WO2022034864A1 - 鋼の連続鋳造方法および鋼の試験凝固装置 - Google Patents

鋼の連続鋳造方法および鋼の試験凝固装置 Download PDF

Info

Publication number
WO2022034864A1
WO2022034864A1 PCT/JP2021/029396 JP2021029396W WO2022034864A1 WO 2022034864 A1 WO2022034864 A1 WO 2022034864A1 JP 2021029396 W JP2021029396 W JP 2021029396W WO 2022034864 A1 WO2022034864 A1 WO 2022034864A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
molten steel
test
continuous casting
slab
Prior art date
Application number
PCT/JP2021/029396
Other languages
English (en)
French (fr)
Inventor
友太 櫻井
健二 鼓
章敏 松井
直樹 菊池
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022542839A priority Critical patent/JP7355250B2/ja
Priority to KR1020237004410A priority patent/KR20230035627A/ko
Priority to CN202180055826.6A priority patent/CN116057195A/zh
Publication of WO2022034864A1 publication Critical patent/WO2022034864A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a continuous steel casting method and a steel test solidification device for preventing cracking and breakout of slabs in continuous casting.
  • a slow-cooling mold powder is used in the mold for the steel type in the subcapsular carbon region (hereinafter referred to as “crack risk steel type”) in which solidification cracks are likely to occur during the primary cooling in the mold. It is generally practiced to prevent the occurrence of cracks and breakouts in the slab by slow cooling.
  • continuous casting of crack risk steel grades causes irregularities on the surface of the slab.
  • the shape of the unevenness on the surface of the slab such as the depth of the oscillation mark, is used.
  • the oscillation mark of the slab is generated by pushing the mold powder into the slab when the mold is lowered, and its depth is promoted by the solidification shrinkage that occurs inside the solidification shell, so the conditions for continuous casting are the same. If so, the crack risk steel grade has a larger oscillation mark depth.
  • Patent Document 1 discloses a method of measuring the depth of an oscillation mark online to prevent the occurrence of crackability breakout of slabs. Specifically, the compression depth obtained by continuously detecting the profile of the surface of the slab with a laser rangefinder installed facing the thickness surface of the slab at the position after the mold is larger than the reference value. At that time, it is determined that there is a risk of crackability breakout of the slab, and the operating conditions are changed.
  • Non-Patent Document 1 a water-cooled plate is immersed in molten steel offline to form a solidified shell, and the thickness difference and spacing of the uneven portions of the solidified shell are directly measured to form a solidified shell.
  • a method for assessing the non-uniformity of is disclosed.
  • Non-Patent Document 2 discloses a method of predicting whether or not a steel grade has a crack risk based on an alloy component. Specifically, for various steel grades, a pseudo-Fe-C binary phase diagram is calculated as a function of carbon concentration using a thermodynamic program. Then, from the subcapsular region in these pseudo-Fe-C binary phase diagrams, other alloy components of the carbon concentration lower limit value (C a ) and the carbon concentration upper limit value (C b ) of the subcapsular region are used. The change is formulated. Whether or not the molten steel is a crack risk steel grade is determined based on whether or not the carbon concentration of the steel grade is within the range of C a to C b .
  • Patent Document 1 it is difficult to prevent the occurrence of cracks in the slab by changing the type of mold powder according to the depth of the oscillation mark measured during continuous casting. There is a risk that it will not be possible to take measures to prevent the occurrence of cracks in the slabs for steel grades that are at risk of severe cracking.
  • Non-Patent Document 1 since the test of immersing a water-cooled plate in molten steel to form a solidified shell on the plate is complicated, the non-uniformity of the solidified shell is evaluated for a large number of steel types. Not suitable for doing.
  • Non-Patent Document 2 there are cases where it is not always possible to properly determine that a steel grade that is empirically known to cause vertical cracks or horizontal cracks is a crack risk steel grade.
  • the present invention has been made to solve the above problems. That is, in consideration of the fact that the subvessel region of the continuously cast molten steel changes under the influence of the alloy component, it is easily determined whether or not the continuously cast molten steel is a crack risk steel grade.
  • the present inventors prepared test slabs from molten steel and evaluated the surface roughness to determine whether the molten steel is a crack risk steel grade.
  • the present invention has been completed by finding that it can be easily and accurately predicted.
  • the steel continuous casting method and the steel test solidification device of the present invention are as follows.
  • a test slab is produced by injecting molten steel to be continuously cast into a test solidification device and cooling it, measuring the surface roughness of the lower surface of the test slab, and the surface roughness is a predetermined threshold value.
  • the continuous casting is performed using a slow cooling mold powder suitable for preventing cracking of the slab when the molten steel is continuously cast, and the surface roughness is less than a predetermined threshold value.
  • a method for continuously casting steel which comprises performing the continuous casting using a strongly cooled mold powder suitable for increasing the casting speed of continuous casting.
  • a test slab is produced by injecting molten steel to be continuously cast into a test solidifying device and cooling it, measuring the surface roughness of the lower surface of the test slab, and the surface roughness is a predetermined threshold value.
  • the components of the molten steel M are the lower limit of carbon concentration Ca (mass%) and the upper limit of carbon concentration in the subinclusion region on the Fe-C binary system equilibrium diagram.
  • the influence coefficients ⁇ a, M, ⁇ b, M on C b are obtained, and the influence coefficients ⁇ a , M , ⁇ b, M in the plurality of types of the molten steel M are summed up to obtain the plurality of types of the above.
  • the lower limit of carbon concentration C a (mass%) and the upper limit of carbon concentration C b (% by mass) in the subparticle region of the molten steel M were obtained as the following formulas (1) and (2), and a plurality of types of the molten steel M were obtained.
  • the carbon concentration lower limit value C a and the carbon concentration upper limit value C b of the subwrapping crystal region of the new molten steel obtained by the following formulas (1) and (2) from the components of the new molten steel different from the above, From the carbon concentration C (mass%) of the new molten steel, the carbon equivalent C p (mass%) of the new molten steel was obtained by the following formula (3), and the carbon equivalent C p was 0.09 to 0.17. If it is within the range of, the new molten steel is continuously cast using a slow cooling mold powder suitable for preventing cracking of the slab when the new molten steel is continuously cast, and the carbon equivalent Cp . When is not in the range of 0.09 to 0.17, the new molten steel is continuously cast with a strong cooling mold powder suitable for increasing the casting speed of continuous casting. , Continuous steel casting method.
  • the slow cooling mold powder contains SiO 2 and CaO as main components, the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is 1.0 or more and less than 2.0, and the crystallization temperature is 1100.
  • the strongly cooled mold powder contains SiO 2 and CaO as main components, the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is 0.7 or more and less than 1.0, and the crystallization temperature is high.
  • the test solidifying apparatus is characterized by having a cooling capacity of 102 to 105 ° C./min at a cooling rate of 1 mm from the surface layer of the solidified shell of the molten steel. [1] to The method for continuously casting steel according to any one of [5].
  • the injection rate (unit: kg / s) when the molten steel is injected into the test solidifying device is three times or more the solidification rate (unit: kg / s) of the molten steel.
  • a steel test solidification device that produces test slabs by injecting and cooling molten steel, and has a cooling rate of 10 2 to 10 at a depth of 1 mm from the surface layer of the solidified shell of the injected molten steel.
  • a steel test solidifier comprising a mold at 5 ° C./min.
  • An injection device for injecting the molten steel into the mold is further provided, and the injection rate of the molten steel by the injection device (unit: kg / s) is the solidification rate of the molten steel in the mold (unit: kg / s).
  • the surface roughness or carbon of the lower surface of the test slab produced by injecting the molten steel to be continuously cast into the test solidification device and cooling it.
  • the equivalent carbon content it can be easily determined whether or not the molten steel is a steel type in which cracks are likely to occur in the slab when continuously cast.
  • continuous casting is performed using a slow cooling mold powder suitable for preventing cracking, thereby causing cracking or breakout of the slab. It can be surely prevented. Further, when it is determined that the steel type is less likely to crack, continuous casting is performed using a strong cooling mold powder suitable for increasing the casting speed of continuous casting, so that the casting speed is not reduced and continuous casting is performed. Casting productivity can be increased.
  • FIG. 1 is a schematic view showing an example of a test solidification device used in the continuous steel casting method of the present invention.
  • 2 (a) and 2 (b) are photographs showing an example of the surface roughness of the lower surface of the test slab produced by the test solidification device for steel of the present invention.
  • FIG. 1 shows an outline of a test solidifying device 1 used in the continuous steel casting method of the present embodiment.
  • the steel test solidifying apparatus 1 of the present embodiment has a mold 2 for producing a test slab by injecting molten steel S, cooling and solidifying, and an injection for injecting molten steel S into the mold 2. It is equipped with a device 3.
  • the mold 2 is a copper container having a substantially rectangular parallelepiped shape, and a water cooling device (not shown) is provided on the bottom surface 21 of the mold 2.
  • the thickness of the mold 2 and the capacity of the water cooling device are 1 mm deep from the surface layer of the solidification shell on the bottom surface 21 side of the mold 2 cooled by the water cooling device when the molten steel S is injected into the mold 2 and cooled and solidified. It is designed to obtain a cooling capacity with a cooling rate of 102 to 105 ° C / min.
  • the shape of the mold 2 of the test solidifying apparatus 1 is not particularly limited, but it is preferable that the width W and the depth D of the bottom surface 21 of the mold 2 are 10 mm or more, respectively, and the width W and the depth D are It is more preferable that they are 40 mm or more and 60 mm or less, respectively. This is because the size of the lower surface of the test slab produced by the test solidifying device 1 is the same as the bottom surface 21 of the mold 2, and the surface roughness of the lower surface of the test slab is measured as described later. It is based on the fact that it is known that the distance between the irregularities that can be visually confirmed is in the range of 10 mm to 40 mm.
  • the surface roughness of the bottom surface of the mold 2 in contact with the lower surface of the test slab is an arithmetic average height of 30 ⁇ m obtained by the method specified in ISO25178 “Three-dimensional surface texture (surface roughness)”. It is preferably less than. This is because, as will be described later, when the surface roughness of the lower surface of the test slab is evaluated using the arithmetic mean height of the surface roughness obtained by the method specified in ISO25178, the shape of the bottom surface 21 of the mold 2 is determined. This is because it affects the surface roughness of the lower surface of the test slab.
