WO2020062295A1 - 锂电芯、智能电池及锂电芯的制造方法 - Google Patents

锂电芯、智能电池及锂电芯的制造方法 Download PDF

Info

Publication number
WO2020062295A1
WO2020062295A1 PCT/CN2018/109203 CN2018109203W WO2020062295A1 WO 2020062295 A1 WO2020062295 A1 WO 2020062295A1 CN 2018109203 W CN2018109203 W CN 2018109203W WO 2020062295 A1 WO2020062295 A1 WO 2020062295A1
Authority
WO
WIPO (PCT)
Prior art keywords
support plate
battery cell
cell assembly
lithium
battery
Prior art date
Application number
PCT/CN2018/109203
Other languages
English (en)
French (fr)
Inventor
许柏皋
赵涛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/109203 priority Critical patent/WO2020062295A1/zh
Priority to CN201880039851.3A priority patent/CN110770960A/zh
Publication of WO2020062295A1 publication Critical patent/WO2020062295A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present disclosure relate to the technical field of batteries, and in particular, to a method for manufacturing a lithium battery cell, a smart battery, and a lithium battery cell.
  • the lithium battery in the polymer lithium metal battery uses a laminated structure.
  • the lithium battery is formed by a thin aluminum alloy plate, and the lithium battery is subject to a balanced clamping force. Therefore, during the cyclic charging and discharging process of the laminated polymer lithium metal battery, lithium metal is uniformly deposited without causing dendrites, and the safety performance of the battery cell is high.
  • the lithium battery in the wound lithium metal battery is processed and formed by a winding method, and the lithium battery is wound by a flexible multilayer film-like material.
  • the lithium battery is packed into a square case in a rolled structure, in which the upper and lower opposite surfaces of the lithium battery are superimposed and maintained in a balanced force.
  • the two sides of the lithium battery are curved into an arc, and the two sides cannot be effectively supported, resulting in a loose structure. Accordingly, the overall force of the lithium battery is not balanced. Therefore, during the cyclic charging and discharging of the wound lithium metal battery, lithium metal will be deposited in the lithium battery, which may easily lead to a safety accident of the battery.
  • lithium batteries Although some traditional technologies have used lithium batteries to support the problem of lithium metal precipitation, they have added support structures in the lithium batteries to prevent deformation of the wound cells. However, the inventors have found that even if this is done, they still cannot effectively solve the problem of lithium batteries. There is a problem of precipitation of lithium metal.
  • Chinese patent CN20190465U discloses a square-wound lithium battery that can prevent cracks at the arc corners of the inner ring pole pieces of the battery core and breakage of the separator.
  • the square wound lithium battery includes a battery cell in which a negative electrode sheet, a separator, and a positive electrode sheet are sequentially stacked and wound, and a coil pin hole is left in the middle of the battery cell. Acid and alkali, insulating irreversible deformation gasket.
  • the inventors have found that when the lithium battery of the patented technology is in use, for example, in a use situation with relatively large vibration, the lithium battery may still have the problem of lithium metal precipitation.
  • Chinese patent CN1018343317A discloses a cell structure disclosed in a wound lithium battery cell.
  • the cell is located inside the battery can and is connected to the lead-out terminals of the positive and negative terminals of the battery can through conductive connectors.
  • the battery core mainly includes a battery inner core and a battery outer core.
  • the battery outer core is sequentially stacked by a positive electrode plate, a separator, and a negative electrode plate, wound in a spiral shape, and wrapped around the battery core.
  • the inventors have found that when the lithium battery of the patented technology is in use, for example, in a use situation with relatively large vibration, the lithium battery may still have the problem of lithium metal precipitation.
  • the lithium battery technology disclosed in the above-mentioned document still cannot completely solve the problem of lithium metal precipitation and formation of lithium crystals during the charge and discharge of the lithium battery.
  • the generation of lithium crystals can easily cause accidents such as high temperature and explosion of the wound battery, which seriously affects the safety performance of the battery.
  • the embodiments of the present disclosure provide a lithium battery including: a plate-shaped support plate;
  • a cell assembly that is wound on the support plate so that the support plate is enclosed within the cell assembly, the cell assembly includes at least one negative electrode, at least one positive electrode, and A separator in which the positive electrode and the negative electrode are spaced apart;
  • a housing the housing having a receiving cavity for receiving the support plate and the battery cell assembly
  • An electrolyte which is filled in the battery cell assembly, and / or a space between the housing and the battery cell assembly;
  • the support plate is used to support the battery cell assembly, and two opposite surfaces of the support plate are attached to the battery cell assembly, so that the battery cell assembly can adhere to two of the support plate Opposite surfaces, so that the battery cell assembly and the support plate can form a whole that cannot be moved relative to each other.
  • an embodiment of the present disclosure provides a smart battery, including: a battery case provided with a receiving cavity;
  • At least one lithium battery contained in the receiving cavity At least one lithium battery contained in the receiving cavity.
  • a control component installed in the receiving cavity
  • the lithium battery includes: a plate-shaped support plate;
  • a cell assembly that is wound on the support plate so that the support plate is enclosed within the cell assembly, the cell assembly includes at least one negative electrode, at least one positive electrode, and A separator in which the positive electrode and the negative electrode are spaced apart;
  • a housing the housing having a receiving cavity for receiving the support plate and the battery cell assembly
  • An electrolyte which is filled in the battery cell assembly, and / or a space between the housing and the battery cell assembly; wherein the support plate is used to support the battery cell assembly, Two opposite surfaces are attached to the battery cell assembly, so that the battery cell assembly can adhere to the two opposite surfaces of the support plate, so that the battery cell assembly and the support plate can form a non-relative movement Overall;
  • the control component is electrically connected to the positive terminal, the negative terminal, and the lithium battery, and is used to control the state of the lithium battery.
  • the lithium battery passes the positive terminal and the negative electrode. The terminal is charged or discharged.
  • the embodiments of the present disclosure provide a method for manufacturing a lithium battery, including:
  • a support plate wherein the support plate is used to support a cell assembly
  • a cell assembly is wound on the support plate, so that the support plate is enclosed in the cell assembly, wherein the cell assembly includes at least one negative electrode, at least one positive electrode, and the Separators with the positive and negative electrodes spaced apart; and
  • the two opposite surfaces of the support plate are attached to the battery cell assembly, so that the battery cell assembly is adhered to the two opposite surfaces of the support plate, so that the battery cell assembly and the support plate can Form a whole that cannot be moved relative to each other.
  • the embodiments of the present disclosure are adhered to the support plate through the cell assembly and form a whole, and the shape stability of the cell assembly is good.
  • the battery cell assembly is wound around the support plate and adheres to the support plate.
  • the support plate provides effective support for the battery cell assembly, keeping the internal tension of the battery cell assembly and the bonding form stable, even if the lithium battery is subject to large vibrations. It can still keep the supporting plate and the battery cell component relatively difficult to be shifted when used next, thereby ensuring that the supporting plate can stably keep the battery cell component from being easily deformed, thus effectively solving the problem of lithium metal precipitation in lithium battery cells.
  • FIG. 1 is a schematic cross-sectional structure diagram of a cell assembly being wound on a support plate structure according to an exemplary embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram showing some exemplary embodiments of the cell assembly shown in FIG. 1 wound around a support plate structure.
  • FIG. 2a is a schematic cross-sectional structure diagram of the battery cell assembly shown in FIG. 1 provided with two separators to separate a positive electrode from a negative electrode and wound around a support plate structure.
  • FIG. 2b is a schematic cross-sectional structure diagram of the battery cell assembly shown in FIG. 1 provided with a separator to separate the positive electrode from the negative electrode and wound around the support plate structure.
  • FIG. 2c is a schematic cross-sectional structure diagram of the cell assembly shown in FIG. 1 wound around a support plate structure.
  • FIG. 3 is a schematic diagram of a longitudinal cross-sectional structure of a lithium cell including the cell assembly shown in FIG. 2 wound on a support plate structure.
  • FIG. 4 is a schematic cross-sectional structure diagram of a support plate included in the lithium battery shown in FIG. 3.
  • FIG. 5 is a schematic cross-sectional structure diagram of a support plate provided with a curved surface included in the lithium battery core shown in FIG. 3.
  • FIG. 6 is a partially enlarged structural diagram of a cross section of a separator included in the lithium battery shown in FIG. 3.
  • FIG. 7 is a schematic structural diagram of a smart battery including the lithium battery cell shown in FIG. 3.
  • cell assembly 10 positive electrode 11; negative electrode 12; separator 13; base film 131; first coating layer 132; second coating layer 133; support plate 20; side surface 21; main surface 22; curved surface 23; foundation coating Layer 24; positive ear 30; negative ear 40; housing 50; positive terminal 60; negative terminal 70; battery case 80; control component 90.
  • the battery cell includes a battery cell assembly, a support plate for supporting the battery cell assembly, a housing for receiving the battery cell assembly and the support plate, and an electrolyte.
  • the battery cell assembly and the support plate can form a non-relative moving whole by bonding, snapping or clamping.
  • the battery cell assembly of the battery cell is wound, tensioned, and adhered to a part of the surface of the support plate, so that the battery cell assembly and the support plate can form a whole that cannot be moved relative to each other.
  • the battery cell assembly of the battery cell is wound and formed into a hole.
  • the support plate can be inserted into the hole, and the battery cell assembly can adhere to a part of the surface of the support plate, so that the battery cell assembly and the support The board can form a whole that cannot be moved relative to each other.
  • the battery cell assembly of the battery cell is wound on the support plate, and the winding and overlapping portions of the battery cell assembly are adhered and connected to form a non-relatively movable whole.
  • the lithium battery cell includes a plate-shaped support plate 20 and a battery cell assembly 10.
  • the battery cell assembly 10 includes at least one negative electrode 12, at least one positive electrode 11, and a separator 13 capable of disposing the positive electrode 11 and the negative electrode 12 at intervals. It can be understood that the positions of the positive electrode 11 and the negative electrode 12 shown in FIG. 2 can be interchanged.
  • the battery cell assembly 10 is wound on the support plate 20 so that the support plate 20 is covered inside the battery cell assembly 10.
  • the innermost layer of the battery cell assembly 10 may be a separator 13, wherein at least a part of the separator 13 is attached to the support plate 20.
  • the main function of the separator 13 is to separate the positive electrode 11 and the negative electrode 12 to prevent the two electrodes from contacting and short-circuiting.
  • the separator 13 can also pass electrolyte ions to realize the conversion of chemical energy and electrical energy between the positive electrode 11 and the negative electrode 12.
  • the separator 13 separates the positive electrode 11 and the negative electrode 12. Accordingly, the separator 13 can be set to one or more according to the distribution of the positive electrode 11 and the negative electrode 12.
  • the separator When one separator 13 is used, the separator is wrapped in one of the positive electrode 11 or the negative electrode 12, and the other of the positive electrode 11 or the negative electrode 12 is attached to the separator. When multiple separators 13 are provided, the separators 13 are correspondingly attached to each of the positive electrodes 11 or the negative electrodes 12. Optionally, one or more of the positive electrode 11 or the negative electrode 12 are provided.
  • the support plate 20 may also be directly attached to the innermost electrode of the battery cell assembly 10, wherein the innermost electrode may be the positive electrode 11 or the negative electrode 12.
  • the housing 50 has a receiving cavity.
  • the casing 50 is configured to receive the support plate 20 and the battery cell assembly 10, and an electrolyte fills a space between the casing 50 and the battery cell assembly 10.
  • the support plate 20 is used to support the battery cell assembly 10, and two opposite surfaces of the support plate 20 are attached to the battery cell assembly 10 so that the battery cell assembly 10 can adhere to the two opposite surfaces of the support plate 20, so that the battery cell
  • the assembly 10 and the support plate 20 can form a non-relatively movable whole.
  • the battery cell assembly 10 and the support plate 20 form a non-relatively movable unit.
  • the tension and winding position of the battery cell assembly 10 wound around the support plate 20 are relatively fixed, and the overall force of the battery cell assembly 10 is balanced to avoid In order to avoid the loss of support of the battery cell assembly 10 in the part not in contact with the support plate 20 due to the relative movement between the battery cell assembly 10 and the support plate 20, and to prevent the battery cell assembly 10 from being in the part due to the loss of support of the support plate 20
  • the cell assembly 10 exhibits the phenomenon of sag and lithium evolution, and poor electrical contact of the tabs, which affects such adverse phenomena as charging and discharging.
  • the support plate 20 has a plate-like structure, wherein the support plate 20 has two main surfaces 22 opposite to each other and a side surface 21 connecting the two main surfaces 22.
  • the two opposite surfaces of the support plate 20 are the two main surfaces 22 of the support plate 20.
  • the battery cell assembly 10 is wound on the support plate 20.
  • the battery cell assembly 10 is adhered to the two main surfaces 22 and the two side surfaces 21 opposite to each other on the support plate 20 so that the battery cell assembly 10 is wound on the support.
  • ⁇ 20 ⁇ Plate 20 The contact surfaces of the battery cell assembly 10 and the support plate 20 are adhered to each other, so that the battery cell assembly 10 and the support plate 20 form a whole.
  • the support plate 20 effectively supports various parts of the battery cell assembly 10 and keeps the support of the battery cell assembly 10 stable, so that the lithium metal cell 10 is uniformly deposited during the charge and discharge process without being generated in the battery cell assembly 10 Lithium dendrite, lithium battery has high safety performance.
