WO2021013115A1 - 一种聚酯树脂组合物及其成型品 - Google Patents

一种聚酯树脂组合物及其成型品 Download PDF

Info

Publication number
WO2021013115A1
WO2021013115A1 PCT/CN2020/102916 CN2020102916W WO2021013115A1 WO 2021013115 A1 WO2021013115 A1 WO 2021013115A1 CN 2020102916 W CN2020102916 W CN 2020102916W WO 2021013115 A1 WO2021013115 A1 WO 2021013115A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyester resin
mass
parts
composition according
Prior art date
Application number
PCT/CN2020/102916
Other languages
English (en)
French (fr)
Inventor
汤先文
许峻睿
张乐臻
加藤公哉
大田健史
大眉有纪年
朱文博
Original Assignee
东丽先端材料研究开发(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to JP2021573866A priority Critical patent/JP2022544346A/ja
Priority to CN202080002494.0A priority patent/CN112384568B/zh
Priority to US17/627,215 priority patent/US20220275199A1/en
Priority to EP20844684.9A priority patent/EP4006103A4/en
Publication of WO2021013115A1 publication Critical patent/WO2021013115A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the field of polymer materials, in particular to a polyester resin composition and a molded product thereof.
  • Polybutylene terephthalate (PBT) resin is widely used in mechanical parts and electrical communication parts due to its excellent properties such as heat resistance, chemical resistance, electrical properties, mechanical properties, and molding processability.
  • PBT Polybutylene terephthalate
  • Laser welding as an external heating welding technology, is an engineering method of melting and fusing by irradiating a laser beam on a laminated resin molded body so that it passes through the irradiated surface and is absorbed by the other surface.
  • This method can achieve three-dimensional Connection, non-contact processing, and no welding overflow requirements, which have the characteristics of fast process, large design freedom, and high bonding strength, which have attracted wide attention.
  • the laser transmittance of the welding material is an important parameter.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-706266 discloses an excellent laser transmittance, as well as excellent cold and heat resistance and mechanical properties.
  • the strong polyester resin composition is very effective for laser welding of resin products.
  • the specific solution is a polyester resin composition
  • a polyester resin composition comprising (A) 29-84% by weight of polybutylene terephthalate (PBT) resin, (B) selected from terephthalic acid groups and 1,4 -5-60% by weight of at least one of polyester resin and polycarbonate resin in which repeating units formed by cyclohexanedimethanol groups account for 25 mol% or more, (C) 10-50% by weight of reinforcing fibers, ( D)
  • the block copolymer of polyalkyl methacrylate and butyl acrylate is 1-20% by weight, and the composition is a polyester resin composition suitable for laser welding.
  • the compatibility between the PBT resin and the amorphous resin is insufficient, and the laser transmittance needs to be improved.
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-186584 discloses a polyester resin composition that provides excellent laser welding performance, and a molded product that is firmly bonded by laser welding.
  • the solution is: relative to (a) 100 parts by weight of polyester resin, adding 0 to 100 parts by weight of (b) reinforcing filler and (c) 0.1-100 parts by weight of epoxy compound, which is used for laser welding.
  • Ester resin composition Although epoxy resin is added to the composition, there is no mention of the addition of the special structure epoxy resin used in the present invention, and the improvement of the compatibility of PBT resin and amorphous polyester resin, and the polyester resin composition is transparent The rate is insufficient.
  • Patent Document 3 (Chinese Patent Application Publication No. CN1863870A) discloses a composition composed of a specific composition, such as polybutylene terephthalate resin, polystyrene elastomer, polycarbonate resin and plasticizer, It can achieve the effect of improving the transmittance uniformity and reducing the difference in transmittance of different parts of the molded part, but it cannot greatly increase the transmittance (the transmittance under the laser condition of 940nm is 20-34%).
  • a specific composition such as polybutylene terephthalate resin, polystyrene elastomer, polycarbonate resin and plasticizer
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-336409 discloses that in a polymer alloy composed of at least polybutylene terephthalate resin and polycarbonate, a method of controlling the phase structure can be effective
  • the molded product is used as a transmission material for laser welding parts, but there is no mention of improving the compatibility of PBT resin and amorphous polyester resin, and the degree of increase in transmittance through this technology is also limited.
  • the present invention is to solve the above-mentioned problem of insufficient transmittance of the existing laser welding.
  • at least (A) polybutylene terephthalate resin, (B) amorphous resin and (C) A polyester resin composition with a special structure epoxy resin and a melting point adjusted to 210°C to 221°C can achieve high laser transmittance.
  • a molded product manufactured from the polyester resin composition of the present invention can transmit laser light even when the laser power is small or the thickness of the molded product is large. Therefore, it can be applied to the laser-transmitting material of laser welding parts, so as to be tightly combined with the laser-absorbing material. That is, the technical scheme of the present invention is:
  • a polyester resin composition obtained by compounding at least the following (A) to (C),
  • the polyester resin composition was cooled from the molten state to 20°C at a temperature drop rate of 20°C/min, and then heated at a temperature rise rate of 20°C/min When the temperature is raised, the temperature of the endothermic peak that appears during the temperature rise is 210°C or more and 221°C or less.
  • X is a divalent group represented by the general formula (2) or general formula (3).
  • R 1 , R 2 , R 4 and R 5 is the same or different and each independently represents any one of an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkyl ether group having 1 to 8 carbon atoms
  • R 3 is any one of a hydrogen atom, an alkyl group having 1-8 carbon atoms, or an aryl group having 6-10 carbon atoms.
  • n is a value greater than 0 and less than or equal to 10.
  • a, c, and d each independently represent an integer of 0-4, and b is an integer of 0-3.
  • polyester resin composition according to 1 above wherein the content of the epoxy resin (C) is 0.05-3 parts by mass relative to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • polyester resin composition according to 1 above wherein the polyester resin composition further includes (D) a filler.
  • polyester resin composition according to 6 above with respect to 100 parts by mass of the (A) polybutylene terephthalate resin, and the content of the (D) filler is 1-150 parts by mass.
  • polyester resin composition according to 1 above further comprising (E) a transesterification inhibitor.
  • R 6 is an alkyl group having 1 to 30 carbon atoms, and m is 1 or 2.
  • polyester resin composition according to 1 above further comprising (F) a nucleating agent in the polyester resin composition.
  • polyester resin composition according to 12 above, wherein the (F) nucleating agent is selected from the group consisting of silica, alumina, zirconia, titania, wollastonite, kaolin, talc, mica, and carbide At least one of silicon, ethylenebislauric acid amide, or sorbitol-based derivatives.
  • the polyester resin composition according to claim 1 wherein the polyester resin composition is molded at a molding temperature of 260°C and a mold temperature of 80°C, and the resulting molded sheet with a thickness of 1mm has a wavelength of The transmittance measured with a spectrophotometer under the condition of 940nm is 48% or more.
  • polyester resin composition Since the polyester resin composition has excellent laser transmittance, it can be used for various automotive electrical components (various control units, various sensors, etc.), connectors, switch components, or relay components.
  • Fig. 1 is a plan view (A) and a side view (B) showing a sample sheet for permeability evaluation.
  • the (A) polybutylene terephthalate (PBT) resin as the matrix resin in the polyester resin composition of the present invention can be exemplified as a homopolyester or copolyester containing butylene terephthalate as the main component. Polyester.
  • the monomers that can be copolymerized in the copolyester can be exemplified by dicarboxylic acids other than terephthalic acid, glycols other than 1,4-butanediol, oxyacids or lactones, etc. .
  • Copolymerizable monomers can be used singly or in combination of two or more. Among them, the amount of the copolymerizable monomer is preferably 30 mol% or less of the total monomer amount.
  • the dicarboxylic acids other than terephthalic acid may be exemplified by aliphatic dicarboxylic acids (for example, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Undecyl dicarboxylic acid, dodecyl dicarboxylic acid, hexadecyl dicarboxylic acid), alicyclic dicarboxylic acid (for example, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydro Terephthalic acid), aromatic dicarboxylic acids (for example, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-dicarboxylic acid C8-16 dicarboxylic acids such as phenyl ether dicarboxylic acid, 4,4'-diphenylmethane di
  • the diols other than 1,4-butanediol can be exemplified as aliphatic alkylene glycols (for example, ethylene glycol, propylene glycol, pentanediol, neopentyl glycol, hexanediol, heptane Glycol, octanediol, nonanediol, or decanediol and other C2-12 alkane diols, preferably C2-10 alkane diols), polyalkoxy diols (for example, diethylene glycol, dipropylene glycol, two Butylene glycol, triethylene glycol, tripropylene glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol and other glycols containing oxyalkyl groups), aromatic glycols (for example, hydroquinone, resorcinol , C6-C14 aromatic diols such as naphthalened
  • the oxyacid may be exemplified by hydroxy acids such as oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, or oxycaproic acid and their derivatives.
  • the lactone can be exemplified by C3-12 lactones such as propiolactone, butyrolactone, valerolactone, or caprolactone.
  • the intrinsic viscosity of (A) polybutylene terephthalate resin measured at 25°C of a solution of o-chlorophenol is in the range of 0.36-3.0dl/g More preferably, the intrinsic viscosity is in the range of 0.42-2.0dl/g.
  • one polybutylene terephthalate resin can be used alone, or two or more polybutylene terephthalate resins with different inherent viscosities can be used at the same time, but it is preferable that their inherent viscosities are all within the above range .
  • the carboxyl content of (A) polybutylene terephthalate resin is preferred below 50mol/ton.
  • (A) the carboxyl group content of polybutylene terephthalate resin is obtained under the conditions of titration with potassium hydroxide ethanolate after dissolving in o-cresol/chloroform solvent.
  • the polybutylene terephthalate resin can be composed of terephthalic acid or its ester-forming derivative, 1,4-butanediol, and copolymerizable monomers added as needed, by using a customary method (For example, transesterification, direct esterification, etc.) to prepare by polymerization.
  • the (B) amorphous resin in the polyester resin composition of the present invention can be exemplified by styrene homopolymer/copolymer, aromatic polyethers such as polyphenylene ether and polyetherimide, polycarbonate, poly Aromatic ester, polysulfone, polyethersulfone, polyimide, or amorphous polyester containing cyclohexanedimethylene terephthalate unit, etc.
  • the homopolymer/copolymer of styrene can be exemplified as polystyrene, polychlorostyrene, poly- ⁇ -methylstyrene, styrene/chlorostyrene copolymer, styrene/propylene copolymer Materials, styrene/acrylonitrile copolymer, styrene/butadiene copolymer, styrene/vinyl chloride copolymer, styrene/vinyl acetate copolymer, styrene/maleic acid copolymer, styrene/acrylate Copolymers (for example, styrene/methyl acrylate copolymer, styrene/ethyl acrylate copolymer, styrene/butyl acrylate copolymer, styrene/octyl acrylate copo
  • the polycarbonate is selected from 2,2'-bis(4-hydroxyphenyl)propane (bisphenol A), 4,4'-dihydroxydiphenylalkane, 4,4'-dihydroxydiphenyl Sulfone, 4,4'-dihydroxydiphenyl ether, 2,2'-bis(3,5-dimethyl-4-hydroxyphenyl)propane, or 1,1'-bis(4-hydroxyphenyl)
  • bisphenol A 2,2'-bis(4-hydroxyphenyl)propane
  • 4,4'-dihydroxydiphenyl Sulfone 4,4'-dihydroxydiphenyl ether
  • 2,2'-bis(3,5-dimethyl-4-hydroxyphenyl)propane 2,1'-bis(4-hydroxyphenyl)
  • One or more dihydroxy compounds in cyclohexane are prepared as main raw materials.
  • preferred is a polycarbonate prepared using 2,2'-bis(4-hydroxyphenyl)propane (bisphenol A) as
  • the polycarbonate prepared from bisphenol A as the main raw material other dihydroxy compounds other than bisphenol A can also be copolymerized, for example, 4,4'-dihydroxydiphenylalkane or 4,4'- Dihydroxydiphenylsulfone, 4,4'-dihydroxyphenyl ether, etc.
  • the amount of other dihydroxy compounds used here is preferably 10 mol% or less with respect to the total amount of dihydroxy compounds.
  • the degree of polymerization of the polycarbonate is not particularly limited, but in order to improve the compatibility of (B) polycarbonate and (A) polybutylene terephthalate and improve its moldability, (B) polycarbonate
  • the viscosity average molecular weight (Mv) of the ester is preferably 10,000 to 50,000.
  • the lower limit of the viscosity average molecular weight is more preferably 15,000 or more, and still more preferably 18,000 or more.
  • the upper limit of the viscosity average molecular weight is more preferably 40,000 or less, and even more preferably 35,000 or less.
  • the limiting viscosity [ ⁇ ] here is the specific viscosity [ ⁇ sp] of each solution concentration [c] (g/dl), which is calculated by the following formula.
  • the amorphous polyester containing cyclohexane dimethylene terephthalate unit refers to the polymerization of dicarboxylic acid based on terephthalic acid and 1,4-cyclohexanedimethanol and other glycols And the resulting polyester.
  • the other glycols include aliphatic alkylene glycols (e.g., ethylene glycol, propylene glycol, butylene glycol, pentanediol, neopentyl glycol, hexanediol, heptanediol, octanediol, nonanediol , Decanediol and other C2-12 alkyl diols, preferably C2-10 alkyl diols), polyoxyalkylene diols (for example, diols with alkylene oxide units, such as diethylene glycol, dipropylene glycol, dibutylene Alcohol, triethylene glycol, tripropylene glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol), alicyclic group diol (e.g., aliphatic alkylene glycols (e.g., ethylene glycol, propylene glycol, butylene glycol, pen
  • aromatic diols for example, C6-C14 aromatic diols such as hydroquinone, resorcinol, naphthalenediol, bisphenols, and xylene glycol
  • the molar ratio [(I)/(II)] of the other diol unit (I) and 1,4-cyclohexanedimethanol unit (II) is between 1/99 and 99/1.
  • [(I)/(II)] is preferably less than 80/20, more preferably less than 75/25, and still more preferably less than 50/50 . At the same time, it is preferably greater than 25/75, more preferably greater than 30/70.
  • amorphous resin is preferably polycarbonate or amorphous containing cyclohexane dimethyl terephthalate unit At least one of polyester or styrene/acrylonitrile copolymer.
  • the content of (B) amorphous resin is 15-100 parts by mass relative to 100 parts by mass of (A) polybutylene terephthalate. In this range, the laser transmittance and molding processability of the polyester resin composition can be improved. Furthermore, the lower limit of the content of (B) amorphous resin is preferably 20 parts by mass or more, and more preferably 30 parts by mass or more. Meanwhile, the upper limit of the content is preferably 90 parts by mass or less, more preferably 80 parts by mass or less.
  • the polyester resin composition of the present invention contains (C) at least one epoxy resin of triphenol methane type, tetraphenol ethane type, novolak type, and naphthalene type epoxy resins.
  • the (C) epoxy resin preferably has a glycidyl ether structure or a glycidyl ester structure.
  • novolak type epoxy resin a glycidyl ether structure-containing novolak type epoxy resin of the following structural formula (1) can be exemplified.
  • X represents a divalent group represented by an alkyl group, an aryl group, an aralkyl group, or an alicyclic hydrocarbon group having 1-8 carbon atoms, and may contain a plurality of groups.
  • R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom, an alkyl group having 1-8 carbon atoms, an aryl group having 6-10 carbon atoms, or an alkyl group having 1-8 carbon atoms Ether group.
  • R 3 is a hydrogen atom, an alkyl group with 1-8 carbon atoms, or an aryl group with 6-10 carbon atoms.
  • n represents a value greater than 0 and less than or equal to 20 .
  • A represents an integer of 0-4, and b is an integer of 0-3.
  • the (C) epoxy resin is preferably solid at room temperature (25°C) from the viewpoint of high reactivity with the terminal carboxyl group of the polybutylene terephthalate resin and low volatility. From this point of view, as the novolak type epoxy resin containing a glycidyl ether structure represented by the above structural formula (1), the following structure is more preferable.
  • X is preferably a divalent group represented by general formula (2) or general formula (3).
  • R 1 , R 2 , R 4 and R 5 are the same or different , Each independently represents any of an alkyl group with 1-8 carbon atoms, an aryl group with 6-10 carbon atoms, or an alkyl ether group with 1-8 carbon atoms, R 3 is hydrogen Atom, an alkyl group having 1-8 carbon atoms, or an aryl group having 6-10 carbon atoms, in the general formula (1), n is preferably a value greater than 0 and less than or equal to 10.
  • a, c, and d each independently represent an integer of 0-4, and b is an integer of 0-3.
  • the trisphenol methane type has a structure shown in the following structural formula 5
  • the tetraphenol ethane type has a structure shown in the following structural formula 6
  • the naphthalene type epoxy resin has the following structural formula 7. 8 shows the structure.
  • the epoxy value of the above epoxy compound is preferably 100 to 1000 g/eq. Within this range, the polyester resin composition can be prevented from generating gas during melt processing, and it can react effectively with the carboxyl group of (A) polybutylene terephthalate. Furthermore, the lower limit of the epoxy value is more preferably 200 g/eq or more. In addition, the upper limit of the epoxy value is more preferably 500 g/eq or less, and still more preferably 400 g/eq or less.
