WO2022037660A1 - 聚酯树脂组合物及其成型品 - Google Patents

聚酯树脂组合物及其成型品 Download PDF

Info

Publication number
WO2022037660A1
WO2022037660A1 PCT/CN2021/113651 CN2021113651W WO2022037660A1 WO 2022037660 A1 WO2022037660 A1 WO 2022037660A1 CN 2021113651 W CN2021113651 W CN 2021113651W WO 2022037660 A1 WO2022037660 A1 WO 2022037660A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin composition
sodium
mass
parts
Prior art date
Application number
PCT/CN2021/113651
Other languages
English (en)
French (fr)
Inventor
汤先文
张乐臻
许峻睿
加藤公哉
大眉有纪年
朱文博
Original Assignee
东丽先端材料研究开发(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to CN202180003395.9A priority Critical patent/CN114391032A/zh
Publication of WO2022037660A1 publication Critical patent/WO2022037660A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester resin composition with high laser transmittance and a molded product thereof, which can be used as a transparent material in a laser welding process.
  • thermoplastic polyesters polybutylene terephthalate resins have excellent injection moldability, mechanical properties, heat resistance, chemical resistance and other properties, and are widely used in mechanical parts, electrical/communication parts, and automotive parts. Used as molded products. In recent years, in order to reduce the weight of products, the metal parts used in the past have been gradually replaced by resin composite materials. When resin composites are applied to electronic parts with complex product shapes, adhesives or bolts are usually used for connection. However, there is a problem in work efficiency when connecting using adhesives, bolts, or the like. On the other hand, although heat welding methods such as hot plate welding, vibration welding, and ultrasonic welding can complete the work in a short time, the influence on the appearance of the product is still a problem.
  • heat welding methods such as hot plate welding, vibration welding, and ultrasonic welding can complete the work in a short time, the influence on the appearance of the product is still a problem.
  • laser welding is a welding method that has high work efficiency and can maintain a good appearance of the product. Using laser light to irradiate a molded product composed of a transparent material and an absorbing material, heat energy can be transmitted between the transparent material and the absorbing material. The contact surface accumulated to the molten resin to achieve the purpose of bonding.
  • the processing condition window is narrow, and it is necessary to increase the laser power or irradiation rate during welding, or reduce the laser irradiation part.
  • the thickness of the molded part can achieve a good bonding effect.
  • increasing the laser power or irradiation rate may cause scorch and whitening on the surface of the material, and at the same time, the welding strength decreases.
  • Patent Document 1 describes a polyester mixture added with a basic fatty acid salt as a nucleating agent, which can improve the laser transmittance at 1064 nm of a resin test piece having a thickness of 2 mm.
  • the transmittance can also be improved by adding other resins with high laser transmittance.
  • Patent Document 2 describes that when a mixture of polybutylene terephthalate resin and polycarbonate is melt-kneaded, and a certain shear force is applied, a biphasic continuous structure with a structure period of 0.001 ⁇ m or more and less than 0.4 ⁇ m is formed.
  • a particle phase structure with a pitch of 0.001 ⁇ m or more and less than 0.4 ⁇ m since the polymer alloy has a dispersed structure shorter than the wavelength of visible light, the laser transmittance of the material can be improved.
  • Patent Document 3 describes a resin composition containing a polybutylene terephthalate resin, an amorphous resin, a styrene-based elastomer, and a phosphate stabilizer.
  • Patent Document 4 describes a polybutylene terephthalate resin, cyclohexane dimethylene terephthalate/ethylene terephthalate copolymer, reinforcing fibers, and methyl methacrylate/ Polyester resin composition of butyl acrylate copolymer.
  • Patent Document 5 describes a polybutylene terephthalate resin, a cyclohexane dimethylene terephthalate/ethylene terephthalate copolymer, a compound having three or more functional groups, and an inorganic Thermoplastic resin composition for laser welding of fillers.
  • Patent Document 1 International Publication No. WO2012/119996
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-336408
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-131692
  • Patent Document 4 Japanese Patent Laid-Open No. 2010-70626
  • Patent Document 5 Japanese Patent Laid-Open No. 2009-132861
  • An object of the present invention is to provide a polyester resin composition having high laser transmittance.
  • the present inventors have conducted intensive studies and found that by combining at least (A) a polybutylene terephthalate resin and (B) a polyester containing a cyclohexane dimethylene terephthalate unit
  • the resin and (C) sodium aliphatic carboxylate and/or sodium aromatic carboxylate are blended in a specific compounding ratio, and the resin composition thus constituted satisfies the following conditions, the laser transmittance of the resin composition can be improved , the conditions are:
  • the polyester resin composition was cooled from a molten state to 20°C at a cooling rate of 20°C/min, and then heated at a temperature increase rate of 20°C/min,
  • the temperature of the endothermic peak appearing during the temperature rise is 200°C or higher and 222°C or lower.
  • the present invention has been achieved.
  • the present invention is configured as follows.
  • the polyester resin composition was cooled down from a molten state to 20° C. at a cooling rate of 20° C./min, and then the temperature was increased at a rate of 20° C./min.
  • the temperature of the endothermic peak which appears during the temperature rise is 200°C or higher and 222°C or lower.
  • polyester resin composition according to (1) above further comprising (D) a compound having a functional group reactive with a carboxyl group.
  • X represents a divalent group represented by the general formula (2) or the general formula (3), and n represents a value greater than 0 and 10 or less;
  • R 1 , R 2 , R 4 , and R 5 may be the same or different, and each independently represents an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 6 carbon atoms. ⁇ 10 aryl group or C1 ⁇ 8 alkyl ether group; R 3 represents hydrogen atom, C1 ⁇ 8 alkyl group or C6 ⁇ 8 aryl group; a, c, d Each independently represents an integer of 0 to 4, and b represents an integer of 0 to 3.
  • polyester resin composition according to (1) above further comprising (E) a filler.
  • a polyester resin composition having high laser transmittance and suitable for a laser welding process and a molded product thereof can be provided.
  • FIG. 1 a is a plan view of a test piece for evaluating the laser transmittance of the polyester resin compositions of Examples and Comparative Examples
  • FIG. 1 b is a laser transmittance of the polyester resin compositions of Examples and Comparative Examples.
  • the (A) polybutylene terephthalate (PBT) resin serving as the matrix resin in the polyester resin composition of the present invention may be, for example, a homopolyester or a copolyester mainly composed of butylene terephthalate. polyester.
  • the monomers that can be copolymerized in the copolyester can be exemplified by dicarboxylic acids other than terephthalic acid, diols other than 1,4-butanediol, oxyacids or lactones, etc. .
  • Co-monomers may be used alone or in combination of two or more. Among them, the amount of the copolymerizable monomer is preferably 30 mol % or less of the total monomer amount.
  • the dicarboxylic acids other than terephthalic acid can be exemplified by aliphatic dicarboxylic acids (for example, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Undecyldicarboxylic acid, dodecyldicarboxylic acid, hexadecyldicarboxylic acid), alicyclic dicarboxylic acid (eg, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydrophthalic acid terephthalic acid), aromatic dicarboxylic acids (eg, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-dicarboxylic acid C8-16 aromatic dicarboxylic acids such as phenyl ether dicarboxylic acid, 4,4'-dipheny
  • the diols other than 1,4-butanediol can be exemplified by aliphatic alkylene glycols (for example, ethylene glycol, propylene glycol, pentanediol, neopentyl glycol, hexanediol, heptanediol, etc.) C2-12 alkane diols such as diol, octanediol, nonanediol, or decanediol, preferably C2-10 alkane diols), polyalkoxy diols (for example, diethylene glycol, dipropylene glycol, diethylene glycol, Butylene glycol, triethylene glycol, tripropylene glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol and other oxyalkyl group-containing glycols), aromatic glycols (for example, hydroquinone, resorcinol , C6-C14
  • the oxyacid can be exemplified by oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, or oxycaproic acid and other hydroxy acids and derivatives thereof.
  • the lactone may, for example, be propiolactone, butyrolactone, valerolactone, or C3-12 lactone such as caprolactone.
  • the intrinsic viscosity of the (A) polybutylene terephthalate resin in a solution of o-chlorophenol measured at 25°C is 0.36 to 3.0 dl/g, more preferably the intrinsic viscosity is 0.42 to 2.0 dl/g.
  • the polyester resin composition of the present invention two or more polybutylene terephthalate resins having different intrinsic viscosities can be used simultaneously, and preferably, the above-mentioned different intrinsic viscosities are all within the above-mentioned ranges.
  • the terminal carboxyl group content of the polybutylene terephthalate resin is preferably 50 meq/kg or less.
  • the terminal carboxyl group content of the (A) polybutylene terephthalate resin may be obtained by dissolving it in an o-cresol/chloroform solvent and then titrating it with ethanolated potassium hydroxide.
  • the polybutylene terephthalate resin can be produced by polymerizing by a conventional method (eg, transesterification, direct esterification, etc.).
  • the catalyst used for the transesterification reaction may be a conventionally known catalyst, such as a titanium compound, a tin compound, a magnesium compound, a calcium compound and the like. Among them, titanium compounds are particularly preferred. Specific examples of the titanium compound as a catalyst for transesterification include titanium alkoxides such as tetramethyl titanate, tetraisopropyl titanate, and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
  • Polyester containing cyclohexane dimethylene terephthalate unit refers to the product obtained by polymerizing terephthalic acid or terephthalic acid derivatives capable of forming an ester with 1,4-cyclohexane dimethanol. Homopolyesters or copolyesters of cyclohexanedimethylene terephthalate units.
  • examples of copolymerizable monomers include dicarboxylic acids other than terephthalic acid and dicarboxylic acids other than 1,4-cyclohexanedimethanol glycol.
  • Comonomers may be used alone or in combination of two or more.
  • Diols other than 1,4-cyclohexanedimethanol include aliphatic alkylene glycols (eg, ethylene glycol, propylene glycol, butanediol, pentanediol, neopentyl glycol, hexylene glycol, heptanediol alcohols, octanediol, nonanediol, decanediol or other C2-12 alkyl diols, preferably C2-10 alkyl diols), polyoxyalkylene diols (eg, diols with oxyalkylene units, such as Diethylene glycol, dipropylene glycol, dibutylene glycol, triethylene glycol, tripropylene glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol), cycloaliphatic diols (eg 1,2-cyclohexanediol) Alcohols, 1,3-cyclo
  • Dicarboxylic acids other than terephthalic acid may be exemplified by aliphatic dicarboxylic acids (eg, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid) Alkyl dicarboxylic acids, dodecyl dicarboxylic acids, hexadecyl dicarboxylic acids), alicyclic dicarboxylic acids (e.g., hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid) dicarboxylic acid), aromatic dicarboxylic acids (eg, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylmethane dicarbox
  • the polyester resin containing a cyclohexane dimethylene terephthalate unit is preferably terephthalate.
  • terephthalate Formic acid/1,4-cyclohexanedimethanol/ethylene glycol copolymer, terephthalic acid/1,4-cyclohexanedimethanol/2,2,4,4-tetramethyl-1,3-ring Any one or more of butanediol copolymer, terephthalic acid/isophthalic acid/1,4-cyclohexanedimethanol copolymer.
  • the molar ratio [(I)/(II)] of the other diol unit (I) and the 1,4-cyclohexanedimethanol unit (II) is preferably 1/99 to 99/1.
  • [(I)/(II)] is preferably 80/20 or less, more preferably 75/25 or less, still more preferably 50/ Below 50.
