WO2022041741A1 - 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途 - Google Patents

一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途 Download PDF

Info

Publication number
WO2022041741A1
WO2022041741A1 PCT/CN2021/086059 CN2021086059W WO2022041741A1 WO 2022041741 A1 WO2022041741 A1 WO 2022041741A1 CN 2021086059 W CN2021086059 W CN 2021086059W WO 2022041741 A1 WO2022041741 A1 WO 2022041741A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
iron
tantalum
optionally
alloy powder
Prior art date
Application number
PCT/CN2021/086059
Other languages
English (en)
French (fr)
Inventor
姚力军
边逸军
潘杰
王学泽
黄东长
Original Assignee
宁波江丰电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波江丰电子材料股份有限公司 filed Critical 宁波江丰电子材料股份有限公司
Publication of WO2022041741A1 publication Critical patent/WO2022041741A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the technical field of alloy powder preparation, for example, to a preparation method of iron-cobalt-tantalum alloy powder, iron-cobalt-tantalum alloy powder and use thereof.
  • Magnetic recording is a method of recording information by using the properties of magnetism, which can input and read information through special methods during storage and use, so as to achieve the purpose of storing and reading information.
  • magnetic recording includes horizontal magnetic recording and perpendicular magnetic recording.
  • the magnetic recording medium generally adopts a multi-layer vertical structure design. Taking a hard disk as an example, it specifically includes a lubricating layer, a protective layer, a magnetic recording layer, an intermediate layer, a soft magnetic substrate layer, a substrate layer and a base layer. Among them, the soft magnetic substrate layer mainly plays the function of recording and storing data, and plays a crucial role in the magnetic recording medium. At present, the iron-cobalt-tantalum alloy thin film obtained by the sputtering process is the most commonly used soft magnetic substrate layer.
  • Sputtering is one of the main techniques for preparing thin film materials. It uses ions generated by ion sources to accelerate and aggregate in a vacuum to form high-speed energy ion beams, bombard the solid surface, and exchange kinetic energy between ions and solid surface atoms. The atoms on the surface of the solid leave the solid and deposit on the surface of the substrate.
  • the bombarded solid is the raw material for preparing the thin film deposited by the sputtering method, and the solid is generally referred to as the sputtering target.
  • the iron-cobalt-tantalum alloy sputtering target used to prepare the soft magnetic substrate layer by sputtering needs to have high density, high bending strength and high magnetic flux: high density can ensure that the sputtered film is relatively uniform, Abnormal phenomena such as "discharge" are not easy to occur; the bending strength will affect the coercive force of the magnetic material, which has a crucial impact on the storage of its information. Therefore, high bending strength can ensure that the target is not prone to cracking during use. Abnormal problem; the target magnetic flux is a very important parameter in the magnetic recording target, usually the higher the target magnetic flux, the stronger the ability to record and store data. Therefore, the quality of the iron-cobalt-tantalum alloy sputtering target is related to the soft magnetic substrate layer and even the development of the entire magnetic recording industry.
  • CN108004515A discloses a preparation method of iron-cobalt-tantalum alloy sputtering targets, iron-cobalt-tantalum alloy sputtering targets and applications.
  • iron powder, cobalt powder and tantalum powder are mixed under the protection of inert gas to obtain iron-cobalt-tantalum mixed powder, and then cold pressing, vacuum degassing, primary hot pressing sintering and secondary hot pressing sintering are performed in sequence to obtain iron.
  • Cobalt-tantalum alloy sputtering target is performed under the protection of inert gas to obtain iron-cobalt-tantalum mixed powder.
  • the preparation method directly uses the mixed powder obtained by mixing iron powder, cobalt powder and tantalum powder according to the required ratio, so that the three metals have only a small amount or basically no compound before hot pressing sintering, so that elemental iron or elemental cobalt exhibits magnetic properties , which eventually leads to a lower magnetic flux of the iron-cobalt-tantalum alloy sputtering target.
  • CN105473759A discloses a Fe-Co alloy sputtering target, a soft magnetic thin film layer, and a perpendicular magnetic recording medium using the same, wherein the manufacturing method includes the steps of preparing Fe-Co alloy powder and pressurizing the powder.
  • the preparation method directly uses the Fe-Co alloy powder obtained by the gas atomization method, and the prepared Fe-Co alloy sputtering target can meet the properties of high purity, high density, high bending strength and magnetic flux, etc., and meet the requirements of magnetron need for sputtering.
  • the molten liquid of the Fe-Co alloy is very viscous, which is easy to block the pipeline, resulting in the failure of the gas atomization method.
  • the preparation and development of -Co alloy sputtering targets have been greatly hindered.
  • the present application proposes a preparation method of iron-cobalt-tantalum alloy powder, iron-cobalt-tantalum alloy powder and use thereof.
  • the preparation method controls the melting temperature of the iron-cobalt-tantalum mixture to be 1650-1750°C, and optimizes the atomization conditions, so that the preparation
  • the obtained iron-cobalt-tantalum alloy powder has a purity of ⁇ 99.95%, and an oxygen content of ⁇ 600 ppm.
  • the iron-cobalt-tantalum alloy powder obtained by screening with a particle size of less than 150 mesh is conducive to preparing high-purity, high-density, high-bending strength and magnetic flux. Qualified iron cobalt tantalum alloy sputtering target.
  • One of the purposes of this application is to provide a method for preparing iron-cobalt-tantalum alloy powder, the preparation method comprising the following steps:
  • step (2) melting the iron-cobalt-tantalum mixture described in step (1) completely at 1650-1750 ° C to obtain an iron-cobalt-tantalum melt;
  • step (3) Atomizing the iron-cobalt-tantalum melt in step (2) under the action of an inert gas to obtain the iron-cobalt-tantalum alloy powder.
  • the preparation method described in the present application controls the melting temperature of the iron-cobalt-tantalum mixture to be 1650-1750 °C, and optimizes the atomization conditions, so as to avoid the pipeline blockage problem caused by the viscosity of the iron-cobalt-tantalum melt, and can prepare a purity ⁇ 99.95% iron-cobalt-tantalum alloy powder with oxygen content ⁇ 600ppm, the iron-cobalt-tantalum alloy powder with particle size ⁇ 150 mesh obtained by sieving is conducive to the preparation of high-purity, high-density, high-bending strength and qualified iron with magnetic flux Cobalt-tantalum alloy sputtering target.
  • the melting temperature of the iron-cobalt-tantalum mixture described in this application is 1650-1750 °C, such as 1650 °C, 1670 °C, 1690 °C, 1700 °C, 1710 °C, 1730 °C or 1750 °C, etc., but not limited to the listed values, The same applies to other non-recited values within this numerical range.
  • the atomic ratio of cobalt is 28.5-29.5%
  • the atomic ratio of tantalum is 17.5-18.5%
  • the rest are iron and inevitable impurities.
  • the atomic ratio of cobalt mentioned in this application is 28.5-29.5%, such as 28.5%, 28.8%, 29%, 29.2% or 29.5%, etc., but it is not limited to the listed values, and other unlisted values within the numerical range are the same Be applicable.
  • the atomic ratio of tantalum described in this application is 17.5-18.5%, such as 17.5%, 17.7%, 18%, 18.3% or 18.5%, etc., but it is not limited to the listed numerical values, and other unlisted numerical values within the numerical range are the same Be applicable.
  • the total content of the unavoidable impurities described in this application is less than 0.05%, which ensures that the prepared iron-cobalt-tantalum alloy powder has a purity of ⁇ 99.95%.
  • the purity of the iron material in step (1) is greater than or equal to 99.95%.
  • the iron material in step (1) is electrolytic iron material.
  • the purity of the cobalt material in step (1) is ⁇ 99.95%.
  • the cobalt material in step (1) is an electrolytic cobalt material.
  • the purity of the tantalum material in step (1) is greater than or equal to 99.95%.
  • the tantalum material in step (1) is the tantalum edge material of the tantalum target material.
  • the tantalum target material described in the present application may be the tantalum target material disclosed in CN102517531A, CN103572223A or CN103572225A. In the process of machining the tantalum target material to prepare the target material assembly, a large amount of tantalum edge material of the tantalum target material will be generated.
  • the iron material, cobalt material and tantalum material are prepared according to the target atomic ratio in step (1), the iron material, cobalt material and tantalum material are further pretreated respectively.
  • the pretreatment sequentially includes degreasing, acid washing, drying and vacuum packaging.
  • the preparation of the pulverizing material is completed and then the pulverizing process is carried out, and processes such as transportation and storage are also carried out in the middle. Therefore, it is necessary to vacuum-pack the pretreated pulverizing material, which is beneficial to isolate dust. and air to reduce the oxygen-absorbing reaction of the pulverizing material, thereby ensuring that the final prepared iron-cobalt-tantalum alloy powder meets the requirement of oxygen content ⁇ 600ppm; in addition, when the pulverizing is officially carried out, the vacuum packaging can be disassembled.
  • the degreasing includes placing the iron material, cobalt material and tantalum material into a cleaning solution for ultrasonic cleaning, followed by rinsing with pure water and wiping clean.
  • the cleaning solution is an aqueous solution containing detergent.
