WO2022042574A1 - 一种电池外壳及电池 - Google Patents

一种电池外壳及电池 Download PDF

Info

Publication number
WO2022042574A1
WO2022042574A1 PCT/CN2021/114396 CN2021114396W WO2022042574A1 WO 2022042574 A1 WO2022042574 A1 WO 2022042574A1 CN 2021114396 W CN2021114396 W CN 2021114396W WO 2022042574 A1 WO2022042574 A1 WO 2022042574A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover body
battery
cover
sealing member
pressure
Prior art date
Application number
PCT/CN2021/114396
Other languages
English (en)
French (fr)
Inventor
王永旺
曾玉祥
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2022042574A1 publication Critical patent/WO2022042574A1/zh
Priority to US18/055,413 priority Critical patent/US20230076187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium ion batteries, and in particular, to a battery casing and a battery.
  • Lithium-ion batteries may rupture or even explode due to cell performance problems, or battery operating temperature, short circuit, etc., which seriously endangers the personal safety of users.
  • the purpose of the embodiments of the present application is to provide a battery casing and a battery, which solve the problem of poor explosion-proof effect of the battery casing in the prior art.
  • an embodiment of the present application provides a battery casing, comprising: a first cover body, a second cover body, a sealing member and a casing, the second cover body is welded to the casing, The first cover body is bonded to the second cover body through the sealing member to seal the casing; wherein, the adhesive force between the first cover body and the second cover body is less than The first pressure, where the first pressure is the pressure that the battery casing is subjected to when it explodes.
  • the first pressure is 25N to 200N.
  • the adhesive force is 20N to 100N.
  • both the surface of the first cover body and the surface of the second cover body are covered with a passivation layer, the thickness of the passivation layer is 1 ⁇ m to 3 ⁇ m, and the adhesive force and the passivation layer are proportional to the thickness of the layer.
  • the thickness of the sealing member is 0.1 mm to 0.3 mm, and the adhesive force is proportional to the thickness of the sealing member.
  • the sealing member includes a first metal-philic layer, a base layer and a second metal-philic layer which are stacked in sequence, the first metal-philic layer is bonded to the first cover, and the second metal-philic layer is bonded to the first cover.
  • the metal layer is bonded to the second cover body.
  • the thickness of the first metal-philic layer is 0.05 mm to 0.1 mm
  • the thickness of the base layer is 0.05 mm to 0.1 mm
  • the thickness of the second metal-philic layer is 0.05 mm to 0.1 mm.
  • the area of the sealing member is smaller than the area of the first cover body, and is greater than 2/3 of the overlapping area of the first cover body and the second cover body, and the adhesive force and the The area of the seal is proportional.
  • the outer diameter of the first cover body is 7 mm to 15 mm
  • the outer diameter of the sealing member is 7.5 mm to 15.5 mm
  • the outer diameter of the second cover body is 8 mm to 16 mm.
  • an embodiment of the present application is a battery, including the battery casing provided in the first aspect of the embodiment of the present application.
  • Embodiments of the present application provide a battery casing and a battery, wherein the battery casing includes: a first cover body, a second cover body, a sealing member and a casing, the second cover body is welded to the casing, The first cover body is bonded to the second cover body through the sealing member to seal the casing; wherein, the adhesive force between the first cover body and the second cover body is less than The first pressure, where the first pressure is the pressure that the battery casing is subjected to when it explodes. When the battery explodes, the adhesive layer between the first cover body and the second cover body can be broken to release the gas generated inside the battery casing, so as to prevent the battery casing from continuing to rise to cause explosion.
  • FIG. 1 is a schematic structural diagram of a battery case provided by an embodiment of the application.
  • FIG. 2 is a schematic partial structure diagram of a battery case provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of thermal recombination in a method for manufacturing a battery casing provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a sealing member in a battery casing provided by an embodiment of the application.
  • FIG. 5 is a partial top plan view of a battery case provided by an embodiment of the present application.
  • an embodiment of the present application provides a battery casing.
  • the battery case includes a first cover 100 , a second cover 200 , a seal 300 and a case 400 , the second cover 200 is welded to the case 400 , and the first cover 100 is connected to the second cover through the seal 300 . 200 is bonded to seal the casing 400; wherein, the bonding force between the first cover 100 and the second cover 200 is less than the first pressure, and the first pressure is the pressure that the battery case is subjected to when it explodes .
  • the first cover body 100, the second cover body 200 and the housing 400 can all be formed of metal materials, such as aluminum, copper, stainless steel, nickel, etc.;