  • the lower limit is preferably 20/80 or more, more preferably 25/75 or more, and still more preferably 30/70 or more.
  • the glass transition temperature of (B) the polyester resin containing cyclohexane dimethylene terephthalate unit of this invention is 70 degreeC or more and 130 degrees C or less.
  • a polyester resin composition having high heat resistance and high transmittance can be obtained. More preferably, it is 75 degreeC or more, More preferably, it is 80 degreeC or more.
  • the upper limit is preferably 125°C or lower, more preferably 120°C or lower.
  • (B) contains a terephthalic acid ring with respect to 100 parts by mass of the (A) polybutylene terephthalate resin. Content of the polyester resin of a hexane dimethylene ester unit is 5-100 mass parts. Within this range, the laser transmittance and moldability of the polyester resin composition can be improved. Furthermore, (B) 20 mass parts or more are preferable and, as for the lower limit of content of the polyester resin containing a cyclohexane dimethylene terephthalate unit, 30 mass parts or more are more preferable. The upper limit of the content is preferably 70 parts by mass or less, and more preferably 60 parts by mass or less.
  • aliphatic sodium carboxylate it can be a linear or branched structure, and can also be a saturated or unsaturated structure. Specifically, sodium formate, sodium acetate, sodium propionate, sodium butyrate, sodium valerate, sodium caproate, sodium caprylate, sodium pelargonate, sodium caprate, sodium laurate, sodium myristate, and palmitic acid may be mentioned. Sodium, sodium heptadecanoate, sodium stearate, sodium behenate, sodium montanic acid and other saturated aliphatic sodium carboxylates having 1 to 50 carbon atoms, sodium oleic acid, linoleic acid Sodium, sodium linolenic, etc. Sodium unsaturated aliphatic carboxylate having 1 to 50 carbon atoms.
  • aliphatic sodium carboxylate and aromatic sodium carboxylate may be used alone or in combination of two or more.
  • the (C) sodium aliphatic carboxylate and/or sodium aromatic carboxylate is at least one selected from the group consisting of sodium salt of aliphatic carboxylic acid having 1 to 50 carbon atoms and sodium benzoate more preferably at least one selected from the group consisting of sodium propionate, sodium caprylate, sodium stearate and sodium montanate.
  • content of (C) sodium aliphatic carboxylate and/or sodium aromatic carboxylate is 0.05-5 mass parts with respect to 100 mass parts of (A) polybutylene terephthalate resin.
  • the content is preferably 0.2 parts by mass or more, and more preferably 0.4 parts by mass or more. On the other hand, it is preferably 3.0 parts by mass or less, and more preferably 2.5 parts by mass or less.
  • (D) a compound having a functional group reactive with a carboxyl group may be further added.
  • the compound having a functional group reactive with a carboxyl group (D) is preferably at least one selected from a carbodiimide compound, an epoxy compound, and an oxazoline compound.
  • the carbodiimide compound can be exemplified as N,N'-bis-o-tolylcarbodiimide, N,N'-diphenylcarbodiimide, N,N'-dioctyldecyl Carbodiimide, N,N'-di-2,6-dimethylphenylcarbodiimide, N,N'-di-2,6-diisopropylphenylcarbodiimide, N, N'-di-2,6-di-tert-butylphenylcarbodiimide, N,N'-di-p-nitrophenylcarbodiimide, N,N'-di-p-aminophenylcarbodiimide Diimide, N,N'-di-p-hydroxyphenylcarbodiimide, N,N'-di-cyclohexylcarbodiimide, N,N'-di-p-tolylcarbodiimide,
  • any one of a glycidyl ether compound, a glycidyl ester compound, a glycidyl amine compound, a glycidyl imide compound, or an alicyclic epoxy compound can be used.
  • the glycidyl ether compound can be exemplified by butyl glycidyl ether, octadecyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, o-phenylphenyl glycidyl ether, epoxy Ethane Lauryl Glycidyl Ether, Ethylene Oxide Phenol Glycidyl Ether, Ethylene Glycol Diglycidyl Ether, Polyethylene Glycol Diglycidyl Ether, Propylene Glycol Diglycidyl Ether, Polypropylene Glycol Diglycidyl Ether, Neopentyl Glycol Diglycidyl Ether, Polytetramethylene Glycol Diglycidyl Ether, Cyclohexanedimethanol Diglycidyl Ether, Glycerol Triglycidyl Ether, Trimethylolpropane Triglycid
  • the glycidyl ester compound may, for example, include glycidyl benzoate, glycidyl p-toluate, glycidyl cyclohexanecarboxylate, glycidyl stearate, glycidyl laurate, and glycidyl palmitate.
  • Glycerides branched alkane carboxylate glycidyl esters, glycidyl oleate, glycidyl linoleate, glycidyl linoleate, diglycidyl terephthalate, diglycidyl isophthalate, Diglycidyl phthalate, Diglycidyl naphthalene dicarboxylate, Diglycidyl dibenzoate, Diglycidyl methyl terephthalate, Diglycidyl hexahydrophthalate, Tetrahydrophthalate Diglycidyl phthalate, Diglycidyl cyclohexanedicarboxylate, Diglycidyl adipate, Diglycidyl succinate, Diglycidyl sebacate, Diglycidyl dodecanedione Glycidyl ester, octadecanedicarboxylic acid diglycidyl ester, trimellitic acid triglycid
  • the glycidyl amine compound can be exemplified by tetraglycidyl aminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, diglycidylaniline, diglycidyl Toluidine, Tetraglycidyl m-xylylenediamine, Diglycidyl Tribromoaniline, Tetraglycidyl Diaminomethyl Cyclohexane, Triglycidyl Cyanurate, or Triglycidyl Isocyanurate acid esters, etc.
  • the glycidyl imide compound can be exemplified by N-glycidyl phthalimide, N-glycidyl-4-methyl phthalimide, N-glycidyl phthalimide -4,5-Dimethylphthalimide, N-glycidyl-3-methylphthalimide, N-glycidyl-3,6-dimethylphthalimide Carboximide, N-glycidyl-4-ethoxyphthalimide, N-glycidyl-4-chlorophthalimide, N-glycidyl-4, 5-Dichlorophthalimide, N-glycidyl-3,4,5,6-tetrabromophthalimide, N-glycidyl-4-n-butyl-5 -Bromophthalimide, N-glycidylsuccinimide, N-glycidylhexahydrophthalimide, N-glycidyl-1,2,3,6-tetra Hydrogenated phthalimide, N
  • the alicyclic epoxy compound may, for example, be 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate, bis(3,4-epoxycyclohexylmethyl)hexane Diester, vinylcyclohexene diepoxide, N-methyl-4,5-epoxycyclohexane-1,2-dicarboxyimide, N-ethyl-4,5-ring Oxycyclohexane-1,2-dicarboxyimide, N-phenyl-4,5-epoxycyclohexane-1,2-dicarboxyimide, N-naphthyl-4,5 -Epoxycyclohexane-1,2-dicarboxyimide, N-tolyl-3-methyl-4,5-epoxycyclohexane-1,2-dicarboxyimide, etc.
  • epoxy compounds can also be used, and examples thereof include epoxy-modified fatty acid glycerides such as epoxidized soybean oil, epoxidized linseed oil, and epoxidized whale oil, phenol novolak-type epoxy resins, or A cresol novolak epoxy resin or the like is used as (D) a compound having a functional group reactive with a carboxyl group.
  • the epoxy equivalent of the above epoxy compound is preferably 100 to 1000 g/eq. Within this range, gas generation during melt processing can be suppressed, and the reaction with the carboxyl group of (A) polybutylene terephthalate can be efficiently performed. Furthermore, it is more preferable that the epoxy equivalent of an epoxy compound is 200 g/eq or more. About the upper limit, it is more preferable that it is 500 g/eq or less, and it is still more preferable that it is 400 g/eq or less.
  • the oxazoline compound can be exemplified by 2-methoxy-2-oxazoline, 2-ethoxy-2-oxazoline, 2-propoxy-2-oxazoline, 2-butane Oxy-2-oxazoline, 2-pentyloxy-2-oxazoline, 2-hexyloxy-2-oxazoline, 2-heptyloxy-2-oxazoline, 2-octyl Oxy-2-oxazoline, 2-nonyloxy-2-oxazoline, 2-decyloxy-2-oxazoline, 2-cyclopentyloxy-2-oxazoline, 2- Cyclohexyloxy-2-oxazoline, 2-allyloxy-2-oxazoline, 2-methylallyloxy-2-oxazoline, 2-phenoxy-2-oxaline oxazoline, 2-cresol-2-oxazoline, 2-o-ethylphenoxy-2-oxazoline, 2-o-propylphenoxy-2-oxazoline, 2-o-phenyl
  • the compound having a functional group reactive with a carboxyl group in the polyester resin composition of the present invention is preferably aliphatic Or at least one of aromatic glycidyl ether, aliphatic or aromatic glycidyl ester.
  • the compound having a functional group reactive with the carboxyl group is preferably at room temperature (25° C.). solid.
  • the compound (D) is preferably at least one epoxy resin selected from the group consisting of trisphenolmethane type, tetraphenolethane type, novolak type and naphthalene type. It is especially preferable to have a novolak-type epoxy resin represented by the following general formula (1).
  • R 1 , R 2 , R 4 and R 5 may be the same or different, and each independently represents an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • R 3 represents a hydrogen atom, an alkyl group of 1 to 8 carbon atoms or an aryl group of 6 to 8 carbon atoms; a, c, and d each independently represent an integer of 0 to 4, b represents an integer from 0 to 3.
  • (D) content of the compound which has a functional group reactive with a carboxyl group is preferable with respect to 100 mass parts of (A) polybutylene terephthalate resin, (D) content of the compound which has a functional group reactive with a carboxyl group.
  • the compound having a functional group capable of reacting with a carboxyl group can react with the terminal carboxyl group of the (A) polybutylene terephthalate resin, thereby suppressing (A) polybutylene terephthalate Butylene diester resin crystallizes to improve laser transmittance.
  • the content of the compound having a functional group reactive with a carboxyl group is more preferably 0.5 part by mass or more, and further preferably 1.0 part by mass or more. About the upper limit, it is more preferable that it is 3.5 mass parts or less, and it is still more preferable that it is 3.0 mass parts or less.
  • the (E) filler may be further added to the polyester resin composition of the present invention.
  • the (E) filler may be a filler commonly used in conventional resins.
  • the filler may also be a filler that is structurally hollow, and further, two or more of these fillers may be selected and used in combination.
  • the average diameter of the filler is not particularly limited, and in order to obtain a better appearance of the polyester resin composition, it is preferably 0.001 to 20 ⁇ m.
  • the filler is preferably at least one of glass fiber or carbon fiber.
  • the glass fiber is not particularly limited, and can be the glass fiber used in the prior art. Glass fibers may be chopped strands, rovings, or milled fibers that are cut to length. Generally, the glass fiber preferably used has an average diameter of 5 to 15 ⁇ m. In the case of using chopped strands, the length is not particularly limited, but it is preferable to use fibers with a standard length of 3 mm suitable for extrusion and kneading operations.
  • the cross-sectional shape of the above-mentioned fibrous fillers is not particularly limited, and any one or more of circular or flat fibers may be selected and used in combination.
  • the content of the filler (E) is preferably 100 parts by mass relative to the polybutylene terephthalate resin (A). 1 to 150 parts by mass. It is more preferable that it is 10 mass parts or more, and it is still more preferable that it is 30 mass parts or more. On the other hand, 100 parts by mass or less is more preferable, and 80 parts by mass or less is further preferable.
  • the filler (E) of the present invention can be used after treating its surface with a known coupling agent (eg, silane coupling agent, titanate coupling agent, etc.) or other surface treatment methods.
  • a known coupling agent eg, silane coupling agent, titanate coupling agent, etc.
  • glass fibers may be coated or bundled with thermoplastic resins such as ethylene/vinyl acetate copolymers or thermosetting resins such as epoxy resins, aminosilanes, and epoxysilanes.
  • one or more additives such as nucleating agents, plasticizers, anti-UV agents, transesterification inhibitors, mold release agents, flame retardants may also be added within the scope of not impairing the effects of the present invention.
  • colorants eg, pigments or dyes
  • lubricants eg, antistatic agents, antioxidants.
  • the nucleating agent examples include talc, kaolin, mica, wollastonite, silica, alumina, zirconia, titania, calcium sulfate, barium sulfate, and the like.
  • the content of the nucleating agent is preferably 0.05 to 5 parts by mass relative to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • the colorant it includes pigments and dyes.
  • dyes include dyes such as anthraquinones; specific examples of pigments include organic pigments such as phthalocyanine, azo compound, perone, anthraquinone, etc., as well as chromate, sulfide, silicate, carbonate, ferrocyanide, etc.
  • Inorganic pigments such as compounds.
  • organic pigments are preferably used as colorants.
  • the content of the colorant is preferably 0.01 to 10 parts by mass relative to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • the transesterification inhibitor is a compound that can be used to deactivate the transesterification catalyst in the resin containing (A) polybutylene terephthalate, and it is not particularly limited, but phosphite-based, phosphoric acid esters are preferred. series of compounds.
