WO2022040858A1 - 一种防撞型航拍无人机及其方法 - Google Patents

一种防撞型航拍无人机及其方法 Download PDF

Info

Publication number
WO2022040858A1
WO2022040858A1 PCT/CN2020/110790 CN2020110790W WO2022040858A1 WO 2022040858 A1 WO2022040858 A1 WO 2022040858A1 CN 2020110790 W CN2020110790 W CN 2020110790W WO 2022040858 A1 WO2022040858 A1 WO 2022040858A1
Authority
WO
WIPO (PCT)
Prior art keywords
racks
buffer
aerial photography
collision
drone
Prior art date
Application number
PCT/CN2020/110790
Other languages
English (en)
French (fr)
Inventor
刘浩源
Original Assignee
唐山哈船科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山哈船科技有限公司 filed Critical 唐山哈船科技有限公司
Priority to CN202080106587.8A priority Critical patent/CN116670031A/zh
Priority to PCT/CN2020/110790 priority patent/WO2022040858A1/zh
Publication of WO2022040858A1 publication Critical patent/WO2022040858A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/62Spring shock-absorbers; Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to an anti-collision aerial photography unmanned aerial vehicle and a method thereof.
  • Unmanned aerial vehicles are unmanned aircraft operated by radio remote control equipment and self-contained program control devices, or fully or intermittently autonomously operated by on-board computers. Compared with manned aircraft, drones are often more suitable for those dangerous tasks, and drones are currently used in aerial photography, agriculture, plant protection, micro-selfies, express transportation, disaster relief, observing wildlife, monitoring infectious diseases, mapping, news reporting , power inspection, disaster relief, film and television shooting and manufacturing romance, etc., have greatly expanded the use of drones themselves, and developed countries are also actively expanding industry applications and developing drone technology.
  • the existing aerial photography UAV aerial photography is inconvenient to adjust the shooting angle, and the shooting range is small, which cannot meet the needs of use.
  • the purpose of the present invention is to solve the shortcomings of the existing aerial photography drone, which is inconvenient to adjust the shooting angle, the shooting range is small, and cannot meet the needs of use, and proposes an anti-collision aerial photography drone and its method.
  • the present invention provides an anti-collision aerial photography drone, comprising a drone body, a buffer structure is arranged at the bottom of the drone body, and a buffer pad is arranged at the end of the drone body; A power supply, a wireless transmission module and a controller module are arranged inside the drone body; a terminal monitoring module is connected to the wireless transmission module, a camera and a driving structure are connected to the controller, and two cameras are set; the bottom of the drone body is fixed A fixed box is connected, and two circular holes are opened at the bottom of the fixed box, and circular plates are rotatably connected in the two circular holes. The bottoms of the two circular plates are provided with vertical adjustment structures.
  • the camera is connected, the driving structure is arranged in the fixed box, a rectangular frame is slidably connected on the bottom inner wall of the fixed box, the driving structure is connected with the rectangular frame, the two sides of the rectangular frame are fixedly installed with racks, and the bottom inner wall of the fixed box rotates symmetrically
  • Two vertical shafts are connected, the outer sides of the two vertical shafts are fixedly sleeved with gears, the two gears are respectively meshed with the two racks, the outer sides of the two circular plates are fixedly sleeved with a ring gear rack, and the two gears They are meshed with two annular racks respectively.
  • welding rods are fixedly installed on the inner walls of both sides of the fixed box, circular shafts are fixedly installed at the bottoms of the two welding rods, bearings are fixedly sleeved on the outer sides of the two circular shafts, and the outer sides of the two bearings are fixedly installed.
  • the rings are respectively fixedly installed with the tops of the two circular plates.
  • the vertical adjustment structure includes a support rod and an electric push rod
  • the top of the support rod is rotatably connected with the bottom of the circular plate
  • the bottom end of the support rod is fixedly connected with the top of the corresponding camera
  • the top of the electric push rod is connected with the circular plate
  • the bottom of the electric push rod is rotatably connected
  • the output shaft of the electric push rod is rotatably connected with the top of the camera.
  • two strip-shaped grooves are formed on the bottom inner wall of the fixed box, sliding blocks are slidably installed in the two strip-shaped grooves, and the two sliding blocks are fixedly installed with the bottom of the rectangular frame.
  • a supporting round rod is fixedly installed in the two strip-shaped grooves, and the two supporting round rods are respectively slidably connected with the two sliding blocks.
  • the drive structure includes a servo motor and a motor shaft
  • the servo motor is fixedly connected to the top inner wall of the fixed box
  • the motor shaft is fixedly installed with the output shaft of the servo motor
  • the motor shaft is adapted to the rectangular frame.
  • a sector gear is fixedly installed at the bottom end of the motor shaft, and mating racks are fixedly installed on both inner walls of the rectangular frame, and both mating racks are alternately meshed with the sector gears.
