WO2022030843A1 - 광산란 미세먼지 측정장치 - Google Patents

광산란 미세먼지 측정장치 Download PDF

Info

Publication number
WO2022030843A1
WO2022030843A1 PCT/KR2021/009656 KR2021009656W WO2022030843A1 WO 2022030843 A1 WO2022030843 A1 WO 2022030843A1 KR 2021009656 W KR2021009656 W KR 2021009656W WO 2022030843 A1 WO2022030843 A1 WO 2022030843A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine dust
light scattering
air
heater
scattering fine
Prior art date
Application number
PCT/KR2021/009656
Other languages
English (en)
French (fr)
Inventor
손명희
Original Assignee
주식회사 공감센서
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210093052A external-priority patent/KR102368788B1/ko
Application filed by 주식회사 공감센서 filed Critical 주식회사 공감센서
Priority to CN202190000285.2U priority Critical patent/CN217981161U/zh
Priority to JP2022550688A priority patent/JP7398844B2/ja
Priority to EP21852698.6A priority patent/EP4116698A4/en
Priority to US17/758,765 priority patent/US20230044367A1/en
Priority to AU2021321125A priority patent/AU2021321125B2/en
Publication of WO2022030843A1 publication Critical patent/WO2022030843A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/065Investigating concentration of particle suspensions using condensation nuclei counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0096Investigating consistence of powders, dustability, dustiness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/023Controlling conditions in casing
    • G01N2201/0238Moisture monitoring or controlling