  • Examples of the phosphite-based compound include triphenyl phosphite, trinonylbenzene phosphite, tricresyl phosphite, trimethyl phosphite, triethyl phosphite, and tri( 2-ethylhexyl) ester, tridecyl phosphite, tris(dodecyl) phosphite, tris(tridecyl) phosphite, trioleyl phosphite, 2-ethylhexyl diphenyl Phosphite, diphenyl monodecyl phosphite, diphenyl mono(tridecyl) phosphite, phenyl didecyl phosphite, tris(dodecyl trithiophosphite) ) ester, diethyl phosphite, bis(2-ethy
  • the phosphate-based compound may, for example, be a compound represented by the following general formula (4).
  • R 6 is an alkyl group having 1 to 30 carbon atoms, and m is 1 or 2.
  • Specific examples of the compound represented by the general formula (4) include methyl phosphate, dimethyl phosphate, ethyl phosphate, diethyl phosphate, isopropyl phosphate, diisopropyl phosphate, butyl phosphate, Dibutyl phosphate, 2-ethylhexyl phosphate, di-2-ethylhexyl phosphate, octyl phosphate, dioctyl phosphate, isodecyl phosphate, diisodecyl phosphate, isodecyl phosphate Tridecyl Phosphate, Diisotridecyl Phosphate, n-Dodecyl Phosphate, Di(dodecyl) Phosphate, Octadecyl Phosphate, Di(Octadecyl) Phosphate ester, tetracosyl phosphate, bis(tetra
  • the phosphate-based compound is preferably octadecyl phosphate or di(octadecyl) phosphate.
  • These phosphate-based compounds may be used alone or in combination of two or more.
  • the compound of the above-mentioned phosphoric acid ester can also be used as a metal salt with zinc, aluminum, or the like.
  • the rate of deactivation using the phosphate-based compound is faster than when the phosphite-based compound is used, so it is preferable to use the phosphate-based compound.
  • the transesterification reaction inhibitor is excessively added, the (A) polybutylene terephthalate resin may be decomposed. Therefore, the ester
  • the content of the exchange reaction inhibitor is preferably 0.025 to 0.5 parts by mass.
  • the antioxidant is preferably at least one of phenolic antioxidants or sulfur antioxidants. In order to obtain more excellent heat resistance and thermal stability, it is preferable to use a phenolic antioxidant and a sulfur antioxidant in combination.
  • phenolic antioxidant examples include 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, 2,6-di-tert-butyl-p-cresol, ,6-di-tert-butyl-4-ethylphenol, 4,4'-butylenebis(6-tert-butyl-3-methylphenol), 2,2'-methylenebis(4-methylphenol) -6-tert-butylphenol), 2,2'-methylene-bis(4-ethyl-6-tert-butylphenol), octadecyl-3-(3',5'-di-tert-butyl) yl-4'-hydroxyphenyl)propionate, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxybenzene)]propionate], 1,1,3
  • sulfur-based antioxidants examples include dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, di(tridecyl) ) thiodipropionate, pentatetraalkyl (3-lauryl thiopropionate), or 2-mercaptobenzimidazole and the like.
  • antioxidants may be used alone or in combination because a combination of two or more antioxidants may produce a synergistic effect.
  • the content of the antioxidant is based on 100 parts by mass in total of (A) polybutylene terephthalate and (B) polyester resin containing cyclohexane dimethylene terephthalate units.
  • the content of the antioxidant is preferably 0.01-3 parts by mass. Within this range, the antioxidative effect can be maintained, and gas generation during melt processing can be suppressed.
  • the content is more preferably 0.05 part by mass or more, and still more preferably 0.1 part by mass or more.
  • the upper limit is preferably 2 parts by mass or less, and more preferably 1 part by mass or less.
  • the mold release agent is not particularly limited, and any mold release agent used for general thermoplastic resins can be used. Specifically, fatty acids, fatty acid metal salts, hydroxy fatty acids, fatty acid esters, partially saponified aliphatic esters, paraffins, low molecular weight polyolefins, fatty acid amides, alkylenebisfatty acid amides, aliphatic ketones, fatty acid lower Alcohol ester, fatty acid polyol ester, fatty acid polyglycol ester, or modified polysiloxane, etc.
  • the fatty acid is preferably a fatty acid having 6 to 40 carbon atoms, and specific examples thereof include oleic acid, lauric acid, stearic acid, hydroxystearic acid, behenic acid, arachidonic acid, Oleic acid, linolenic acid, ricinoleic acid, palmitic acid, stearic acid, montanic acid, or mixtures thereof and the like.
  • the fatty acid metal salt is preferably an alkali metal salt or an alkaline earth metal salt of a fatty acid having 6 to 40 carbon atoms, and specific examples thereof include calcium stearate, sodium montanate, calcium montanate, and the like.
  • hydroxy fatty acid 1, 2- hydroxy fatty acid etc. are mentioned.
  • fatty acid esters examples include stearic acid esters, oleic acid esters, linoleic acid esters, linolenic acid esters, adipic acid esters, behenic acid esters, arachidonic acid esters, and montanic acid. esters, isostearates, or esters of polymeric acids, etc.
  • the paraffin is preferably a paraffin having 18 or more carbon atoms, and examples thereof include liquid paraffin, natural paraffin, microcrystalline wax, petrolatum, and the like.
  • the low molecular weight polyolefin is preferably a low molecular weight polyolefin with a weight average molecular weight of less than 5000, specifically polyethylene wax, maleic acid modified polyethylene wax, oxidized polyethylene wax, and chlorinated polyethylene. wax, or polypropylene wax, etc.
  • the fatty acid amide is preferably a fatty acid amide having 6 or more carbon atoms, and specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, and the like.
  • the alkylene bis-fatty acid amide is preferably an alkylene bis-fatty acid amide having 6 or more carbon atoms, specifically, methylene bis-stearamide, ethylene-bis-stearamide, or N,N -Bis(2-hydroxyethyl)stearamide, etc.
  • the fatty acid lower alcohol ester is preferably a fatty acid lower alcohol ester having 6 or more carbon atoms, and specifically, ethyl stearate, butyl stearate, ethyl behenate, or rice Wax etc.
  • fatty acid polyol ester examples include glycerol monostearate, pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol adipate stearate, dipentaerythritol adipate stearate ester, or sorbitan monobehenate, etc.
  • the fatty acid polyglycol ester may, for example, be polyethylene glycol fatty acid ester or polypropylene glycol fatty acid ester.
  • modified polysiloxane methyl styryl modified polysiloxane, polyether modified polysiloxane, higher fatty acid alkoxy modified polysiloxane, higher fatty acid containing polysiloxane, higher fatty acid ester-modified polysiloxane, methacrylic acid-modified polysiloxane, or fluorine-modified polysiloxane, etc.
  • the above-mentioned flame retardant can also be exemplified as a chlorine-based flame retardant, including chlorinated paraffin, chlorinated polyethylene, perchlorocyclopentadecane, or tetrachlorophthalic anhydride, and the like.
  • the polyester resin composition of the present invention using a differential scanning calorimeter in a nitrogen environment, the polyester resin composition is cooled down from a molten state to 20°C at a cooling rate of 20°C/min.
  • the temperature of the endothermic peak (ie, defined herein as "melting point") during the temperature increase was performed at a temperature increase rate of 20°C/min and was 200°C or higher and 222°C or lower.
  • the phase of (A) polybutylene terephthalate resin and (B) polyester resin containing cyclohexane dimethylene terephthalate unit can be improved It is soluble, and a polyester resin composition having high transmittance and excellent heat resistance can be obtained.
  • the temperature range is more preferably 205°C or higher, further preferably 210°C or higher. On the other hand, it is more preferably 221°C or lower, and still more preferably 220°C or lower.
  • the temperature of the endothermic peak with the largest endothermic peak area was defined as the melting point.
  • the crystallinity of the (A) polybutylene terephthalate resin is preferably 20% or more and 45% or less. By making the crystallinity within this range, the composition can maintain a high transmittance while maintaining good mechanical strength. It is more preferably 25% or more, and further preferably 30% or more. The upper limit thereof is more preferably 42% or less, and further preferably 40% or less.
  • the manufacturing method of the polyester resin composition of this invention can be performed by a known method, and is not specifically limited.
  • a typical example is melt-kneading at a temperature of 100-350°C using a melt mixer such as a single-screw or twin-screw extruder, Banbury mixer or kneader, preferably in the temperature range of 200-300°C.
  • the screw composition used in the twin-screw extruder may be a combination of a conveying block and a kneading block, but in order to obtain the composition of the present invention, uniform kneading with a screw is required. Therefore, the ratio of the length of the kneading block to the total length of the screw is preferably in the range of 5 to 50%, more preferably in the range of 10 to 40%.
  • the resin composition of the present invention can be molded by known molding methods for thermoplastic resins such as injection molding, extrusion molding, blow molding, transfer molding, and vacuum molding to obtain a molded product.
  • the laser transmittance at a laser wavelength of 980 nm is preferably 40% or more for a 1 mm-thick molded sheet molded at a molding temperature of 260° C. and a mold temperature of 80° C. with the polyester resin composition of the present invention. More preferably, it is 50% or more, and still more preferably 60% or more.
  • the molded article As a molded article, it has the above-mentioned excellent laser transmittance and can be used as a transparent material for laser welding.
  • the thickness of the molded product is not particularly limited, but from the viewpoint of improving the laser light transmittance, the thickness of the laser-transmitting portion of the molded product is preferably 3 mm or less.
  • a molded product of the polyester resin composition of the present invention can be manufactured into products such as injection molded products, extruded products, blow molded products, films, sheets, and fibers, and can be specifically applied to, for example, automobile parts, electrical/ Electronic parts, building parts, various containers, daily necessities, household goods and medical and health products, etc., especially suitable for laser welding of automotive parts and electrical/electronic parts materials.
  • A-1) Polybutylene terephthalate resin with intrinsic viscosity of 0.74 dl/g and terminal carboxyl group content of 10 to 20 meq/kg (manufactured by Toray Industries, Ltd.)
  • A-2) Polybutylene terephthalate resin with intrinsic viscosity of 1.23 dl/g and terminal carboxyl group content of 20 to 30 meq/kg (manufactured by Toray Industries, Ltd.)
  • Polyester resins containing cyclohexane dimethylene terephthalate units are those containing different 1,4 cyclohexane dimethanol/ethylene glycol Unit composition ratio of the copolymer.
  • E-1 Chopped glass fiber (manufactured by Nippon Electric Glass Co., Ltd., trade name ECS03 T-187, average fiber diameter 13 ⁇ m, fiber length 3 mm)
  • the transmittance at a wavelength of 980 nm was measured using TMG-3 manufactured by LPKF.
  • the measurement area is the central portion (2) of the test piece, and the transmittance is the ratio of the amount of transmitted light to the amount of incident light expressed as a percentage.
  • Tm is the temperature corresponding to the peak tip of the endothermic peak during the second heating process.
  • ⁇ Hm is the endothermic peak area during the second heating process.
  • ⁇ Hcc is the exothermic peak area during the second heating process.
  • the extruder has 13 heating zones, two sets of feeding devices with measuring instruments and vacuum exhaust equipment. .
  • Example 9 and Comparative Examples 5 and 6 From the comparison between Example 9 and Comparative Examples 5 and 6, it can be seen that when the sodium carboxylate of component (C) is added, the transmittance is significantly improved. From the comparison between Example 9 and Comparative Examples 7 and 8, it can be seen that in the case of using other amorphous resins (PC, AS) instead of PCTG, the extruded polymer was severely decomposed and the samples could not be collected.
  • PC amorphous resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种激光透过率高,适用于激光焊接工艺的透过材料的聚酯树脂组合物,及该聚酯树脂组合物的成型品。所述聚酯树脂组合物至少由(A)聚对苯二甲酸丁二酯树脂100质量份、(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂5-100质量份、(C)脂肪族羧酸钠和/或芳香族羧酸钠0.05-5质量份配合而得到,并且,在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度为200℃以上且222℃以下。