  • the injection device 3 includes a bottomed tubular crucible 31 made of Al 2 O 3 or Mg O, a high frequency induction coil 32 that is covered so as to cover the outer periphery of the crucible 31 and heats and melts the contents in the crucible 31.
  • a tilting table 33 that tilts while the crucible 31 is fixed and injects the melt in the crucible 31 into the mold 2, and a plurality of thermocouples (not shown) that measure the temperature of the molten steel in the crucible 31. It is equipped with a temperature display device (not shown) that converts the output voltage of the thermocouple into a temperature and displays it.
  • a steel sample (molten steel) S having the same component as the target component of the molten steel to be continuously cast is put into the crucible 31, and the crucible 31 is fixed on the tilting table 33. Further, a high frequency induction coil 32 is covered so as to cover the outer periphery of the crucible 31, and the steel sample S in the crucible 31 is heated and melted. At this time, it is confirmed by the operator's visual inspection that the steel sample S is melted, and the temperature of the melted steel sample S displayed on the temperature display device is in the range of 1590 to 1610 ° C.
  • thermocouple is input to the computer, and it is automatically determined whether or not the temperature of the molten steel sample S is within the range of 1590 to 1610 ° C. You may do it in.
  • the high-frequency induction coil 32 is moved away from the crucible 31, the tilting table 33 is tilted to tilt the crucible 31, and the steel sample S melted in the crucible 31 is injected into the mold 2.
  • the water cooling device of the mold 2 is operated to cool and solidify the molten steel (steel sample) S injected into the mold 2 to prepare a test slab.
  • the operation of the water cooling device is adjusted so that the cooling rate at a depth of 1 mm from the surface layer of the solidified shell is 102 to 105 ° C./min.
  • Non-Patent Document 3 the temperature is 5 ° C./min. That is, in the cooling of the molten steel (steel sample) S in the test solidification device 1, the cooling rate at the position where the occurrence of non-uniform solidification becomes remarkable in the actual continuous casting machine is reproduced.
  • the tilting speed of the tilting table 33 is linked to the operation of the water cooling device, and the injection speed (unit: kg / s) of the steel sample S into the mold 2 by the tilting table 33 is set to the solidification of the molten steel S in the mold 2. If the speed is set to be 3 times or more of the velocity (unit: kg / s), unevenness is likely to occur on the surface of the solidified shell when the molten steel S is in the subinclusion region, and whether or not it is a crack risk steel grade is determined. It is preferable because it can be judged more systematically.
  • FIG. 2A is an example when the steel sample S is a crack risk steel grade
  • FIG. 2B is an example when the steel sample S is not a crack risk steel grade.
  • FIG. 2A is an example when the steel sample S is a crack risk steel grade
  • unevenness is remarkably observed on the lower surface of the test slab.
  • the molten steel is sampled from a ladle containing the molten steel to be continuously cast with a sampler, and this molten steel is used as a mold 2 of the test solidification device 1.
  • a test slab may be prepared by directly injecting into and cooling. In this case, if the sampler for collecting molten steel from the ladle is provided with the function of the mold 2, it is not necessary to separately prepare the test solidification device 1.
  • the height of the unevenness of the lower surface of the test slab produced as described above is measured by a measuring device such as a laser range finder, and the surface roughness of the surface roughness is the arithmetic mean specified in ISO25178. Calculated using height.
  • the conditions for calculating the surface roughness include the measurement evaluation area, the interval between measurement points, and the size of the wavelength to be cut off.
  • the measurement evaluation area, the interval between measurement points, and the size of the wavelength to be cut off are not particularly limited, but are as follows. Is preferable.
  • the measurement and evaluation area is preferably centered on the lower surface of the test slab, and its vertical and horizontal lengths are preferably 10 mm or more, and more preferably 40 mm or more and 60 mm or less. This is based on the fact that the intervals between the irregularities that can be visually confirmed are known to be in the range of 10 mm to 40 mm.
  • the interval between measurement points is preferably 10 mm or less.
  • the size of the wavelength to be cut off is preferably 800 ⁇ m.
  • the part of the solidified shell where the cooling rate is high bends convexly with respect to the mold surface and is cast. Unevenness is generated on the surface of the piece. Therefore, the surface roughness of the test slab is an index as to whether or not the molten steel having the same composition as this steel sample S is a crack risk steel type.
  • each molten steel is a crack risk steel grade based on whether or not the surface roughness of the test slab is equal to or higher than a predetermined threshold value.
  • the carbon equivalent Cp can be formulated.
  • the above formula ( C a and C b are obtained from 1) and the formula (2), and from this and the carbon concentration C (mass%) of the target steel, the carbon equivalent C p (mass%) of the target steel is calculated by the following formula (3).
  • the slow cooling effect of the solidified shell by the mold powder is that the powder slag that has flowed into the gap between the mold and the solidified shell of the continuous casting machine is cooled on the mold surface and solidified to form a slag film, and the crystals in the slag film form a slag film. It is obtained by increasing the heat transfer resistance.
  • the constituent components of the mold powder are SiO 2 and CaO, which are the main components, and Li 2 O, Na 2 O, F, MgO, Al 2 O 3 , etc. added for adjusting the viscosity of the mold powder and the precipitation of crystals.
  • a common crystal species that precipitates in the slag film is caspidine (Cuspidine: 3CaO, 2SiO 2 , CaF 2 ).
  • powder slag is used to mold the mold powder in order to have the effect of suppressing vertical cracking. After flowing into the gap between the solidified shell and the solidified shell, it is necessary to instantly precipitate crystals and slowly cool the solidified shell.
  • the mold powder having a high crystallization temperature and caspidyne crystallizing as primary crystals is considered to have a function of slowly cooling the inside of the mold, such a slow cooling mold powder is used for crack risk steel grades.
  • the casting speed is reduced to ensure the occurrence of cracks and breakouts, and for steel grades without crack risk, productivity is maintained by not reducing the casting speed without using slow cooling mold powder. do.
  • the molten steel having the same composition as this steel sample S is a crack risk steel grade.
  • Continuous casting is performed using a slow cooling mold powder suitable for preventing cracking.
  • the slowly cooled mold powder contains SiO 2 and CaO as main components, the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is 1.0 or more and less than 2.0, and the crystallization temperature. A temperature of 1100 ° C. or higher and one in which caspidyne is crystallized can be used as the primary crystal.
  • the reasons for making the constituents of the mold powder as described above are as follows. If the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is less than 1.0, the amount of caspidyne deposited in the slag film is insufficient and the crystallization temperature becomes too low, so that vertical cracks and horizontal cracks are prevented. Cooling function is not given to the mold powder. Further, when the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is 2.0 or more, the crystallization temperature of the mold powder rises, the crystallization of the mold powder is promoted too much, and the friction between the mold and the slab increases. This is because it increases and breakouts are more likely to occur.
  • the molten steel having the same composition as this steel sample S is not a crack risk steel grade (when continuously cast). It is a steel type that does not easily crack the slab), and continuous casting is performed using a strong cooling mold powder suitable for increasing the casting speed of continuous casting.
  • the strongly cooled mold powder contains SiO 2 and CaO as main components, the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is 0.7 or more and less than 1.0, and the crystallization temperature is less than 1100 ° C. Can be used.
  • the reason why the constituent components of the mold powder are as described above is as follows.
  • the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is 1.0 or more, the amount of caspidyne precipitated in the slag film becomes large and the crystallization temperature becomes too high, so that the mold powder has a slow cooling function. It is given and it becomes necessary to reduce the casting speed. Further, if the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is less than 0.7, the melting point of the mold powder rises, the amount of inflow into the mold decreases, and there is a risk of binding breakout. Is.
  • Each of the steel types a to d (medium carbon steel) shown in Table 1 is melted by 1 to 2 charges in a converter and vacuum degassing equipment (secondary refining), and a vertical bending type continuous casting machine is used via a tundish. Hot water was poured into a water-cooled mold. Then, while supplying the strong cooling mold powder A or the slow cooling mold powder B having the constituent components shown in Table 2 to the surface of the molten steel in the mold, continuous casting was performed at the casting speed shown in Table 3 to produce slabs. ..
  • each slab obtained as a result was visually observed to confirm the presence or absence of surface cracks in the slab. Specifically, the length of the crack was measured, and when a crack having a length of 10 mm or more was confirmed, it was determined that the slab had a surface crack.
  • each of the steel grades a to d is a crack risk steel grade based on whether or not the surface roughness of the lower surface of the test slab is 60 ⁇ m or more.
  • molten steel is sampled from a ladle containing molten steel to be continuously cast with a sampler, a test slab is prepared from the molten steel, the height of the unevenness of the lower surface of the test slab is measured, and the height of the unevenness is measured.
  • the surface roughness of the surface roughness was calculated using the arithmetic mean height Sa defined in ISO25178.
  • the steel types a and b had a surface roughness Sa of the test slab of 60 ⁇ m or more, and were determined to be crack risk steel types in the example of the present invention. Based on this determination, it was confirmed that cracking of the slab can be suppressed by performing continuous casting using the slow cooling mold powder B at a casting speed Vc of 1.6 m / min.
  • the carbon equivalents Cp of the steel grades a and b obtained by the above formula (6) are out of the range of 0.09 to 0.17% by mass, and in the comparative example, the steel grades a and b are steel grades having no risk of cracking.
  • the steel grades a and b are steel grades having no risk of cracking.
  • the steel grades c and d were determined to have a surface roughness Sa of less than 60 ⁇ m of the test slab and were not crack risk steel grades in the example of the present invention. Based on this determination, when continuous casting is performed using the strongly cooled mold powder A at a casting speed Vc of 2.0 m / min, cracks do not occur in the slab and the casting speed Vc is not lowered. I was able to increase my productivity.
  • the carbon equivalents Cp of the steel grades c and d obtained by the above formula (6) are in the range of 0.09 to 0.17% by mass, and in the comparative example, the steel grades c and d are determined to be crack risk steel grades. Was done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