Definitions

  • the present invention relates to a fine dust measuring device, and more particularly, to a fine dust measuring device capable of accurately measuring the concentration of fine dust contained in air using a light scattering fine dust sensor.
  • the light scattering method of measuring fine dust is a method of measuring the concentration of fine dust by illuminating the fine dust and receiving the scattered light.
  • the light scattering fine dust measuring apparatus includes a plurality of sensors for detecting lasers scattered by the fine dust, and it is common to measure the fine dust concentration by averaging the values measured for a reference time.
  • the conventional light scattering fine dust measuring device may mistake ultrafine dust for fine dust, and the increased volume of fine dust is regarded as large dust. It is not measured as fine dust.
  • Such a light scattering fine dust measuring device can measure in real time and is inexpensive, but as mentioned above, there is a problem in that the accuracy of the measured value according to the relative humidity is low.
  • a light scattering fine dust measuring device has been developed to control the humidity of the incoming air by installing a heater. Because the relative humidity is lowered, it takes a lot of time and energy to measure, and it has disadvantages in that it is bulky.
  • the relative humidity environment that absorbs moisture in the air is different depending on the composition of the fine dust, and the type of fine dust is different depending on the location. .
  • the conventional light scattering fine dust measuring device has a problem in that fine dust contained in the air introduced through the inlet is adsorbed to and around the inlet due to static electricity, so that it is impossible to accurately measure the fine dust concentration.
  • Another object of the present invention is to provide a light scattering fine dust measuring device capable of improving the fine dust measurement accuracy by minimizing the generation of static electricity at the inlet.
  • the light scattering fine dust measuring apparatus of the present invention comprises: a casing 110 each having an inlet 111a through which external air is introduced and an outlet 113a through which the measurement air having the measured fine dust concentration is discharged; an air flow passage 120 that connects the inlet 111a and the outlet 113a inside the casing 110 and moves the outside air; It is provided on the outside of the casing 110 and includes an external temperature and humidity sensor 140 for measuring the temperature and relative humidity of the outside air.
  • the heater 130 provided on the inlet (111a) side air flow passage 120, and; A light scattering fine dust sensor 160 provided on the air flow path 120 between the heater 130 and the outlet 113a to measure the fine dust concentration of the measured air moved through the heater 130 and ; It is preferable to include an internal temperature and humidity sensor 150 provided on the air flow path 120 between the heater 130 and the light scattering fine dust sensor 160 to measure the temperature and relative humidity of the measured air.
  • the accuracy of the fine dust concentration measurement can be improved by heating the external air by a heater to lower the relative humidity.
  • an antistatic layer is formed on the inner wall surface of the passage through which the outside air moves, or the passage is made of an antistatic material so that fine dust is attached to the inflow path by conventional static electricity, resulting in an error in the fine dust measurement result.
  • the light scattering fine dust measuring device forms an insulating layer on the inner wall surface of the sensing passage from the heater to the light scattering fine dust sensor to minimize the heat loss of the measured air having an elevated temperature, thereby securing the reliability of the fine concentration measurement result. can do.
  • FIG. 1 is a perspective view showing the configuration of an apparatus for measuring light scattering fine dust according to a preferred embodiment of the present invention
  • FIG. 2 is a side cross-sectional view showing the configuration of a side cross-section of a light scattering fine dust measuring device according to a preferred embodiment of the present invention
  • FIG. 3 is a front cross-sectional view showing a front cross-sectional configuration of a light scattering fine dust measuring device according to a preferred embodiment of the present invention
  • FIG. 4 is a block diagram schematically showing the configuration of an apparatus for measuring light scattering fine dust according to a preferred embodiment of the present invention
  • 5 to 7 are exemplary views showing various modifications of the air flow path of the light scattering fine dust measuring device of the present invention.
  • FIG. 8 is a flowchart illustrating a fine dust measuring process of the light scattering fine dust measuring apparatus of the present invention.
  • inlet block 111a inlet
  • spacer 120 air flow path
  • inflow passage 121a antistatic layer
  • sensing flow 125a heat insulation layer
  • control unit 181 connector
  • any one component in the detailed description or claims of the invention, it is not construed as being limited to only the component, unless otherwise stated, and other components are not It should be understood that more may be included.
  • FIG. 1 is a perspective view showing the configuration of a light scattering fine dust measuring device 100 according to a preferred embodiment of the present invention
  • FIG. 2 is a side sectional view showing a side sectional configuration of the light scattering fine dust measuring device 100
  • 3 is a front sectional view showing the front cross-sectional configuration of the light scattering fine dust measuring device 100
  • FIG. 4 is a block diagram schematically showing the control structure of the light scattering fine dust measuring device 100 .
  • the light scattering fine dust measuring apparatus 100 has a casing in which an inlet 111a through which the outside air A1 is introduced and an outlet 113a through which the measurement air A2 is discharged are respectively formed.
  • the heater 130 provided on the inlet 111a side, the external temperature and humidity sensor 140 provided outside the casing 110 to measure the temperature and relative humidity of the outside air, and the heater 130 are provided on the top It is disposed between the internal temperature and humidity sensor 150 for measuring the temperature and relative humidity of the measurement air A2 heated by the heater 130, and the internal temperature and humidity sensor 150 and the outlet 113a of the measurement air A2.
  • the light scattering fine dust sensor 160 for measuring the fine dust concentration in a light scattering method and the external air A1 by selectively driving the heater 130 according to the relative humidity of the external air A1 measured by the external temperature and humidity sensor 140 ) includes a control unit 180 for lowering the relative humidity.
  • the external air (A1) refers to the air introduced through the inlet (111a) from the outside of the casing 110 as shown in FIG. 2, and has an external temperature (T1) and external relative humidity (W1).
  • Measuring air refers to the air in contact with the light scattering fine dust sensor 160, the fine dust concentration is measured, and has an internal temperature (T2) and internal relative humidity (W2).
  • the heater 130 selectively heats the outside air A1 according to the relative humidity of the outside air A1 to lower the relative humidity of the outside air A1 to measure the air (A2) to improve the measurement accuracy of fine dust.
  • the casing 110 supports each component so that the fine dust concentration can be measured by the light scattering fine dust sensor 160 after the outside air A1 is introduced.
  • the casing 110 includes an inlet block 111 having an inlet 111a formed therein, an outlet block 113 having an outlet 113a formed therein, a heating block 115 in which the heater 130 is accommodated, and a light scattering fine dust sensor 160.
  • a spacer 119 is provided between the received sensing block 117 and the heating block 115 and the sensing block 117 to support the internal temperature and humidity sensor 150 .
  • the air flow path 120 is formed inside the casing 110 and connects the inlet 111a and the outlet 113a to the closed path.
  • the air flow passage 120 includes an inflow passage 121 for guiding the outside air A1 introduced into the inlet 111a to the heating block 115, and a heating block 115 as shown in FIGS.
  • a heating flow path 123 that is formed in and guides the outside air A1 to move to the spacer 119 after passing through the heater 130, and the measurement air A2 passing through the internal temperature and humidity sensor 150, a sensing block A connection passage 124 guiding to the entrance of 117 and sensing formed in the sensing block 117 to guide the measurement air A2 to move to the exit block 113 via the light scattering fine dust sensor 160 .
  • It includes a flow path 125 and an outlet flow path 127 formed in the outlet block 113 to guide the measurement air A2 passing through the sensing flow path 125 to the outlet 113a.
  • the inlet block 111 is disposed at the lowermost portion of the casing 110 to allow the outside air A1 to flow into the inside.
  • the light scattering fine dust measuring apparatus 100 according to a preferred embodiment of the present invention has a structure in which an inlet 111a is located at a lower portion and an outlet 113a is located at an upper portion.
  • a heater 130, an internal temperature and humidity sensor 150, and a light scattering fine dust sensor 160 are sequentially provided from the bottom to the top along the air flow path 120 from the inlet 111a to the outlet 113a.
  • a small air flow fan 170 for discharging the measurement air A2 to the outside through the sensing block 117 is provided in the path from the heating passage 115 to the outlet 113a.
  • the small air flow fan 170 is coupled to the sensing block 117 to create an air flow through which the measurement air A2 can be discharged to the outside.
  • the air flow fan 170 is provided in a form in which a flow meter capable of measuring the flow rate of the measurement air A moving therein is integrally coupled.
  • the inlet 111a is formed on the front side of the inflow block 111, and the inflow passage 121 is formed in a curved shape inside the inflow block 111, and the heater 130 is concealed so as not to be exposed to the outside. .
  • the inflow passage 121 is formed in a curved shape or a complicated shape meandering up and down so that rain or snow does not flow into the inside and touch the heater 130 . desirable.
  • the inflow passage 121 of the present invention is located on the inner wall surface of the inflow passage 121.
  • An antistatic layer 121a is formed.
  • the antistatic layer 121a is formed by coating with a certain thickness of a material having an antistatic function that does not generate static electricity so that the fine dust contained in the external air A1 does not adhere to the inner wall surface of the inflow passage 121 due to static electricity.
  • a material having an antistatic function can be As the material having an antistatic function, various materials known in the art may be used.
  • the antistatic layer 121a may be formed over the inflow passage 121 as well as the heating passage 123 , the connection passage 124 , and the sensing passage 125 .
  • the inflow block 111, the heating block 115, the spacer 119, and the sensing block 117 can be made of an antistatic material without forming a separate antistatic layer 121a.
  • the heating block 115 is coupled to the upper portion of the inlet block 111 and accommodates the heater 130 therein.
  • a heating passage 123 is formed in the heating block 115 to communicate with the inflow passage 121 and the connection passage 124 .
  • the heating block 115 is coupled to the inlet block 111 by the second fastening member 115a.
  • the heater 130 is selectively operated under the control of the controller 180 and heats the outside air A1 moving along the heating passage 123 .
  • the heater 130 is provided to correspond to the entire width of the heating flow path 123 and is in contact with the outside air A1 moving along the heating flow path 123 .
  • the heater 130 is provided with a hot wire coil wound several times along the width of the heating passage 123 to increase the contact area with the outside air A1 to heat the outside air A1 in a short time.
  • the width of the heating passage 123 is the same as or wider than that of the inflow passage 121 in order to maximize the contact area between the heater 130 and the outside air A1.
  • the width of the heating passage 123 is wider than the width W1 of the inflow passage 121 , the flow rate of the outside air A1 is slowed and the contact time with the heater 130 is increased, thereby enabling more efficient heating.
  • the spacer 119 is disposed between the heating block 115 and the sensing block 117 to accommodate the internal temperature and humidity sensor 150 to be spaced apart from the light scattering fine dust sensor 160 .
  • a connection flow path 124 is formed inside the spacer 119 , and an internal temperature and humidity sensor 150 is disposed inside the connection flow path 124 .
  • the internal temperature and humidity sensor 150 activates the light scattering fine dust sensor 160 .
  • the internal temperature and humidity sensor 150 activates the light scattering fine dust sensor 160 .
  • the external temperature and humidity sensor 140 is provided on one side of the inlet 111a as shown in FIG. 2 to measure the external temperature T1 and external relative humidity W1 of the external air A1 flowing into the inlet 111a. do.
  • the external temperature/humidity sensor 140 may measure only one of the external temperature or external relative humidity, or both, according to the control of the controller 180 .
  • the internal temperature-humidity sensor 150 is disposed in the boundary region between the heating flow path 123 and the sensing flow path 125 as shown in FIG. 3 and the internal temperature T2 or Measure the internal relative humidity (W2).
  • the external temperature and humidity sensor 140 and the internal temperature and humidity sensor 150 are electrically connected to the control unit 180, respectively, and measure external temperature and external relative humidity, internal temperature and internal relative humidity to the control unit 180. send.
  • the sensing block 117 is provided above the inlet block 111 , and a sensing flow path 125 is formed therein.
  • the sensing flow path 125 is provided with a light scattering fine dust sensor 160 to measure the concentration of fine dust contained in the measurement air A2 moving along the sensing flow path 125 .
  • the sensing flow path 125 is designed to be in contact with the light scattering fine dust sensor 160 while maintaining the heated internal temperature T2 of the measurement air A2 heated to a lower relative humidity in the heater 130 . It is preferable
  • the sensing flow path 125 is designed so that the width d2 of the pipe is significantly narrower than the width d1 of the sensing flow path 125 as shown in FIG. 3 .