  • the content of (C) epoxy resin is 0.010-5.0 parts by mass relative to 100 parts by mass of (A) polybutylene terephthalate resin.
  • the epoxy resin is at least 0.010 parts by mass, the compatibility of (A) polybutylene terephthalate and (B) amorphous resin is improved, thereby increasing the transmittance.
  • the content of the (C) epoxy resin is 5.0 parts by mass or less, the (C) epoxy resin in the polyester composition has good dispersibility, thereby increasing the transmittance.
  • the lower limit of the content of the (C) epoxy resin is preferably 0.050 parts by mass or more, more preferably 0.10 parts by mass or more, and even more preferably 0.40 parts by mass or more.
  • the upper limit of the content of (C) epoxy resin is preferably 3.0 parts by mass or less, and more preferably 1.5 parts by mass or less.
  • a filler may be further added to the polyester resin composition of the present invention.
  • the filler is not particularly limited as long as it is a filler commonly used in prior art resins.
  • glass fiber, carbon fiber, potassium titanate whisker, zinc whisker oxide, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber, metal fiber can be used , Glass flakes, wollastonite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, hectorite, synthetic mica, asbestos, graphite, aluminosilicate, alumina , Silicon dioxide, magnesium oxide, zirconium oxide, titanium oxide, iron oxide, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, hollow glass Micro beads, ceramic
  • the filling material may also be a hollow filling material in structure. Furthermore, two or more of these filling materials may be selected and used in combination.
  • the average diameter of the filler is not particularly limited. In order to obtain a better appearance of the polyester resin composition, it is preferably 0.001-20 ⁇ m.
  • the filler material is preferably at least one of glass fiber or carbon fiber.
  • the glass fiber is not specifically limited, and may be the glass fiber used in the prior art.
  • the glass fibers may be chopped strands cut to length, coarse sand, or ground fibers. Generally, the average diameter of the glass fiber preferably used is 5-15 ⁇ m.
  • the length is not particularly limited, and it is preferable to use a standard 3 mm length fiber suitable for extrusion kneading operation.
  • the present invention does not specifically limit the cross-sectional shape of the above-mentioned fibrous filler, and any one or more of round or flat fibers can be selected and used in combination.
  • the content of (D) filler is preferably 1 to 150 parts by mass relative to 100 parts by mass of (A) polybutylene terephthalate.
  • the lower limit of the (D) filler is more preferably 10 parts by mass or more, and still more preferably 30 parts by mass or more.
  • the upper limit of the filler is more preferably 100 parts by mass or less, and still more preferably 80 parts by mass or less.
  • transesterification inhibitor is a compound that can be used to deactivate the transesterification reaction catalyst contained in (A) polybutylene terephthalate resin. There are no particular restrictions on it, but phosphite-based, phosphoric acid is preferred. Ester compound.
  • phosphite-based compound triphenyl phosphite, trinonyl phenyl phosphite, tricresyl phosphite, trimethyl phosphite, triethyl phosphite, and tris(2- Ethylhexyl) ester, tridecyl phosphite, tridecyl phosphite, tridecyl phosphite, trioleyl phosphite, 2-ethylhexyl diphenyl phosphite Phosphate, diphenyl monodecyl phosphite, diphenyl mono(tridecyl) phosphite, phenyl didecyl phosphite, tris(dodecyl) trithiophosphite , Diethyl phosphite, bis(2-ethylhexyl)
  • the phosphate-based compound is preferably a compound exemplified by the following general formula (4).
  • R 6 is an alkyl group having 1 to 30 carbon atoms, and m is 1 or 2.
  • methyl phosphate dimethyl phosphate, ethyl phosphate, diethyl phosphate, isopropyl phosphate, diisopropyl phosphate, and butyl phosphate.
  • the phosphate-based compound is stearyl phosphate or di(octadecyl) phosphate. These phosphate-based compounds may be used alone or in combination of two or more.
  • the above-mentioned phosphoric acid ester compound can also be used as a metal salt with zinc or aluminum.
  • the use of a phosphate ester compound has a faster deactivation rate than a phosphorous acid compound. Therefore, it is preferable to use a phosphate ester compound.
  • the (E) transesterification inhibitor may cause decomposition of (A) polybutylene terephthalate resin if it is added in excess, so relative to 100 parts by mass of (A) polybutylene terephthalate resin
  • the (E) The content of the transesterification inhibitor is preferably 0.025 to 0.5 parts by mass.
  • the lower limit of the content of (E) is more preferably 0.03 part by mass or more, and still more preferably 0.1 part by mass or more.
  • the upper limit of the content of (E) is more preferably 0.3 parts by mass or less, and still more preferably 0.25 parts by mass or less.
  • the (F) nucleating agent used as a crystallization accelerator in the polyester resin composition of the present invention is not particularly limited, and generally used as a polymer crystal nucleating agent is sufficient, and it can be selected from inorganic crystal nucleating agents Or any one or more of organic crystal nucleating agents.
  • the inorganic crystal nucleating agent can be exemplified by silica, alumina, zirconia, titania, wollastonite, kaolin, talc, mica, or silicon carbide.
  • aliphatic carboxylic acid amides examples include lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, or hydroxystearic acid.
  • Aliphatic monocarboxylic acid amides such as amides, N-oleyl palmitic acid amide, N-oleyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl oleic acid amide, N- N-substituted aliphatic monocarboxylic acid amides such as stearyl stearic acid amide, N-stearyl erucamide, N-hydroxymethyl stearic acid amide, or N-hydroxymethyl behenic acid amide, Methylene bis-stearic acid amide, ethylene bis-lauric acid amide, ethylene bis-decanoic acid amide, ethylene bis-oleic acid amide, ethylene bis-stearic acid amide, ethylene bis-erucic acid amide, Ethyl bisbehenamide, ethylene bisisostearic acid amide, ethylene bishydroxystearic acid amide, butylene bisstearic acid amide, hexamethylene
  • N-Substituted aliphatic carboxylic acid diamides N-butyl-N'-stearyl urea, N-propyl-N'-stearyl urea, N-stearyl-N'-stearyl urea, N-phenyl-N'-stearyl urea, xylylene bisstearyl urea, tolyl bisstearyl urea, hexamethylene bisstearyl urea, diphenylmethane bisstearyl urea, Or N-substituted ureas such as diphenylmethane dilauryl urea.
  • examples include bis(p-methylbenzylidene)sorbitol, bis(p-methylbenzylidene)sorbitol, bis(p-ethylbenzylidene)sorbitol, and bis(p-ethylbenzylidene)sorbitol.
  • the nucleating agent is preferably selected from silica, alumina, zirconia, titania, wollastonite, kaolin, talc, At least one of mica, silicon carbide, ethylenebislauric acid amide, or sorbitol-based derivatives.
  • the content of the (F) nucleating agent is preferably 0.05 to 5 parts by mass relative to 100 parts by mass of the (A) polybutylene terephthalate resin. Within this mass range, the crystallization promotion effect can be maintained and the laser transmittance can be improved.
  • the content of the (F) nucleating agent is more preferably 0.1 parts by mass or more, and more preferably 3 parts by mass or less, and even more preferably 2 parts by mass or less.
  • the polyester resin composition of the present invention may further include additives such as antioxidants, mold release agents, flame retardants, or color master batches in addition to components (A) to (F).
  • additives such as antioxidants, mold release agents, flame retardants, or color master batches in addition to components (A) to (F).
  • the antioxidant is preferably at least one of a phenolic antioxidant or a sulfur antioxidant. In order to obtain better heat resistance and thermal stability, it is preferable to use a phenolic antioxidant and a sulfur antioxidant in combination.
  • phenolic antioxidants for example, 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, 2,6-Di-tert-butyl-4-ethylphenol, 4,4'-butylene bis(6-tert-butyl-3-methylphenol), 2,2'-methylene bis(4-methyl 6-tert-butylphenol), 2,2'-methylene-bis(4-ethyl-6-tert-butylphenol), octadecyl-3-(3',5'-di-tert Butyl-4'-hydroxybenzene) propionate, pentaerythritol tetra[3-(3,5-di-tert-butyl-4-hydroxybenzene)]propionate], 1,1,3-tris(2-methyl 4-hydroxy-5-di-tert-butylphenyl)butane
  • examples include dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, di(tridecane) Group) thiodipropionate, pentaerythryl (3-laurylthiopropionate), or 2-mercaptobenzimidazole, etc.
  • antioxidants can be used alone, and at the same time, since the combination of two or more antioxidants will produce a synergistic effect, they can also be used in combination.
  • the content of the antioxidant is preferably 0.01 to 3 parts by mass relative to 100 parts by mass of the total of (A) polybutylene terephthalate and (B) amorphous resin. Within this range, the anti-oxidation effect can be maintained while suppressing gas generation during melt processing. It is more preferably 0.05 part by mass or more, and even more preferably 0.1 part by mass or more. In addition, it is preferably 2 parts by mass or less, and more preferably 1 part by mass or less.
  • the mold release agent is not particularly limited, and any mold release agent used for general thermoplastic resins can be used. Specifically, fatty acids, fatty acid metal salts, hydroxy fatty acids, fatty acid esters, aliphatic partially saponified esters, paraffins, low molecular weight polyolefins, fatty acid amides, alkylene bis fatty acid amides, aliphatic ketones, fatty acid lower Alcohol ester, fatty acid polyol ester, fatty acid polyglycol ester, or modified polysiloxane, etc.
  • the fatty acid is preferably a fatty acid having 6 to 40 carbon atoms, specifically oleic acid, lauric acid, stearic acid, hydroxystearic acid, behenic acid, arachidonic acid, linoleic acid , Linolenic acid, ricinoleic acid, palmitic acid, stearic acid, montanic acid, or their mixtures.
  • the fatty acid metal salt is preferably an alkali metal salt or alkaline earth metal salt of a fatty acid having 6 to 40 carbon atoms, specifically, calcium stearate, sodium montanate, calcium montanate, and the like.
  • the hydroxy fatty acid may be 1,2-hydroxy fatty acid and the like.
  • the fatty acid esters can be exemplified as stearate, oleate, linoleate, linoleate, adipate, behenate, arachidonic acid, montanate, Isostearate, or ester of polymeric acid, etc.
  • the aliphatic partially saponified ester can be exemplified by montanic acid partially saponified ester.
  • the paraffin is preferably one having 18 or more carbon atoms, and can be exemplified by liquid paraffin, natural paraffin, microcrystalline wax, or petrolatum.
  • the low-molecular-weight polyolefin preferably has a weight-average molecular weight of 5000 or less, specifically, polyethylene wax, maleic acid-modified polyethylene wax, oxidized polyethylene wax, chlorinated polyethylene wax, or polyolefin wax Acrylic wax etc.
  • the fatty acid amide is preferably one having 6 or more carbon atoms, and specifically, oleic acid amide, erucic acid amide, or behenic acid amide can be exemplified.
  • the alkylene bis-fatty acid amide preferably has 6 or more carbon atoms, specifically, methylene bis-stearamide, ethylene bis-stearamide, or N,N-bis(2-hydroxyl Ethyl) stearamide and the like.
  • the aliphatic ketone may, for example, be a higher aliphatic ketone.
  • the fatty acid lower alcohol ester preferably has 6 or more carbon atoms, specifically, ethyl stearate, butyl stearate, ethyl behenate, or rice wax.
  • the fatty acid polyol ester can be exemplified as glycerol monostearate, pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol adipate stearate, and dipentaerythritol adipate stearate , Or sorbitan monobehenate, etc.
  • the fatty acid polyglycol ester may be exemplified by polyethylene glycol fatty acid ester or polypropylene glycol fatty acid ester.
  • the modified polysiloxane can be exemplified as methyl styryl modified polysiloxane, polyether modified polysiloxane, higher fatty acid alkoxy modified polysiloxane, and higher fatty acid-containing Polysiloxane, higher fatty acid ester modified polysiloxane, methacrylic acid modified polysiloxane, or fluorine modified polysiloxane, etc.
  • the aforementioned flame retardant may also be exemplified as a chlorine-based flame retardant, including chlorinated paraffin, chlorinated polyethylene, perchlorocyclopentadecane, or tetrachlorophthalic anhydride, and the like.
  • polyester resin composition of the present invention a differential scanning calorimeter is used to cool it from the molten state to 20°C at a cooling rate of 20°C/min in a nitrogen environment, and then at 20°C/min.
  • the temperature is increased at a heating rate of min, and the temperature (melting point) of the endothermic peak that appears during the heating process is 210°C or more and 221°C or less.
  • the compatibility of (A) polybutylene terephthalate resin and (B) amorphous resin is improved, the transmittance is improved, and an excellent heat resistance can be obtained.
  • Polyester resin composition is used to cool it from the molten state to 20°C at a cooling rate of 20°C/min in a nitrogen environment, and then at 20°C/min.
  • the temperature is increased at a heating rate of min, and the temperature (melting point) of the endothermic peak that appears during the heating process is 210°C or more and 221°C or less.
  • the upper limit of the endothermic peak temperature is preferably 220°C or lower, and more preferably 219°C or lower.
  • the lower limit of the endothermic peak temperature is preferably 215°C or higher, more preferably 217°C or higher.
  • the polyester resin composition of the present invention can be produced by the following production method. Put the main components (A), (B), (C) and the components (E), (F) added as needed in a commonly used melt mixer such as single-screw or twin-screw extruder, Banbury internal mixing Machine, kneader, and mixer are obtained according to the corresponding melting and mixing method.
  • a commonly used melt mixer such as single-screw or twin-screw extruder, Banbury internal mixing Machine, kneader, and mixer are obtained according to the corresponding melting and mixing method.
  • the polyester resin composition of the present invention can be prepared by injection molding, extrusion molding and other methods to obtain molded products.
  • the mold temperature is preferably in the range of 40°C or more and 250°C or less, considering that it is cured in a temperature range of (A) polybutylene terephthalate resin above the glass transition temperature and below the melting point, It has the advantages of high molding efficiency and good appearance of molded products. Therefore, the mold temperature is preferably in the range of 60°C or more and 140°C or less.
  • the polyester resin composition of the present invention is molded under the conditions of a molding temperature of 260°C and a mold temperature of 80°C.
  • the transmittance here refers to the value measured by a spectrophotometer with an integrating sphere as a detector.
  • the thickness of the molded product is not particularly limited, from the viewpoint of improving the transmittance, the thickness of the laser transmission portion of the molded product is preferably 3 mm or less.
  • PC Mitsubishi Engineering Plastics Corporation S1000
  • Hexion Cardura E10P (Glycidyl ester of branched chain alkane carboxylate, epoxy value 244g/eq)
  • AX71 (a mixture of distearic acid phosphate and stearic acid phosphate)
  • Nucleating agent 1 Takehara Chemical Industry Co., Ltd. Hightron (talc powder)
  • the transmittance was evaluated using an ultraviolet-near infrared spectrophotometer (UV-3100) produced by Shimadzu Corporation, and an integrating sphere was used as a detector.
  • UV-3100 ultraviolet-near infrared spectrophotometer
  • the ratio of the amount of transmitted light to the amount of incident light was expressed as a percentage in the table.
  • the transmittance was measured every 10 nm, and the maximum and minimum transmittance in the near-infrared 940 nm wavelength region were determined. The measurement was performed 5 times, and the average value of the upper limit and lower limit was obtained.
  • the polyester resin composition prepared in each of the examples and comparative examples was accurately weighed 5-7 mg, and the temperature was increased from 20 to 20°C/min under a nitrogen atmosphere. °C began to rise to a temperature 30°C higher than the temperature T0 of the endothermic peak that appeared, and kept at this temperature for 2 minutes, then at a cooling rate of 20°C/min to 20°C, kept at 20°C for 2 minutes and then again The temperature is raised to a temperature 30°C higher than T0 at a heating rate of 20°C/min to obtain the melting point Tm.
  • Tm is the temperature corresponding to the tip of the endothermic peak during the second heating process.
  • the raw materials are as shown in Table 1.
  • the extruder has 13 heating zones and two sets of feeding with measuring instruments.
  • the device is equipped with vacuum exhaust equipment.
  • other raw materials are added from the main feed port of the extruder after being mixed, and glass fiber is added from the side feed port of the extruder.
  • the temperature of the extruder is set to 100°C-260°C, after melting and mixing, Cool and pelletize to obtain a pelletized polyester resin composition.
  • the pellets were dried in an oven at 130°C for 3 hours, they were injection molded using a NEX50 injection molding machine manufactured by Nissei Plastics Co., Ltd. at a molding temperature of 260°C and a mold temperature of 80°C.
  • the size is 80mm in length ⁇ 80mm in width ⁇ 1mm in thickness), tested according to the above transmittance and melting point test methods, and the test results are shown in Table 1.
  • the preparation method is the same as that in Example 1, the raw materials are shown in Table 2, and the test is performed according to the above-mentioned transmittance and melting point test methods. The test results are shown in Table 2.
  • Example 1 From the comparison between Example 1 and Comparative Example 7, it can be seen that in addition to containing (A) polybutylene terephthalate resin, (B) amorphous resin and (C) specific epoxy resin in specific amounts, it is also necessary to use Only when the melting point of the resin composition is within the specific range of the present invention can the effect of increasing the transmittance of the present invention be realized.