  • the buffer structure includes a support leg, a buffer spring and a buffer leg, the support leg is fixedly connected to the bottom of the drone body, the bottom of the support leg is provided with a guide groove, the buffer leg is slidably connected with the guide groove, and the buffer spring is fixedly installed between the guide groove and the buffer leg.
  • the present invention also provides a method for using an anti-collision aerial photography drone, the method comprising the following steps:
  • the buffer pad can play a buffering role when the drone body collides.
  • the servo motor drives the motor shaft to rotate, the motor shaft drives the sector gear to rotate, and the sector gear rotates to drive the two mating racks to mesh alternately, so that the two mating racks drive the rectangular frame to reciprocate sliding , the rectangular frame drives the two racks to reciprocate, the two racks drive the two gears to reciprocate, the two gears drive the two annular racks to reciprocate, the two annular racks drive the two circular plates to reciprocate, and the two circular
  • the board drives the two cameras to reciprocate and rotate, which can expand the monitoring range;
  • the buffer pad can play a buffering role when the drone body collides
  • the servo motor drives the motor shaft and the sector gear to rotate, the sector gear rotates to drive the two mating racks to mesh alternately, the rectangular frame drives the two racks to reciprocate, and the two racks drive the two ring racks to reciprocate through the two gears Rotation, the two annular racks drive the two circular plates to reciprocate, and the two circular plates drive the two cameras to rotate back and forth respectively, which can expand the monitoring range;
  • the invention is convenient to operate, facilitates the adjustment of the shooting angle, expands the shooting range, and can meet the needs of use.
  • FIG. 1 is a schematic structural diagram of an anti-collision aerial photography drone and a method thereof proposed by the present invention
  • Fig. 2 is a side view structural schematic diagram of an anti-collision aerial photography unmanned aerial vehicle and method thereof proposed by the present invention
  • FIG. 3 is a connection block diagram of a terminal monitoring module, a wireless transmission module, a controller module, a camera and a driving structure of an anti-collision aerial photography drone and a method thereof proposed by the present invention
  • Fig. 4 is a side sectional structural schematic diagram of a fixed box of a collision-proof aerial photography drone and a method thereof proposed by the present invention
  • FIG. 5 is a schematic structural diagram of part A in FIG. 4 of an anti-collision aerial photography drone and a method thereof proposed by the present invention
  • FIG. 6 is a top-view partial structural schematic diagram of a rectangular frame, a sector gear, a motor shaft and a matching rack of an anti-collision aerial photography drone and a method thereof proposed by the present invention.
  • 1 drone body 1 drone body, 2 support legs, 3 guide grooves, 4 buffer springs, 5 buffer legs, 6 fixed boxes, 7 circular plates, 8 cameras, 9 servo motors, 10 motor shafts, 11 welding rods, 12 circles Shaft, 13 Bearings, 14 Round Holes, 15 Support Rods, 16 Electric Push Rods, 17 Rectangular Frames, 18 Vertical Shafts, 19 Racks, 20 Gears, 21 Ring Racks, 22 Slots, 23 Support Rods, 24 Slides Blocks, 25 matching racks, 26 sector gears, 27 buffer pads.
  • an anti-collision aerial photography drone includes a drone body 1, the bottom of the drone body 1 is provided with a buffer structure, and the end of the drone body 1 is provided with a buffer
  • the pad 27 is made of foam or rubber, for example, and plays a buffering role when the drone body collides.
  • the drone body 1 is provided with a power supply, a wireless transmission module and a controller module, and the wireless transmission can be through Wi-Fi or mobile network. conduct.
  • a terminal monitoring module is connected to the wireless transmission module, a camera 8 and a driving structure are connected to the controller, and two cameras 8 are arranged;
  • the driving structure is arranged in the fixed box 6, the bottom inner wall of the fixed box 6 is slidably connected with a rectangular frame 17, the driving structure is connected with the rectangular frame 17, and the two sides of the rectangular frame 17 are fixedly installed with racks 19,
  • Two vertical shafts 18 are symmetrically rotatably connected to the bottom inner wall of the fixed box 6.
  • the outer sides of the two vertical shafts 18 are fixedly sleeved with gears 20.
  • the two gears 20 are meshed with the two racks 19 respectively.
  • 7 are fixedly sleeved with annular racks 21
  • the two gears 20 are meshed with the two annular racks 21 respectively.
  • welding rods 11 are fixedly installed on both inner walls of the fixing box 6
  • circular shafts 12 are fixedly installed at the bottoms of the two welding rods 11
  • bearings 13 are fixedly sleeved on the outer sides of the two circular shafts 12 .
  • the outer rings of the two bearings 13 are fixedly installed with the tops of the two circular plates 7 respectively.
  • the vertical adjustment structure includes a support rod 15 and an electric push rod 16.
  • the top end of the support rod 15 is rotatably connected to the bottom of the circular plate 7, and the bottom end of the support rod 15 is fixedly connected to the top of the corresponding camera 8.