  • the battery cell assembly 10 is wrapped around the support plate 20 and assembled in the receiving cavity of the casing 50, and the electrolyte is filled in the battery cell assembly, and / or, the gap between the casing 50 and the battery cell assembly 10 is used to make the positive electrode A conducting loop is formed between 11 and the negative electrode 12, so that the lithium battery can perform corresponding electric energy-chemical energy conversion, and the charging and discharging are convenient.
  • the battery cell assembly 10 is wound around the support plate 20 and is attached to the support plate 20, and accordingly, it includes the following two winding forms:
  • the battery cell assembly 10 is wound and tensioned on the outside of the support plate 20.
  • the battery cell assembly 10 is directly wound on the support plate 20 during processing, and a preset pre-tensioning force is provided between the battery cell assembly 10 and the support plate 20.
  • the battery cell assembly 10 can tension the battery cell assembly 10 against the support plate 20 under the pre-tensioning force, so that the support plate 20 maintains the support state of the battery cell assembly 10, and the support effect is good.
  • the support plate 20 acts on the battery cell assembly.
  • the supporting force of 10 is stable, which avoids the occurrence of the local collapse phenomenon of the battery cell assembly 10.
  • the battery cell assembly 10 is wound and formed into a flat long hole, and the support plate 20 can be inserted into the flat long hole.
  • the battery cell assembly 10 is rolled to form a flat ring structure, and the support plate 20 is plugged into the flat long hole so that the support plate 20 is located at the center of the battery cell assembly 10.
  • the inner surface of the battery cell assembly 10 is adhered to the support plate 20 so that the battery cell assembly 10 and the support plate 20 form a whole.
  • the support plate 20 supports and positions the battery cell assembly 10 and has good support stability.
  • the pressure that the side surface 21 of the support plate 20 can withstand is P, 2kgf / cm 2 ⁇ P ⁇ 10kgf / cm 2 , that is, the support plate 20 can withstand a pressure of at least 2kgf / cm 2 , at most It is 10 kgf / cm 2 , and the shape of the support plate 20 remains stable under this pressure condition.
  • the support plate 20 When the battery cell assembly 10 is wound around the support plate 20 under a preset pre-tensioning force, the support plate 20 receives a squeezing force from the battery cell assembly 10. Correspondingly, the support plate 20 is used to support the battery cell assembly 10 and keep the battery cell assembly 10 stable. The support plate 20 does not deform under the pressing force, and the support force received by the battery cell assembly 10 is stable to make the battery cell 10
  • the module 10 has good stability during charging and discharging.
  • both side surfaces 21 of the support plate 20 are subjected to pressure transmitted by the battery cell assembly 10.
  • the pressure P that the support plate 20 can withstand may be: 2 kgf / cm 2 , 3 kgf / cm 2 , 5 kgf / cm 2 , 8 kgf / cm 2 , 10 kgf / cm 2, or the like.
  • the support plate 20 is made of an acid and alkali resistant material. Such as stainless steel, plastic, alloy steel, ceramics, etc.
  • the support plate 20 is made of a metallic or non-metallic material.
  • the support plate 20 is made of a rigid material or an elastic material.
  • the support plate 20 may be provided at the center of the battery cell assembly 10. When the volume occupied by the support plate 20 is small, the volume of the battery cell assembly 10 can be increased accordingly. In an alternative embodiment, the thickness of the support plate 20 is less than or equal to 3 mm. For example, the support plate 20 is set to a thickness of 1.5 mm, 2 mm, 2.5 mm, or 3 mm. The supporting plate 20 reduces the thickness of the supporting plate 20 to reduce the volume of the supporting plate 20 under the condition that the supporting force of the battery cell assembly 10 is satisfied, and the space occupied by the supporting plate 20 is small.
  • the battery cell assembly 10 is wound on the surface of the support plate 20, and at least part of the battery cell assembly 10 is in contact with the surface of the support plate 20.
  • the surface of the support plate 20 has a corresponding roughness. That is, the surface of the support plate 20 has an undulating local convex structure, and the cell assembly 10 is tensioned on the surface of the support plate 20.
  • the surface of the support plate 20 is provided with appropriate roughness.
  • the base plate 24 is coated on the surface of the support plate 20 and / or the surface of the cell assembly 10 in contact with the support plate 20 is provided with an adhesive material, so as to improve the adhesion strength between the support portion 20 and the cell assembly 10.
  • the adhesive material can be directly adhered and connected, or can be fused and connected at a high temperature under a preset process.
  • the range of the surface roughness of the support plate 20 needs to be controlled.
  • the roughness of the surface of the support plate 20 ranges from 3 to 10 microns.
  • the surface roughness of the support plate 20 ranges from 3 microns, 4 microns, 5 microns, 8 microns, 10 microns, and the like.
  • the battery cell assembly 10 may also be adhesively connected to the support plate 20. Based on Figures 1-3, see Figures 4 and 5.
  • the surface of the support plate 20 is coated with a base coating layer 24.
  • the base coating layer 24 is used to bond the contact portion between the outer surface of the support plate 20 and the cell assembly 10.
  • the support plate 20 is adhered to the battery cell assembly 10 through the base coating 24, and the adhesion is convenient.
  • the thickness of the base coating 24 is 1 to 5 microns. Specifically, the thickness of the base coating layer 24 is set to 1 micrometer, 2 micrometers, 3 micrometers, 5 micrometers, or the like.
  • the base coating 24 is applied to the entire area of two opposite surfaces of the support plate 20; or is applied to a predetermined area of the support plate 20.
  • the area coated by the base coating 24 is the adhesion area of the cell assembly 10 and the support plate 20.
  • the base coating 24 is pre-coated on a predetermined area on the surface of the support plate 20, which can conveniently control the connection part between the support plate 20 and the battery cell assembly 10, has good controllability, and is convenient to connect.
  • the base coating 24 includes at least one of the following materials: polyvinylidene fluoride, polymethyl methacrylate, styrene-butadiene rubber.
  • the base coating layer 24 is applied to a predetermined area of the support plate 20 to control the adhesive connection position of the base coating layer 24 and the battery cell assembly 10.
  • the base coating layer 24 may be provided with a single material to form a coating layer, or may be composed of multiple materials to form different material coating layers in different regions.
  • the base coating layer 24 is composed of one of materials such as polyvinylidene fluoride, polymethyl methacrylate, and styrene-butadiene rubber.
  • the base coating layer 24 is applied to two opposite surfaces of the support plate 20.
  • one surface of the support plate 20 is coated with one of materials such as polyvinylidene fluoride, polymethyl methacrylate, styrene-butadiene rubber, and the other opposite surface is coated with polyvinylidene fluoride.
  • materials such as polyvinylidene fluoride, polymethyl methacrylate, styrene-butadiene rubber, etc.
  • One of the remaining materials such as polymethyl methacrylate, styrene-butadiene rubber, etc., so that different surfaces of the support plate 20 have coatings made of multiple materials to adapt to the adhesion of different contact surfaces of the battery cell assembly 10 Results.
  • the battery cell assembly 10 is wound around the support plate 20 and adheres to the base coating layer 24.
  • the battery cell assembly 10 and the base coating layer 24 can be bonded and connected through a corresponding processing process, such as a fixture forming process, and the bonding effect is good.
  • the battery cell assembly 10 and the support plate 20 form an inseparable whole, so that the support plate 20 can provide support for the battery cell assembly 10, and also prevent the battery cell assembly 10 from being displaced relative to the support plate 20, and maintain the battery cell assembly. 10 is structurally stable.
  • the width of the support plate 20 matches the width of the battery cell assembly 10. For example, if the width of the support plate 20 is equal to the width of the battery cell assembly 10, the width of the battery cell assembly 10 and the width of the support plate 20 are high, and the size control accuracy of the lithium battery cell is high. Or the width of the support plate 20 is slightly larger than the width of the battery cell assembly 10, so that the battery cell assembly 10 can be completely confined to the support plate 20 during the winding process, and the support plate 20 provides a stable supporting force with high reliability.
  • the support plate 20 may be a plate-like structure, for example, the support plate 20 may be a rectangular plate-like structure.
  • An arc-shaped chamfer may be provided at a corner of the support plate 20 to prevent the support plate 20 from scratching the battery cell assembly 10.
  • the connection between two opposite surfaces may be a curved surface 23, and the battery cell assembly 10 is tensioned on the curved surface 23 and bent along the curved surface 23.
  • the curved surface 23 is an arc-shaped curved surface 23, and the arc-shaped curved surface 23 is gradually inclined in a direction away from the central region of the support plate 20.
  • the two main surfaces 22 of the support plate 20 may be provided with curved surfaces 23 inclined to the side direction, so that the cell assembly 10 is wound around the support plate 20 during the process of winding the cell assembly 10 along the curved surface 23 and attached to the surface.
  • the support plate 20 and the cell assembly 10 receive a small degree of stress concentration.
  • the curved curved surface 23 may be disposed on two opposite planes and inclined toward a side surface 21 of the edge, which is used to support the battery cell assembly 10.
  • the side surface 21 is set as an arc-shaped surface and intersects the curved surface 23 to make the battery cell assembly 10 transition smoothly.
  • the intersection of the side surface 21 and the two main surfaces 22 of the support plate 20 forms a “C” -shaped or “V” -shaped structure, and a circular arc transition connection is used at the sharp corners.
  • the battery cell assembly 10 is wound around the support plate 20, and the inner surface of the battery cell assembly 10 is in contact with the surface of the support plate 20.
  • the inner surface of the cell assembly 10 is coated with an adhesive coating.
  • the adhesive coating is coated on the inner surface of the battery cell assembly 10
  • the battery cell assembly 10 is wound and tensioned on two opposite surfaces of the support plate 20, and the support plate 20 can be bonded to the adhesive coating.
  • the adhesive coating is coated on the inner wall surface of the flat elongated hole, and the support plate 20 is inserted into the flat elongated hole and adheres to the adhesive coating.
  • the adhesive coating and the support plate 20 are bonded together to form a whole, so that the battery cell assembly 10 and the support plate 20 form a whole, and the bonding effect is good.
  • the adhesive coating includes at least one of the following materials: polyvinylidene fluoride, polymethyl methacrylate, styrene-butadiene rubber, sodium carboxymethyl cellulose.
  • the material of the adhesive coating is the same as or different from the material of the base coating 24.
  • the battery cell assembly 10 includes at least a positive electrode sheet, a separator 13 and a negative electrode sheet stacked in this order.
  • the positive electrode sheet is attached with a separator 13.
  • the support plate 20 is attached to the innermost layer of the battery cell assembly 10.
  • the innermost layer of the battery cell assembly 10 is the diaphragm 13.
  • the battery cell assembly 10 is wound on the support plate 20, and the separator 13 is adhered to the surface of the support plate 20, which can effectively isolate the positive electrode sheet or the negative electrode sheet from the support plate 20, and at the same time, can be bonded to the support plate 20 through the separator 13 .
  • the battery cell assembly 10 has good charging and discharging safety and good structural stability.
  • the width of the separator 13 is greater than or equal to the width of the positive electrode 11 and the negative electrode 12. As shown in FIG. 2 and FIG. 3, the separator 13 separates the positive electrode 11 and the negative electrode 12, and electrons between the positive electrode 11 and the negative electrode 12 are transmitted through the separator 13 to transmit electric energy.
  • the width of the separator 13 is greater than or equal to the width of the positive electrode 11 and the negative electrode 12, which can effectively avoid direct communication between the positive electrode 11 and the negative electrode 12, and the isolation effect is good.
  • the diaphragm 13 includes a base film 131, first coating layers 132 coated on both surfaces of the base film 131, and a coating layer outside the first coating layer 132.
  • the second coating layer 133, the first coating layer 132 is used for controlling the flow of current, and the second coating layer 133 is used for cementing the surface which is in contact with the second coating layer 133.
  • the substrate is made of polypropylene, polyethylene, polypropylene, and polyethylene composite materials.
  • the separator 13 has a large number of zigzag micropores, which can ensure that the electrolyte ions pass freely to form a charge and discharge circuit.
  • the separator 13 separates the positive electrode 11 and the negative electrode 12 of the battery through the closed-cell function of the first coating 132 to prevent direct contact and short circuit, thereby blocking current conduction, preventing the battery from overheating and even The effect of the explosion.
  • the first coating layer 132 includes at least one of the following materials: magnesium oxide, aluminum oxide, zirconia, magnesium oxide, zeolite, and titanium carbide.
  • the thickness of the first coating layer 132 is set to 1 to 3 microns. Specifically, the thickness of the first coating layer 132 is set to 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, and the like.
  • the surface of the base film 131 is coated with a layer of magnesia, alumina, zirconia, magnesia, zeolite, titanium carbide or other inorganic ceramic particles with excellent heat resistance.
  • the first coating layer 132 is formed and It is closely adhered to the base film 131.
  • the separator 13 stably combines the flexibility of the organic substance and the thermal stability of the inorganic substance, and improves the high temperature resistance, heat shrinkage resistance, and puncture strength of the separator 13, thereby improving the safety performance of the battery.
  • the second coating layer 133 is applied on the first coating layer 132 and adheres to a surface in contact with the second coating layer 133 in a corresponding bonding process. If the second coating layer 133 is in contact with the outer surface portion of the support plate 20, the second coating layer 133 is adhesively connected to the support plate 20 accordingly. Alternatively, during the winding process of the battery cell assembly 10, the second coating layer 133 is in contact with the positive electrode sheet or the negative electrode sheet, and the second coating layer 133 is bonded to the positive electrode sheet or the negative electrode sheet.
  • the second coating layer 133 includes at least one of the following materials: polyvinylidene fluoride, polymethyl methacrylate, styrene-butadiene rubber, and sodium carboxymethyl cellulose.