Abstract

本发明涉及一种聚酯树脂组合物及其成型品,它由至少(A)聚对苯二甲酸丁二酯树脂100质量份,(B)非晶树脂15-100质量份以及(C)特殊结构环氧树脂0.010-5.0质量份配合而得到、并且该聚酯树脂组合物的熔点在210℃以上,221℃以下。本发明该聚酯树脂组合物及其成型品具有优异的激光透过率,可用于各种汽车用电气安装部件(各种控制单元、各种传感器等)、连接器类、开关部件、继电器部件等。

Description

一种聚酯树脂组合物及其成型品 技术领域
本发明涉及聚合物材料领域,具体涉及一种聚酯树脂组合物及其成型品。
背景技术
聚对苯二甲酸丁二酯(PBT)树脂由于其耐热性、耐化学性、电气特性、机械特性、以及成形加工性等各种优异特性,而被广泛地应用于机械部件、电气通信部件、汽车部件等领域,特别是近年来各种汽车用电气安装部件中的应用受到广泛关注,但上述这些部件有时需要保证其气密性,而传统的螺丝紧固、粘合剂粘合、加热板熔敷、超声波熔敷等接合方法都存在工序时间长和设计自由度不够等问题。
激光熔接作为一种外部加热熔接技术,是通过将激光束照射在迭层树脂成型体上,使之透过照射面而被另一面吸收,从而进行熔化、融合的工程方法,该方法可以实现三维连接、非接触加工、不产生熔接溢出物的要求,从而具有工序快捷、设计自由度大、且结合强度高的特点,因而受到广泛瞩目。同时由上述激光熔接工序可见,熔接材料的激光透过率是其中的重要参数。当采用激光熔敷接合PBT树脂时,如果树脂的激光透过性过低,容易导致熔接面吸热不足,最终不能完成熔敷粘结;然而通过加大激光强度来补偿透过率不足、提高熔接面吸热时,又容易导致材料发生过热烧蚀而碳化。因此, 如何有效提高熔接材料的激光透过率一直是本领域持续关注的问题。
现有激光熔接用树脂材料透过率改良技术中,专利文献1(日本专利特开2010-70626)公开了一种具有出色的激光透过性,还具有出色的耐寒性和耐热性以及机械强度的聚酯树脂组合物,对于树脂制品的激光焊接非常有效。具体方案是一种聚酯树脂组合物,其包含(A)聚对苯二甲酸丁二酯(PBT)系树脂29-84重量%,(B)选自对苯二甲酸基团和1,4-环己烷二甲醇基团形成的重复单元占25mol%以上的聚酯树脂以及聚碳酸酯树脂中的至少一种的树脂5-60重量%,(C)增强纤维10-50重量%,(D)聚甲基丙烯酸烷基酯和丙烯酸丁酯的嵌段共聚物1-20重量%,该组合物为适用于激光焊接的聚酯树脂组合物。但该专利文献的聚酯树脂组合物中,PBT树脂与非晶树脂的相容性不充分,激光透过率还有待提高。
专利文献2(日本专利特开2007-186584)公开了一种提供具有优异的激光焊接性能的聚酯树脂组合物,以及通过激光焊接牢固粘合的成型品。其解决方案为:相对于(a)聚酯树脂100重量份,添加(b)增强填料0至100重量份,(c)环氧化合物0.1-100重量份而得的,用于激光焊接的聚酯树脂组合物。虽然组合物中添加了环氧树脂,但没有提及本发明所采用的特殊结构环氧树脂的添加,以及改善PBT树脂和非晶聚酯树脂相容性,且该聚酯树脂组合物透过率不足。
专利文献3(中国专利申请公开号CN1863870A)公开了通过特定组合物组成,如聚对苯二甲酸丁二酯树脂、聚苯乙烯类弹性体、聚碳酸酯类树脂和增塑剂的组合物,达到提高透过率均匀性、减少成型件不同部位的透过率差异的效果,但不能大幅度提高透过率(波长为940nm的激光条件下的透过率为20-34%)。
另外,专利文献4(日本专利特开2005-336409)公开了在至少由聚对苯二甲酸丁二酯树脂和聚碳酸酯配合而成的聚合物合金中,通过控制相构造的方法,可以有效地让成型品作为激光焊接零件的透过材使用,但是没有提及改善PBT树脂和非晶聚酯树脂相容性,且通过该技术使透过率提高的程度也有限。
发明内容
本发明是为了解决上述现有激光熔接透过率不足的问题,经过深入研究的结果,发现通过至少配合(A)聚对苯二甲酸丁二酯树脂、(B)非晶树脂和(C)特殊结构环氧树脂,并且熔点调节为210℃~221℃而得到的聚酯树脂组合物,能够获得高激光透过率。同时由本发明的聚酯树脂组合物而制造的成型品,即使在激光功率小或成型品厚度大的情况下,也可以让激光透过。因此可以应用于激光熔接零件的激光透过材料,从而与激光吸收材料紧密地结合。即本发明技术方案为:
1.一种聚酯树脂组合物,所述聚酯树脂组合物是至少由以下(A)~(C)配合而得到,
(A)聚对苯二甲酸丁二酯树脂100质量份,
(B)非晶树脂15-100质量份,
(C)三酚基甲烷型、四酚基乙烷型、酚醛清漆型、萘型环氧树脂中的至少一种环氧树脂0.010-5.0质量份;
并且,在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度为210℃以上且221℃以下。
2.根据上述1所述的聚酯树脂组合物,所述(B)非晶树脂为选自聚碳酸酯、包含对苯二甲酸环己烷二亚甲基醇酯单元的非晶聚酯、或苯乙烯/丙烯腈共聚物中的至少一种。
3.根据上述1所述的聚酯树脂组合物,所述(C)环氧树脂为缩水甘油基醚结构或缩水甘油基酯结构。
4.根据上述3所述的聚酯树脂组合物,所述(C)环氧树脂为以下通式(1)所示的含有缩水甘油醚结构的酚醛清漆型环氧树脂,
Figure PCTCN2020102916-appb-000001
上述通式(1)中,X是通式(2)或者通式(3)表示的二价基团,上述通式(1)和(3)中,R 1、R 2、R 4和R 5相同或不同,分别独立地表示碳原子数为1-8的烷基、碳原子数为6-10的芳基、或者碳原子数为1-8的烷基醚基中的任意一种,R 3是氢原子、碳原子数1-8的烷基或者碳原子数为6-10的芳基中的任意一种,上述通式(1)中,n是大于0小于或等于10的值,上述通式(1)和(3)中,a、c、d分别独立地表示0-4的整数,b是0-3的整数。
5.根据上述1所述的聚酯树脂组合物,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(C)环氧树脂的含量是0.05-3质量份。
6.根据上述1所述的聚酯树脂组合物,所述聚酯树脂组合物中还包括(D)填充材料。
7.根据上述6所述的聚酯树脂组合物,所述(D)填充材料为玻璃纤维或碳纤维中的至少一种。
8.根据上述6所述的聚酯树脂组合物,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(D)填充材料的含量为1-150质量份。
9.根据上述1所述的聚酯树脂组合物,所述聚酯树脂组合物中还包括(E)酯交换抑制剂。
10.根据上述9所述的聚酯树脂组合物,所述(E)酯交换抑制剂为以下通式(4)所示化合物,
Figure PCTCN2020102916-appb-000002
通式(4)中,R 6是碳原子数为1-30的烷基,m为1或2。
11.根据上述9所述的聚酯树脂组合物,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(E)酯交换抑制剂的含量为0.025-0.5质量份。
12.根据上述1所述的聚酯树脂组合物,所述聚酯树脂组合物中还包括(F)成核剂。
13.根据上述12所述的聚酯树脂组合物,所述(F)成核剂为选自二氧化硅、氧化铝、氧化锆、氧化钛、硅灰石、高岭土、滑石粉、云母、碳化硅、乙撑双月桂酸酰胺、或山梨醇系衍生物构成的群中的至少一种。
14.根据上述12所述的聚酯树脂组合物,相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(F)成核剂的含量为0.05-5质量份。
15.根据权利要求1所述的聚酯树脂组合物,将所述聚酯树脂组合物在成型温度为260℃,模具温度为80℃的条件下成型,所得厚度为1mm的成型片在波长为940nm的条件下用分光光度计测定的透过率为48%以上。
16.一种成型品,所述成型品由上述1-15中任一项所述的聚酯树脂组合物所制得。
17.根据上述16所述的成型品,其为激光熔接透过材料。
18.根据上述16所述的成型品,其成型品激光透过部位的厚度为3mm以下。
由于该聚酯树脂组合物具有优异的激光透过率,可用于各种汽车用电气安装部件(各种控制单元、各种传感器等)、连接器类、开关部件、或继电器部件等。
附图说明
图1为表示透过性评价试样片的俯视图(A)和侧视图(B)。
具体实施方式
以下对本发明的具体实施方式进行说明。
(A)聚对苯二甲酸丁二酯树脂
本发明的聚酯树脂组合物中作为基质树脂的(A)聚对苯二甲酸丁二酯(PBT)树脂,可例举为以对苯二甲酸丁二酯为主成分的均聚酯或者共聚酯。
所述共聚酯中可以共聚的单体,可例举为除了对苯二甲酸之外的二羧酸、除了1,4-丁二醇之外的二元醇、含氧酸或内酯等。共聚性单体可以使用一 种或者二种以上组合使用。其中,共聚性单体量优选为全部单体量的30mol%以下。
所述除对苯二甲酸之外的二羧酸,可例举为脂肪族二羧酸(例如,戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷基二羧酸、十二烷基二羧酸、十六烷基二羧酸)、脂环式二羧酸(例如,六氢邻苯二甲酸、六氢间苯二甲酸、六氢对苯二甲酸)、芳香族二羧酸(例如,邻苯二甲酸、间苯二甲酸、2,6-萘二甲酸、4,4’-二苯基二羧酸、4,4’-二苯基醚二羧酸、4,4’-二苯基甲烷二羧酸、或4,4’-二苯基酮二羧酸等C8-16二羧酸);另外,也可以根据需要混合使用苯偏三酸、苯均四酸等多元羧酸。
所述除1,4-丁二醇以外的二元醇,可例举为脂肪族亚烷基二醇(例如,乙二醇、丙二醇、戊二醇、新戊二醇、己二醇、庚二醇、辛二醇、壬二醇、或癸二醇等C2-12烷烃二醇,优选C2-10烷烃二醇)、聚烷氧基二醇(例如,二乙二醇、二丙二醇、二丁二醇、三乙二醇、三丙二醇、聚乙二醇、聚丙二醇、聚丁二醇等含有氧烷基的二醇),芳香族二醇(例如,对苯二酚、间苯二酚、萘二酚等的C6-C14的芳香族二醇、联苯酚、双酚类、苯二甲醇)等。另外,也可以根据需要混合使用丙三醇、三羟甲基丙烷、三羟甲基乙烷、或季戊四醇等多元醇。