  • the sealing member 300 can be formed of non-metallic insulating materials, specifically, can be made of high temperature resistant Corrosive materials are formed, such as EPDM, fluororubber, PEEK, PFA, etc.
  • the shape of the sealing member 300 may be a sealing ring or a sealing sheet, which is not limited herein.
  • the battery case can be applied to a button battery.
  • the casing 400 may be a cavity with one side open, including a bottom wall and a side wall along the outer edge of the bottom wall.
  • the second cover 200 is covered on the open side of the casing 400 and is connected to the casing. 400 welds.
  • the first cover 100 is bonded to the second cover 200 through the sealing member 300 to seal the casing 400 and achieve insulation.
  • the accommodating chamber of the battery case, the accommodating chamber can be used for accommodating the battery cells.
  • a through hole is formed in the middle of the second cover body 200 , and a position of the first cover body 100 corresponding to the above-mentioned through-hole protrudes toward the direction of the second cover body 200 to form a protrusion adapted to the above-mentioned through-hole
  • the sealing member 300 can be sleeved on the outer wall of the protruding portion, and the protruding portion can be embedded in the through hole.
  • One tab of the battery cell accommodated in the accommodating chamber can extend out of the above-mentioned through hole to be welded to the first cover 100 , and the other tab can be welded to the casing 400 .
  • Lithium-ion batteries may explode due to cell performance issues, battery operating temperature, or short-circuiting of cells.
  • an explosion-proof groove is usually formed on the battery casing to achieve an explosion-proof effect.
  • the groove of the explosion-proof groove if the groove of the explosion-proof groove is too deep, the mechanical strength of the battery casing may be insufficient; The groove of the groove is too shallow, and the explosion-proof groove can only be broken through when the internal pressure of the battery casing is very large, which does not have a good explosion-proof effect.
  • the first cover body 100 and the second cover body 200 are bonded by extruding the sealing member 300 through thermal compound processing.
  • the parameters of the sealing member 300 and the thermal compounding parameters can be adjusted to adjust the adhesive force between the first cover body 100 and the second cover body 200 to be lower than the first pressure, That is, the pressure that the battery is subjected to when it explodes.
  • the battery casing when the battery is in normal use, the battery casing can be sealed by the first cover 100, the second cover 200, the seal 300 and the casing 400, and the strength is stable; when the battery is abnormally used, the battery Under the condition that the internal pressure of the casing gradually increases, when the internal pressure of the battery casing reaches the first pressure, the adhesive layer between the first cover 100 and the second cover 200 can be broken to release the gas to avoid explosion due to the continued increase in the internal pressure of the battery casing.
  • the first cover body 100 can be placed in the thermal compound head A
  • the second cover body 200 can be placed in the thermal compound head B
  • the sealing member 300 can be placed in the first
  • the head A and the head B can drive the first cover 100 and the second cover 200 to squeeze the sealing member 300 respectively
  • the temperature of the head A and the head B can be quickly Melt the sealing member 300 to realize the bonding between the first cover 100 and the second cover 200.
  • the adhesion between the first cover 100 and the second cover 200 can be measured by a tensile force tester. Relay is measured.
  • the first cover body 100 is bonded to the second cover body 200 through the sealing member 300 to seal the casing 400, and the adhesive force between the first cover body 100 and the second cover body 200 is smaller than that of all the The pressure on the battery case when it explodes, and when the battery fails, the adhesive layer between the first cover 100 and the second cover 200 can be broken to release the gas generated inside the battery case and avoid the battery The internal pressure of the shell continued to rise and an explosion occurred.
  • the first pressure is 25N to 200N.
  • the adhesive force is 20N to 100N.
  • the first pressure that is, the maximum pressure that the battery case is subjected to when it explodes
  • the first pressure can be obtained by performing an explosion experiment on the battery case.
  • the internal pressure changes are measured and recorded, and the battery shell is subjected to explosion experiments by heating and other methods to record the internal pressure value before the battery shell explodes.
  • the first pressure can be determined to be 25N to 200N. Further, the adhesive force may be determined to be 20N to 100N.
  • the adhesive force between the first cover body 100 and the second cover body 200 can be adjusted by adjusting the parameters of the sealing member 300 and the parameters of thermal compounding, and the tensile force can be adjusted.
  • the tester measures the adhesive force to control it to be less than the first pressure.