  • the electric push rod The top of the rod 16 is rotatably connected with the bottom of the circular plate 7 , and the output shaft of the electric push rod 16 is rotatably connected with the top of the camera 8 .
  • two strip-shaped grooves 22 are formed on the bottom inner wall of the fixing box 6 , and sliding blocks 24 are slidably installed in the two strip-shaped grooves 22 , and the two sliding blocks 24 are fixedly installed with the bottom of the rectangular frame 17 . .
  • the two bar-shaped grooves 22 are fixedly installed with supporting round rods 23 , and the two supporting round rods 23 are slidably connected with the two sliding blocks 24 respectively.
  • the drive structure includes a servo motor 9 and a motor shaft 10 , the servo motor 9 is fixedly connected to the top inner wall of the fixing box 6 , the motor shaft 10 is fixedly installed with the output shaft of the servo motor 9 , and the motor shaft 10 is connected to the rectangular frame 17 . fit.
  • a sector gear 26 is fixedly installed at the bottom end of the motor shaft 10 , and matching racks 25 are fixedly installed on both inner walls of the rectangular frame 17 .
  • the buffer structure includes a support leg 2, a buffer spring 4 and a buffer leg 5, the support leg 2 is fixedly connected to the bottom of the drone body 1, the bottom of the support leg 2 is provided with a guide groove 3, and the buffer leg 5 is connected to the guide The groove 3 is slidably connected, and the buffer spring 4 is fixedly installed between the guide groove 3 and the buffer leg 5 .
  • the use method of the anti-collision aerial photography drone includes the following steps:
  • an anti-collision aerial photography drone includes a drone body 1, the bottom of the drone body 1 is provided with a buffer structure, and the end of the drone body 1 is provided with
  • the buffer pad 27 is made of foam or rubber, for example, and plays a buffer role when the drone body collides; the drone body 1 is provided with a power supply, a wireless transmission module and a controller module, and the wireless transmission can be through Wi-Fi or mobile network.
  • a terminal monitoring module is connected to the wireless transmission module, a camera 8 and a drive structure are connected to the controller, and two cameras 8 are set; the bottom of the drone body 1 is fixedly connected with a fixing box 6 by screws, and the bottom of the fixing box 6 is opened.
  • the bottoms of the two circular plates 7 are provided with vertical adjustment structures, and the two vertical adjustment structures are respectively connected with the two cameras 8 for use.
  • the camera head 8 is vertically adjusted, the driving structure is arranged in the fixed box 6, the bottom inner wall of the fixed box 6 is slidably connected with a rectangular frame 17, the driving structure is connected with the rectangular frame 17, and both sides of the rectangular frame 17 are fixed and installed by welding.
  • welding rods 11 are fixedly installed on both inner walls of the fixing box 6 by welding, and the bottoms of the two welding rods 11 are fixedly installed with circular shafts 12 by welding, and the outer sides of the two circular shafts 12 are fixed with sleeves Bearings 13 are provided, and the outer rings of the two bearings 13 are respectively fixed and installed with the tops of the two circular plates 7 by welding.
  • the vertical adjustment structure includes a support rod 15 and an electric push rod 16.
  • the top of the support rod 15 is rotatably connected to the bottom of the circular plate 7, and the bottom end of the support rod 15 is fixedly connected to the top of the corresponding camera 8 by screws.
  • the top of the electric push rod 16 is rotatably connected with the bottom of the circular plate 7 , and the output shaft of the electric push rod 16 is rotatably connected with the top of the camera 8 .
  • two strip-shaped grooves 22 are formed on the bottom inner wall of the fixed box 6 , and sliding blocks 24 are slidably installed in the two strip-shaped grooves 22 , and the two sliding blocks 24 are welded to the bottom of the rectangular frame 17 . Fixed installation.
  • the two bar-shaped grooves 22 are fixedly installed with supporting round rods 23 by welding, and the two supporting round rods 23 are slidably connected with the two sliding blocks 24 respectively.
  • the driving structure includes a servo motor 9 and a motor shaft 10.
  • the servo motor 9 is fixedly connected to the top inner wall of the fixing box 6 by screws.
  • the motor shaft 10 and the output shaft of the servo motor 9 are fixedly installed by welding.
  • the motor shaft 10 Fits the rectangular frame 17 .
  • the bottom end of the motor shaft 10 is fixedly mounted with a sector gear 26 by welding, and the inner walls of the rectangular frame 17 are both fixedly mounted with matching racks 25 by welding, and the two matching racks 25 are both connected with the sector gear 26 Alternate engagement.
  • the buffer structure includes a support leg 2, a buffer spring 4 and a buffer leg 5.
  • the support leg 2 is fixedly connected to the bottom of the drone body 1 by screws.
  • the bottom of the support leg 2 is provided with a guide groove 3, and the buffer leg 5
  • the buffer spring 4 is fixedly installed between the guide groove 3 and the buffer leg 5 by welding.
  • the use method of the anti-collision aerial photography drone includes the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Abstract