Description

聚酯树脂组合物及其成型品 技术领域
本发明涉及一种高激光透过率的聚酯树脂组合物及其成型品,其能够适用于激光焊接工艺的透过材料。
背景技术
在热塑性聚酯中,聚对苯二甲酸丁二酯树脂具有出色的注塑成型性、机械性能、耐热性、耐化学性等性能,在机械零件、电气/通讯零件和汽车零件等领域被广泛用作模塑产品。近年来针对产品轻量化,过去常使用的金属部件逐渐被树脂复合材料所取代。而当树脂复合材料应用于复杂产品形状的电子零件时,通常需要使用粘合剂或螺栓等进行连接。但是使用粘合剂或螺栓等进行连接的情况下,作业效率有问题。另一方面,热板焊接、振动焊接、超声波焊接等热焊接方法虽然可以短时间完成作业,对产品外观的影响仍是问题。另一方面,激光焊接为一种作业效率高以及可以保持良好产品外观的焊接方法,利用激光照射由透过材料以及吸收材料所组合而成的成形品,能够使热能在透过材料以及吸收材料的接触面累积至熔融树脂,达到接合目的。
在一般树脂激光焊接应用中,因为聚对苯二甲酸丁二酯树脂对于激光的透射率低,因此加工条件窗口较窄,在焊接时需要提高激光功率或者照射速率,或者减小激光照射部的成型件厚度,才能达到良好的接合效果。但是提高激光功率或者照射速率可能会造成材料表面发生烧焦白化,同时熔接强度下降。
专利文献1记载了添加有作为成核剂的碱性脂肪酸盐的聚酯混合物,其可以提高2mm厚度的树脂试验片在1064nm的激光透过率。
此外,通过添加其他激光透过率高的树脂也可以提升透过率。专利文献 2记载了聚对苯二甲酸丁二酯树脂与聚碳酸酯混合物通过熔融混炼,施予一定剪切力情况下,形成结构周期为0.001μm以上且小于0.4μm双相连续结构时,或者形成间距为0.001μm以上且小于0.4μm的粒子相构造时,因为高分子合金具有比可见光的波长还短的分散构造,可以提高材料的激光透过率。
专利文献3记载了一种包含聚对苯二甲酸丁二酯树脂、非晶树脂、苯乙烯类弹性体、磷酸盐稳定剂的树脂组合物。
专利文献4记载了一种包含聚对苯二甲酸丁二酯树脂、对苯二甲酸环己烷二亚甲基酯/对苯二甲酸乙二酯共聚物、增强纤维以及甲基丙烯酸甲酯/丙烯酸丁酯共聚物的聚酯树脂组合物。
专利文献5记载了一种包含聚对苯二甲酸丁二酯树脂、对苯二甲酸环己烷二亚甲基酯/对苯二甲酸乙二酯共聚物、具有3个以上官能团的化合物以及无机填料的激光焊接用的热可塑性树脂组合物。
但是通过以上专利文献中的方法,还是难以获得高激光透过率的树脂组合物。
现有技术文献
专利文献
专利文献1:国际公开第WO2012/119996号
专利文献2:日本特开2005-336408公报
专利文献3:日本特开2007-131692公报
专利文献4:日本特开2010-70626公报
专利文献5:日本特开2009-132861公报
发明内容
本发明要解决的课题
本发明目的在于提供一种具备高激光透过率的聚酯树脂组合物。
用于解决课题的手段
鉴于上述课题,本发明人等经过深入研究后发现,通过至少将(A)聚对苯二甲酸丁二酯树脂、(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂、以及(C)脂肪族羧酸钠和/或芳香族羧酸钠以特定配合比配合,并且使由此构成的树脂组合物满足下述条件时,能够提高树脂组合物的激光透过率,所述条件为:
在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度为200℃以上且222℃以下。
由此,实现了本发明。具体而言,本发明为如下构成。
(1).一种聚酯树脂组合物,该聚酯树脂组合物至少由以下(A)~(C)配合而得到:
(A)聚对苯二甲酸丁二酯树脂100质量份、
(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂5~100质量份、
(C)脂肪族羧酸钠和/或芳香族羧酸钠0.05~5质量份,
并且,在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度为200℃以上且222℃以下。
(2).根据上述(1)记载的聚酯树脂组合物,其中,聚酯树脂组合物中的(A)聚对苯二甲酸丁二酯树脂的结晶度为20%以上且45%以下。
(3).根据上述(1)记载的聚酯树脂组合物,其中,(C)脂肪族羧酸钠和/或芳香族羧酸钠为选自具有1~50个碳原子的脂肪族羧酸的钠盐和苯甲酸钠中的至少一种。
(4).根据上述(1)记载的聚酯树脂组合物,其中,(C)脂肪族羧酸钠和/或芳香族羧酸钠为选自丙酸钠、辛酸钠、硬脂酸钠和蒙坦酸钠中的至少 一种。
(5).根据上述(1)记载的聚酯树脂组合物,其中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,(C)脂肪族羧酸钠和/或芳香族羧酸钠的含量为0.2~3.0质量份。
(6).根据上述(1)记载的聚酯树脂组合物,其中,进一步包含(D)具有能与羧基反应的官能团的化合物。
(7).根据上述(6)记载的聚酯树脂组合物,其中,所述(D)具有能与羧基反应的官能团的化合物为选自碳二亚胺化合物、环氧化合物及噁唑啉化合物中的至少一种。
(8).根据上述(6)记载的聚酯树脂组合物,其中,(D)具有能与羧基反应的官能团的化合物为选自脂肪族或芳香族的缩水甘油醚、或脂肪族或芳香族的缩水甘油酯中的至少一种。
(9).根据上述(6)记载的聚酯树脂组合物,其中,(D)具有能与羧基反应的官能团的化合物为下述通式(1)所示的酚醛清漆型环氧树脂,
Figure PCTCN2021113651-appb-000001
在所述通式(1)中,X表示由通式(2)或通式(3)表示的二价基团,n表示大于0且10以下的值;
在所述通式(1)和(3)中,R 1、R 2、R 4和R 5可以相同或不同,分别独立地表示碳原子数为1~8的烷基、碳原子数为6~10的芳基或碳原子数为1~8的烷基醚基;R 3表示氢原子、碳原子数1~8的烷基或碳原子数6~8的芳基;a、c、d分别独立地表示0~4的整数,b表示0~3的整数。
(10).根据上述(6)记载的聚酯树脂组合物,其中,相对于聚对苯二甲酸丁二酯树脂(A)100质量份,(D)具有能与羧基反应的官能团的化合物的含量为0.1~4质量份。
(11).根据上述(1)记载的聚酯树脂组合物,其中,还包含(E)填料。
(12).根据上述(11)所述的聚酯树脂组合物,其中,所述(E)填料为选自玻璃纤维和碳纤维中至少一种。
(13).根据上述(11)记载的聚酯树脂组合物,其中,相对于聚对苯二甲酸丁二酯树脂(A)100质量份,所述填料(E)的含量为1~150质量份。
(14).根据上述(1)记载的聚酯树脂组合物,其中,对于将所述聚酯树脂组合物在260℃的成型温度、80℃的模具温度下所成型的1mm厚的成型片而言,在980nm的激光波长下的激光透射率为40%以上。
(15).一种成型品,其由上述(1)~(14)中任一项记载的聚酯树脂组合物成型得到。
(16).根据上述(15)记载的成型品,其为用于激光焊接的透过材料。
(17).根据上述(16)记载的成型品,其成型品激光透过部位的厚度为3mm以下。
发明效果
根据本发明,能够提供一种具有高激光透过率、适用于激光焊接工艺的聚酯树脂组合物及其成型品。
附图说明
[图1]图1中,图1a是实施例及比较例的聚酯树脂组合物的激光透过率评价试验片的平面图,图1b是实施例及比较例的聚酯树脂组合物的激光透过率评价试验片的侧视图。
附图标记
1-角板主体
2-透过率测量部位
3-竖浇道
4-流道
5-浇口
具体实施方式
以下,对本发明进行详细的说明。
<聚酯树脂组合物>
在下文中,更详细地解释本发明的聚酯树脂组合物的成分。
(A)聚对苯二甲酸丁二酯树脂
本发明的聚酯树脂组合物中作为基质树脂的(A)聚对苯二甲酸丁二酯(PBT)树脂,可例举为以对苯二甲酸丁二酯为主成分的均聚酯或者共聚酯。
所述共聚酯中可以共聚的单体,可例举为除了对苯二甲酸之外的二羧酸、除了1,4-丁二醇之外的二元醇、含氧酸或内酯等。共聚性单体可以使用一种或者二种以上组合使用。其中,共聚性单体量优选为全部单体量的30mol%以下。
所述除对苯二甲酸之外的二羧酸,可例举为脂肪族二羧酸(例如,戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷基二羧酸、十二烷基二羧酸、十六烷基二羧酸)、脂环式二羧酸(例如,六氢邻苯二甲酸、六氢间苯二甲酸、六氢对苯二甲酸)、芳香族二羧酸(例如,邻苯二甲酸、间苯二甲酸、2,6-萘二甲酸、4,4’-二苯基二羧酸、4,4’-二苯基醚二羧酸、4,4’-二苯基甲烷二羧酸、或4,4’-二苯基酮二羧酸等C8-16芳香族二羧酸);另外,也可以根据需要混合使用苯偏三酸、苯均四酸等多元羧酸。
所述除1,4-丁二醇以外的二元醇,可例举为脂肪族亚烷基二醇(例如,乙二醇、丙二醇、戊二醇、新戊二醇、己二醇、庚二醇、辛二醇、壬二醇、或癸二醇等C2-12烷烃二醇,优选C2-10烷烃二醇)、聚烷氧基二醇(例如, 二乙二醇、二丙二醇、二丁二醇、三乙二醇、三丙二醇、聚乙二醇、聚丙二醇、聚丁二醇等含有氧烷基的二醇)、芳香族二醇(例如,对苯二酚、间苯二酚、萘二酚等的C6-C14的芳香族二醇、联苯酚、双酚类、苯二甲醇)等。另外,也可以根据需要混合使用丙三醇、三羟甲基丙烷、三羟甲基乙烷、或季戊四醇等多元醇。
所述含氧酸,可例举为含氧安息香酸、含氧萘甲酸、羟基苯乙酸、乙醇酸、或含氧己酸等羟酸及其衍生物。
所述内酯,可例举为丙内酯、丁内酯、戊内酯、或己内酯等C3-12内酯等。
为了兼顾树脂组合物的成型性和激光透过率两方面的性能,优选地,(A)聚对苯二甲酸丁二酯树脂在邻氯苯酚的溶液中、在25℃下测定的固有粘度为0.36~3.0dl/g,更优选其固有粘度为0.42~2.0dl/g。本发明的聚酯树脂组合物中,可以同时使用两种以上具有不同固有粘度的聚对苯二甲酸丁二酯树脂,优选地,上述的不同固有粘度均在上述范围内。
同时,为了提高(A)聚对苯二甲酸丁二酯树脂与(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂的兼容性和激光透过率,(A)聚对苯二甲酸丁二酯树脂的末端羧基含量优选在50meq/kg以下。这里,(A)聚对苯二甲酸丁二酯树脂的末端羧基含量可以是将其溶解于邻甲苯酚/氯仿溶剂后、用乙醇化氢氧化钾滴定而得到的。
(A)聚对苯二甲酸丁二酯树脂可以通过惯用的方法(例如酯交换、直接酯化法等)进行聚合来制备。
聚合制备(A)聚对苯二甲酸丁二酯树脂时,用于进行酯交换反应的催化剂可以是常规已知的催化剂,例如钛化合物、锡化合物、镁化合物、钙化合物等。其中,特别优选钛化合物。作为酯交换反应的催化剂的钛化合物的具体实例,可举出钛酸四甲酯、钛酸四异丙酯、钛酸四丁酯等醇钛,以及钛酸四苯酯等钛酚化物。
(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂
含有对苯二甲酸环己烷二亚甲基酯单元的聚酯是指,由对苯二甲酸或对苯二甲酸的可以形成酯的衍生物与1,4-环己烷二甲醇聚合得到含有对苯二甲酸环己烷二亚甲基酯单元的均聚酯或共聚酯。
含有对苯二甲酸环己烷二亚甲基酯单元的共聚酯中,可共聚单体的实例包括除对苯二甲酸以外的二羧酸和除1,4-环己烷二甲醇以外的二醇。共聚单体可单独使用或两种以上并用。
除1,4-环己烷二甲醇以外的二醇包括脂肪族亚烷基二醇(例如,乙二醇、丙二醇、丁二醇、戊二醇、新戊二醇、己二醇、庚二醇、辛二醇、壬二醇、癸二醇或其他C2-12烷基二醇、优选C2-10烷基二醇)、聚氧化烯二醇(例如,具有氧化烯单元的二醇,例如二甘醇、二丙二醇、二丁二醇、三甘醇、三丙二醇、聚乙二醇、聚丙二醇、聚丁二醇)、脂环族基团二元醇(例如1,2-环己二醇、1,3-环己二醇、1,4-环己二醇、螺二醇、1,3-环丁二醇、2,2,4,4-四甲基-1,3-环丁二醇、五环十五烷二甲醇)、芳香族二醇(对苯二酚、间苯二酚、萘二醇、联苯二酚或其他C6-C14芳香族二醇、双酚类或二甲苯乙二醇)等。