  • the measurement air A2 heated by the heater 130 and raised to the internal temperature T2 moves rapidly while maintaining the internal temperature to come into contact with the light scattering fine dust sensor 160, and to measure the fine dust concentration more accurately value can be obtained.
  • a heat insulating layer 125a is formed on the inner wall surface of the heating block 115, the spacer 119, and the sensing flow path 125, or is formed of a heat insulating material to minimize the heat loss of the measurement air A2 to maintain the internal temperature. to be moved to the
  • the sensing flow path 125 has a heater 130 and a light scattering fine dust sensor ( 160), it is desirable to design a shorter moving distance (l).
  • the width of the sensing passage 125 after the light scattering fine dust sensor 160 is no longer related to the sensing accuracy, the width of the pipeline is adjusted to match the width of the sensing block 117 .
  • the heat insulating layer 125a is not formed in the sensing flow path 125 after the light scattering fine dust sensor 160. it may not be
  • the inflow passage 121 , the heating passage 123 , the connection passage 124 , the sensing passage 125 , and the outlet passage 127 are It is desirable that the antistatic performance be designed to be high, and the heating passage 123 and the connecting passage 124 are designed to add not only antistatic performance but also thermal insulation performance.
  • the light scattering fine dust sensor 160 is coupled to the inner wall surface of the sensing flow path 125 to measure fine dust contained in the measurement air A2.
  • the fine dust measured by the light scattering fine dust sensor 160 includes ultrafine dust having a particle diameter of 2.5 microns ( ⁇ m) or less.
  • the fine dust concentration measured by the light scattering fine dust sensor 160 is transmitted to the controller 180 through the connector 181 .
  • the light scattering fine dust sensor 160 may be implemented in various known forms.
  • the exit block 113 is coupled to the upper portion of the sensing block 117 .
  • the outlet block 113 is fixedly coupled to the sensing block 117 and the heating block 115 using the first fastening member 113b as shown in FIGS. 1 and 2 .
  • the outlet block 113 has an outlet 113a and an outlet passage 127 communicating with the sensing passage 125 are formed.
  • the outlet flow path 127 guides the measurement air A2 to the outlet 113a.
  • the outlet 113a may be formed in the same direction as the inlet 111a or may be formed in the opposite direction in some cases.
  • the outlet flow path 127 is preferably formed in a bent shape from the outlet 113a to prevent rain or snow from entering the inside.
  • 5 to 7 are exemplary views showing various modifications of the air flow passage 120 of the present invention.
  • the air flow path 120 according to the preferred embodiment of the present invention has an inlet 111a formed at the lower portion and an outlet 113a formed at the upper portion, and external air flows from the lower portion to the upper portion. It is provided to be moved to
  • the air flow passage 120a may have an inlet 111a formed at the upper portion and an outlet 113a formed at the lower portion so that external air is moved from the upper side to the lower side, and the fine dust concentration is measured.
  • the air flow passage 120b has an inlet 111a formed on one side, an outlet 113a formed on the other side, and external air A1 in the horizontal direction. It may be formed to be movable.
  • the heater 130, the internal temperature and humidity sensor 150, and the light scattering fine dust sensor 160 are sequentially from the inlet 111a to the outlet 113a regardless of the air movement direction of the air flow paths 120a and 120b. is placed as
  • the light scattering fine dust measuring apparatus 100 has one inlet 111a and one outlet 113a, and one air flow path connecting the inlet 111a and the outlet 113a. (120).
  • the air flow passage 120c may be formed to have a plurality of inlets 111a and 111a'.
  • the plurality of inlets 111a and 111a ′ may be formed in various directions of the inflow block 111 , and may be merged and moved into one inflow passage 121 , or each independently as shown in FIG. 6( b ). may be moved along the plurality of heating passages 123 and 123'.
  • the plurality of independent heating passages 123 and 123 ′ may include an independent heater 130 and an internal temperature and humidity sensor 150 , respectively.
  • the measurement air A2 in contact with the heater 130 through the independent heating flow paths 123 and 123' is merged into one light scattering fine dust sensor ( After the fine dust concentration is measured in 160 ), it may be discharged to the outside through the outlet flow path 127 .
  • the independent heating passages 123 and 123' may be connected to the respective sensing passages 125 and 125', respectively.
  • the internal temperature and humidity sensor 150 and the light scattering fine dust sensor 160 may be provided in only one of the respective sensing passages 125 and 125 ′.
  • an internal temperature and humidity sensor 150 and a light scattering fine dust sensor 160 may be provided in both of the sensing passages 125 and 125 ′.
  • each of the sensing passages 125 and 125' is discharged through one outlet passage 127, or although not shown in the drawing, each of the outlet passages 127 and a plurality of outlets connected thereto It may also be discharged separately via (113a).
  • the air flow passages 120d and 120e include one heater 130 and one heating passage 123 , and a plurality of separated sensing passages 125 and 125 . ') may be formed.
  • inlet 111a and the outlet 113a are shown in the same direction in all of the air flow paths 120 shown in FIGS. 5 to 7 , this is only an example and the directions of the inlet 111a and the outlet 113a are Conversely, it may be arranged.
  • the air flow path 120 connects the inlet 111a and the outlet 113a, and the outside air passes through the heater 130, the internal temperature and humidity sensor 150, and the light scattering fine dust sensor 160 sequentially through the closed path. and can be transformed into various shapes within the range of movement.
  • the control unit 180 is the internal temperature (T2) or internal relative humidity of the measurement air (A2) based on the external temperature (T1) or external relative humidity (W1) of the external air (A1) detected by the external temperature and humidity sensor 140 (140) By maintaining (W2) constant, the fine dust concentration measured by the light scattering fine dust sensor 160 can be accurately measured without being affected by the relative humidity.
  • the controller 180 heats the external air (A1) by the heater 130 to increase the measurement air (A2).
  • the heater 130 is operated so that the internal relative humidity W2 becomes equal to the target relative humidity Wt.
  • the controller 180 sets the target relative humidity (Wt) to 35%. This was determined by reflecting the fact that the point at which the particle size of fine dust increases is around 30% through several studies, and that most national measuring stations set the relative humidity at sea level to 35%.
  • the target relative humidity (Wt) may vary according to circumstances.
  • the controller 180 drives the heater 130 to control the internal relative humidity (W2) of the measurement air A2 moving along the heating flow path 123 and the connection flow path 124 . Control to lower it to the target relative humidity (Wt).
  • the controller 180 sets the internal relative humidity (W2) measured by the internal temperature and humidity sensor 150 in real time to the target relative humidity (Wt)
  • a control technique such as proportional-integral-derivative control (PID), which further increases the power of the heater 130 if it is higher, and further decreases the internal relative humidity (W2) to reach the target relative humidity (Wt). Control.
  • PID proportional-integral-derivative control
  • the controller 180 operates the heater 130 using the above-described control method, the internal temperature T2 of the measurement air A2 moving along the heating passage 123 and the connection passage 124 is allowed. Possible safe temperatures may be exceeded.
  • the controller 180 calculates the target temperature Tt using the following Equation 1, and controls the operation of the heater 130 based on the calculated target temperature Tt so that the internal temperature of the measurement air A2 is Safety control is performed so that the safe temperature is not exceeded.
  • Target temperature (Tt) A ⁇ 237.3/(7.5-A)
  • T2 is the internal temperature
  • W2 is the internal relative humidity
  • Wt is the target relative humidity
  • the controller 180 drives the heater 130 to heat the outside air A1 moving through the heating flow path 123, and the internal temperature T2 of the measurement air A2. ) to reach the target temperature (Tt).
  • the manager additionally sets the safety temperature in addition to the target temperature Tt.
  • the safe temperature refers to the temperature that does not cause the light scattering fine dust measuring device to malfunction due to overheating or change the chemical composition of fine dust or ultrafine dust.
  • the controller 180 controls the heater 130 by an automatic control method such as PID so that the internal temperature T2 becomes the target temperature Tt calculated by Equation 1. However, when the calculated target temperature Tt exceeds the preset safe temperature, the controller 180 controls the heater 130 by changing the target temperature Tt to the safe temperature.
  • PID automatic control method
  • the controller 180 immediately cuts off the power supply to the heater 130 .
  • the controller 180 controls the operation of the heater 130 by periodically updating the target temperature Tt according to Equation 1 at regular time intervals.
  • the target temperature is calculated using the internal temperature T2, the internal relative humidity W2, and the target relative humidity Wt.
  • the target temperature may be calculated using the external temperature T1 , the external relative humidity W1 , and the target relative humidity Wt measured by the external temperature and humidity sensor 140 .
  • the target temperature Tt may be calculated using Equation 2 below.
  • Target temperature (Tt) A ⁇ 237.3/(7.5-A)
  • T1 is the external temperature
  • Tt is the target temperature
  • W1 is the external relative humidity
  • Wt is the target relative humidity
  • the external relative humidity (W1) and the external temperature (T1) measured by the external temperature and humidity sensor 140 are not required, so the external temperature and humidity sensor 140 is not required. There is an advantage in that the configuration of the equipment can be simplified.
  • the controller 180 may selectively use any one of the two methods, or may use the two methods interchangeably.
  • the controller 180 corrects the fine dust concentration measured by the light scattering fine dust sensor 160 .
  • the internal relative humidity (W2) of the measurement air (A2) is lower than the initial external relative humidity (W1). Accordingly, the internal temperature T2 of the measurement air A2 flowing into the light scattering fine dust sensor 160 is higher than the external temperature T1.
  • the temperature of the measurement air (A2) increases, the volume of the measurement air (A2) increases than the volume of the outside air (A1).
  • the fine dust concentration value is corrected by Equation 3 below.
  • Calibrated fine dust concentration (fine dust concentration measured by light scattering fine dust sensor) ⁇ (273 + internal temperature) / (273 + external temperature)
  • a fine dust measurement process using the light scattering fine dust measuring apparatus 100 of the present invention having such a configuration will be described with reference to FIGS. 1 to 8 .
  • the light scattering fine dust measuring device 100 of the present invention is installed at the measuring place.
  • the inlet (111a) is located in the lower portion of the casing (110), the outlet (113a) is located in the upper portion.
  • the external temperature and humidity sensor 140 located outside the casing 110 measures the external temperature T1 and the external relative humidity W1 of the external air A1, and transmits it to the controller 180 (S110).
  • the controller 180 determines whether the transmitted external relative humidity W1 is lower than a preset target relative humidity Wt (S120).
  • the controller 180 cuts off the power supply to the heater 130 so that the heater 130 is not operated (S130).
  • the outside air A1 is introduced through the inlet 111a, and the outside air A1 is moved to the heating flow path 123 along the inflow flow path 121 .
  • an antistatic layer 121a is formed on the inner wall surface of the inflow passage 121 to prevent fine dust from adhering to the inner wall surface by static electricity, and the entire amount of external air A1 flowing into the inlet 111a is heated. It may move to the flow path 123 .
  • the external air A1 introduced into the inlet 111a is moved along the inflow passage 121 and the heating passage 123, and the internal temperature and humidity sensor 150 is not heated. Through the light scattering fine dust sensor 160 is introduced.
  • the light scattering fine dust sensor 160 measures the fine dust concentration of unheated external air (measured air), and transmits the measured fine dust concentration to the control unit 180 (S170).
  • the controller 180 outputs the measured fine dust concentration to the outside. (S190).
  • the controller 180 calculates a target temperature at which the external relative humidity becomes the target relative humidity (S140).
  • the target temperature may be calculated by Equation 1 described above.
  • the controller 180 supplies power to the heater 130 to operate the heater 130 (S150).
  • the external air A1 introduced into the heating passage 123 is in contact with the heater 130 and is heated.
  • the heated measurement air (A2) is in contact with the internal temperature and humidity sensor 150, the internal temperature (T2) or the internal relative humidity (W2) is measured.
  • the internal temperature T2 measured by the internal temperature and humidity sensor 150 is the same as the target temperature Tt, it is supplied to the sensing flow path 125 and comes into contact with the light scattering fine dust sensor 160 to measure the fine dust concentration (S170) .
  • the controller 180 corrects the fine dust concentration according to Equation 3 described above (S180) and outputs the fine dust concentration (S190).
  • the light scattering fine dust measuring device can increase the accuracy of measuring the fine dust concentration by heating the outside air by a heater to lower the relative humidity when the relative humidity of the outside air is high.
  • the light scattering fine dust measuring device forms an insulating layer on the inner wall surface of the sensing passage from the heater to the light scattering fine dust sensor to minimize the heat loss of the measured air having an elevated temperature, thereby securing the reliability of the fine concentration measurement result. can do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