本发明属于无人机技术领域,尤其是一种防撞型航拍无人机及其方法。针对现有的航拍无人机航拍不便于调节拍摄角度、拍摄范围较小的问题,现提出了本发明的方案。所述防撞型航拍无人机包括无人机本体,无人机本体的底部设置有缓冲结构,无人机本体的端头设置有缓冲垫,无人机本体内部设置有电源、无线传输模块和控制器模块,无线传输模块上连接有终端监控模块,控制器上连接有摄像头和驱动结构,摄像头设置为两个,无人机本体的底部固定连接有固定盒,固定盒的底部开设有两个圆孔,两个圆孔内均转动连接有圆板,两个圆板的底部均设置有垂直调节结构。本发明操作方便,便于调节拍摄角度,扩大了拍摄范围,能满足使用需求。

Description

一种防撞型航拍无人机及其方法 技术领域
本发明涉及无人机技术领域,尤其涉及一种防撞型航拍无人机及其方法。
背景技术
无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作。与有人驾驶飞机相比,无人机往往更适合那些危险的任务,无人机目前在航拍、农业、植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄和制造浪漫等等领域的应用,大大的拓展了无人机本身的用途,发达国家也在积极扩展行业应用与发展无人机技术。
现有的航拍无人机航拍不便于对调节拍摄角度,拍摄范围较小,不能满足使用需求。
发明内容
本发明的目的是为了解决现有的航拍无人机航拍不便于对调节拍摄角度,拍摄范围较小,不能满足使用需求的缺点,而提出的一种防撞型航拍无人机及其方法。
为了实现上述目的,本发明提供了一种防撞型航拍无人机,包括无人机本体,所述无人机本体的底部设置有缓冲结构,无人机本体的端头设置有缓冲垫;无人机本体内部设置有电源、无线传输模块和控制器模块;无线传输模块上连接有终端监控模块,控制器上连接有摄像头和驱动结构,摄像头设置为两个;无人机本体的底部固定连接有固定盒,固定盒的底部开设有两个 圆孔,两个圆孔内均转动连接有圆板,两个圆板的底部均设置有垂直调节结构,两个垂直调节结构分别与两个摄像头连接,驱动结构设置在固定盒内,固定盒的底部内壁上滑动连接有矩形框,驱动结构与矩形框连接,矩形框的两侧均固定安装有齿条,固定盒的底部内壁上对称转动连接有两个垂直轴,两个垂直轴的外侧均固定套设有齿轮,两个齿轮分别与两个齿条相啮合,两个圆板的外侧均固定套设有环形齿条,两个齿轮分别与两个环形齿条相啮合。
优选的,所述固定盒的两侧内壁上均固定安装有焊接杆,两个焊接杆的底部均固定安装有圆轴,两个圆轴的外侧均固定套设有轴承,两个轴承的外圈分别与两个圆板的顶部固定安装。
优选的,所述垂直调节结构包括支撑杆和电动推杆,支撑杆的顶端与圆板的底部转动连接,支撑杆的底端与对应的摄像头的顶部固定连接,电动推杆的顶端与圆板的底部转动连接,电动推杆的输出轴与摄像头的顶部转动连接。
优选的,所述固定盒的底部内壁上开设有两个条形槽,两个条形槽内均滑动安装有滑动块,两个滑动块均与矩形框的底部固定安装。
优选的,两个条形槽内均固定安装有支撑圆杆,两个支撑圆杆分别与两个滑动块滑动连接。
优选的,所述驱动结构包括伺服电机和电机轴,伺服电机固定连接在固定盒的顶部内壁上,电机轴与伺服电机的输出轴固定安装,电机轴与矩形框相适配。
优选的,所述电机轴的底端固定安装有扇形齿轮,矩形框的两侧内壁上均固定安装有配合齿条,两个配合齿条均与扇形齿轮交替啮合。
优选的,所述缓冲结构包括支撑腿、缓冲弹簧和缓冲腿,支撑腿固定连 接在无人机本体的底部,支撑腿的底部开设有导向槽,缓冲腿与导向槽滑动连接,缓冲弹簧固定安装在导向槽与缓冲腿之间。
优选的,本发明还提供了一种防撞型航拍无人机的使用方法,所述方法包括以下步骤:
S1:使用时,将电器设备均接通电源,将无人机本体上连接无线遥控器,无线遥控器遥控无人机本体飞行,设置在缓冲垫可以在无人机本体碰撞时起到缓冲作用,通过两个摄像头进行航拍监控,启动伺服电机,伺服电机带动电机轴转动,电机轴带动扇形齿轮转动,扇形齿轮转动带动两个配合齿条交替啮合,使得两个配合齿条带动矩形框往复滑动,矩形框带动两个齿条往复移动,两个齿条带动两个齿轮往复旋转,两个齿轮带动两个环形齿条往复旋转,两个环形齿条带动两个圆板往复旋转,两个圆板分别带动两个摄像头往复旋转,可以扩大监控范围;
S2:启动电动推杆,在支撑杆的支撑作用下,电动推杆推动摄像头发生角度翻转,可以调节垂直角度,进一步调节监控航拍角度;
S3:完成航拍时,无人机本体落到地面上,设置的缓冲腿与地面接触,通过缓冲弹簧可以起到缓冲作用,降低冲击力。
与现有技术相比,本发明的优点在于:
(1)本方案设置在缓冲垫可以在无人机本体碰撞时起到缓冲作用;