  • the above-mentioned parameters of the sealing member 300 may include the area of the sealing member 300, the thickness of the sealing member 300, and the contact area between the sealing member 300 and the first cover 100, and the above-mentioned parameters of thermal compounding may include the temperature, pressure, and time of thermal compounding.
  • the first cover and the second cover can be adjusted. Adhesion between lids.
  • the adhesive force is proportional to the thermal recombination temperature.
  • the adhesive force at a thermal compounding temperature of 150°C is greater than that at a thermal compounding temperature of 135°C.
  • the temperature of the thermal compounding needs to be higher than the melting point of the sealing element 300, so that the sealing element 300 can be rapidly melted; and in order to prevent the sealing element 300 from melting excessively, the starting temperature of the thermal compounding can be controlled at a temperature of the sealing element 300. Then, the temperature of thermal compounding can be gradually increased, and then the adhesive force between the first cover body 100 and the second cover body 200 can be gradually increased.
  • the adhesive force is proportional to the pressure of the thermal compounding.
  • the adhesive force under the thermal compounding pressure of 180N is greater than that under the thermal compounding pressure of 130N.
  • the thermal compounding pressure can be gradually increased in the range of 100N to 500N, and then the adhesive force between the first cover body 100 and the second cover body 200 can be gradually increased.
  • both the surface of the first cover body 100 and the surface of the second cover body 200 are covered with a passivation layer, the thickness of the passivation layer is 1 ⁇ m to 3 ⁇ m, and the adhesion between the adhesive force and the passivation layer is proportional to the thickness.
  • passivation treatment may be performed on the surface of the first cover body 100 and the surface of the second cover body 200, so that the first cover body 100 and the surface of the second cover body 200 are passivated.
  • the surface of the cover body 100 and the surface of the second cover body 200 form a passivation layer.
  • the passivation layer can improve the corrosion resistance of the first cover 100 and the second cover 200, and can improve the strength of the first cover 100 and the second cover 200 to a certain extent, so that when the battery explodes, the When the adhesive layer between the first cover 100 and the second cover 200 is punched open, the first cover 100 and the second cover 200 will not burst.
  • the thickness of the passivation layer is 1 ⁇ m to 3 ⁇ m, and the adhesive force is proportional to the thickness of the passivation layer.
  • the adhesion when the passivation layer is 2.3 ⁇ m is greater than the adhesion when the passivation layer is 1.4 ⁇ m.
  • the thickness of the formed passivation layer can be controlled by controlling parameter values such as time, temperature, acidity ratio, etc. during the passivation process, and then the first cover body 100 and the second cover can be adjusted accordingly. Adhesion between the bodies 200 .
  • the thickness of the sealing member 300 is 0.1 mm to 0.3 mm, and the adhesive force is proportional to the thickness of the sealing member 300 .
  • the thickness of the sealing member 300 refers to the thickness of the sealing member 300 before being squeezed and melted.
  • the thickness of the sealing member 300 is 0.1 mm to 0.3 mm, and within this range, the adhesive force is proportional to the thickness of the sealing member 300 . It can also be understood in this way that during the thermal compounding process, changes in parameters such as temperature and pressure of thermal compounding can cause the sealing member 300 of the same thickness to exhibit different extrusion degrees, thereby affecting the adhesive force.
  • the sealing member 300 includes a first metal-philic layer 310 , a base layer 320 and a second metal-philic layer 330 that are stacked in sequence, and the first metal-philic layer 310 is bonded to the first cover 100 .
  • the second metal-philic layer 330 is bonded to the second cover body 200 .
  • the sealing member 300 can be made of three layers of materials. As shown in FIG. 4 , the sealing member 300 can be formed by stacking a first metal-philic layer 310 , a base layer 320 and a second metal-philic layer 330 in sequence.
  • the first metal-philic layer 310 and the second metal-philic layer 330 are both metal-philic materials, and their melting points can range from 100°C to 400°C.
  • the thermal recombination temperature is slightly higher than that of the first metal-philic layer 310 and the The melting point of the second metal-philic layer 330 can make the first metal-philic layer 310 and the second metal-philic layer 330 melt rapidly;
  • the melting point is relatively high, which may be higher than 400° C., to ensure that the base layer 320 will not melt during the thermal compounding process, and an adhesive layer will be formed between the first cover 100 and the second cover 200 .
  • the thickness of the first metal-philic layer is 0.05 mm to 0.1 mm
  • the thickness of the base layer is 0.05 mm to 0.1 mm
  • the thickness of the second metal-philic layer is 0.05 mm to 0.1 mm.
  • the area of the sealing member 300 is smaller than the area of the first cover body 100 , and is greater than 2/3 of the overlapping area of the first cover body 100 and the second cover body 200 , the adhesive force and the area of the sealing member 300 proportional.