連続鋳造される溶鋼が割れリスク鋼種であるか否かを簡便に判定し、これに基づいて連続鋳造の操業条件を適正化することにより、鋳片の割れや連続鋳造のトラブルの発生を防止しつつ生産性向上を図る。 連続鋳造しようとする溶鋼を試験凝固装置に注入して冷却することにより試験鋳片を作製し、前記試験鋳片の下面の表面粗さを測定し、前記表面粗さが所定の閾値以上である場合には、前記溶鋼は連続鋳造されたときに鋳片に割れを生じやすい鋼種であると判定して、該割れを防ぐのに適する緩冷却モールドパウダーを用いて前記連続鋳造を行い、前記表面粗さが所定の閾値未満である場合には、前記溶鋼は連続鋳造されたときに鋳片に割れを生じにくい鋼種であると判定して、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて前記連続鋳造を行う。

Description

鋼の連続鋳造方法および鋼の試験凝固装置
 本発明は、連続鋳造における鋳片の割れやブレークアウトを防止するための、鋼の連続鋳造方法および鋼の試験凝固装置に関する。
 C含有量が0.09~0.17質量%の亜包晶中炭素鋼を連続鋳造すると、鋳片の表面に割れが発生しやすい。具体的には、凝固シェルの溶鋼側での凝固時のδ-γ変態による凝固収縮により、凝固シェルのうち冷却速度の大きい部位が、鋳型表面に対して凸に反り返って、鋳片の表面に凹凸が生成し、凝固シェルに不均一成長が発生する。鋳片の表面の凹部では、エアギャップにより熱抵抗が大きくなり、凝固シェル厚が小さくなることで、凝固シェルに歪みが発生して、鋳片表面に凝固割れが発生する。この凝固割れは、連続鋳造の二次冷却で拡大して、縦割れや横割れに成長するとされている。鋳片の凝固割れの程度が大きい場合には、この割れに起因してブレークアウトが発生する危険性もある。
 そこで、連続鋳造プロセスにおいては、鋳型内の一次冷却において凝固割れが生じやすい亜包晶炭素領域の鋼種(以下、「割れリスク鋼種」という)に対して、緩冷却モールドパウダーを用いて鋳型内における緩冷却化を図ることにより、鋳片の割れやブレークアウトの発生を防ぐことが一般的に行われている。
 緩冷却モールドパウダーを用いて連続鋳造を行うと、鋳型内での凝固シェルの厚みが小さくなるため、鋳型直下で凝固シェルが破断してブレークアウトが発生する危険性が高まる。このため、緩冷却モールドパウダーを用いる場合には、鋳型内での凝固シェルの厚みが減少しないように、連続鋳造の鋳造速度を低下させる必要がある。
 割れリスク鋼種以外の鋼種に対して緩冷却モールドパウダーを不必要に用いて連続鋳造を行う場合には、やはり連続鋳造の鋳造速度を低下させる必要が生じ、連続鋳造の生産性が低下してしまう。したがって、溶鋼が割れリスク鋼種であるか否かを適格に判定して、割れリスク鋼種のみに対して緩冷却モールドパウダーを用いて連続鋳造を行うことが、鋳片の割れや連続鋳造のトラブルの発生を防止しつつ生産性向上を図るうえで、重要である。
 Fe-C二元系平衡状態図上の亜包晶領域に対応する炭素濃度の範囲は、実際には他の合金成分の影響を受けて変化することが知られている。これらを踏まえ、溶鋼が割れリスク鋼種であるか否かを適格に判定して、連続鋳造の操業条件を適正化することが重要である。
 上述のとおり、割れリスク鋼種を連続鋳造すると、鋳片の表面に凹凸が生成する。この凹凸を評価する指標としては、例えば、オシレーションマークの深さ等、鋳片の表面の凹凸の形状が用いられる。鋳片のオシレーションマークは、鋳型下降時にモールドパウダーが鋳片内に押し込まれることにより生成し、その深さは凝固シェルの内側で発生する凝固収縮により助長されるため、連続鋳造の条件が同じであれば、割れリスク鋼種のほうがオシレーションマークの深さが大きくなる。
 特許文献1には、オシレーションマークの深さをオンラインで計測し、鋳片の割れ性ブレークアウトの発生を防ぐ方法が開示されている。具体的には、鋳型以降の位置において、鋳片の厚み面に臨ませて設置したレーザー距離計によって、鋳片の表面のプロフィールを連続的に検出して得られるディプレッション深さが基準値より大きいとき、鋳片の割れ性ブレークアウトの発生の恐れがあると判定して、操業条件の変更を行っている。
 また、非特許文献1には、オフラインで溶鋼中に水冷板を浸漬させて板上に凝固シェルを形成させ、この凝固シェルの凹凸部の厚み差および間隔を直接的に測定して、凝固シェルの不均一性を評価する方法が開示されている。
 さらに、非特許文献2には、割れリスク鋼種であるか否かを合金成分に基づいて予測する方法が開示されている。具体的には、種々の鋼種について、熱力学プログラムを用いて、疑似Fe-C二元系平衡状態図を、炭素濃度の関数として計算している。そして、これらの疑似Fe-C二元系平衡状態図における亜包晶領域から、亜包晶領域の炭素濃度下限値(C)および炭素濃度上限値(C)の、他の合金成分による変化を定式化している。当該鋼種の炭素濃度が、C~Cの範囲内にあるか否かにより、溶鋼が割れリスク鋼種であるか否かが判定される。
特開平9-57413号公報
村上洋、外3名、「連続鋳造鋳型内における亜包晶炭素鋼の不均一凝固の制御」、鉄と鋼、1992年、Vol.78、No.1、pp.105-112 K.Blazeck、外3名、"Calculation of the Peritectic Range for Steel Alloys"、AISTech 2007 Conference Proceedings、2007年、pp.81-88 花尾方史、外2名、「連続鋳造鋳型内における亜包晶鋼の初期凝固に及ぼすモールドフラックスの影響」、鉄と鋼、2014年、Vol.100、No.4、pp.581-590
 しかし、特許文献1に開示される方法では、連続鋳造中に計測されるオシレーションマークの深さに対応して、モールドパウダーの種類を変更して鋳片の割れの発生を防ぐことは困難であり、凹凸の激しい割れリスク鋼種に対して、鋳片の割れ発生を防ぐための対応が間に合わない恐れがある。
 また、非特許文献1に開示される方法では、溶鋼中に水冷板を浸漬させて板上に凝固シェルを形成する試験が煩雑であるため、多数の鋼種について凝固シェルの不均一性の評価を行うには適さない。
 また、非特許文献2に開示される方法では、縦割れや横割れが発生することが経験的に知られている鋼種について、割れリスク鋼種であることを必ずしも適格に判定できない場合がみられる。
 本発明は、上記課題を解決するためになされたものである。すなわち、連続鋳造される溶鋼の亜包晶領域が合金成分の影響を受けて変化することを考慮して、連続鋳造される溶鋼が割れリスク鋼種であるか否かを簡便に判定し、これに基づいて連続鋳造の操業条件を適正化することにより、鋳片の割れや連続鋳造のトラブルの発生を防止しつつ生産性向上を図ることのできる、鋼の連続鋳造方法および鋼の試験凝固装置を提供することを課題とする。
 上記課題に鑑み、本発明者らは独自の視点から鋭意研究開発を行った結果、溶鋼から試験鋳片を作成してその表面粗さを評価することにより、溶鋼が割れリスク鋼種であるか否かを簡便かつ的確に予測できることを見出して、本発明を完成させた。
 本発明の鋼の連続鋳造方法および鋼の試験凝固装置は、以下の通りである。