(2)伺服电机带动电机轴和扇形齿轮转动,扇形齿轮转动带动两个配合齿条交替啮合,矩形框带动两个齿条往复移动,两个齿条通过两个齿轮带动两个环形齿条往复旋转,两个环形齿条带动两个圆板往复旋转,两个圆板分别带动两个摄像头往复旋转,可以扩大监控范围;
(3)启动电动推杆,在支撑杆的支撑作用下,电动推杆推动摄像头发生 角度翻转,可以调节垂直角度,进一步调节监控航拍角度;
(4)无人机本体落到地面上,设置的缓冲腿与地面接触,通过缓冲弹簧可以起到缓冲作用,降低冲击力。
本发明操作方便,便于对调节拍摄角度,扩大了拍摄范围,能满足使用需求。
附图说明
图1为本发明提出的一种防撞型航拍无人机及其方法的结构示意图;
图2为本发明提出的一种防撞型航拍无人机及其方法的侧视结构示意图;
图3为本发明提出的一种防撞型航拍无人机及其方法的终端监控模块、无线传输模块、控制器模块、摄像头和驱动结构的连接框图;
图4为本发明提出的一种防撞型航拍无人机及其方法的固定盒的侧面剖视结构示意图;
图5为本发明提出的一种防撞型航拍无人机及其方法的图4中A部分结构示意图;
图6为本发明提出的一种防撞型航拍无人机及其方法的矩形框、扇形齿轮、电机轴和配合齿条的俯视部分结构示意图。
图中:1无人机本体、2支撑腿、3导向槽、4缓冲弹簧、5缓冲腿、6固定盒、7圆板、8摄像头、9伺服电机、10电机轴、11焊接杆、12圆轴、13轴承、14圆孔、15支撑杆、16电动推杆、17矩形框、18垂直轴、19齿条、20齿轮、21环形齿条、22条形槽、23支撑圆杆、24滑动块、25配合齿条、26扇形齿轮、27缓冲垫。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
参照图1-6,根据本发明一个实施方案的防撞型航拍无人机包括无人机本体1,无人机本体1的底部设置有缓冲结构,无人机本体1的端头设置有缓冲垫27例如为泡沫或橡胶做成,在无人机本体碰撞时起到缓冲作用,无人机本体1内部设置有电源、无线传输模块和控制器模块,无线传输可以通过Wi-Fi或移动网络进行。无线传输模块上连接有终端监控模块,控制器上连接有摄像头8和驱动结构,摄像头8设置为两个;无人机本体1的底部固定连接有固定盒6,固定盒6的底部开设有两个圆孔14,两个圆孔14内均转动连接有圆板7,两个圆板7的底部均设置有垂直调节结构,两个垂直调节结构分别与两个摄像头8连接,用于对摄像头8进行垂直调节;驱动结构设置在固定盒6内,固定盒6的底部内壁上滑动连接有矩形框17,驱动结构与矩形框17连接,矩形框17的两侧均固定安装有齿条19,固定盒6的底部内壁上对称转动连接有两个垂直轴18,两个垂直轴18的外侧均固定套设有齿轮20,两个齿轮20分别与两个齿条19相啮合,两个圆板7的外侧均固定套设有环形齿条21,两个齿轮20分别与两个环形齿条21相啮合。
本实施例中,固定盒6的两侧内壁上均固定安装有焊接杆11,两个焊接杆11的底部均固定安装有圆轴12,两个圆轴12的外侧均固定套设有轴承13,两个轴承13的外圈分别与两个圆板7的顶部固定安装。
本实施例中,垂直调节结构包括支撑杆15和电动推杆16,支撑杆15的 顶端与圆板7的底部转动连接,支撑杆15的底端与对应的摄像头8的顶部固定连接,电动推杆16的顶端与圆板7的底部转动连接,电动推杆16的输出轴与摄像头8的顶部转动连接。
本实施例中,固定盒6的底部内壁上开设有两个条形槽22,两个条形槽22内均滑动安装有滑动块24,两个滑动块24均与矩形框17的底部固定安装。
本实施例中,两个条形槽22内均固定安装有支撑圆杆23,两个支撑圆杆23分别与两个滑动块24滑动连接。
本实施例中,驱动结构包括伺服电机9和电机轴10,伺服电机9固定连接在固定盒6的顶部内壁上,电机轴10与伺服电机9的输出轴固定安装,电机轴10与矩形框17相适配。
本实施例中,电机轴10的底端固定安装有扇形齿轮26,矩形框17的两侧内壁上均固定安装有配合齿条25,两个配合齿条25均与扇形齿轮26交替啮合。
本实施例中,缓冲结构包括支撑腿2、缓冲弹簧4和缓冲腿5,支撑腿2固定连接在无人机本体1的底部,支撑腿2的底部开设有导向槽3,缓冲腿5与导向槽3滑动连接,缓冲弹簧4固定安装在导向槽3与缓冲腿5之间。
本实施例中,防撞型航拍无人机的使用方法包括以下步骤:
S1:使用时,将电器设备均接通电源,将无人机本体1上连接无线遥控器,无线遥控器遥控无人机本体1飞行,设置在缓冲垫27可以在无人机本体1碰撞时起到缓冲作用,通过两个摄像头8进行航拍监控,启动伺服电机9,伺服电机9带动电机轴10转动,电机轴10带动扇形齿轮26转动,扇形齿轮26转动带动两个配合齿条25交替啮合,使得两个配合齿条25带动矩形框17往复滑动,矩形框17带动两个齿条19往复移动,两个齿条19带动两个齿轮 20往复旋转,两个齿轮20带动两个环形齿条21往复旋转,两个环形齿条21带动两个圆板7往复旋转,两个圆板7分别带动两个摄像头8往复旋转,可以扩大监控范围;