  • the thickness of the second coating layer 133 is set to 1 to 2 microns. Specifically, the thickness of the second coating layer 133 is set to 1 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, and the like.
  • the surface of the first coating layer 132 is coated with a layer made of polyvinylidene fluoride, polymethyl methacrylate, styrene-butadiene rubber, sodium carboxymethyl cellulose, or other chemical-resistant, high-temperature-resistant colors.
  • a second coating layer 133 made of a material that is modified, resistant to oxidation, abrasion, flexibility, and has a very high tensile strength and impact strength.
  • the second coating layer 133 and the second coating layer are combined with the base film 131
  • the separator 13 has a good ability of wetting, absorbing and retaining liquid, has good absorption of electrolyte, prolongs the cycle life of the battery, and increases the large-rate discharge performance of the battery.
  • the surface of the support plate 20 is coated with a base coating layer 24, and the material of the second coating layer 133 is the same as that of the base coating layer 24.
  • the base coating layer 24 and the second coating layer 133 are fused to form a single body under the corresponding processing technology, so that the diaphragm 13 and the cell assembly 10 adhere to the support plate.
  • the bonding effect is good, and the adsorption strength of the bonding site is high.
  • the surface of the support plate 20 is coated with a base coating layer 24.
  • the base coating layer 24 and the battery cell assembly 10 The innermost layer of can be bonded under the corresponding processing technology, so that the cell assembly 10 is adhered to the support plate 20.
  • the innermost layer of the battery cell assembly 10 is a metal thin film (not shown) coated with an electrode material, that is, the positive electrode 11 or the negative electrode 12.
  • an aluminum foil surface-coated with a positive electrode material or a copper foil surface-coated with a negative electrode material One side of the metal thin film is located at the innermost layer of the battery cell assembly 10 and is in contact with the support plate 20. Therefore, the battery cell assembly 10 and the support plate 20 can form a whole that cannot be moved relative to each other.
  • Corrugated protrusions are formed on the surface of the support plate 20 correspondingly. Corrugated protrusions are formed on the surface of the support plate 20 and corresponding protrusions are formed accordingly.
  • the diaphragm 13 is attached to the surface of the support plate 20, and accordingly, the protrusions and the diaphragm 13 are pressed against each other.
  • the thickness of the diaphragm 13 is set to b, and the height of the convex portion is set to b1, where b1 ⁇ b.
  • the thickness of the separator 13 is greater than the height of the protrusions.
  • the undulations of the protrusions are difficult to pierce the separator 13 to avoid the safety accident caused by the communication between the positive electrode 11 and the negative electrode 12 and the protection effect is good.
  • the positive electrode 11 is provided with at least one positive electrode ear 30, and the positive electrode ear 30 is protruded from one side of the battery cell assembly 10.
  • the negative electrode 12 is provided with at least one negative electrode ear 40, and the negative electrode ear 40 is protruded from one side of the battery cell assembly 10.
  • at least one positive ear 30 and at least one negative ear 40 are inserted outside the casing 50.
  • the positive electrode ear 30 is connected to the positive electrode sheet, and one end of the positive electrode ear 30 penetrates the casing 50.
  • the negative electrode ear 40 is connected to the negative electrode sheet, and one end of the negative electrode ear 40 penetrates the case 50.
  • the positive electrode ear 30 and the negative electrode ear 40 are disposed on the same side of the casing 50 at intervals.
  • the positive electrode 11 is provided with a plurality of positive electrode ears 30, the plurality of positive electrode ears 30 are electrically connected together.
  • the negative electrode 12 is provided with a plurality of negative electrode ears 40, the plurality of negative electrode ears 40 are electrically connected together.
  • the negative electrode 12 includes lithium metal or a lithium metal compound. In one embodiment, the negative electrode 12 is a copper foil with a lithium metal film or a lithium metal compound attached to its surface. In one embodiment, the positive electrode 11 includes at least one of the following materials: elemental sulfur, lithium cobaltate, lithium manganate, lithium iron phosphate, and nickel-cobalt-manganese materials. In one embodiment, the positive electrode 12 is an aluminum foil with at least one material attached to the surface including elemental sulfur, lithium cobaltate, lithium manganate, lithium iron phosphate, and nickel-cobalt-manganese.
  • the housing 50 includes at least one of the following: an aluminum plastic film, a steel shell, and an aluminum shell.
  • the housing 50 is a square structure to fit the outer shape of the battery cell assembly 10.
  • the battery cell assembly 10 When the battery cell assembly 10 is soft-packed with an aluminum plastic film, the battery cell assembly 10 having the supporting plate 20 is installed in a receiving cavity with an aluminum plastic film. At the same time, the positive electrode ear 30 and the negative electrode ear 40 of the battery cell assembly 10 are inserted into the outside of the casing 50 through a corresponding process, and sealed at a joint portion, such as a top-side sealing process.
  • Electrolyte is poured from the side opening of the aluminum-plastic film.
  • the electrolyte includes at least one of the following: a carbonate-based solvent containing lithium hexafluorophosphate, and a gel-like electrolyte.
  • An aluminum plastic film equipped with the electrolyte and the battery cell assembly 10 is formed into a lithium battery cell through a corresponding processing process. For example, one-shot, jig-forming, and two-sealing processes.
  • the above-mentioned lithium battery is applied to a smart battery, so that the lithium battery can provide electric energy to corresponding equipment, and at the same time, the chemical energy can be converted through a charging function.
  • a smart battery includes a battery case 80 provided with a receiving cavity, a positive terminal 60 and a negative terminal 70 provided in the battery case 80, at least one lithium battery cell provided in the above embodiment, and
  • the control component 90 is installed in the receiving cavity, and the lithium battery is received in the receiving cavity.
  • the positive terminal 60 and the negative terminal 70 are used for electrical connection with an external device.
  • the control component 90 is electrically connected to the positive terminal 60, the negative terminal 70, and the lithium battery, and is used for controlling the state of the lithium battery.
  • the lithium battery is charged or discharged through the positive terminal 60 and the negative terminal 70.
  • the battery case 80 is set as a rigid structure, and a receiving cavity is formed in the inside thereof, so that the control component 90 and the lithium battery are installed in the battery case 80 and protected by the battery case 80.
  • the lithium battery is charged and discharged through the positive terminal 60 and the negative terminal 70.
  • the positive ear 30 of the lithium battery is connected to the positive terminal 60
  • the negative ear 40 is connected to the negative terminal 70, which facilitates power transmission.
  • the battery case 80 is a square structure.
  • the battery case 80 includes at least one of the following: an insulating plastic case, a steel case, and an aluminum case.
  • control assembly 90 includes a control board installed in the battery case 80 and a processor mounted on the control board.
  • the control board is electrically connected to the positive terminal 60, the negative terminal 70, and the lithium battery.
  • the processor controls the charge and discharge of the lithium battery cell by detecting the current, voltage, and other parameters flowing through the control, and disconnects the path under abnormal conditions to keep the lithium battery in the disconnected state.
  • control component 90 further includes a detection element mounted on the control board, and the detection element is used to detect a gas parameter in the lithium battery core and / or the accommodation space.
  • the detection element can detect corresponding gas parameters, such as gas temperature and gas pressure.
  • the detection element includes an air pressure sensor, a temperature sensor, a humidity sensor, and the like.
  • a method for manufacturing a lithium battery which includes the following steps:
  • a support plate 20 is provided.
  • the support plate 20 is used to support the battery cell assembly 10.
  • the supporting plate 20 has a plate-like structure, wherein the supporting plate 20 has two main surfaces 22 opposite to each other and a side surface 21 connecting the two main surfaces 22.
  • S102 Winding a battery cell assembly 10 on the support plate 20, so that the support plate 20 is wrapped in the battery cell assembly 10.
  • the two main surfaces 22 of the battery cell assembly 10 and the support plate 20 are opposite to each other and The two side surfaces 21 are bonded together so that the battery cell assembly 10 is wound around the support plate 20.
  • the battery cell assembly 10 includes at least one negative electrode 12, at least one positive electrode 11, and a separator 13 capable of disposing the positive electrode 11 and the negative electrode 12 at a distance.
  • the battery cell assembly 10 is wound on the supporting plate 20 so that the supporting plate 20 provides a stable supporting force for the battery cell assembly 10 and the shape stability of the battery cell assembly 10 is good.
  • the support plate 20 and the battery cell assembly 10 are housed in a receiving cavity of a housing 50 having an opening.
  • S104 Fill the space between the case 50 and the cell assembly 10 with the electrolyte.
  • S105 Attach two opposite surfaces of the support plate 20 to the battery cell assembly 10, so that the battery cell assembly 10 adheres to the two opposite surfaces of the support plate 20, so that the battery cell assembly 10 and the support plate 20 can form an incompatible Moving whole.
  • the contact surfaces of the battery cell assembly 10 and the support plate 20 are adhered to each other, so that the battery cell assembly 10 and the support plate 20 form a whole.
  • the support plate 20 effectively supports various parts of the battery cell assembly 10 and keeps the supporting force of the battery cell assembly 10 stable, so that the lithium metal cell 10 is uniformly deposited during the charge and discharge process, and will not be in the battery cell assembly 10 Generates lithium dendrites to improve the safety performance of lithium cells.
  • the battery cell assembly 10 is wrapped around the support plate 20 and assembled in the receiving cavity of the casing 50, and the electrolyte is filled in the gap between the casing 50 and the battery cell assembly 10 so that the lithium battery cell can generate corresponding electrical-chemical energy Easy to change, charge and discharge.
  • the battery cell assembly 10 When the battery cell assembly 10 is packaged with an aluminum plastic film, the battery cell assembly 10 with the support plate 20 is installed in a receiving cavity with an aluminum plastic film, and the positive electrode ear 30 and the negative electrode of the battery cell assembly 10 can be made through corresponding processes.
  • the ear 40 is inserted outside the casing 50 and sealed at a joint portion, such as a top-side sealing process.
  • electrolyte is poured into the side opening of the aluminum-plastic film, and then the aluminum-plastic film equipped with the electrolyte and the battery cell assembly 10 is formed into a lithium battery cell through a corresponding processing process.
  • a processing process For example, one-piece, fixture forming, and two-sealing processes. Lithium batteries are easy to form and have good shape stability.
  • the method further includes winding the battery cell assembly 10 around the support plate 20 under a preset tension.
  • the battery cell assembly 10 is directly wound on the support plate 20 during processing, and a preset pre-tensioning force is provided between the battery cell assembly 10 and the support plate 20.
  • the battery cell assembly 10 can tension the battery cell assembly 10 against the support plate 20 under the pre-tightening force, so that the support plate 20 maintains the support state of the battery cell assembly 10, and the support effect is good.
  • the support plate 20 acts on the battery cell assembly.
  • the supporting force of 10 is stable, which avoids the occurrence of the local collapse phenomenon of the battery cell assembly 10.
  • the pre-tension pressure of the cell assembly 10 acting on the support plate 20 is less than 8 kgf / cm 2 .
  • the method further includes: the battery cell assembly 10 is wound and formed into a flat long hole, and the support plate 20 is inserted into the flat long hole and is at a preset position of the battery cell assembly 10.
  • the battery cell assembly 10 is rolled to form a flat ring structure, and the support plate 20 is plugged into the flat long hole so that the support plate 20 is located at the center of the battery cell assembly 10.
  • the inner surface of the battery cell assembly 10 is adhered to the support plate 20 so that the battery cell assembly 10 and the support plate 20 form a whole.
  • the support plate 20 supports and positions the battery cell assembly 10 and has good support stability.
  • the surface of the support plate 20 is coated with a base coating layer 24, and the thickness of the base coating layer 24 is 1 to 5 microns.
  • the area coated by the base coating 24 is the adhesion area of the cell assembly 10 and the support plate 20.
  • the base coating 24 is pre-coated on a predetermined area on the surface of the support plate 20, or two opposite surface areas on the surface of the support plate 20 can easily control the connection part between the support plate 20 and the battery cell assembly 10, which has good controllability and convenient connection. .
  • the cell assembly 10 can be adhered to two opposite surfaces of the support plate 20 within a preset temperature range by a fixture forming process.
  • the preset temperature range of the jig formation process is 25-85 ° C.
  • the case 50 is sealed and the electrolyte is allowed to sufficiently wet the cell assembly 10 by being left to stand.
  • a chemical forming apparatus for high-temperature hot-pressing treatment such as high-temperature hot-pressing at 85 ° C, so that the support plate 20 and the cell assembly 10 are bonded and connected, and the lithium battery is chemically formed. operation.
  • the lithium battery is further placed in a cold-pressing area for cold-pressing, such as cold-pressing at room temperature at 25 ° C., so that the support plate 20 and the battery cell assembly 10 are further bonded.
  • the clamp applies a preset pressure value to the lithium battery cell, so that the lithium battery cell is bonded under the corresponding pressure value, so
  • the battery cell assembly 10 and the support portion 20 constitute an inseparable whole, and the position and posture of the battery cell assembly 10 and the support portion 20 are kept stable.
  • a preset pressure value range applied by the clamp to the lithium battery is set to 0.8 to 1.3 Mpa. Specifically, it can adjust the corresponding pressure parameter according to the material and specifications of the lithium battery, such as the pressure value is set to 0.8Mpa, 1MPa, 1.2Mpa, 1.3Mpa and so on.
  • the pressure value of the clamp when hot-pressing the lithium battery core is greater than the pressure value of the cold-pressing.
  • cold pressing can further improve the bonding strength between the battery cell assembly 10 and the support plate 20 and keep the pressure of the battery cell assembly stable.