[1] 連続鋳造しようとする溶鋼を試験凝固装置に注入して冷却することにより試験鋳片を作製し、前記試験鋳片の下面の表面粗さを測定し、前記表面粗さが所定の閾値以上である場合には、前記溶鋼を連続鋳造したときの鋳片の割れを防ぐのに適する緩冷却モールドパウダーを用いて前記連続鋳造を行い、前記表面粗さが所定の閾値未満である場合には、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて前記連続鋳造を行うことを特徴とする、鋼の連続鋳造方法。
[2] 前記閾値は、ISO25178に規定される方法で得られる面粗さの算術平均高さで60μmであることを特徴とする、[1]に記載の鋼の連続鋳造方法。
[3] 連続鋳造しようとする溶鋼を試験凝固装置に注入して冷却することにより試験鋳片を作製し、前記試験鋳片の下面の表面粗さを測定し、前記表面粗さが所定の閾値以上である複数種類の前記溶鋼Mの各々について、該溶鋼Mの成分がFe-C二元系平衡状態図上の亜包晶領域の炭素濃度下限値C(質量%)および炭素濃度上限値C(質量%)に与える影響係数αa,M,αb,Mを求め、複数種類の前記溶鋼Mにおける前記影響係数αa,M,αb,Mを総和して、複数種類の前記溶鋼Mの亜包晶領域の炭素濃度下限値C(質量%)および炭素濃度上限値C(質量%)を下記式(1)および式(2)のとおり求め、複数種類の前記溶鋼Mとは異なる新たな溶鋼の成分から下記式(1)および式(2)により求められる前記新たな溶鋼の亜包晶領域の前記炭素濃度下限値Cおよび前記炭素濃度上限値Cと、前記新たな溶鋼の炭素濃度C(質量%)とから、下記式(3)により、前記新たな溶鋼の炭素当量C(質量%)を求め、前記炭素当量Cが0.09~0.17の範囲内にある場合には、前記新たな溶鋼を連続鋳造したときの鋳片の割れを防ぐのに適する緩冷却モールドパウダーを用いて前記新たな溶鋼の連続鋳造を行い、前記炭素当量Cが0.09~0.17の範囲内にはない場合には、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて前記新たな溶鋼の前記連続鋳造を行うことを特徴とする、鋼の連続鋳造方法。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 C=0.09+{(C-C)/(C-C)}×(0.17-0.09) …(3)
[4] 前記緩冷却モールドパウダーは、SiOおよびCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が1.0以上2.0未満であり、結晶化温度が1100℃以上であり、かつ初晶としてカスピダインが晶出するものであることを特徴とする、[1]~[3]のいずれかに記載の鋼の連続鋳造方法。
[5] 前記強冷却モールドパウダーは、SiOおよびCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が0.7以上1.0未満であり、かつ結晶化温度が1100℃未満のものであることを特徴とする、[1]~[4]のいずれかに記載の鋼の連続鋳造方法。
[6] 前記試験凝固装置は、前記溶鋼の凝固シェルの表層から1mmの深さでの冷却速度を10~10℃/分とする冷却能を有することを特徴とする、[1]~[5]のいずれかに記載の鋼の連続鋳造方法。
[7] 前記溶鋼を前記試験凝固装置に注入するときの注入速度(単位:kg/s)は、該溶鋼の凝固速度(単位:kg/s)の3倍以上であることを特徴とする、[1]~[6]のいずれかに記載の鋼の連続鋳造方法。
[8] 前記試験凝固装置は、幅および奥行がそれぞれ10mm以上の底面を有することを特徴とする[1]~[7]のいずれかに記載の鋼の連続鋳造方法。
[9] 溶鋼を注入して冷却することにより試験鋳片を作製する鋼の試験凝固装置であって、注入された前記溶鋼の凝固シェルの表層から1mmの深さの冷却速度が10~10℃/分である鋳型を備えることを特徴とする鋼の試験凝固装置。
[10] 前記溶鋼を前記鋳型に注入する注入装置をさらに備え、該注入装置による前記溶鋼の注入速度(単位:kg/s)は、前記鋳型における前記溶鋼の凝固速度(単位:kg/s)の3倍以上であることを特徴とする、[9]に記載の鋼の試験凝固装置。
[11] 前記鋳型は、幅および奥行がそれぞれ10mm以上の底面を有することを特徴とする[9]または[10]に記載の鋼の試験凝固装置。
 本発明の鋼の連続鋳造方法および鋼の試験凝固装置によれば、連続鋳造しようとする溶鋼を試験凝固装置に注入して冷却することにより作製される試験鋳片の下面の表面粗さ又は炭素当量を用いて、この溶鋼が連続鋳造されたときに鋳片に割れが生じやすい鋼種であるか否かを容易に判定することができる。
 そして、鋳片に割れを生じやすい鋼種であると判定された場合には、割れを防ぐのに適する緩冷却モールドパウダーを用いて連続鋳造を行うことで、鋳片の割れやブレークアウトの発生を確実に防ぐことができる。また、割れが生じにくい鋼種であると判定された場合には、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて連続鋳造を行うことで、鋳造速度を低下させることなく、連続鋳造の生産性を高めることができる。
図1は、本発明の鋼の連続鋳造方法で用いられる試験凝固装置の一例を示す概略図である。 図2(a)および図2(b)は、本発明の鋼の試験凝固装置により作製された試験鋳片の下面の表面粗さの例を示す写真である。
 以下、図面を参照しつつ、本発明の鋼の連続鋳造方法および鋼の試験凝固装置の実施の形態を説明する。
<鋼の試験凝固装置>
 図1に、本実施形態の鋼の連続鋳造方法で用いられる試験凝固装置1の概略を示す。
 図1に示すように、本実施形態の鋼の試験凝固装置1は、溶鋼Sを注入して冷却し凝固させることにより試験鋳片を作製する鋳型2と、鋳型2に溶鋼Sを注入する注入装置3とを備えている。
 鋳型2は、略直方体形状の銅製容器であり、その底面21には水冷装置(図示せず)が設けられている。鋳型2の厚みおよび水冷装置の能力は、鋳型2に溶鋼Sが注入されて冷却され凝固する時に、水冷装置により冷却される鋳型2の底面21側での凝固シェルの表層から1mmの深さでの冷却速度を10~10℃/分とする冷却能が得られるように設計されている。
 本発明では、試験凝固装置1の鋳型2の形状は特に限定されるものではないが、鋳型2の底面21の幅Wおよび奥行Dがそれぞれ10mm以上であることが好ましく、幅Wおよび奥行Dがそれぞれ40mm以上かつ60mm以下であることがさらに好ましい。これは、試験凝固装置1により作製される試験鋳片の下面の大きさは、鋳型2の底面21と同寸法となり、この試験鋳片の下面の表面粗さを後述のように測定することに際して、目視により確認できる凹凸の間隔は10mm~40mmの範囲にあることが知られていることに基づいている。また、試験鋳片の下面と接触する鋳型2の底面の表面粗さは、ISO25178「三次元表面性状(面粗さ)」に規定される方法で得られる面粗さの算術平均高さで30μm未満であることが好ましい。これは、後述のように、試験鋳片の下面の表面粗さをISO25178に規定される方法で得られる面粗さの算術平均高さを用いて評価するに際して、鋳型2の底面21の形状が試験鋳片の下面の表面粗さに影響を与えるためである。
 注入装置3は、Al又はMgOからなる有底筒状の坩堝31と、坩堝31の外周を覆うように被せられ坩堝31内の収容物を加熱して溶融させる高周波誘導コイル32と、坩堝31が固定された状態で傾動して坩堝31内の溶融物を鋳型2に注入する傾動台33と、坩堝31内の溶鋼の温度を測定する複数の熱電対(図示せず)と、各熱電対の出力電圧を温度に換算して表示する温度表示装置(図示せず)と、を備えている。