  • aqueous solution containing the detergent described in this application has no concentration limit, and those skilled in the art can reasonably select the type and concentration of the detergent according to the actual situation, as long as the oil stains can be cleaned.
  • the time of the ultrasonic cleaning is 50-70min, such as 50min, 52min, 55min, 57min, 60min, 63min, 65min, 68min or 70min, etc., but not limited to the enumerated numerical values, other not within the numerical range. The values listed also apply.
  • the temperature of the ultrasonic cleaning is 50-70°C, such as 50°C, 52°C, 55°C, 57°C, 60°C, 63°C, 65°C, 68°C, or 70°C, etc., but not limited to the above. Recited values apply equally well to other non-recited values within that range.
  • the acid cleaning includes ultrasonic cleaning in an acid cleaning solution, followed by rinsing with pure water and wiping clean.
  • the pickling solution is an aqueous solution of nitric acid and hydrofluoric acid.
  • nitric acid in the pickling solution is 38.5%, and hydrofluoric acid is 7.1%.
  • the time of the pickling is 10-30min, such as 10min, 13min, 15min, 17min, 20min, 23min, 25min, 27min or 30min, etc., but is not limited to the enumerated numerical values, and other values within this numerical range are not limited. The values listed also apply.
  • the drying is carried out in a vacuum drying oven.
  • the drying time is 60-90min, such as 60min, 65min, 70min, 75min, 80min, 85min or 90min, etc., but not limited to the enumerated numerical values, and other unenumerated numerical values in the numerical range are also applicable. .
  • the drying temperature is 65-75°C, such as 65°C, 67°C, 69°C, 70°C, 72°C, 74°C or 75°C, etc., but not limited to the listed values, the range of the values The same applies to other values not listed here.
  • the pretreatment described in this application sequentially includes degreasing, pickling, drying and vacuum packaging, which can not only remove impurities such as oil, dust and water stains on the surface of the iron material, cobalt material and tantalum material, but also effectively prevent the iron material, cobalt material and tantalum material.
  • the material, cobalt material and tantalum material are oxidized by air, thereby ensuring the purity requirements of the prepared iron-cobalt-tantalum alloy powder.
  • step (1) is carried out in a layered and superimposed manner in a smelting crucible, and specifically includes the following contents:
  • the cobalt-tantalum-iron spreading unit described in the present application mixes materials in a layered and superimposed manner, which can avoid local aggregation of tantalum materials with high melting point and high viscosity, and prevent the composition of the iron-cobalt-tantalum melt obtained subsequently from being uneven. And the problem of pipeline blockage caused by excessive local viscosity occurs.
  • the absolute vacuum degree of the melting in step (2) is less than or equal to 10Pa.
  • the melting in step (2) is performed in a vacuum smelting chamber, and then the iron, cobalt and tantalum melt is poured into a tundish, and the temperature of the tundish is controlled to be 1550-1650° C., for example, 1550° C., 1560°C, 1580°C, 1600°C, 1610°C, 1630°C or 1650°C, etc., but not limited to the recited values, and other unrecited values within the range of values are also applicable.
  • the melting temperature in the melting described in this application, by controlling the melting temperature to be 1650-1750° C. and the absolute vacuum degree ⁇ 10Pa, it can fully ensure that the iron-cobalt-tantalum mixture can be completely melted and mixed evenly; further, the obtained iron-cobalt-tantalum mixture is melted.
  • the body is poured into the tundish connected to the atomizing nozzle, and the temperature is controlled to 1550-1650 ° C, which can effectively prevent the iron-cobalt-tantalum melt from clogging the tundish and effectively prevent the iron-cobalt-tantalum melt from clogging the middle.
  • the draft tube between the bag and the atomizing nozzle in the melting described in this application, by controlling the melting temperature to be 1650-1750° C. and the absolute vacuum degree ⁇ 10Pa, it can fully ensure that the iron-cobalt-tantalum mixture can be completely melted and mixed evenly; further, the obtained iron-cobalt-tantalum mixture is melted.
  • the body is
  • the inert gas in step (3) is argon.
  • the purity of the argon is ⁇ 5N.
  • the atomization pressure in step (3) is 3-4MPa, such as 3MPa, 3.2MPa, 3.4MPa, 3.5MPa, 3.7MPa, 3.9MPa or 4MPa, etc., but not limited to the listed values, the The same applies to other non-recited values within the numerical range.
  • the atomization pressure in this application is set based on the high viscosity of the iron-cobalt-tantalum melt, and needs to be strictly controlled within the range of 3-4MPa, which can prevent the high atomization pressure from hindering the iron-cobalt-tantalum melt.
  • the molten body flows downward, which can prevent the average particle size of the iron-cobalt-tantalum alloy powder from being larger due to the smaller atomization pressure, thereby preventing the subsequent iron-cobalt-tantalum alloy sputtering target from having a lower yield.
  • the preparation method comprises the following steps:
  • the atomic ratio of cobalt is 28.5-29.5%
  • the atomic ratio of tantalum is 17.5-18.5%
  • the rest are iron and inevitable impurities
  • the purity of the iron material is greater than or equal to 99.95%, the purity of the cobalt material is greater than or equal to 99.95%, and the purity of the tantalum material is greater than or equal to 99.95%;
  • the pretreatment sequentially includes degreasing, acid washing, drying and vacuum packing;
  • step (2) putting the iron-cobalt-tantalum mixture described in step (1) into a vacuum smelting chamber, controlling absolute vacuum degree ⁇ 10Pa, and melting completely at 1650-1750 °C to obtain iron-cobalt-tantalum molten body;
  • step (3) Pour the iron-cobalt-tantalum melt described in step (2) into the tundish, control the temperature of the tundish to be 1550-1650 ° C, and atomize under the action of argon with a purity of ⁇ 5N, and the control pressure is 3-4MPa to obtain the iron-cobalt-tantalum alloy powder.
  • the preparation method described in the present application belongs to the gas atomization pulverizing method, which is a powder preparation method in which fast-moving high-pressure gas is used as the atomizing medium, and the molten metal or alloy liquid is broken into fine droplets by impact action and condensed into solid powder. take method.
  • Gas atomization is the best way to produce fully alloyed powders.
  • the particles of each alloy powder obtained not only have the exact same uniform chemical composition as the given molten alloy, but also have a refined crystal structure due to rapid solidification, eliminating the need for Macrosegregation of the second phase.
  • the second purpose of the present application is to provide an iron-cobalt-tantalum alloy powder prepared by the preparation method described in the first purpose.
  • the third purpose of this application is to provide a use of iron-cobalt-tantalum alloy powder, the iron-cobalt-tantalum alloy powder described in the second purpose is sieved, and the iron-cobalt-tantalum alloy powder with particle size ⁇ 150 mesh is used to prepare iron-cobalt-tantalum alloy powder
  • the tantalum alloy sputtering target is especially used in the process of preparing the iron-cobalt-tantalum alloy sputtering target by the hot isostatic pressing process.
  • the present application at least has the following beneficial effects:
  • the preparation method described in this application controls the melting temperature of the iron-cobalt-tantalum mixture to be 1650-1750 ° C, and optimizes the atomization conditions, so that the prepared iron-cobalt-tantalum alloy powder has a purity of ⁇ 99.95% and an oxygen content of ⁇ 600ppm,
  • the iron-cobalt-tantalum alloy powder with a particle size of less than 150 mesh obtained by sieving is conducive to preparing high-purity, high-density, high-bending strength and qualified iron-cobalt-tantalum alloy sputtering targets;
  • the preparation method described in the present application uses the tantalum edge material of the tantalum target to prepare the tantalum material, which not only solves the problem of processing the tantalum edge material generated during the machining of the tantalum target material, but also can be prepared with extremely high application
  • the valuable iron-cobalt-tantalum alloy powder realizes turning waste into treasure.
  • Fig. 1 is the scanning electron microscope picture of the iron-cobalt-tantalum alloy powder described in Example 1 of the present application;
  • FIG. 2 is an EDS spectrum of the iron-cobalt-tantalum alloy powder described in Example 1 of the present application.
  • This embodiment provides a preparation method of iron-cobalt-tantalum alloy powder, and the preparation method includes the following steps:
  • electrolytic iron material electrolytic cobalt material and tantalum edge material into an aqueous solution containing detergent, ultrasonically clean for 60 minutes at 60 ° C for degreasing, then rinse with pure water and wipe clean;
  • ultrasonic cleaning was carried out for 20min and acid washing was carried out.
  • the mass percentage content the nitric acid in the pickling solution was 38.5% and the hydrofluoric acid was 7.1%, and then rinsed with pure water and wiped clean;
  • the electrolytic iron material, electrolytic cobalt material and tantalum edge material were respectively put into a vacuum drying oven, and dried at 70° C. for 80 min; finally, they were vacuum packed for later use;
  • the atomic ratio of cobalt is 29%
  • the atomic ratio of tantalum is 18%
  • the rest is iron and inevitable impurities as the target atomic ratio
  • the pretreated electrolytic iron material, electrolytic cobalt material and tantalum scrap are prepared, and then smelted.