S2:启动电动推杆16,在支撑杆15的支撑作用下,电动推杆16推动摄像头8发生角度翻转,可以调节垂直角度,进一步调节监控航拍角度;
S3:完成航拍时,无人机本体1落到地面上,设置的缓冲腿5与地面接触,通过缓冲弹簧4可以起到缓冲作用,降低冲击力。
实施例二
参照图1-6,根据本发明另一个实施方案的防撞型航拍无人机包括无人机本体1,无人机本体1的底部设置有缓冲结构,无人机本体1的端头设置有缓冲垫27例如为泡沫或橡胶做成,在无人机本体碰撞时起到缓冲作用;无人机本体1内部设置有电源、无线传输模块和控制器模块,无线传输可以通过Wi-Fi或移动网络进行。无线传输模块上连接有终端监控模块,控制器上连接有摄像头8和驱动结构,摄像头8设置为两个;无人机本体1的底部通过螺丝固定连接有固定盒6,固定盒6的底部开设有两个圆孔14,两个圆孔14内均转动连接有圆板7,两个圆板7的底部均设置有垂直调节结构,两个垂直调节结构分别与两个摄像头8连接,用于对摄像头8进行垂直调节,驱动结构设置在固定盒6内,固定盒6的底部内壁上滑动连接有矩形框17,驱动结构与矩形框17连接,矩形框17的两侧均通过焊接固定安装有齿条19,固定盒6的底部内壁上对称转动连接有两个垂直轴18,两个垂直轴18的外侧均固定套设有齿轮20,两个齿轮20分别与两个齿条19相啮合,两个圆板7的外侧均固定套设有环形齿条21,两个齿轮20分别与两个环形齿条21相啮合。
本实施例中,固定盒6的两侧内壁上均通过焊接固定安装有焊接杆11, 两个焊接杆11的底部均通过焊接固定安装有圆轴12,两个圆轴12的外侧均固定套设有轴承13,两个轴承13的外圈分别与两个圆板7的顶部通过焊接固定安装。
本实施例中,垂直调节结构包括支撑杆15和电动推杆16,支撑杆15的顶端与圆板7的底部转动连接,支撑杆15的底端与对应的摄像头8的顶部通过螺丝固定连接,电动推杆16的顶端与圆板7的底部转动连接,电动推杆16的输出轴与摄像头8的顶部转动连接。
本实施例中,固定盒6的底部内壁上开设有两个条形槽22,两个条形槽22内均滑动安装有滑动块24,两个滑动块24均与矩形框17的底部通过焊接固定安装。
本实施例中,两个条形槽22内均通过焊接固定安装有支撑圆杆23,两个支撑圆杆23分别与两个滑动块24滑动连接。
本实施例中,驱动结构包括伺服电机9和电机轴10,伺服电机9通过螺丝固定连接在固定盒6的顶部内壁上,电机轴10与伺服电机9的输出轴通过焊接固定安装,电机轴10与矩形框17相适配。
本实施例中,电机轴10的底端通过焊接固定安装有扇形齿轮26,矩形框17的两侧内壁上均通过焊接固定安装有配合齿条25,两个配合齿条25均与扇形齿轮26交替啮合。
本实施例中,缓冲结构包括支撑腿2、缓冲弹簧4和缓冲腿5,支撑腿2通过螺丝固定连接在无人机本体1的底部,支撑腿2的底部开设有导向槽3,缓冲腿5与导向槽3滑动连接,缓冲弹簧4通过焊接固定安装在导向槽3与缓冲腿5之间。
本实施例中,防撞型航拍无人机的使用方法包括以下步骤:
S1:使用时,将电器设备均接通电源,将无人机本体1上连接无线遥控器,无线遥控器遥控无人机本体1飞行,设置在缓冲垫27可以在无人机本体1碰撞时起到缓冲作用,通过两个摄像头8进行航拍监控,启动伺服电机9,伺服电机9带动电机轴10转动,电机轴10带动扇形齿轮26转动,扇形齿轮26转动带动两个配合齿条25交替啮合,使得两个配合齿条25带动矩形框17往复滑动,矩形框17带动两个齿条19往复移动,两个齿条19带动两个齿轮20往复旋转,两个齿轮20带动两个环形齿条21往复旋转,两个环形齿条21带动两个圆板7往复旋转,两个圆板7分别带动两个摄像头8往复旋转,可以扩大监控范围;
S2:启动电动推杆16,在支撑杆15的支撑作用下,电动推杆16推动摄像头8发生角度翻转,可以调节垂直角度,进一步调节监控航拍角度;
S3:完成航拍时,无人机本体1落到地面上,设置的缓冲腿5与地面接触,通过缓冲弹簧4可以起到缓冲作用,降低冲击力。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种防撞型航拍无人机,包括无人机本体(1),其特征在于,所述无人机本体(1)的底部设置有缓冲结构,无人机本体(1)的端头设置有缓冲垫(27);无人机本体(1)内部设置有电源、无线传输模块和控制器模块,无线传输模块上连接有终端监控模块,控制器上连接有摄像头(8)和驱动结构,摄像头(8)设置为两个;无人机本体(1)的底部固定连接有固定盒(6),固定盒(6)的底部开设有两个圆孔(14),两个圆孔(14)内均转动连接有圆板(7),两个圆板(7)的底部均设置有垂直调节结构,两个垂直调节结构分别与两个摄像头(8)连接,驱动结构设置在固定盒(6)内,固定盒(6)的底部内壁上滑动连接有矩形框(17),驱动结构与矩形框(17)连接,矩形框(17)的两侧均固定安装有齿条(19),固定盒(6)的底部内壁上对称转动连接有两个垂直轴(18),两个垂直轴(18)的外侧均固定套设有齿轮(20),两个齿轮(20)分别与两个齿条(19)相啮合,两个圆板(7)的外侧均固定套设有环形齿条(21),两个齿轮(20)分别与两个环形齿条(21)相啮合。