"광산란 미세먼지 측정장치"가 개시된다. 본 발명에 의한 "광산란 미세먼지 측정장치"는 외부공기가 유입되는 유입구와, 미세먼지 농도가 측정된 측정공기가 배출되는 출구가 각각 구비된 케이싱과; 상기 케이싱의 내부에 상기 유입구와 상기 출구를 연결하며 상기 외부공기가 이동되는 공기이동유로와; 상기 케이싱의 외측에 구비되어 외부공기의 온도와 상대습도를 측정하는 외부온습도센서;를 구비한다.

Description

광산란 미세먼지 측정장치
본 발명은 미세먼지측정장치에 관한 것으로, 보다 자세히는 공기 중에 포함된 미세먼지 농도를 광산란미세먼지센서를 이용해 정확하게 측정할 수 있는 미세먼지측정장치에 관한 것이다.
공기 중의 미세먼지 농도를 측정하기 위해 광산란 방식 미세먼지 측정장치가 사용된다. 광산란 방식 미세먼지 측정장치는 미세먼지에 빛을 비추어 산란되는 광을 수신하여 미세먼지 농도를 측정하는 방식이다.
종래 기술에 의한 광산란 미세먼지 측정장치는 미세먼지에 의해 산란된 레이저를 검출하는 다수개의 센서를 구비하며, 기준시간 동안 측정된 값을 평균하여 미세먼지 농도를 측정하는 것이 일반적이다.
그런데, 공기 중의 상대습도가 높이지면 공기 중에 기화되어 있던 물분자가 미세먼지에 흡착하여 액상이 된다. 이렇게 액상 물분자와 합쳐진 미세먼지는 부피가 더 커지게 된다.
즉, 상대습도가 높을수록 물분자와 결합된 먼지 입자들의 부피는 더욱 커지게 되어 종래 광산란 미세먼지 측정장치는 초미세먼지를 미세먼지로 오인할 수 있으며, 부피가 커진 미세먼지는 큰 먼지로 간주되어 미세먼지로 측정되지 않게 된다.
이와 같은 광산란 미세먼지 측정장치는 실시간 측정이 가능하고 가격이 저렴한 편이지만 위에 언급한 것처럼 상대습도에 따른 측정값의 정확도가 낮은 문제점이 있었다.
이에, 히터를 장착하여 유입되는 공기의 습도를 조절하는 광산란 미세먼지 측정장치가 개발된 바 있으나, 유입구가 최상부에 배치되어 외부공기를 내부로 유입시키기 위해 별도의 진공펌프를 사용해야 하고 간접히팅 방식으로 상대습도를 낮추기 때문에 측정에 많은 시간과 에너지가 소요되며, 부피가 큰 단점이 있었다.
또한, 미세먼지의 조성 성분에 따라서 공기중 수분을 흡습하는 상대습도 환경이 다르고, 장소에 따라 미세먼지의 종류가 다르므로, 상대습도를 알고 있더라도 미세먼지 양을 예측하여 보정할 수 없는 한계가 있다.
또한, 종래 광산란 미세먼지 측정장치는 유입구를 통해 유입되는 공기 중에 포함된 미세먼지가 정전기로 인해 유입구와 그 주변에 흡착되어 정확한 미세먼지 농도를 측정할 수 없는 문제가 있었다.
본 발명의 목적은 공기 중의 상대습도에 상관 없이 공기 중에 포함된 미세먼지 량을 광산란 방식으로 정확하게 측정할 수 있는 광산란 미세먼지 측정장치를 제공하는 것에 있다.
본 발명의 다른 목적은 유입구의 정전기 발생을 최소화하여 미세먼지 측정 정확도를 향상시킬 수 있는 광산란 미세먼지 측정장치를 제공하는 것에 있다.
본 발명의 광산란 미세먼지 측정장치는, 외부공기가 유입되는 유입구(111a)와, 미세먼지 농도가 측정된 측정공기가 배출되는 출구(113a)가 각각 구비된 케이싱(110)과; 상기 케이싱(110)의 내부에 상기 유입구(111a)와 상기 출구(113a)를 연결하며 상기 외부공기가 이동되는 공기이동유로(120)와; 상기 케이싱(110)의 외측에 구비되어 외부공기의 온도와 상대습도를 측정하는 외부온습도센서(140)를 포함한다.
이때, 상기 유입구(111a) 측 공기이동유로(120) 상에 구비되는 히터(130)와; 상기 히터(130)와 상기 출구(113a) 사이의 공기이동유로(120) 상에 구비되어 상기 히터(130)를 경유하여 이동된 측정공기의 미세먼지 농도를 측정하는 광산란미세먼지센서(160)와; 상기 히터(130)와 상기 광산란미세먼지센서(160) 사이의 공기이동유로(120) 상에 구비되어 상기 측정공기의 온도와 상대습도를 측정하는 내부온습도센서(150)를 포함하는 것이 바람직하다.
본 발명에 따른 광산란 미세먼지 측정장치는 외부공기의 상대습도가 높은 경우 외부공기를 히터에 의해 가열하여 상대습도를 낮춰 미세먼지 농도 측정의 정확도를 높일 수 있다.
또한, 외부공기가 이동되는 이동로의 내벽면에 대전방지층을 형성하거나, 이동로를 대전방지 재료로 제작하여 종래 정전기에 의해 미세먼지가 유입로에 부착되어 미세먼지 측정 결과에 오차가 발생되던 문제를 해결할 수 있다.
또한, 본 발명에 따른 광산란 미세먼지 측정장치는 히터에서 광산란미세먼지센서에 이르는 센싱유로의 내벽면에 단열층을 형성하여 온도가 상승된 측정공기의 열손실을 최소화하여 미세농도 측정결과의 신뢰도를 확보할 수 있다.
도 1은 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치의 구성을 도시한 사시도,
도 2는 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치의 측단면 구성을 도시한 측단면도,
도 3은 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치의 정단면 구성을 도시한 정단면도,
도 4는 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치의 구성을 개략적으로 도시한 블럭도,
도 5 내지 도 7은 본 발명의 광산란 미세먼지 측정장치의 공기이동유로의 다양한 변형예를 도시한 예시도,
도 8은 본 발명의 광산란 미세먼지 측정장치의 미세먼지 측정과정을 도시한 흐름도이다.
- 도면 부호의 설명 -
100 : 광산란 미세먼지 측정장치 110 : 케이싱
111 : 유입블럭 111a : 유입구
113 : 출구블럭 113a : 출구
113b : 제1체결부재 115 : 히팅블럭
115a : 제2체결부재 117 : 센싱블럭
119 : 스페이서 120 : 공기이동유로
121 : 유입유로 121a : 대전방지층
123 : 히팅유로 124 : 연결유로
125 : 센싱유로 125a : 단열층
127 : 출구유로 130 : 히터
140 : 외부온습도센서 150 : 내부온습도센서
160 : 광산란미세먼지센서 170 : 공기유동팬
180 : 제어부 181 : 커넥터
A1 : 외부공기
A2 : 측정공기
T1 : 외부온도
T2 : 내부온도
Tt : 목표온도
W1 : 외부상대습도
W2 : 내부상대습도
Wt : 목표상대습도
이하에서는 본 발명의 바람직한 실시예 및 첨부하는 도면을 참조하여 본 발명을 상세히 설명하되, 도면의 동일한 참조부호는 동일한 구성요소를 지칭함을 전제하여 설명하기로 한다.
발명의 상세한 설명 또는 특허청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소들을 더 포함할 수 있는 것으로 이해되어야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치(100)의 구성을 도시한 사시도이고, 도 2는 광산란 미세먼지 측정장치(100)의 측단면구성을 도시한 측단면도이고, 도 3은 광산란 미세먼지 측정장치(100)의 정단면구성을 도시한 정단면도이고, 도 4는 광산란 미세먼지 측정장치(100)의 제어구조를 개략적으로 도시한 블럭도이다.
도시된 바와 같이 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치(100)는 외부공기(A1)가 유입되는 유입구(111a)와 측정공기(A2)가 배출되는 출구(113a)가 각각 형성된 케이싱(110)과, 케이싱(110)의 내부에 유입구(111a)와 출구(113a)를 연결하게 형성되어 외부공기가 미세먼지 농도를 측정한 후 외부로 배출되도록 안내하는 공기이동유로(120)와, 유입구(111a) 측에 구비되는 히터(130)와, 케이싱(110)의 외부에 구비되어 외부공기의 온도와 상대습도를 측정하는 외부온습도센서(140)와, 히터(130)의 상부에 구비되어 히터(130)에 의해 가열된 측정공기(A2)의 온도와 상대습도를 측정하는 내부온습도센서(150)와, 내부온습도센서(150)와 출구(113a) 사이에 배치되어 측정공기(A2)의 미세먼지농도를 광산란방식으로 측정하는 광산란미세먼지센서(160)와, 외부온습도센서(140)에서 측정한 외부공기(A1)의 상대습도에 따라 히터(130)를 선택적으로 구동하여 외부공기(A1)의 상대습도가 낮아지게 하는 제어부(180)를 포함한다.
여기서, 외부공기(A1)는 도 2에 도시된 바와 같이 케이싱(110)의 외부에서 유입구(111a)를 통해 유입되는 공기를 말하며, 외부온도(T1)와 외부상대습도(W1)을 갖는다.
측정공기(A2)는 광산란미세먼지센서(160)와 접촉하며 미세먼지농도가 측정되는 공기를 말하며, 내부온도(T2)와 내부상대습도(W2)를 갖는다.
측정공기(A2)는 외부공기(A1)의 상대습도에 따라 외부공기(A1)와 동일한 온도와 상대습도를 갖거나(T1=T2, W1=W2), 외부공기(A1)가 히터(130)에 의해 가열된 상태일 수 있다(T2>T1, W2<W1).
본 발명에 따른 광산란 미세먼지 측정장치(100)는 외부공기(A1)의 상대습도에 따라 히터(130)가 외부공기(A1)를 선택적으로 가열하여 외부공기(A1)의 상대습도를 낮춰 측정공기(A2)에 대한 미세먼지 측정 정확도를 향상시킨다.
케이싱(110)은 외부공기(A1)가 유입된 후 광산란미세먼지센서(160)에 의해 미세먼지 농도가 측정될 수 있게 각 구성들을 지지한다. 케이싱(110)은 유입구(111a)가 형성된 유입블럭(111)과, 출구(113a)가 형성된 출구블럭(113), 히터(130)가 수용된 히팅블럭(115), 광산란미세먼지센서(160)가 수용된 센싱블럭(117), 히팅블럭(115)과 센싱블럭(117) 사이에 구비되며 내부온습도센서(150)를 지지하는 스페이서(119)를 포함한다.
공기이동유로(120)는 케이싱(110)의 내부에 형성되어 유입구(111a)와 출구(113a) 사이를 폐경로로 연결한다. 공기이동유로(120)는 도 2와 도 3에 도시된 바와 같이 유입구(111a)로 유입된 외부공기(A1)를 히팅블럭(115)으로 안내하는 유입유로(121)과, 히팅블럭(115)에 형성되어 외부공기(A1)가 히터(130)를 경유한 후 스페이서(119)로 이동되게 안내하는 히팅유로(123)와, 내부온습도센서(150)를 경유한 측정공기(A2)를 센싱블럭(117)의 입구로 안내하는 연결유로(124)와, 센싱블럭(117)에 형성되어 측정공기(A2)가 광산란미세먼지센서(160)를 경유하여 출구블럭(113)으로 이동되게 안내하는 센싱유로(125)와, 출구블럭(113)에 형성되어 센싱유로(125)를 경유한 측정공기(A2)를 출구(113a)로 안내하는 출구유로(127)를 포함한다.
유입블럭(111)은 케이싱(110)의 최하부에 배치되어 외부공기(A1)가 내부로 유입되게 한다. 본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치(100)는 유입구(111a)가 하부에 위치되고 출구(113a)가 상부에 위치되는 구조를 갖는다. 그리고, 유입구(111a)에서 출구(113a)까지의 공기이동유로(120)를 따라 하부에서 상부로 순차적으로 히터(130), 내부온습도센서(150), 광산란미세먼지센서(160)가 구비된다.