所述含氧酸,可例举为含氧安息香酸、含氧萘甲酸、羟基苯乙酸、乙醇酸、或含氧己酸等羟酸及其衍生物。
所述内酯,可例举为丙内酯、丁内酯、戊内酯、或己内酯等C3-12内酯等。
为了兼顾成型性和激光透过率两方面的性能,优选(A)聚对苯二甲酸 丁二酯树脂在邻氯苯酚的溶液的25℃时测定的固有粘度为0.36-3.0dl/g的范围,更优选固有粘度为0.42-2.0dl/g的范围。本发明中可以单独使用一种聚对苯二甲酸丁二酯树脂,也可以同时使用两种以上固有粘度不同的聚对苯二甲酸丁二酯树脂,但优选它们的固有粘度都在以上范围内。
同时,为了提高(A)聚对苯二甲酸丁二酯树脂与(B)非晶树脂的相容性,以及激光透过率,优选(A)聚对苯二甲酸丁二酯树脂的羧基含量在50mol/ton以下。这里(A)聚对苯二甲酸丁二酯树脂的羧基含量是在邻甲苯酚/氯仿溶剂里溶解后,乙醇化氢氧化钾滴定的条件下得到。
(A)聚对苯二甲酸丁二酯树脂可以由对苯二甲酸或者其酯形成性衍生物、1,4-丁二醇、和根据需要而加的共聚性单体,通过用惯用的方法(例如酯交换、直接酯化法等)进行聚合来制备。
(B)非晶树脂
本发明的聚酯树脂组合物中的(B)非晶树脂可例举为苯乙烯的均聚物/共聚物、聚苯醚、聚醚酰亚胺等芳香族聚醚、聚碳酸酯、聚芳酯、聚砜、聚醚砜、聚酰亚胺、或包含对苯二甲酸环己烷二亚甲基酯单元的非晶聚酯等。
所述苯乙烯的均聚物/共聚物,可例举为聚苯乙烯、聚氯代苯乙烯、聚-α-甲基苯乙烯、苯乙烯/氯代苯乙烯共聚物、苯乙烯/丙烯共聚物、苯乙烯/丙烯腈共聚物、苯乙烯/丁二烯共聚物、苯乙烯/氯乙烯共聚物、苯乙烯/乙酸乙烯酯共聚物、苯乙烯/马来酸共聚物、苯乙烯/丙烯酸酯共聚物(例如,苯乙烯/丙烯酸甲酯共聚物、苯乙烯/丙烯酸乙酯共聚物、苯乙烯/丙烯酸丁酯共聚物、苯乙烯/丙烯酸辛酯共聚物或苯乙烯/丙烯酸苯酯共聚物)、苯乙烯/甲基丙烯酸酯共聚物(例如,苯乙烯/甲基丙烯酸甲酯共聚物、苯乙烯/甲基丙烯酸乙酯共 聚物、苯乙烯/甲基丙烯酸丁酯共聚物或苯乙烯/甲基丙烯酸苯酯共聚物)、苯乙烯/α-氯丙烯酸甲酯共聚物、或苯乙烯/丙烯腈/丙烯酸酯共聚物。
所述聚碳酸酯为以选自2,2’-二(4-羟苯基)丙烷(双酚A)、4,4’-二羟基二苯基烷烃、4,4’-二羟基二苯砜、4,4’-二羟基二苯醚、2,2’-二(3,5-二甲基-4-羟苯基)丙烷、或1,1’-双(4-羟苯基)环己烷中的1种以上的二羟基化合物为主原料制备得到。其中,优选为以2,2’-二(4-羟苯基)丙烷(双酚A)为主原料制备得到的聚碳酸酯。
作为所述以双酚A为主原料制备得到的聚碳酸酯,其中也可以共聚双酚A以外的其他二羟基化合物,例如,4,4’-二羟基二苯基烷烃或者4,4’-二羟基二苯砜、4,4’-二羟苯基醚等,这里的其他二羟基化合物的使用量,优选相对于二羟基化合物的总量为10mol%以下。
所述的聚碳酸酯的聚合度没有特别的限定,但为了提高(B)聚碳酸酯与(A)聚对苯二甲酸丁二酯的相容性和改善其成型性,(B)聚碳酸酯的粘均分子量(Mv)优选为10000-50000。作为粘均分子量的下限值,更优选在15000以上,进一步优选在18000以上。另外,作为粘均分子量的上限值,更优选在40000以下,进一步优选在35000以下。
这里的粘均分子量(Mv)是在二氯甲烷溶剂中,使用乌氏粘度计,在20℃的温度下求得极限粘度[η](单位dl/g),进一步用Schnel的粘度式,[η]=1.23×10 -4×(Mv) 0.83算出得到。这里的极限粘度[η]是,通过各溶液浓度[c](g/dl)的比粘度[ηsp],用下式算出。
[η]=limηsp/c(c→0)。
所述包含对苯二甲酸环己烷二亚甲基酯单元的非晶聚酯是指,以对苯二 甲酸为主的二羧酸和1,4-环己烷二甲醇和其它二醇聚合而得到的聚酯。
所述其他二醇包括脂肪族亚烷基二醇(例如,乙二醇、丙二醇、丁二醇、戊二醇、新戊二醇、己二醇、庚二醇、辛二醇、壬二醇、癸二醇和其他C2-12烷基二醇、优选C2-10烷基二醇)、聚氧化烯二醇(例如,具有氧化烯单元的二醇,例如二甘醇、二丙二醇、二丁二醇、三甘醇、三丙二醇、聚乙二醇、聚丙二醇、聚丁二醇)、脂环族基团二元醇(例如1,2-环己二醇、1,3-环己二醇、1,4-环己二醇、螺二醇、1,3-环丁二醇、2,2,4,4-四甲基-1,3-环丁二醇、五环十五烷二甲醇)、芳香族二醇(例如,C6-C14芳香族二醇如对苯二酚、间苯二酚、萘二醇、双酚类和二甲苯乙二醇)等等。
这里其它二醇单元(Ⅰ)和1,4-环己烷二甲醇单元(Ⅱ)的摩尔比[(Ⅰ)/(Ⅱ)]在1/99-99/1之间。从提高与(A)聚对苯二甲酸丁二酯的相容性的观点考虑,[(Ⅰ)/(Ⅱ)]优选小于80/20,更优选小于75/25,进一步优选小于50/50。同时,优选大于25/75,更优选大于30/70。
从与(A)聚对苯二甲酸丁二酯树脂的相容性的方面考虑,(B)非晶树脂优选聚碳酸酯、包含对苯二甲酸环己烷二亚甲基酯单元的非晶聚酯、或苯乙烯/丙烯腈共聚物中的至少一种。
本发明中,相对于(A)聚对苯二甲酸丁二酯100质量份,(B)非晶树脂的含量为15-100质量份。在这个范围中,能够提高聚酯树脂组合物的激光透射率和成型加工性。进而,(B)非晶树脂的含量的下限值优选为20质量份以上,更优选30质量份以上。同时,所述含量的上限值优选为90质量份以下,更优选80质量份以下。
(C)环氧树脂
本发明的聚酯树脂组合物包含(C)三酚基甲烷型、四酚基乙烷型、酚醛清漆型、萘型环氧树脂中的至少一种环氧树脂。其中,从提高组分相容性效果的方面考虑,所述(C)环氧树脂优选为具有缩水甘油基醚结构或缩水甘油基酯结构。
本发明中,作为所述酚醛清漆型环氧树脂,可举例为下述结构式(1)的含有缩水甘油醚结构的酚醛清漆型环氧树脂。
Figure PCTCN2020102916-appb-000003
(在上述通式(1)中,X表示由碳原子数为1-8的烷基、芳基、芳烷基或脂环族烃基表示的二价基团,并且可以包含多个基团。R 1和R 2可以相同或不同,并且各自独立地表示氢原子、碳原子数为1-8的烷基、碳原子数为6-10的芳基或碳原子数为1-8的烷基醚基。R 3为氢原子、碳原子数为1-8的烷基或碳原子数为6-10的芳基。在上述通式(1)中,n表示大于0且小于等于20的值。a表示0-4的整数,b是0-3的整数。)
其中,从与(A)聚对苯二甲酸丁二酯树脂的末端羧基反应性高,并挥发性低的观点出发,(C)环氧树脂优选在室温(25℃)时为固体。由此考虑,作为上述结构式(1)所示的含有缩水甘油醚结构的酚醛清漆型环氧树脂,进一步优选如下结构。
Figure PCTCN2020102916-appb-000004
(其中,X优选为通式(2)或者通式(3)表示的二价基团,上述通式(1)和(3)中,R 1、R 2、R 4和R 5相同或不同,分别独立地表示碳原子数为1-8的烷基、碳原子数为6-10的芳基、或者碳原子数为1-8的烷基醚基中的任意一种,R 3是氢原子、碳原子数为1-8的烷基或者碳原子数为6-10的芳基中的任意一种,上述通式(1)中,n优选为大于0小于或等于10的值,上述通式(1)和(3)中,a、c、d分别独立地表示0-4的整数,b是0-3的整数。)
另外,所述三酚基甲烷型为下述结构式5所示的结构,所述四酚基乙烷型为下述结构式6所示的结构,所述萘型环氧树脂为下述结构式7、8所示的结构。
Figure PCTCN2020102916-appb-000005
Figure PCTCN2020102916-appb-000006
以上环氧化合物的环氧值优选100~1000g/eq。在此范围内,能抑制聚酯树脂组合物在熔融加工时产生气体,同时能够与(A)聚对苯二甲酸丁二酯的羧基有效地进行反应。进而,所述环氧值的下限值更优选200g/eq以上。另外,所述环氧值的上限值更优选500g/eq以下,进一步优选400g/eq以下。
本发明相对于(A)聚对苯二甲酸丁二酯树脂100质量份,(C)环氧树脂的含量为0.010-5.0质量份。环氧树脂在0.010质量份以上时,(A)聚对苯二甲酸丁二酯与(B)非晶树脂的相容性得到改善,从而提高透过率。同时(C)环氧树脂的含量在5.0质量份以下时,聚酯组合物中的(C)环氧树脂的分散 性良好,从而提高透过率。进而,(C)环氧树脂的含量的下限值优选为0.050质量份以上,更优选0.10质量份以上,进一步优选0.40质量份以上。另外,(C)环氧树脂的含量的上限值优选为3.0质量份以下,更优选1.5质量份以下。
(D)填充材料
本发明的聚酯树脂组合物中还可以进一步添加(D)填充材料。(D)填充材料只要是现有技术树脂中通常使用的填充材料即可,没有特别限定。例如可使用玻璃纤维、碳纤维、钛酸钾晶须、锌晶须氧化物、硼酸铝晶须、芳族聚酰胺纤维、氧化铝纤维、碳化硅纤维、陶瓷纤维、石棉纤维、石膏纤维、金属纤维、玻璃薄片、硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶蜡石、膨润土、蒙脱石、锂蒙脱石、合成云母、石棉、石墨、硅铝酸盐、氧化铝、二氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃微珠、空心玻璃微珠、陶瓷珠、氮化硼、碳化硅或硅灰石等。所述填充材料也可以是结构上是中空的填充材料,更进一步,也可以从这些填充材料中选择2种或更多种配合使用。所述填充材料的平均直径不做特别限制,为了使聚酯树脂组合物获得更好的外观,优选为0.001-20μm。