 上述の鋼の試験凝固装置1を用いて行われる鋼の連続鋳造方法について、以下に説明する。
<試験鋳片の作製>
 本実施形態では、連続鋳造しようとする溶鋼の目標成分と同一成分を有する鋼試料(溶鋼)Sを坩堝31内に投入し、この坩堝31を、傾動台33上に固定する。さらに、坩堝31の外周を覆うように高周波誘導コイル32を被せ、坩堝31内の鋼試料Sを加熱して溶融させる。このとき、作業者の目視により、鋼試料Sが溶融していることを確認し、温度表示装置に表示される溶融した鋼試料Sの温度が1590~1610℃の範囲内になっていることが確認されるまで、鋼試料Sの加熱を継続する。ここで、作業者の目視に代えて、上記熱電対からの出力をコンピュータに入力させて、溶融した鋼試料Sの温度が1590~1610℃の範囲内になっているか否かの判定を自動的に行うようにしても良い。
 次いで、高周波誘導コイル32を坩堝31から離すように移動させ、傾動台33を傾動させて坩堝31を傾斜させて、坩堝31内で溶融した鋼試料Sを鋳型2に注入する。そして、鋳型2の水冷装置を動作させ、鋳型2に注入された溶鋼(鋼試料)Sを冷却して凝固させ、試験鋳片を作製する。このとき、凝固シェルの表層から1mmの深さでの冷却速度が10~10℃/分となるように、水冷装置の動作を調整する。
 この冷却速度は、連続鋳造機実機で割れリスク鋼種を連続鋳造するときに、凝固シェルの厚みが1mmを超える段階で不均一凝固の発生が顕著となり、この位置での冷却速度が10~10℃/分であることが、非特許文献3で報告されていることに基づいている。つまり、試験凝固装置1での溶鋼(鋼試料)Sの冷却では、連続鋳造機実機において不均一凝固の発生が顕著となる位置での冷却速度を再現するようにしている。
 また、傾動台33の傾動速度を、上記水冷装置の動作と連携させて、傾動台33による鋼試料Sの鋳型2への注入速度(単位:kg/s)を、鋳型2における溶鋼Sの凝固速度(単位:kg/s)の3倍以上となるように設定すると、溶鋼Sが亜包晶領域内にある場合に凝固シェル表面に凹凸が生じやすくなり、割れリスク鋼種であるか否かをより制度よく判定できるので好ましい。
 このようにして試験凝固装置1により作製された試験鋳片の下面の例を、図2に写真で示す。図2(a)は、鋼試料Sが割れリスク鋼種である場合、図2(b)は割れリスク鋼種ではない場合の例である。鋼試料Sが割れリスク鋼種である場合は、試験鋳片の下面に凹凸の生成が顕著に認められる。
<製鋼工程の溶鋼を用いた試験鋳片の作製>
 実際の製鋼工程では、連続鋳造時の溶鋼の成分は、目標値から外れることもありうる。そこで、溶鋼が割れリスク鋼種であるか否かの判定の精度を高めるために、連続鋳造しようとする溶鋼が入った取鍋からサンプラーで溶鋼を採取し、この溶鋼を試験凝固装置1の鋳型2に直接注入して冷却することにより試験鋳片を作製しても良い。この場合には、取鍋から溶鋼を採取するサンプラーに鋳型2の機能を備えるようにすれば、別途試験凝固装置1を用意する必要がない。
<表面粗さの測定>
 次に、上述のように作製された試験鋳片の下面の凹凸の高さを、レーザー距離計等の測定装置により測定し、その表面粗さの面粗さを、ISO25178に規定される算術平均高さを用いて算出する。
 上記表面粗さの算出条件としては、測定評価面積、測定点の間隔およびカットオフする波長の大きさが挙げられる。本発明の鋼の連続鋳造方法および鋼の試験凝固装置では、これら測定評価面積、測定点の間隔およびカットオフする波長の大きさは、特に限定されるものではないが、次のようにすることが好ましい。
 まず、測定評価面積は、その中心を試験鋳片の下面の中心とし、その縦横の長さをそれぞれ10mm以上とすることが好ましく、40mm以上かつ60mm以下とすることがさらに好ましい。これは、目視により確認できる凹凸の間隔は10mm~40mmの範囲にあることが知られていることに基づいている。測定点の間隔は、10mm以下とすることが好ましい。カットオフする波長の大きさは、800μmとすることが好ましい。
<割れリスク鋼種であるか否かの判定>
 次に、上述のように算出される試験鋳片の下面の表面粗さ(面粗さの算術平均高さ)が60μm以上の場合、この鋼試料Sと同一成分を有する溶鋼は割れリスク鋼種(連続鋳造されたときに鋳片に割れを生じやすい鋼種)であると判定する。
 上述のとおり、割れリスク鋼種では、凝固シェルの溶鋼側での凝固時のδ-γ変態による凝固収縮により、凝固シェルのうち冷却速度の大きい部位が、鋳型表面に対して凸に反り返って、鋳片の表面に凹凸が生成する。よって、試験鋳片の表面粗さは、この鋼試料Sと同一成分を有する溶鋼が割れリスク鋼種であるか否かの指標となる。
 さらに、複数種類の溶鋼について、試験鋳片の表面粗さが所定の閾値以上であるか否かに基づいて各溶鋼が割れリスク鋼種であるか否かの判定を行った結果を用いて、下記のとおり炭素当量Cを定式化することができる。
 すなわち、溶鋼から作製された試験鋳片の表面粗さが所定の閾値以上となって、割れリスク鋼種であると判定された場合には、Fe-C二元系平衡状態図上の亜包晶領域の炭素濃度下限値(C)(質量%)および炭素濃度上限値(C)(質量%)に対するこの鋼種Mの各成分元素の影響係数αa,M,αb,Mを求める。そして、複数種類の鋼種Mにおいて、亜包晶領域の炭素濃度の範囲が、他の合金成分の影響を受けて変化していることを考慮して、C、Cを、下記式(1),式(2)のとおり定式化しておく。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 そして、新たな溶鋼(対象鋼)が割れリスク鋼種であるか否かの判定を行うとき、試験鋳片の表面粗さに基づいてこの判定を行う代わりに、対象鋼の成分組成から上記式(1)および式(2)によりC、Cを求め、これと対象鋼の炭素濃度C(質量%)とから、下記式(3)により、対象鋼の炭素当量C(質量%)を求める。
 C=0.09+{(C-C)/(C-C)}×(0.17-0.09) …(3)
 この炭素当量Cが0.09~0.17質量%の範囲内にある場合には、対象鋼が亜包晶領域内にあり、割れリスク鋼種であるものと判定できる。
<モールドパウダーの選択>
 次に、上述の割れリスク鋼種であるか否かの判定に基づいて、緩冷却モールドパウダーと強冷却モールドパウダーのどちらを用いて連続鋳造を行うかの選択を行う。
 モールドパウダーによる凝固シェルの緩冷却効果は、連続鋳造機の鋳型と凝固シェルの間隙に流れ込んだパウダースラグが鋳型表面で冷却されて凝固することでスラグフィルムが形成され、このスラグフィルム中の結晶により伝熱抵抗が増大することによって得られる。モールドパウダーの構成成分は、主成分であるSiOおよびCaO、ならびにモールドパウダーの粘度と結晶の析出の調整のために添加されるLiO、NaO、F、MgO、Al等である。スラグフィルム中に析出する一般的な結晶種は、カスピダイン(Cuspidine:3CaO・2SiO・CaF)である。
 鋳片の表面割れを抑制するには、溶鋼表面近傍での凝固シェルの緩冷却を図ることが有効であることから、モールドパウダーに縦割れを抑制させる効果を与えるためには、パウダースラグがモールドと凝固シェルの隙間に流れ込んだ後、瞬時に結晶を析出し、凝固シェルを緩冷却する必要がある。