  • Mixing is carried out in a layered and superimposed manner in the crucible, which specifically includes the following contents: firstly laying the cobalt material on the bottom of the smelting crucible, then laying the tantalum material on the cobalt material, and then laying the iron material on the bottom On the tantalum material, a cobalt-tantalum-iron layering unit is formed, and then the above operation is repeated according to the cobalt-tantalum-iron layering unit until the charging is completed, to obtain an iron-cobalt-tantalum mixture;
  • step (2) putting the iron-cobalt-tantalum mixture described in step (1) into a vacuum smelting chamber, controlling absolute vacuum degree ⁇ 10Pa, and melting completely at 1700°C to obtain iron-cobalt-tantalum melt;
  • step (3) Pour the iron-cobalt-tantalum melt described in step (2) into the tundish, control the temperature of the tundish to be 1600° C., atomize under the action of argon with a purity of ⁇ 5N, and control the pressure to be 3.5MPa , to obtain the iron-cobalt-tantalum alloy powder.
  • the iron-cobalt-tantalum alloy powder described in this example was detected by SEM-EDS, the scanning electron microscope image was shown in Figure 1, the EDS energy spectrum diagram was shown in Figure 2, and the EDS energy spectrum measurement results were summarized in Table 1; , it can be seen from FIG. 1 that the sphericity of the iron-cobalt-tantalum alloy powder is relatively high, and it can be seen from Table 1 that the composition of the iron-cobalt-tantalum alloy powder meets the target atomic ratio.
  • This embodiment provides a method for preparing iron-cobalt-tantalum alloy powder, except that "controlling the absolute vacuum degree ⁇ 10Pa" in step (2) is replaced by “controlling the absolute vacuum degree to fluctuate between 12-15Pa", other conditions It is exactly the same as Example 1.
  • This embodiment provides a preparation method of iron-cobalt-tantalum alloy powder, except that "pressure is 3.5 MPa” in step (3) is replaced with "pressure is 2.5 MPa", other conditions are exactly the same as in Example 1.
  • This embodiment provides a preparation method of iron-cobalt-tantalum alloy powder, except that "pressure is 3.5 MPa” in step (3) is replaced with "pressure is 4.5 MPa", other conditions are exactly the same as in Example 1.
  • the present embodiment provides a preparation method of iron-cobalt-tantalum alloy powder, and the preparation method comprises the following steps:
  • Deoiling, pickling, drying and vacuum packaging are performed successively with electrolytic iron material with purity ⁇ 99.95%, electrolytic cobalt material with purity ⁇ 99.95% and tantalum edge material of tantalum target disclosed in CN102517531A (purity ⁇ 99.95%) preprocessing:
  • electrolytic iron material First put the electrolytic iron material, electrolytic cobalt material and tantalum edge material into an aqueous solution containing detergent, ultrasonically clean for 70 minutes at 50 ° C for degreasing, then rinse with pure water and wipe clean; Ultrasonic cleaning in the lotion was carried out for 10min and pickling was carried out. According to the mass percentage content, the nitric acid in the pickling solution was 38.5% and the hydrofluoric acid was 7.1%, then rinsed with pure water and wiped clean; The electrolytic iron material, the electrolytic cobalt material and the tantalum edge material were put into a vacuum drying oven respectively, and dried at 65° C. for 90 min; finally, they were vacuum packed for later use;
  • the atomic ratio of cobalt is 28.5%
  • the atomic ratio of tantalum is 18.5%
  • the rest is iron and inevitable impurities as the target atomic ratio
  • the pretreated electrolytic iron material, electrolytic cobalt material and tantalum edge material are prepared, and then smelted.
  • Mixing is carried out in a layered and superimposed manner in the crucible, which specifically includes the following contents: firstly laying the cobalt material on the bottom of the smelting crucible, then laying the tantalum material on the cobalt material, and then laying the iron material on the bottom On the tantalum material, a cobalt-tantalum-iron layering unit is formed, and then the above-mentioned operations are repeated according to the cobalt-tantalum-iron layering unit until the charging is completed to obtain an iron-cobalt-tantalum mixture;
  • step (2) putting the iron-cobalt-tantalum mixture described in step (1) into a vacuum smelting chamber, controlling absolute vacuum degree ⁇ 10Pa, and melting completely at 1750°C to obtain iron-cobalt-tantalum melt;
  • step (3) Pour the iron-cobalt-tantalum melt described in step (2) into the tundish, control the temperature of the tundish to be 1650 ° C, atomize under the action of argon with a purity of ⁇ 5N, and control the pressure to be 4MPa, The iron-cobalt-tantalum alloy powder is obtained.
  • This embodiment provides a preparation method of iron-cobalt-tantalum alloy powder, and the preparation method includes the following steps:
  • Deoiling, pickling, drying and vacuum packaging are performed successively with electrolytic iron material with purity ⁇ 99.95%, electrolytic cobalt material with purity ⁇ 99.95% and tantalum edge material of tantalum target disclosed in CN102517531A (purity ⁇ 99.95%) preprocessing:
  • electrolytic iron material electrolytic cobalt material and tantalum edge material into an aqueous solution containing detergent, ultrasonically clean for 50 minutes at 70 ° C for degreasing, then rinse with pure water and wipe clean; Ultrasonic cleaning in the lotion was carried out for 30min and pickling was carried out. According to the mass percentage content, the nitric acid in the pickling solution was 38.5% and the hydrofluoric acid was 7.1%, then rinsed with pure water and wiped clean; The electrolytic iron material, electrolytic cobalt material and tantalum edge material were put into a vacuum drying oven respectively, and dried at 75° C. for 60 min; finally, they were vacuum packed for later use;
  • the atomic ratio of cobalt is 29.5%
  • the atomic ratio of tantalum is 17.5%
  • the rest is iron and inevitable impurities as the target atomic ratio
  • the pretreated electrolytic iron material, electrolytic cobalt material and tantalum edge material are prepared, and then smelted.
  • Mixing is carried out in a layered and superimposed manner in the crucible, which specifically includes the following contents: firstly laying the cobalt material on the bottom of the smelting crucible, then laying the tantalum material on the cobalt material, and then laying the iron material on the bottom On the tantalum material, a cobalt-tantalum-iron layering unit is formed, and then the above-mentioned operations are repeated according to the cobalt-tantalum-iron layering unit until the charging is completed to obtain an iron-cobalt-tantalum mixture;
  • step (2) putting the iron-cobalt-tantalum mixture described in step (1) into a vacuum smelting chamber, controlling absolute vacuum degree ⁇ 10Pa, and melting completely at 1650°C to obtain iron-cobalt-tantalum melt;
  • step (3) Pour the iron-cobalt-tantalum melt described in step (2) into the tundish, control the temperature of the tundish to be 1550 ° C, atomize under the action of argon with a purity of ⁇ 5N, and control the pressure to be 3MPa, The iron-cobalt-tantalum alloy powder is obtained.
  • This comparative example provides a preparation method of iron-cobalt-tantalum alloy powder. Except for replacing "completely melted at 1700°C" in step (2) with "completely melted at 1600°C", other conditions are completely the same as those in Example 1. same.
  • Oxygen content measured according to the thermal conductivity method disclosed in the national standard GB/T 14265-2017 "General Principles of Analysis Methods for Hydrogen, Oxygen, Nitrogen, Carbon and Sulfur in Metal Materials";
  • Yield the mass percentage of iron, cobalt and tantalum alloy powder obtained by sieving with a particle size of less than 150 mesh in the amount of iron material, cobalt material and tantalum material;
  • Example 1 good 451ppm 81%
  • Example 2 good 568ppm 80%
  • Example 3 good 472ppm 60%
  • Example 4 good 461ppm 35%
  • Example 5 good 486ppm 82%
  • Example 6 good 501ppm 80%
  • the preparation method described in this application controls the melting temperature of the iron-cobalt-tantalum mixture to be 1650-1750° C., and optimizes the atomization conditions, so that the prepared iron-cobalt-tantalum alloy powder has good sphericity and an oxygen content of ⁇ 600 ppm, and
  • the iron-cobalt-tantalum alloy powder with a particle size of less than 150 mesh obtained by sieving has a relatively high yield, up to 82%, which is conducive to the preparation of high-purity, high-density, high-bending strength and magnetic flux qualified iron-cobalt-tantalum alloy sputtering targets
  • the tantalum edge material of tantalum target material is prepared as tantalum material, which realizes turning waste into treasure;
  • Example 2 It can be seen from the comparison of Examples 1 and 2 that in Example 2, during the melting process of the iron-cobalt-tantalum mixture, the absolute vacuum degree was controlled to fluctuate between 12-15Pa, resulting in the oxygen content of the prepared iron-cobalt-tantalum alloy powder. Up to 568ppm;
  • Example 3 Comparing Example 1 with Examples 3 and 4, it can be seen that since the control pressure in Example 3 is lower than 3-4 MPa, only 2.5 MPa in the gas atomization process, the prepared iron-cobalt-tantalum alloy powder averages The particle size is large, and the yield is reduced to 60%; because the control pressure in the gas atomization process in Example 4 exceeds 3-4MPa, up to 4.5MPa, the resistance of the iron-cobalt-tantalum melt to flow downward is relatively large, and the prepared iron The yield of cobalt-tantalum alloy powder is only 35%;
  • Example 1 (4) It can be seen from the comparison of Example 1 and Comparative Example 1 that since the melting temperature of the iron-cobalt-tantalum mixture corresponding to the comparative example 1 is lower than 1650-1750 °C, only 1600 °C, resulting in uneven composition of the iron-cobalt-tantalum melt Therefore, the oxygen content of the prepared iron-cobalt-tantalum alloy powder is as high as 660ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途。铁钴钽合金粉的制备方法包括:先按照目标原子比例准备铁料、钴料和钽料并混合;然后在1650-1750℃下熔化完全;随后在惰性气体作用下进行雾化,得到铁钴钽合金粉。