除对苯二甲酸之外的二羧酸,可例举为脂肪族二羧酸(例如,戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷基二羧酸、十二烷基二羧酸、十六烷基二羧酸)、脂环式二羧酸(例如,六氢邻苯二甲酸、六氢间苯二甲酸、六氢对苯二甲酸)、芳香族二羧酸(例如,邻苯二甲酸、间苯二甲酸、2,6-萘二甲酸、4,4’-二苯基二羧酸、4,4’-二苯基醚二羧酸、4,4’-二苯基甲烷二羧酸、或4,4’-二苯基酮二羧酸等C8-16芳香族二羧酸);另外,也可以根据需要混合使用苯偏三酸、苯均四酸等多元羧酸。
本发明中,从与(A)聚对苯二甲酸丁二酯树脂的兼容性方面考虑,(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂优选为对苯二甲酸/1,4-环己烷二甲醇/乙二醇共聚物、对苯二甲酸/1,4-环己烷二甲醇/2,2,4,4-四甲基- 1,3-环丁二醇共聚物、对苯二甲酸/间苯二甲酸/1,4-环己烷二甲醇共聚物中的任一种或多种。
另外,所述其它二醇单元(Ⅰ)和1,4-环己烷二甲醇单元(Ⅱ)的摩尔比[(Ⅰ)/(Ⅱ)]优选为1/99~99/1。从提高与(A)聚对苯二甲酸丁二酯的兼容性的观点考虑,[(Ⅰ)/(Ⅱ)]优选为80/20以下,更优选为75/25以下,进一步优选为50/50以下。关于其下限,优选为20/80以上,更优选为25/75以上,进一步优选为30/70以上。
此外,本发明的(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂的玻璃化转变温度优选为70℃以上且130℃以下。通过设定为该范围,可以获得具有高耐热性和高透过率的聚酯树脂组合物。更优选为75℃以上,进一步优选为80℃以上。关于其上限,优选为125℃以下,进一步为优选120℃以下。
为了提高成型品的激光透过率,优选地,本发明的聚酯树脂组合物中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂的含量为5~100质量份。在这个范围中,能够提高聚酯树脂组合物的激光透射率和成型加工性。进而,(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂的含量的下限值优选为20质量份以上,更优选为30质量份以上。关于所述含量的上限值,其优选为70质量份以下,更优选为60质量份以下。
(C)脂肪族羧酸钠,芳香族羧酸钠
对于所述脂肪族羧酸钠而言,可以是直链或支链的结构,同时也可以是饱和或不饱和的结构。具体而言,可举出甲酸钠、乙酸钠、丙酸钠、丁酸钠、戊酸钠、己酸钠、辛酸钠、壬酸钠、癸酸钠、月桂酸钠、肉荳蔻酸钠、棕榈酸钠、十七烷酸钠、硬脂酸钠、二十二酸钠、蒙坦酸钠(montanic acid)等具有1至50个碳原子的饱和脂肪族羧酸钠,油酸钠、亚油酸钠、亚麻酸钠等具有1至50个碳原子的不饱和脂肪族羧酸钠。
对于所述芳香族羧酸钠而言,可举出苯甲酸钠、对苯二甲酸二钠、4-叔丁基苯甲酸钠、水杨酸钠等。
上述脂肪族羧酸钠和芳香族羧酸钠可以单独使用或两种以上组合使用。
本发明中,优选地,所述(C)脂肪族羧酸钠和/或芳香族羧酸钠为选自具有1~50个碳原子的脂肪族羧酸的钠盐和苯甲酸钠中的至少一种,更优选为选自丙酸钠、辛酸钠、硬脂酸钠和蒙坦酸钠中的至少一种。
在本发明中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,(C)脂肪族羧酸钠和/或芳香族羧酸钠的含量为0.05~5质量份。通过控制在该范围内,可以提高聚酯树脂组合物的透射率,并且可以抑制树脂分解。该含量优选为0.2质量份以上,更优选为0.4质量份以上。另一方面,优选为3.0质量份以下,更优选为2.5质量份以下。
(D)具有能与羧基反应的官能团的化合物
本发明的聚酯树脂组合物中还可以进一步添加(D)具有能与羧基反应的官能团的化合物。
作为所述(D)具有能与羧基反应的官能团的化合物,优选为选自碳二亚胺化合物、环氧化合物和噁唑啉化合物中的至少一种。
所述碳二亚胺化合物,可例举为N,N’-二-邻甲苯基碳二亚胺、N,N’-二苯基碳二亚胺、N,N’-二辛基癸基碳二亚胺、N,N’-二-2,6-二甲基苯基碳二亚胺、N,N’-二-2,6-二异丙基苯基碳二亚胺,N,N’-二-2,6-二-叔丁基苯基碳二亚胺、N,N’-二-对硝基苯基碳二亚胺、N,N’-二-对氨基苯基碳二亚胺、N,N’-二-对羟基苯基碳二亚胺、N,N’-二-环己基碳二亚胺、N,N’-二-对甲苯基碳二亚胺、对亚苯基-双-二-邻甲苯基碳二亚胺、对亚苯基-双-二环己基碳二亚胺、六亚甲基-双-二环己基碳二亚胺、亚乙基-双-二苯基碳二亚胺、N,N’-苄基碳二亚胺、N-十八烷基-N’-苯基碳二亚胺、N-苄基-N’-苯基碳二亚胺、N-十八烷基-N’-甲苯基碳二亚胺、N-苯基-N’-甲苯基碳二亚胺、N-苄基-N’-甲苯基碳二亚胺、N-苯基-N’-甲苯基碳二亚胺、N,N’-二-邻乙基苯基碳二亚胺、N,N’-二-对乙基 苯基碳二亚胺、N,N’-二-邻异丙基苯基碳二亚胺、N,N’-二-对异丙基苯基碳二亚胺、N,N’-二-邻异丁基苯基碳二亚胺、N,N’-二-对异丁基苯基碳二亚胺、N,N’-二-2,6-二乙基苯基碳二亚胺、N,N’-二-2-乙基-6-异丙基苯基碳二亚胺、N,N’-二-2-异丁基-6-异丙基苯基碳二亚胺、N,N’-二-2,4,6-三甲基苯基碳二亚胺、N,N’-二-2,4,6-三异丙基苯基碳二亚胺、N,N’-二-2,4,6-三异丁基苯基碳二亚胺、N,N’-二异丙基碳二亚胺、或芳族聚碳二亚胺等。
所述环氧化合物,可使用缩水甘油醚化合物、缩水甘油酯化合物、缩水甘油基胺化合物、缩水甘油基酰亚胺化合物、或脂环式环氧化合物中的任一种。
所述缩水甘油醚化合物,可例举为丁基缩水甘油醚、十八烷基缩水甘油醚、烯丙基缩水甘油醚、苯基缩水甘油醚、邻-苯基苯基缩水甘油醚、环氧乙烷月桂基醇缩水甘油醚、环氧乙烷酚缩水甘油醚、乙二醇二缩水甘油醚、聚乙二醇二缩水甘油醚、丙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚、新戊二醇二缩水甘油醚、聚四亚甲基二醇二缩水甘油醚、环己烷二甲醇二缩水甘油醚、甘油三缩水甘油醚、三羟甲基丙烷三缩水甘油醚、季戊四醇多缩水甘油醚、由2,2-双-(4-羟基苯基)丙烷、2,2-双-(4-羟基苯基)甲烷、双-(4-羟基苯基)砜等双酚类与表氯醇的缩合反应得到的双酚A二缩水甘油醚型环氧树脂、双酚F二缩水甘油醚型环氧树脂、或双酚S二缩水甘油醚型环氧树脂等。
所述缩水甘油酯化合物,可例举为安息香酸缩水甘油酯、对-甲苯甲酸缩水甘油酯、环己烷羧酸缩水甘油酯、硬脂酸缩水甘油酯、月桂酸缩水甘油酯、棕榈酸缩水甘油酯、有支链烷烃羧酸缩水甘油酯、油酸缩水甘油酯、亚油酸缩水甘油酯、亚麻酸缩水甘油酯、对苯二甲酸二缩水甘油酯、间苯二甲酸二缩水甘油酯、邻苯二甲酸二缩水甘油酯、萘二羧酸二缩水甘油酯、双安息香酸二缩水甘油酯、甲基对苯二甲酸二缩水甘油酯、六氢化邻苯二甲酸二缩水甘油酯、四氢化邻苯二甲酸二缩水甘油酯、环己烷二羧酸二缩水甘油酯、己 二酸二缩水甘油酯、琥珀酸二缩水甘油酯、癸二酸二缩水甘油酯、十二烷二酮酸二缩水甘油酯、十八碳烷二羧酸二缩水甘油酯、偏苯三酸三缩水甘油酯、或均苯四酸四缩水甘油酯等。
所述缩水甘油基胺化合物,可例举为四缩水甘油基氨基二苯基甲烷、三缩水甘油基-对氨基苯酚、三缩水甘油基-间氨基苯酚、二缩水甘油基苯胺、二缩水甘油基甲苯胺、四缩水甘油基间二甲苯二胺、二缩水甘油基三溴苯胺、四缩水甘油基二氨基甲基环己烷、三缩水甘油基氰尿酸酯、或三缩水甘油基异氰尿酸酯等。
所述缩水甘油基酰亚胺化合物,可例举为N-缩水甘油基邻苯二甲酰亚胺、N-缩水甘油基-4-甲基邻苯二甲酰亚胺、N-缩水甘油基-4,5-二甲基邻苯二甲酰亚胺、N-缩水甘油基-3-甲基邻苯二甲酰亚胺、N-缩水甘油基-3,6-二甲基邻苯二甲酰亚胺、N-缩水甘油基-4-乙氧基邻苯二甲酰亚胺、N-缩水甘油基-4-氯代邻苯二甲酰亚胺、N-缩水甘油基-4,5-二氯代邻苯二甲酰亚胺、N-缩水甘油基-3,4,5,6-四溴邻苯二甲酰亚胺、N-缩水甘油基-4-正丁基-5-溴邻苯二甲酰亚胺、N-缩水甘油基琥珀酰亚胺、N-缩水甘油基六氢化邻苯二甲酰亚胺、N-缩水甘油基-1,2,3,6-四氢化邻苯二甲酰亚胺、N-缩水甘油基马来酰亚胺、N-缩水甘油基-α,β-二甲基琥珀酰亚胺、N-缩水甘油基-α-乙基琥珀酰亚胺、N-缩水甘油基-α-丙基琥珀酰亚胺、N-缩水甘油基苯甲酰胺、N-缩水甘油基-p-甲基苯甲酰胺、N-缩水甘油基萘酰胺、或N-缩水甘油基硬脂酰胺等。其中,进一步优选N-缩水甘油基邻苯二甲酰亚胺。
所述脂环式环氧化合物,可例举为3,4-环氧环己基甲基-3,4-环氧环己基羧酸酯、双(3,4-环氧环己基甲基)己二酸酯、乙烯基环己烯二环氧化物、N-甲基-4,5-环氧环己烷-1,2-二羧酸酰亚胺、N-乙基-4,5-环氧环己烷-1,2-二羧酸酰亚胺、N-苯基-4,5-环氧环己烷-1,2-二羧酸酰亚胺、N-萘基-4,5-环氧环己烷-1,2-二羧酸酰亚胺、N-甲苯基-3-甲基-4,5-环氧环己烷-1,2-二羧酸酰亚胺等。
另外,也可使用其他环氧化合物,可例举为环氧化大豆油、环氧化亚麻 籽油、环氧化鲸油等环氧改性脂肪酸甘油酯、苯酚酚醛清漆型环氧树脂、或甲酚酚醛清漆型环氧树脂等作为(D)具有能与羧基反应的官能团的化合物。
以上环氧化合物的环氧当量优选为100~1000g/eq。在此范围内,能抑制熔融加工时气体发生,同时与(A)聚对苯二甲酸丁二酯的羧基有效地进行反应。进而,环氧化合物的环氧当量更优选为200g/eq以上。关于其上限,更优选为500g/eq以下,进一步优选为400g/eq以下。
所述噁唑啉化合物,可例举为2-甲氧基-2-噁唑啉、2-乙氧基-2-噁唑啉、2-丙氧基-2-噁唑啉、2-丁氧基-2-噁唑啉、2-戊氧基-2-噁唑啉、2-己基氧基-2-噁唑啉、2-庚基氧基-2-噁唑啉、2-辛基氧基-2-噁唑啉、2-壬基氧基-2-噁唑啉、2-癸基氧基-2-噁唑啉、2-环戊氧基-2-噁唑啉、2-环己氧基-2-噁唑啉、2-烯丙基氧基-2-噁唑啉、2-甲基烯丙基氧基-2-噁唑啉、2-苯氧基-2-噁唑啉、2-甲酚基-2-噁唑啉、2-邻乙基苯氧基-2-噁唑啉、2-邻丙基苯氧基-2-噁唑啉、2-邻苯基苯氧基-2-噁唑啉、2-间乙基苯氧基-2-噁唑啉、2-间丙基苯氧基-2-噁唑啉、2-对苯基苯氧基-2-噁唑啉、2-甲基-2-噁唑啉、2-乙基-2-噁唑啉、2-丙基-2-噁唑啉、2-丁基-2-噁唑啉、2-戊基-2-噁唑啉、2-己基-2-噁唑啉、2-庚基-2-噁唑啉、2-辛基-2-噁唑啉、2-壬基-2-噁唑啉、2-癸基-2-噁唑啉、2-环戊基-2-噁唑啉、2-环己基-2-噁唑啉、2-烯丙基-2-噁唑啉、2-甲基烯丙基-2-噁唑啉、2-巴豆基-2-噁唑啉、2-苯基-2-噁唑啉、2-邻乙基苯基-2-噁唑啉、2-邻丙基苯基-2-噁唑啉、2-邻苯基苯基-2-噁唑啉、2-间乙基苯基-2-噁唑啉、2-间丙基苯基-2-噁唑啉、2-对苯基苯基-2-噁唑啉等,还可列举2,2’-双(2-噁唑啉)、2,2’-双(4-甲基-2-噁唑啉)、2,2’-双(4,4’-二甲基-2-噁唑啉)、2,2’-双(4-乙基-2-噁唑啉)、2,2’-双(4,4’-二乙基-2-噁唑啉)、2,2’-双(4-丙基-2-噁唑啉)、2,2’-双(4-丁基-2-噁唑啉)、2,2’-双(4-己基-2-噁唑啉)、2,2’-双(4-苯基-2-噁唑啉)、2,2’-双(4-环己基-2-噁唑啉)、2,2’-双(4-苄基-2-噁唑啉)、2,2’-对亚苯基双(2-噁唑啉)、2,2’-间亚苯基双(2-噁唑啉)、2,2’-邻亚苯基双(2-噁唑啉)、2,2’-对亚苯基双(4-甲基-2-噁唑啉)、2,2’-对亚苯基双(4,4’-二甲基-2- 噁唑啉)、2,2’-间亚苯基双(4-甲基-2-噁唑啉)、2,2’-间亚苯基双(4,4’-二甲基-2-噁唑啉)、2,2’-乙烯双(2-噁唑啉)、2,2’-四亚甲基双(2-噁唑啉)、2,2’-六亚甲基双(2-噁唑啉)、2,2’-八亚甲基双(2-噁唑啉)、2,2’-十亚甲基双(2-噁唑啉)、2,2’-亚乙基双(4-甲基-2-噁唑啉)、2,2’-四亚甲基双(4,4’-二甲基-2-噁唑啉)、2,2’,9,9’-二苯氧基乙烷双(2-噁唑啉)、2,2’-环亚己基双(2-噁唑啉)、2,2’-二亚苯基双(2-噁唑啉),或以上述化合物作为单体单元的聚噁唑啉化合物(如苯乙烯·2-异丙烯基-2-噁唑啉共聚物)等。
