WO2022028319A1 - 一种生物基粗乙二醇的精制方法 - Google Patents

一种生物基粗乙二醇的精制方法 Download PDF

Info

Publication number
WO2022028319A1
WO2022028319A1 PCT/CN2021/109536 CN2021109536W WO2022028319A1 WO 2022028319 A1 WO2022028319 A1 WO 2022028319A1 CN 2021109536 W CN2021109536 W CN 2021109536W WO 2022028319 A1 WO2022028319 A1 WO 2022028319A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene glycol
weight
bio
butanediol
based crude
Prior art date
Application number
PCT/CN2021/109536
Other languages
English (en)
French (fr)
Inventor
袁一
Original Assignee
长春美禾科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春美禾科技发展有限公司 filed Critical 长春美禾科技发展有限公司
Priority to EP21852894.1A priority Critical patent/EP4194431A1/en
Priority to KR1020237007346A priority patent/KR20230044507A/ko
Priority to CA3188101A priority patent/CA3188101A1/en
Priority to MX2023001568A priority patent/MX2023001568A/es
Priority to JP2023506246A priority patent/JP2023537308A/ja
Priority to US18/040,551 priority patent/US20230295064A1/en
Priority to AU2021323108A priority patent/AU2021323108A1/en
Publication of WO2022028319A1 publication Critical patent/WO2022028319A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • C07C31/202Ethylene glycol

Definitions

  • the present invention relates to a bio-based crude ethylene glycol, in particular to a composition comprising butanediol, pentanediol, hexanediol and optionally
  • US4935102, US4966658, US5423955, US8906205 all describe the separation of ethylene glycol and butanediol using different entrainers.
  • the entrainer has an azeotrope with ethylene glycol.
  • the temperature of the azeotrope is significantly lower than the boiling point of ethylene glycol.
  • CN106946654A describes an adsorption bed equipped with a porous carbon adsorbent to adsorb impurities in biomass ethylene glycol to achieve the effect of refining ethylene glycol.
  • This technology only describes the improvement of the ultraviolet transmittance of ethylene glycol, but does not describe the ability to separate butanediol, the compound of the following molecular formula: Alcohol impurities such as pentanediol and hexanediol.
  • CN201010200038.5 describes a method for purifying ethylene glycol using zeolite and silica-alumina as adsorbents. However, this method only describes that the adsorbent can effectively remove 1,2-butanediol, and does not indicate that the adsorbent can improve the UV transmittance or other hydroxyl impurities.
  • CN201110047173.5 describes a method for improving the UV transmittance of ethylene glycol by passing through a fixed bed containing an adsorbent, contacting the adsorbent, and substances affecting the ultraviolet transmittance of ethylene glycol staying in the solid bed .
  • this method only describes the improvement of the UV transmittance of the adsorption bed, and does not describe its role in adsorbing butanediol, pentanediol, hexanediol and other alcoholic hydroxyl impurities.
  • the invention provides a method for purifying bio-based crude ethylene glycol, so as to separate impurities with a boiling point close to ethylene glycol and containing hydroxyl groups in the bio-based crude ethylene glycol with high yield and low cost, as well as impurities affecting the ultraviolet ray of ethylene glycol.
  • the transmittance of impurities such as trace acids, ethers, aldehydes, ketones, compounds containing double bonds and/or alcohols, thereby improving the purity and UV transmittance of ethylene glycol at the same time.
  • the method for purifying bio-based crude ethylene glycol of the present invention comprises using bio-based crude ethylene glycol as a raw material, and diluting with water to 1-95% by weight, preferably 20-90% by weight, more preferably 40-85% by weight of ethylene glycol Alcohol concentration, the diluted ethylene glycol aqueous solution is at a temperature of 0-100°C, preferably 10-80°C, particularly preferably 10-50°C, and a volume space velocity of 0.01-20BV/hr, preferably 0.01-10BV/hr, under the conditions, Purified ethylene glycol aqueous solution is obtained after continuous adsorption treatment through an adsorption bed filled with one or more, preferably one or two, macroporous adsorption resins and optional ion exchange resins, and then dehydrated to obtain ethylene glycol .
  • the purity and UV transmittance of the dehydrated ethylene glycol can reach the industry's standard of high-quality polyester-grade ethylene glycol.
  • the high-quality polyester grade ethylene glycol standard here refers to the purity of more than 99.9%, and the UV transmittance at 220nm, 275nm and 350nm wavelengths of more than 75%, 95% and 99% respectively.
  • the resin can remove impurities such as trace acids, ethers, aldehydes, ketones, compounds containing double bonds and/or alcohols that affect the UV transmittance, as well as impurities that affect the purity of ethylene glycol, have a boiling point close to ethylene glycol and contain hydroxyl groups. Impurities such as butanediol, pentanediol, hexanediol and optional The alcohol impurities of ethylene glycol are separated from ethylene glycol, and the effects of improving the ultraviolet transmittance of ethylene glycol and improving the purity of ethylene glycol are realized with high yield and low cost.
