TW202206796A - 光散射微塵測量裝置 - Google Patents
光散射微塵測量裝置 Download PDFInfo
- Publication number
- TW202206796A TW202206796A TW110128685A TW110128685A TW202206796A TW 202206796 A TW202206796 A TW 202206796A TW 110128685 A TW110128685 A TW 110128685A TW 110128685 A TW110128685 A TW 110128685A TW 202206796 A TW202206796 A TW 202206796A
- Authority
- TW
- Taiwan
- Prior art keywords
- air
- path
- light
- heater
- dust
- Prior art date
Links
- 239000000428 dust Substances 0.000 title claims abstract description 166
- 238000000149 argon plasma sintering Methods 0.000 title claims abstract description 97
- 239000002245 particle Substances 0.000 title description 13
- 238000005259 measurement Methods 0.000 claims abstract description 75
- 238000010438 heat treatment Methods 0.000 claims description 54
- 230000006698 induction Effects 0.000 claims description 15
- 239000002216 antistatic agent Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 2
- 230000037361 pathway Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 230000005611 electricity Effects 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 208000033986 Device capturing issue Diseases 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2273—Atmospheric sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0211—Investigating a scatter or diffraction pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/24—Suction devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4022—Concentrating samples by thermal techniques; Phase changes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/065—Investigating concentration of particle suspensions using condensation nuclei counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/075—Investigating concentration of particle suspensions by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0046—Investigating dispersion of solids in gas, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0096—Investigating consistence of powders, dustability, dustiness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00346—Heating or cooling arrangements
- G01N2035/00455—Controlling humidity in analyser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/023—Controlling conditions in casing
- G01N2201/0238—Moisture monitoring or controlling
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本發明公開一種光散射微塵測量裝置。本發明的光散射微塵測量裝置包括:外殼(110),分別具有用於流入外部空氣的流入口(111a)和排出已測量微塵濃度的測量空氣的出口(113a);空氣移動路徑(120),在所述外殼(110)的內部,連接所述流入口(111a)與所述出口(113a),用於所述外部空氣移動;外部溫濕度感測器(140),位於所述外殼(110)的外側,測量外部空氣的溫度和相對濕度。