  2. 根据权利要求1所述的防撞型航拍无人机,其特征在于,所述固定盒(6)的两侧内壁上均固定安装有焊接杆(11),两个焊接杆(11)的底部均固定安装有圆轴(12),两个圆轴(12)的外侧均固定套设有轴承(13),两个轴承(13)的外圈分别与两个圆板(7)的顶部固定安装。
  3. 根据权利要求1所述的防撞型航拍无人机,其特征在于,所述垂直调节结构包括支撑杆(15)和电动推杆(16),支撑杆(15)的顶端与圆板(7)的底部转动连接,支撑杆(15)的底端与对应的摄像头(8)的顶部固定连接,电动推杆(16)的顶端与圆板(7)的底部转动连接,电动推杆(16)的输出轴与摄像头(8)的顶部转动连接。
  4. 根据权利要求1所述的防撞型航拍无人机,其特征在于,所述固定盒(6)的底部内壁上开设有两个条形槽(22),两个条形槽(22)内均滑动安装有滑动块(24),两个滑动块(24)均与矩形框(17)的底部固定安装。
  5. 根据权利要求4所述的防撞型航拍无人机,其特征在于,两个条形槽(22)内均固定安装有支撑圆杆(23),两个支撑圆杆(23)分别与两个滑动块(24)滑动连接。
  6. 根据权利要求1所述的防撞型航拍无人机,其特征在于,所述驱动结构包括伺服电机(9)和电机轴(10),伺服电机(9)固定连接在固定盒(6)的顶部内壁上,电机轴(10)与伺服电机(9)的输出轴固定安装,电机轴(10)与矩形框(17)相适配。
  7. 根据权利要求6所述的防撞型航拍无人机,其特征在于,所述电机轴(10)的底端固定安装有扇形齿轮(26),矩形框(17)的两侧内壁上均固定安装有配合齿条(25),两个配合齿条(25)均与扇形齿轮(26)交替啮合。
  8. 根据权利要求1所述的防撞型航拍无人机,其特征在于,所述缓冲结构包括支撑腿(2)、缓冲弹簧(4)和缓冲腿(5),支撑腿(2)固定连接在无人机本体(1)的底部,支撑腿(2)的底部开设有导向槽(3),缓冲腿(5)与导向槽(3)滑动连接,缓冲弹簧(4)固定安装在导向槽(3)与缓冲腿(5)之间。
  9. 一种防撞型航拍无人机的使用方法,其特征在于,包括以下步骤:
    S1:使用时,将电器设备均接通电源,将无人机本体(1)上连接无线遥控器,无线遥控器遥控无人机本体(1)飞行,设置在缓冲垫(27)可以在无人机本体(1)碰撞时起到缓冲作用,通过两个摄像头(8)进行航拍监控,启动伺服电机(9),伺服电机(9)带动电机轴(10)转动,电机轴(10)带 动扇形齿轮(26)转动,扇形齿轮(26)转动带动两个配合齿条(25)交替啮合,使得两个配合齿条(25)带动矩形框(17)往复滑动,矩形框(17)带动两个齿条(19)往复移动,两个齿条(19)带动两个齿轮(20)往复旋转,两个齿轮(20)带动两个环形齿条(21)往复旋转,两个环形齿条(21)带动两个圆板(7)往复旋转,两个圆板(7)分别带动两个摄像头(8)往复旋转,可以扩大监控范围;
    S2:启动电动推杆(16),在支撑杆(15)的支撑作用下,电动推杆(16)推动摄像头(8)发生角度翻转,可以调节垂直角度,进一步调节监控航拍角度;
    S3:完成航拍时,无人机本体(1)落到地面上,设置的缓冲腿(5)与地面接触,通过缓冲弹簧(4)可以起到缓冲作用,降低冲击力。
PCT/CN2020/110790 2020-08-24 2020-08-24 一种防撞型航拍无人机及其方法 WO2022040858A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106587.8A CN116670031A (zh) 2020-08-24 2020-08-24 一种防撞型航拍无人机及其方法
PCT/CN2020/110790 WO2022040858A1 (zh) 2020-08-24 2020-08-24 一种防撞型航拍无人机及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110790 WO2022040858A1 (zh) 2020-08-24 2020-08-24 一种防撞型航拍无人机及其方法