  • impurities such as trace acids, ethers, aldehydes, ketones, compounds containing double bonds and/or alcohols that affect the UV transmittance, as well as impurities that affect the purity of ethylene glycol, have a boiling point close to ethylene glycol and contain hydroxyl groups. Impurities such as butanediol, pentaned
  • the bio-based crude ethylene glycol is pretreated by an ultraviolet lamp process, for example, the bio-based crude ethylene glycol is under ultraviolet light with a wavelength of not less than 100 nm, preferably a wavelength of not less than 180 nm, and more preferably 180-350 nm. irradiate.
  • the bio-based crude ethylene glycol raw materials there are many impurities that affect the UV transmittance, resulting in a low UV transmittance, which in turn leads to a shortened regeneration cycle of the resin, increasing the regeneration cost and resin cost.
  • Controllable ultraviolet light can convert impurities of compounds containing double bonds that absorb suitable ultraviolet light (such as 180-350nm ultraviolet light) into compounds that do not contain double bonds without decomposing ethylene glycol molecules, thereby To achieve the effect of pre-improving the UV transmittance of ethylene glycol.
  • the UV lamp process pretreatment can be carried out as follows: using bio-based crude ethylene glycol as raw material, at a temperature of 0-170°C, preferably 10-120°C, more preferably 10-50°C, and the residence time is greater than 0-2 hours, preferably 0.1- Under the condition of 1 hour, pass into a container with an ultraviolet lamp with a wavelength of not less than 100 nm, preferably a wavelength of not less than 180 nm, more preferably 180-350 nm.
  • the ultraviolet lamps are preferably low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, LED lamps, xenon lamps, and metal chloride lamps.
  • the UV transmittance of the discharged material can be entered into the resin adsorption process for further treatment after preliminary improvement.
  • the macroporous adsorption resin is preferably a macroporous adsorption resin whose skeleton is styrene and/or divinylbenzene, more preferably a macroporous adsorption resin whose skeleton is styrene and/or divinylbenzene with a specific surface area greater than 800 m 2 /g and whose skeleton is styrene and/or divinylbenzene.
  • Pore adsorption resin is preferably a macroporous adsorption resin whose skeleton is styrene and/or divinylbenzene.
  • the ion exchange resin may be a weakly basic anion exchange resin, preferably a weakly basic anion exchange resin containing primary, secondary and/or tertiary amino functional groups on the surface.
  • the bio-based crude ethylene glycol refers to the first generation biomass that is made of biomass (here, biomass preferably refers to edible first-generation biomass including corn, sugar cane, etc., and agricultural and forestry wastes including straw, wood, bagasse, etc.) ethylene glycol produced from non-food second-generation biomass), which in addition to ethylene glycol includes but not limited to butanediol, pentanediol and hexanediol.
  • the bio-based crude ethylene glycol further comprises a compound having the following formula:
  • the butanediol is preferably 1,2-butanediol, 2,3-butanediol and 1,4-butanediol.
  • Said pentanediol is preferably 1,2-pentanediol.
  • Said hexanediol is preferably 1,2-hexanediol. More preferably, described bio-based crude ethylene glycol includes but is not limited to:
  • butanediol preferably 1,2-butanediol, 2,3-butanediol and/ or 1,4-butanediol; except endpoint 0
  • hexanediol preferably 1,2-hexanediol; except endpoint 0
  • bio-based crude ethylene glycol also optionally comprises:
  • bio-based crude ethylene glycol contains characteristic hydrophilic hydroxyl-containing impurities, the dilution with water aids in the adsorption of these impurities.
  • the water may be desalinated water, for example.
  • Said dehydration can be carried out, for example, by rectification.
  • the impurities such as trace acids, ethers, aldehydes, ketones, compounds containing double bonds and/or alcohols that affect the UV transmittance of ethylene glycol can absorb UV light in trace amounts, these impurities cannot be absorbed in the gas phase. Chromatography, liquid chromatography and other instruments or chemical methods for detection. Therefore, only the UV transmittance can be used to represent its content in the raw material.
  • at least one of the transmittances of bio-based crude ethylene glycol raw materials at wavelengths of 220 nm, 275 nm and 350 nm does not meet the standard of high-quality polyester grade ethylene glycol due to the existence of the above impurities.
  • Its transmittance can be expressed as follows: 220nm ultraviolet transmittance is less than 75%, preferably less than 40%, more preferably less than 10%; 275nm ultraviolet transmittance is less than 95%, preferably less than 70%, more preferably less than 30%; and /or 350nm UV transmittance is less than 99%, preferably less than 97%, more preferably less than 96%.
  • the purity of the ethylene glycol can be increased to more than 99.9% under the condition of high yield of the ethylene glycol recovery rate of more than 99.9%, and the UV transmittance at wavelengths of 220 nm, 275 nm and 350 nm can be improved.
  • the pass rate has been increased to above 75%, 95%, and 99%, respectively.
  • the cost of the present invention is significantly lower compared to traditional pure rectification methods.
  • FIG. 1 is a flow chart of Embodiment 1.
  • FIG. 1 is a flow chart of Embodiment 1.
  • Accompanying drawing 2 is the change diagram of ultraviolet transmittance of the ethylene glycol product of Example 1 (accompanying drawing 2a) and the changing diagram of ethylene glycol content (accompanying drawing 2b).
  • FIG. 3 is a flow chart of Embodiment 2.