Description
本發明係有關於微塵測量裝置,更詳細地說,係有關於一種利用光散射微塵感測器來準確地測量包含在空氣中的微塵濃度的微塵測量裝置。
為了測量空氣中的微塵濃度,使用光散射方式的微塵測量裝置。光散射方式微塵測量裝置是藉由向微塵照射光並接收散射的光來測量微塵濃度的方式。
傳統的光散射微塵測量裝置的例子藉由授權專利第10-2105253號公開。公開的傳統光散射微塵測量裝置具有檢測被微塵散射的鐳射的多個感測器,求得基準時間內測量的值的平均值來測量微塵濃度。
但是,如上所述的傳統光散射微塵測量裝置的缺點在於,測量誤差會根據微塵的相對濕度而增大。
當空氣中的相對濕度上升時,蒸發到空氣中的水分子被微塵吸附而成為液狀。與液狀水分子結合在一起後,微塵的體積將增大。
相對濕度越高,與水分子結合的微塵粒子的體積越大,傳統光散射微塵測量裝置可能會將超微塵誤認為微塵,體積增大的微塵將被視為大塵而不會被測量為微塵。
據此,傳統光散射微塵測量裝置可以實現即時測量,較小且價格低廉,但因基於相對濕度的測量值的準確度低,存在使用量不多的局限。
並且,安裝加熱器的微塵測量裝置的流入口被設置在最上部,為了使外部空氣流入內部,需要使用另外的真空泵,因藉由間接加熱方式降低相對濕度,存在測量所需的時間和能量較多的局限。
並且,按微塵的組成成分,空氣中吸收水分的相對濕度環境會不同,各個場所的微塵種類也不同,因此即使知道相對濕度,也無法預測微塵量來進行補正。
並且,傳統的光散射微塵測量裝置還存在因包含在藉由流入口流入的空氣中的微塵由於靜電而被吸附到流入口和其周邊而無法測量準確的微塵濃度的問題。
現有技術文獻
專利文獻
文獻1:韓國專利廳,授權專利第10-2103333號,「光散射方式微塵測量系統」
文獻2:韓國專利廳,授權專利第10-2105253號,「光散射微塵測量裝置」
解決課題:
本發明的目的在於為了解決上述問題而提供一種光散射微塵測量裝置,與空氣的相對濕度無關地,可以藉由光散射方式準確地測量包含在空氣中的微塵量。
本發明的另一目的在於提供一種光散射微塵測量裝置,使流入口的靜電最小化,提高微塵測量準確度。
本發明的技術方案在於:
上述本發明的目的可藉由以光散射方式測量外部空氣中微塵濃度的光散射微塵測量裝置來達成。本發明的光散射微塵測量裝置包括:外殼110,分別具有用於流入外部空氣的流入口111a和排出已測量微塵濃度的測量空氣的出口113a;空氣移動路徑120,在所述外殼110的內部,連接所述流入口111a與所述出口113a,用於所述外部空氣移動;外部溫濕度感測器140,位於所述外殼110的外側,測量外部空氣的溫度和相對濕度。
並且,較佳地,包括:加熱器130,位於所述流入口111a側的空氣移動路徑120上;光散射微塵感測器160,位於所述加熱器130與所述出口113a之間的空氣移動路徑120上,測量經由所述加熱器130移動的測量空氣的微塵濃度;內部溫濕度感測器150,位於所述加熱器130與所述光散射微塵感測器160之間的空氣移動路徑120上,測量所述測量空氣的溫度和相對濕度。
下面結合本發明的較佳實施例和圖式,對本發明進行詳細描述,圖式中相同的圖式標記表示相同的構件。
在本發明的詳細描述或申請專利範圍中,當描述為某一構件「包括」另一構件時,除非另有說明,否則不應限定為僅由該構件組成,應理解為還可以包括其他構件。
圖1是示出本發明較佳實施例的光散射微塵測量裝置100的結構的立體圖,圖2是示出本發明較佳實施例的光散射微塵測量裝置100的側剖面結構的側剖視圖,圖3是示出本發明較佳實施例的光散射微塵測量裝置100的正剖面結構的正剖視圖,圖4是概略性地示出本發明較佳實施例的光散射微塵測量裝置100的結構的框圖。
如圖所示,本發明較佳實施例的光散射微塵測量裝置100包括:外殼110,分別具有用於流入外部空氣A1的流入口111a和排出測量空氣A2的出口113a;空氣移動路徑120,在所述外殼110的內部,連接流入口111a與出口113a,測量外部空氣的微塵濃度之後,引導其排向外部;加熱器130,位於流入口111a側;外部溫濕度感測器140,位於外殼110的外部,測量外部空氣的溫度和相對濕度;內部溫濕度感測器150,位於加熱器130的上部,測量加熱器130所加熱的測量空氣A2的溫度和相對濕度;光散射微塵感測器160,位於內部溫濕度感測器150與出口113a之間,以光散射方式測量測量空氣A2的微塵濃度;控制部180,根據外部溫濕度感測器140測量的外部空氣A1的相對濕度,有選擇地驅動加熱器130,降低外部空氣A1的相對濕度。
其中,外部空氣A1如圖2所示,指從外殼110的外部藉由流入口111a流入的空氣,具有外部溫度T1和外部相對濕度W1。
測量空氣A2指與光散射微塵感測器160接觸且被測量微塵濃度的空氣,具有內部溫度T2和內部相對濕度W2。
測量空氣A2基於外部空氣A1的相對濕度,與外部空氣A1具有相同的溫度和相對濕度T1=T2,W1=W2,或外部空氣A1處於被加熱器130加熱的狀態(T2>T1,W2<W1)。
本發明的光散射微塵測量裝置100根據外部空氣A1的相對濕度,由加熱器130選擇性地加熱外部空氣A1而降低外部空氣A1的相對濕度,提高對測量空氣A2的微塵測量準確度。
當外部空氣A1流入後,外殼110支撐各組件,以便藉由光散射微塵感測器160測量微塵濃度。外殼110包括形成流入口111a的流入塊111、形成出口113a的出口塊113、容納加熱器130的加熱塊115、容納光散射微塵感測器160的感應塊117、位於加熱塊115與感應塊117之間且支撐內部溫濕度感測器150的墊片119。