 結晶化温度が高く、初晶としてカスピダインが晶出するモールドパウダーは、鋳型内を緩冷却化する機能を有すると考えられるので、割れリスク鋼種に対しては、このような緩冷却モールドパウダーを用いるとともに鋳造速度を低下させて割れおよびブレークアウトの発生を確実に防ぎ、割れリスクのない鋼種に対しては、緩冷却モールドパウダーを用いずに鋳造速度を低下させないことにより生産性を維持するようにする。
 具体的には、上述のように算出される試験鋳片の下面の表面粗さが60μm以上である場合には、この鋼試料Sと同一成分を有する溶鋼は割れリスク鋼種であると判定し、割れを防ぐのに適する緩冷却モールドパウダーを用いて連続鋳造を行う。緩冷却モールドパウダーとしては、具体的には、SiOおよびCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が1.0以上2.0未満であり、結晶化温度が1100℃以上であり、かつ初晶としてカスピダインが晶出するものを用いることができる。
 モールドパウダーの構成成分を上記のようにする理由は、次のとおりである。CaOのSiOに対する質量比(CaO/SiO)が1.0未満では、スラグフィルム中のカスピダインの析出量が不十分となり、結晶化温度が低くなりすぎるため、縦割れおよび横割れを防ぐ緩冷却機能がモールドパウダーに付与されない。また、CaOのSiOに対する質量比(CaO/SiO)が2.0以上では、モールドパウダーの結晶化温度が上昇し、モールドパウダーの結晶化が促進されすぎ、鋳型と鋳片との摩擦が増加して、ブレークアウトが発生しやすくなるためである。
 また、上述のように算出される試験鋳片の下面の表面粗さが60μm未満である場合には、この鋼試料Sと同一成分を有する溶鋼は割れリスク鋼種ではない(連続鋳造されたときに鋳片に割れを生じにくい鋼種である)と判定し、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて連続鋳造を行う。強冷却モールドパウダーとしては、SiOおよびCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が0.7以上1.0未満であり、かつ結晶化温度が1100℃未満のものを用いることができる。
 モールドパウダーの構成成分を上記のとおりとする理由は、次のとおりである。CaOのSiOに対する質量比(CaO/SiO)が1.0以上であると、スラグフィルム中のカスピダインの析出量が多くなり、結晶化温度が高くなりすぎるため、モールドパウダーに緩冷却機能が付与され、鋳造速度を低下させる必要が生じてしまう。また、CaOのSiOに対する質量比(CaO/SiO)が0.7未満では、モールドパウダーの融点が上昇して鋳型への流入量が減少し、拘束性ブレークアウトが発生する危険が生じるためである。
 表1に示す鋼種a~d(中炭素鋼)の各々を、転炉および真空脱ガス設備(二次精錬)で1~2チャージ溶製し、タンディッシュを介して垂直曲げ型連続鋳造機の水冷鋳型に注湯した。そして、鋳型内溶鋼の表面に表2に示す構成成分を有する強冷却モールドパウダーAまたは緩冷却モールドパウダーBを供給しながら、表3に示す鋳造速度で連続鋳造を行って、鋳片を製造した。
 この結果得られた各鋳片の表面を目視で観察し、鋳片の表面割れの発生の有無を確認した。具体的には、割れの長さを測定し、長さ10mm以上の割れが確認された場合に、鋳片に表面割れが発生しているものと判定した。
 同時に、本発明の鋼の連続鋳造方法により、試験鋳片の下面の表面粗さが60μm以上であるか否かに基づいて、鋼種a~dの各々が割れリスク鋼種であるか否かを判定した(本発明例)。また、上述の非特許文献2に開示される方法により、鋼種a~dの各々が割れリスク鋼種であるか否かを判定した(比較例)。
 本発明例では、連続鋳造しようとする溶鋼が入った取鍋からサンプラーで溶鋼を採取し、この溶鋼から試験鋳片を作製し、この試験鋳片の下面の凹凸の高さを測定し、その表面粗さの面粗さを、ISO25178に規定される算術平均高さSaを用いて算出した。
 比較例では、非特許文献2に開示されるように、鋼種a~dの各々の亜包晶領域の炭素濃度下限値(C)(質量%)および炭素濃度上限値(C)(質量%)を、下記式(4)および式(5)により求めた。
 C=0.0896+0.0458×Al-0.0205×Mn-0.0077×Si+0.0223×Al-0.0239×Ni+0.0106×Mo+0.0134×V-0.0032×Cr+0.00059×Cr+0.0197×W …(4)
 C=0.1967+0.0036×Al-0.0316×Mn-0.0103×Si+0.14×11Al+0.05×(Al×Si)-0.0401×Ni+0.03255×Mo+0.0603×V+0.0024×Cr+0.00142×Cr-0.00059×(Cr×Ni)+0.0266W …(5)
 ただし、式(4)および式(5)中におけるAl、Mn、Si、Ni、Mo、V、CrおよびWは、これら各元素の含有量(質量%)である。
 そして、これら炭素濃度下限値(C)(質量%)および炭素濃度上限値(C)(質量%)と、鋼種a~dの各々の炭素濃度C(質量%)とから、下記式(6)により炭素当量Cp0(質量%)を求めた。
 Cp0=0.17+{(C-C)/(C-C)}×(0.17-0.09) …(6)
 比較例では、炭素当量Cp0が0.09~0.17質量%の範囲内にある場合には、当該鋼種は亜包晶領域内にあり、割れリスク鋼種であるものと判定した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 鋼種a、bは、試験鋳片の表面粗さSaが60μm以上であり、本発明例では割れリスク鋼種であると判定された。この判定に基づいて、緩冷却モールドパウダーBを用いて鋳造速度Vcを1.6m/minとして連続鋳造を行えば、鋳片の割れを抑制できることが確認された。一方、上記式(6)によって求められる鋼種a、bの炭素当量Cは0.09~0.17質量%の範囲外であり、比較例では鋼種a、bは割れリスクのない鋼種であると判定された。この判定に基づいて、強冷却モールドパウダーAを用いて鋳造速度Vcを2.0m/minとして連続鋳造を行うと、鋳片に割れが発生してしまうことが確認された。
 また、鋼種c、dは、試験鋳片の表面粗さSaが60μm未満であり、本発明例では割れリスク鋼種ではないと判定された。この判定に基づいて、強冷却モールドパウダーAを用いて鋳造速度Vcを2.0m/minとして連続鋳造を行った場合、鋳片に割れが発生することが無く、鋳造速度Vcを低下させずに生産性を高めることができた。一方、上記式(6)によって求められる鋼種c、dの炭素当量Cは0.09~0.17質量%の範囲内にあり、比較例では鋼種c、dは割れリスク鋼種であると判定された。この判定に基づけば、緩冷却モールドパウダーBを用いて鋳造速度Vcを1.6m/minとして連続鋳造を行う必要がある。しかし、実際には、上述のとおり、鋼種c、dについて強冷却モールドパウダーAを用いて鋳造速度Vcを2.0m/minとして連続鋳造を行っても、鋳片に割れは発生しておらず、比較例の判定に基づいて緩冷却モールドパウダーBを用いて鋳造速度Vcを低下させると、生産性が不必要に損なわれることが確認された。
 1  鋼の試験凝固装置
 2  鋳型
 21  底面
 3  注入装置
 31  坩堝
 32  高周波誘導コイル
 33  傾動台
 W  幅
 D  奥行
 H  高さ
 S  鋼試料(溶鋼)