Description

一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途 技术领域
本申请涉及合金粉末制备技术领域,例如涉及一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途。
背景技术
随着社会的飞速发展和人们对信息储存需求的急剧增加,利用磁性信息存储技术的硬盘和光盘等记录媒体越来越受到重视,并且依靠其存储密度高、容量大及其价格低廉等优势,在信息存储领域占据了举足轻重的位置。磁记录是利用磁的性质进行信息记录的方式,能够在存储和使用的时候通过特殊的方法进行信息的输入和读出,从而达到存储信息和读出信息的目的。根据介质磁化方向与介质表面的位置关系,磁记录包括水平磁记录和垂直磁记录两种。
目前,在磁记录市场上,垂直磁记录技术已经全面取代了水平磁记录技术。因为,垂直磁记录技术使得磁记录介质的面密度与容量呈现了快速的增长,常见的磁记录介质有硬盘、磁盘和光盘等。磁记录介质一般采用多层垂直结构设计,以硬盘为例,具体包括润滑层、保护层、磁性记录层、中间层、软磁衬底层、衬底层和基底层。其中,软磁衬底层主要起着记录和存储数据的功能,在磁记录介质中的作用至关重要。目前,通过溅射过程得到的铁钴钽合金薄膜是最常用的软磁衬底层。
溅射是制备薄膜材料的主要技术之一,它利用离子源产生的离子,在真空中经过加速聚集,而形成高速度能的离子束流,轰击固体表面,离子和固体表面原子发生动能交换,使固体表面的原子离开固体并沉积在基底表面,被轰击的固体是制备溅射法沉积薄膜的原材料,该固体一般被称为溅射靶材。
用于溅射制备软磁衬底层的铁钴钽合金溅射靶材,需要有高的致密度、高的抗弯强度和高的磁通量:高的致密度可以保证溅射得到的薄膜比较均匀,不易发生“放电”等异常现象;弯曲强度会影响磁性材料的矫顽力,对其信息的存储有至关重要的影响,因此,高的抗弯强度可以保证靶材在使用时不易发生开裂等异常问题;靶材磁通量是磁记录靶材中非常重要的参数,通常靶材磁通量越高,记录和存储数据的能力越强。因此,铁钴钽合金溅射靶材的质量关系到了软磁衬底层,甚至整个磁记录行业的发展。
目前,现有技术公开了一些铁钴钽合金溅射靶材的制备方法,例如CN108004515A公开了一种铁钴钽合金溅射靶材的制备方法、铁钴钽合金溅射靶材及应用,所述制备方法将铁粉、钴粉和钽粉在惰性气体保护下混合得到铁钴钽混合粉,然后依次进行冷压、真空脱气、一次热压烧结和二次热压烧结,即制得铁钴钽合金溅射靶材。然而,所述制备方法直接使用铁粉、钴粉和钽粉按照要求比例混合得到的混合粉,使得三种金属在热压烧结前只有少量或者基本没有形成化合物导致单质铁或单质钴呈现出磁性,最终导致铁钴钽合金溅射靶材的磁通量较低。
CN105473759A公开了Fe-Co系合金溅射靶材和软磁性薄膜层、以及使用它的垂直磁记录介质,其中制造方法包括准备Fe-Co系合金粉,对于所述粉末进行加压烧结的工序。所述制备方法直接使用气体雾化法得到的Fe-Co系合金粉,制备得到的Fe-Co系合金溅射靶材可以满足高纯度、高致密、高弯曲强度和磁通量等性能,满足磁控溅射的需要。然而,所述Fe-Co系合金的熔融液体十分粘稠,极易堵塞管路,造成气体雾化法失败,再加上市场上无处采购具有目标比例要求Fe-Co系合金粉,使得Fe-Co系合金溅射靶材的制备和研发受到了极 大阻碍。
综上所述,目前亟需开发一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途。
发明内容
本申请提出了一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途,所述制备方法控制铁钴钽混合料的熔融温度为1650-1750℃,并优化雾化条件,使得制备得到的铁钴钽合金粉纯度≥99.95%,含氧量≤600ppm,利用筛分得到的粒度<150目的所述铁钴钽合金粉,有利于制备得到高纯度、高致密、高弯曲强度和磁通量合格的铁钴钽合金溅射靶材。
为达此目的,本申请采用以下技术方案:
本申请的目的之一在于提供一种铁钴钽合金粉的制备方法,所述制备方法包括如下步骤:
(1)按照目标原子比例准备铁料、钴料和钽料并混合,得到铁钴钽混合料;
(2)将步骤(1)所述铁钴钽混合料在1650-1750℃下熔化完全,得到铁钴钽熔融体;
(3)将步骤(2)所述铁钴钽熔融体在惰性气体作用下进行雾化,得到所述铁钴钽合金粉。
本申请所述制备方法控制铁钴钽混合料的熔融温度为1650-1750℃,并优化雾化条件,避免了铁钴钽熔融体因粘稠所导致的管路堵塞问题,可以制备得到纯度≥99.95%、含氧量≤600ppm的铁钴钽合金粉,利用筛分得到的粒度<150目的所述铁钴钽合金粉,有利于制备得到高纯度、高致密、高弯曲强度和磁通量合格的铁钴钽合金溅射靶材。
本申请所述铁钴钽混合料的熔融温度为1650-1750℃,例如1650℃、1670℃、1690℃、1700℃、1710℃、1730℃或1750℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(1)所述目标原子比例中钴的原子比例为28.5-29.5%,钽的原子比例为17.5-18.5%,其余为铁以及不可避免的杂质。
本申请所述钴的原子比例为28.5-29.5%,例如28.5%、28.8%、29%、29.2%或29.5%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请所述钽的原子比例为17.5-18.5%,例如17.5%、17.7%、18%、18.3%或18.5%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请所述不可避免的杂质的总含量<0.05%,保证制备得到的铁钴钽合金粉纯度≥99.95%。
作为本申请可选的技术方案,步骤(1)所述铁料的纯度≥99.95%。
可选地,步骤(1)所述铁料为电解铁料。
可选地,步骤(1)所述钴料的纯度≥99.95%。
可选地,步骤(1)所述钴料为电解钴料。
可选地,步骤(1)所述钽料的纯度≥99.95%。
可选地,步骤(1)所述钽料为钽靶材的钽边料。
本申请所述钽靶材可以是CN102517531A、CN103572223A或CN103572225A公开的钽靶材,在将钽靶材机加工制备靶材组件的过程中,会产生大量钽靶材的钽边料。
作为本申请可选的技术方案,在步骤(1)所述按照目标原子比例准备铁料、钴料和钽料之前,还包括对所述铁料、钴料和钽料分别进行预处理。
可选地,所述预处理依次包括去油、酸洗、干燥和真空包装。
正如本领域技术人员所熟知的那样,将制粉材料准备完成再到制粉过程,中间还经过运输、储存等过程,因此有必要将预处理完成的制粉材料进行真空包装,有利于隔绝灰尘和空气,减少制粉材料的吸氧反应,进而保证了最终制备得到的铁钴钽合金粉满足含氧量≤600ppm的要求;此外,当正式进行制粉时,将真空包装拆开即可。
可选地,所述去油包括将所述铁料、钴料和钽料分别放入清洗液中进行超声清洗,随后用纯水冲洗并擦拭干净。
可选地,所述清洗液为含有洗洁精的水溶液。
本申请所述含有洗洁精的水溶液并没有浓度限制,本领域技术人员可以根据实际情况合理选择洗洁精的种类和浓度,只要能将油污清洗干净即可。