特别地,出于对低成型收缩率和高流动性的综合考虑,为了获得性能优异的聚酯树脂组合物,所述填充材料优选玻璃纤维或碳纤维中的至少一种。所述玻璃纤维没有特定的限制,可以是现有技术中采用的玻璃纤维。玻璃纤维可以是定长切断的短切原丝、粗砂、或研磨纤维等形状的纤维。一般情况下优选使用的玻璃纤维的平均直径为5-15μm。使用短切原丝的情况下,长度 没有特别限制,优选使用适合挤出混炼作业的标准3mm长度的纤维。此外,本发明对上述纤维状填充材料的断面形状没有特别的限定,可以从圆形、或扁平状纤维中选择任意一种或多种配合使用。
本发明的聚酯树脂组合物从刚性和韧性的平衡考虑,相对于(A)聚对苯二甲酸丁二酯100质量份,(D)填充材料的含量优选1-150质量份。另外,(D)填充材料的下限值更优选为10质量份以上,进一步优选为30质量份以上。(D)填充材料的上限值更优选为100质量份以下,进一步优选80质量份以下。
(E)酯交换抑制剂
本发明中聚酯树脂组合物中,进一步可以添加(E)酯交换抑制剂。作为酯交换抑制剂,是可以用于使包含(A)聚对苯二甲酸丁二酯树酯中的酯交换反应催化剂失活的化合物,对它没有特别限制,但优选亚磷酸酯系、磷酸酯系的化合物。
作为所述亚磷酸酯系的化合物,优选亚磷酸三苯酯、三壬基苯亚磷酸酯、三甲苯基亚磷酸酯、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三(2-乙基己基)酯、十三烷基亚磷酸酯、亚磷酸三(十二烷基)酯、亚磷酸三(十三烷)酯、亚磷酸三油酯、2-乙基己基二苯基亚磷酸酯、亚磷酸二苯基单十烷基酯、二苯基单(十三烷基)亚磷酸酯、苯基二癸基亚磷酸酯、三硫代亚磷酸三(十二烷基)酯、亚磷酸二乙酯、双(2-乙基己基)亚磷酸酯、亚磷酸二(十二烷基)酯、二油酰基氢亚磷酸酯、亚磷酸二苯酯、四苯基二丙二醇二亚磷酸酯、四(C12-C15烷基)-4,4'-异亚丙基二苯基二亚磷酸酯、4,4'-亚丁基双-(3-甲基-6-叔丁苯基)-四(十三烷基)二亚磷酸酯、双(癸基)季戊四醇二亚磷酸酯、双(十 三烷基)季戊四醇二亚磷酸酯、亚磷酸三(十八烷基)酯、二(十八烷基)季戊四醇二亚磷酸酯、亚磷酸三(2,4-二叔丁苯基)酯、氢化双酚A苯酚基亚磷酸酯聚合物、四苯基四(十三烷基)季戊四醇四亚磷酸酯、四(十三烷基)4,4'-异亚丙基二苯基二亚磷酸酯、双(壬基苯基)季戊四醇二亚磷酸酯、二月桂基季戊四醇二亚磷酸酯、三(4-叔丁基苯基)亚磷酸酯、三(2,4-二叔丁基苯基)亚磷酸酯、氢化双酚A季戊四醇亚磷酸酯聚合物、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯、双(2,6-二叔丁基-4-甲基苯基)季戊四醇二亚磷酸酯、双(2-叔丁基苯基)苯基亚磷酸酯、双(2,4,6-三叔丁基苯基)季戊四醇二亚磷酸酯、2,2'-亚甲基双(4,6-二叔丁基苯基)-2-乙基己基亚磷酸酯、2,2'-亚甲基双(4,6-二叔丁基苯基)辛基亚磷酸酯、双(2,4-二枯基苯基)季戊四醇二亚磷酸酯、或四(2,4-二叔丁基苯基)-4,4'-亚联苯基二亚磷酸酯等化合物中的一种或多种。
除此之外,所述磷酸酯系的化合物优选为下方通式(4)所举例表示的化合物。
Figure PCTCN2020102916-appb-000007
(通式(4)中,R 6是碳原子数为1~30的烷基,m为1或2。)
作为所述通式(4)所表示的化合物,具体可列举为磷酸甲酯、二甲基磷酸酯、磷酸乙酯、磷酸二乙酯、磷酸异丙酯、二异丙基磷酸酯、磷酸丁酯、二丁基磷酸酯、丁氧基乙基磷酸酯、二丁氧基乙基磷酸酯、2-乙基己基酸磷酸酯、二-2-乙基己基酸磷酸酯、磷酸辛酯、二辛基磷酸酯、磷酸异癸基酯、二异癸基磷酸酯、异十三烷基酸磷酸酯、二异十三烷基磷酸酯、正十二烷基 磷酸酯、二(十二烷基)磷酸酯、磷酸十八烷基酯、二(十八烷基)磷酸酯、二十四烷基磷酸酯、二(二十四烷基)磷酸酯、油酸磷酸酯、二油酸磷酸酯等。其中更进一步优选所述磷酸酯系的化合物为磷酸十八烷基酯或二(十八烷基)磷酸酯。这些磷酸酯系化合物可以单独使用一种,也可以组合使用两种以上。另外,上述磷酸酯类的化合物也可以与锌或铝等形成金属盐使用。
针对酯交换反应的催化剂失活,比起亚磷酸系化合物,使用磷酸酯系化合物使之失活速率较快,因此优选使用磷酸酯系化合物。因为(E)酯交换抑制剂如果过量加入后,可能导致(A)聚对苯二甲酸丁二酯树脂分解,因此相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(E)酯交换抑制剂的含量优选为0.025至0.5质量份。并且,所述(E)的含量的下限值更优选为0.03质量份以上,进一步优选0.1质量份以上。同时,(E)的含量的上限值更优选为0.3质量份以下,进一步优选0.25质量份以下。
(F)成核剂
本发明的聚酯树脂组合物中作为结晶促进剂的(F)成核剂没有特别的限制,一般用作聚合物的结晶成核剂的物质即可满足,可选自无机系结晶成核剂或有机系结晶成核剂中的任一种或多种。
所述无机系结晶成核剂,可例举为二氧化硅、氧化铝、氧化锆、氧化钛、硅灰石、高岭土、滑石粉、云母、或碳化硅等。
另外,脂肪族羧酸酰胺、山梨醇系衍生物等可以作为有机结晶成核剂。所述脂肪族羧酸酰胺之中,可以列举出如月桂酸酰胺、棕榈酸酰胺、油酸酰胺、硬脂酸酰胺、芥酸酰胺、山嵛酸酰胺、蓖麻油酸酰胺、或羟基硬脂酸酰胺等的脂肪族单羧酸酰胺类、N-油烯基棕榈酸酰胺、N-油烯基油酸酰胺、N- 油烯基硬脂酸酰胺、N-硬脂基油酸酰胺、N-硬脂基硬脂酸酰胺、N-硬脂基芥酸酰胺、N-羟甲基硬脂酸酰胺、或N-羟甲基山嵛酸酰胺等的N-取代脂肪族单羧酸酰胺类、亚甲基双硬脂酸酰胺、乙撑双月桂酸酰胺、亚乙基双癸酸酰胺、亚乙基双油酸酰胺、亚乙基双硬脂酸酰胺、亚乙基双芥酸酰胺、亚乙基双山嵛酸酰胺、亚乙基双异硬脂酸酰胺、亚乙基双羟基硬脂酸酰胺、亚丁基双硬脂酸酰胺、六亚甲基双油酸酰胺、六亚甲基双硬脂酸酰胺、六亚甲基双山萮酸酰胺、六亚甲基双羟基硬脂酸酰胺、间苯二甲基双硬脂酸酰胺、或间苯二甲基二-12-羟基硬脂酸酰胺等的脂肪族双羧酸酰胺类、N,N'-二油烯基癸二酸酰胺、N,N'-二油烯基己二酸酰胺、N,N-二硬脂基己二酸酰胺、N,N'-二硬脂基癸二酸酰胺、N,N'-二硬脂基间苯二甲酸酰胺、或N,N'-二硬脂基对苯二甲酸酰胺等的N-取代脂肪族羧酸二酰胺类、N-丁基-N'-硬脂基脲、N-丙基-N'-硬脂基脲、N-硬脂基-N'-硬脂基脲、N-苯基-N'-硬脂基脲、亚二甲苯基双硬脂基脲、甲苯基双硬脂基脲、六亚甲基双硬脂基脲、二苯甲烷双硬脂基脲、或二苯甲烷双月桂基脲等的N-取代脲类。
所述山梨醇系衍生物之中,可以列举出如双亚苄基山梨糖醇、双(对甲基亚苄基)山梨糖醇、双(对乙基亚苄基)山梨糖醇、双(对氯亚苄基)山梨糖醇、双(对溴亚苄基)山梨糖醇或由上述山梨糖醇衍生物再经化学改性得到的山梨糖醇衍生物等。
考虑促进(A)聚对苯二甲酸丁二酯树脂结晶的效果,(F)成核剂优选为选自二氧化硅、氧化铝、氧化锆、氧化钛、硅灰石、高岭土、滑石粉、云母、碳化硅、乙撑双月桂酸酰胺、或山梨醇系衍生物构成的群中的至少一种。并且,相对于100份质量份的(A)聚对苯二甲酸丁二酯树脂,所述(F)成 核剂的含量优选为0.05~5质量份。在此质量范围内,可以维持结晶促进效果,提高激光透过率。所述(F)成核剂的含量更优选0.1份质量以上的含量,另外,更优选3份质量以下、进一步优选2份质量以下的含量。
(G)其他添加剂
本发明的聚酯树脂组合物除了成分(A)~(F)以外可以进一步包括抗氧化剂、脱模剂、阻燃剂、或色母粒等添加剂。
所述抗氧化剂优选为酚类抗氧化剂或硫类抗氧化剂中的至少一种。为了获得更优的耐热性和热稳定性,优选并用酚类抗氧化剂和硫类抗氧化剂。
所述酚类抗氧化剂之中,可以列举出如2,4-二甲基-6-叔丁基苯酚、2,6-二叔丁基苯酚、2,6-二叔丁基对甲酚、2,6-二叔丁基-4-乙基苯酚、4,4'-亚丁基双(6-叔丁基-3-甲基苯酚)、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2'-亚甲基-双(4-乙基-6-叔丁基苯酚)、十八烷基-3-(3',5'-二叔丁基-4'-羟基苯)丙酸酯、季戊四醇四[3-(3,5-二叔丁基-4-羟基苯)]丙酸酯]、1,1,3-三(2-甲基-4-羟基-5-二叔丁基苯基)丁烷、三(3,5-二叔丁基-4-羟基苄)异氰脲酸酯、三甘醇-双[3-(3-叔丁基-4-羟基-5-甲基苯)丙酸酯]、1,6-己二醇双[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]、2,4-双(正辛基硫代)-6-(4-羟基-3,5-二叔丁基苯胺基)-1,3,5-三嗪、2,2-硫代二乙烯双[3-(3,5-二叔丁基-4-羟基苯)丙酸酯]、N,N'-六亚甲基双(3,5-二叔丁基-4-羟基氢化肉桂酰胺)、3,5-二叔丁基-4-羟基苄基膦酸二乙酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄)苯、三(3,5-二叔丁基-4-羟基苄基)异氰脲酸酯、2,4-双[(辛基硫代)甲基]邻甲酚、或异辛基-3-(3,5-二叔丁基-4-羟基苯)丙酸酯等。
所述硫系抗氧化剂之中,可以列举出如二月桂基硫代二丙酸酯、二肉豆 蔻基硫代二丙酸酯、二硬脂基硫代二丙酸酯、二(十三烷基)硫代二丙酸酯、季戊四烷基(3-月桂基硫代丙酸酯)、或2-巯基苯并咪唑等。
以上所述的抗氧化剂,既可单独使用,同时由于将两种以上的抗氧化剂组合会产生协同效果,也可多种并用。
所述抗氧化剂的含量,相对于(A)聚对苯二甲酸丁二酯和(B)非晶性树脂合计100质量份优选为0.01-3质量份。在此范围内,可以维持抗氧化的效果,同时可以抑制熔融加工中的气体发生。更优选0.05质量份以上,进一步优选0.1质量份以上。另外,优选2质量份以下,进一步优选1质量份以下。