空氣移動路徑120形成在外殼110的內部而將流入口111a與出口113a之間連接為閉路徑。空氣移動路徑120如圖2和圖3所示,包括將流入流入口111a的外部空氣A1引導到加熱塊115的流入路徑121、形成在加熱塊115而引導外部空氣A1經過加熱器130移動到墊片119的加熱路徑123、將經過內部溫濕度感測器150的測量空氣A2引導到感應塊117的入口的連接路徑124、形成在感應塊117而引導測量空氣A2經過光散射微塵感測器160移動到出口塊113的感應路徑125、形成在出口塊113而將經過感應路徑125的測量空氣A2引導到出口113a的出口路徑127。
流入塊111設置在外殼110的最下部而使外部空氣A1進入內部。本發明較佳實施例的光散射微塵測量裝置100具有流入口111a位於下部,出口113a位於上部的結構。並且,沿著從流入口111a到出口113a的空氣移動路徑120,從下部到上部,依次具有加熱器130、內部溫濕度感測器150、光散射微塵感測器160。
據此,內部強制性地形成負壓,即使沒有為了使外部空氣A1流入而消耗較多能量的真空泵等驅動力,外部空氣A1也能憑藉由加熱器130加熱的空氣的對流現象而自然地流入並移動到上部後,移動到加熱路徑115。
較佳地,從加熱路徑115到出口113a的路徑上具有小型空氣流動扇170,以使得測量空氣A2藉由感應塊117排向外部。小型空氣流動扇170結合到感應塊117而形成能夠將測量空氣A2排向外部的空氣流動。其中,較佳地,空氣流動扇170形成與流量計結合成一體的形態,從而能夠測量其內部的測量空氣A的流量。
圖2中,流入口111a形成在流入塊111的正面,流入路徑121以曲折的形態形成在流入塊111的內部,使加熱器130隱蔽而不暴露在外部。通常,光散射微塵測量裝置100設置在戶外,為了防止雨或雪等進入流入路徑121的內部而接觸加熱器130,較佳地,以彎曲的形狀或上下曲折的複雜形態形成。
其中,本發明的流入路徑121為了防止藉由流入口111a流入的外部空氣A1中包含的微塵因靜電而附著到內壁面,在流入路徑121的內壁面形成抗靜電層121a。
抗靜電層121a由一定厚度的不產生靜電的抗靜電材料塗層形成,以防止包含在外部空氣A1中的微塵因靜電而附著到流入路徑121的管路內壁面。抗靜電材料可以使用現有公知的多種材料。
抗靜電層121a除了形成在流入路徑121之外,也可以形成在加熱路徑123和連接路徑124及感應路徑125。
並且,無需形成獨立的抗靜電層121a,可以用抗靜電材料製作流入塊111、加熱塊115、墊片119及感應塊117。
加熱塊115結合到流入塊111的上部,內部容納加熱器130。在加熱塊115的內部,以與流入路徑121及連接路徑124連通地形成加熱路徑123。加熱塊115藉由第二緊固件115a結合到流入塊111。
加熱器130根據控制部180的控制而選擇性地啟動,加熱沿著加熱路徑123移動的外部空氣A1。如圖3所示,加熱器130對應加熱路徑123的整體寬度,與沿著加熱路徑123移動的外部空氣A1接觸。加熱器130由根據加熱路徑123的寬度而捲繞數次的熱線圈構成,增大與外部空氣A1的接觸面積,短時間內加熱外部空氣A1。
加熱路徑123的寬度與流入路徑121相同或更寬,以使加熱器130與外部空氣A1的接觸面積最大化。若加熱路徑123的寬度大於流入路徑121的寬度W1,外部空氣A1的流速將變緩,增大與加熱器130的接觸時間,可以實現更加有效的加熱。
墊片119設置在加熱塊115與感應塊117之間,以彼此隔開地容納內部溫濕度感測器150與光散射微塵感測器160。墊片119的內部形成連接路徑124,在連接路徑124的內部設置內部溫濕度感測器150。
為了防止從加熱路徑123移動的測量空氣A2經過內部溫濕度感測器150移動到感應路徑125時,因內部溫濕度感測器150堵住光散射微塵感測器160的入口而妨礙空氣順暢流動,墊片119位於加熱塊115與感應塊117之間。
外部溫濕度感測器140如圖2所示,位於流入口111a的一側,測量向流入口111a流入的外部空氣A1的外部溫度T1和外部相對濕度W1。外部溫濕度感測器140根據控制部180的控制而測量外部溫度或外部相對濕度中的其中一個,或者測量兩者。
內部溫濕度感測器150如圖3所示,設置在加熱路徑123與感應路徑125的邊界區域,測量經過加熱器130的測量空氣A2的內部溫度T2或內部相對濕度W2。
雖然圖式中未示出,外部溫濕度感測器140和內部溫濕度感測器150分別電氣性地連接到控制部180,將測量的外部溫度和外部相對濕度、內部溫度和內部相對濕度傳送到控制部180。
感應塊117位於流入塊111的上部,內部形成感應路徑125。感應路徑125上具有光散射微塵感測器160,測量沿著感應路徑125移動的測量空氣A2中包含的微塵濃度。
其中,較佳地,將感應路徑125設計成使得由加熱器130加熱而相對濕度降低的測量空氣A2能夠保持加熱後的內部溫度T2並與光散射微塵感測器160接觸。
為此,本發明較佳實施例的感應路徑125如圖3所示,設計成管路的寬度d2明顯小於加熱路徑123的寬度d1,快速調整沿著感應路徑125移動的測量空氣A2的流速。
據此,由加熱器130加熱而上升到內部溫度T2的測量空氣A2以保持內部溫度的狀態快速移動,從而與光散射微塵感測器160接觸,獲得更加準確的微塵濃度測量值。
並且,在加熱塊115與墊片119及感應路徑125的內壁面形成絕緣層125a,並由隔熱材料形成而使測量空氣A2的熱損失最小化,以使得保持內部溫度的狀態移動。
並且,較佳地,將感應路徑125設計得從加熱器130到光散射微塵感測器160的移動距離變短,以測量空氣A2的熱損失最小化的狀態,使光散射微塵感測器160和測量空氣A2快速接觸。