Publications (1)

Publication Number Publication Date
WO2022040858A1 true WO2022040858A1 (zh) 2022-03-03

Family

ID=80354314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110790 WO2022040858A1 (zh) 2020-08-24 2020-08-24 一种防撞型航拍无人机及其方法

Country Status (2)

Country Link
CN (1) CN116670031A (zh)
WO (1) WO2022040858A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455069A (zh) * 2022-03-30 2022-05-10 河南大学 一种运筹学教学用测绘无人机
CN115783323A (zh) * 2022-12-08 2023-03-14 常州大学怀德学院 一种遥感成像的航拍无人机
CN115866364A (zh) * 2022-12-20 2023-03-28 陕西省动物研究所 一种鼠情智能无线监测装置
CN115959310A (zh) * 2023-02-16 2023-04-14 黑龙江工程学院 一种遥感影像采集器械
CN115973416A (zh) * 2022-11-28 2023-04-18 国网安徽省电力有限公司马鞍山供电公司 一种大负载抗干扰无人机
CN116834994A (zh) * 2023-07-19 2023-10-03 中交路桥建设有限公司 一种无人机智能放样设备
CN117485619A (zh) * 2024-01-02 2024-02-02 山东九博智能装备有限公司 一种用于国土空间规划区域面积拍摄装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160072425A (ko) * 2014-12-15 2016-06-23 주식회사 펀진 무인항공기 관제시스템
CN205872454U (zh) * 2016-07-11 2017-01-11 安徽樵森电气科技股份有限公司 一种飞行器起落架及摄像装置
CN108341047A (zh) * 2017-12-31 2018-07-31 贵州大学 一种具有防遮挡的安全无人机
CN207725613U (zh) * 2018-01-16 2018-08-14 三峡大学 一种具有摄像功能的无人机
CN207759029U (zh) * 2018-01-23 2018-08-24 徐晓寅 一种多旋翼的变电站智能巡检无人机
CN210364379U (zh) * 2019-04-23 2020-04-21 常书增 一种油电混合海上救援无人机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427790B2 (en) * 2017-06-12 2019-10-01 David A. Verkade Adaptive aerial vehicle
CN108482658B (zh) * 2018-03-09 2020-05-08 芜湖翼讯飞行智能装备有限公司 一种摄像无人机
CN108545207B (zh) * 2018-04-16 2019-12-13 广州科测测绘技术有限公司 一种基于无人机航拍的近远程拍摄方法
US11453513B2 (en) * 2018-04-26 2022-09-27 Skydio, Inc. Autonomous aerial vehicle hardware configuration
CN210258818U (zh) * 2019-07-30 2020-04-07 河北徽尚科技有限公司 一种植保机械作业面积监测装置
CN110641720A (zh) * 2019-10-15 2020-01-03 黄娉 一种具有光线调节功能的安全性高的航拍无人机
CN211253069U (zh) * 2019-12-20 2020-08-14 深圳市联合光学技术有限公司 一种多轴无人机拍摄摄像稳定装置
CN112093047A (zh) * 2020-08-24 2020-12-18 唐山哈船科技有限公司 一种防撞型航拍无人机及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160072425A (ko) * 2014-12-15 2016-06-23 주식회사 펀진 무인항공기 관제시스템
CN205872454U (zh) * 2016-07-11 2017-01-11 安徽樵森电气科技股份有限公司 一种飞行器起落架及摄像装置
CN108341047A (zh) * 2017-12-31 2018-07-31 贵州大学 一种具有防遮挡的安全无人机
CN207725613U (zh) * 2018-01-16 2018-08-14 三峡大学 一种具有摄像功能的无人机
CN207759029U (zh) * 2018-01-23 2018-08-24 徐晓寅 一种多旋翼的变电站智能巡检无人机
CN210364379U (zh) * 2019-04-23 2020-04-21 常书增 一种油电混合海上救援无人机

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455069B (zh) * 2022-03-30 2024-03-26 河南大学 一种运筹学教学用测绘无人机
CN114455069A (zh) * 2022-03-30 2022-05-10 河南大学 一种运筹学教学用测绘无人机
CN115973416A (zh) * 2022-11-28 2023-04-18 国网安徽省电力有限公司马鞍山供电公司 一种大负载抗干扰无人机
CN115973416B (zh) * 2022-11-28 2024-04-02 国网安徽省电力有限公司马鞍山供电公司 一种大负载抗干扰无人机
CN115783323A (zh) * 2022-12-08 2023-03-14 常州大学怀德学院 一种遥感成像的航拍无人机
CN115783323B (zh) * 2022-12-08 2023-10-20 常州大学怀德学院 一种遥感成像的航拍无人机
CN115866364A (zh) * 2022-12-20 2023-03-28 陕西省动物研究所 一种鼠情智能无线监测装置
CN115866364B (zh) * 2022-12-20 2023-09-26 陕西省动物研究所 一种鼠情智能无线监测装置
CN115959310A (zh) * 2023-02-16 2023-04-14 黑龙江工程学院 一种遥感影像采集器械
CN116834994A (zh) * 2023-07-19 2023-10-03 中交路桥建设有限公司 一种无人机智能放样设备
CN116834994B (zh) * 2023-07-19 2023-12-19 中交路桥建设有限公司 一种无人机智能放样设备
CN117485619B (zh) * 2024-01-02 2024-03-15 山东九博智能装备有限公司 一种用于国土空间规划区域面积拍摄装置
CN117485619A (zh) * 2024-01-02 2024-02-02 山东九博智能装备有限公司 一种用于国土空间规划区域面积拍摄装置

Also Published As

Publication number Publication date
CN116670031A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2022040858A1 (zh) 一种防撞型航拍无人机及其方法
CN106892097B (zh) 一种用于路况监测的车载无人机
US11305875B2 (en) Mult-functional compartment
CN112093047A (zh) 一种防撞型航拍无人机及其方法
CN204433078U (zh) 云台及使用该云台的飞行器
CN107719688A (zh) 无人机降落时防震降落装置
CN106394919A (zh) 一种带有可调角度航拍摄像头且有收纳结构的旋翼无人机
WO2019007130A1 (zh) 一种起落架及具有此起落架的无人机
CN111874223A (zh) 一种用于测绘航拍无人机
CN111619783A (zh) 一种设有可折叠无人机支撑件的无人机
CN206750169U (zh) 一种无人机拍摄角度的调节机构
CN112693590B (zh) 一种防护可折叠式无人机躯干结构
CN215851972U (zh) 一种ai无人机测试平台
CN213769007U (zh) 一种具有减震机构的无人机机库
CN212500950U (zh) 一种救援无人机救生圈投放装置
CN113867316A (zh) 一种电动无人机导航飞控系统试验台
CN220243573U (zh) 一种带有保护结构的无人机
CN112124585A (zh) 一种基于无人机的电力巡检装置
CN110654537B (zh) 一种四旋翼无人机智能控制终端
CN110550197A (zh) 一种水空一体航拍设备
CN214112867U (zh) 一种基于无人机的电力巡检装置
CN216003105U (zh) 无人机夜视摄像机
CN217624153U (zh) 一种多镜头航空摄影稳定平台的固定板
CN211167459U (zh) 一种无人机用摄像设备固定装置
CN107416220A (zh) 一种无人机拍摄角度的调节机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202080106587.8

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 20950533

Country of ref document: EP

Kind code of ref document: A1