  • Accompanying drawing 4 is the change diagram of ultraviolet transmittance of the ethylene glycol product of Example 2 (accompanying drawing 4a) and the changing diagram of ethylene glycol content (accompanying drawing 4b).
  • FIG. 5 is a flowchart of Embodiment 3.
  • FIG. 5 is a flowchart of Embodiment 3.
  • Accompanying drawing 6 is the change diagram of ultraviolet transmittance of the ethylene glycol product of Example 3 (accompanying drawing 6a) and the changing diagram of ethylene glycol content (accompanying drawing 6b).
  • FIG. 7 is a flow chart of Comparative Example 1.
  • the resin column was filled with 200 ml of XA-1G macroporous adsorption resin purchased from Xi'an Lanxiao Science and Technology New Materials Co., Ltd. as the adsorbent. Its skeleton was styrene - divinylbenzene and its specific surface area was 1200 m g.
  • the crude ethylene glycol product obtained from biomass hydrogenation and preliminary delight and weight removal by rectification is used as the raw material.
  • Use the analysis method in GB/T 4649-2008 to analyze the raw materials, and the contents of each component are as follows: the content of ethylene glycol is 99.700% by weight, the content of 1,2-pentanediol is 0.020% by weight, and the content of 1,2-hexanediol
  • the alcohol content was 0.250% by weight
  • the 1,2-butanediol content was 0.010% by weight
  • the content is 0.010% by weight
  • the content of other components is 0.010% by weight.
  • the UV transmittance of the raw material is 13.5% at 220 nm, 59.0% at 275 nm, and 96.8% at 350 nm.
  • the crude ethylene glycol raw material is mixed with the desalinated water in a mass ratio of 3:1 to obtain a crude ethylene glycol aqueous solution.
  • the resin bed is continuously fed, and the resin bed is dehydrated using a rectifying tower.
  • the results of UV transmittance and ethylene glycol purity of the ethylene glycol product after adsorption and dehydration treatment are shown in Figure 2a and Figure 2b, respectively.
  • Example 1 Using the crude ethylene glycol product obtained by hydrogenation of biomass and preliminary delighting and deweighting through rectification in Example 1 as the raw material, the traditional rectification method shown in FIG. 7 was used for separation.
  • the total theoretical plate of the rectification column is 90, the reflux ratio is 15:1, and the operating pressure is 10 kPa (absolute).
  • Feed from the 40th theoretical plate was fed into the rectification column at a flow rate of 200 g/h.
  • Ethylene glycol product was withdrawn from the top of the rectification column at a flow rate of 195 g/hr.
  • Ethylene glycol, 1,2-butanediol, 1,2-pentanediol, 1,2-hexanediol and The compositions are: 99.920%, 0.010%, 0.020%, 0.040%, 0.010%, respectively.
  • the ultraviolet transmittance was 20.8% at a wavelength of 220 nm, 63.2% at a wavelength of 275 nm, and 98.5% at a wavelength of 350 nm.
  • the overall ethylene glycol rectification yield was 97.7%.
  • the experimental results show that: the traditional rectification separation can effectively separate 1,2-hexanediol in ethylene glycol to achieve a purity of more than 99.90% ethylene glycol, but the yield of ethylene glycol is only 97.7%, and the high The reflux ratio leads to large energy consumption of steam and cannot effectively improve the ultraviolet transmittance; and the method of the present invention can increase the purity of the ethylene glycol to 99.90% under the condition of high yield and low cost of ethylene glycol Above, and the ultraviolet transmittance of the obtained ethylene glycol at wavelengths of 220 nm, 275 nm, and 350 nm is improved to more than 75%, 95%, and 99%, respectively.
  • the crude ethylene glycol product obtained by hydrogenating biomass and preliminarily delighting and deweighting in Example 1 was used as the raw material, and the adsorbent of the same type and volume was loaded into the resin column.
  • the crude ethylene glycol raw material is not mixed with water, and is directly fed into the resin bed under the conditions of a temperature of 30°C and a volumetric space velocity of 0.5BV/hour.
  • the results of UV transmittance and ethylene glycol purity of the ethylene glycol product after adsorption treatment are shown in Figure 8a and Figure 8b, respectively.
  • a low-pressure mercury UV lamp with a wavelength of 254 nm and a power of 23 watts was inserted into a UV lamp container with a volume of 30 ml.
  • resin column A 750 ml of D303 weak base anion exchange resin purchased from Xi'an Lanxiao Science and Technology New Materials Co., Ltd. was filled as adsorbent, and its skeleton was styrene-divinylbenzene with primary amino functional groups;
  • Column B was filled with 200 ml of L493 macroporous adsorption resin purchased from Dow Chemical Company as an adsorbent, the skeleton of which was macroporous styrene polymer with a specific surface area of 1100 m 2 /g.
  • the crude ethylene glycol product obtained by hydrogenating biomass and preliminary delighting and deweighting through rectification is used as raw material.
  • the alcohol content was 0.146% by weight
  • the 1,2-butanediol content was 0.033% by weight
  • the content is 0.010% by weight
  • the content of 1,4-butanediol is 0.002% by weight
  • the content of diethylene glycol is 0.010% by weight
  • the content of other components is 0.010% by weight
  • the ultraviolet transmittance of the raw material is 1.1% at 220nm , 25.0% at 275nm and 95.0% at 350nm.