光散射微塵感測器160之後的感應路徑125的寬度不再影響到感應準確度,因此根據感應塊117的寬度調整管路的寬度。並且,與光散射微塵感測器160接觸之後的測量空氣A2的溫度或相對濕度也不重要,因此光散射微塵感測器160之後的感應路徑125上不形成絕緣層125a。
即,較佳地,應設計成流入路徑121、加熱路徑123、連接路徑124、感應路徑125、出口路徑127中流入路徑121和加熱路徑123及連接路徑124的抗靜電性能較高,加熱路徑123和連接路徑124除了抗靜電性能之外,還應具有隔熱性能。
光散射微塵感測器160結合到感應路徑125的內壁面而測量包含在測量空氣A2中的微塵。其中,光散射微塵感測器160測量的微塵包括粒子直徑2.5微米以下的超微塵。光散射微塵感測器160測量的微塵濃度藉由連接器181被傳送到控制部180。光散射微塵感測器160可具有公知的多種形態。
出口塊113結合到感應塊117的上部。出口塊113如圖1和圖2所示,藉由第一緊固件113b固定結合到感應塊117和加熱塊115。
出口塊113上形成出口113a和與感應路徑125連通的出口路徑127。出口路徑127將測量空氣A2引導到出口113a。
出口113a的方向與流入口111a的方向相同,或者根據情況,向相反方向形成。較佳地,出口路徑127從出口113a以彎曲的形態形成,以防止雨或雪等進入內部。
圖5至圖7是示出本發明的光散射微塵測量裝置的空氣移動路徑120的多種變形例的示例圖。
圖5是示出空氣移動路徑120的多種方向的示例圖。如圖5的a所示,本發明較佳實施例的空氣移動路徑120具有形成在下部的流入口111a和形成在上部的出口113a,外部空氣從下部向上部移動。
根據情況,空氣移動路徑120a的流入口111a形成在上部,出口113a形成在下部,從而外部空氣從上部向下部移動,測量微塵濃度。
另外,空氣移動路徑120b如圖5的b所示,流入口111a形成在一側面,出口113a形成在另一側面,外部空氣A1向水平方向移動。
其中,與空氣移動路徑120a,120b的空氣移動方向無關地,從流入口111a到出口113a,依次設置加熱器130、內部溫濕度感測器150、光散射微塵感測器160。
本發明較佳實施例的光散射微塵測量裝置100具有一個流入口111a和一個出口113a,具有連接流入口111a和出口113a的一個空氣移動路徑120。
相反,如圖6的a所示,空氣移動路徑120c具有多個流入口111a,111a'。多個流入口111a,111a'形成在流入塊111的多個方向,可以合併為一個流入路徑121而移動,或者如圖6的b所示,分別沿著獨立的多個加熱路徑123,123'移動。
獨立的多個加熱路徑123,123'可以分別包括獨立的加熱器130和內部溫濕度感測器150。
藉由獨立的加熱路徑123,123'而與加熱器130接觸的測量空氣A2如圖6的a所示,感應路徑125合併成一個,當一個光散射微塵感測器160測量微塵濃度後,藉由出口路徑127排向外部。
並且,如圖7的a和b所示,獨立的加熱路徑123,123'分別連接到各個感應路徑125,125'。
其中,如圖7的a所示,各感應路徑125,125'中的其中一個具有內部溫濕度感測器150和光散射微塵感測器160。並且,如圖7的b所示,各個感應路徑125,125'都具有內部溫濕度感測器150和光散射微塵感測器160。
如圖7的a所示,僅其中一個感應路徑125,125'具有光散射微塵感測器160時,被測量的空氣的量將會不同,因此需要增加用於補正被測量的微塵濃度的過程。
並且,經過各個感應路徑125,125'的測量空氣A2藉由一個出口路徑127排出,雖然圖式未示出,也可以藉由各個出口路徑127和連接於此的多個出口113a單獨排出。
另外,如圖7的a和b所示,空氣移動路徑120d,120e可以具有一個加熱器130、一個加熱路徑123和分離的多個感應路徑125,125'。
並且,如圖5至圖7所示,所有空氣移動路徑120的流入口111a和出口113a的方向相同,但這只是示例,流入口111a和出口113a的方向也可以相反。
除此之外,空氣移動路徑120連接流入口111a和出口113a,閉路徑在外部空氣依次經由加熱器130、內部溫濕度感測器150、光散射微塵感測器160而移動的範圍內,可變更為多種形態。
控制部180以外部溫濕度感測器140感測的外部空氣A1的外部溫度T1或外部相對濕度W1為基礎,使測量空氣A2的內部溫度T2或內部相對濕度W2保持恒定,使光散射微塵感測器160測量的微塵濃度不受相對濕度的影響而實現準確測量。
如前所述,若外氣溫度的相對濕度較高,空氣中的氣化水分子被微塵吸附而微塵的體積將增大,光散射微塵感測器160將微塵誤認為大塵而降低微塵濃度測量準確度。
因此,當外部空氣A1的外部相對濕度W1大於預設的目標相對濕度Wt時,控制部180藉由加熱器130加熱外部空氣A1,操作加熱器130而使測量空氣A2的內部相對濕度W2與目標相對濕度Wt相同。
本發明較佳實施例的控制部180將目標相對濕度Wt設定為35%。這是經多次研究得出微塵的粒徑在30%前後及基於國家測量局的裝置大部分都將潮解相對濕度設定為35%而確定。可以根據情況而改變目標相對濕度Wt。
設定目標相對濕度Wt後,控制部180可以驅動加熱器130而將沿加熱路徑123和連接路徑124移動的測量空氣A2的內部相對濕度W2降低到目標相對濕度Wt。
控制部180採用內部溫濕度感測器150即時測量的內部相對濕度W2大於目標相對濕度Wt時增加加熱器130的電力,否則減少電力的比例-積分-微分控制PID等控制技法,控制為內部相對濕度W2達到目標相對濕度Wt。
其中,當控制部180利用上述控制技法操作加熱器130時,沿著加熱路徑123和連接路徑124移動的測量空氣A2的內部溫度T2可能會超過允許的安全溫度。