Abstract

一种锂电芯、智能电池及锂电芯的制造方法。锂电芯包括:呈板状的支撑板(20);电芯组件(10),电芯组件(10)卷绕在支撑板(20)上,使支撑板(20)被包覆于电芯组件(10)内,电芯组件(10)包括至少一个负极(12)、至少一个正极(11),以及能够将正极(11)与负极(12)间隔设置的隔膜(13);壳体(50),壳体(50)具有一容纳腔,用于收容支撑板(20)以及电芯组件(10);以及电解质,电解质填充于电芯组件(10)内,和/或壳体(50)与电芯组件(10)之间的空间;其中,支撑板(20)用于支撑电芯组件(10),支撑板(20)的两个相对表面贴附于电芯组件(10),使电芯组件(10)能够粘附于支撑板(20)并形成一个不可相对移动的整体。电芯组件(10)卷绕于支撑板(20)并粘附于支撑板(20),支撑板(20)为电芯组件(10)提供支撑,保持电芯组件(10)的结构稳定。

Description

锂电芯、智能电池及锂电芯的制造方法 技术领域
本公开实施例涉及电池技术领域,尤其涉及一种锂电芯、智能电池及锂电芯的制造方法。
背景技术
在传统的锂电芯技术中,聚合物锂金属电池内的锂电芯采用叠片型结构,锂电芯在铝合金薄板的夹持下构成一锂电池,锂电芯受到均衡的夹持力。因此,叠片型的聚合物锂金属电池在循环充放电过程中,锂金属均匀沉积出来,而不会导致枝晶产生,电芯的安全性能高。
而在卷绕型锂金属电池内的锂电芯通过卷绕方式加工成型,锂电芯由柔性的多层薄膜状材料卷绕而成。在相关技术中,锂电芯呈卷绕结构装入到方形的外壳,其中,锂电芯的上下两个相对表面叠加并保持受力均衡。而锂电芯的两侧边弯曲成弧形,两侧边无法得到有效支撑导致结构松散,相应地,锂电芯的整体受力不够均衡。因此,卷绕型锂金属电池在循环充放电过程中,锂电芯会有锂金属析出,容易导致电芯发生安全事故。
虽然,有些传统技术为了解决锂电芯会有锂金属析出的问题,采用在锂电芯内增加支撑结构,以防卷绕型电芯变形,但是发明人发现,即使这样做仍然不能有效解决锂电芯会有锂金属析出的问题。
例如,中国专利CN20190465U公开一种可防止电池芯内圈极片弧形转角处产生断裂及隔膜出现破损现象的方形卷绕式锂电池。其中方形卷绕式锂电池包括负极片、隔膜和正极片依次叠放并卷绕而成的电池芯,所述的电池芯中部留有卷针孔,所述的卷针孔内设有具有耐酸碱、绝缘的不可逆形变的垫片。发明人发现,该专利技术的锂电池在使用状态时,例如,在处于震动比较大的使用情况下,锂电芯会仍然有可能发生锂金属析出的问题。
中国专利CN1018343317A公开一种卷绕式锂电池电芯所公开的电芯结构中,电芯位于电池罐内部,通过导电连接件,分别与电池罐正极和负极的导出端子连接。该电芯主要包括一个电池内芯和一个电池外芯,电池外芯由正极板、隔膜、负极板依次层叠放置,并卷绕成涡状,包裹在所述的电池内芯上。发明人发现,该专利技术的锂电池在使用状态时,例如,在处于震动比较大的使用情况下,锂电芯会仍然有可能发生锂金属析出的问题。
而经过发明人的长期观察和实验,上述文献中公开的锂电芯技术仍然不能完全解决锂电芯在充放电过程中有锂金属析出形成锂晶枝的问题。而锂晶枝的产生易导致 卷绕型的电池出现高温甚至爆炸等事故,严重影响电池的安全性能。
发明内容
具体地,本公开实施例是通过如下技术方案实现的:
依据本公开实施例的一个方面,本公开实施例提供一种锂电芯,包括:呈板状的支撑板;
电芯组件,所述电芯组件卷绕在所述支撑板上,使所述支撑板被包覆于所述电芯组件内,所述电芯组件包括至少一个负极、至少一个正极,以及能够将所述正极与负极间隔设置的隔膜;
壳体,所述壳体具有一容纳腔,用于收容所述支撑板以及所述电芯组件;以及
电解质,所述电解质填充于所述电芯组件内,和/或所述壳体与所述电芯组件之间的空间;
其中,所述支撑板用于支撑所述电芯组件,所述支撑板的两个相对表面贴附于所述电芯组件,使所述电芯组件能够粘附于所述支撑板的两个相对表面,从而所述电芯组件与所述支撑板能够形成一个不可相对移动的整体。
依据本公开实施例的二个方面,本公开实施例提供一种智能电池,包括:电池外壳,设有容纳腔;
设于所述电池外壳的正极端子和负极端子,所述正极端子和负极端子用于与外部装置电连接;
至少一个锂电芯,收容在所述容纳腔内;以及
控制组件,安装在所述容纳腔内;
锂电芯包括:呈板状的支撑板;
电芯组件,所述电芯组件卷绕在所述支撑板上,使所述支撑板被包覆于所述电芯组件内,所述电芯组件包括至少一个负极、至少一个正极,以及能够将所述正极与负极间隔设置的隔膜;
壳体,所述壳体具有一容纳腔,用于收容所述支撑板以及所述电芯组件;以及
电解质,所述电解质填充于电芯组件内,和/或所述壳体与所述电芯组件之间的空间;其中,所述支撑板用于支撑所述电芯组件,所述支撑板的两个相对表面贴附于所述电芯组件,使所述电芯组件能够粘附于所述支撑板的两个相对表面,从而所述电芯组件与所述支撑板能够形成一个不可相对移动的整体;
其中,所述控制组件与所述正极端子、所述负极端子、以及所述锂电芯电连接,用于对所述锂电芯的状态进行管控,所述锂电芯通过所述正极端子、所述负极端子进行充电或放电。
依据本公开实施例的三个方面,本公开实施例提供一种锂电芯的制造方法,包括:
提供一支撑板,其中,所述支撑板用于支撑电芯组件;
在所述支撑板上卷绕一电芯组件,使所述支撑板被包覆于所述电芯组件内,其中,所述电芯组件包括至少一个负极、至少一个正极,以及能够将所述正极与负极间隔设置的隔膜;以及
将支撑板以及所述电芯组件收容于具有开口的壳体的容纳腔内;以及
将电解质填充于电芯组件内,和/或所述壳体与所述电芯组件之间的空间;
将所述支撑板的两个相对表面贴附于所述电芯组件,使所述电芯组件粘附于所述支撑板的两个相对表面,从而所述电芯组件与所述支撑板能够形成一个不可相对移动的整体。
由以上本公开实施例提供的技术方案可见,本公开实施例通过电芯组件粘附于支撑板并构成一个整体,电芯组件的形状稳定性好。电芯组件卷绕于支撑板并粘附于支撑板上,支撑板为电芯组件提供有效支撑,保持电芯组件的内部张紧力及粘接形态稳定,即使锂电池在震动较大的情况下使用,仍然能保持支撑板与电芯组件不易相对移位,进而保证了支撑板能够稳固地保持电芯组件不易变形,因而,有效解决锂电芯会有锂金属析出的问题。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一示例性实施例示出的一种电芯组件卷绕于支撑板结构的截面结构示意图。
图2是图1所示的电芯组件卷绕于支撑板结构的一些示例性实施例示出的截面结构示意图。
图2a是图1所示的电芯组件设有两条隔膜将正极与负极隔开并卷绕于支撑板结构的截面结构示意图。
图2b是图1所示的电芯组件设有一条隔膜将正极与负极隔开并卷绕于支撑板结构的截面结构示意图。
图2c是图1所示的电芯组件卷绕于支撑板结构的截面结构示意图。
图3是包含图2所示的电芯组件卷绕于支撑板结构的一种锂电芯的纵向截面结 构示意图。
图4是图3所示的锂电芯包含的一种支撑板的截面结构示意图。
图5是图3所示的锂电芯包含的一种设有曲面的支撑板的截面结构示意图。
图6是图3所示的锂电芯包含的一种隔膜截面的局部放大结构示意图。
图7是包含图3所示的锂电芯的一种智能电池的结构示意图。
附图标记:电芯组件10;正极11;负极12;隔膜13;基膜131;第一涂层132;第二涂层133;支撑板20;侧面21;主表面22;曲面23;基础涂层24;正极耳30;负极耳40;壳体50;正极端子60;负极端子70;电池外壳80;控制组件90。
具体实施方式
发明人在解决锂电芯会有锂金属析出的问题时,发现背景技术中提到的锂电芯技术虽然在出厂前检测时为合格产品,但是在后续使用情况,仍然有少数概率出现锂金属析出的问题。经过发明人长时间研究和无数次试验论证,最终发现,锂电池在使用状态时,例如,在处于震动比较大的使用情况下,因为支撑结构与卷绕电芯组件之间相对移位,导致卷绕电芯组件在支撑结构相对移位后仍然会受力不够均匀,锂电芯的两侧边的“局部”无法得到有效支撑导致结构松散,从而使得卷绕型锂金属电池在出厂后的使用过程中,锂电芯会有锂金属析出,容易导致电芯在出厂后使用时仍然可能发生安全事故。
为此,本公开实施例公开了一种电芯、电池及电芯的制造方法。该电芯包括电芯组件、用于支撑电芯组件的支撑板、用于容纳电芯组件和支撑板的壳体以及电解质。电芯组件与支撑板能够以粘结、卡扣或夹持的方式形成一个不可相对移动的整体。
在一些实施例中,该电芯的电芯组件卷绕、张紧并粘附形成于支撑板的部分表面,从而电芯组件与所述支撑板能够形成一个不可相对移动的整体。
在一些实施例中,该电芯的电芯组件卷绕成型并形成一孔,支撑板能够插入该孔中,电芯组件能够粘附于所述支撑板的部分表面,从而电芯组件与支撑板能够形成一个不可相对移动的整体。
在一些实施例中,该电芯的电芯组件卷绕于支撑板,且电芯组件卷绕并叠加的部位粘附连接成一个不可相对移动的整体。
下面以锂电芯为例,结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开实施例保护的范围。
下面结合附图,对本公开实施例的锂电芯、智能电池及锂电芯的制造方法进行 详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
如图1所示,在一实施例中,锂电芯包括呈板状的支撑板20、电芯组件10。在图1的基础上,如图2所示,电芯组件10包括至少一个负极12、至少一个正极11,以及能够将正极11与负极12间隔设置的隔膜13。可以理解的是,图2示出的正极11与负极12的位置可以互换。电芯组件10卷绕在支撑板20上,使支撑板20被包覆于电芯组件10内。
在一些实施例中,参见图2(a)、(b),电芯组件10的最内层可以为隔膜13,其中,至少部分隔膜13贴合于支撑板20。隔膜13的主要作用是使正极11和负极12分隔开,以防止两极接触而短路。并且隔膜13还能使电解质离子通过,以实现正极11和负极12之间的化学能与电能的转化。隔膜13使正极11和负极12分隔开,相应地,隔膜13可根据正极11和负极12的分布情况设为一条或多条。如隔膜13采用一条时,隔膜包裹于正极11或负极12中的一者,正极11或负极12中的另一者贴合于隔膜。当隔膜13设为多条时,相应地,隔膜13对应贴合于每一个正极11或负极12。可选地,正极11或负极12设有一个或多个。
在一些实施例中,参见图2(c),支撑板20也可以直接与电芯组件10最内层电极贴合,其中,最内层电极可以为正极11或负极12。接下来请结合图1和图2,参见图3,壳体50具有一容纳腔。壳体50用于收容支撑板20以及电芯组件10,电解质填充于壳体50与电芯组件10之间的空间。
其中,支撑板20用于支撑电芯组件10,支撑板20的两个相对表面贴附于电芯组件10,使电芯组件10能够粘附于支撑板20的两个相对表面,从而电芯组件10与支撑板20能够形成一个不可相对移动的整体。电芯组件10与支撑板20构成一个不可相对移动的整体,相应地,电芯组件10卷绕于支撑板20的张紧力及卷绕位置相对固定,电芯组件10整体受力均衡,避免了因电芯组件10与支撑板20之间的相对移动造成的未与支撑板20接触部分的电芯组件10失去支撑,以及避免电芯组件10因失去支撑板20支撑而导致地在该部分电芯组件10出现塌边及析锂现象,以及极耳的电接触不良,影响充放电等不良现象。