  • the area of the sealing member 300 can be understood as the contact area between the sealing member 300 and the first cover 100 and the second cover 200 . It should be noted that the area of the sealing member 300 refers to the area before the sealing member 300 is squeezed and melted. area.
  • the adhesive force and the sealing proportional to the area of the piece 300 when the area of the sealing member 300 is smaller than the area of the first cover body 100 and greater than 2/3 of the overlapping area of the first cover body 100 and the second cover body 200 , the adhesive force and the sealing proportional to the area of the piece 300.
  • Table 4 exemplarily, on the premise of other factors being the same, when the contact area between the sealing member 300 and the first cover 100 is 5.2 mm 2 , the adhesive force is greater than that between the sealing member 300 and the first cover 100 . 100 Adhesion when the contact area is 4.5mm2 .
  • the adhesive force between the first cover body 100 and the second cover body 200 can be adjusted by changing the area of the sealing member 300 .
  • the outer diameter of the first cover body 100 is 7 mm to 15 mm
  • the outer diameter of the sealing member 300 is 7.5 mm to 15.5 mm
  • the outer diameter of the second cover body 200 is 8 mm to 16 mm.
  • the first cover body 100 and the second cover body 200 are both round cakes
  • the sealing member 300 is a sealing ring
  • the first cover body 100 and the second cover body 200 are squeezed and sealed.
  • the outer diameter of the first cover body 100 is smaller than or equal to the outer diameter of the sealing component 300
  • the outer diameter of the sealing component 300 is smaller than or equal to the outer diameter of the second cover body 100 .
  • the battery case includes: a first cover body, a second cover body, a seal and a casing, the second cover body is welded to the casing, and the first cover body is welded to the casing.
  • the cover body is bonded with the second cover body through the sealing member to seal the casing; wherein, the bonding force between the first cover body and the second cover body is smaller than the first pressure,
  • the first pressure is the pressure that the battery casing is subjected to when it explodes.
  • the adhesive layer between the first cover body and the second cover body can be broken to release the gas generated inside the battery casing, so as to prevent the battery casing from continuing to rise to cause explosion.
  • An embodiment of the present application further provides a battery, the battery includes the battery casing provided by the embodiments shown in FIG. 1 to FIG. 5 .
  • the battery may be a button battery, and the battery includes the battery casing provided in the embodiment shown in FIG. 1 to FIG. 5 , and a battery cell.
  • the battery casing is filled with electrolyte, and the The battery cell is accommodated in the battery casing.
  • the first cover body of the battery case is bonded to the second cover body through a sealing member to achieve insulation.
  • a through hole may be opened in the middle of the second cover body, and a position of the first cover body corresponding to the through hole protrudes toward the direction of the second cover body to form a protrusion adapted to the through hole,
  • the sealing member can be sleeved on the outer wall of the protruding portion, and the protruding portion can be embedded in the through hole.
  • One tab of the battery cell accommodated in the accommodating chamber can extend out of the through hole to be welded to the first cover, and the other tab can be welded to the casing.
  • the cell may be a laminated cell or a wound cell.
  • the wound cell is formed by stacking a positive electrode sheet, a first separator sheet, a negative electrode sheet and a second separator sheet in sequence and then winding, and a cavity is formed in the center of the wound cell.
  • Corresponding tabs are extended from the positive electrode sheet or the negative electrode sheet. Wherein, one tab can extend out of the above-mentioned through hole to be welded with the first cover body, and the other tab can be welded with the casing.
  • the first separator sheet and the second separator sheet are located between the positive electrode sheet and the negative electrode sheet to insulate and prevent the short circuit of the cell.
  • the laminated cell can be formed by cyclically stacking positive electrode sheets, separator sheets and negative electrode sheets in sequence, and the separator sheet is provided between each adjacent positive electrode sheet and negative electrode sheet to insulate and prevent the short circuit of the cells. At least one positive electrode tab extends from each positive electrode sheet, and at least one negative electrode tab extends from each negative electrode sheet.
  • the battery includes all the technical features of the battery case provided by the embodiment shown in FIG. 1 to FIG. 5 , and can realize the battery provided by the embodiment shown in FIG. 1 to FIG. 5 . All technical effects that can be achieved by the shell are not repeated here in order to avoid repetition.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请提供一种电池外壳及电池,其中,所述电池外壳包括:第一盖体、第二盖体、密封件和壳体,所述第二盖体与所述壳体焊接,所述第一盖体通过所述密封件与所述第二盖体粘接,以密封所述壳体;其中,所述第一盖体和所述第二盖体之间的粘接力小于第一压力,所述第一压力为所述电池外壳爆炸时所承受的压力。在电池发生爆炸时,可冲破第一盖体和第二盖体之间的粘接层,以释放所述电池外壳内部产生的气体,避免所述电池外壳内压继续升高而发生爆炸。