  • the crude ethylene glycol raw material is continuously passed into the UV lamp container at a flow rate of 100 ml/hour and a temperature of 20°C.
  • the output of the UV lamp vessel is mixed with the desalinated water in a mass ratio of 2:1 to obtain a crude ethylene glycol aqueous solution, which is continuously fed into the resin bed A under the conditions of a temperature of 20°C and a volumetric space velocity of 0.2BV/hour; the resin bed Under the condition that other conditions remain unchanged, the output material of A is continuously passed into the resin bed B at a volume space velocity of 0.75BV/hour, and the output material of the resin bed B is dehydrated using a rectifying tower.
  • the results of UV transmittance and ethylene glycol purity of the ethylene glycol product after UV lamp treatment, adsorption and dehydration treatment are shown in Figure 4a and Figure 4b, respectively.
  • the crude ethylene glycol product obtained by hydrogenating biomass and preliminary delighting and deweighting through rectification is used as raw material.
  • Use the analysis method in GB/T 4649-2008 to analyze the raw materials, and the contents of each component are as follows: the content of ethylene glycol is 98.81% by weight, the content of 1,2-pentanediol is 0.10% by weight, and the content of 1,2-hexanediol
  • the alcohol content was 1.05% by weight, the 1,2-butanediol content was 0.02% by weight, The content is 0.01% by weight, and the content of other components is 0.01% by weight;
  • the ultraviolet transmittance of the raw material is 6.6% at 220nm, 63.0% at 275nm, and 95.0% at 350nm.
  • the crude ethylene glycol raw material was mixed with the desalted water in a mass ratio of 3:1 to obtain a crude ethylene glycol aqueous solution. Passing into resin bed A; under the condition that other conditions remain unchanged, the discharge of resin bed A is continuously passed into resin bed B at a volume space velocity of 0.2BV/hour, and the discharge of resin bed B is dehydrated by a rectifying tower.
  • the results of UV transmittance and ethylene glycol purity after adsorption treatment are shown in Figure 6a and Figure 6b, respectively.