所述脱模剂没有特别的限制,凡是用于通常热塑性树脂的脱模剂都可以使用。具体地,可例举为脂肪酸、脂肪酸金属盐、羟基脂肪酸、脂肪酸酯、脂肪族部分皂化酯、链烷烃、低分子量聚烯烃、脂肪酸酰胺、亚烷基双脂肪酸酰胺、脂肪族酮、脂肪酸低级醇酯、脂肪酸多元醇酯、脂肪酸聚二元醇酯、或改性聚硅氧烷等。
所述脂肪酸,优选碳原子数为6~40的脂肪酸,具体地可例举为油酸、月桂酸、硬脂酸、羟基硬脂酸、二十二烷酸、花生四烯酸、亚油酸、亚麻酸、蓖麻醇酸、棕榈酸、硬脂酸、褐煤酸、或它们的混合物等。
所述脂肪酸金属盐,优选碳原子数为6~40的脂肪酸的碱金属盐或碱土类金属盐,具体地可例举为硬脂酸钙、褐煤酸钠、或褐煤酸钙等。
所述羟基脂肪酸,可例举为1,2-羟基脂肪酸等。
所述脂肪酸酯,可例举为硬脂酸酯、油酸酯、亚油酸酯、亚麻酸酯、己二酸酯、二十二烷酸酯、花生四烯酸酯、褐煤酸酯、异硬脂酸酯、或聚合酸 的酯等。
所述脂肪族部分皂化酯,可例举为褐煤酸部分皂化酯等。
所述链烷烃,优选碳原子数为18以上的,可例举为液体石蜡、天然石蜡、微晶蜡、或矿脂等。
所述低分子量聚烯烃,优选重均分子量为5000以下的,具体地可例举为聚乙烯蜡、马来酸改性聚乙烯蜡、氧化型聚乙烯蜡、氯化型聚乙烯蜡、或聚丙烯蜡等。
所述脂肪酸酰胺,优选碳原子数为6以上的,具体地可例举为油酸酰胺、芥酸酰胺、或二十二烷酸酰胺等。
所述亚烷基双脂肪酸酰胺,优选碳原子数为6以上的,具体地可例举为亚甲基双硬脂酰胺、亚乙基双硬脂酰胺、或N,N-双(2-羟乙基)硬脂酰胺等。
所述脂肪族酮,可例举为高级脂肪族酮等。
所述脂肪酸低级醇酯,优选碳原子数为6以上的,具体地可例举为硬脂酸乙酯、硬脂酸丁酯、二十二烷酸乙酯、或米蜡等。
所述脂肪酸多元醇酯,可例举为甘油单硬脂酸酯、季戊四醇单硬脂酸酯、季戊四醇四硬脂酸酯、季戊四醇己二酸硬脂酸酯、二季戊四醇己二酸硬脂酸酯、或脱水山梨糖醇单二十二烷酸酯等。
所述脂肪酸聚二元醇酯,可例举为聚乙二醇脂肪酸酯或聚丙二醇脂肪酸酯。
所述改性聚硅氧烷,可例举为甲基苯乙烯基改性聚硅氧烷、聚醚改性聚硅氧烷、高级脂肪酸烷氧基改性聚硅氧烷、含高级脂肪酸的聚硅氧烷、高级脂肪酸酯改性聚硅氧烷、甲基丙烯酸改性聚硅氧烷、或氟改性聚硅氧烷等。
所述阻燃剂可以例举为基于溴的阻燃剂,包括十溴二苯醚、八溴二苯基醚、四溴二苯基醚、四溴邻苯二甲酸酐、六溴环十二烷、双(2,4,6-三溴苯氧基)=乙烷、亚乙基双四溴邻苯二甲酰亚胺、六溴苯、1,1-磺酰基[3,5-二溴-4-(2,3-二溴丙氧基)]苯、聚二溴亚苯基氧化物、四溴双酚-S,三(2,3-二溴丙基)异氰脲酸酯、三溴苯酚、三溴苯基烯丙基醚、三溴新戊基醇、溴化聚苯乙烯、溴化聚乙烯、四溴双酚-A、四溴双酚-A衍生物、溴化环氧树脂如四溴双酚-A-环氧化物低聚物或聚合物和溴化苯酚线型酚醛清漆环氧化物、四溴双酚-A-碳酸酯低聚物或聚合物、四溴双酚-A-双(2-羟基二乙基醚)、四溴双酚-A-双(2,3-二溴丙基醚)、四溴双酚-A-双(烯丙基醚)、四溴环辛烷、亚乙基双五溴二苯基、三(三溴新戊基)磷酸酯、聚(五溴苄基聚丙烯酸酯)、八溴三甲基苯基二氢化茚、二溴新戊二醇、五溴苄基聚丙烯酸酯、二溴甲苯基缩水甘油醚、或N,N’-亚乙基-双-四溴对苯二甲酰亚胺等。在本发明中,上述阻燃剂也可以例举为基于氯的阻燃剂,包括氯化石蜡、氯化聚乙烯、全氯环十五烷、或四氯邻苯二甲酸酐等。
对于本发明的聚酯树脂组合物而言,使用差示扫描量热仪,在氮气环境下,将其以20℃/min的降温速率,从熔融状态降温至20℃,然后再以20℃/min的升温速率进行升温,在升温过程中出现的吸热峰的温度(熔点)为210℃以上且221℃以下。通过将吸热峰温度控制在该范围内,(A)聚对苯二甲酸丁二酯树脂与(B)非晶树脂的相容性提高,透射率提高,并且能够获得具有优异耐热性的聚酯树脂组合物。进而,吸热峰温度的上限优选为220℃以下,更优选为219℃以下。同时,吸热峰温度的下限优选为215℃以上,更优选为217℃以上。
本发明的聚酯树脂组合物可以通过如下制造方法制造得到。将主要成分 (A)、(B)、(C)以及根据需要加入的成分(E)、(F)等在常用的熔融混炼机如单螺杆或双螺杆挤出机、班伯里密炼机、捏和机、混炼机中按照相应的熔融混炼方法获得。
本发明的聚酯树脂组合物可通过注塑成型,挤压成型等方法制备得到成型品。
注塑成型的情况下,模具温度优选为40℃以上且250℃以下的范围,考虑到在(A)聚对苯二甲酸丁二酯树脂的玻璃化转变温度以上和熔点以下的温度范围内固化,具有成型效率高和成型品外观良好的优点,因此,优选模具温度为60℃以上且140℃以下的范围。
将本发明的聚酯树脂组合物,在成型温度为260℃、模具温度为80℃的条件下成型而得的厚度为1mm的成型品在波长为940nm的条件下用分光光度计测定的透过率优选为48%以上。本发明的成型品由于具有高透过率,而能够作为激光熔接透过材料使用。这里的透过率是指,积分球作为检出器的分光光度计测定的数值。
成型品的厚度虽然没有特别地限定,但从提高透过率的观点出发,成型品激光透过部位的的厚度优选3mm以下。
实施例
下列实施例对本发明作进一步说明,在此提供这些实施例的目的仅在于对本发明进行说明,而不在于对本发明的范围进行限定。以下实施例中使用的原料和测试设备如下所示。
1.聚酯树脂组合物的原料
(A)聚对苯二甲酸丁二酯树脂
聚对苯二甲酸丁二酯树脂(PBT),东丽株式会社固有粘度:0.76dl/g、末端羧基浓度:15mol/ton的聚对苯二甲酸丁二酯树脂
(B)非晶树脂
聚碳酸酯(PC):三菱工程塑料株式会社S1000
对苯二甲酸环己烷二亚甲基酯/对苯二甲酸乙二醇酯共聚物(PCTG):美国伊斯曼化学公司Eastar EB062
(C)环氧树脂
DIC株式会社HP-7200H(具有芳香族缩水甘油醚结构的酚醛型环氧树脂,环氧值为280g/eq)
DIC株式会社HP4700(具有芳香族缩水甘油醚结构的萘型环氧树脂,环氧值为160g/eq)
Hexion Cardura E10P(有支链烷烃羧酸缩水甘油酯、环氧值244g/eq)
三菱化学株式会社JER1009(双酚A型环氧树脂、环氧值2950g/eq)
(D)填充材料
玻璃纤维,日本电气硝子株式会社T187
(E)酯交换抑制剂
株式会社ADEKA AX71(二硬脂酸磷酸酯和硬脂酸磷酸酯的混合体)
(F)成核剂
成核剂1:竹原化学工业株式会社Hightron(滑石粉)
成核剂2:广州市欧颖化工有限公司EBL(乙撑双月桂酸酰胺)
2.实施例和比较例所得聚酯树脂组合物的性能测试
(1)透过率测试
使用(株)岛津制作所生产的紫外近红外分光光度计(UV-3100)进行透过性评价,另外,用积分球作检测器。对于透过性,测定1mm厚的样品在近红外线940nm波长区域的光线透过率,在表中用百分率表示透过光量和入射光量的比。对于近红外线940nm波长区域的透过率的测定,每10nm测定透过率,求出近红外线940nm波长区域中的透过率的最大值和最小值。进行5回测定,求得其上限值和下限值的平均值。
(2)熔点(Tm)测试
采用TA公司的示差扫描量热仪(DSC250),对各实施例及比较例中制备得到的聚酯树脂组合物精确称量5~7mg,在氮气气氛下以20℃/min的升温速率从20℃开始升温至比所出现的吸热峰的温度T0高出30℃的温度,并在此温度下恒温2min,随后以20℃/min的降温速率降温至20℃,20℃下恒温2min后再次以20℃/min的升温速率升温至比T0高出30℃的温度,得到熔点Tm。Tm为二次升温过程中吸热峰的峰尖对应的温度。
实施例1-7
原料如表1中所示,采用日本制钢所社制TEX30α型双轴挤出机(L/D=45.5)熔融混炼,挤出机有13个加热区,有两套带计量仪器的加料装置并且带有真空排气设备。除玻璃纤维以外,其他原料混合后,从挤出机主喂料口加入,玻璃纤维从挤出机侧喂料口加入,挤出机温度设定为100℃-260℃,经熔融混炼、冷却、切粒得到粒状聚酯树脂组合物。将此粒状物在130℃的 烘箱中干燥3h后,采用日精树脂工业株式会社制NEX50型注塑机按照成型温度260℃、模具温度80℃的条件注塑成型透过性评价试样片(样条模具尺寸为长80mm×宽80mm×厚1mm),按上述透过率、熔点测试方法进行测试,测试结果如表1所示。
比较例1-10
与实施例1中制备方法相同,原料如表2所示,按上述透过率、熔点测试方法进行测试,测试结果如表2所示。
表1
Figure PCTCN2020102916-appb-000008
表2
Figure PCTCN2020102916-appb-000009
从实施例1-7与比较例1-4的对比可见,满足本发明特定组分构成的(A)聚对苯二甲酸丁二酯树脂、(B)非晶树脂和(C)特定环氧树脂,以及满足组合物熔点(DSC规定测试条件下)在210℃以上且221℃以下范围时,树脂组合物的透过率(>48%)要远高于未同时满足以上条件的树脂组合物。
从实施例1与比较例5、8的对比可见,(C)特定环氧树脂的含量过多或过少时,聚酯树脂组合物的透过率都较差。
从实施例4,比较例9和比较例10的对比中,添加环氧树脂(HP-7200H) 的聚酯树脂组合物的透过率要高于添加环氧树脂(Cardura E10P),环氧树脂(JER1009)的聚酯树脂组合物。说明添加本发明的特定构造的环氧树脂可以得到高透过率。
从实施例1与比较例7的对比可见,在以特定量包含(A)聚对苯二甲酸丁二酯树脂、(B)非晶树脂和(C)特定环氧树脂之外,还需使树脂组合物的熔点在本发明的特定范围内,才能实现本发明的提高透过率的效果。
另外,从实施例3和实施例4、比较例7和实施例2的对比可见,是否添加成核剂、及成核剂的种类,均会影响聚酯树脂组合物中(A)和(B)的相容性以及透过率。