Description

一种电池外壳及电池
本申请要求于2020年8月28日提交中国专利局、申请号为202010885446.2、申请名称为“一种电池外壳及电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池技术领域,尤其涉及一种电池外壳及电池。
背景技术
随着科技的进步和发展,人们对可穿戴设备,譬如无线耳机、运动手表、手环、戒指等电子产品的需求日益提升,由于可穿戴设备的小型化设计,此类产品对于电池的空间尺寸和性能有着较高的要求。
锂离子电池可能由于电芯性能问题,或者电池工作温度、短路等原因而造成电池壳体破裂甚至爆炸,严重危及用户的人身安全。
可见,现有的电池壳体存在防爆效果较差的问题。
发明内容
本申请实施例的目的在于提供一种电池外壳及电池,解决了现有技术中电池壳体防爆效果较差的问题。
为了达到上述目的,第一方面,本申请实施例提供一种电池外壳,包括:第一盖体、第二盖体、密封件和壳体,所述第二盖体与所述壳体焊接,所述第一盖体通过所述密封件与所述第二盖体粘接,以密封所述壳体;其中,所述第一盖体和所述第二盖体之间的粘接力小于第一压力,所述第一压力为所述电池外壳爆炸时所承受的压力。
可选的,所述第一压力为25N至200N。
可选的,所述粘接力为20N至100N。
可选的,所述第一盖体的表面和所述第二盖体的表面均覆盖有钝化层,所述钝化层的厚度为1μm至3μm,所述粘接力与所述钝化层的厚度成正 比。
可选的,所述密封件的厚度为0.1mm至0.3mm,所述粘接力与所述密封件的厚度呈正比。
可选的,所述密封件包括依次层叠设置的第一亲金属层、基础层和第二亲金属层,所述第一亲金属层与所述第一盖体粘接,所述第二亲金属层与所述第二盖体粘接。
可选的,所述第一亲金属层的厚度为0.05mm至0.1mm,所述基础层的厚度为0.05mm至0.1mm,所述第二亲金属层的厚度为0.05mm至0.1mm。
可选的,所述密封件的面积小于所述第一盖体的面积,且大于所述第一盖体与所述第二盖体的重合面积的2/3,所述粘接力与所述密封件的面积呈正比。
可选的,所述第一盖体的外径为7mm至15mm,所述密封件的外径为7.5mm至15.5mm,所述第二盖体的外径为8mm至16mm。
第二方面,本申请实施例一种电池,包括本申请实施例第一方面提供的电池外壳。
上述技术方案中的一个技术方案具有如下优点或有益效果:
本申请实施例提供了一种电池外壳及电池,其中,所述电池外壳包括:第一盖体、第二盖体、密封件和壳体,所述第二盖体与所述壳体焊接,所述第一盖体通过所述密封件与所述第二盖体粘接,以密封所述壳体;其中,所述第一盖体和所述第二盖体之间的粘接力小于第一压力,所述第一压力为所述电池外壳爆炸时所承受的压力。在电池发生爆炸时,可冲破第一盖体和第二盖体之间的粘接层,以释放所述电池外壳内部产生的气体,避免所述电池外壳内压继续升高而发生爆炸。
附图说明
图1为本申请一实施例提供的电池外壳的结构示意图;
图2为本申请一实施例提供的电池外壳的局部结构示意图;
图3为本申请一实施例提供的电池外壳的制造方法中热复合示意图;
图4为本申请一实施例提供的电池外壳中密封件的结构示意图;
图5为本申请一实施例提供的电池外壳的局部俯视示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请实施例提供了一种电池外壳。
所述电池外壳包括第一盖体100、第二盖体200、密封件300和壳体400,第二盖体200与壳体400焊接,第一盖体100通过密封件300与第二盖体200粘接,以密封壳体400;其中,第一盖体100和第二盖体200之间的粘接力小于第一压力,所述第一压力为所述电池外壳爆炸时所承受的压力。
其中,第一盖体100、第二盖体200和壳体400均可由金属材料形成,例如铝、铜、不锈钢、镍等;密封件300可由非金属绝缘材料形成,具体的,可由耐高温防腐蚀材料形成,例如三元乙丙、氟橡胶、PEEK、PFA等,密封件300的形状可以是密封圈、也可以是密封片,在此不作限定。
本申请实施例中,所述电池外壳可应用于扣式电池。
其中,壳体400可为一侧开口的腔体,包括底壁以及沿所述底壁的外边缘设置的侧壁,第二盖体200盖设于壳体400的开口侧,且与壳体400焊接。第一盖体100通过密封件300与第二盖体200粘接以密封壳体400,且实现绝缘,壳体400与第一盖体100、第二盖体200、密封件300围成形成所述电池外壳的容纳腔室,所述容纳腔室可用于容纳电芯。
如图2所示,第二盖体200中部开设有通孔,第一盖体100的与上述通孔对应的位置向第二盖体200的方向凸起形成与上述通孔适配的凸起部,密封件300可套设于上述凸起部的外壁上,上述凸起部可嵌入上述通孔中。收容于所述容纳腔室中的电芯的一极耳可以伸出上述通孔与第一盖体100焊接,另一极耳可与壳体400焊接。
锂离子电池可能由于电芯性能问题,或者电池工作温度、或者电芯短路等原因而发生爆炸。现有技术中,通常采用在电池外壳上开设防爆槽, 以起到防爆效果,然而,在设计上述防爆槽时,若防爆槽的凹槽太深,可能导致电池外壳的机械强度不够;若防爆槽的凹槽太浅,只有当电池外壳的内压很大时,才能冲破防爆槽,并不能起到很好的防爆效果。