  • the present invention can remove impurities such as trace acids, ethers, aldehydes, ketones, compounds containing double bonds and/or alcohols that affect the UV transmittance, as well as impurities that affect the purity of ethylene glycol and ethylene glycol. Impurities with close boiling points and hydroxyl groups are well separated from ethylene glycol, and the effects of improving the ultraviolet transmittance of ethylene glycol and improving the purity of ethylene glycol are achieved with high yield and low cost.
  • impurities such as trace acids, ethers, aldehydes, ketones, compounds containing double bonds and/or alcohols that affect the UV transmittance
  • impurities with close boiling points and hydroxyl groups are well separated from ethylene glycol, and the effects of improving the ultraviolet transmittance of ethylene glycol and improving the purity of ethylene glycol are achieved with high yield and low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Saccharide Compounds (AREA)

Abstract

精制生物基粗乙二醇的方法,包括以生物基粗乙二醇为原料,经过水稀释至1-95重量%的乙二醇浓度,稀释后的乙二醇水溶液在温度0-100℃,体积空速为0.01-20BV/hr的条件下,连续通过装填一种或多种的大孔吸附树脂和任选的离子交换树脂的吸附床吸附处理后得到纯化后的乙二醇水溶液,然后脱水后获得乙二醇。

Description

一种生物基粗乙二醇的精制方法 技术领域
本发明涉及一种生物基粗乙二醇,特别是涉及包含丁二醇、戊二醇、己二醇和任选的
Figure PCTCN2021109536-appb-000001
等与乙二醇沸点接近的羟基杂质以及影响乙二醇紫外透过率的微量酸、醚、醛、酮、含有双键的化合物和/或醇等杂质的生物基粗乙二醇的精制方法。
背景技术
近年来,由于油价的不确定性和人们对可持续性发展的重视,以生物质为原料生产乙二醇的技术发展迅速。然而由于合成路线的不同导致生物路线生产乙二醇过程产生了不同于石油路线生产的乙二醇或者煤制乙二醇的含羟基的副产物,以及影响乙二醇紫外透过率的微量甚至低于气相色谱检测限的酸、醚、醛、酮和/或醇等的杂质。传统的液相化合物的提纯手段为利用物质沸点不同进行分离的精馏工艺。然而,由于这些杂质与乙二醇沸点接近,以及影响乙二醇紫外透过率的微量甚至低于气相色谱检测限的酸、醚、醛、酮和/或醇等的杂质与乙二醇的物理性质比较相似,沸点均非常接近,采用直接精馏的方法将乙二醇与这些醇类杂质的分离会导致乙二醇蒸馏收率低,能耗高,而且通过精馏得到的乙二醇由于还含有部分微量的杂质,乙二醇的紫外透过率无法直接达到纤维级和瓶级聚酯的要求。
US4935102,US4966658,US5423955,US8906205均描述了使用不同的共沸剂分离乙二醇与丁二醇的技术。共沸剂与乙二醇有共沸点。一般共沸点的温度均要明显低于乙二醇的沸点。这样乙二醇和共沸剂的共沸物的沸点与丁二醇等杂质的沸点产生了明显的温度差,通过精馏的方式可以经济地达到乙二醇与丁二醇的分离。
由生物路线生产乙二醇的工艺会产生除丁二醇外的其他诸如戊二醇、己二醇、任选的
Figure PCTCN2021109536-appb-000002
等与乙二醇沸点非常接近的醇类杂质 以及影响乙二醇紫外透过率的微量甚至低于气相色谱检测限的酸、醚、醛、酮和/或醇等杂质。在以上专利申请中并没有说明其中的技术可以有效分离这些杂质。
CN106946654A描述了一种使用装有多孔碳吸附剂的吸附床吸附生物质乙二醇中的杂质以达到精制乙二醇的效果。此技术仅描述了提升乙二醇的紫外透过率,未说明能够分离丁二醇,如下分子式的化合物:
Figure PCTCN2021109536-appb-000003
戊二醇、己二醇等醇类杂质。
CN201010200038.5描述了一种试用沸石和硅铝作为吸附剂精制乙二醇的方法。然而此方法仅描述了吸附剂可以有效脱除1,2-丁二醇,并未说明吸附剂可以提升紫外透过率或其他羟基杂质。
CN201110047173.5描述了一种将通过装有吸附剂的固定床层,与吸附剂接触,影响乙二醇紫外透光率的物质停留在固体床层,以提高乙二醇紫外透过率的方法。然而,此方法仅描述了吸附床层对紫外透过率的提升,并未描述其吸附丁二醇、戊二醇、己二醇等醇类羟基杂质的作用。
传统用于石油基乙二醇或煤制乙二醇工艺中的吸附剂直接吸附的工艺无法有效分离生物基乙二醇中的特殊杂质。
发明内容
本发明提供了一种精制生物基粗乙二醇的方法,以便以高收率、低成本地分离生物基粗乙二醇中与乙二醇沸点接近且含有羟基的杂质以及影响乙二醇紫外透过率的微量酸、醚、醛、酮、含有双键的化合物和/或醇等杂质,从而同时提升乙二醇的纯度和紫外透过率。