Claims (18)

  1. 一种聚酯树脂组合物,其特征在于,所述聚酯树脂组合物是至少由以下(A)~(C)配合而得到,
    (A)聚对苯二甲酸丁二酯树脂100质量份,
    (B)非晶树脂15-100质量份,
    (C)三酚基甲烷型、四酚基乙烷型、酚醛清漆型、萘型环氧树脂中的至少一种环氧树脂0.010-5.0质量份;
    并且,在氮气环境下用差示扫描量热仪,将所述聚酯树脂组合物以20℃/min的降温速度,从熔融状态降温至20℃,然后再以20℃/min的升温速度进行升温,在升温过程中出现的吸热峰的温度为210℃以上且221℃以下。
  2. 根据权利要求1所述的聚酯树脂组合物,其特征在于:所述(B)非晶树脂为选自聚碳酸酯、包含对苯二甲酸环己烷二亚甲基酯单元的非晶聚酯、或苯乙烯/丙烯腈共聚物中的至少一种。
  3. 根据权利要求1所述的聚酯树脂组合物,其特征在于:所述(C)环氧树脂具有缩水甘油基醚结构或缩水甘油基酯结构。
  4. 根据权利要求3所述的聚酯树脂组合物,其特征在于:所述(C)环氧树脂为以下通式(1)所示的含有缩水甘油醚结构的酚醛清漆型环氧树脂,
    Figure PCTCN2020102916-appb-100001
    上述通式(1)中,X是通式(2)或者通式(3)表示的二价基团,上述通式(1)和(3)中,R 1、R 2、R 4和R 5相同或不同,分别独立地表示碳原子数为1-8的烷基、碳原子数为6-10的芳基、或者碳原子数为1-8的烷基醚基中的任意一种,R 3是氢原子、碳原子数1-8的烷基或者碳原子数为6-10的芳基中的任意一种,上述通式(1)中,n是大于0小于或等于10的值,上述通式(1)和(3)中,a、c、d分别独立地表示0-4的整数,b是0-3的整数。
  5. 根据权利要求1所述的聚酯树脂组合物,其特征在于:相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(C)环氧树脂的含量是0.05-3质量份。
  6. 根据权利要求1所述的聚酯树脂组合物,其特征在于:所述聚酯树脂组合物中还包括(D)填充材料。
  7. 根据权利要求6所述的聚酯树脂组合物,其特征在于:所述(D)填充材料为玻璃纤维或碳纤维中的至少一种。
  8. 根据权利要求6所述的聚酯树脂组合物,其特征在于:相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(D)填充材料的含量为1-150 质量份。
  9. 根据权利要求1所述的聚酯树脂组合物,其特征在于:所述聚酯树脂组合物中还包括(E)酯交换抑制剂。
  10. 根据权利要求9所述的聚酯树脂组合物,其特征在于:所述(E)酯交换抑制剂为以下通式(4)所示化合物,
    Figure PCTCN2020102916-appb-100002
    通式(4)中,R 6是碳原子数为1-30的烷基,m为1或2。
  11. 根据权利要求9所述的聚酯树脂组合物,其特征在于:相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(E)酯交换抑制剂的含量为0.025-0.5质量份。
  12. 根据权利要求1所述的聚酯树脂组合物,其特征在于:所述聚酯树脂组合物中还包括(F)成核剂。
  13. 根据权利要求12所述的聚酯树脂组合物,其特征在于:所述(F)成核剂为选自二氧化硅、氧化铝、氧化锆、氧化钛、硅灰石、高岭土、滑石粉、云母、碳化硅、乙撑双月桂酸酰胺、或山梨醇系衍生物构成的群中的至少一种。
  14. 根据权利要求12所述的聚酯树脂组合物,其特征在于:相对于(A)聚对苯二甲酸丁二酯树脂100质量份,所述(F)成核剂的含量为0.05-5质量份。
  15. 根据权利要求1所述的聚酯树脂组合物,其特征在于:将所述聚酯树脂组合物在成型温度为260℃、模具温度为80℃的条件下成型,所得厚度 为1mm的成型片在波长为940nm的条件下用分光光度计测定的透过率为48%以上。
  16. 一种成型品,其特征在于:所述成型品由权利要求1-15中任一项所述的聚酯树脂组合物所制得。
  17. 根据权利要求16所述的成型品,其特征在于:其为激光熔接透过材料。
  18. 根据权利要求16所述的成型品,其特征在于,其成型品激光透过部位的厚度为3mm以下。
PCT/CN2020/102916 2019-07-22 2020-07-20 一种聚酯树脂组合物及其成型品 WO2021013115A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021573866A JP2022544346A (ja) 2019-07-22 2020-07-20 ポリエステル樹脂組成物およびその成形品
CN202080002494.0A CN112384568B (zh) 2019-07-22 2020-07-20 一种聚酯树脂组合物及其成型品
US17/627,215 US20220275199A1 (en) 2019-07-22 2020-07-20 Polyester resin composition and molded product thereof
EP20844684.9A EP4006103A4 (en) 2019-07-22 2020-07-20 POLYESTER RESIN COMPOSITION AND MOLDED ARTICLE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910660370.0 2019-07-22
CN201910660370 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021013115A1 true WO2021013115A1 (zh) 2021-01-28