이에 따라 강제적으로 내부에 음압을 형성하여 외부공기(A1)를 유입시키기 위한 많은 에너지를 소비하는 진공펌프와 같은 구동력이 없더라도 히터(130)에 의해 가열된 공기의 대류현상에 의해 자연스럽게 외부공기(A1)가 유입된 후 상부로 이동하여 히팅유로(115)로 이동될 수 있다.
히팅유로(115)로부터 출구(113a)까지의 경로에는 측정공기(A2)를 센싱블럭(117)을 통과하여 외부로 배출하기 위한 소형 공기유동팬(170)이 구비됨이 바람직하다. 소형 공기유동팬(170)은 센싱블럭(117)에 결합되어 측정공기(A2)가 외부로 배출될 수 있는 공기흐름을 만든다. 이 때, 공기유동팬(170)은 내부를 이동하는 측정공기(A)의 유량을 측정할 수 있는 유량계가 일체로 결합된 형태로 구비되는 것이 바람직하다.
도 2에 유입구(111a)는 유입블럭(111)의 정면에 형성되고, 유입유로(121)는 유입블럭(111)의 내부에 굴곡진 형태로 형성 히터(130)가 외부로 노출되지 않게 은폐한다. 통상 광산란 미세먼지 측정장치(100)는 야외에 설치되므로 유입유로(121)는 비나 눈 등이 내부로 유입되어 히터(130)에 닿지 않도록 굴곡진 형상 또는 상하로 구불구불한 복잡한 형태로 형성되는 것이 바람직하다.
여기서, 본 발명의 유입유로(121)는 유입구(111a)로 유입된 외부공기(A1)에 포함된 미세먼지가 정전기에 의해 내벽면에 부착되는 것을 방지하기 위해 유입유로(121)의 내벽면에 대전방지층(121a)이 형성된다.
대전방지층(121a)은 외부공기(A1)에 포함된 미세먼지가 정전기에 의해 유입유로(121)의 관로 내벽면에 부착되지 않도록 정전기가 발생되지 않는 대전방지기능이 있는 재료로 일정 두께 코팅하여 형성될 수 있다. 대전방지기능이 있는 재료는 기존에 공지된 다양한 재료가 사용될 수 있다.
대전방지층(121a)은 유입유로(121) 뿐만 아니라 히팅유로(123)와 연결유로(124) 및 센싱유로(125)에 걸쳐 모두 형성될 수 있다.
또한, 별도의 대전방지층(121a)을 형성하지 않고 유입블럭(111), 히팅블럭(115), 스페이서(119) 및 센싱블럭(117)을 대전방지가 가능한 재료로 제작할 수 있다.
히팅블럭(115)은 유입블럭(111)의 상부에 결합되며, 내부에 히터(130)를 수용한다. 히팅블럭(115)의 내부에는 히팅유로(123)가 유입유로(121) 및 연결유로(124)와 연통되게 형성된다. 히팅블럭(115)은 제2체결부재(115a)에 의해 유입블럭(111)에 결합된다.
히터(130)는 제어부(180)의 제어에 의해 선택적으로 동작되며 히팅유로(123)를 따라 이동되는 외부공기(A1)를 가열한다. 도 3에 도시된 바와 같이 히터(130)는 히팅유로(123)의 전체 폭에 대응되게 구비되어 히팅유로(123)를 따라 이동되는 외부공기(A1)와 접촉된다. 히터(130)는 히팅유로(123)의 폭을 따라 수회 권취된 열선코일로 구비되어 외부공기(A1)와의 접촉면적을 증대시켜 단시간에 외부공기(A1)를 가열한다.
히팅유로(123)의 폭은 히터(130)와 외부공기(A1)이 접촉면적을 최대화하기 위해 유입유로(121)와 동일하거나 더 넓게 형성된다. 히팅유로(123)의 폭이 유입유로(121)의 폭(W1) 보다 넓을 경우 외부공기(A1)의 유속이 느려져 히터(130)와의 접촉시간이 증대되어 보다 효율적인 히팅이 가능해질 수 있다.
스페이서(119)는 히팅블럭(115)과 센싱블럭(117) 사이에 배치되어 내부온습도센서(150)가 광산란미세먼지센서(160)과 이격되게 수용한다. 스페이서(119) 의 내부에는 연결유로(124)가 형성되고, 연결유로(124)의 내부에 내부온습도센서(150)가 배치된다.
스페이서(119)는 히팅유로(123)로부터 이동된 측정공기(A2)가 내부온습도센서(150)를 경유하여 센싱유로(125)로 이동될 때 내부온습도센서(150)가 광산란미세먼지센서(160)의 입구를 막아 공기의 원활한 흐름이 방해하는 것을 방지하기 위해 히팅블럭(115)과 센싱블럭(117) 사이에 위치된다.
외부온습도센서(140)는 도 2에 도시된 바와 같이 유입구(111a)의 일측에 구비되어 유입구(111a)로 유입되는 외부공기(A1)의 외부온도(T1)와 외부상대습도(W1)를 측정한다. 외부온습도센서(140)는 제어부(180)의 제어에 따라 외부온도 또는 외부상대습도 중 하나만 측정하거나, 둘다 측정할 수 있다.
내부온습도센서(150)는 도 3에 도시된 바와 같이 히팅유로(123)와 센싱유로(125)의 경계영역에 배치되어 히터(130)를 경유한 측정공기(A2)의 내부온도(T2) 또는 내부상대습도(W2)를 측정한다.
도면에 도시되지 않았으나 외부온습도센서(140)와 내부온습도센서(150)는 각각 제어부(180)와 전기적으로 연결되어 측정한 외부온도와 외부상대습도, 내부온도와 내부상대습도를 제어부(180)로 전송한다.
센싱블럭(117)은 유입블럭(111)의 상부에 구비되며, 내부에 센싱유로(125)가 형성된다. 센싱유로(125)에는 광산란미세먼지센서(160)가 구비되어 센싱유로(125)를 따라 이동되는 측정공기(A2)에 포함된 미세먼지 농도를 측정한다.
여기서, 센싱유로(125)는 히터(130)에서 상대습도가 낮아지게 가열된 측정공기(A2)가 가열된 내부온도(T2)를 유지하며 광산란미세먼지센서(160)와 접촉될 수 있게 설계되는 것이 바람직하다.
이를 위해 본 발명의 바람직한 실시예에 따른 센싱유로(125)는 도 3에 도시된 바와 같이 관로의 폭(d2)을 히팅유로(123)이 폭(d1) 보다 현저히 좁게 설계하여 센싱유로(125)를 따라 이동되는 측정공기(A2)의 유속을 빠르게 조절한다.
이에 의해 히터(130)에서 가열되며 내부온도(T2)로 상승된 측정공기(A2)가 내부온도를 유지한 상태로 빠르게 이동하여 광산란미세먼지센서(160)와 접촉되고, 보다 정확한 미세먼지 농도 측정값을 얻을 수 있다.
또한, 히팅블럭(115)과 스페이서(119) 및 센싱유로(125)의 내벽면에는 단열층(125a)이 형성되거나, 단열소재로 형성되어 측정공기(A2)의 열손실을 최소화하여 내부온도가 유지된 상태로 이동되게 한다.
또한, 센싱유로(125)는 측정공기(A2)의 열손실을 최소화한 상태로 빠르게 광산란미세먼지센서(160)와 측정공기(A2)가 접촉될 수 있도록 히터(130)와 광산란미세먼지센서(160)까지의 이동거리(ℓ)가 짧아지게 설계하는 것이 바람직하다.
광산란미세먼지센서(160) 이후의 센싱유로(125)의 폭은 더 이상 센싱 정확도와 관련이 없으므로 관로의 폭을 센싱블럭(117)의 폭에 맞게 조절한다. 그리고, 광산란미세먼지센서(160)와 접촉된 이후의 측정공기(A2)의 온도나 상대습도도 중요하지 않으므로 광산란미세먼지센서(160) 이후의 센싱유로(125)에는 단열층(125a)이 형성되지 않을 수 있다.
즉, 유입유로(121), 히팅유로(123), 연결유로(124), 센싱유로(125), 출구유로(127) 중 유입유로(121)와 히팅유로(123) 및 연결유로(124)는 대전방지 성능이 높게 설계되어야 하고, 히팅유로(123)와 연결유로(124)는 대전방지 성능 뿐만 아니라 단열성능까지 추가되게 설계되는 것이 바람직하다.
광산란미세먼지센서(160)는 센싱유로(125)의 내벽면에 결합되어 측정공기(A2)에 포함된 미세먼지를 측정한다. 여기서, 광산란미세먼지센서(160)에서 측정하는 미세먼지는 입자직경 2.5마이크론(㎛) 이하의 초미세먼지를 포함한다. 광산란미세먼지센서(160)에서 측정된 미세먼지 농도는 커넥터(181)을 통해 제어부(180)로 전송된다. 광산란미세먼지센서(160)는 공지된 다양한 형태로 구현될 수 있다.
출구블럭(113)은 센싱블럭(117)의 상부에 결합된다. 출구블럭(113)은 도 1과 도 2에 도시된 바와 같이 제1체결부재(113b)를 이용해 센싱블럭(117)과 히팅블럭(115)에 고정결합된다.
출구블럭(113)에는 출구(113a)와, 센싱유로(125)와 연통된 출구유로(127)가 형성된다. 출구유로(127)는 측정공기(A2)를 출구(113a)로 안내한다.
출구(113a)는 유입구(111a)와 동일한 방향으로 형성되거나, 경우에 따라 반대방향으로 형성될 수 있다. 출구유로(127)는 비나 눈 등이 내부로 유입되는 것이 방지될 수 있도록 출구(113a)로부터 절곡된 형태로 형성되는 것이 바람직하다.
도 5 내지 도 7은 본 발명의 공기이동유로(120)의 다양한 변형예들을 도시한 예시도들이다.
도 5는 공기이동유로(120)의 다양한 방향을 도시한 예시도들이다. 도 5의 (a)에 도시된 바와 같이 본 발명의 바람직한 실시예에 따른 공기이동유로(120)는 하부에 형성된 유입구(111a)와, 상부에 형성된 출구(113a)를 가지며 외부공기가 하부에서 상부로 이동되게 구비된다.
경우에 따라. 공기이동유로(120a)는 유입구(111a)가 상부에 형성되고, 출구(113a)가 하부에 형성되어 외부공기가 상부에서 하부로 이동되며 미세먼지 농도가 측정되게 구비될 수 있다.
한편, 공기이동유로(120b)는 도 5의 (b)에 도시된 바와 같이 유입구(111a)가 일측면에 형성되고, 출구(113a)가 타측면에 형성되고 외부공기(A1)가 수평방향으로 이동되게 형성될 수도 있다.
여기서, 공기이동유로(120a,120b)의 공기이동방향에 상관없이 유입구(111a)에서 출구(113a)까지 히터(130), 내부온습도센서(150), 광산란미세먼지센서(160)의 순서로 순차적으로 배치된다.
본 발명의 바람직한 실시예에 따른 광산란 미세먼지 측정장치(100)는 하나의 유입구(111a)와 하나의 출구(113a)를 가지며, 유입구(111a)와 출구(113a)를 연결하는 하나의 공기이동유로(120)를 갖는다.
반면, 도 6의 (a)에 도시된 바와 같이 공기이동유로(120c)는 복수개의 유입구(111a,111a')를 갖게 형성될 수 있다. 복수개의 유입구(111a,111a')는 유입블럭(111)의 다양한 방향에서 형성될 수 있으며, 하나의 유입유로(121)로 병합되어 이동되거나, 도 6의 (b)에 도시된 바와 같이 각각 독립적인 복수개의 히팅유로(123,123')를 따라 이동될 수 있다.
독립적인 복수개의 히팅유로(123,123')는 각각 독립적인 히터(130)와 내부온습도센서(150)를 포함할 수 있다.
독립적인 히팅유로(123,123')를 통해 히터(130)와 접촉된 측정공기(A2)는 도 6의 (a)에 도시된 바와 같이 센싱유로(125)가 하나로 병합되어 하나의 광산란미세먼지센서(160)에서 미세먼지 농도가 측정된 후 출구유로(127)를 통해 외부로 배출될 수 있다.
또한, 도 7의 (a)와 (b)에 도시된 바와 같이 독립적인 히팅유로(123,123')는 각각 각각의 센싱유로(125,125')와 연결될 수 있다.
이 때, 도 7의 (a)에 도시된 바와 같이 각각의 센싱유로(125,125') 중 어느 하나에만 내부온습도센서(150)와 광산란미세먼지센서(160)가 구비될 수 있다. 또한, 도 7이 (b)에 도시된 바와 같이 각각의 센싱유로(125,125') 모두에 내부온습도센서(150)와 광산란미세먼지센서(160)가 구비될 수 있다.