本发明的精制生物基粗乙二醇的方法包括以生物基粗乙二醇为原料,经过水稀释至1-95重量%,优选20-90重量%,更优选40-85重量%的乙二醇浓度,稀释后的乙二醇水溶液在温度0-100℃,优选10-80℃,特别优选10-50℃,体积空速为0.01-20BV/hr,优选0.01-10BV/hr的条件下,连续通过装填一种或多种的,优选一种或两种的大孔吸附 树脂和任选的离子交换树脂的吸附床吸附处理后得到纯化后的乙二醇水溶液,然后脱水后获得乙二醇。该脱水后乙二醇的纯度和紫外透过率均可以达到行业中的优等品聚酯级乙二醇标准。这里的优等品聚酯级乙二醇标准指的是纯度达到99.9%以上,以及在220nm、275nm和350nm波长下的紫外透过率分别达到75%、95%和99%以上。
所述树脂可以将影响紫外透过率的微量酸、醚、醛、酮、含有双键的化合物和/或醇等杂质,以及影响乙二醇纯度的、与乙二醇沸点接近且含有羟基的杂质,例如丁二醇、戊二醇、己二醇和任选的
Figure PCTCN2021109536-appb-000004
的醇类杂质,从乙二醇中分离,以高收率、低成本地实现了提升乙二醇紫外透过率和提升乙二醇纯度的效果。
任选地,所述的生物基粗乙二醇经过紫外灯工艺预处理,例如生物基粗乙二醇在波长不低于100nm,优选波长不低于180nm,更优选180-350nm的紫外光下照射。在部分生物基粗乙二醇原料中,影响紫外透过率的杂质较多导致其紫外透过率较低,进而导致树脂的再生周期缩短,增加了再生成本和树脂成本。因此,为了延长树脂的再生周期,降低树脂运行成本,可以选择在树脂吸附工艺前增加可控的紫外灯工艺以提升乙二醇的紫外透过率。可控的紫外光可以在不将乙二醇分子分解的条件下,将吸收合适的紫外光(例如180-350nm紫外光)的含有双键的化合物的杂质转化为不含有双键的化合物,从而达到预先提升乙二醇紫外透过率的效果。
紫外灯工艺预处理可以如下进行:以生物基粗乙二醇为原料,在温度0-170℃,优选10-120℃,更优选10-50℃,停留时间大于0-2小时,优选0.1-1小时的条件下,通入带有波长不低于100nm,优选波长不低于180nm,更优选180-350nm的紫外灯的容器。所述的紫外灯优选低压汞灯、中压汞灯、高压汞灯、LED灯、氙气灯、金属氯化物灯。出料的紫外透过率经过初步提升后可进入树脂吸附工艺进行进一步处理。
所述的大孔吸附树脂例如优选骨架为苯乙烯和/或二乙烯基苯的大孔吸附树脂,更优选比表面积大于800m 2/g的、骨架为苯乙烯和/或二 乙烯基苯的大孔吸附树脂。
所述的离子交换树脂可以是弱碱性阴离子交换树脂,优选表面含有伯胺基、仲胺基和/或叔胺基官能团的弱碱性阴离子交换树脂。
所述的生物基粗乙二醇是指由生物质(这里,生物质优选是指包括玉米、甘蔗等可以食用的第一代生物质以及包括秸秆、木材、蔗渣等在内的农林业废弃物的非粮食的第二代生物质)制得的乙二醇,其除了乙二醇外包含但不限于丁二醇,戊二醇和己二醇。任选地,该生物基粗乙二醇还包含具有以下分子式的化合物:
Figure PCTCN2021109536-appb-000005
所述的丁二醇优选是1,2-丁二醇,2,3-丁二醇,1,4-丁二醇。所述的戊二醇优选是1,2-戊二醇。所述的己二醇优选是1,2-己二醇。更优选地,所述的生物基粗乙二醇包含但不限于:
88-100重量%乙二醇,优选95-100重量%乙二醇,更有选98-100重量%乙二醇(端点100重量%除外),
0-5重量%,优选0-1重量%,更优选0-0.5重量%,特别优选0-0.1重量%的丁二醇(优选1,2-丁二醇,2,3-丁二醇和/或1,4-丁二醇;端点0除外),
0-5重量%,优选0-1重量%,更优选0-0.5重量%,特别优选0-0.1重量%的戊二醇(优选1,2-戊二醇;端点0除外),
0-5重量%,优选0-2重量%,更优选0-1.5重量%的己二醇(优选1,2-己二醇;端点0除外),和
任选的0-5重量%,优选0-1重量%,更优选0-0.5重量%,特别优选0-0.1重量%的
Figure PCTCN2021109536-appb-000006
所述的生物基粗乙二醇还任选地包含:
0-5重量%,优选0-1重量%,更优选0-0.1重量%的1,2-丙二醇,和
0-5重量%,优选0-1重量%,更优选0-0.1重量%的二乙二醇。
由于生物基粗乙二醇含有特有的亲水的含羟基杂质,因此所述的水的稀释有助于所述杂质的吸附。
所述的水例如可以是脱盐水。
所述的脱水例如可通过精馏进行。
由于影响乙二醇紫外透过率的微量酸、醚、醛、酮、含有双键的化合物和/或醇等杂质在痕量的含量下即可对紫外光进行吸收,导致这些杂质无法在气相色谱、液相色谱等仪器或化学法进行检测。因此仅可以使用紫外透过率代表其在原料中的含量。在本申请中,生物基粗乙二醇原料的透过率由于上述杂质的存在其在220nm、275nm和350nm波长下的紫外透过率至少有一项不符合优等品聚酯级乙二醇标准,其透过率例如可以表示如下:220nm紫外透过率小于75%,优选小于40%,更优选小于10%;275nm紫外透过率小于95%,优选小于70%,更优选小于30%;和/或350nm紫外透过率小于99%,优选小于97%,更有选小于96%。
根据本发明的方法,可以在乙二醇回收率为99.9%以上的高收率条件下将所述乙二醇的纯度提高至99.9%以上,并且,在220nm、275nm、350nm波长下的紫外透过率分别提升至75%、95%、99%以上。而且,与传统的纯精馏方法相比,本发明的成本明显是更低的。
附图说明
附图1是实施例1的流程图。
附图2是实施例1的乙二醇产品的紫外透过率变化图(附图2a)及乙二醇含量的变化图(附图2b)。