具体地,支撑板20呈板状结构,其中,支撑板20具有两个相对设置的主表面22和连接两主表面22的侧面21。其中,支撑板20的两个相对表面即为支撑板20的两个主表面22。电芯组件10卷绕于支撑板20上,相应地,电芯组件10与支撑板20上相对设置的两个主表面22和两个侧面21贴合,以使电芯组件10卷绕于支撑板20。电芯组件10与支撑板20的接触面互相粘结连接,以使电芯组件10与支撑板20构成一个整体。支撑板20有效支撑电芯组件10的各个部位并保持电芯组件10受到的支撑稳定,以使得电芯组件10在充放电过程中锂金属均匀沉积出来,而不会在电芯组件10内产生锂枝晶,锂电芯的安全性能高。
电芯组件10包裹于支撑板20外并装配于壳体50的容纳腔内,电解质填充于电芯组件内,和/或,壳体50与电芯组件10之间的间隙处,以使正极11和负极12之间形成导通的回路,使锂电芯能进行相应的电能-化学能转换,充放电方便。
电芯组件10卷绕于支撑板20并与支撑板20贴合,相应地,其包括以下两种卷绕形式:
一、电芯组件10卷绕并张紧于支撑板20的外侧。电芯组件10加工过程中直接卷绕于支撑板20上,在电芯组件10与支撑板20之间设有预设的预紧力。该电芯组件10在预紧力作用下能使电芯组件10张紧于支撑板20,以使支撑板20对电芯组件10保持支撑状态,支撑效果好,支撑板20作用于电芯组件10的支撑力稳定,避免电芯组件10出现局部塌边现象的产生。
二、电芯组件10卷绕成型并形成有一扁平长孔,支撑板20能够插入扁平长孔。电芯组件10卷绕形成扁平环形结构,支撑板20插接连接至扁平长孔内,以使得支撑板20位于电芯组件10的中心处。电芯组件10的内侧表面与支撑板20粘附连接,以使电芯组件10与支撑板20构成一个整体,支撑板20对电芯组件10起到支撑和定位的效果,支撑稳定性好。
在一可选地实施例中,支撑板20的侧面21所能承受的压强为P,2kgf/cm 2≤P≤10kgf/cm 2,即支撑板20可以承受压强至少为2kgf/cm 2,至多为10kgf/cm 2,且支撑板20在此压强条件下保持形状稳定。
当电芯组件10在预设的预紧力作用下卷绕于支撑板20时,支撑板20承受来自于电芯组件10的挤压力。相应地,支撑板20用于支撑电芯组件10并保持电芯组件10的稳定,支撑板20在该挤压力作用下不发生形变,电芯组件10受到的支撑力稳定,以使电芯组件10在充放电过程中稳定性好。
电芯组件10张紧于支撑板20时,支撑板20的两侧面21受到电芯组件10传递的压力。其中,支撑板20所能承受的压强P可以为:2kgf/cm 2、3kgf/cm 2、5kgf/cm 2、8kgf/cm 2、10kgf/cm 2等。
在一可选地实施例中,支撑板20由耐酸碱腐蚀材料制成。如不锈钢、塑料、合金钢、陶瓷等。在一些实施例中,支撑板20由金属或非金属材料制成。在一些实施例中,支撑板20由刚性材料或弹性材料制成。
支撑板20可以设于电芯组件10的中心处。当支撑板20的所占体积小时,可相应提高电芯组件10的容积。在一可选地实施例中,支撑板20的厚度小于或等于3毫米。如支撑板20设为:1.5毫米、2毫米、2.5毫米、3毫米等厚度。支撑板20在满足对电芯组件10的支撑力条件下,减小支撑板20的厚度以降低支撑板20的体积,支撑板20所占据空间小。
电芯组件10卷绕于支撑板20的表面,至少部分电芯组件10与支撑板20的表面相贴合。在一些实施例中,支撑板20的表面具有相应地粗糙度。即在支撑板20的表面具有起伏状的局部凸起结构,电芯组件10张紧于支撑板20表面。支撑板20的表面设有适宜的粗糙度,当电芯组件10粘附于支撑板20的表面时,两者的粘附强度高,粘附效果好。例如,在支撑板20表面涂覆基础涂层24和/或电芯组件10与支撑板20接触的表面设有粘附材料,以使提高支撑部20与电芯组件10的粘附强度。其中,该粘附材料可以为两者直接粘附连接,或者在预设的工艺下高温熔合连接。
为避免局部凸起结构刺穿部分电芯组件10,导致电芯组件10损坏,需控制支撑板20的表面粗糙度的范围。在一实施例中,支撑板20表面的粗糙度范围为3~10微米。支撑板20表面的粗糙度范围为3微米、4微米、5微米、8微米、10微米等。
电芯组件10还可以与支撑板20粘附连接。在图1~3的基础上,请参见图4、图5。在一实施例中,支撑板20的表面涂覆有基础涂层24,基础涂层24用于胶结连接支撑板20外表面与电芯组件10的接触部分。支撑板20通过基础涂层24粘附于电芯组件10上,粘附方便。在一可选地实施例中,基础涂层24的厚度为1~5微米。具体地,基础涂层24的厚度设为1微米、2微米、3微米、5微米等。在一可选地实施方式中,基础涂层24涂覆于支撑板20的两个相对表面的整个区域;或者涂覆于支撑板20的预设区域。
基础涂层24所涂覆的区域即为电芯组件10与支撑板20的粘附区域。基础涂层24预先涂覆于支撑板20表面的预设区域,能方便控制支撑板20与电芯组件10的连接部位,可控性好,连接方便。在一可选地实施例中,基础涂层24包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶。
基础涂层24涂覆于支撑板20的预设区域,以控制基础涂层24与电芯组件10的粘附连接位置。可选地,基础涂层24可设有单一材料制成涂层,也可由多种材料组合而成,以构成不同区域的不同材料涂层。例如,基础涂层24由聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶等材料中的一种构成单一涂层,该基础涂层24涂覆于支撑板20的两相对表面。
可选地,在支撑板20的其中一个表面涂覆聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶等材料中的一种材料,在另一相对表面涂覆聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶等材料中其余材料中的一种,以使支撑板20的不同表面具有多种材料构成的涂层,以适应电芯组件10的不同接触表面的粘结性。
电芯组件10卷绕于支撑板20外并与基础涂层24相互贴合,可以通过相应的加工工艺使得电芯组件10与基础涂层24粘接连接,如夹具化成工艺,粘结效果好。电芯组件10与支撑板20构成一个不可分离的整体,使得支撑板20能对电芯组件10提供支撑,还能使电芯组件10相对于支撑板20不会发生移位,保持电芯组件10的结 构稳定。
在一可选地实施例中,支撑板20的宽度与电芯组件10的宽度相匹配。例如,支撑板20的宽度与电芯组件10的宽度相等,则电芯组件10的宽度及为支撑板20的宽度,锂电芯的尺寸控制精度高。或者支撑板20的宽度略大于电芯组件10的宽度,以使电芯组件10卷绕过程中能完全限定于支撑板20上,并由支撑板20提供稳定的支撑力,可靠性高。
支撑板20可以设为板状结构,如将支撑板20设为矩形板状结构。在支撑板20的转角处可以设有弧形倒角,以避免支撑板20将电芯组件10划伤。为进一步提高支撑板20与电芯组件10的结合紧密度。在一实施例中,两个相对表面的连接处可以设为曲面23,电芯组件10张紧于曲面23并沿曲面23弯曲。可选地,曲面23为弧形曲面23,弧形曲面23向远离支撑板20的中心区域的方向逐渐倾斜。
支撑板20的两个主表面22可以设置向侧边方向倾斜的曲面23,以使电芯组件10卷绕于支撑板20的过程中,电芯组件10随着曲面23卷绕并贴合于支撑板20,电芯组件10受到的应力集中度小。弧形曲面23可以设于两相对平面上并且向边缘的侧面21处倾斜,该侧面21用于支撑电芯组件10。可选地,侧面21设为弧形面并与曲面23相交,以使电芯组件10平滑过渡。可选地,支撑板20的侧面21与两主表面22的相交处构成“C”字形或“V”字形结构,且在尖角处采用圆弧过渡连接。
电芯组件10卷绕于支撑板20上,电芯组件10的内侧表面与支撑板20的表面贴合。在一实施例中,电芯组件10的内表面涂覆有粘结涂层。如粘结涂层涂覆于电芯组件10的内侧表面,电芯组件10卷绕并张紧于支撑板20的两个相对表面,支撑板20能够与与粘结涂层相互贴合。又如粘结涂层涂覆于扁平长孔的内壁面上,支撑板20插入扁平长孔并与粘结涂层相互贴合。当电芯组件10与支撑板20通过夹具化成工艺加工后,粘结涂层与支撑板20粘结连接呈一体,继而使得电芯组件10与支撑板20构成一个整体,粘结效果好。可选地,粘结涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠。在一可选地实施例中,粘结涂层的材料与基础涂层24的材料相同或不同。
电芯组件10至少包括依次叠加的正极片、隔膜13、负极片。可选地,正极片贴附有隔膜13。支撑板20与电芯组件10的最内层贴合,可选地,电芯组件10的最内层为隔膜13。电芯组件10卷绕于支撑板20上,隔膜13贴合于支撑板20的表面,能有效将正极片或负极片与支撑板20隔离,同时又能通过隔膜13与支撑板20粘结连接。电芯组件10的充放电安全性好,结构稳定性好。在一可选地实施例中,隔膜13的宽度大于或等于正极11以及负极12的宽度。如图2和图3所示,隔膜13将正极11以及负极12隔开,并且正极11与负极12之间的电子能通过隔膜13传递,以进行电能的传递。隔膜13宽度大于或等于正极11以及负极12的宽度,能有效避免正极 11与负极12直接连通,隔离效果好。
结合图2、图3,参见图6,在一实施例中,隔膜13包括基膜131、涂覆于基膜131两侧表面的第一涂层132以及涂覆于第一涂层132外的第二涂层133,第一涂层132用于控制电流的流动,第二涂层133用于胶结连接与第二涂层133贴合的表面。可选地,基材采用聚丙烯、聚乙烯、聚丙烯和聚乙烯复合材料等。
隔膜13具有大量曲折贯通的微孔,能够保证电解质离子自由通过形成充放电回路。而在电池过度充电或者温度升高时,隔膜13通过第一涂层132的闭孔功能将电池的正极11和负极12分开,以防止其直接接触而短路,达到阻隔电流传导,防止电池过热甚至爆炸的作用。可选地,第一涂层132包括如下至少一种材料:氧化镁、氧化铝、氧化锆、氧化镁、沸石、碳化钛。可选地,第一涂层132的厚度设为1~3微米。具体地,第一涂层132厚度设为1微米、1.5微米、2微米、2.5微米、3微米等。
例如,基膜131的表面涂覆一层氧化镁、氧化铝、氧化锆、氧化镁、沸石、碳化钛或其他耐热性优良的无机物陶瓷颗粒,经工艺处理后形成第一涂层132并与基膜131紧密粘结在一起。隔膜13稳定结合有机物的柔性以及无机物的热稳定性,提高隔膜13的耐高温、耐热收缩性能和穿刺强度,进而提高电池的安全性能。