Claims (11)

  1.  連続鋳造しようとする溶鋼を試験凝固装置に注入して冷却することにより試験鋳片を作製し、
     前記試験鋳片の下面の表面粗さを測定し、
     前記表面粗さが所定の閾値以上である場合には、前記溶鋼を連続鋳造したときの鋳片の割れを防ぐのに適する緩冷却モールドパウダーを用いて前記連続鋳造を行い、前記表面粗さが所定の閾値未満である場合には、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて前記連続鋳造を行うこと
    を特徴とする、鋼の連続鋳造方法。
  2.  前記閾値は、ISO25178に規定される方法で得られる面粗さの算術平均高さで60μmであることを特徴とする、請求項1に記載の鋼の連続鋳造方法。
  3.  連続鋳造しようとする溶鋼を試験凝固装置に注入して冷却することにより試験鋳片を作製し、
     前記試験鋳片の下面の表面粗さを測定し、
     前記表面粗さが所定の閾値以上である複数種類の前記溶鋼Mの各々について、該溶鋼Mの成分がFe-C二元系平衡状態図上の亜包晶領域の炭素濃度下限値C(質量%)および炭素濃度上限値C(質量%)に与える影響係数αa,M,αb,Mを求め、
     複数種類の前記溶鋼Mにおける前記影響係数αa,M,αb,Mを総和して、複数種類の前記溶鋼Mの亜包晶領域の炭素濃度下限値C(質量%)および炭素濃度上限値C(質量%)を下記式(1)および式(2)のとおり求め、
     複数種類の前記溶鋼Mとは異なる新たな溶鋼の成分から下記式(1)および式(2)により求められる前記新たな溶鋼の亜包晶領域の前記炭素濃度下限値Cおよび前記炭素濃度上限値Cと、前記新たな溶鋼の炭素濃度C(質量%)とから、下記式(3)により、前記新たな溶鋼の炭素当量C(質量%)を求め、
     前記炭素当量Cが0.09~0.17の範囲内にある場合には、前記新たな溶鋼を連続鋳造したときの鋳片の割れを防ぐのに適する緩冷却モールドパウダーを用いて前記新たな溶鋼の連続鋳造を行い、前記炭素当量Cが0.09~0.17の範囲内にはない場合には、連続鋳造の鋳造速度を高めるのに適する強冷却モールドパウダーを用いて前記新たな溶鋼の前記連続鋳造を行うことを特徴とする、鋼の連続鋳造方法。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
     C=0.09+{(C-C)/(C-C)}×(0.17-0.09) …(3)
  4.  前記緩冷却モールドパウダーは、SiOおよびCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が1.0以上2.0未満であり、結晶化温度が1100℃以上であり、かつ初晶としてカスピダインが晶出するものであることを特徴とする、請求項1~3のいずれかに記載の鋼の連続鋳造方法。
  5.  前記強冷却モールドパウダーは、SiOおよびCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が0.7以上1.0未満であり、かつ結晶化温度が1100℃未満のものであることを特徴とする、請求項1~4のいずれかに記載の鋼の連続鋳造方法。
  6.  前記試験凝固装置は、前記溶鋼の凝固シェルの表層から1mmの深さでの冷却速度を10~10℃/分とする冷却能を有することを特徴とする、請求項1~5のいずれかに記載の鋼の連続鋳造方法。
  7.  前記溶鋼を前記試験凝固装置に注入するときの注入速度(単位:kg/s)は、該溶鋼の凝固速度(単位:kg/s)の3倍以上であることを特徴とする、請求項1~6のいずれかに記載の鋼の連続鋳造方法。
  8.  前記試験凝固装置は、幅および奥行がそれぞれ10mm以上の底面を有することを特徴とする請求項1~7のいずれかに記載の鋼の連続鋳造方法。
  9.  溶鋼を注入して冷却することにより試験鋳片を作製する鋼の試験凝固装置であって、
     注入された前記溶鋼の凝固シェルの表層から1mmの深さの冷却速度が10~10℃/分である鋳型を備えることを特徴とする鋼の試験凝固装置。
  10.  前記溶鋼を前記鋳型に注入する注入装置をさらに備え、該注入装置による前記溶鋼の注入速度(単位:kg/s)は、前記鋳型における前記溶鋼の凝固速度(単位:kg/s)の3倍以上であることを特徴とする、請求項9に記載の鋼の試験凝固装置。
  11.  前記鋳型は、幅および奥行がそれぞれ10mm以上の底面を有することを特徴とする請求項9または10に記載の鋼の試験凝固装置。
PCT/JP2021/029396 2020-08-12 2021-08-06 鋼の連続鋳造方法および鋼の試験凝固装置 WO2022034864A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022542839A JP7355250B2 (ja) 2020-08-12 2021-08-06 鋼の連続鋳造方法および鋼の試験凝固装置
KR1020237004410A KR20230035627A (ko) 2020-08-12 2021-08-06 강의 연속 주조 방법 및 강의 시험 응고 장치
CN202180055826.6A CN116057195A (zh) 2020-08-12 2021-08-06 钢的连续铸造方法及钢的试验凝固装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020136188 2020-08-12
JP2020-136188 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022034864A1 true WO2022034864A1 (ja) 2022-02-17