可选地,所述超声清洗的时间为50-70min,例如50min、52min、55min、57min、60min、63min、65min、68min或70min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述超声清洗的温度为50-70℃,例如50℃、52℃、55℃、57℃、60℃、63℃、65℃、68℃或70℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述酸洗包括在酸洗液中超声清洗,随后用纯水冲洗并擦拭干净。
可选地,所述酸洗液为硝酸和氢氟酸的水溶液。
可选地,按质量百分含量计,所述酸洗液中硝酸为38.5%,氢氟酸为7.1%。
可选地,所述酸洗的时间为10-30min,例如10min、13min、15min、17min、20min、23min、25min、27min或30min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述干燥在真空干燥箱中进行。
可选地,所述干燥的时间为60-90min,例如60min、65min、70min、75min、80min、85min或90min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述干燥的温度为65-75℃,例如65℃、67℃、69℃、70℃、72℃、74℃或75℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请所述预处理依次包括去油、酸洗、干燥和真空包装,不仅可以除去所述铁料、钴料和钽料表面的油污、灰尘、水渍等杂质,还可以有效防止所述铁料、钴料和钽料被空气氧化,进而保证了制备得到的铁钴钽合金粉的纯度要求。
作为本申请可选的技术方案,步骤(1)所述混合在熔炼坩埚中采用分层叠加方式进行,具体包括如下内容:
先将所述钴料铺在所述熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成。
本申请所述基于钴-钽-铁铺料单元按照分层叠加方式进行混料,可以避免熔点较高且粘性较大的钽料发生局部聚集,防止后续得到的铁钴钽熔融体成分不均匀并发生因局部粘度过大所导致的管路堵塞问题。
作为本申请可选的技术方案,步骤(2)所述熔化的绝对真空度≤10Pa。
可选地,步骤(2)所述熔化在真空熔炼室中进行,然后将所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1550-1650℃,例如1550℃、1560℃、1580℃、1600℃、1610℃、1630℃或1650℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请所述熔化通过控制熔化温度为1650-1750℃且绝对真空度≤10Pa,可以充分保证所述铁钴钽混合料能够完全熔化、混合均匀;进一步地,将得到的所述铁钴钽熔融体倒入与雾化喷嘴相连接的中间包中,并控制其温度为1550-1650℃,可以有效防止所述铁钴钽熔融体堵塞中间包,并有效防止所述铁钴钽熔融体堵塞中间包与雾化喷嘴之间的导流管。
作为本申请可选的技术方案,步骤(3)所述惰性气体为氩气。
可选地,所述氩气的纯度≥5N。
可选地,步骤(3)所述雾化的压力为3-4MPa,例如3MPa、3.2MPa、3.4MPa、3.5MPa、3.7MPa、3.9MPa或4MPa等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请所述雾化的压力是基于所述铁钴钽熔融体粘度较大的特点来设置的,需要严格控制在3-4MPa范围内,既可以防止雾化压力较大阻碍所述铁钴钽熔融体向下流动,又可以防止雾化压力较小导致铁钴钽合金粉的平均颗粒较大,进而防止后续铁钴钽合金溅射靶材的成材率较低。
作为本申请可选的技术方案,所述制备方法包括如下步骤:
(1)按照目标原子比例准备预处理后的铁料、钴料和钽料,然后在熔炼坩埚中采用分层叠加方式进行混合,具体包括如下内容:先将所述钴料铺在所述 熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成,得到铁钴钽混合料;
其中,所述目标原子比例中钴的原子比例为28.5-29.5%,钽的原子比例为17.5-18.5%,其余为铁以及不可避免的杂质;
所述铁料的纯度≥99.95%,所述钴料的纯度≥99.95%,所述钽料的纯度≥99.95%;
所述预处理依次包括去油、酸洗、干燥和真空包装;
(2)将步骤(1)所述铁钴钽混合料放入真空熔炼室中,控制绝对真空度≤10Pa,在1650-1750℃下熔化完全,得到铁钴钽熔融体;
(3)将步骤(2)所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1550-1650℃,在纯度≥5N的氩气作用下进行雾化,控制压力为3-4MPa,得到所述铁钴钽合金粉。
本申请所述制备方法属于气雾化制粉法,是一种以快速运动的高压气体作为雾化介质,通过冲击作用将金属液或合金液破碎为细小液滴并冷凝为固体粉末的粉末制取方法。气雾化法是生产完全合金化粉末的最好方法,得到的每一个合金粉末的颗粒不仅具有与既定熔融合金完全相同的均匀化学成分,还由于快速凝固作用而细化了结晶结构,消除了第二相的宏观偏析。
本申请的目的之二在于提供一种铁钴钽合金粉,利用目的之一所述制备方法制备。
本申请的目的之三在于提供一种铁钴钽合金粉的用途,将目的之二所述铁钴钽合金粉进行筛分,将粒度<150目的所述铁钴钽合金粉用于制备铁钴钽合金 溅射靶材,尤其是用于利用热等静压工艺制备铁钴钽合金溅射靶材的过程。
与现有技术相比,本申请至少具有以下有益效果:
(1)本申请所述制备方法控制铁钴钽混合料的熔融温度为1650-1750℃,并优化雾化条件,使得制备得到的铁钴钽合金粉纯度≥99.95%,含氧量≤600ppm,利用筛分得到的粒度<150目的所述铁钴钽合金粉,有利于制备得到高纯度、高致密、高弯曲强度和磁通量合格的铁钴钽合金溅射靶材;
(2)本申请所述制备方法将钽靶材的钽边料作为钽料进行制备,既解决了钽靶材机加工过程中产生的钽边料的处理问题,又可以制备得到具有极高应用价值的铁钴钽合金粉,实现了变废为宝。
附图说明
图1是本申请实施例1所述铁钴钽合金粉的扫描电镜图;
图2是本申请实施例1所述铁钴钽合金粉的EDS能谱图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种铁钴钽合金粉的制备方法,所述制备方法包括如下步骤:
(1)将纯度≥99.95%的电解铁料、纯度≥99.95%的电解钴料和CN102517531A公开的钽靶材的钽边料(纯度≥99.95%)依次进行去油、酸洗、 干燥和真空包装的预处理:
先将所述电解铁料、电解钴料和钽边料分别放入含有洗洁精的水溶液中,在60℃下超声清洗60min进行去油处理,随后用纯水冲洗并擦拭干净;然后在酸洗液中超声清洗20min进行酸洗,按质量百分含量计,所述酸洗液中硝酸为38.5%,氢氟酸为7.1%,随后用纯水冲洗并擦拭干净;随后将酸洗得到的所述电解铁料、电解钴料和钽边料分别放入真空干燥箱中,在70℃下干燥80min;最后通过真空包装备用;
按照钴的原子比例为29%、钽的原子比例为18%、其余为铁以及不可避免的杂质作为目标原子比例,准备预处理后的电解铁料、电解钴料和钽边料,然后在熔炼坩埚中采用分层叠加方式进行混合,具体包括如下内容:先将所述钴料铺在所述熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成,得到铁钴钽混合料;