从与(A)聚对苯二甲酸丁二酯树脂的末端羧基的反应性的方面考虑,本发明的聚酯树脂组合物中的(D)具有能与羧基反应的官能团的化合物优选为脂肪族或芳香族的缩水甘油醚、脂肪族或芳香族的缩水甘油酯中的至少一种。
从与(A)聚对苯二甲酸丁二酯树脂的末端羧基反应性高、且挥发性低的观点出发,(D)具有能与羧基反应的官能团的化合物优选在室温(25℃)时为固体。进而,所述(D)化合物优选为选自三酚甲烷型、四酚乙烷型、酚醛清漆型和萘型中的至少一种环氧树脂。特别优选为具有由以下通式(1)所示的酚醛清漆型环氧树脂。
Figure PCTCN2021113651-appb-000002
(在上述通式(1)中,X表示由通式(2)或通式(3)表示的二价基团,n表示大于0且10以下的值;在上述通式(1)和(3)中,R 1、R 2、 R 4和R 5可以相同或不同,分别独立地表示碳原子数为1~8的烷基、碳原子数为6~10的芳基或碳原子数为1~8的烷基醚基;R 3表示氢原子、碳原子数1~8的烷基或碳原子数6~8的芳基;a、c、d分别独立地表示0~4的整数,b表示0~3的整数。)
本发明中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,(D)具有能与羧基反应的官能团的化合物的含量优选为0.1~4质量份。通过控制在该范围内,(D)具有能够与羧基反应的官能团的化合物可与(A)聚对苯二甲酸丁二酯树脂的末端羧基发生反应,进而能够抑制(A)聚对苯二甲酸丁二酯树脂结晶,来提高激光透射率。(D)具有能与羧基反应的官能团的化合物的含量更优选为0.5质量份以上,进一步优选为1.0质量份以上。关于其上限,更优选为3.5质量份以下,进一步优选为3.0质量份以下。
(E)填料
本发明的聚酯树脂组合物中还可以进一步添加(E)填料。(E)填料只要是现有技术的树脂中常使用的填料即可。例如玻璃纤维、碳纤维、钛酸钾晶须、锌晶须氧化物、硼酸铝晶须、芳族聚酰胺纤维、氧化铝纤维、碳化硅纤维、陶瓷纤维、石棉纤维、石膏纤维、金属纤维、玻璃薄片、硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶蜡石、膨润土、蒙脱石、锂蒙脱石、合成云母、石棉、石墨、硅铝酸盐、氧化铝、二氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃微珠、空心玻璃微珠、陶瓷珠、氮化硼、碳化硅或硅灰石等。所述填料也可以是结构上是中空的填料,更进一步,也可以从这些填料中选择2种或更多种配合使用。填料的平均直径不做特别限制,为了使聚酯树脂组合物获得更好的外观,优选0.001~20μm。
特别地,出于对低成型收缩率和高流动性的综合考虑,为了获得性能优异的聚酯树脂组合物,所述填料优选玻璃纤维或碳纤维中的至少一种。所述玻璃纤维没有特定的限制,可以是现有技术中采用的玻璃纤维。玻璃纤维可 以是定长切断的短切原丝、粗纱、或研磨纤维等形状的纤维。一般情况下优选使用的玻璃纤维的平均直径为5~15μm。使用短切原丝的情况下,长度没有特别限制,优选使用适合挤出混炼作业的标准3mm长度的纤维。此外,本发明对上述纤维状填料的截面形状没有特别的限定,可以从圆形、或扁平状纤维中选择任意一种或多种配合使用。
为了提高材料机械强度,同时维持高透过率,本发明聚酯树脂组合物中,相对于聚对苯二甲酸丁二酯树脂(A)100质量份,所述(E)填料的含量优选为1~150质量份。更优选为10质量份以上,进一步优选为30质量份以上。另一方面,更优选100质量份以下,并且进一步优选80质量份以下。
本发明的(E)填料,可以用已知的偶联剂(例如,硅烷偶联剂、钛酸酯偶联剂等)处理表面或其他表面处理方法处理后使用。此外玻璃纤维也可以用例如乙烯/乙酸乙烯酯共聚物之类的热塑性树脂或环氧树脂、氨基硅烷、环氧硅烷等热固性树脂进行涂布或捆束处理。
(F)其他添加剂
在本发明中,在不损害本发明效果的范围内,还可以添加一种或多种添加剂,如成核剂、增塑剂、抗UV剂、酯交换抑制剂、脱模剂、阻燃剂、着色剂(例如,颜料或染料)、润滑剂、抗静电剂、抗氧化剂。
作为所述成核剂,可举出滑石、高岭土、云母、硅灰石、二氧化硅、氧化铝、氧化锆、氧化钛、硫酸钙或硫酸钡等。本发明聚酯树脂组合物中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,成核剂的含量优选为0.05~5质量份。
作为所述着色剂,其包括颜料和染料。染料具体可列举蒽醌类等染料;颜料具体可列举酞菁、偶氮化物、紫环酮、蒽醌等有机颜料,以及铬酸盐、硫化物、硅酸盐、碳酸盐、亚铁氰化物等无机颜料。对于激光透过材料而言,优选使用有机颜料作为着色剂。本发明聚酯树脂组合物中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,着色剂的含量优选为0.01~10质量份。
所述酯交换抑制剂是可以用于使包含(A)聚对苯二甲酸丁二酯树脂中的酯交换反应催化剂失活的化合物,对它没有特别限制,但优选亚磷酸酯系、磷酸酯系的化合物。
作为所述亚磷酸酯系的化合物,可举出亚磷酸三苯酯、三壬基苯亚磷酸酯、三甲苯基亚磷酸酯、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三(2-乙基己基)酯、十三烷基亚磷酸酯、亚磷酸三(十二烷基)酯、亚磷酸三(十三烷)酯、亚磷酸三油酯、2-乙基己基二苯基亚磷酸酯、亚磷酸二苯基单十烷基酯、二苯基单(十三烷基)亚磷酸酯、苯基二癸基亚磷酸酯、三硫代亚磷酸三(十二烷基)酯、亚磷酸二乙酯、双(2-乙基己基)亚磷酸酯、亚磷酸二(十二烷基)酯、二油酰基氢亚磷酸酯、亚磷酸二苯酯、四苯基二丙二醇二亚磷酸酯、四(十二-十五烷基)-4,4'-异亚丙基二苯基二亚磷酸酯、4,4'-亚丁基双-(3-甲基-6-叔丁苯基)-四(十三烷基)二亚磷酸酯、双(癸基)季戊四醇二亚磷酸酯、双(十三烷基)季戊四醇二亚磷酸酯、亚磷酸三(十八烷基)酯、二(十八烷基)季戊四醇二亚磷酸酯、亚磷酸三(2,4-二叔丁苯基)酯、氢化双酚A苯酚基亚磷酸酯聚合物、四苯基四(十三烷基)季戊四醇四亚磷酸酯、四(十三烷基)4,4'-异亚丙基二苯基二亚磷酸酯、双(壬基苯基)季戊四醇二亚磷酸酯、二月桂基季戊四醇二亚磷酸酯、三(4-叔丁基苯基)亚磷酸酯、三(2,4-二叔丁基苯基)亚磷酸酯、氢化双酚A季戊四醇亚磷酸酯聚合物、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯、双(2,6-二叔丁基-4-甲基苯基)季戊四醇二亚磷酸酯、双(2-叔丁基苯基)苯基亚磷酸酯、双(2,4,6-三叔丁基苯基)季戊四醇二亚磷酸酯、2,2'-亚甲基双(4,6-二叔丁基苯基)-2-乙基己基亚磷酸酯、2,2'-亚甲基双(4,6-二叔丁基苯基)辛基亚磷酸酯、双(2,4-二枯基苯基)季戊四醇二亚磷酸酯、或四(2,4-二叔丁基苯基)-4,4'-亚联苯基二亚磷酸酯等化合物中的一种或多种。
所述磷酸酯系的化合物,可例举为下述通式(4)所示的化合物。
Figure PCTCN2021113651-appb-000003
((4)中,R 6为碳原子数1-30的烷基,m为1或2。)
作为上述通式(4)所示化合物,具体可举出磷酸甲酯、二甲基磷酸酯、磷酸乙酯、磷酸二乙酯、磷酸异丙酯、二异丙基磷酸酯、磷酸丁酯、二丁基磷酸酯、2-乙基己基酸磷酸酯、二-2-乙基己基酸磷酸酯、磷酸辛酯、二辛基磷酸酯、磷酸异癸基酯、二异癸基磷酸酯、异十三烷基酸磷酸酯、二异十三烷基磷酸酯、正十二烷基磷酸酯、二(十二烷基)磷酸酯、磷酸十八烷基酯、二(十八烷基)磷酸酯、二十四烷基磷酸酯、二(二十四烷基)磷酸酯、油酸磷酸酯、二油酸磷酸酯等。其中,优选所述磷酸酯系的化合物为磷酸十八烷基酯或二(十八烷基)磷酸酯。这些磷酸酯系化合物可以单独使用一种,也可以组合使用两种以上。另外,上述磷酸酯类的化合物也可以与锌或铝等形成金属盐使用。
针对酯交换反应的催化剂失活,使用磷酸酯系化合物使之失活的速率较使用亚磷酸酯系化合物时更快,因此优选使用磷酸酯系化合物。另外,酯交换反应抑制剂如果过量加入时,可能导致(A)聚对苯二甲酸丁二酯树脂分解,因此相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述酯交换反应抑制剂的含量优选为0.025~0.5质量份。
所述抗氧化剂优选为酚类抗氧化剂或硫类抗氧化剂中的至少一种。为了获得更优的耐热性和热稳定性,优选并用酚类抗氧化剂和硫类抗氧化剂。
作为所述酚类抗氧化剂,可以列举出如2,4-二甲基-6-叔丁基苯酚、2,6-二叔丁基苯酚、2,6-二叔丁基对甲酚、2,6-二叔丁基-4-乙基苯酚、4,4'-亚丁基双(6-叔丁基-3-甲基苯酚)、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2'-亚甲基-双(4-乙基-6-叔丁基苯酚)、十八烷基-3-(3',5'-二叔丁基-4'-羟基苯)丙酸酯、季戊四醇四[3-(3,5-二叔丁基-4-羟基苯)]丙酸酯]、1,1,3-三(2-甲基-4-羟基-5-二叔丁基苯基)丁烷、三(3,5-二叔丁基-4-羟基苄)异氰脲酸酯、 三甘醇-双[3-(3-叔丁基-4-羟基-5-甲基苯)丙酸酯]、1,6-己二醇双[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]、2,4-双(正辛基硫代)-6-(4-羟基-3,5-二叔丁基苯胺基)-1,3,5-三嗪、2,2-硫代二乙烯双[3-(3,5-二叔丁基-4-羟基苯)丙酸酯]、N,N'-六亚甲基双(3,5-二叔丁基-4-羟基氢化肉桂酰胺)、3,5-二叔丁基-4-羟基苄基膦酸二乙酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄)苯、三(3,5-二叔丁基-4-羟基苄基)异氰脲酸酯、2,4-双[(辛基硫代)甲基]邻甲酚、或异辛基-3-(3,5-二叔丁基-4-羟基苯)丙酸酯等。
作为所述硫类抗氧化剂,可以列举出如二月桂基硫代二丙酸酯、二肉豆蔻基硫代二丙酸酯、二硬脂基硫代二丙酸酯、二(十三烷基)硫代二丙酸酯、季戊四烷基(3-月桂基硫代丙酸酯)、或2-巯基苯并咪唑等。
以上所述的抗氧化剂,既可单独使用,同时由于将两种以上的抗氧化剂组合可能产生协同效果,也可多种并用。
关于所述抗氧化剂的含量,相对于(A)聚对苯二甲酸丁二酯和(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂合计100质量份而言,所述抗氧化剂的含量优选为0.01-3质量份。在此范围内,可以维持抗氧化的效果,同时可以抑制熔融加工中的气体发生。该含量更优选为0.05质量份以上,进一步优选为0.1质量份以上。关于上限,优选为2质量份以下,进一步优选为1质量份以下。
所述脱模剂没有特别的限制,凡是用于通常热塑性树脂的脱模剂都可以使用。具体地,可例举为脂肪酸、脂肪酸金属盐、羟基脂肪酸、脂肪酸酯、脂肪族部分皂化酯、链烷烃、低分子量聚烯烃、脂肪酸酰胺、亚烷基双脂肪酸酰胺、脂肪族酮、脂肪酸低级醇酯、脂肪酸多元醇酯、脂肪酸聚二元醇酯、或改性聚硅氧烷等。