因此,控制部180利用以下<公式1>計算目標溫度Tt,以計算的目標溫度Tt為基礎而控制加熱器130的驅動,執行安全控制而使測量空氣A2的內部溫度不超過安全溫度。
當算出目標溫度Tt後,控制部180驅動加熱器130而加熱藉由加熱路徑123移動的外部空氣A1,使測量空氣A2的內部溫度T2達到目標溫度Tt。
其中,除了目標溫度Tt之外,管理員追加設定安全溫度。安全溫度是指不會因過熱而導致光散射微塵測量裝置錯誤運轉或造成微塵或超微塵的化學成分變化的溫度。
控制部180藉由PID等自動控制方法控制加熱器130,使內部溫度T2達到由<公式1>計算的目標溫度Tt。
但是,當計算的目標溫度Tt超過預設安全溫度時,控制部180將目標溫度Tt變更為安全溫度而控制加熱器130。
在此過程中,控制部180在當驅動加熱器130而測量的內部溫度T2超過安全溫度時,立即切斷向加熱器130供給的電源。
控制部180以一定的時間間隔,根據<公式1>週期性地更新目標溫度Tt而控制加熱器130的操作。
另外,上述<公式1>利用內部溫度T2和內部相對濕度W2、目標相對濕度Wt計算目標溫度。
但是,根據情況,也可以利用外部溫濕度感測器140測量的外部溫度T1、外部相對濕度W1和目標相對濕度Wt算出目標溫度。這種情況下,可以利用<公式2>計算目標溫度Tt。
利用<公式1>計算目標溫度Tt時,不需要外部溫濕度感測器140測量的外部相對濕度W1和外部溫度T1,因此不需要外部溫濕度感測器140,具有簡化設備結構的優點。
控制部180可以選擇性地使用兩種方式中的其中一個,或者互換使用兩種方式。
另外,控制部180啟動加熱器130而將測量空氣A2的內部溫度加熱到目標溫度時,補正光散射微塵感測器160測量的微塵濃度。
被加熱器130加熱的測量空氣A2的內部相對濕度W2將低於初始的外部相對濕度W1。據此,流入光散射微塵感測器160的測量空氣A2的內部溫度T2將高於外部溫度T1。當測量空氣A2的溫度提高時,測量空氣A2的體積將大於外部空氣A1的體積。
微塵濃度被測量為空氣的單位體積微塵的重量,因此需要按增加的體積補正算出的微塵濃度值的過程。
微塵濃度值的補正利用以下<公式3>。
<公式3>
補正的微塵濃度=(光散射微塵感測器測量的微塵濃度)(273+內部溫度)/(273+外部溫度)
參照圖1至圖8描述利用具有這種結構的本發明的光散射微塵測量裝置100的微塵測量過程。
在測量場所設置本發明的光散射微塵測量裝置100。流入口111a位於外殼110的下部,出口113a位於上部。
位於外殼110外部的外部溫濕度感測器140測量外部空氣A1的外部溫度T1和外部相對濕度W1,並將其傳送到控制部180(S110)。控制部180判斷被傳送的外部相對濕度W1是否低於預設的目標相對濕度Wt(S120)。
當外部相對濕度W1低於預設目標相對濕度Wt時,控制部180切斷供給到加熱器130的電源,加熱器130不再運轉(S130)。
外部空氣A1藉由流入口111a流入,外部空氣A1沿著流入路徑121移動到加熱路徑123。其中,在流入路徑121的內壁面形成抗靜電層121a而防止微塵因靜電附著到內壁面,流入流入口111a的全部外部空氣A1移動到加熱路徑123。
據此,如圖2所示,流入流入口111a的外部空氣A1沿著流入路徑121和加熱路徑123移動,以未被加熱的狀態經過內部溫濕度感測器150流入光散射微塵感測器160。
光散射微塵感測器160測量未被加熱的外部空氣(測量空氣)的微塵濃度,向控制部180傳送已測量的微塵濃度(S170)。控制部180將已測量的微塵濃度輸出到外部(S190)。
另外,當外部相對濕度W1大於預設目標相對濕度Wt時,控制部180計算外部相對濕度成為目標相對濕度的目標溫度(S140)。目標溫度可藉由前述的<公式1>計算。
當計算目標溫度後,控制部180向加熱器130供應電源而啟動加熱器130(S150)。流入加熱路徑123的外部空氣A1與加熱器130接觸而被加熱。被加熱的測量空氣A2與內部溫濕度感測器150接觸而測量內部溫度T2或內部相對濕度W2。
當內部溫濕度感測器150測量的內部溫度T2與目標溫度Tt相同時,被供給到感應路徑125而與光散射微塵感測器160接觸,從而測量微塵濃度(S170)。
光散射微塵感測器160測量微塵濃度後,控制部180根據前述的<公式3>補正微塵濃度(S180),輸出微塵濃度(S190)。
如上所述,根據本發明的光散射微塵測量裝置,當外部空氣的相對濕度較高時,用加熱器加熱外部空氣來降低相對濕度,由此提高微塵濃度測量的準確度。
並且,在外部空氣流入的流入路徑的內壁面形成抗靜電層,可以解決微塵因靜電而附著在流入路徑而微塵測量結果出現誤差的問題。
並且,根據本發明的光散射微塵測量裝置,在從加熱器到光散射微塵感測器的感應路徑的內壁面形成絕緣層,使溫度上升的測量空氣的熱損失最小化,確保微塵濃度測量結果的可靠性。
以上藉由幾個實施例描述了本發明的技術思想。
顯然,本發明所屬技術領域中具有通常知識者可以對本發明的記載中描述的實施例實施各種修改或變形。並且,即使沒有明確示出或描述,本發明所屬技術領域中具有通常知識者也可以藉由本發明的記載內容實現包括本發明的技術思想的多種形態的變形,這也屬於本發明的保護範圍。參照圖式描述的多個示例性實施例只是出於解釋本發明的目的而描述的,本發明的保護範圍不受限於這些實施例。
本發明的有益效果在於:
根據本發明的光散射微塵測量裝置,當外部空氣的相對濕度較高時,用加熱器加熱外部空氣來降低相對濕度,由此提高微塵濃度測量的準確度。
並且,在外部空氣移動的移動路的內壁面形成抗靜電層,用抗靜電材料製作移動路徑,可以解決微塵因靜電而附著在流入路徑而微塵測量結果出現誤差的問題。
並且,根據本發明的光散射微塵測量裝置,在從加熱器到光散射微塵感測器的感應路徑的內壁面形成絕緣層,使溫度上升的測量空氣的熱損失最小化,確保微塵濃度測量結果的可靠性。
100:光散射微塵測量裝置
110:外殼
111:流入塊
111a:流入口
113:出口塊
113a:出口
113b:第一緊固件
115:加熱塊
115a:第二緊固件
117:感應塊
119:墊片
120:空氣移動路徑
121:流入路徑
121a:抗靜電層
123:加熱路徑
124:連接路徑
125:感應路徑
125a:絕緣層
127:出口路徑
130:加熱器
140:外部溫濕度感測器
150:內部溫濕度感測器
160:光散射微塵感測器
170:空氣流動扇
180:控制部
181:連接器
A1:外部空氣
A2:測量空氣
T1:外部溫度
T2:內部溫度
Tt:目標溫度
W1:外部相對濕度
W2:內部相對濕度
Wt:目標相對濕度
[圖1]是示出本發明較佳實施例的光散射微塵測量裝置的結構的立體圖,
[圖2]是示出本發明較佳實施例的光散射微塵測量裝置的側剖面結構的側剖視圖,
[圖3]是示出本發明較佳實施例的光散射微塵測量裝置的正剖面結構的正剖視圖,
[圖4]是概略性地示出本發明較佳實施例的光散射微塵測量裝置的結構的框圖,
[圖5至圖7]是示出本發明的光散射微塵測量裝置的空氣移動路徑的多種變形例的示例圖,
[圖8]是示出本發明的光散射微塵測量裝置的微塵測量過程的流程圖。
100:光散射微塵測量裝置
111:流入塊
111a:流入口
113:出口塊
113a:出口
113b:第一緊固件
115:加熱塊
117:感應塊
119:墊片
120:空氣移動路徑
121:流入路徑
121a:抗靜電層
123:加熱路徑
124:連接路徑
125:感應路徑
127:出口路徑
130:加熱器
140:外部溫濕度感測器
150:內部溫濕度感測器
181:連接器
A1:外部空氣
A2:測量空氣
T1:外部溫度
T2:內部溫度
W1:外部相對濕度
W2:內部相對濕度
Claims (8)
- 一種用光散射方式測量外部空氣中微塵濃度的光散射微塵測量裝置,其特徵在於,包括: 外殼(110),分別具有用於流入外部空氣的流入口(111a)和排出已測量微塵濃度的測量空氣的出口(113a); 空氣移動路徑(120),在所述外殼(110)的內部,連接所述流入口(111a)與所述出口(113a),用於所述外部空氣移動; 外部溫濕度感測器(140),位於所述外殼(110)的外側,測量外部空氣的溫度和相對濕度; 加熱器(130),位於所述流入口(111a)側的空氣移動路徑(120)上; 光散射微塵感測器(160),位於所述加熱器(130)與所述出口(113a)之間的空氣移動路徑(120)上,測量經由所述加熱器(130)移動的測量空氣的微塵濃度; 內部溫濕度感測器(150),位於所述加熱器(130)與所述光散射微塵感測器(160)之間的空氣移動路徑(120)上,測量所述測量空氣的溫度和相對濕度。
- 根據請求項1所述的光散射微塵測量裝置,其特徵在於, 所述空氣移動路徑(120)的方向為選自從下部到上部的方向、從上部到下部的方向、從一側到另一側的方向中的其中一個方向, 所述空氣移動路徑(120)上具有使所述外部空氣強制移動的空氣流動扇(170)。
- 根據請求項2所述的光散射微塵測量裝置,其特徵在於, 所述空氣移動路徑(120)包括:從所述加熱器(130)連接到所述出口(113a)的多個內部分支路徑,所述內部分支路徑中的其中一個具有內部溫濕度感測器(150)和所述光散射微塵感測器(160)。
- 根據請求項2所述的光散射微塵測量裝置,其特徵在於, 所述空氣移動路徑(120)包括:從所述加熱器(130)連接到所述出口(113a)的多個內部分支路徑,所述多個內部分支路徑分別具有內部溫濕度感測器(150)和所述光散射微塵感測器(160)。
- 根據請求項1至4中任一項所述的光散射微塵測量裝置,其特徵在於, 所述空氣移動路徑(120)包括:從所述流入口(111a)連接到所述加熱器(130)的流入路徑(121)、連接到所述加熱器(130)和所述內部溫濕度感測器(150)的加熱路徑(123)、從所述內部溫濕度感測器(150)連接到散射微塵感測器(160)的感應路徑(125)、從所述光散射微塵感測器(160)連接到所述出口(113a)的出口路徑(127)。
- 根據請求項5所述的光散射微塵測量裝置,其特徵在於, 所述感應路徑(125)的寬度窄於所述加熱路徑(123)的寬度, 所述加熱路徑(123)和所述感應路徑(125)的內壁面具有由絕緣材料形成的絕緣層(125a)。
- 根據請求項6所述的光散射微塵測量裝置,其特徵在於, 所述流入路徑(121)和所述加熱路徑(123)及所述感應路徑(125)的表面具有由抗靜電材料形成的抗靜電層(121a)。
- 根據請求項7所述的光散射微塵測量裝置,其特徵在於, 還包括:控制部(180),當所述外部溫濕度感測器(140)測量的外部空氣的外部相對濕度高於預設的目標相對濕度時,驅動所述加熱器(130)而加熱所述外部空氣而使其達到目標溫度,從而使所述外部空氣的外部相對濕度達到所述目標相對濕度。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200098351 | 2020-08-06 | ||
KR10-2020-0098351 | 2020-08-06 | ||
KR1020210093052A KR102368788B1 (ko) | 2020-08-06 | 2021-07-15 | 광산란 미세먼지 측정장치 |
KR10-2021-0093052 | 2021-07-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202206796A true TW202206796A (zh) | 2022-02-16 |
TWI783611B TWI783611B (zh) | 2022-11-11 |
Family
ID=80117509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110128685A TWI783611B (zh) | 2020-08-06 | 2021-08-04 | 光散射微塵測量裝置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230044367A1 (zh) |
EP (1) | EP4116698A4 (zh) |
JP (1) | JP7398844B2 (zh) |
KR (1) | KR102510773B1 (zh) |
CN (1) | CN217981161U (zh) |
AU (1) | AU2021321125B2 (zh) |
TW (1) | TWI783611B (zh) |
WO (1) | WO2022030843A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117589945B (zh) * | 2024-01-11 | 2024-04-12 | 武汉瑞气节能环保科技有限公司 | 一种智慧空压站用空气检测装置 |
CN117705662B (zh) * | 2024-02-02 | 2024-05-07 | 北京英视睿达科技股份有限公司 | 一种湿度补偿的颗粒物监测设备的质量浓度计算方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005053731A1 (de) * | 2005-11-10 | 2007-05-24 | Linde Ag | Vorrichtung zur Hochdruckgaserhitzung |
KR101064216B1 (ko) * | 2009-06-25 | 2011-09-14 | 건국대학교 산학협력단 | 분진계측기의 공기 유입 안정화를 위한 정밀측정용 커버 |
JP5914164B2 (ja) * | 2012-05-23 | 2016-05-11 | 株式会社日立製作所 | 微粒子検出装置及びセキュリティゲート |
KR101499672B1 (ko) * | 2014-04-29 | 2015-03-06 | 대한민국 | 표준 에어로졸 샘플링 시스템 |
KR101414858B1 (ko) * | 2014-04-29 | 2014-07-03 | 황만수 | 미세먼지 측정 장치 |
CN106574888B (zh) * | 2014-07-25 | 2019-05-31 | 富士通株式会社 | 测量颗粒以及气体的测量装置、测量系统以及测量方法 |
JP2016109317A (ja) * | 2014-12-02 | 2016-06-20 | シャープ株式会社 | 空気清浄機 |
JP6728956B2 (ja) * | 2016-05-13 | 2020-07-22 | 富士電機株式会社 | 粒子測定装置 |
JP2017223560A (ja) * | 2016-06-15 | 2017-12-21 | パナソニックIpマネジメント株式会社 | 粒子検出センサ |
KR101796918B1 (ko) * | 2017-06-07 | 2017-12-12 | (주)소하테크 | 센서 일체형 이산화탄소 및 온습도 측정장치 |
KR101832100B1 (ko) * | 2017-07-27 | 2018-04-04 | 주식회사 동일그린시스 | 초미세 입경을 갖는 미세먼지 측정 모니터링 시스템 |
JP6662362B2 (ja) * | 2017-08-31 | 2020-03-11 | 株式会社デンソー | 埃濃度検出装置 |
KR102065671B1 (ko) * | 2018-01-12 | 2020-01-13 | 주식회사 지티에스엠 | 웨이퍼형 파티클 센서 |
TWM561788U (zh) * | 2018-01-26 | 2018-06-11 | Microjet Technology Co Ltd | 氣體檢測裝置 |
KR20190108841A (ko) * | 2018-03-15 | 2019-09-25 | 한온시스템 주식회사 | 차량용 먼지 검출장치 |
KR101912240B1 (ko) * | 2018-03-28 | 2018-10-26 | 주식회사 과학기술분석센타 | 미세먼지 측정 장치 |
US10969310B2 (en) * | 2018-04-27 | 2021-04-06 | Microjet Technology Co., Ltd. | Particle detecting module |
CN108872033B (zh) * | 2018-05-24 | 2022-04-08 | 香港理工大学深圳研究院 | 大气环境中气态污染物的非均相反应活性测量装置和方法 |
RU2709410C1 (ru) * | 2018-10-03 | 2019-12-17 | Общество с ограниченной ответственностью "Унискан-Ризерч" | Измеритель, система и способ измерения массовой концентрации пылевых частиц |