(2)将步骤(1)所述铁钴钽混合料放入真空熔炼室中,控制绝对真空度≤10Pa,在1700℃下熔化完全,得到铁钴钽熔融体;
(3)将步骤(2)所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1600℃,在纯度≥5N的氩气作用下进行雾化,控制压力为3.5MPa,得到所述铁钴钽合金粉。
将本实施例所述铁钴钽合金粉进行SEM-EDS检测,扫描电镜图如图1所示,EDS能谱图如图2所示,并将EDS能谱测量结果汇总在表1中;其中,由图1可以看出,所述铁钴钽合金粉的球形度较高,由表1可以看出,所述铁钴钽合金粉的组成满足目标原子比例。
表1
元素 质量百分比/% 原子百分比/% 误差/%
Fe 37.04 52.52 1.43
Co 21.98 29.54 1.14
Ta 40.98 17.94 1.91
总量 100.00 100.00 /
实施例2
本实施例提供了一种铁钴钽合金粉的制备方法,除了将步骤(2)所述“控制绝对真空度≤10Pa”替换为“控制绝对真空度在12-15Pa之间波动”,其他条件和实施例1完全相同。
实施例3
本实施例提供了一种铁钴钽合金粉的制备方法,除了将步骤(3)所述“压力为3.5MPa”替换为“压力为2.5MPa”,其他条件和实施例1完全相同。
实施例4
本实施例提供了一种铁钴钽合金粉的制备方法,除了将步骤(3)所述“压力为3.5MPa”替换为“压力为4.5MPa”,其他条件和实施例1完全相同。
实施例5
本实施例提供了一种铁钴钽合金粉的制备方法,所述制备方法包括如下步 骤:
(1)将纯度≥99.95%的电解铁料、纯度≥99.95%的电解钴料和CN102517531A公开的钽靶材的钽边料(纯度≥99.95%)依次进行去油、酸洗、干燥和真空包装的预处理:
先将所述电解铁料、电解钴料和钽边料分别放入含有洗洁精的水溶液中,在50℃下超声清洗70min进行去油处理,随后用纯水冲洗并擦拭干净;然后在酸洗液中超声清洗10min进行酸洗,按质量百分含量计,所述酸洗液中硝酸为38.5%,氢氟酸为7.1%,随后用纯水冲洗并擦拭干净;随后将酸洗得到的所述电解铁料、电解钴料和钽边料分别放入真空干燥箱中,在65℃下干燥90min;最后通过真空包装备用;
按照钴的原子比例为28.5%、钽的原子比例为18.5%、其余为铁以及不可避免的杂质作为目标原子比例,准备预处理后的电解铁料、电解钴料和钽边料,然后在熔炼坩埚中采用分层叠加方式进行混合,具体包括如下内容:先将所述钴料铺在所述熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成,得到铁钴钽混合料;
(2)将步骤(1)所述铁钴钽混合料放入真空熔炼室中,控制绝对真空度≤10Pa,在1750℃下熔化完全,得到铁钴钽熔融体;
(3)将步骤(2)所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1650℃,在纯度≥5N的氩气作用下进行雾化,控制压力为4MPa,得到所述铁钴钽合金粉。
实施例6
本实施例提供了一种铁钴钽合金粉的制备方法,所述制备方法包括如下步骤:
(1)将纯度≥99.95%的电解铁料、纯度≥99.95%的电解钴料和CN102517531A公开的钽靶材的钽边料(纯度≥99.95%)依次进行去油、酸洗、干燥和真空包装的预处理:
先将所述电解铁料、电解钴料和钽边料分别放入含有洗洁精的水溶液中,在70℃下超声清洗50min进行去油处理,随后用纯水冲洗并擦拭干净;然后在酸洗液中超声清洗30min进行酸洗,按质量百分含量计,所述酸洗液中硝酸为38.5%,氢氟酸为7.1%,随后用纯水冲洗并擦拭干净;随后将酸洗得到的所述电解铁料、电解钴料和钽边料分别放入真空干燥箱中,在75℃下干燥60min;最后通过真空包装备用;
按照钴的原子比例为29.5%、钽的原子比例为17.5%、其余为铁以及不可避免的杂质作为目标原子比例,准备预处理后的电解铁料、电解钴料和钽边料,然后在熔炼坩埚中采用分层叠加方式进行混合,具体包括如下内容:先将所述钴料铺在所述熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成,得到铁钴钽混合料;
(2)将步骤(1)所述铁钴钽混合料放入真空熔炼室中,控制绝对真空度≤10Pa,在1650℃下熔化完全,得到铁钴钽熔融体;
(3)将步骤(2)所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1550℃,在纯度≥5N的氩气作用下进行雾化,控制压力为3MPa,得到所述 铁钴钽合金粉。
对比例1
本对比例提供了一种铁钴钽合金粉的制备方法,除了将步骤(2)所述“在1700℃下熔化完全”替换为“在1600℃下熔化完全”,其他条件和实施例1完全相同。
将上述实施例和对比例制备得到的铁钴钽合金粉进行如下测定:
球形度:依据SEM-EDS检测得到的扫描电镜图进行判断;
含氧量:按照国标GB/T 14265-2017《金属材料中氢、氧、氮、碳和硫分析方法通则》中公开的热导法进行测定;
成品率:筛分得到的粒度<150目的铁钴钽合金粉占铁料、钴料和钽料投料量的质量百分比;
有关上述实施例和对比例制备得到的铁钴钽合金粉的相关测量结果见表2。
表2
项目 球形度 含氧量 成品率
实施例1 良好 451ppm 81%
实施例2 良好 568ppm 80%
实施例3 良好 472ppm 60%
实施例4 良好 461ppm 35%
实施例5 良好 486ppm 82%
实施例6 良好 501ppm 80%
对比例1 良好 660ppm 70%
由表2可以得到以下几点:
(1)本申请所述制备方法控制铁钴钽混合料的熔融温度为1650-1750℃,并优化雾化条件,使得制备得到的铁钴钽合金粉球形度良好、含氧量≤600ppm,而且筛分得到的粒度<150目的铁钴钽合金粉对应的成品率较高,最高可以达到82%,有利于制备得到高纯度、高致密、高弯曲强度和磁通量合格的铁钴钽合金溅射靶材;此外,将钽靶材的钽边料作为钽料进行制备,实现了变废为宝;
(2)对比实施例1和2可以看出,实施例2在铁钴钽混合料熔融过程中,控制绝对真空度在12-15Pa之间波动,导致制备得到的铁钴钽合金粉含氧量高达568ppm;
(3)对比实施例1和实施例3、4可以看出,由于实施例3在气雾化过程中控制压力低于3-4MPa,仅为2.5MPa,导致制备得到的铁钴钽合金粉平均粒度较大,成品率降至60%;由于实施例4在气雾化过程中控制压力超出3-4MPa,高达4.5MPa,导致铁钴钽熔融体向下流动的阻力较大,制备得到的铁钴钽合金粉的成品率仅为35%;
(4)对比实施例1和对比例1可以看出,由于对比例1对应的铁钴钽混合料熔融温度低于1650-1750℃,仅为1600℃,导致铁钴钽熔融体存在成分不均匀的问题,使得制备得到的铁钴钽合金粉的含氧量高达660ppm。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构 特征才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
以上详细描述了本申请的可选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (11)