本申请实施例中,第一盖体100和第二盖体200通过热复合处理挤压密封件300实现粘接。在热复合处理的过程中,可通过调整密封件300的参数和热复合参数,以调节第一盖体100和第二盖体200之间的粘接力,使其小于所述第一压力,即电池爆炸时所承受的压力。这样,在电池正常使用的情况下,所述电池外壳可通过第一盖体100、第二盖体200、密封件300和壳体400实现密封,并且强度稳定;在电池使用异常致使所述电池外壳的内压逐渐升高的情况下,在所述电池外壳的内压达到所述第一压力时,即可冲破第一盖体100和第二盖体200之间的粘接层,以释放气体,避免所述电池外壳内压继续升高而发生爆炸。
在具体实施中,如图3所示,可将第一盖体100置于热复合封头A中,将第二盖体200置于热复合封头B中,将密封件300置于第一盖体100和第二盖体200之间,封头A和封头B可分别带动第一盖体100和第二盖体200挤压密封件300,封头A和封头B的温度可快速融化密封件300,实现第一盖体100和第二盖体200的粘接,在此过程中,可通过拉力计过拉力测试计对第一盖体100和第二盖体200之间的粘接力进行测量。
本申请实施例中,第一盖体100通过密封件300与第二盖体200粘接,以密封壳体400,且第一盖体100和第二盖体200之间的粘接力小于所述电池外壳爆炸时所承受的压力,在电池发生故障,可冲破第一盖体100和第二盖体200之间的粘接层,以释放所述电池外壳内部产生的气体,避免所述电池外壳内压继续升高而发生爆炸。
可选的,所述第一压力为25N至200N。
进一步的,所述粘接力为20N至100N。
本实施例中,所述第一压力,即所述电池外壳爆炸时所承受的最大压力,可通过对电池外壳进行爆炸实验获取,通过在密封的电池外壳内引出压力传感器,可对电池外壳的内压变化进行测量和记录,并通过加热等方式对电池外壳进行爆炸实验,记录电池外壳爆炸前的内压值。
本实施例中,为了进一步降低所述粘接层被冲破时的危险程度,同时 保证电池正常使用时,所述电池外壳的强度稳定,所述第一压力可确定为25N至200N。进一步的,所述粘接力可确定为20N至100N。
本实施例中,在热复合处理的过程中,可通过调整密封件300的参数和热复合的参数,调节第一盖体100和第二盖体200之间的粘接力,并可通过拉力测试计测量出该粘接力,以控制其小于所述第一压力。上述密封件300的参数可包括密封件300的面积、密封件300的厚度以及密封件300和第一盖体100的接触面积,上述热复合的参数可包括热复合的温度、压力、时间等。
在一种实施方式中,可在所述热复合过程中,通过调整所述热复合的温度,和/或,调整所述热复合的压力,以调整所述第一盖体和所述第二盖体之间的粘接力。
本实施方式中,所述粘接力与所述热复合温度成正比。如表1所示,示例性的,在其他因素一致的前提下,在热复合温度为150℃下的粘接力大于在热复合温度为135℃下的粘接力。在具体实施中,所述热复合的温度首先需要满足高于密封件300的熔点,以使密封件300可快速融化;而为了防止密封件300过度融化,热复合的起始温度可控制在密封件300熔点+3℃的范围内,之后可逐步增加热复合的温度,进而可逐步增加第一盖体100和第二盖体200之间的粘接力。
参数 实施例1 对比例1
热复合温度(℃) 135 150
热复合压力(N) 100 100
密封件挤压前厚度(mm) 0.3 0.3
密封件挤压后厚度(mm) 0.2 0.2
密封件材质 PP PP
密封件与第一盖体接触面积(mm 2) 5.2 5.2
壳盖间钝化层厚度(μm) 2.3 2.3
第一盖体和第二盖体之间粘接力(N) 10 40
第一压力(N) 28.5 28.5
表1
本实施方式中,在所述热复合的压力为100N至500N的情况下,所述 粘接力与所述热复合的压力成正比。如表2所示,示例性的,在其他因素一致的前提下,在热复合压力为180N下的粘接力大于在热复合压力为130N下的粘接力。在具体实施中,可在100N至500N的范围内,逐步增加热复合的压力,进而可逐步增加第一盖体100和第二盖体200之间的粘接力。
Figure PCTCN2021114396-appb-000001
表2
可选的,第一盖体100的表面和第二盖体200的表面均覆盖有钝化层,所述钝化层的厚度为1μm至3μm,所述粘接力与所述钝化层的厚度成正比。
本实施例中,在对第一盖体100和第二盖体200进行热复合密封之前,可对第一盖体100的表面和第二盖体200的表面进行钝化处理,以在第一盖体100的表面和第二盖体200的表面形成钝化层。所述钝化层可提高第一盖体100和第二盖体200的耐腐蚀性能,可在一定程度上提高第一盖体100和第二盖体200的强度,以使在电池爆炸,第一盖体100和第二盖体200之间的粘接层被冲开时,第一盖体100和第二盖体200不会发生炸裂。
本实施例中,所述钝化层的厚度为1μm至3μm,所述粘接力与所述钝化层的厚度成正比。如表3所示,示例性的,在其他因素一致的前提下,在钝化层为2.3μm时的粘接力大于在钝化层为1.4μm时的粘接力。在具体实施时,可通过在钝化处理的过程中,控制时间、温度、酸度配比等参数值,控制所形成的钝化层的厚度,进而可对应调整第一盖体100和第二 盖体200之间的粘接力。
参数 实施例3 对比例3
     