도 7의 (a)에 도시된 바와 같이 어느 하나의 센싱유로(125,125')에만 광산란미세먼지센서(160)가 구비되는 경우 측정되는 공기의 량이 달라지므로 측정된 미세먼지 농도를 보정하는 과정이 추가된다.
또한, 각각의 센싱유로(125,125')를 경유한 측정공기(A2)는 하나의 출구유로(127)를 통해 배출되거나, 도면에 도시되지 않았으나 각각의 출구유로(127)와, 이에 연결된 복수개의 출구(113a)를 통해 개별적으로 배출될 수도 있다.
한편, 도 7의 (a)와 (b)에 도시된 바와 같이 공기이동유로(120d,120e)는 하나의 히터(130)와 하나의 히팅유로(123)와, 분리된 복수개의 센싱유로(125,125')를 갖게 형성될 수도 있다.
또한, 도 5 내지 도 7에 도시된 모든 공기이동유로(120)가 유입구(111a)와 출구(113a)가 동일한 방향으로 도시되었으나, 이는 일례일 뿐이며 유입구(111a)와 출구(113a)의 방향이 반대로 배치될 수도 있다.
이 외에도 공기이동유로(120)는 유입구(111a)와 출구(113a)를 연결하며 폐경로로 외부공기가 히터(130), 내부온습도센서(150), 광산란미세먼지센서(160)를 순차적으로 경유하며 이동할 수 있는 범위에서 다양한 형태로 변형될 수 있다.
제어부(180)는 외부온습도센서(140)에서 감지한 외부공기(A1)의 외부온도(T1) 또는 외부상대습도(W1)에 기초하여 측정공기(A2)의 내부온도(T2) 또는 내부상대습도(W2)를 일정하게 유지하여 광산란미세먼지센서(160)에서 측정하는 미세먼지 농도가 상대습도에 영향을 받지 않고 정확하게 측정될 수 있게 한다.
앞서 설명한 바와 같이 외기온도의 상대습도가 높으면 공기 중에 기화되어 있던 물분자가 미세먼지에 흡착되어 미세먼지의 부피가 커지게 되고, 광산란미세먼지센서(160)가 미세먼지를 큰 먼지로 오인하여 미세먼지 농도 측정 정확도가 떨어지게 된다.
이에 제어부(180)는 외부공기(A1)의 외부상대습도(W1)가 기설정된 목표상대습도(Wt) 보다 높을 경우 외부공기(A1)를 히터(130)에 의해 가열하여 측정공기(A2)의 내부상대습도(W2)가 목표상대습도(Wt)와 동일해지도록 히터(130)를 동작한다.
본 발명의 바람직한 실시예에 따른 제어부(180)는 목표상대습도(Wt)를 35%로 설정한다. 이는 여러 연구를 통하여 미세먼지의 입경이 커지는 지점이 30% 전후이며, 국가측정소 장치들이 대부분 조해상대습도를 35%로 설정해서 사용하는 것을 반영하여 결정하였다. 목표상대습도(Wt)는 상황에 따라 가변될 수 있다.
목표상대습도(Wt)가 설정되면, 제어부(180)는 히터(130)를 구동하여 히팅유로(123)와 연결유로(124)를 따라 이동되는 측정공기(A2)의 내부상대습도(W2)를 목표상대습도(Wt)까지 낮추도록 제어한다.
제어부(180)는 실시간으로 내부온습도센서(150)에서 측정한 내부상대습도(W2)가 목표상대습도(Wt) 보다 높으면 히터(130)의 전력을 더 증가시키고, 그렇지 않으면 더 감소시키는, 비례-적분-미분 제어(PID) 같은 제어 기법을 사용하여 내부상대습도(W2)가 목표상대습도(Wt)에 도달하게 제어한다.
여기서, 제어부(180)가 상술한 제어기법을 이용해 히터(130)를 동작시킬 경우, 히팅유로(123)와 연결유로(124)를 따라 이동되는 측정공기(A2)의 내부온도(T2)가 허용 가능한 안전온도를 초과할 수 있다.
이에 따라 제어부(180)는 다음 수학식 1을 이용해 목표온도(Tt)를 산출하고, 산출한 목표온도(Tt)에 기초하여 히터(130)의 구동을 제어하여 측정공기(A2)의 내부온도가 안전온도를 초과하지 않도록 안전 제어를 수행한다.
[수학식 1]
목표온도(Tt)= A ×237.3/(7.5-A)
단,
Figure PCTKR2021009656-appb-I000001
이다.
여기서, T2는 내부온도, W2는 내부상대습도, Wt는 목표상대습도이다.
목표온도(Tt)가 산출되면, 제어부(180)는 히터(130)를 구동하여 히팅유로(123)를 통해 이동되는 외부공기(A1)가 가열되게 하고, 측정공기(A2)의 내부온도(T2)가 목표온도(Tt)에 도달하게 한다.
여기서, 관리자는 목표온도(Tt) 외에 안전온도를 추가로 설정한다. 안전온도는 과열로 광산란 미세먼지 측정장치를 오작동되게 하거나, 미세먼지 또는 초미세먼지의 화학적 조성변화를 발생시키지 않는 온도를 말한다.
제어부(180)는 내부온도(T2)가 수학식 1에 의해 산출된 목표온도(Tt)가 되도록 PID 같은 자동제어 방법으로 히터(130)를 제어한다. 그런데, 산출된 목표온도(Tt)가 기설정된 안전온도를 초과하는 경우, 제어부(180)는 목표온도(Tt)를 안전온도로 변경하여 히터(130)를 제어한다.
이 과정에서 제어부(180)는 히터(130)를 구동시켜 측정한 내부온도(T2)가 안전온도를 초과하면 즉시 히터(130)로의 전원공급을 차단한다.
제어부(180)는 일정 시간 간격으로 수학식 1에 의해 목표온도(Tt)를 주기적으로 갱신하여 히터(130)의 동작을 제어한다.
한편, 상술한 수학식 1은 내부온도(T2)와 내부상대습도(W2), 목표상대습도(Wt)를 이용해 목표온도를 산출한다.
그러나, 경우에 따라 외부온습도센서(140)에서 측정한 외부온도(T1), 외부상대습도(W1)와 목표상대습도(Wt)를 이용해 목표온도를 산출할 수도 있다. 이 경우 아래 수학식 2를 이용해 목표온도(Tt)를 산출할 수 있다.
[수학식 2]
목표온도(Tt)= A ×237.3/(7.5-A)
단,
Figure PCTKR2021009656-appb-I000002
이다.
여기서, T1은 외부온도, Tt는 목표온도, W1은 외부상대습도, Wt는 목표상대습도이다.
수학식 1을 이용하여 목표온도(Tt)를 산출할 경우 외부온습도센서(140)에서 측정한 외부상대습도(W1)와 외부온도(T1)가 필요하지 않으므로, 외부온습도센서(140)가 필요치 않아 장비의 구성을 간소화할 수 있는 장점이 있다.
제어부(180)는 두 가지 방식 중 어느 하나를 선택적으로 사용하거나, 두 가지 방식을 호환하여 사용할 수 있다.
한편, 제어부(180)는 히터(130)를 동작시켜 측정공기(A2)의 내부온도를 목표온도로 가열한 경우, 광산란미세먼지센서(160)에서 측정된 미세먼지 농도를 보정한다.
히터(130)에 의해 가열되면 측정공기(A2)의 내부상대습도(W2)는 초기 외부상대습도(W1) 보다 낮아진다. 이에 따라 광산란미세먼지센서(160)로 유입되는 측정공기(A2)의 내부온도(T2)는 외부온도(T1) 보다 높아진다. 측정공기(A2)의 온도가 높아지면 측정공기(A2)의 부피는 외부공기(A1)의 부피 보다 증가하게 된다.
미세먼지 농도는 공기의 단위부피당 미세먼지의 무게로 측정되므로, 증가된 부피만큼 산출된 미세먼지 농도값을 보정하는 과정이 요구된다.
미세먼지 농도값의 보정은 아래 수학식 3에 의해 진행된다.
[수학식 3]
보정된 미세먼지 농도 = (광산란미세먼지센서에서 측정된 미세먼지 농도)×(273+내부온도)/(273+외부온도)
이러한 구성을 갖는 본 발명의 광산란 미세먼지 측정장치(100)를 이용한 미세먼지 측정과정을 도 1 내지 도 8를 참조하여 설명한다.
측정장소에 본 발명의 광산란 미세먼지 측정장치(100)가 설치된다. 케이싱(110)의 하부에 유입구(111a)가 위치되고, 상부에 출구(113a)가 위치된다.
케이싱(110)의 외부에 위치된 외부온습도센서(140)가 외부공기(A1)의 외부온도(T1)와 외부상대습도(W1)를 측정하고, 제어부(180)로 전송한다(S110). 제어부(180)는 전송된 외부상대습도(W1)가 기설정된 목표상대습도(Wt) 보다 낮은지 판단한다(S120).
외부상대습도(W1)가 기설정된 목표상대습도(Wt) 보다 낮은 경우 제어부(180)는 히터(130)로 전원공급을 차단하여 히터(130)는 동작되지 않는다(S130).
유입구(111a)를 통해 외부공기(A1)가 유입되고, 외부공기(A1)는 유입유로(121)를 따라 히팅유로(123)로 이동된다. 이 때, 유입유로(121)의 내벽면에는 대전방지층(121a)이 형성되어 미세먼지가 정전기에 의해 내벽면에 부착되는 것이 방지되고 유입구(111a)로 유입된 전량의 외부공기(A1)가 히팅유로(123)로 이동될 수 있다.
이에 따라 도 2에 도시된 바와 같이 유입구(111a)로 유입된 외부공기(A1)는 유입유로(121)와 히팅유로(123)를 따라 이동되고, 가열되지 않은 상태로 내부온습도센서(150)를 거쳐 광산란미세먼지센서(160)로 유입된다.
광산란미세먼지센서(160)에서 가열되지 않은 외부공기(측정공기)의 미세먼지 농도를 측정하고, 제어부(180)로 측정된 미세먼지 농도를 전송한다(S170). 제어부(180)는 측정된 미세먼지농도를 외부로 출력한다.(S190).
한편, 외부상대습도(W1)가 기설정된 목표상대습도(Wt) 보다 높은 경우 제어부(180)는 외부상대습도가 목표상대습도가 되는 목표온도를 산출한다(S140). 목표온도는 앞서 설명한 수학식 1에 의해 산출될 수 있다.
목표온도가 산출되면 제어부(180)는 히터(130)로 전원을 공급하여 히터(130)를 동작시킨다(S150). 히팅유로(123)로 유입된 외부공기(A1)는 히터(130)와 접촉되며 가열된다. 가열된 측정공기(A2)는 내부온습도센서(150)와 접촉되며 내부온도(T2) 또는 내부상대습도(W2)가 측정된다.
내부온습도센서(150)에서 측정된 내부온도(T2)가 목표온도(Tt)와 동일한 경우 센싱유로(125)로 공급되어 광산란미세먼지센서(160)와 접촉되며 미세먼지 농도가 측정된다(S170).
광산란미세먼지센서(160)에서 미세먼지 농도가 측정되면, 제어부(180)는 앞서 설명한 수학식 3에 의해 미세먼지 농도를 보정하고(S180), 미세먼지농도를 출력한다(S190).
이상에서 살펴본 바와 같이 본 발명에 따른 광산란 미세먼지 측정장치는 외부공기의 상대습도가 높은 경우 외부공기를 히터에 의해 가열하여 상대습도를 낮춰 미세먼지 농도 측정의 정확도를 높일 수 있다.
또한, 외부공기가 유입되는 유입로의 내벽면에 대전방지층을 형성하여 종래 정전기에 의해 미세먼지가 유입로에 부착되어 미세먼지 측정 결과에 오차가 발생되던 문제를 해결할 수 있다.
또한, 본 발명에 따른 광산란 미세먼지 측정장치는 히터에서 광산란미세먼지센서에 이르는 센싱유로의 내벽면에 단열층을 형성하여 온도가 상승된 측정공기의 열손실을 최소화하여 미세농도 측정결과의 신뢰도를 확보할 수 있다.
이상 몇 가지의 실시예를 통해 본 발명의 기술적 사상을 살펴보았다.
본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기재사항으로부터 상기 살펴본 실시예를 다양하게 변형하거나 변경할 수 있음은 자명하다. 또한, 비록 명시적으로 도시되거나 설명되지 아니하였다 하여도 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기재사항으로부터 본 발명에 의한 기술적 사상을 포함하는 다양한 형태의 변형을 할 수 있음은 자명하며, 이는 여전히 본 발명의 권리범위에 속한다. 첨부하는 도면을 참조하여 설명된 상기의 실시예들은 본 발명을 설명하기 위한 목적으로 기술된 것이며 본 발명의 권리범위는 이러한 실시예에 국한되지 아니한다.