  1. 一种铁钴钽合金粉的制备方法,其包括如下步骤:
    (1)按照目标原子比例准备铁料、钴料和钽料并混合,得到铁钴钽混合料;
    (2)将步骤(1)所述铁钴钽混合料在1650-1750℃下熔化完全,得到铁钴钽熔融体;
    (3)将步骤(2)所述铁钴钽熔融体在惰性气体作用下进行雾化,得到所述铁钴钽合金粉。
  2. 根据权利要求1所述的制备方法,其中,步骤(1)所述目标原子比例中钴的原子比例为28.5-29.5%,钽的原子比例为17.5-18.5%,其余为铁以及不可避免的杂质。
  3. 根据权利要求1或2所述的制备方法,其中,步骤(1)所述铁料的纯度≥99.95%。
  4. 根据权利要求1-3任一项所述的制备方法,其中,步骤(1)所述铁料为电解铁料;
    可选地,步骤(1)所述钴料的纯度≥99.95%;
    可选地,步骤(1)所述钴料为电解钴料;
    可选地,步骤(1)所述钽料的纯度≥99.95%;
    可选地,步骤(1)所述钽料为钽靶材的钽边料。
  5. 根据权利要求1-4任一项所述的制备方法,其中,在步骤(1)所述按照目标原子比例准备铁料、钴料和钽料之前,还包括对所述铁料、钴料和钽料分别进行预处理;
    可选地,所述预处理依次包括去油、酸洗、干燥和真空包装;
    可选地,所述去油包括将所述铁料、钴料和钽料分别放入清洗液中进行超 声清洗,随后用纯水冲洗并擦拭干净;
    可选地,所述清洗液为含有洗洁精的水溶液;
    可选地,所述超声清洗的时间为50-70min;
    可选地,所述超声清洗的温度为50-70℃;
    可选地,所述酸洗包括在酸洗液中超声清洗,随后用纯水冲洗并擦拭干净;
    可选地,所述酸洗液为硝酸和氢氟酸的水溶液;
    可选地,按质量百分含量计,所述酸洗液中硝酸为38.5%,氢氟酸为7.1%;
    可选地,所述酸洗的时间为10-30min;
    可选地,所述干燥在真空干燥箱中进行;
    可选地,所述干燥的时间为60-90min;
    可选地,所述干燥的温度为65-75℃。
  6. 根据权利要求1-5任一项所述的制备方法,其中,步骤(1)所述混合在熔炼坩埚中采用分层叠加方式进行,具体包括如下内容:
    先将所述钴料铺在所述熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成。
  7. 根据权利要求1-6任一项所述的制备方法,其中,步骤(2)所述熔化的绝对真空度≤10Pa;
    可选地,步骤(2)所述熔化在真空熔炼室中进行,然后将所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1550-1650℃。
  8. 根据权利要求1-7任一项所述的制备方法,其中,步骤(3)所述惰性气体为氩气;
    可选地,所述氩气的纯度≥5N;
    可选地,步骤(3)所述雾化的压力为3-4MPa。
  9. 根据权利要求1-8任一项所述的制备方法,其包括如下步骤:
    (1)按照目标原子比例准备预处理后的铁料、钴料和钽料,然后在熔炼坩埚中采用分层叠加方式进行混合,具体包括如下内容:先将所述钴料铺在所述熔炼坩埚底部,再将所述钽料铺在所述钴料上,随后将所述铁料铺在所述钽料上,形成钴-钽-铁铺料单元,然后按照所述钴-钽-铁铺料单元重复上述操作直至装料完成,得到铁钴钽混合料;
    其中,所述目标原子比例中钴的原子比例为28.5-29.5%,钽的原子比例为17.5-18.5%,其余为铁以及不可避免的杂质;
    所述铁料的纯度≥99.95%,所述钴料的纯度≥99.95%,所述钽料的纯度≥99.95%;
    所述预处理依次包括去油、酸洗、干燥和真空包装;
    (2)将步骤(1)所述铁钴钽混合料放入真空熔炼室中,控制绝对真空度≤10Pa,在1650-1750℃下熔化完全,得到铁钴钽熔融体;
    (3)将步骤(2)所述铁钴钽熔融体倒入中间包中,控制所述中间包的温度为1550-1650℃,在纯度≥5N的氩气作用下进行雾化,控制压力为3-4MPa,得到所述铁钴钽合金粉。
  10. 一种铁钴钽合金粉,其采用权利要求1-9任一项所述制备方法制备。
  11. 一种铁钴钽合金粉的用途,其中,将权利要求10所述铁钴钽合金粉进行筛分,将粒度<150目的所述铁钴钽合金粉用于制备铁钴钽合金溅射靶材。
PCT/CN2021/086059 2020-08-31 2021-04-09 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途 WO2022041741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010901342.6 2020-08-31
CN202010901342.6A CN111957982B (zh) 2020-08-31 2020-08-31 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途