Family

ID=74193185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102916 WO2021013115A1 (zh) 2019-07-22 2020-07-20 一种聚酯树脂组合物及其成型品

Country Status (5)

Country Link
US (1) US20220275199A1 (zh)
EP (1) EP4006103A4 (zh)
JP (1) JP2022544346A (zh)
CN (1) CN112384568B (zh)
WO (1) WO2021013115A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166605A1 (en) * 2021-10-18 2023-04-19 SHPP Global Technologies B.V. Laser transparent low warpage glass filled pbt compositions for laser welding
EP4201995A1 (en) * 2021-12-23 2023-06-28 Lotte Chemical Corporation Thermoplastic resin composition and article produced therefrom
WO2023156232A1 (en) 2022-02-16 2023-08-24 Basf (China) Company Limited Polybutylene terephthalate composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426096A (zh) * 2019-05-20 2023-07-14 三菱工程塑料株式会社 毫米波雷达构件用热塑性树脂组合物、成形体、和树脂组合物的制造方法
JP7265979B2 (ja) * 2019-12-17 2023-04-27 ポリプラスチックス株式会社 レーザー溶着用成形品、レーザー溶着用成形品のレーザー透過率のばらつき抑制剤
WO2023015542A1 (en) * 2021-08-13 2023-02-16 Celanese International Corporation Laser transparent composition and molded articles made therefrom
CN115322531A (zh) * 2022-08-12 2022-11-11 湖北合聚新材料有限公司 一种耐水解的激光焊接pbt材料及其制备方法
CN116200016A (zh) * 2023-03-16 2023-06-02 苏州旭光聚合物有限公司 一种可激光焊接的玻纤增强聚酯材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213106A (ja) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd 熱可塑性樹脂成形材料及び樹脂成形品
US20050171321A1 (en) * 2004-01-06 2005-08-04 Hiroyuki Sumi Laser weldable polyester composition and process for laser welding
JP2005336409A (ja) 2004-05-28 2005-12-08 Toray Ind Inc 中空成形品および複合成形品
CN1863870A (zh) 2003-10-07 2006-11-15 胜技高分子株式会社 激光熔敷用树脂组合物和成形品
JP2007186584A (ja) 2006-01-13 2007-07-26 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2010024396A (ja) * 2008-07-23 2010-02-04 Panasonic Electric Works Co Ltd レーザ溶着用熱可塑性樹脂組成物、樹脂成形品の製造方法、及び樹脂成形品
JP2010070626A (ja) 2008-09-18 2010-04-02 Toray Ind Inc ポリエステル樹脂組成物および複合成形体
JP2013155278A (ja) * 2012-01-30 2013-08-15 Orient Chemical Industries Co Ltd レーザー溶着用樹脂組成物及びその溶着体
CN107778792A (zh) * 2016-08-26 2018-03-09 朗盛德国有限责任公司 聚酯组合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032636A1 (fr) * 2006-09-13 2008-03-20 Wintech Polymer Ltd. Composition de résine pour un soudage laser et article moulé
EP3421540B1 (en) * 2016-02-25 2020-05-13 Mitsubishi Engineering-Plastics Corporation Resin composition for laser welding and welded body thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213106A (ja) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd 熱可塑性樹脂成形材料及び樹脂成形品
CN1863870A (zh) 2003-10-07 2006-11-15 胜技高分子株式会社 激光熔敷用树脂组合物和成形品
US20050171321A1 (en) * 2004-01-06 2005-08-04 Hiroyuki Sumi Laser weldable polyester composition and process for laser welding
JP2005336409A (ja) 2004-05-28 2005-12-08 Toray Ind Inc 中空成形品および複合成形品
JP2007186584A (ja) 2006-01-13 2007-07-26 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2010024396A (ja) * 2008-07-23 2010-02-04 Panasonic Electric Works Co Ltd レーザ溶着用熱可塑性樹脂組成物、樹脂成形品の製造方法、及び樹脂成形品
JP2010070626A (ja) 2008-09-18 2010-04-02 Toray Ind Inc ポリエステル樹脂組成物および複合成形体
JP2013155278A (ja) * 2012-01-30 2013-08-15 Orient Chemical Industries Co Ltd レーザー溶着用樹脂組成物及びその溶着体
CN107778792A (zh) * 2016-08-26 2018-03-09 朗盛德国有限责任公司 聚酯组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006103A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166605A1 (en) * 2021-10-18 2023-04-19 SHPP Global Technologies B.V. Laser transparent low warpage glass filled pbt compositions for laser welding
WO2023067499A1 (en) * 2021-10-18 2023-04-27 Shpp Global Technologies B.V. Laser transparent low warpage glass filled pbt compositions for laser welding
EP4201995A1 (en) * 2021-12-23 2023-06-28 Lotte Chemical Corporation Thermoplastic resin composition and article produced therefrom
WO2023156232A1 (en) 2022-02-16 2023-08-24 Basf (China) Company Limited Polybutylene terephthalate composition

Also Published As

Publication number Publication date
EP4006103A1 (en) 2022-06-01
EP4006103A4 (en) 2023-08-23
JP2022544346A (ja) 2022-10-18
US20220275199A1 (en) 2022-09-01
CN112384568A (zh) 2021-02-19
CN112384568B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2021013115A1 (zh) 一种聚酯树脂组合物及其成型品
JPH0395257A (ja) 難燃性ポリエステル樹脂組成物
JP2008214558A (ja) 無機強化ポリエステル系樹脂組成物及びそれを用いた成形品の表面外観改良方法。
WO2022037660A1 (zh) 聚酯树脂组合物及其成型品
JP2013127067A (ja) 耐熱および耐光性ポリマー組成物
EP1927629A1 (en) Polyethylene terephthalate compositions
JPWO2003022925A1 (ja) 難燃性ポリエチレンテレフタレート系樹脂組成物
JP2018123215A (ja) ポリブチレンテレフタレート樹脂組成物および成形品
JP2017155147A (ja) ポリエステル系樹脂組成物
JP6806596B2 (ja) 樹脂ベルト材料用熱可塑性ポリエステルエラストマ樹脂組成物および樹脂ベルト成形体
JP2020084037A (ja) 熱可塑性樹脂組成物及び成形体
JP2017214471A (ja) ポリブチレンテレフタレート樹脂組成物成形品の製造方法
JP6931045B2 (ja) ポリアルキレンテレフタレート組成物
KR102362662B1 (ko) 폴리에스터 수지 조성물
JPS6140354A (ja) 樹脂組成物
KR102311477B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
JP7313187B2 (ja) 熱可塑性樹脂組成物及び成形体
JP2006272849A (ja) 射出圧縮成形法
JP7288751B2 (ja) 熱可塑性樹脂組成物及び成形体
JP2021152133A (ja) ポリエチレンナフタレート樹脂組成物からなる成形品
JPH0212983B2 (zh)
JPS6249309B2 (zh)
JPH04292652A (ja) 熱可塑性ポリエステル樹脂組成物
KR840000471B1 (ko) 수지 조성물
KR890004010B1 (ko) 강화 폴리에스테르 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844684

Country of ref document: EP

Effective date: 20220222