作为所述脂肪酸,优选为碳原子数为6~40的脂肪酸,具体地可例举为油酸、月桂酸、硬脂酸、羟基硬脂酸、二十二烷酸、花生四烯酸、亚油酸、亚麻酸、蓖麻醇酸、棕榈酸、硬脂酸、蒙坦酸、或它们的混合物等。
作为所述脂肪酸金属盐,优选碳原子数为6~40的脂肪酸的碱金属盐或碱土类金属盐,具体地可例举为硬脂酸钙、蒙坦酸钠、或蒙坦酸钙等。
作为所述羟基脂肪酸,可例举为1,2-羟基脂肪酸等。
作为所述脂肪酸酯,可例举为硬脂酸酯、油酸酯、亚油酸酯、亚麻酸酯、己二酸酯、二十二烷酸酯、花生四烯酸酯、蒙坦酸酯、异硬脂酸酯、或聚合酸的酯等。
作为所述脂肪族部分皂化酯,可例举为蒙坦酸部分皂化酯等。
所述链烷烃优选为碳原子数为18以上的链烷烃,可例举为液体石蜡、天然石蜡、微晶蜡、或矿脂等。
所述低分子量聚烯烃优选为重均分子量为5000以下的低分子量聚烯烃,具体地可例举为聚乙烯蜡、马来酸改性聚乙烯蜡、氧化型聚乙烯蜡、氯化型聚乙烯蜡、或聚丙烯蜡等。
所述脂肪酸酰胺优选为碳原子数为6以上的脂肪酸酰胺,具体地可例举为油酸酰胺、芥酸酰胺、或二十二烷酸酰胺等。
所述亚烷基双脂肪酸酰胺优选为碳原子数为6以上的亚烷基双脂肪酸酰胺,具体地可例举为亚甲基双硬脂酰胺、亚乙基双硬脂酰胺、或N,N-双(2-羟乙基)硬脂酰胺等。
作为所述脂肪族酮,可例举为高级脂肪族酮等。
作为所述脂肪酸低级醇酯,优选为碳原子数为6以上的脂肪酸低级醇酯,具体地可例举为硬脂酸乙酯、硬脂酸丁酯、二十二烷酸乙酯、或米蜡等。
作为所述脂肪酸多元醇酯,可例举为甘油单硬脂酸酯、季戊四醇单硬脂酸酯、季戊四醇四硬脂酸酯、季戊四醇己二酸硬脂酸酯、二季戊四醇己二酸硬脂酸酯、或脱水山梨糖醇单二十二烷酸酯等。
作为所述脂肪酸聚二元醇酯,可例举为聚乙二醇脂肪酸酯或聚丙二醇脂肪酸酯。
作为所述改性聚硅氧烷,可例举为甲基苯乙烯基改性聚硅氧烷、聚醚改 性聚硅氧烷、高级脂肪酸烷氧基改性聚硅氧烷、含高级脂肪酸的聚硅氧烷、高级脂肪酸酯改性聚硅氧烷、甲基丙烯酸改性聚硅氧烷、或氟改性聚硅氧烷等。
作为所述阻燃剂可以例举为基于溴的阻燃剂,包括十溴二苯醚、八溴二苯基醚、四溴二苯基醚、四溴邻苯二甲酸酐、六溴环十二烷、双(2,4,6-三溴苯氧基)=乙烷、亚乙基双四溴邻苯二甲酰亚胺、六溴苯、1,1-磺酰基[3,5-二溴-4-(2,3-二溴丙氧基)]苯、聚二溴亚苯基氧化物、四溴双酚-S,三(2,3-二溴丙基)异氰脲酸酯、三溴苯酚、三溴苯基烯丙基醚、三溴新戊基醇、溴化聚苯乙烯、溴化聚乙烯、四溴双酚-A、四溴双酚-A衍生物、溴化环氧树脂如四溴双酚-A-环氧化物低聚物或聚合物和溴化苯酚线型酚醛清漆环氧化物、四溴双酚-A-碳酸酯低聚物或聚合物、四溴双酚-A-双(2-羟基二乙基醚)、四溴双酚-A-双(2,3-二溴丙基醚)、四溴双酚-A-双(烯丙基醚)、四溴环辛烷、亚乙基双五溴二苯基、三(三溴新戊基)磷酸酯、聚(五溴苄基聚丙烯酸酯)、八溴三甲基苯基二氢化茚、二溴新戊二醇、五溴苄基聚丙烯酸酯、二溴甲苯基缩水甘油醚、或N,N’-亚乙基-双-四溴对苯二甲酰亚胺等。在本发明中,上述阻燃剂也可以例举为基于氯的阻燃剂,包括氯化石蜡、氯化聚乙烯、全氯环十五烷、或四氯邻苯二甲酸酐等。
(G)聚酯树脂组合物的熔点
针对本发明的聚酯树脂组合物,在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度(即,本文中定义为“熔点”)为200℃以上且222℃以下。通过使用满足上述条件的聚酯树脂组合物,可以提高(A)聚对苯二甲酸丁二酯树脂与(B)包含对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂的相溶性,可以获得透过率高、并且耐热性优异的聚酯树脂组合物。所述温度范围更优选为205℃以上,进一步优选为210℃以上。另一方面,更优选为221℃以下,进一步优选为220℃ 以下。
当检测到多个吸热峰时,将具有最大吸热峰面积的吸热峰温度定义为熔点。
(H)聚酯树脂组合物中的(A)聚对苯二甲酸丁二酯树脂的结晶度
本发明的聚酯树脂组合物中,优选地,(A)聚对苯二甲酸丁二酯树脂的结晶度为20%以上且45%以下。通过使结晶度在此范围内,能够使组合物在维持高透过率同时,保持良好的机械强度。更优选25%以上,进一步优选30%以上。关于其上限,更优选为42%以下,进一步优选为40%以下。
(I)聚酯树脂组合物的制造
本发明的聚酯树脂组合物的制造方法可以通过已知的方法进行,没有特别限定。典型的例子为使用熔融混合机例如单螺杆或双螺杆挤出机、班伯里密炼机或捏合机在100-350℃的温度下进行熔融混炼,优选温度范围为200-300℃。
此外在本发明中,在双螺杆挤出机中使用的螺杆组成可以是输送块和捏合块的组合,但是为了获得本发明的组合物,需要用螺杆进行均匀的捏合。因此捏合块的长度占螺杆总长度的比率优选在5至50%的范围内,更优选在10至40%的范围内。
(J)聚酯树脂组合物的成型品
本发明的树脂组合物可通过注射成型、挤出成型、吹塑成型、传递成型、真空成型等热塑性树脂的已知成型方法成型得到成型品。
对于将本发明的聚酯树脂组合物在260℃的成型温度、80℃的模具温度下所成型的1mm厚的成型片而言,在980nm的激光波长下的激光透射率优选为40%以上。更优选50%以上,进一步优选60%以上。
作为成型品,其具有上述优异的激光透过率而能够用于激光焊接的透过材料。成型品的厚度没有特别限定,但从提高激光透射率的观点出发,优选成型品的激光透过部位的厚度为3mm以下。
并且,作为本发明的聚酯树脂组合物的成型品,可被制造成注模产品、挤塑产品、吹塑产品、薄膜、片材以及纤维等产品,具体可应用于例如汽车部件、电气/电子部件、建筑部件、各种容器、日用品、家庭用品和医疗卫生产品等,特别适用于激光焊接的汽车零件和电气/电子零件材料。
实施例
以下,通过实施例对本发明进行更具体的说明,但本发明并不局限于以下的实施例。
各成分的详细内容如下:
(A)聚对苯二甲酸丁二酯树脂
(A-1)固有粘度0.74dl/g、末端羧基量10-20meq/kg的聚对苯二甲酸丁二酯树脂(日本东丽株式会社制)
(A-2)固有粘度1.23dl/g、末端羧基量20-30meq/kg的聚对苯二甲酸丁二酯树脂(日本东丽株式会社制)
(B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂,以下的(B-1)~(B-3)为含有不同1,4环己烷二甲醇/乙二醇单元组成比例的共聚物。
(B-1)对苯二甲酸/1,4环己烷二甲醇/乙二醇共聚物(美国伊斯曼化学公司制,商品名Eastar DN003,玻璃转化温度83℃)
(B-2)对苯二甲酸/1,4环己烷二甲醇/乙二醇共聚物(美国伊斯曼化学公司制,商品名Eastar GN071,玻璃转化温度81℃)
(B-3)对苯二甲酸/1,4环己烷二甲醇/乙二醇共聚物(美国伊斯曼化学公司制,商品名Eastar EB062,玻璃转化温度83℃)
(B-4)对苯二甲酸/1,4环己烷二甲醇/2,2,4,4-四甲基-1,3-环丁二醇共聚物(美国伊斯曼化学公司制,商品名Tritan TX-2001,玻璃转化温度116℃)
(B-5)聚对苯二甲酸环己烷二亚甲基酯树脂(美国伊斯曼化学公司制,商品名PCT 36296,玻璃转化温度95℃,熔点285℃)
(B’)非晶聚合物
(B’-1)聚碳酸酯(PC):三菱工程塑料株式会社S1000
(B’-2)聚丙烯腈/苯乙烯共聚物(AS):韩国锦湖化学株式会社350HM
(C)脂肪族羧酸钠和/或芳香族羧酸钠
(C-1)丙酸钠(日本TCI株式会社制)
(C-2)正辛酸钠(日本TCI株式会社制)
(C-3)硬脂酸钠(中国国药化学股份有限公司制)
(C-4)蒙坦酸钠(瑞士柯莱恩化学股份公司制,商品名Licomont NAV101)
(C-5)苯甲酸钠(中国国药化学股份有限公司制)
(C’)脂肪族羧酸锂、脂肪族羧酸镁
(C’-1)硬脂酸锂(日本TCI株式会社制)
(C’-2)硬脂酸镁(日本TCI株式会社制)
(D)具有能与羧基反应的官能团的化合物
(D-1)双环戊二烯环氧树脂(日本DIC株式会社制,商品名Epiclon HP7200H,环氧当量265~300g/eq)
(D-2)萘型环氧树脂(日本DIC株式会社制,商品名Epiclon HP4700,环氧当量155~170g/eq)
(E)填料
(E-1)短切玻璃纤维(日本电气硝子株式会社制,商品名ECS03 T-187,平均纤维直径13μm,纤维长度为3mm)
(F)其他添加剂
(F-1)酯交换反应抑制剂:长链烷基磷酸酯化合物(日本ADEKA株式会社制,商品名STAB AX-71)
实施例和比较例中的材料性能评价方法如下所示。
(1)激光透过率
对于如图1所示的长度L为80mm、厚度D为1mm和2mm的正方形激光透射率评价试验片,使用由LPKF制造的TMG-3来测量在980nm的波长下的透射率。测量区域是试验片的中心部分(2),并且透射率是以百分比表示的透射光量与入射光量之比。
(2)聚酯树脂组合物的熔点和其中的(A)聚对苯二甲酸丁二酯树脂的结晶度
对各实施例及比较例中制备得到的聚酯树脂组合物精确称量5~7mg,采用TA仪器公司的差示扫描量热仪(DSC250),在氮气气氛下以20℃/min的升温速率从20℃开始升温至比所出现的吸热峰的温度T0高出30℃的温度,并在此温度下恒温2min,随后以20℃/min的降温速率降温至20℃,20℃下恒温2min后再次以20℃/min的升温速率升温至比T0高出30℃的温度,得到熔点Tm和熔解热ΔHm。Tm为二次升温过程中吸热峰的峰尖对应的温度。ΔHm为二次升温过程中吸热峰面积。ΔHcc为二次升温过程中放热峰面积。聚酯树脂组合物中的聚对苯二甲酸丁二酯树脂的结晶度通过下式计算:
Figure PCTCN2021113651-appb-000004
△Hm:熔解热,△Hcc:结晶热,△Href *:100%结晶下的熔解热(145.45J/g)
实施例1~20、比较例1~6
用日本制钢所社制TEX30α型双螺杆挤出机(L/D=45.5)熔融混炼,挤出机有13个加热区,有两套带计量仪器的加料装置并且带有真空排气设备。除玻璃纤维以外,将其他原料混合后从挤出机主喂料口加入,玻璃纤维从挤出机侧喂料口加入,挤出机温度设定为100℃-260℃(但是在实施例20中,设定为100-285℃),经熔融混炼、冷却、切粒得到粒状聚酯树脂组合物;将 此粒状物在130℃的烘箱中干燥3h后,采用日精树脂工业株式会社制NEX50型注塑机按照成型温度260℃、模具温度80℃的条件注塑成型激光透过性评价试验片。按上述所列方法进行测试,测试结果如表1-4所示。
根据实施例1~7、比较例1、2的对比可知,相对于(A)100质量份而言,以特定量含有(B)和(C)组分的实施例1~7的透过率明显高于没有同时含有(A)、(B)、(C)组分的比较例1、2。树脂组合物的熔点过高的比较例3,其透过率也较差。另外,相对于(A)100质量份而言的(C)组分的含量过高的比较例4在挤出成型过程中,由于聚合物严重分解,无法收集样品。从实施例9与比较例5、6之间的比较可以看出,添加(C)组分的羧酸钠时,透射率有明显提升。从实施例9与比较例7和8之间的比较可以看出,在采用其他非晶树脂(PC,AS)代替PCTG的情况下,导致挤出聚合物严重分解,无法收集样品。
根据实施例2、6、7可知,通过在本发明的组合物中含有(D)成分,能够进一步改善透过率。
表1
Figure PCTCN2021113651-appb-000005
表2
Figure PCTCN2021113651-appb-000006
表3
Figure PCTCN2021113651-appb-000007
表4
Figure PCTCN2021113651-appb-000008