热复合温度(℃) 150 150
热复合压力(N) 100 100
密封件挤压前厚度(mm) 0.3 0.3
密封件挤压后厚度(mm) 0.2 0.2
密封件材质 PP PP
密封件与第一盖体接触面积(mm 2) 5.2 5.2
壳盖间钝化层厚度(μm) 1.4 2.3
第一盖体和第二盖体之间粘接力(N) 25.3 40
第一压力(N) 28.5 28.5
表3
可选的,密封件300的厚度为0.1mm至0.3mm,所述粘接力与密封件300的厚度呈正比。
其中,密封件300的厚度是指密封件300被挤压融化之前的厚度。
本实施例中,密封件300的厚度为0.1mm至0.3mm,在此范围内,所述粘接力与密封件300的厚度成正比。也可以这样理解,热复合处理过程中,热复合的温度、压力等参数的变化,可使得相同厚度密封件300呈现不同的挤压程度,进而影响所述粘接力。
可选的,如图4所示,密封件300包括依次层叠设置的第一亲金属层310、基础层320和第二亲金属层330,第一亲金属层310与第一盖体100粘接,第二亲金属层330与第二盖体200粘接。
本实施例中,密封件300可由三层材料复合而成,如图4所示,密封件300可由第一亲金属层310、基础层320和第二亲金属层330依次层叠复合形成。其中,第一亲金属层310和第二亲金属层330均为亲金属材料,其熔点可为100℃至400℃,在热复合处理时,热复合温度稍高于第一亲金属层310和第二亲金属层330的熔点,即可使第一亲金属层310和第二亲金属层330快速融化;而基础层320的熔点相对于第一亲金属层310和第二亲金属层330的熔点较高,可大于400℃,以保证在热复合处理时, 基础层320不会融化,而在第一盖体100和第二盖体200之间形成粘接层。
进一步的,所述第一亲金属层的厚度为0.05mm至0.1mm,所述基础层的厚度为0.05mm至0.1mm,所述第二亲金属层的厚度为0.05mm至0.1mm。
可选的,密封件300的面积小于第一盖体100的面积,且大于第一盖体100与第二盖体200的重合面积的2/3,所述粘接力与密封件300的面积呈正比。
其中,密封件300的面积,可以理解为密封件300与第一盖体100和第二盖体200的接触面积,需要说明的是,密封件300的面积是指密封件300被挤压融化之前的面积。
本实施例中,密封件300的面积小于第一盖体100的面积,且大于第一盖体100与第二盖体200的重合面积的2/3的情况下,所述粘接力与密封件300的面积成正比。如表4所示,示例性的,在其他因素一致的前提下,在密封件300与第一盖体100的接触面积为5.2mm 2时的粘接力大于在密封件300与第一盖体100的接触面积为4.5mm 2时的粘接力。在具体实施时,可通过改变密封件300的面积,以调整第一盖体100和第二盖体200之间的粘接力。
参数 实施例4 对比例4
热复合温度(℃) 150 150
热复合压力(N) 100 100
密封件挤压前厚度(mm) 0.3 0.3
密封件挤压后厚度(mm) 0.2 0.2
密封件材质 PP PP
密封件与第一盖体接触面积(mm 2) 4.5 5.2
壳盖间钝化层厚度(μm) 2.3 2.3
第一盖体和第二盖体之间粘接力(N) 32 40
第一压力(N) 28.5 28.5
表4
进一步的,第一盖体100的外径为7mm至15mm,密封件300的外径为7.5mm至15.5mm,第二盖体200的外径为8mm至16mm。
本实施例中,如图5所示,第一盖体100和第二盖体200均为圆饼状, 密封件300为密封圈,在第一盖体100和第二盖体200挤压密封件300形成所述电池外壳时,第一盖体100的外径小于或者等于密封件300的外径,密封件300的外径小于或者等于第二盖体100的外径。
综上所述,本申请实施例中,所述电池外壳包括:第一盖体、第二盖体、密封件和壳体,所述第二盖体与所述壳体焊接,所述第一盖体通过所述密封件与所述第二盖体粘接,以密封所述壳体;其中,所述第一盖体和所述第二盖体之间的粘接力小于第一压力,所述第一压力为所述电池外壳爆炸时所承受的压力。在电池发生爆炸时,可冲破第一盖体和第二盖体之间的粘接层,以释放所述电池外壳内部产生的气体,避免所述电池外壳内压继续升高而发生爆炸。
本申请实施例还提供一种电池,所述电池包括如图1至图5所示实施例提供的电池外壳。
本申请实施例中,所述电池可为扣式电池,所述电池包括如图1至图5所示实施例提供的电池外壳,以及电芯,所述电池外壳内注有电解液,所述电芯收容于所述电池外壳内。
具体的,所述电池外壳的第一盖体通过密封件与第二盖体粘接且实现绝缘。所述第二盖体中部可开设有通孔,所述第一盖体的与上述通孔对应的位置向所述第二盖体的方向凸起形成与上述通孔适配的凸起部,所述密封件可套设于上述凸起部的外壁上,上述凸起部可嵌入上述通孔中。收容于所述容纳腔室中的电芯的一极耳可以伸出上述通孔与所述第一盖体焊接,另一极耳可以与所述壳体焊接。
本申请实施例中,所述电芯可以是叠片电芯,也可以是卷绕电芯。
所述卷绕电芯由正极片、第一隔膜片、负极片以及第二隔膜片依次层叠后卷绕而成,所述卷绕电芯的中心形成有空腔。所述正极片或负极片延伸有对应的极耳。其中,一极耳可以伸出上述通孔与所述第一盖体焊接,另一极耳可以与所述壳体焊接。所述第一隔膜片和所述第二隔膜片位于所述正极片与所述负极片之间起绝缘作用,防止电芯短路。
所述叠片电芯可由正极片、隔膜片和负极片依次循环层叠而成,每一相邻的正极片和负极片之间均设置有所述隔膜片起绝缘作用,防止电芯短路。每一正极片延伸有至少一个正极极耳,每一负极片至少延伸有一个负 极极耳,各所述正极极耳汇集形成第一电极引线,各所述负极极耳汇集形成第二电极引线。
需要说明的是,本申请实施例中,所述电池包括如图1至图5所示实施例提供的电池外壳的全部技术特征,且可实现如图1至图5所示实施例提供的电池外壳可实现的全部技术效果,为避免重复,在此不再赘述。
需要说明的是,本申请实施例中介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本申请实施例不作限定。
在本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以及特定的方位构造和操作,因此,不能理解为对本申请的限制。此外,“第一”、“第二”仅由于描述目的,且不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。因此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者多个该特征。本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”“相连”“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
上述实施例是参考附图来描述的,其他不同的形式和实施例也是可行而不偏离本申请的原理,因此,本申请不应被建构成为在此所提出实施例的限制。更确切地说,这些实施例被提供以使得本申请会是完善又完整,且会将本申请范围传达给本领域技术人员。在附图中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定实施例目的,并无意成为限制用。术语“包含”及/或“包括”在使用于本说明书时,表示所述特征、整数、构件及/或组件的存在,但不排除一或更多其它特征、整数、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,一值范围包含该范围的上下限及其间的任何子范围。
以上所述的是本申请的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本申请所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本申请的保护范围内。

