Image pickup module and image pickup unit
WO2017221589A1 (ja) 半導体チップパッケージ
JP7444850B2 (ja) 半導体装置、撮像装置および半導体装置の製造方法
JP4486005B2 (ja) 半導体撮像装置およびその製造方法
WO2022044567A1 (ja) 半導体装置の製造方法、半導体装置、および電子機器
US20230064356A1 (en) Image sensor ball grid array package
KR100634419B1 (ko) 이미지 센서 및 그 제조방법
JP2012090033A (ja) 撮像モジュール
JP2003007990A (ja) 固体撮像装置
JP2010135821A (ja) 半導体撮像装置およびその製造方法
JP2011091147A (ja) 撮像ユニットの実装構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860997

Country of ref document: EP

Effective date: 20230331