Claims (8)

  1. 외부공기 속 미세먼지 농도를 광산란방식으로 측정하는 광산란 미세먼지 측정장치에 있어서,
    외부공기가 유입되는 유입구(111a)와, 미세먼지 농도가 측정된 측정공기가 배출되는 출구(113a)가 각각 구비된 케이싱(110)과;
    상기 케이싱(110)의 내부에 상기 유입구(111a)와 상기 출구(113a)를 연결하며 상기 외부공기가 이동되는 공기이동유로(120)와;
    상기 케이싱(110)의 외측에 구비되어 외부공기의 온도와 상대습도를 측정하는 외부온습도센서(140)와;
    상기 유입구(111a) 측 공기이동유로(120) 상에 구비되는 히터(130)와;
    상기 히터(130)와 상기 출구(113a) 사이의 공기이동유로(120) 상에 구비되어 상기 히터(130)를 경유하여 이동된 측정공기의 미세먼지 농도를 측정하는 광산란미세먼지센서(160)와;
    상기 히터(130)와 상기 광산란미세먼지센서(160) 사이의 공기이동유로(120) 상에 구비되어 상기 측정공기의 온도와 상대습도를 측정하는 내부온습도센서(150)를 포함하는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  2. 제1항에 있어서,
    상기 공기이동유로(120)는 하부에서 상부 방향, 상부에서 하부 방향, 일측에서 타측 방향 중 어느 하나의 방향으로 형성되며,
    상기 공기이동유로(120) 상에는 상기 외부공기의 강제 이동을 위한 공기유동팬(170)이 구비되는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  3. 제2항에 있어서,
    상기 공기이동유로(120)는 상기 히터(130)로부터 상기 출구(113a)로 이어지는 복수개의 내부분기유로를 포함할 수 있으며,
    상기 내부분기유로 중 어느 하나에만 내부온습도센서(150)와 상기 광산란미세먼지센서(160)가 구비되는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  4. 제2항에 있어서,
    상기 공기이동유로(120)는 상기 히터(130)로부터 상기 출구(113a)로 이어지는 복수개의 내부분기유로를 포함할 수 있으며,
    상기 복수개의 내부분기유로는 각각 내부온습도센서(150)와 상기 광산란미세먼지센서(160)가 구비되는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  5. 제2항에 있어서,
    상기 공기이동유로(120)는 상기 유입구(111a)로부터 상기 히터(130)까지 이어지는 유입유로(121)와, 상기 히터(130)와 상기 내부온습도센서(150)까지 이어지는 히팅유로(123)와, 상기 내부온습도센서(150)에서 상기 광산란미세먼지센서(160)까지 이어지는 센싱유로(125)와, 상기 광산란미세먼지센서(160)에서 상기 출구(113a)까지 이어지는 출구유로(127)를 포함하는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  6. 제5항에 있어서,
    상기 센싱유로(125)의 폭은 상기 히팅유로(123)의 폭보다 좁게 형성되며,
    상기 히팅유로(123)와 상기 센싱유로(125)의 내벽면에는 단열소재로 형성된 단열층(125a)이 구비되는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  7. 제6항에 있어서,
    상기 유입유로(121)와 상기 히팅유로(123) 및 상기 센싱유로(125)의 표면에는 정전기방지 재료로 형성된 대전방지층(121a)이 구비되는 것을 특징으로 하는 광산란 미세먼지 측정장치.
  8. 제7항에 있어서,
    상기 외부온습도센서(140)에서 측정된 외부공기의 외부상대습도가 기설정된 목표상대습도 보다 높은 경우, 상기 히터(130)를 구동시켜 상기 외부공기의 외부상대습도가 상기 목표상대습도에 도달하는 목표온도까지 상기 외부공기가 가열되게 하는 제어부(180)를 더 포함하는 것을 특징으로 하는 광산란 미세먼지 측정장치.
PCT/KR2021/009656 2020-08-06 2021-07-26 광산란 미세먼지 측정장치 WO2022030843A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202190000285.2U CN217981161U (zh) 2020-08-06 2021-07-26 光散射微尘测量装置
JP2022550688A JP7398844B2 (ja) 2020-08-06 2021-07-26 光散乱式微細塵測定装置
EP21852698.6A EP4116698A4 (en) 2020-08-06 2021-07-26 DEVICE FOR MEASURING FINE DUST BY LIGHT DIFFUSION
US17/758,765 US20230044367A1 (en) 2020-08-06 2021-07-26 Light-scattering fine dust measurement apparatus
AU2021321125A AU2021321125B2 (en) 2020-08-06 2021-07-26 Light-scattering fine dust measurement apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200098351 2020-08-06
KR10-2020-0098351 2020-08-06
KR10-2021-0093052 2021-07-15
KR1020210093052A KR102368788B1 (ko) 2020-08-06 2021-07-15 광산란 미세먼지 측정장치