第二涂层133涂覆于第一涂层132上,并在相应地粘结工艺下粘附于与第二涂层133接触的表面。如第二涂层133与支撑板20的外表面部分接触,相应地,第二涂层133与支撑板20粘结连接。或者电芯组件10卷绕过程中,第二涂层133与正极片或负极片接触,第二涂层133与正极片或负极片粘结连接。可选地,第二涂层133包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠。第二涂层133厚度设为1~2微米。具体地,第二涂层133厚度设为1微米、1.2微米、1.5微米、2微米等。
可选地,在第一涂层132的表面涂覆一层由聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠或其他耐化学腐蚀性、耐高温色变性、耐氧化性、耐磨性、柔韧性以及很高的抗涨强度和耐冲击性强度的材料构成的第二涂层133,第二涂层133与第二涂层上并结合基膜131,以使隔膜13具有比普通电池隔膜更好的兼容性和粘合性,能大幅度提高电池的耐高温性能和安全性。隔膜13具有良好的浸润和吸液保液的能力,对电解质的吸收性好,延长电池循环寿命,增加电池的大倍率放电性能。
在一可选地实施例中,支撑板20的表面涂覆有基础涂层24,第二涂层133的材质与基础涂层24的材质相同。当隔膜13卷绕并贴合于支撑板20的表面时,基础涂层24与第二涂层133在相应的加工工艺下融合形成一体,以使隔膜13及电芯组件10粘附于支撑板20上,粘结效果好,结合部位的吸附强度高。
在另一可选地实施例中,支撑板20的表面涂覆有基础涂层24,当电芯组件10卷绕并贴合于支撑板20的表面时,基础涂层24与电芯组件10的最内层在相应的加工 工艺下能够粘结,以使电芯组件10粘附于支撑板20上。其中,电芯组件10最内层为涂覆有电极材料的金属薄膜(图中未示出),即,正极11或负极12。例如,表面涂覆正极材料的铝箔,或者是表面涂覆负极材料的铜箔。其中,金属薄膜一侧位于电芯组件10最内层,与支撑板20接触。从而电芯组件10与支撑板20能够形成一个不可相对移动的整体。
在支撑板20的表面具有相应地粗糙度,相应地,在支撑板20的表面形成有起伏状的凸起并形成相应地凸起部。隔膜13贴合于支撑板20表面,相应地,凸起部与隔膜13相互挤压。在一可选地实施例中,隔膜13的厚度设为b,凸起部的高度设为b1,其中,b1<b。隔膜13的厚度大于凸起部的高度,相应地,凸起部的起伏部位不易刺穿隔膜13,避免正极11与负极12连通而引发安全事故,保护效果好。
如图3所示,在一实施例中,正极11设有至少一正极耳30,正极耳30凸设于电芯组件10的一侧。负极12设有至少一负极耳40,负极耳40凸设于电芯组件10的一侧。其中,至少一个正极耳30和至少一个负极耳40穿插至壳体50外。正极耳30与正极片连接,正极耳30一端贯穿壳体50。负极耳40与负极片连接,负极耳40的一端贯穿壳体50。可选地,正极耳30与负极耳40间隔设置于壳体50的同一侧。当正极11设置有多个正极耳30时,将多个正极耳30(电)连接成一体。相应地,当负极12设置有多个负极耳40时,将多个负极耳40(电)连接成一体。
在一实施例中,负极12包括锂金属或锂金属化合物。在一实施例中,负极12为表面附着锂金属膜或锂金属化合物的铜箔。在一实施例中,正极11包括如下至少一种材料:单质硫、钴酸锂、锰酸锂、磷酸铁锂、镍钴锰材料。在一实施例中,正极12为表面附着包含单质硫、钴酸锂、锰酸锂、磷酸铁锂、镍钴锰至少一种材料的铝箔。
电芯组件10及电解质容纳于壳体50内并受壳体50保护。在一实施例中,壳体50包括如下至少一种:铝塑膜、钢壳、铝壳。可选地,壳体50设为方形结构,以适配电芯组件10的外形。
当电芯组件10采用铝塑膜进行软包装时,具有支撑板20的电芯组件10装入带铝塑膜的容纳腔中。同时经由相应的工序使得电芯组件10的正极耳30及负极耳40穿插至壳体50外,且在结合部位处密封,例如顶侧封工序。
再由铝塑膜的侧边开口处灌入电解质。可选地,电解质包括如下至少一种:包含六氟磷酸锂的碳酸酯类溶剂、凝胶状电解质。将装配有电解质和电芯组件10的铝塑膜经相应的加工工艺形成一锂电芯。例如,一封、夹具化成及二封工序。
将上述的锂电芯应用于智能电池中,以使锂电芯能为相应地的设备提供电能,同时也能通过充电功能进行化学能的转换。
如图7所示,在一实施例中,智能电池包括:设有容纳腔的电池外壳80、设于电池外壳80的正极端子60和负极端子70、至少一个如上述实施例提供的锂电芯及安 装在容纳腔内的控制组件90,其中,锂电芯收容在容纳腔内。正极端子60和负极端子70用于与外部装置电连接。控制组件90与正极端子60、负极端子70、以及锂电芯电连接,用于对锂电芯的状态进行管控。锂电芯通过正极端子60、负极端子70进行充电或放电。
电池外壳80设为一刚性结构,其内部形成一容纳腔,以使控制组件90及锂电芯安装于电池外壳80内并受电池外壳80的保护。锂电芯通过正极端子60和负极端子70进行充放电,其中,锂电芯的正极耳30与正极端子60连接,负极耳40与负极端子70连接,电能传输方便。
在一可选地实施例中,电池外壳80设为方形结构。电池外壳80包括如下至少一种:绝缘塑料壳、钢壳、铝壳。
在一可选地实施例中,控制组件90包括安装于电池外壳80内的控制板和安装于控制板的处理器,控制板与正极端子60、负极端子70、以及锂电芯电连接,处理器用于对锂电芯的状态进行管控。如,处理器通过检测流经控制的电流、电压等参数,控制锂电芯进行充放电的管控,并在异常情况下断开通路,以使锂电池处于断开状态。
在一可选地实施例中,控制组件90还包括安装于控制板的检测元件,检测元件用于检测锂电芯和/或容纳空间内的气体参数。检测元件能检测相应地的气体参数,如气体温度,气体压力等。可选地,检测元件包括气压传感器、温度传感器、湿度传感器等。当电池外壳80内的内部压力上升到一定数值时,电池外壳80上的安全阀自动打开,保证电池的使用安全性。当电池外壳80内的温度达到预设值时,控制组件90控制电芯组件10自动断电,以保证智能电池的安全使用。
在一实施例中,提供一种锂电芯的制造方法,其包括以下步骤:
S101:提供一支撑板20,其中,支撑板20用于支撑电芯组件10。支撑板20呈板状结构,其中,支撑板20具有两个相对设置的主表面22和连接两主表面22的侧面21。
S102:在支撑板20上卷绕一电芯组件10,使支撑板20被包覆于电芯组件10内,相应地,电芯组件10与支撑板20上相对设置的两个主表面22和两个侧面21贴合,以使电芯组件10卷绕于支撑板20。其中,电芯组件10包括至少一个负极12、至少一个正极11,以及能够将正极11与负极12间隔设置的隔膜13。电芯组件10卷绕于支撑板20上,以使支撑板20为电芯组件10提供稳定的支撑力,电芯组件10的形状稳定性好。
S103:将支撑板20以及电芯组件10收容于具有开口的壳体50的容纳腔内。
S104:将电解质填充于壳体50与电芯组件10之间的空间。
S105:将支撑板20的两个相对表面贴附于电芯组件10,使电芯组件10粘附 于支撑板20的两个相对表面,从而电芯组件10与支撑板20能够形成一个不可相对移动的整体。
电芯组件10与支撑板20的接触面互相粘结连接,以使电芯组件10与支撑板20构成一个整体。支撑板20有效支撑电芯组件10的各个部位并保持电芯组件10受到的支撑力稳定,以使得电芯组件10在充放电过程中锂金属均匀沉积出来,而不会在电芯组件10内产生锂枝晶,从而提高锂电芯的安全性能。
电芯组件10包裹于支撑板20外并装配于壳体50的容纳腔内,电解质填充于壳体50与电芯组件10之间的间隙处,以使锂电芯能产生相应的电能-化学能转换,充放电方便。
当电芯组件10采用铝塑膜进行软包装时,具有支撑板20的电芯组件10装入带铝塑膜的容纳腔中,同时可以经由相应的工序使得电芯组件10的正极耳30及负极耳40穿插至壳体50外,且在结合部位处密封,例如顶侧封工序。
再由铝塑膜的侧边开口处灌入电解质,再将装配有电解质和电芯组件10的铝塑膜经相应的加工工艺形成一锂电芯。例如一封、夹具化成及二封工序。锂电芯成型方便,形状稳定性好。
在上述步骤S102中,还包括电芯组件10在预设张紧力作用下卷绕于支撑板20。电芯组件10加工过程中直接卷绕于支撑板20上,在电芯组件10与支撑板20之间设有预设的预紧力。该电芯组件10在预紧力作用下能使电芯组件10张紧于支撑板20,以使支撑板20对电芯组件10保持支撑状态,支撑效果好,支撑板20作用于电芯组件10的支撑力稳定,避免电芯组件10出现局部塌边现象的产生。可选地,电芯组件10作用于支撑板20的预紧力压强小于8kgf/cm 2
在上述步骤S102中,还包括;电芯组件10卷绕成型并形成有一扁平长孔,支撑板20插入扁平长孔并处于电芯组件10的预设位置。电芯组件10卷绕形成扁平环形结构,支撑板20插接连接至扁平长孔内,以使得支撑板20位于电芯组件10的中心处。电芯组件10的内侧表面与支撑板20粘附连接,以使电芯组件10与支撑板20构成一个整体,支撑板20对电芯组件10起到支撑和定位的效果,支撑稳定性好。
在一可选地实施例中,支撑板20的表面涂覆有基础涂层24,基础涂层24的厚度为1~5微米。基础涂层24所涂覆的区域即为电芯组件10与支撑板20的粘附区域。基础涂层24预先涂覆于支撑板20表面的预设区域,或者支撑板20表面的两个相对表面区域能方便控制支撑板20与电芯组件10的连接部位,可控性好,连接方便。
在上述步骤S105中,可以通过夹具化成工艺,在预设温度范围内,电芯组件10能够粘附于支撑板20的两个相对表面。在一可选地实施例中,夹具化成工艺的预设温度范围为25-85℃。例如,向壳体50中注入电解质后,将壳体50进行一封并通过静置使得电解质充分浸润电芯组件10。将完成静置的壳体50放入到化成装置中进行 高温热压处理,如在85℃下进行高温热压,以使支撑板20与电芯组件10粘结连接,并对锂电池进行化成作业。可选地,再将锂电芯放置于冷压区进行冷压,如在25℃下进行常温冷压,以使支撑板20与电芯组件10进一步粘结。
在一可选地实施例中,在对锂电芯进行热压加工及冷压加工过程中,夹具对锂电芯施加预设的压强值,以使锂电芯在相应地压强值下粘结,以使电芯组件10与支撑部20构成一个不可分离的整体,并且保持电芯组件10与支撑部20的位置及姿态稳定。可选地,夹具对锂电芯施加预设的压强值范围设为0.8~1.3Mpa。具体地,其可根据锂电芯的材料及规格尺寸调整相应地压力参数,如该压强值设为0.8Mpa、1MPa、1.2Mpa、1.3Mpa等。可选地,夹具在对锂电芯进行热压加工时的压强值大于冷压加工的压强值。其中,冷压加工能进一步提高电芯组件10与支撑板20之间的粘结强度并保持电芯组件的压力稳定。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的锂电芯、智能电池及锂电芯的制造方法进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
“具体示例”、或“一些示例”等的描述意指结合所述实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims (74)

  1. 一种锂电芯,其特征在于,包括:
    呈板状的支撑板;
    电芯组件,所述电芯组件卷绕在所述支撑板上,使所述支撑板被包覆于所述电芯组件内,所述电芯组件包括至少一个负极、至少一个正极,以及能够将所述正极与负极间隔设置的隔膜;
    壳体,所述壳体具有一容纳腔,用于收容所述支撑板以及所述电芯组件;以及
    电解质,所述电解质填充于电芯组件内,和/或所述壳体与所述电芯组件之间的空间;
    其中,所述支撑板用于支撑所述电芯组件,所述支撑板的两个相对表面贴附于所述电芯组件,使所述电芯组件能够粘附于所述支撑板的两个相对表面,从而所述电芯组件与所述支撑板能够形成一个不可相对移动的整体。
  2. 根据权利要求1所述的锂电芯,其特征在于,所述电芯组件卷绕并张紧于所述支撑板的两个所述相对表面;
    或,所述电芯组件卷绕成型并形成有一扁平长孔,所述支撑板能够插入所述扁平长孔。
  3. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板的侧面所能承受的压强为P,2kgf/cm 2≤P≤10kgf/cm 2,且所述支撑板在此压强条件下保持形状稳定。
  4. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板的厚度小于或等于3毫米。
  5. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板表面的粗糙度范围为3~10微米。
  6. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板的表面涂覆有基础涂层,所述基础涂层用于胶结连接所述支撑板外表面与所述电芯组件的接触部分。
  7. 根据权利要求6所述的锂电芯,其特征在于,所述基础涂层的厚度为1~5微米。
  8. 根据权利要求6或7所述的锂电芯,其特征在于,所述基础涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶。
  9. 根据权利要求6所述的锂电芯,其特征在于,所述基础涂层涂覆于所述支撑板的两个相对表面的整个区域,或者涂覆于所述支撑板的预设区域。
  10. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板由刚性材料或弹性材料制成。
  11. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板由耐酸碱腐蚀材料制成。
  12. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板由金属材料或非金属材料制成。
  13. 根据权利要求1或2所述的锂电芯,其特征在于,所述支撑板的宽度与所述电芯组件的宽度相匹配。
  14. 根据权利要求13所述的锂电芯,其特征在于,两个所述相对表面的连接处设为曲面,所述电芯组件张紧于所述曲面并沿所述曲面弯曲。
  15. 根据权利要求14所述的锂电芯,其特征在于,所述曲面为弧形曲面,所述弧形曲面向远离所述支撑板的中心区域的方向逐渐倾斜。
  16. 根据权利要求1所述的锂电芯,其特征在于,所述电芯组件的内表面涂覆有粘结涂层。
  17. 根据权利要求16所述的锂电芯,其特征在于,所述粘结涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠。
  18. 根据权利要求1所述的锂电芯,其特征在于,所述支撑板与所述电芯组件的最内层贴合,所述电芯组件的最内层为所述隔膜。
  19. 根据权利要求1所述的锂电芯,其特征在于,所述隔膜的宽度大于或等于所述正极以及所述负极的宽度。
  20. 根据权利要求1所述的锂电芯,其特征在于,所述隔膜包括基膜、涂覆于所述基膜两侧表面的第一涂层以及涂覆于所述第一涂层外的第二涂层,所述第一涂层用于控制电流的流动,所述第二涂层用于胶结连接与所述第二涂层贴合的表面。
  21. 根据权利要求20所述的锂电芯,其特征在于,所述第一涂层包括如下至少一种材料:氧化镁、氧化铝、氧化锆、氧化镁、沸石、碳化钛。
  22. 根据权利要求20或21所述的锂电芯,其特征在于,所述第一涂层的厚度设为1~3微米。
  23. 根据权利要求20所述的锂电芯,其特征在于,所述第二涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠。
  24. 根据权利要求20所述的锂电芯,其特征在于,所述支撑板的表面涂覆有基础涂层,所述第二涂层的材质与所述基础涂层的材质相同。
  25. 根据权利要求20所述的锂电芯,其特征在于,所述第二涂层厚度设为1~2微米。
  26. 根据权利要求1所述的锂电芯,其特征在于,所述隔膜的厚度设为b,所述支撑板的表面设有凸起部,所述凸起部的高度设为b1,其中,b1<b。
  27. 根据权利要求1所述的锂电芯,其特征在于,所述正极设有至少一正极耳,所述正极耳凸设于所述电芯组件的一侧;所述负极设有至少一负极耳,所述负极耳凸设于所述电芯组件的一侧;其中,所述至少一个正极耳和至少一个负极耳穿插至所述壳体外。
  28. 根据权利要求27所述的锂电芯,其特征在于,所述负极包括锂金属或锂金属化合物。
  29. 根据权利要求27所述的锂电芯,其特征在于,所述负极为表面附着锂金属膜或锂金属化合物的铜箔。
  30. 根据权利要求27所述的锂电芯,其特征在于,所述正极为表面附着包含单质 硫、钴酸锂、锰酸锂、磷酸铁锂、镍钴锰至少一种材料的铝箔。
  31. 根据权利要求1所述的锂电芯,其特征在于,所述壳体包括如下至少一种:铝塑膜、钢壳、铝壳。
  32. 根据权利要求1所述的锂电芯,其特征在于,所述电解质包括如下至少一种:包含六氟磷酸锂的碳酸酯类溶剂、凝胶状电解质。
  33. 一种智能电池,其特征在于,包括:
    电池外壳,设有容纳腔;
    设于所述电池外壳的正极端子和负极端子,所述正极端子和负极端子用于与外部装置电连接;
    至少一个锂电芯,收容在所述容纳腔内;以及
    控制组件,安装在所述容纳腔内;
    其中,锂电芯包括:
    呈板状的支撑板;
    电芯组件,所述电芯组件卷绕在所述支撑板上,使所述支撑板被包覆于所述电芯组件内,所述电芯组件包括至少一个负极、至少一个正极,以及能够将所述正极与负极间隔设置的隔膜;
    壳体,所述壳体具有一容纳腔,用于收容所述支撑板以及所述电芯组件;以及
    电解质,所述电解质填充于电芯组件内,和/或所述壳体与所述电芯组件之间的空间;
    其中,所述支撑板用于支撑所述电芯组件,所述支撑板的两个相对表面贴附于所述电芯组件,使所述电芯组件能够粘附于所述支撑板的两个相对表面,从而所述电芯组件与所述支撑板能够形成一个不可相对移动的整体;
    其中,所述控制组件与所述正极端子、所述负极端子、以及所述锂电芯电连接,用于对所述锂电芯的状态进行管控,所述锂电芯通过所述正极端子、所述负极端子进行充电或放电。
  34. 根据权利要求33所述的智能电池,其特征在于,所述电芯组件卷绕并张紧于所述支撑板的外侧;
    或,所述电芯组件卷绕成型并形成有一扁平长孔,所述支撑板能够插入所述扁平长孔。
  35. 根据权利要求33所述的智能电池,其特征在于,所述支撑板的侧面所能承受的压强为P,2kgf/cm 2≤P≤10kgf/cm 2,且所述支撑板在此压强条件下保持形状稳定。
  36. 根据权利要求33所述的智能电池,其特征在于,所述支撑板的厚度小于或等于3毫米。
  37. 根据权利要求33所述的智能电池,其特征在于,所述支撑板表面的粗糙度范围为3~10微米。
  38. 根据权利要求33所述的智能电池,其特征在于,所述支撑板的表面涂覆有基 础涂层,所述基础涂层用于胶结连接所述支撑板外表面与所述电芯组件的接触部分。
  39. 根据权利要求38所述的智能电池,其特征在于,所述基础涂层的厚度为1~5微米。
  40. 根据权利要求38或39所述的智能电池,其特征在于,所述基础涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶。
  41. 根据权利要求38所述的智能电池,其特征在于,所述基础涂层涂覆于所述支撑板的两个相对表面的整个区域,或者涂覆于所述支撑板的预设区域。
  42. 根据权利要求33所述的智能电池,其特征在于,所述支撑板由刚性材料或弹性材料制成。
  43. 根据权利要求33所述的智能电池,其特征在于,所述支撑板由耐酸碱腐蚀材料制成。
  44. 根据权利要求33所述的智能电池,其特征在于,所述支撑板由金属材料或非金属材料制成。
  45. 根据权利要求33或34所述的智能电池,其特征在于,所述支撑板的宽度与所述电芯组件的宽度相匹配。
  46. 根据权利要求45所述的智能电池,其特征在于,两个所述相对表面的连接处设为曲面,所述电芯组件张紧于所述曲面并沿所述曲面弯曲。
  47. 根据权利要求46所述的智能电池,其特征在于,所述曲面为弧形曲面,所述弧形曲面向远离所述支撑板的中心区域的方向逐渐倾斜。
  48. 根据权利要求33所述的智能电池,其特征在于,所述电芯组件的内表面涂覆有粘结涂层。
  49. 根据权利要求48所述的智能电池,其特征在于,所述粘结涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠。
  50. 根据权利要求33所述的智能电池,其特征在于,所述支撑板与所述电芯组件的最内层贴合,所述电芯组件的最内层为所述隔膜。
  51. 根据权利要求33所述的智能电池,其特征在于,所述隔膜的宽度大于或等于所述正极以及所述负极的宽度。
  52. 根据权利要求33所述的智能电池,其特征在于,所述隔膜包括基膜、涂覆于所述基膜两侧表面的第一涂层以及涂覆于所述第一涂层外的第二涂层,所述第一涂层用于控制电流的流动,所述第二涂层用于胶结连接与所述第二涂层贴合的表面。
  53. 根据权利要求52所述的智能电池,其特征在于,所述第一涂层包括如下至少一种材料:氧化镁、氧化铝、氧化锆、氧化镁、沸石、碳化钛。
  54. 根据权利要求52或53所述的智能电池,其特征在于,所述第一涂层的厚度设为1~3微米。
  55. 根据权利要求52所述的智能电池,其特征在于,所述第二涂层包括如下至少一种材料:聚偏二氟乙烯、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠。
  56. 根据权利要求52所述的智能电池,其特征在于,所述支撑板的表面涂覆有基础涂层,所述第二涂层的材质与所述基础涂层的材质相同。
  57. 根据权利要求52所述的智能电池,其特征在于,所述第二涂层厚度设为1~2微米。
  58. 根据权利要求33所述的智能电池,其特征在于,所述隔膜的厚度设为b,所述支撑板的表面设有凸起部,所述凸起部的高度设为b1,其中,b1<b。
  59. 根据权利要求33所述的智能电池,其特征在于,所述正极设有至少一正极耳,所述正极耳凸设于所述电芯组件的一侧;所述负极设有至少一负极耳,所述负极耳凸设于所述电芯组件的一侧;其中,所述至少一个正极耳和至少一个负极耳穿插至所述壳体外。
  60. 根据权利要求59所述的智能电池,其特征在于,所述负极包括锂金属或锂金属化合物。
  61. 根据权利要求59所述的智能电池,其特征在于,所述负极为表面附着锂金属膜或锂金属化合物的铜箔。
  62. 根据权利要求59所述的智能电池,其特征在于,所述正极为表面附着包含单质硫、钴酸锂、锰酸锂、磷酸铁锂、镍钴锰至少一种材料的铝箔。
  63. 根据权利要求33所述的智能电池,其特征在于,所述壳体包括如下至少一种:铝塑膜、钢壳、铝壳。
  64. 根据权利要求33所述的智能电池,其特征在于,所述电解质包括如下至少一种:包含六氟磷酸锂的碳酸酯类溶剂、凝胶状电解质。
  65. 根据权利要求33所述的智能电池,其特征在于,所述电池外壳设为方形结构。
  66. 根据权利要求65所述的智能电池,其特征在于,所述电池外壳包括如下至少一种:绝缘塑料壳、钢壳、铝壳。
  67. 根据权利要求33所述的智能电池,其特征在于,所述控制组件包括安装于所述电池外壳内的控制板和安装于控制板的处理器,所述控制板与所述正极端子、所述负极端子、以及所述锂电芯电连接,所述处理器用于对所述锂电芯的状态进行管控。
  68. 根据权利要求67所述的智能电池,其特征在于,所述控制组件还包括安装于所述控制板的检测元件,所述检测元件用于检测锂电芯和/或容纳空间内的气体参数。
  69. 一种锂电芯的制造方法,其特征在于,包括:
    提供一支撑板,其中,所述支撑板用于支撑电芯组件;
    在所述支撑板上卷绕一电芯组件,使所述支撑板被包覆于所述电芯组件内,其中,所述电芯组件包括至少一个负极、至少一个正极,以及能够将所述正极与负极间隔设置的隔膜;以及
    将支撑板以及所述电芯组件收容于具有开口的壳体的容纳腔内;以及
    将电解质填充于电芯组件内,和/或所述壳体与所述电芯组件之间的空间;
    将所述支撑板的两个相对表面贴附于所述电芯组件,使所述电芯组件粘附于所述 支撑板的两个相对表面,从而所述电芯组件与所述支撑板能够形成一个不可相对移动的整体。
  70. 根据权利要求69所述的制造方法,其特征在于,在所述支撑板上卷绕一电芯组件包括:所述电芯组件在预设张紧力作用下卷绕于所述支撑板。
  71. 根据权利要求69所述的制造方法,其特征在于,在所述支撑板上卷绕一电芯组件包括:所述电芯组件卷绕成型并形成有一扁平长孔,所述支撑板插入所述扁平长孔并处于所述电芯组件的预设位置。
  72. 根据权利要求69所述的制造方法,其特征在于,所述支撑板的表面涂覆有基础涂层,所述基础涂层的厚度为1~5微米。
  73. 根据权利要求69所述的制造方法,其特征在于,通过夹具化成工艺,在预设温度范围内,所述电芯组件能够粘附于所述支撑板的两个相对表面。
  74. 根据权利要求73所述的制造方法,其特征在于,所述夹具化成工艺的预设温度范围为25-85℃。
PCT/CN2018/109203 2018-09-30 2018-09-30 锂电芯、智能电池及锂电芯的制造方法 WO2020062295A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/109203 WO2020062295A1 (zh) 2018-09-30 2018-09-30 锂电芯、智能电池及锂电芯的制造方法
CN201880039851.3A CN110770960A (zh) 2018-09-30 2018-09-30 锂电芯、智能电池及锂电芯的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109203 WO2020062295A1 (zh) 2018-09-30 2018-09-30 锂电芯、智能电池及锂电芯的制造方法

Publications (1)

Publication Number Publication Date
WO2020062295A1 true WO2020062295A1 (zh) 2020-04-02

Family

ID=69328585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109203 WO2020062295A1 (zh) 2018-09-30 2018-09-30 锂电芯、智能电池及锂电芯的制造方法

Country Status (2)

Country Link
CN (1) CN110770960A (zh)
WO (1) WO2020062295A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467231B (zh) * 2021-02-04 2021-09-14 江苏时代新能源科技有限公司 电极组件、电池单体、电池及电极组件的制造方法和设备
WO2022165725A1 (zh) * 2021-02-04 2022-08-11 江苏时代新能源科技有限公司 电极组件、电池单体、电池及制造电极组件的方法和设备
CN115513402B (zh) * 2022-10-28 2023-12-29 厦门海辰储能科技股份有限公司 电极组件、单体电池、电池模组及电极组件的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064589A (ja) * 1996-08-22 1998-03-06 Matsushita Electric Ind Co Ltd 薄型電池およびその製造法
JP2002280055A (ja) * 2001-03-21 2002-09-27 Shin Kobe Electric Mach Co Ltd 扁平捲回群製造方法及び捲回装置
CN202503079U (zh) * 2012-02-07 2012-10-24 宁德新能源科技有限公司 锂离子电池电芯
CN204179167U (zh) * 2014-08-08 2015-02-25 陕西德飞新能源科技有限公司 卷绕式方形锂电池
CN108110331A (zh) * 2016-11-24 2018-06-01 深圳市比克动力电池有限公司 一种高功率型圆柱锂离子电池
CN108520936A (zh) * 2018-03-16 2018-09-11 深圳市沃特玛电池有限公司 一种铝壳圆柱电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614390B1 (ko) * 2004-09-06 2006-08-21 삼성에스디아이 주식회사 권취형 전극 조립체와 이를 구비하는 리튬 이온 이차 전지및 이의 제조 방법
CN100349322C (zh) * 2005-12-09 2007-11-14 中信国安盟固利新能源科技有限公司 圆柱铝塑复合膜软包装锂离子蓄电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064589A (ja) * 1996-08-22 1998-03-06 Matsushita Electric Ind Co Ltd 薄型電池およびその製造法
JP2002280055A (ja) * 2001-03-21 2002-09-27 Shin Kobe Electric Mach Co Ltd 扁平捲回群製造方法及び捲回装置
CN202503079U (zh) * 2012-02-07 2012-10-24 宁德新能源科技有限公司 锂离子电池电芯
CN204179167U (zh) * 2014-08-08 2015-02-25 陕西德飞新能源科技有限公司 卷绕式方形锂电池
CN108110331A (zh) * 2016-11-24 2018-06-01 深圳市比克动力电池有限公司 一种高功率型圆柱锂离子电池
CN108520936A (zh) * 2018-03-16 2018-09-11 深圳市沃特玛电池有限公司 一种铝壳圆柱电池

Also Published As

Publication number Publication date
CN110770960A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020103014A1 (zh) 智能电池及其锂电芯
JP5069837B2 (ja) ポケッティング電極体及びその製造方法とこれを用いたリチウムイオン二次電池
US7452627B2 (en) Rechargeable battery with jelly roll type electrode assembly
KR101066257B1 (ko) 원통형 이차전지
US9077027B2 (en) Electrode assembly and secondary battery using the same
US20060099501A1 (en) Secondary battery
CN102097611B (zh) 二次电池
US11342639B2 (en) Secondary battery and battery pack including the same
WO2020062295A1 (zh) 锂电芯、智能电池及锂电芯的制造方法
JP2009087612A (ja) 積層式電池
KR100686851B1 (ko) 리튬 이차전지용 복합재료 테이프 및 이를 이용한 리튬이차전지
KR100908977B1 (ko) 이차전지의 전극 조립체
KR100749645B1 (ko) 세퍼레이터와 이를 이용한 리튬 이차전지
WO2010101368A2 (ko) 전기에너지 저장장치
JP2009087613A (ja) 角型電池
JP2012014952A (ja) 電池およびその製造方法
TW202207508A (zh) 包括避免開路層之電極組合、包含其的二次電池以及其製造方法
KR100951906B1 (ko) 캡 조립체 및 이를 구비하는 이차 전지
CN211789137U (zh) 一种纽扣电池
KR102285978B1 (ko) 이차전지 및 그 이차전지의 제조방법
TWI398030B (zh) 鋰離子儲能電池
WO2022042574A1 (zh) 一种电池外壳及电池
KR100516772B1 (ko) 전극탭을 캔의 단변부에 위치시킨 이차전지
KR20120075953A (ko) 이차전지용 전극조립체 및 그 제조방법
KR101156331B1 (ko) 전극 조립체, 상기 전극 조립체를 제조하는 방법 및 상기 전극 조립체를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935857

Country of ref document: EP

Kind code of ref document: A1