Claims (10)

  1. 一种电池外壳,包括第一盖体、第二盖体、密封件和壳体,所述第二盖体与所述壳体焊接,所述第一盖体通过所述密封件与所述第二盖体粘接,以密封所述壳体;其中,所述第一盖体和所述第二盖体之间的粘接力小于第一压力,所述第一压力为所述电池外壳爆炸时所承受的压力。
  2. 根据权利要求1所述的电池外壳,其特征在于,所述第一压力为25N至200N。
  3. 根据权利要求2所述的电池外壳,其特征在于,所述粘接力为20N至100N。
  4. 根据权利要求1所述的电池外壳,其特征在于,所述第一盖体的表面和所述第二盖体的表面均覆盖有钝化层,所述钝化层的厚度为1μm至3μm,所述粘接力与所述钝化层的厚度成正比。
  5. 根据权利要求1所述的电池外壳,其特征在于,所述密封件的厚度为0.1mm至0.3mm,所述粘接力与所述密封件的厚度呈正比。
  6. 根据权利要求1所述的电池外壳,其特征在于,所述密封件包括依次层叠设置的第一亲金属层、基础层和第二亲金属层,所述第一亲金属层与所述第一盖体粘接,所述第二亲金属层与所述第二盖体粘接。
  7. 根据权利要求6所述的电池外壳,其特征在于,所述第一亲金属层的厚度为0.05mm至0.1mm,所述基础层的厚度为0.05mm至0.1mm,所述第二亲金属层的厚度为0.05mm至0.1mm。
  8. 根据权利要求1所述的电池外壳,其特征在于,所述密封件的面积小于所述第一盖体的面积,且大于所述第一盖体与所述第二盖体的重合面积的2/3,所述粘接力与所述密封件的面积呈正比。
  9. 根据权利要求1所述的电池外壳,其特征在于,所述第一盖体的外径为7mm至15mm,所述密封件的外径为7.5mm至15.5mm,所述第二盖体的外径为8mm至16mm。
  10. 一种电池,其特征在于,包括如权利要求1至9任一项所述的电池外壳。
PCT/CN2021/114396 2020-08-28 2021-08-24 一种电池外壳及电池 WO2022042574A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/055,413 US20230076187A1 (en) 2020-08-28 2022-11-15 Battery housing and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010885446.2A CN111900276A (zh) 2020-08-28 2020-08-28 一种电池外壳及电池
CN202010885446.2 2020-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/055,413 Continuation US20230076187A1 (en) 2020-08-28 2022-11-15 Battery housing and battery

Publications (1)

Publication Number Publication Date
WO2022042574A1 true WO2022042574A1 (zh) 2022-03-03

Family

ID=73224682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114396 WO2022042574A1 (zh) 2020-08-28 2021-08-24 一种电池外壳及电池

Country Status (3)

Country Link
US (1) US20230076187A1 (zh)
CN (1) CN111900276A (zh)
WO (1) WO2022042574A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013524B (zh) * 2021-02-23 2023-06-20 珠海冠宇电池股份有限公司 电池外壳及电池
CN111900276A (zh) * 2020-08-28 2020-11-06 珠海冠宇电池股份有限公司 一种电池外壳及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202395058U (zh) * 2011-12-16 2012-08-22 深圳市雄韬电源科技股份有限公司 一种环形电池
CN111029487A (zh) * 2019-12-31 2020-04-17 广东微电新能源有限公司 高能量密度电池
CN111162228A (zh) * 2019-12-31 2020-05-15 广东微电新能源有限公司 防爆电池
CN211238301U (zh) * 2020-03-18 2020-08-11 珠海冠宇电池股份有限公司 一种密封壳体结构及电池
CN111900276A (zh) * 2020-08-28 2020-11-06 珠海冠宇电池股份有限公司 一种电池外壳及电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081339A3 (en) * 1981-12-04 1983-09-14 Venture Technology Limited Sealing of electrochemical cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202395058U (zh) * 2011-12-16 2012-08-22 深圳市雄韬电源科技股份有限公司 一种环形电池
CN111029487A (zh) * 2019-12-31 2020-04-17 广东微电新能源有限公司 高能量密度电池
CN111162228A (zh) * 2019-12-31 2020-05-15 广东微电新能源有限公司 防爆电池
CN211238301U (zh) * 2020-03-18 2020-08-11 珠海冠宇电池股份有限公司 一种密封壳体结构及电池
CN111900276A (zh) * 2020-08-28 2020-11-06 珠海冠宇电池股份有限公司 一种电池外壳及电池

Also Published As

Publication number Publication date
CN111900276A (zh) 2020-11-06
US20230076187A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2021017905A1 (zh) 电池、电池单体及其顶盖组件
WO2022042574A1 (zh) 一种电池外壳及电池
WO2020103014A1 (zh) 智能电池及其锂电芯
WO2018120388A1 (zh) 一种纽扣电池及其制造方法
KR100324863B1 (ko) 밀폐형전지용방폭실링판및그제조방법
JP3230968U (ja) ボタン型リチウムイオン電池
WO2017164000A1 (ja) 円筒形電池
WO2022117098A1 (zh) 扣式电池及电子设备
CN112531242A (zh) 扣式电池及电子设备
TWI415319B (zh) 柱狀二次電池之蓋組及包含該蓋組之柱狀二次電池
CN101924239A (zh) 二次电池
KR20140087773A (ko) 안정성이 향상된 파우치형 이차전지
JP2006228520A (ja) 二次電池
JP6731580B2 (ja) 円筒形リチウムイオン二次電池
JP6509856B2 (ja) 蓄電デバイス
JP6608596B2 (ja) 角形二次電池及びその製造方法
JP6169798B2 (ja) 漏洩経路遮断用隆起部が形成されている安全ベントを含むキャップ組立体及びそれを含むリチウム二次電池
JP2007184248A (ja) 二次電池
WO2020062295A1 (zh) 锂电芯、智能电池及锂电芯的制造方法
WO2022110893A1 (zh) 圆柱形锂电池
KR20170012138A (ko) 이차전지용 캡조립체 및 그 이차전지
JP2016009558A (ja) 円筒形電池
WO2021195852A1 (zh) 电池组件、应用所述电池组件的电池及电子装置
US20190372085A1 (en) Battery pack and manufacturing method therefor
KR20130122051A (ko) 원통형 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21860409

Country of ref document: EP

Kind code of ref document: A1