Claims (17)

  1. 一种聚酯树脂组合物,其特征在于,所述聚酯树脂组合物至少由以下(A)~(C)配合而得到:
    (A)聚对苯二甲酸丁二酯树脂100质量份、
    (B)含有对苯二甲酸环己烷二亚甲基酯单元的聚酯树脂5~100质量份、
    (C)脂肪族羧酸钠和/或芳香族羧酸钠0.05~5质量份,
    并且,在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度为200℃以上且222℃以下。
  2. 根据权利要求1所述的聚酯树脂组合物,其中,聚酯树脂组合物中的(A)聚对苯二甲酸丁二酯树脂的结晶度为20%以上且45%以下。
  3. 根据权利要求1所述的聚酯树脂组合物,其中,(C)脂肪族羧酸钠和/或芳香族羧酸钠为选自具有1~50个碳原子的脂肪族羧酸的钠盐和苯甲酸钠中的至少一种。
  4. 根据权利要求1所述的聚酯树脂组合物,其中,(C)脂肪族羧酸钠和/或芳香族羧酸钠为选自丙酸钠、辛酸钠、硬脂酸钠和蒙坦酸钠中的至少一种。
  5. 根据权利要求1所述的聚酯树脂组合物,其中,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,(C)脂肪族羧酸钠和/或芳香族羧酸钠的含量为0.2~3.0质量份。
  6. 根据权利要求1所述的聚酯树脂组合物,其中,进一步包含(D)具有能与羧基反应的官能团的化合物。
  7. 根据权利要求6所述的聚酯树脂组合物,其中,所述(D)具有能与羧基反应的官能团的化合物为选自碳二亚胺化合物、环氧化合物及噁唑啉化合物中的至少一种。
  8. 根据权利要求6所述的聚酯树脂组合物,其中,(D)具有能与羧基反应的官能团的化合物为选自脂肪族或芳香族的缩水甘油醚、脂肪族或芳香族 的缩水甘油酯中的至少一种。
  9. 根据权利要求6所述的聚酯树脂组合物,其中,(D)具有能与羧基反应的官能团的化合物为下述通式(1)所示的酚醛清漆型环氧树脂,
    Figure PCTCN2021113651-appb-100001
    在所述通式(1)中,X表示由通式(2)或通式(3)表示的二价基团,n表示大于0且10以下的值;
    在所述通式(1)和(3)中,R 1、R 2、R 4和R 5可以相同或不同,分别独立地表示碳原子数为1~8的烷基、碳原子数为6~10的芳基或碳原子数为1~8的烷基醚基;R 3表示氢原子、碳原子数1~8的烷基或碳原子数6~8的芳基;a、c、d分别独立地表示0~4的整数,b表示0~3的整数。
  10. 根据权利要求6所述的聚酯树脂组合物,其中,相对于聚对苯二甲酸丁二酯树脂(A)100质量份,(D)具有能与羧基反应的官能团的化合物的含量为0.1~4质量份。
  11. 根据权利要求1所述的聚酯树脂组合物,其中,还包含(E)填料。
  12. 根据权利要求11所述的聚酯树脂组合物,其中,所述(E)填料为选自玻璃纤维和碳纤维中至少一种。
  13. 根据权利要求11所述的聚酯树脂组合物,其中,相对于聚对苯二甲酸丁二酯树脂(A)100质量份,所述填料(E)的含量为1~150质量份。
  14. 根据权利要求1所述的聚酯树脂组合物,其中,对于将所述聚酯树脂组合物在260℃的成型温度、80℃的模具温度下所成型的1mm厚的成型片而言,在980nm的激光波长下的激光透射率为40%以上。
  15. 一种成型品,其由权利要求1~14中任一项所述的聚酯树脂组合物成型得到。
  16. 根据权利要求15所述的成型品,其为用于激光焊接的透过材料。
  17. 根据权利要求16所述的成型品,其成型品激光透过部位的厚度为3mm以下。
PCT/CN2021/113651 2020-08-21 2021-08-20 聚酯树脂组合物及其成型品 WO2022037660A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180003395.9A CN114391032A (zh) 2020-08-21 2021-08-20 聚酯树脂组合物及其成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010846164 2020-08-21
CN202010846164.1 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022037660A1 true WO2022037660A1 (zh) 2022-02-24

Family

ID=80322598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113651 WO2022037660A1 (zh) 2020-08-21 2021-08-20 聚酯树脂组合物及其成型品

Country Status (2)

Country Link
CN (1) CN114391032A (zh)
WO (1) WO2022037660A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322531A (zh) * 2022-08-12 2022-11-11 湖北合聚新材料有限公司 一种耐水解的激光焊接pbt材料及其制备方法
CN115612261A (zh) * 2022-10-25 2023-01-17 汉特工程塑料(浙江)有限公司 一种可激光焊接的耐水解阻燃聚酯复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106217A (ja) * 2006-09-27 2008-05-08 Toray Ind Inc レーザー溶着用ポリエステル樹脂組成物および複合成形体
JP2010070626A (ja) * 2008-09-18 2010-04-02 Toray Ind Inc ポリエステル樹脂組成物および複合成形体
CN104672822A (zh) * 2013-12-02 2015-06-03 朗盛德国有限责任公司 聚酯组合物
CN107033553A (zh) * 2011-03-08 2017-08-11 巴斯夫欧洲公司 含有羧酸盐的激光透明聚酯
CN107163515A (zh) * 2017-05-17 2017-09-15 江苏金发科技新材料有限公司 改善激光透明性的可焊接用聚酯复合材料
CN111108150A (zh) * 2017-09-06 2020-05-05 巴斯夫欧洲公司 热塑性聚酯模塑组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106217A (ja) * 2006-09-27 2008-05-08 Toray Ind Inc レーザー溶着用ポリエステル樹脂組成物および複合成形体
JP2010070626A (ja) * 2008-09-18 2010-04-02 Toray Ind Inc ポリエステル樹脂組成物および複合成形体
CN107033553A (zh) * 2011-03-08 2017-08-11 巴斯夫欧洲公司 含有羧酸盐的激光透明聚酯
CN104672822A (zh) * 2013-12-02 2015-06-03 朗盛德国有限责任公司 聚酯组合物
CN107163515A (zh) * 2017-05-17 2017-09-15 江苏金发科技新材料有限公司 改善激光透明性的可焊接用聚酯复合材料
CN111108150A (zh) * 2017-09-06 2020-05-05 巴斯夫欧洲公司 热塑性聚酯模塑组合物

Also Published As

Publication number Publication date
CN114391032A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2021013115A1 (zh) 一种聚酯树脂组合物及其成型品
WO2022037660A1 (zh) 聚酯树脂组合物及其成型品
JPH0395257A (ja) 難燃性ポリエステル樹脂組成物
JP7256822B2 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JP6337660B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP2014189729A (ja) 熱可塑性樹脂組成物
JP2007056088A (ja) ポリ乳酸樹脂組成物、そのペレットおよびその成形体
TWI571488B (zh) 聚對苯二甲酸環己烷二甲醇酯樹脂組合物
JP2018123215A (ja) ポリブチレンテレフタレート樹脂組成物および成形品
JP2017172794A (ja) 樹脂ベルト材料用熱可塑性ポリエステルエラストマ樹脂組成物および樹脂ベルト成形体
JP2002128998A (ja) 難燃性ポリエステル樹脂組成物
JP7454343B2 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
US20200399433A1 (en) Improvement of impact properties of dynamically cross-linked networks by using reactive impact modifiers
KR101786185B1 (ko) 폴리에스테르 수지 조성물 및 이를 포함하는 성형품
CN111094451A (zh) 无机强化热塑性聚酯树脂组合物
JPS6140354A (ja) 樹脂組成物
JP7368976B2 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JPS61261346A (ja) 難燃性芳香族ポリエステル樹脂組成物
WO2023105955A1 (ja) ポリアルキレンテレフタレート樹脂組成物、ポリアルキレンテレフタレート樹脂組成物の製造方法、及び成形品
EP3741807A1 (en) Polymer compositions with low warpage
JP2023164302A (ja) 樹脂ベルト材料用熱可塑性ポリエステルエラストマ樹脂組成物および樹脂ベルト成形体
JP2021152133A (ja) ポリエチレンナフタレート樹脂組成物からなる成形品
JP2024042437A (ja) 樹脂組成物、ペレット、および、成形品
JP2020019919A (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JPH023429B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857749

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21857749

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2023).