Family

ID=80247795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029396 WO2022034864A1 (ja) 2020-08-12 2021-08-06 鋼の連続鋳造方法および鋼の試験凝固装置

Country Status (5)

Country Link
JP (1) JP7355250B2 (ja)
KR (1) KR20230035627A (ja)
CN (1) CN116057195A (ja)
TW (1) TWI792485B (ja)
WO (1) WO2022034864A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025278A (ja) * 2009-07-24 2011-02-10 Jfe Steel Corp モールドパウダーの凝固シェルへの付着性評価方法、並びに連続鋳造鋳型内凝固模擬試験装置
JP2012102359A (ja) * 2010-11-09 2012-05-31 Sumitomo Metal Ind Ltd 熱処理用溶融亜鉛めっき鋼板およびその製造方法
CN103990770A (zh) * 2014-05-15 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 一种高碱度高润滑性连铸结晶器保护渣以及包晶钢板坯连铸的方法
JP2018176241A (ja) * 2017-04-17 2018-11-15 新日鐵住金株式会社 機械構造用鋼材の製造方法
JP2020015049A (ja) * 2018-07-23 2020-01-30 大同特殊鋼株式会社 合金の製造方法
JP2020146719A (ja) * 2019-03-13 2020-09-17 品川リフラクトリーズ株式会社 モールドパウダー及び中炭素綱の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW211531B (en) * 1992-10-27 1993-08-21 China Steel Co Ltd A method for detecting casting skin breakout within casting mold in continuous casting operation
JPH0957413A (ja) 1995-08-30 1997-03-04 Sumitomo Metal Ind Ltd 連続鋳造における鋳片の割れ性ブレークアウト防止方法
JP3500894B2 (ja) * 1997-03-25 2004-02-23 Jfeスチール株式会社 鋼の連続鋳造法
KR20170033389A (ko) * 2014-09-11 2017-03-24 신닛테츠스미킨 카부시키카이샤 강의 연속 주조용 몰드 플럭스
CN106289037B (zh) 2016-07-19 2018-09-07 内蒙古科技大学 一种连铸钢坯坯壳厚度电涡流检测方法
JP6743872B2 (ja) 2017-12-06 2020-08-19 Jfeスチール株式会社 連続鋳造時の鋳片幅の拡大方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025278A (ja) * 2009-07-24 2011-02-10 Jfe Steel Corp モールドパウダーの凝固シェルへの付着性評価方法、並びに連続鋳造鋳型内凝固模擬試験装置
JP2012102359A (ja) * 2010-11-09 2012-05-31 Sumitomo Metal Ind Ltd 熱処理用溶融亜鉛めっき鋼板およびその製造方法
CN103990770A (zh) * 2014-05-15 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 一种高碱度高润滑性连铸结晶器保护渣以及包晶钢板坯连铸的方法
JP2018176241A (ja) * 2017-04-17 2018-11-15 新日鐵住金株式会社 機械構造用鋼材の製造方法
JP2020015049A (ja) * 2018-07-23 2020-01-30 大同特殊鋼株式会社 合金の製造方法
JP2020146719A (ja) * 2019-03-13 2020-09-17 品川リフラクトリーズ株式会社 モールドパウダー及び中炭素綱の製造方法

Also Published As

Publication number Publication date
JP7355250B2 (ja) 2023-10-03
TWI792485B (zh) 2023-02-11
TW202212794A (zh) 2022-04-01
JPWO2022034864A1 (ja) 2022-02-17
CN116057195A (zh) 2023-05-02
KR20230035627A (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
CN107891132A (zh) 一种亚包晶钢板坯连铸方法
Park et al. Characteristics of medium carbon steel solidification and mold flux crystallization using the multi-mold simulator
WO2022034864A1 (ja) 鋼の連続鋳造方法および鋼の試験凝固装置
US3630267A (en) Method of controlling the temperature of molten ferrous metal
CN104936724A (zh) 由钛或钛合金构成的铸块的连续铸造方法
JP3389864B2 (ja) 連続鋳造用モールドパウダー
JP4451798B2 (ja) 連続鋳造方法
CN111375736B (zh) 一种马氏体沉淀硬化不锈钢的浇铸方法
JP5770156B2 (ja) チタンまたはチタン合金からなる鋳塊の連続鋳造方法
Zhou et al. An investigation of the mold-flux performance for the casting of Cr12MoV steel using a mold simulator technique
JP5387497B2 (ja) 連続鋳造による高合金鋼の製造方法
KR101368351B1 (ko) 연속주조 시 응고쉘 두께 예측 방법
JP6701379B2 (ja) モールドフラックス及びこれを利用した鋳造方法
JP2637004B2 (ja) 低炭素鋼連続鋳造用パウダーの評価方法
Dutta et al. Continuous casting (concast)
KR102634137B1 (ko) 연속주조에서의 표면 품질 제어방법
JP2002011558A (ja) 鋼の連続鋳造方法
JP2004042068A (ja) 溶融金属の連続鋳造方法及び連続鋳造装置
JP2008290136A (ja) 低炭素高硫黄鋼の連続鋳造方法
JP2637005B2 (ja) 中炭素鋼連続鋳造用パウダーの評価方法
Anisimov et al. Influence of mold flux on the thermal processes in the mold
JPH0857584A (ja) 表面品位並びに加工性の良好なステンレス鋼鋳片の製造方法
Bhattacharya et al. Root cause analysis of surface defects in coils produced through thin slab route
JP3546137B2 (ja) 鋼の連続鋳造方法
JP2024004032A (ja) 連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542839

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237004410

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855943

Country of ref document: EP

Kind code of ref document: A1