Publications (1)

Publication Number Publication Date
WO2022030843A1 true WO2022030843A1 (ko) 2022-02-10

Family

ID=80117509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009656 WO2022030843A1 (ko) 2020-08-06 2021-07-26 광산란 미세먼지 측정장치

Country Status (8)

Country Link
US (1) US20230044367A1 (ko)
EP (1) EP4116698A4 (ko)
JP (1) JP7398844B2 (ko)
KR (1) KR102510773B1 (ko)
CN (1) CN217981161U (ko)
AU (1) AU2021321125B2 (ko)
TW (1) TWI783611B (ko)
WO (1) WO2022030843A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117705662A (zh) * 2024-02-02 2024-03-15 北京英视睿达科技股份有限公司 一种湿度补偿的颗粒物监测设备的质量浓度计算方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117589945B (zh) * 2024-01-11 2024-04-12 武汉瑞气节能环保科技有限公司 一种智慧空压站用空气检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245948A (ja) * 2012-05-23 2013-12-09 Hitachi Ltd 微粒子検出装置及びセキュリティゲート
KR101414858B1 (ko) * 2014-04-29 2014-07-03 황만수 미세먼지 측정 장치
KR101499672B1 (ko) * 2014-04-29 2015-03-06 대한민국 표준 에어로졸 샘플링 시스템
KR101832100B1 (ko) * 2017-07-27 2018-04-04 주식회사 동일그린시스 초미세 입경을 갖는 미세먼지 측정 모니터링 시스템
KR20200092629A (ko) * 2019-01-25 2020-08-04 주식회사 이노서플 대기 미세 먼지 측정 시스템

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064216B1 (ko) * 2009-06-25 2011-09-14 건국대학교 산학협력단 분진계측기의 공기 유입 안정화를 위한 정밀측정용 커버
WO2016013113A1 (ja) * 2014-07-25 2016-01-28 富士通株式会社 粒子及びガスを測定する測定装置、測定システム及び測定方法
JP2016109317A (ja) 2014-12-02 2016-06-20 シャープ株式会社 空気清浄機
JP6728956B2 (ja) * 2016-05-13 2020-07-22 富士電機株式会社 粒子測定装置
JP2017223560A (ja) * 2016-06-15 2017-12-21 パナソニックIpマネジメント株式会社 粒子検出センサ
KR101796918B1 (ko) * 2017-06-07 2017-12-12 (주)소하테크 센서 일체형 이산화탄소 및 온습도 측정장치
JP6662362B2 (ja) * 2017-08-31 2020-03-11 株式会社デンソー 埃濃度検出装置
KR102065671B1 (ko) * 2018-01-12 2020-01-13 주식회사 지티에스엠 웨이퍼형 파티클 센서
TWM561788U (zh) * 2018-01-26 2018-06-11 Microjet Technology Co Ltd 氣體檢測裝置
KR20190108841A (ko) * 2018-03-15 2019-09-25 한온시스템 주식회사 차량용 먼지 검출장치
KR101912240B1 (ko) * 2018-03-28 2018-10-26 주식회사 과학기술분석센타 미세먼지 측정 장치
EP3561479A1 (en) * 2018-04-27 2019-10-30 Microjet Technology Co., Ltd Particle detecting module
RU2709410C1 (ru) * 2018-10-03 2019-12-17 Общество с ограниченной ответственностью "Унискан-Ризерч" Измеритель, система и способ измерения массовой концентрации пылевых частиц
KR102068115B1 (ko) 2018-10-31 2020-01-20 주식회사 에이치시티엠 입자 측정 시스템
KR102105253B1 (ko) 2018-11-22 2020-04-27 부산대학교 산학협력단 광산란 미세먼지 측정 장치
KR102053371B1 (ko) * 2019-06-19 2020-01-08 주식회사 누리플랜 미세먼지 측정장치
KR102103333B1 (ko) 2019-12-03 2020-04-22 주식회사 다산에스엠 광산란 방식 미세먼지 측정시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245948A (ja) * 2012-05-23 2013-12-09 Hitachi Ltd 微粒子検出装置及びセキュリティゲート
KR101414858B1 (ko) * 2014-04-29 2014-07-03 황만수 미세먼지 측정 장치
KR101499672B1 (ko) * 2014-04-29 2015-03-06 대한민국 표준 에어로졸 샘플링 시스템
KR101832100B1 (ko) * 2017-07-27 2018-04-04 주식회사 동일그린시스 초미세 입경을 갖는 미세먼지 측정 모니터링 시스템
KR20200092629A (ko) * 2019-01-25 2020-08-04 주식회사 이노서플 대기 미세 먼지 측정 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116698A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117705662A (zh) * 2024-02-02 2024-03-15 北京英视睿达科技股份有限公司 一种湿度补偿的颗粒物监测设备的质量浓度计算方法
CN117705662B (zh) * 2024-02-02 2024-05-07 北京英视睿达科技股份有限公司 一种湿度补偿的颗粒物监测设备的质量浓度计算方法

Also Published As

Publication number Publication date
KR20220025798A (ko) 2022-03-03
AU2021321125A1 (en) 2022-11-17
TW202206796A (zh) 2022-02-16
TWI783611B (zh) 2022-11-11
US20230044367A1 (en) 2023-02-09
EP4116698A1 (en) 2023-01-11
KR102510773B1 (ko) 2023-03-17
JP2023515512A (ja) 2023-04-13
CN217981161U (zh) 2022-12-06
JP7398844B2 (ja) 2023-12-15
EP4116698A4 (en) 2024-03-20
AU2021321125B2 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022030843A1 (ko) 광산란 미세먼지 측정장치
WO2018139839A1 (ko) 스팀발생장치 및 이를 포함하는 조리기기
WO2015111878A1 (ko) 퓸 제거 장치
WO2018139840A1 (ko) 스팀발생장치 및 이를 포함하는 조리기기
EP2426478B1 (en) Condensation testing device and condensation testing method
WO2016068486A1 (ko) 태빙장치의 솔더링장치
EP0397397B1 (en) Automatic heating apparatus
WO2012144783A2 (ko) 투습도 측정 장치
WO2011052831A1 (ko) 화학기상증착장치의 온도제어방법
WO2016186302A1 (ko) 급속 열처리 장치
WO2019172537A1 (ko) 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버
WO2020226194A1 (ko) 프로브 조립체 및 이를 포함하는 마이크로 진공 프로브 스테이션
WO2022010212A1 (ko) 증기압을 이용한 온수순환장치
WO2017034285A1 (en) Combination type cooker
KR102368788B1 (ko) 광산란 미세먼지 측정장치
WO2019172644A1 (ko) 유로 가이드 탱크를 포함하는 비데용 온수 시스템 및 이를 이용한 온수 모드 방법
WO2024075985A1 (ko) 스팀 공급장치
WO2023224315A1 (en) Aerosol generating device
WO2022131548A1 (ko) 가습기모듈, 이를 구비하는 가습기장치, 가습기시스템 및 가습기장치의 제어방법
WO2021133007A1 (en) Cooking apparatus
WO2022235027A1 (ko) 고온 가스 포집 장치 및 방법
WO2011136468A2 (ko) 간이 떡찜장치
WO2023018102A1 (ko) 목재 건조장치
WO2020138535A1 (ko) 배치식 태양열 온수기
JP6587137B2 (ja) 環境観察装置、環境観察装置の排気装置並びに環境観察装置の排気方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550688

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021852698

Country of ref document: EP

Effective date: 20221004

ENP Entry into the national phase

Ref document number: 2021321125

Country of ref document: AU

Date of ref document: 20210726

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE