WO2019172537A1 - 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버 - Google Patents

열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버 Download PDF

Info

Publication number
WO2019172537A1
WO2019172537A1 PCT/KR2019/001552 KR2019001552W WO2019172537A1 WO 2019172537 A1 WO2019172537 A1 WO 2019172537A1 KR 2019001552 W KR2019001552 W KR 2019001552W WO 2019172537 A1 WO2019172537 A1 WO 2019172537A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot air
wafer
heater
module
hot
Prior art date
Application number
PCT/KR2019/001552
Other languages
English (en)
French (fr)
Inventor
강건수
Original Assignee
주식회사 쎄믹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄믹스 filed Critical 주식회사 쎄믹스
Publication of WO2019172537A1 publication Critical patent/WO2019172537A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature

Definitions

  • the present invention relates to a wafer prober capable of preheating a probe card, and more particularly, a hot air shower module is mounted on a wafer camera of a wafer prober to spray hot air toward components such as a probe card.
  • the present invention relates to a wafer prober capable of preheating a probe card using hot air configured to preheat preliminary components.
  • Wafer prober is a device that inspects the quality of semiconductor chips formed on a wafer, and actually probes under the same conditions as the environment in which the semiconductor chips are used.
  • a wafer prober 1 includes a probe card 110 mounted on a top plate 100 of a housing, and a chuck 120 for mounting a wafer includes a horizontal moving module 130 and a wafer. It is mounted on the vertical movement module 140.
  • a wafer camera 150 for vision inspection of the wafer is mounted on the top plate 100 so as to be movable to the top of the chuck by the camera moving module 160.
  • FIG. 2 is a diagram illustrating a state in which a wafer inspection wafer camera is moved to an upper portion of a chuck for a wafer alignment process or a PMI process in a conventional wafer prober.
  • the general environment variable in which the semiconductor chips are used is the temperature of the ambient temperature, which is different depending on the region and also depending on the use environment. Therefore, all semiconductor chips are tested for performance at temperatures that are likely to be practical. This test is called a parametric test, and the temperature test is divided into a hot test and a cold test.
  • the above-described cold test and hot test are performed by loading a wafer at room temperature into a chuck set to a specific temperature while the chuck temperature is set at a predetermined predetermined temperature in the range of -55 ° C to 200 ° C. After changing the temperature of the wafer, the wafer and the probe card are contacted to apply electrical signals to the semiconductor chips of the wafer through the probe card, and to check whether the semiconductor chips operate normally.
  • the probe pin holder, the probe card PCB, and the probe card holder on which the probe card is fixed are supported.
  • the temperature of the top plate of the wafer prober being changed is changed. This temperature change causes the length and thickness of each component to change according to the inherent coefficient of thermal expansion of each component. As a result, the first contact position of the wafer and the probe card is changed, so that precise testing cannot be performed.
  • the probe card is pre-heated and then tested before contacting the probe card with the wafer at a particular temperature.
  • the wafer which is set at a specific temperature, is placed in a position close to the probe card, and then waits for a predetermined time, such as a probe card by heat transfer by copying and convection. The temperature of each component is sufficiently raised.
  • the above-described preheating method for the conventional probe card has a problem of waiting tens of minutes for preheating before contacting the wafer and the probe card.
  • This preheating time takes much time in addition to the actual test time, which is a big factor in reducing the productivity of the semiconductor chips.
  • An object of the present invention for solving the above problems is to provide a wafer prober capable of rapidly preheating each component such as a probe card by injecting hot air into the probe card.
  • the wafer camera is connected to the top plate of the wafer prober, and is movably mounted to the top of the chuck by a moving module; And a hot air spray module fixedly mounted on an upper surface of the wafer camera.
  • the hot air injection module the heater for heating and discharging the air introduced through the air inlet;
  • a heater power source for driving the heater;
  • An air injection module for injecting air into the air inlet of the heater;
  • a hot air chamber having a hot air inlet formed on one surface and a plurality of discharge holes formed on the other surface, wherein the hot air discharged from the heater is introduced into the hot air inlet and sprayed to the outside through the outlets;
  • a hot air injection pipe for supplying hot air discharged from the heater to the hot air chamber, to preheat the components in the wafer prober using the hot air.
  • the hot air jetting module comprises: a temperature sensor for measuring a temperature; It is preferable to further include a temperature controller for controlling the temperature of the surroundings of the hot air injection module by controlling the driving of the heater power source in accordance with the temperature measured by the temperature sensor.
  • the hot air chamber is composed of a hot air buffer chamber and a hot air injection chamber
  • the hot air buffer chamber includes a hot air inlet through which hot air discharged from the heater is injected, thereby allowing hot air discharged from the heater.
  • a plurality of through holes are formed on a surface where the hot air injection chamber and the hot air buffer chamber are in contact with each other, and the hot air collected in the hot air buffer chamber through the through holes is provided to the hot air injection chamber.
  • the hot air jetting chamber may include a plurality of hot air jetting holes formed on a surface of the hot air jetting chamber opposite to a surface on which the through hole is formed, such that the hot air of the hot air jetting chamber is sprayed to the outside.
  • the hot air jetting module preferably further includes a flow rate adjusting module for adjusting the amount of air injected from the air injection module to the heater.
  • the hot air spray module further includes a heat shielding film made of a material for shielding heat transfer on a lower surface of the hot air spray module fixed to an upper portion of the wafer camera.
  • the shielding film may block the heat of the hot air jetting module from being transferred to the wafer camera.
  • the wafer prober according to the present invention further includes a hot air spray module on the upper surface of the wafer camera, so that components such as a probe card can be preheated quickly using hot air.
  • the hot air spray module of the wafer prober according to the present invention is fixed to the upper portion of the wafer camera, so that the inside of the wafer prober can be moved using the moving module for the wafer camera as it is.
  • 1 is a schematic view showing a conventional wafer prober.
  • FIG. 2 is a diagram illustrating a state in which a wafer inspection wafer camera is moved to an upper portion of a chuck for a wafer alignment process or a PMI process in a conventional wafer prober.
  • FIG. 3 is a configuration diagram schematically showing the structure of a wafer prober according to a preferred embodiment of the present invention.
  • FIG. 4 is a plan view and a side view of a wafer prober according to a preferred embodiment of the present invention, in which a hot air jetting module is mounted on a wafer camera module.
  • FIG. 5 is a block diagram illustrating a structure of a hot air jetting module in a wafer prober according to an exemplary embodiment of the present invention.
  • FIGS. 6 and 7 are perspective views illustrating a wafer camera module and a camera moving module equipped with a hot air jetting module in the wafer prober according to the preferred embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the direction A-A of FIG. 6 to illustrate a hot air buffer chamber and a hot air injection chamber in the wafer prober according to the preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating a process for controlling hot air temperature in a wafer prober according to a preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating the operation of a hot air buffer chamber and a hot air injection chamber in a wafer prober according to a preferred embodiment of the present invention.
  • the wafer prober according to the present invention is characterized in that a hot air jetting module is mounted on a vision inspection wafer camera, so that the probe card and the like can be preheated quickly using hot air.
  • FIG. 3 is a configuration diagram schematically showing the structure of a wafer prober according to a preferred embodiment of the present invention.
  • the wafer prober 3 has a hot air jet mounted on the upper surface of the fixed base structure 32 on which the wafer camera module 30 of the conventional wafer prober is mounted. It characterized in that it comprises a module (40).
  • the wafer camera is a camera for acquiring an image of the surface of the wafer mounted on the chuck, and is mainly composed of a low magnification camera and a high magnification camera.
  • the wafer camera is connected to the top plate 100 of the wafer prober, and is connected to the top plate using a camera moving module 160 such as a linear motion guide, so that the wafer camera can move to the top of the chuck or the side of the chuck when necessary. It is composed.
  • the hot air jet module 40 may be mounted on the wafer camera module 30 to move the hot air jet module to a position to be preheated by using the movement module 160 of the wafer camera.
  • the hot air spray module moved to the required position by using the moving module 160 of the wafer camera directly sprays the hot air warmed to a predetermined temperature by an internal heater toward a component such as a probe card requiring temperature control.
  • FIG. 4 is a plan view and a side view of a wafer prober according to a preferred embodiment of the present invention, showing a state in which a hot air spray module is mounted on an upper portion of a wafer camera module.
  • the hot air jetting module 40 is fixed to the upper portion of the wafer camera module 30, and is fixed to four fixing members such as screws to the fixing base structure 32 of the wafer camera module.
  • the hot air sprayed from the hot air spray module can control the temperature by using a temperature sensor, a temperature controller, and a power source for the heater, and raise the temperature of the parts to be preheated by adjusting the flow rate of air flowing into the hot air spray module. You can control the time.
  • FIG. 5 is a block diagram illustrating a structure of a hot air jetting module in a wafer prober according to an exemplary embodiment of the present invention.
  • 6 and 7 are perspective views illustrating a fixed base structure and a camera moving module of a wafer camera module equipped with a hot air jetting module in a wafer prober according to a preferred embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the direction A-A of FIG. 6 to illustrate a hot air buffer chamber and a hot air injection chamber in the wafer prober according to the preferred embodiment of the present invention.
  • the hot air injection module 40 includes a heater 400 for heating and discharging the introduced air, a power source for the heater 404, an air injector 406 for injecting air into the heater, and the air injector.
  • each component of the aforementioned hot air injection module will be described in detail.
  • the heater 400 is preferably formed in a hollow state and has a pipe shape having a predetermined length.
  • the heater 400 has an air inlet on one side and an air outlet on the other side. The air introduced into the pipe through the air inlet is heated and discharged through the air outlet in the state of hot air.
  • the heater is preferably fixed to the wafer camera module 30 is fixed to the bracket 409 of the heat insulating material that does not transfer heat.
  • the heater power source 404 is a power source for driving the heater, and drives the heater by the control of the temperature controller 450.
  • the temperature controller controls the temperature of the surroundings of the hot air and the hot air injection module by adjusting the driving of the heater power.
  • the air injector 406 injects air into the heater.
  • the flow rate control module 410 is provided with an on-off valve mounted between the air injector and the air inlet of the heater and a regulator for controlling the operation of the on-off valve, thereby adjusting the amount of air flowing into the heater from the air injector Done.
  • the flow rate control module adjusts the amount of hot air discharged from the heater by adjusting the amount of air introduced into the heater, thereby controlling the time required for the temperature of the components to rise to a preset temperature by the hot air. For example, if the temperature of parts needs to be increased in a shorter time, the amount of air flowed into the heater is increased to increase the amount of hot air injected from the hot air injection module. Otherwise, the amount of air flowed into the heater is reduced. In order to reduce the amount of hot air injected from the hot air injection module.
  • the hot air injection pipe 402 is a passage connecting the air outlet of the heater and the hot air buffer chamber 420 to provide hot air discharged from the air outlet of the heater to the hot air buffer chamber.
  • the hot air buffer chamber 420 first collects the hot air discharged from the heater and provides the hot air buffer chamber 430 to the hot air injection chamber 430.
  • the hot air spray chamber 430 injects hot air from the hot air buffer chamber to the outside.
  • the hot air chamber 44 includes a hot air buffer chamber and a hot air injection chamber disposed so that one surface thereof is in contact with each other.
  • the hot air buffer chamber 420 is provided with a hot air inlet 422 on one surface, the hot air of the heater is introduced through the hot air inlet.
  • a plurality of through holes 424 are formed on a surface where the hot air buffer chamber 420 and the hot air injection chamber 430 contact each other, and hot air in the hot air buffer chamber is provided to the hot air injection chamber through the through holes.
  • the hot air jetting chamber 430 has a plurality of hot air jetting holes 432 formed on a surface of the hot air jetting chamber 430 facing the surface where the through holes are formed, and the hot air of the hot air jetting chamber 430 is moved outward through the hot air jetting holes 432. Sprayed.
  • FIG. 10 is a schematic diagram illustrating the operation of a hot air buffer chamber and a hot air injection chamber in a wafer prober according to a preferred embodiment of the present invention.
  • FIG. 10A is a schematic diagram illustrating a case where hot air is sprayed using a single chamber.
  • hot air when hot air is injected through a single injection hole, hot air is discharged through a plurality of discharge holes formed in the front of the chamber.
  • the discharge port around the injection port has a high pressure to increase the discharge amount, and as the position of the discharge port moves away from the injection hole, the pressure decreases, so that the discharge amount decreases.
  • hot air is not uniformly sprayed as a whole.
  • Figure 10 (b) is a schematic diagram showing a case of spraying hot air using two chambers arranged in duplicate in accordance with the present invention.
  • FIG. 10B when the hot air buffer chamber 420 and the hot air injection chamber 430 are disposed in duplicate, first, hot air is injected and filled into the hot air inlet 422 of the hot air buffer chamber, and then the hot air injection chamber is filled. And a plurality of through holes 424 formed between the hot air buffer chamber and uniformly flow into the entire area of the hot air injection chamber.
  • Hot air injection module is characterized in that the hot air introduced into the hot air injection chamber through the above-described double chamber structure is sprayed uniformly as a whole irrespective of the position of the hot air injection port of the hot air injection chamber.
  • the temperature sensor 440 is installed in a hot air spray chamber or a hot air buffer chamber, and measures the temperature of the hot air in the chambers and outputs the temperature to the temperature controller in real time.
  • the temperature controller 450 controls the temperature of the hot air injection module by adjusting the temperature of the hot air, and PID operation of the heater power supply 404 according to the temperature sensed by the temperature sensor and a preset temperature. By controlling the temperature of the hot air discharged from the heater is adjusted.
  • the temperature controller 450 receives a temperature of hot air from a temperature sensor and controls the output of the heater by controlling the driving of the heater power source according to the input temperature of the hot air.
  • the wafer camera is a high magnification camera for capturing the surface of the wafer mounted on the chuck, and the probe of the wafer and the probe card is checked by checking the positions of the chips on the wafer through the wafer image photographed using the wafer camera. Contact is made correctly. If the position of the wafer camera is changed while checking the position of the wafer, the probe of the final wafer and the probe card cannot be contacted correctly.
  • the heat shielding film 460 is used to block the temperature of the hot air blowing module from being moved to the wafer camera by radiation, convection, etc., and is made of a film or sheet made of a material that blocks heat from being moved by radiation or convection. It is preferable to be mounted on the lower surface of the hot air injection module adjacent to the camera.
  • the heat shielding film 460 is composed of a SUS plate having a thickness of about 0.1 to 0.2 mm, and serves to reflect radiant heat coming from the wafer camera and to prevent high temperature convection from going toward the wafer camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명은 열풍을 이용한 예열 가능한 웨이퍼 프로버에 관한 것이다. 상기 웨이퍼 프로버는, 웨이퍼 프로버의 상판에 연결되되 이동 모듈에 의해 척의 상부로 이동 가능하게 장착된 웨이퍼 카메라; 및 상기 웨이퍼 카메라의 상부면에 고정 장착된 열풍 분사 모듈;을 구비한다. 상기 열풍 분사 모듈은, 공기 주입구를 통해 유입된 공기를 가열하여 배출시키는 히터; 상기 히터를 구동시키는 히터용 전원; 상기 히터의 공기 주입구로 공기를 주입하는 공기 주입 모듈; 일면에 형성된 열풍 주입구 및 타면에 형성된 다수 개의 토출구를 구비하여, 상기 히터로부터 배출된 열풍이 열풍 주입구로 유입되어 상기 토출구들을 통해 외부로 분사되는 열풍 챔버; 상기 히터로부터 배출된 열풍을 상기 열풍 챔버로 제공하는 열풍 주입관;을 구비하여, 열풍을 이용하여 웨이퍼 프로버 내의 부품을 예열시킨다. 본 발명에 따른 웨이퍼 프로버는 비젼 검사용 웨이퍼 카메라에 열풍 분사 모듈을 장착시키고, 열풍을 이용하여 프로브 카드 등을 신속하게 예열시킬 수 있도록 하는 것을 특징으로 한다.

Description

열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버
본 발명은 프로브 카드 예열이 가능한 웨이퍼 프로버에 관한 것으로서, 더욱 구체적으로는 웨이퍼 프로버의 웨이퍼 카메라위에 열풍 분사 모듈(Hot air shower)을 탑재하여 프로브 카드 등의 부품을 향해 열풍을 분사함으로써 프로브 카드 등의 부품을 신속하게 예열시킬 수 있도록 구성된 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버에 관한 것이다.
웨이퍼 프로버(Wafer Prober)는 웨이퍼에 형성된 반도체 칩들의 품질을 검사하는 장비로서, 실제로 반도체 칩들이 사용되는 환경과 같은 조건에서 프로빙을 하게 된다.
도 1은 종래의 웨이퍼 프로버를 개략적으로 도시한 구성도이다. 도 1을 참조하면, 웨이퍼 프로버(1)는 하우징의 상판(Top plate : 100)에 프로브 카드(110)가 탑재되며, 웨이퍼를 탑재할 척(chuck;120)이 수평 이동 모듈(130) 및 수직 이동 모듈(140)위에 장착된다. 한편, 웨이퍼에 대한 비젼(vision) 검사를 위한 웨이퍼 카메라(150)가 카메라 이동 모듈(160)에 의해 척의 상부로 이동가능하게 상판(100)에 장착된다.
도 2는 종래의 웨이퍼 프로버에 있어서, 웨이퍼 정렬(Align) 공정 또는 PMI 공정을 위하여 비젼 검사용 웨이퍼 카메라를 척의 상부로 이동시킨 상태를 도시한 구성도이다.
반도체 칩들이 사용되는 일반적인 환경의 변수는 주변의 온도(Temperature)로서, 상기 주변의 온도는 지역에 따라 다를 것이며 사용 환경에 따라서도 서로 달라지게 된다. 따라서, 모든 반도체 칩은 실제 사용 가능성이 있는 온도에서 성능 테스트를 하게 된다. 이러한 테스트를 parametric test라 하며, 그 중 온도 테스트는 Hot Test와 Cold Test로 구분된다.
전술한 Cold Test와 Hot Test는, 척(chuck)의 온도를 낮게는 -55℃에서 높게는 200℃ 의 범위에서 사전 설정된 특정 온도로 만든 상태에서, 상온의 웨이퍼를 특정 온도로 맞춰진 척에 로딩하여 웨이퍼의 온도를 변화시킨 후, 웨이퍼와 프로브 카드(probe card)를 접촉(contact)시켜 프로브 카드를 통해 웨이퍼의 반도체 칩들에게 전기적 신호를 인가하고 해당 반도체 칩들이 정상적으로 동작하는지 여부를 검사하게 된다.
이때, 특정 온도의 웨이퍼와 상온의 프로브 카드가 컨택되면, 특히 웨이퍼가 고온인 경우, 프로브 핀(Probe pin), Probe card PCB, Probe card가 고정되어 있는 프로브 카드 홀더와 웨이퍼 프로버의 전체를 지지하고 있는 웨이퍼 프로버의 상판(Top plate)의 온도가 변화하게 된다. 이러한 온도 변화는 각 부품들이 갖는 고유의 열 팽창 계수에 따라 각 부품들의 길이와 두께가 변화하게 되고, 그 결과 웨이퍼와 프로브 카드가 처음 컨택한 위치가 바뀌게 됨으로써, 정밀한 테스트를 진행할 수 없게 된다.
이러한 상황이 발생되는 것을 방지하기 위하여, 특정 온도의 웨이퍼와 프로브 카드를 컨택시키기 전에, 프로브 카드를 예열(Pre-heating)시킨 후 테스트를 진행하게 된다. 이와 같이, 프로브 카드를 예열시키기 위하여, 도 1에 도시된 바와 같이, 특정 온도로 맞춰진 웨이퍼를 프로브 카드와 근접한 위치에 위치시킨 후 일정 시간을 기다림으로써 복사 및 대류에 의한 열전달에 의해 프로브 카드 등과 같은 각 부품들의 온도를 충분히 상승시키게 된다.
이렇게 예열시키더라도, 도 2에 도시된 바와 같이, 웨이퍼와 프로브 카드를 컨택시키기 전에 행해지는 웨이퍼와 프로브 카드에 대한 정렬(Align) 공정을 수행하거나, 테스트가 종료된 후 해당 테스트가 제대로 이루어졌는지 확인하는 PMI(Probe Mark Inspection) 공정이 진행되는 경우 상부에 있는 프로브 카드 등과 같은 부품 및 구조물들의 온도가 내려가게 된다. 따라서, 이후 공정을 위하여 프로브 카드 등의 부품에 대한 예열(pre-heating)을 다시 수행해야 된다.
하지만, 전술한 종래의 프로브 카드에 대한 예열 방법은, 웨이퍼와 프로브 카드를 컨택시키기 전에 예열을 위하여 수십분의 시간을 기다려야 하는 문제점이 발생한다. 이러한 예열 시간은 실제 테스트 시간 외에도 많은 시간을 소요하게 됨으로써 반도체 칩들에 대한 생산성을 저하시키는 큰 요인이 되고 있는 실정이다.
전술한 문제점을 해결하기 위한 본 발명의 목적은 프로브 카드로 열풍을 분사하여 프로브 카드 등과 같은 각 부품들을 신속하게 예열시킬 수 있도록 한 웨이퍼 프로버를 제공하는 것이다.
전술한 기술적 과제를 달성하기 위한 본 발명의 특징에 따른 열풍을 이용한 예열 가능한 웨이퍼 프로버는, 웨이퍼 프로버의 상판에 연결되되 이동 모듈에 의해 척의 상부로 이동 가능하게 장착된 웨이퍼 카메라; 및 상기 웨이퍼 카메라의 상부면에 고정 장착된 열풍 분사 모듈;을 구비하고,
상기 열풍 분사 모듈은, 공기 주입구를 통해 유입된 공기를 가열하여 배출시키는 히터; 상기 히터를 구동시키는 히터용 전원; 상기 히터의 공기 주입구로 공기를 주입하는 공기 주입 모듈; 일면에 형성된 열풍 주입구 및 타면에 형성된 다수 개의 토출구를 구비하여, 상기 히터로부터 배출된 열풍이 열풍 주입구로 유입되어 상기 토출구들을 통해 외부로 분사되는 열풍 챔버; 상기 히터로부터 배출된 열풍을 상기 열풍 챔버로 제공하는 열풍 주입관;을 구비하여, 열풍을 이용하여 웨이퍼 프로버 내의 부품을 예열시킨다.
전술한 특징에 따른 웨이퍼 프로버에 있어서, 상기 열풍 분사 모듈은, 온도를 측정하는 온도 센서; 상기 온도 센서에 의해 측정된 온도에 따라 상기 히터용 전원의 구동을 제어하여, 열풍 분사 모듈의 주변의 온도를 조절하는 온도 컨트롤러;를 더 구비하여, 열풍의 온도를 조절할 수 있도록 하는 것이 바람직하다.
전술한 특징에 따른 웨이퍼 프로버에 있어서, 상기 열풍 챔버는 열풍 버퍼 챔버와 열풍 분사 챔버로 이루어지고, 상기 열풍 버퍼 챔버는 히터로부터 배출된 열풍이 주입되는 열풍 주입구를 구비하여 히터로부터 배출된 열풍이 주입되어 포집되는 것을 특징으로 하며, 상기 열풍 분사 챔버와 상기 열풍 버퍼 챔버가 서로 맞닿는 면에 다수 개의 관통구가 형성되어, 상기 관통구를 통해 열풍 버퍼 챔버에 포집된 열풍이 상기 열풍 분사 챔버로 제공되는 것을 특징으로 하며, 상기 열풍 분사 챔버는 상기 관통구가 형성된 면과 대향되는 면에 다수 개의 열풍 분사구가 형성되어, 열풍 분사 챔버의 열풍이 외부로 분사되도록 구성되는 것이 바람직하다.
전술한 특징에 따른 웨이퍼 프로버에 있어서, 상기 열풍 분사 모듈은, 상기 공기 주입 모듈로부터 히터로 주입되는 공기의 양을 조절하는 유량 조절 모듈을 더 구비하는 것이 바람직하다.
전술한 특징에 따른 웨이퍼 프로버에 있어서, 상기 열풍 분사 모듈은, 상기 웨이퍼 카메라의 상부에 고정되는 상기 열풍 분사 모듈의 하부면에 열 전달을 차폐시키는 재질로 이루어진 열 차폐막을 더 구비하고, 상기 열 차폐막은 상기 열풍 분사 모듈의 열이 상기 웨이퍼 카메라로 이동되는 것을 차단시키는 것이 바람직하다.
본 발명에 따른 웨이퍼 프로버는 웨이퍼 카메라의 상부면에 열풍 분사 모듈을 더 구비함으로써, 프로브 카드 등의 부품을 열풍을 이용하여 신속하게 예열시킬 수 있게 된다.
또한, 본 발명에 따른 웨이퍼 프로버의 열풍 분사 모듈은 웨이퍼 카메라의 상부에 고정됨으로써, 웨이퍼 카메라를 위한 이동 모듈을 그대로 사용하여 웨이퍼 프로버의 내부를 이동할 수 있게 된다.
도 1은 종래의 웨이퍼 프로버를 개략적으로 도시한 구성도이다.
도 2는 종래의 웨이퍼 프로버에 있어서, 웨이퍼 정렬(Align) 공정 또는 PMI 공정을 위하여 비젼 검사용 웨이퍼 카메라를 척의 상부로 이동시킨 상태를 도시한 구성도이다.
도 3은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버의 구조를 개략적으로 도시한 구성도이다.
도 4는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 분사 모듈이 웨이퍼 카메라 모듈이 탑재된 상태를 도시한 평면도 및 측면도이다.
도 5는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 분사 모듈의 구조를 도시한 블록도이다.
도 6 및 도 7은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 분사 모듈이 장착된 웨이퍼 카메라 모듈과 카메라 이동 모듈을 도시한 사시도이다.
도 8은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 버퍼 챔버 및 열풍 분사 챔버를 설명하기 위하여 도시한 6의 A-A 방향에 대한 단면도이다.
도 9는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 온도를 제어하는 과정을 설명하기 위하여 도시한 모식도이다.
도 10은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 버퍼 챔버와 열풍 분사 챔버의 동작을 설명하기 위하여 도시한 모식도이다.
본 발명에 따른 웨이퍼 프로버는 비젼 검사용 웨이퍼 카메라에 열풍 분사 모듈을 장착시키고, 열풍을 이용하여 프로브 카드 등을 신속하게 예열시킬 수 있도록 하는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 열풍을 이용한 예열 기능을 갖는 웨이퍼 프로버의 구조 및 동작에 대하여 구체적으로 설명한다.
도 3은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버의 구조를 개략적으로 도시한 구성도이다.
도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버(3)는 기존의 웨이퍼 프로버의 웨이퍼 카메라 모듈(30)이 장착된 고정 베이스 구조물(32)의 상부면에 장착된 열풍 분사 모듈(40)을 구비하는 것을 특징으로 한다. 상기 웨이퍼 카메라는 척위에 거치된 웨이퍼의 표면에 대한 영상을 획득하기 위한 카메라로서, 주로 저배율 카메라와 고배율 카메라로 이루어진다. 상기 웨이퍼 카메라는 웨이퍼 프로버의 상판(Top plate;100)에 연결되되, 선형 모션 가이드 등과 같은 카메라 이동 모듈(160)을 이용하여 상판에 연결됨으로써, 필요한 때에 척의 상부 또는 척의 측면 등으로 이동 가능하도록 구성된다.
상기 열풍 분사 모듈(40)은 상기 웨이퍼 카메라 모듈(30)의 상부에 장착됨으로써, 웨이퍼 카메라의 이동 모듈(160)을 이용하여 상기 열풍 분사 모듈을 예열해야 할 위치로 이동시킬 수 있다. 이와 같이, 웨이퍼 카메라의 이동 모듈(160)을 이용하여 필요한 위치로 이동된 열풍 분사 모듈은 내부의 히터에 의해 일정 온도로 데워진 열풍을 온도 조절이 필요한 프로브 카드 등과 같은 부품을 향해 직접 분사하게 된다.
도 4는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 분사 모듈이 웨이퍼 카메라 모듈의 상부에 탑재된 상태를 도시한 평면도 및 측면도이다. 도 4를 참조하면, 열풍 분사 모듈(40)이 웨이퍼 카메라 모듈(30)의 상부에 고정되어 있으며, 웨이퍼 카메라 모듈의 고정 베이스 구조물(32)에 나사 등과 같은 4개의 고정 부재에 의해 고정된다.
상기 열풍 분사 모듈로부터 분사되는 열풍은 열풍 분사 모듈의 온도 센서, 온도 컨트롤러 및 히터용 전원을 이용하여 온도 제어가 가능하며, 열풍 분사 모듈로 유입되는 공기의 유량을 조절함으로써 예열할 부품들의 온도를 올리는 시간을 제어할 수 있다. 이하, 도 5 내지 도 9를 참조하여 전술한 열풍 분사 모듈의 구성 및 동작에 대하여 보다 구체적으로 설명한다.
도 5는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 분사 모듈의 구조를 도시한 블록도이다. 도 6 및 도 7은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 분사 모듈이 장착된 웨이퍼 카메라 모듈의 고정 베이스 구조물과 카메라 이동 모듈을 도시한 사시도이다. 도 8은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 버퍼 챔버 및 열풍 분사 챔버를 설명하기 위하여 도시한 6의 A-A 방향에 대한 단면도이다.
도 5를 참조하면, 상기 열풍 분사 모듈(40)은 유입되는 공기를 가열하여 배출시키는 히터(400), 히터용 전원(404), 상기 히터로 공기를 주입하는 공기 주입기(406), 상기 공기 주입기를 통해 상기 히터로 유입되는 공기의 양을 조절하여 히터로 주입시키는 유량 조절 모듈(410), 열풍 버퍼 챔버(420)과 열풍 분사 챔버(430)로 이루어져 상기 히터로부터 배출되는 열풍을 포집하여 분사시키는 열풍 챔버(44), 히터로부터 배출된 열풍을 열풍 버퍼 챔버로 제공하는 열풍 주입관(402), 열풍 분사 모듈의 주변의 온도를 측정하는 온도 센서(440), 열풍의 온도를 조절하는 온도 컨트롤러(450), 및 열풍 분사 모듈의 열이 웨이퍼 카메라로 이동되는 것을 차단시키는 열 차폐막(460)을 구비한다. 이하, 전술한 열풍 분사 모듈의 각 구성 요소들에 대하여 구체적으로 설명한다.
상기 히터(400)는 내부가 중공 상태로 이루어지고 일정 길이를 갖는 파이프 형태를 갖는 것이 바람직하며, 상기 히터의 일측에는 공기 주입구를 구비하고 타측에는 공기 배출구를 구비한다. 상기 공기 주입구를 통해 파이프로 유입된 공기는 가열되어 열풍의 상태로 공기 배출구를 통 배출된다.
상기 히터는 열 전달이 안 되는 단열 재질의 브래킷(409)에 고정되어 웨이퍼 카메라 모듈(30)에 고정되는 것이 바람직하다.
상기 히터용 전원(404)은 상기 히터를 구동시키는 전원으로서, 상기 온도 컨트롤러(450)의 제어에 의해 히터를 구동시키게 된다. 상기 온도 컨트롤러는 히터용 전원의 구동을 조절하여 열풍 및 열풍 분사 모듈의 주변의 온도를 제어하게 된다.
상기 공기 주입기(406)는 상기 히터로 공기를 주입한다.
상기 유량 조절 모듈(410)은 공기 주입기와 히터의 공기 주입구의 사이에 장착된 개폐 밸브 및 상기 개폐 밸브의 동작을 제어하는 조절기를 구비함으로써, 상기 공기 주입기에서 상기 히터로 유입되는 공기의 양을 조절하게 된다. 상기 유량 조절 모듈은 상기 히터로 유입되는 공기의 양을 조절하여 히터로부터 배출되는 열풍의 양을 조절하게 됨으로써, 열풍에 의해 부품들의 온도가 사전 설정된 온도로 상승되는 데 요구되는 시간을 조절하게 된다. 예컨대, 보다 짧은 시간내에 부품들의 온도를 상승시켜야 하는 경우 히터로 유입되는 공기의 양을 증가시켜 열풍 분사 모듈로부터 분사되는 열풍의 양을 증가시키게 되고, 그렇지 아니한 경우 히터로 유입되는 공기의 양을 감소시켜 열풍 분사 모듈로부터 분사되는 열풍의 양을 감소시키게 된다.
상기 열풍 주입관(402)은 상기 히터의 공기 배출구와 열풍 버퍼 챔버(420)의 사이를 연결하는 통로로서, 상기 히터의 공기 배출구로부터 배출된 열풍을 상기 열풍 버퍼 챔버로 제공하게 된다.
상기 열풍 버퍼 챔버(420)는 상기 히터로부터 배출된 열풍을 1차로 포집한 후 상기 열풍 분사 챔버(430)로 제공한다. 상기 열풍 분사 챔버(430)는 상기 열풍버퍼 챔버로부터 들어오는 열풍을 외부로 분사한다. 이하, 열풍 버퍼 챔버와 열풍 분사 챔버의 구조 및 동작에 대하여 구체적으로 설명한다.
도 8을 참조하면, 상기 열풍 챔버(44)는 일면이 서로 맞닿도록 배치된 열풍 버퍼 챔버와 열풍 분사 챔버로 이루어진다. 상기 열풍 버퍼 챔버(420)는 일면에 열풍 주입구(422)를 구비하여 열풍 주입구를 통해 히터의 열풍이 유입된다.
상기 열풍 버퍼 챔버(420)와 상기 열풍 분사 챔버(430)가 서로 맞닿는 면에는 다수 개의 관통구들(424)이 형성되어, 열풍 버퍼 챔버내의 열풍이 상기 관통구를 통해 상기 열풍 분사 챔버로 제공된다. 상기 열풍 분사 챔버(430)는 상기 관통구들이 형성된 면과 대향되는 면에 다수 개의 열풍 분사구들(432)이 형성되어, 열풍 분사 챔버(430)의 열풍이 열풍 분사구들(432)을 통해 외부로 분사된다.
도 10은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 버퍼 챔버와 열풍 분사 챔버의 동작을 설명하기 위하여 도시한 모식도이다.
먼저, 도 10의 (a)는 단일의 챔버를 이용하여 열풍을 분사하는 경우를 도시한 모식도이다. 도 10의 (a)를 참조하면, 단일의 주입구를 통해 열풍이 주입되면, 챔버의 전면에 형성된 다수 개의 토출구를 통해 열풍이 토출된다. 이 때, 주입구 주변의 토출구는 압력이 높아 토출량이 많아지게 되고, 토출구의 위치가 주입구로부터 멀어질수록 압력이 낮아지게 되어 토출량이 적어지게 된다. 이와 같이, 단일의 챔버를 사용하는 경우 열풍이 전체적으로 균일하게 분사되지 못하게 된다.
한편, 도 10의 (b)는 본 발명에 따른 이중으로 배치된 두 개의 챔버를 이용하여 열풍을 분사하는 경우를 도시한 모식도이다. 도 10의 (b)를 참조하면, 열풍 버퍼 챔버(420)와 열풍 분사 챔버(430)를 이중으로 배치한 경우, 먼저 열풍 버퍼 챔버의 열풍 주입구(422)에 열풍이 주입되어 채워진 후 열풍 분사 챔버와 열풍 버퍼 챔버의 사이에 형성된 다수 개의 관통구들(424)을 통해 열풍 분사 챔버의 전체 영역으로 균일하게 유입된다. 열풍 버퍼 챔버와 열풍 분사 챔버의 사이에 형성되는 다수 개의 관통구들(424)의 크기와 개수를 조절하고, 열풍 분사 챔버의 다수 개의 열풍 분사구들(432)의 크기와 개수, 및 분포를 조절함으로써, 열풍 분사 챔버로부터 외부로 토출되는 열풍의 양을 균일하게 조절하는 것이 바람직하다. 본원 발명에 따른 열풍 분사 모듈은 전술한 이중 챔버 구조를 통해, 열풍 분사 챔버로 유입된 열풍이 열풍 분사 챔버의 열풍 분사구의 위치와 관계없이 전체적으로 균일하게 분사되는 것을 특징으로 한다.
상기 온도 센서(440)는 열풍 분사 챔버 또는 열풍 버퍼 챔버에 설치되어, 상기 챔버들의 내부의 열풍의 온도를 측정하여 상기 온도 컨트롤러로 실시간으로 출력한다.
상기 온도 컨트롤러(450)는 열풍의 온도를 조절하여 열풍 분사 모듈의 주변의 온도를 제어하는 것으로서, 상기 온도 센서에 의해 감지된 온도와 사전 설정된 온도에 따라 상기 히터용 전원(404)의 구동을 PID 제어하여 히터로부터 배출되는 열풍의 온도를 조절하게 된다.
도 9는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버에 있어서, 열풍 온도를 제어하는 과정을 설명하기 위하여 도시한 모식도이다. 도 9를 참조하면, 상기 온도 컨트롤러(450)는 온도 센서로부터 열풍의 온도를 입력받고, 입력된 열풍의 온도에 따라 히터용 전원의 구동을 제어하여 히터의 출력을 제어하게 된다.
상기 웨이퍼 카메라는 척위에 거치된 웨이퍼의 표면을 촬상하기 위한 고배율 카메라로서, 상기 웨이퍼 카메라를 이용하여 촬상된 웨이퍼 영상을 통해 웨이퍼 상의 각 칩(Chip)들의 위치를 확인하여 웨이퍼와 프로브 카드의 탐침이 정확하게 컨택시키게 된다. 만약 웨이퍼의 위치를 확인하는 도중에 웨이퍼 카메라의 위치가 변하게 되면, 최종 웨이퍼와 프로브 카드의 탐침이 정확하게 컨택할 수 없게 된다.
전술한 웨이퍼 카메라의 상부에 위치한 열풍 분사 모듈의 구조물이 100℃ 이상의 온도로 상승하게 되는 경우, 이는 웨이퍼 카메라의 온도보다 더 높기 때문에 복사/대류 열 전달로 인해 웨이퍼 카메라 또는 웨이퍼 카메라가 고정된 구조물의 온도도 함께 상승되고, 그 결과 웨이퍼 카메라의 위치에도 변화가 생기게 되어 웨이퍼와 프로브 카드의 탐침이 정확하게 컨택하지 못하게 되는 문제점이 발생한다. 이러한 문제점이 발생되는 것을 방지하기 위하여, 열풍 분사 모듈의 열이 웨이퍼 카메라로 전달되는 것을 차단시키는 것이 바람직하다.
상기 열 차폐막(460)은 열풍 분사 모듈의 온도가 복사 및 대류 등에 의해 웨이퍼 카메라로 이동되는 것을 차단하기 위한 것으로서, 복사 또는 대류 등에 의해 열이 이동되는 것을 차단시키는 재질의 막이나 시트로 제작되어 웨이퍼 카메라와 인접한 열풍 분사 모듈의 하부면에 장착되는 것이 바람직하다. 상기 열 차폐막(460)은 약 0.1 ~ 0.2 ㎜ 두께의 SUS 판으로 구성되어, 웨이퍼 카메라로 오는 복사열을 반사시키고 고온 대류가 웨이퍼 카메라 쪽으로 가지 못하게 하는 역할을 하게 된다.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (8)

  1. 웨이퍼 프로버의 상판에 연결되되 이동 모듈에 의해 척의 상부로 이동 가능하게 장착된 웨이퍼 카메라; 및
    상기 웨이퍼 카메라의 상부면에 고정 장착된 열풍 분사 모듈;
    을 구비하고, 상기 열풍 분사 모듈은,
    공기 주입구를 통해 유입된 공기를 가열하여 배출시키는 히터;
    상기 히터를 구동시키는 히터용 전원;
    상기 히터의 공기 주입구로 공기를 주입하는 공기 주입 모듈;
    일면에 형성된 열풍 주입구 및 타면에 형성된 다수 개의 열풍 분사구들을 구비하여, 상기 히터로부터 배출된 열풍이 열풍 주입구로 유입되어 상기 열풍 분사구들을 통해 외부로 분사되는 열풍 챔버;
    상기 히터로부터 배출된 열풍을 상기 열풍 챔버로 제공하는 열풍 주입관;
    를 구비하여, 열풍을 이용하여 웨이퍼 프로버 내의 부품을 예열시키는 것을 특징으로 하는 웨이퍼 프로버.
  2. 제1항에 있어서, 상기 열풍 분사 모듈은
    온도를 측정하는 온도 센서;
    상기 온도 센서에 의해 측정된 온도에 따라 상기 히터용 전원의 구동을 제어하여, 열풍 분사 모듈의 주변의 온도를 조절하는 온도 컨트롤러;
    를 더 구비하는 것을 특징으로 하는 웨이퍼 프로버.
  3. 제1항에 있어서, 상기 열풍 챔버는 일면이 서로 맞닿도록 배치된 열풍 버퍼 챔버와 열풍 분사 챔버로 이루어지고,
    상기 열풍 버퍼 챔버는 일면에 열풍 주입구를 구비하여 열풍 주입구를 통해 히터의 열풍이 유입되는 것을 특징으로 하며,
    상기 열풍 버퍼 챔버와 상기 열풍 분사 챔버가 서로 맞닿는 면에는 다수 개의 관통구들이 형성되어, 열풍 버퍼 챔버내의 열풍이 상기 관통구를 통해 상기 열풍 분사 챔버로 제공되는 것을 특징으로 하며,
    상기 열풍 분사 챔버는 상기 관통구들이 형성된 면과 대향되는 면에 다수 개의 열풍 분사구들이 형성되어, 열풍 분사 챔버의 열풍이 열풍 분사구를 통해 외부로 분사되는 것을 특징으로 하는 웨이퍼 프로버.
  4. 제1항에 있어서, 상기 열풍 분사 모듈은, 상기 공기 주입 모듈로부터 히터로 주입되는 공기의 양을 조절하는 유량 조절 모듈을 더 구비하는 것을 특징으로 하는 웨이퍼 프로버.
  5. 제1항에 있어서, 상기 열풍 분사 모듈은, 상기 웨이퍼 카메라의 상부에 고정되는 상기 열풍 분사 모듈의 하부면에 열 전달을 차폐시키는 재질로 이루어진 열 차폐막을 더 구비하고,
    상기 열 차폐막은 상기 열풍 분사 모듈의 열이 상기 웨이퍼 카메라로 이동되는 것을 차단시키는 것을 특징으로 하는 웨이퍼 프로버.
  6. 제1항에 있어서, 상기 열풍 챔버의 다수 개의 열풍 분사구들이 형성된 면은 웨이퍼 프로버의 프로브 카드를 향하도록 배치된 것을 특징으로 하는 웨이퍼 프로버.
  7. 제2항에 있어서, 상기 온도 센서는 상기 열풍 챔버에 장착되어 열풍의 온도를 감지하는 것을 특징으로 하는 웨이퍼 프로버.
  8. 제1항에 있어서, 상기 히터는 파이프 형태로 이루어지고, 파이프의 내부로 공기가 주입되고, 파이프의 내부로 주입된 공기가 가열되어 배출되는 것을 특징으로하는 웨이퍼 프로버.
PCT/KR2019/001552 2018-03-05 2019-02-08 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버 WO2019172537A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0025642 2018-03-05
KR1020180025642A KR102012797B1 (ko) 2018-03-05 2018-03-05 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버

Publications (1)

Publication Number Publication Date
WO2019172537A1 true WO2019172537A1 (ko) 2019-09-12

Family

ID=67808139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001552 WO2019172537A1 (ko) 2018-03-05 2019-02-08 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버

Country Status (2)

Country Link
KR (1) KR102012797B1 (ko)
WO (1) WO2019172537A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379135A (zh) * 2020-07-01 2021-02-19 强一半导体(苏州)有限公司 探针卡载双进气道装置
TWI794102B (zh) * 2022-05-20 2023-02-21 欣銓科技股份有限公司 多段式預熱探針方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220146304A (ko) 2021-04-23 2022-11-01 삼성전자주식회사 전원변환부를 갖는 프로브 카드 및 이를 포함하는 테스트 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831990B1 (ko) * 2006-12-08 2008-05-26 (주) 쎄믹스 프로브 카드의 탐침 예열 장치 및 방법
JP2010087090A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 検査装置及び検査方法
KR20100056725A (ko) * 2008-11-20 2010-05-28 주식회사 쎄믹스 웨이퍼 프로브 스테이션
KR20100075124A (ko) * 2008-12-24 2010-07-02 주식회사 동부하이텍 히팅 시스템을 구비한 반도체 웨이퍼 테스트 장치 및 웨이퍼 테스트 방법
KR20180012972A (ko) * 2016-07-28 2018-02-07 세메스 주식회사 반도체 소자 검사 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227718B1 (ko) * 2011-04-18 2013-01-29 세크론 주식회사 프로브 스테이션

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831990B1 (ko) * 2006-12-08 2008-05-26 (주) 쎄믹스 프로브 카드의 탐침 예열 장치 및 방법
JP2010087090A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 検査装置及び検査方法
KR20100056725A (ko) * 2008-11-20 2010-05-28 주식회사 쎄믹스 웨이퍼 프로브 스테이션
KR20100075124A (ko) * 2008-12-24 2010-07-02 주식회사 동부하이텍 히팅 시스템을 구비한 반도체 웨이퍼 테스트 장치 및 웨이퍼 테스트 방법
KR20180012972A (ko) * 2016-07-28 2018-02-07 세메스 주식회사 반도체 소자 검사 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379135A (zh) * 2020-07-01 2021-02-19 强一半导体(苏州)有限公司 探针卡载双进气道装置
CN112379135B (zh) * 2020-07-01 2022-03-11 强一半导体(苏州)有限公司 探针卡载双进气道装置
TWI794102B (zh) * 2022-05-20 2023-02-21 欣銓科技股份有限公司 多段式預熱探針方法

Also Published As

Publication number Publication date
KR102012797B1 (ko) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2019172537A1 (ko) 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버
KR100299418B1 (ko) 기판열처리장치및방법
KR100691087B1 (ko) Lcd 검사 장치 및 촬상 소자의 검사 장치
CN1920585B (zh) 基板检查装置
US6097005A (en) Substrate processing apparatus and substrate processing method
US8692567B2 (en) Method for verifying a test substrate in a prober under defined thermal conditions
US7812627B2 (en) Test device
KR101561624B1 (ko) 전자소자 테스트를 위한 장치 및 방법
US6319322B1 (en) Substrate processing apparatus
WO2014113130A1 (en) Air impingement heater
TWI821780B (zh) 溫度控制系統、溫度控制方法以及具備該系統之影像感測器測試設備
EP2122377A1 (en) Testing integrated circuits on a wafer using a cartridge with pneumatic locking of the wafer on a probe card
WO2010071276A1 (en) Stage unit for a probe station and apparatus for testing a wafer including the same
US11149991B2 (en) Heating and cooling apparatus having moisture removal function for testing electrical characteristic of semiconductor element using probe system
US12007451B2 (en) Method and system for thermal control of devices in an electronics tester
WO2022225221A1 (ko) 기판처리장치, 온도측정방법 및 온도제어방법
WO2016085135A1 (ko) 전자부품 테스트용 핸들러
JP2705420B2 (ja) 低温ハンドラの温度制御方法
KR20220030617A (ko) 반도체 메모리 모듈 고온 테스트 장치
WO2010137793A1 (ko) 자기박막센서 제조를 위한 베이킹 장치 및 방법
KR20200034512A (ko) 열처리 장치
WO2024150942A1 (ko) 펠티어 소자를 이용하는 반도체 패키지 테스트 장치
CN218723919U (zh) 一种用于光学应变测试的液氮冷热温箱
JP4593815B2 (ja) 温度条件付与装置
WO2023090633A1 (ko) 슬러리 공급 장치 및 슬러리 공급 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763561

Country of ref document: EP

Kind code of ref document: A1