附图3是实施例2的流程图。
附图4是实施例2的乙二醇产品的紫外透过率变化图(附图4a)及乙二醇含量的变化图(附图4b)。
附图5是实施例3的流程图。
附图6是实施例3的乙二醇产品的紫外透过率变化图(附图6a)及乙二醇含量的变化图(附图6b)。
附图7是对比例1的流程图。
附图8是对比例2的乙二醇产品的紫外透过率变化图(附图8a)及乙二醇含量的变化图(附图8b)。
具体实施方式
实施例
本发明通过下面的实施例进行进一步说明,但本发明并不限于下面的实施例。
实施例1
在树脂柱中填装200毫升从西安蓝晓科技新材料股份有限公司购买的XA-1G大孔吸附树脂作为吸附剂,其骨架为苯乙烯-二乙稀基苯、其比表面积为1200m 2/g。
以生物质加氢并经过精馏初步脱轻脱重制得的粗乙二醇产品作为原料。使用GB/T 4649-2008中的分析方法进行对原料分析,各组分含量如下:乙二醇含量为99.700重量%,1,2-戊二醇含量为0.020重量%,1,2-己二醇含量为0.250重量%,1,2-丁二醇含量为0.010重量%,
Figure PCTCN2021109536-appb-000007
含量为0.010重量%,其他成分含量为0.010重量%。该原料的紫外透过率在220nm处为13.5%,275nm处为59.0%,350nm处为96.8%。
如图1所示的工艺流程,将该粗乙二醇原料与脱盐水按照3∶1的质量比例混合后获得粗乙二醇水溶液,在温度30℃,体积空速0.5BV/小时的条件下连续通入树脂床,并将树脂床出料使用精馏塔脱水。经过吸附和脱水处理后的乙二醇产品的紫外透光率和乙二醇纯度结果分别如附图2a及附图2b所示。
经过14小时后,275nm处紫外透光率降至优等品指标以下,吸附剂失效。总共处理1524.6克粗乙二醇水溶液,其中含有乙二醇1140.0克;最终获得的合格乙二醇产品为1139.7克。因此,精制后的合格乙二醇收率为99.97%。
对比例1
以实施例1中的以生物质加氢并经过精馏初步脱轻脱重制得的粗乙二醇产品作为原料,采用图7所示的传统精馏方法进行分离。精馏 塔的总理论板为90块,回流比为15∶1,操作压力为10kPa(绝对)。原料从第40块理论板以200克/小时的流速进入精馏塔。乙二醇产品从精馏塔塔顶以195克/小时的流速采出。乙二醇产品中以重量百分比计的乙二醇、1,2-丁二醇、1,2-戊二醇、1,2-己二醇和
Figure PCTCN2021109536-appb-000008
的组成分别为:99.920%、0.010%、0.020%、0.040%、0.010%。紫外透过率在220nm波长下为20.8%、275nm波长下为63.2%、350nm波长下为98.5%。总的乙二醇精馏收率为97.7%。
实验结果表明:传统的精馏分离可以有效分离乙二醇中的1,2-己二醇以达到99.90%以上的乙二醇纯度,然而其乙二醇的收率仅为97.7%,而且高回流比导致蒸汽能耗消耗大,并且无法有效提升紫外透过率;而本发明的方法可以在乙二醇的高收率且低成本的条件下将所述乙二醇的纯度提高至99.90%以上,并且所得乙二醇在220nm、275nm、350nm波长下的紫外透过率分别提升至75%、95%、99%以上。
对比例2
以实施例1中的以生物质加氢并经过精馏初步脱轻脱重制得的粗乙二醇产品作为原料,以及装填同样种类和体积的吸附剂至树脂柱。
如图1所示的工艺流程,将该粗乙二醇原料不与水混合,直接在温度30℃,体积空速0.5BV/小时的条件下连续通入树脂床。经过吸附处理后的乙二醇产品的紫外透光率和乙二醇纯度结果分别如附图8a及附图8b所示。
实验结果表明:对比例2中尽管使用了与实施例1同样的原料、吸附剂和操作条件,但是由于没有将生物基粗乙二醇与水混合,该生物基粗乙二醇中的特殊杂质无法被吸附剂有效吸附,出料中的乙二醇纯度和紫外透过率没有提升至合格标准。
实施例2
在容积为30毫升的紫外灯容器中插入波长为254nm、功率为23瓦的低压汞紫外灯。在树脂柱A中装填750毫升从西安蓝晓科技新材料股份有限公司购买的D303弱碱阴离子交换树脂作为吸附剂,其骨架为苯乙烯-二乙烯基苯并带有伯胺基官能团;在树脂柱B中装填200毫 升从陶氏化学公司购买的L493大孔吸附树脂作为吸附剂,其骨架为大孔苯乙烯聚合物、比表面积为1100m 2/g。
将生物质加氢并经过精馏初步脱轻脱重制得的粗乙二醇产品作为原料。使用GB/T 4649-2008中的分析方法进行对原料分析,各组分含量如下:乙二醇含量为99.753重量%,1,2-戊二醇含量为0.036重量%,1,2-己二醇含量为0.146重量%,1,2-丁二醇含量为0.033重量%,
Figure PCTCN2021109536-appb-000009
含量为0.010重量%,1,4-丁二醇含量为0.002重量%,二乙二醇含量为0.010重量%,其他成分含量为0.010重量%;该原料的紫外透过率在220nm处为1.1%,275nm处为25.0%,350nm处为95.0%。
如图3所示的工艺流程,将该粗乙二醇原料在100毫升/小时的流速,温度20℃的条件下连续通入紫外灯容器。紫外灯容器的出料与脱盐水按照2∶1的质量比例混合后获得粗乙二醇水溶液,在温度20℃,体积空速0.2BV/小时的条件下,连续通入树脂床A;树脂床A的出料在其他条件不变的情况下以0.75BV/小时的体积空速连续通入树脂床B,并将树脂床B的出料使用精馏塔脱水。经过紫外灯处理、吸附和脱水处理后的乙二醇产品紫外透光率和乙二醇纯度结果分别如附图4a及附图4b所示。