Publications (1)

Publication Number Publication Date
WO2022041741A1 true WO2022041741A1 (zh) 2022-03-03

Family

ID=73401166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086059 WO2022041741A1 (zh) 2020-08-31 2021-04-09 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途

Country Status (2)

Country Link
CN (1) CN111957982B (zh)
WO (1) WO2022041741A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111957982B (zh) * 2020-08-31 2023-02-03 宁波江丰电子材料股份有限公司 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途
CN112404443A (zh) * 2020-11-25 2021-02-26 河南东微电子材料有限公司 一种铬钽硼合金粉末的制备方法
CN114042921B (zh) * 2021-11-16 2024-03-22 宁波江丰电子材料股份有限公司 一种铬硅合金粉及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203537A (ja) * 2008-02-29 2009-09-10 Hitachi Metals Ltd Co−Fe系合金スパッタリングターゲット材およびその製造方法
CN103866155A (zh) * 2014-03-20 2014-06-18 峨眉山市中山新材料科技有限公司 铍铜合金生产及铸锭工艺
CN103894617A (zh) * 2012-12-25 2014-07-02 北京有色金属研究总院 金属粉末雾化装置及其制备FeCoTaZr合金粉末的方法
CN105473759A (zh) * 2013-08-15 2016-04-06 山阳特殊制钢株式会社 Fe-Co系合金溅射靶材和软磁性薄膜层、以及使用它的垂直磁记录介质
CN108004515A (zh) * 2018-01-22 2018-05-08 宁波江丰电子材料股份有限公司 铁钴钽合金溅射靶材的制备方法、铁钴钽合金溅射靶材及应用
CN111230131A (zh) * 2020-03-18 2020-06-05 宁波江丰电子材料股份有限公司 一种钛粉的制备方法及由其制备的钛粉和用途
CN111560587A (zh) * 2020-06-05 2020-08-21 宁波江丰电子材料股份有限公司 一种铁钴钽合金溅射靶材及其制备方法
CN111957982A (zh) * 2020-08-31 2020-11-20 宁波江丰电子材料股份有限公司 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途
CN111992730A (zh) * 2020-08-31 2020-11-27 宁波江丰电子材料股份有限公司 一种钴钽合金粉的制备方法、钴钽合金粉及用途
CN112059195A (zh) * 2020-08-31 2020-12-11 宁波江丰电子材料股份有限公司 一种铁钽合金粉的制备方法、铁钽合金粉及用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI387658B (zh) * 2009-04-09 2013-03-01 Solar Applied Mat Tech Corp High magnetic flux of cobalt-based alloy magnetic sputtering target and its manufacturing method
TW201343945A (zh) * 2012-04-30 2013-11-01 Solar Applied Mat Tech Corp 鐵鈷鉭鋯基合金濺鍍靶材及其製作方法
TWI461557B (zh) * 2013-06-11 2014-11-21 Solar Applied Mat Tech Corp 鐵鈷鉭合金濺鍍靶材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203537A (ja) * 2008-02-29 2009-09-10 Hitachi Metals Ltd Co−Fe系合金スパッタリングターゲット材およびその製造方法
CN103894617A (zh) * 2012-12-25 2014-07-02 北京有色金属研究总院 金属粉末雾化装置及其制备FeCoTaZr合金粉末的方法
CN105473759A (zh) * 2013-08-15 2016-04-06 山阳特殊制钢株式会社 Fe-Co系合金溅射靶材和软磁性薄膜层、以及使用它的垂直磁记录介质
CN103866155A (zh) * 2014-03-20 2014-06-18 峨眉山市中山新材料科技有限公司 铍铜合金生产及铸锭工艺
CN108004515A (zh) * 2018-01-22 2018-05-08 宁波江丰电子材料股份有限公司 铁钴钽合金溅射靶材的制备方法、铁钴钽合金溅射靶材及应用
CN111230131A (zh) * 2020-03-18 2020-06-05 宁波江丰电子材料股份有限公司 一种钛粉的制备方法及由其制备的钛粉和用途
CN111560587A (zh) * 2020-06-05 2020-08-21 宁波江丰电子材料股份有限公司 一种铁钴钽合金溅射靶材及其制备方法
CN111957982A (zh) * 2020-08-31 2020-11-20 宁波江丰电子材料股份有限公司 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途
CN111992730A (zh) * 2020-08-31 2020-11-27 宁波江丰电子材料股份有限公司 一种钴钽合金粉的制备方法、钴钽合金粉及用途
CN112059195A (zh) * 2020-08-31 2020-12-11 宁波江丰电子材料股份有限公司 一种铁钽合金粉的制备方法、铁钽合金粉及用途

Also Published As

Publication number Publication date
CN111957982B (zh) 2023-02-03
CN111957982A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2022041741A1 (zh) 一种铁钴钽合金粉的制备方法、铁钴钽合金粉及用途
JP5041262B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
US7494617B2 (en) Enhanced formulation of cobalt alloy matrix compositions
US7943021B2 (en) Sb-Te alloy sintered compact target and manufacturing method thereof
JP5041261B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
TW201402850A (zh) 分散有C粒子之Fe-Pt-Ag-C系濺鍍靶及其製造方法
CN104233119A (zh) 一种防腐耐磨铁基非晶薄膜及其制备方法
JP3967067B2 (ja) スパッタリングターゲット
WO2016129449A1 (ja) Cr-Ti合金スパッタリングターゲット材およびその製造方法
CN112059195B (zh) 一种铁钽合金粉的制备方法、铁钽合金粉及用途
CN111992730B (zh) 一种钴钽合金粉的制备方法、钴钽合金粉及用途
JP6005767B2 (ja) 磁性記録媒体用スパッタリングターゲット
JP6048651B2 (ja) スパッタリングターゲットおよびその製造方法
US20070285839A1 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP6037206B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
CN109844167A (zh) 磁性材料溅射靶及其制造方法
JP2000144400A (ja) スパッタリングターゲットおよびその製造方法
JP2007169779A (ja) スパッタリングターゲット及びその製造方法、並びに光記録媒体及びその製造方法
JPH0297636A (ja) 焼結ターゲット部材およびその製造方法
JP2000309865A (ja) Ni−P合金スパッタリングターゲット及びその製造方法
TWI742740B (zh) 非磁性層形成用濺射靶部件、濺射靶及成膜方法
JP6037197B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP3993721B2 (ja) スパッタリングターゲット
CN114951634B (zh) 高熵合金耐磨耐腐蚀涂层及其制备方法
JP2000345325A (ja) Itoスパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859590

Country of ref document: EP

Kind code of ref document: A1