KR102068115B1 (ko) * | 2018-10-31 | 2020-01-20 | 주식회사 에이치시티엠 | 입자 측정 시스템 |
KR102105253B1 (ko) | 2018-11-22 | 2020-04-27 | 부산대학교 산학협력단 | 광산란 미세먼지 측정 장치 |
KR102157179B1 (ko) * | 2019-01-25 | 2020-09-18 | 주식회사 이노서플 | 대기 미세 먼지 측정 시스템 |
KR102053371B1 (ko) * | 2019-06-19 | 2020-01-08 | 주식회사 누리플랜 | 미세먼지 측정장치 |
KR102103333B1 (ko) | 2019-12-03 | 2020-04-22 | 주식회사 다산에스엠 | 광산란 방식 미세먼지 측정시스템 |
-
2021
- 2021-07-26 WO PCT/KR2021/009656 patent/WO2022030843A1/ko active Application Filing
- 2021-07-26 US US17/758,765 patent/US20230044367A1/en active Pending
- 2021-07-26 AU AU2021321125A patent/AU2021321125B2/en active Active
- 2021-07-26 JP JP2022550688A patent/JP7398844B2/ja active Active
- 2021-07-26 CN CN202190000285.2U patent/CN217981161U/zh active Active
- 2021-07-26 EP EP21852698.6A patent/EP4116698A4/en active Pending
- 2021-08-04 TW TW110128685A patent/TWI783611B/zh active
-
2022
- 2022-02-23 KR KR1020220023320A patent/KR102510773B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2023515512A (ja) | 2023-04-13 |
AU2021321125A1 (en) | 2022-11-17 |
EP4116698A4 (en) | 2024-03-20 |
EP4116698A1 (en) | 2023-01-11 |
JP7398844B2 (ja) | 2023-12-15 |
CN217981161U (zh) | 2022-12-06 |
WO2022030843A1 (ko) | 2022-02-10 |
AU2021321125B2 (en) | 2024-03-14 |
TWI783611B (zh) | 2022-11-11 |
US20230044367A1 (en) | 2023-02-09 |
KR20220025798A (ko) | 2022-03-03 |
KR102510773B1 (ko) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI783611B (zh) | 光散射微塵測量裝置 | |
JP5226861B2 (ja) | 結露試験装置及び結露試験方法 | |
US7296465B2 (en) | Vertical mount mass flow sensor | |
KR102368788B1 (ko) | 광산란 미세먼지 측정장치 | |
US10476090B2 (en) | Fuel cell system | |
CN103262216A (zh) | 热扩散腔室 | |
JPH0980005A (ja) | 高炉送風湿分の測定方法 | |
CN208082489U (zh) | 恒温恒湿箱的加湿装置和恒温恒湿箱 | |
US20110094292A1 (en) | Apparatus for air property measurement | |
KR20230175038A (ko) | 공기 가열 장치 | |
CN207488852U (zh) | 一种气体恒温装置及检测系统 | |
CN221528340U (zh) | 颗粒物监测设备 | |
CN214122074U (zh) | 露点仪恒温器 | |
CN115047146B (zh) | 一种物料动态干燥特性曲线的测量系统及测量方法 | |
CN221528770U (zh) | 恒温装置以及半导体薄膜方块电阻测试仪 | |
JPS60141279A (ja) | 恒温槽 | |
CN111684241A (zh) | 流量测量装置以及埋入式气量计 | |
CN115655523A (zh) | 一种穿戴设备的温度检测系统 | |
CN110470747B (zh) | 一种色谱在线分析的传输线装置及控温方法 | |
JPH04371727A (ja) | 電気暖房装置 | |
KR101721651B1 (ko) | 공기유량센서의 센서엘리먼트 | |
KR20170014131A (ko) | 공기유량센서의 센서엘리먼트 | |
CN104807191B (zh) | 使用光检测器检测温度的加热装置及其保护方法 | |
KR20220078516A (ko) | 공기 가열 장치 | |
KR20220078473A (ko) | 공기 가열 장치 |