经过9.3小时后,275nm处紫外透光率降至优等品指标以下,吸附剂失效。总共处理1038.8克粗乙二醇,其中含有乙二醇1036.2克;最终获得的合格乙二醇产品为1036.0克。因此,精制后的乙二醇收率为99.98%。
实施例3
在树脂柱A中装填40毫升从西安蓝晓科技新材料股份有限公司购买的D303弱碱阴离子交换树脂作为吸附剂,其骨架为苯乙烯-二乙烯基苯并带有伯胺基官能团;在树脂柱B中装填200毫升从西安蓝晓科技新材料股份有限公司购买的XA-1G大孔吸附树脂作为吸附剂,其骨架为苯乙烯-二乙稀基苯、其比表面积为1200m 2/g。
将生物质加氢并经过精馏初步脱轻脱重制得的粗乙二醇产品作为 原料。使用GB/T 4649-2008中的分析方法进行对原料分析,各组分含量如下:乙二醇含量为98.81重量%,1,2-戊二醇含量为0.10重量%,1,2-己二醇含量为1.05重量%,1,2-丁二醇含量为0.02重量%,
Figure PCTCN2021109536-appb-000010
含量为0.01重量%,其他成分含量为0.01重量%;该原料的紫外透过率在220nm处为6.6%,275nm处为63.0%,350nm处为95.0%。
如附图5所示,将该粗乙二醇原料与脱盐水按照3∶1的质量比例混合后获得粗乙二醇水溶液,在温度30℃,体积空速1.0BV/小时的条件下,连续通入树脂床A;树脂床A的出料在其他条件不变的情况下以0.2BV/小时的体积空速连续通入树脂床B,并将树脂床B的出料使用精馏塔脱水。经过吸附处理后的紫外透光率和乙二醇纯度结果分别如附图6a及附图6b所示。
经过5小时后,纯度降至优等品指标以下,吸附剂失效。总共处理217.8克粗乙二醇水溶液,其中含有乙二醇161.41克;最终获得的合格乙二醇产品为161.38克。因此,精制后的乙二醇收率为99.98%。
从实施例可以看出,本发明可以将影响紫外透过率的微量酸、醚、醛、酮、含有双键的化合物和/或醇等杂质,以及影响乙二醇纯度的、与乙二醇沸点接近且含有羟基的杂质从乙二醇中很好地分离,以高收率、低成本实现了提升乙二醇紫外透过率和提升乙二醇纯度的效果。

Claims (10)

  1. 精制生物基粗乙二醇的方法,包括以生物基粗乙二醇为原料,经过水稀释至1-95重量%,优选20-90重量%,更优选40-85重量%的乙二醇浓度,稀释后的乙二醇水溶液在温度0-100℃,优选10-80℃,特别优选10-50℃,体积空速为0.01-20BV/hr,优选0.01-10BV/hr的条件下,连续通过装填一种或多种的,优选一种或两种的大孔吸附树脂和任选的离子交换树脂的吸附床吸附处理后得到纯化后的乙二醇水溶液,然后脱水后获得乙二醇。
  2. 根据权利要求1的方法,其中所述的生物基粗乙二醇经过紫外灯工艺预处理,例如生物基粗乙二醇在波长不低于100nm,优选波长不低于180nm,更优选180-350nm的紫外光下照射。
  3. 根据权利要求2的方法,其中所述紫外灯工艺预处理如下进行:以生物基粗乙二醇为原料,在温度0-170℃,优选10-120℃,更优选10-50℃,停留时间大于0-2小时,优选0.1-1小时的条件下,通入带有波长不低于100nm,优选波长不低于180nm,更优选180-350nm的紫外灯的容器。
  4. 根据权利要求1-3任一项的方法,其中所述的大孔吸附树脂是骨架为苯乙烯和/或二乙烯基苯的大孔吸附树脂,更优选比表面积大于800m 2/g的、骨架为苯乙烯和/或二乙烯基苯的大孔吸附树脂。
  5. 根据权利要求1-4任一项的方法,其中所述的离子交换树脂是弱碱性阴离子交换树脂,优选表面含有伯胺基、仲胺基和/或叔胺基官能团的弱碱性阴离子交换树脂。
  6. 根据权利要求1-5任一项的方法,其中所述的生物基粗乙二醇是指由生物质制得的乙二醇,其除了乙二醇外包含丁二醇,戊二醇和己二醇,并且任选地,该生物基粗乙二醇还包含具有以下分子式的化合物:
    Figure PCTCN2021109536-appb-100001
    其中所述的丁二醇优选是1,2-丁二醇,2,3-丁二醇,1,4-丁二醇,所述的戊二醇优选是1,2-戊二醇,所述的己二醇优选是1,2-己二醇。
  7. 根据权利要求1-6任一项的方法,其中所述的生物基粗乙二醇包含:
    88-100重量%乙二醇,优选95-100重量%乙二醇,更有选98-100重量%乙二醇(端点100重量%除外),
    0-5重量%,优选0-1重量%,更优选0-0.5重量%,特别优选0-0.1重量%的丁二醇(优选1,2-丁二醇,2,3-丁二醇和/或1,4-丁二醇;端点0除外),
    0-5重量%,优选0-1重量%,更优选0-0.5重量%,特别优选0-0.1重量%的戊二醇(优选1,2-戊二醇;端点0除外),
    0-5重量%,优选0-2重量%,更优选0-1.5重量%的己二醇(优选1,2-己二醇;端点0除外),和
    任选的0-5重量%,优选0-1重量%,更优选0-0.5重量%,特别优选0-0.1重量%的
    Figure PCTCN2021109536-appb-100002
  8. 根据权利要求1-7任一项的方法,其中所述的生物基粗乙二醇还任选地包含:
    0-5重量%,优选0-1重量%,更优选0-0.1重量%的1,2-丙二醇,和
    0-5重量%,优选0-1重量%,更优选0-0.1重量%的二乙二醇。
  9. 根据权利要求1-8任一项的方法,其中所述的脱水通过精馏进行。
  10. 根据权利要求1-9任一项的方法,其中所述的生物基粗乙二醇原料在220nm、275nm和350nm波长下的紫外透过率至少有一项不符合优等品聚酯级乙二醇标准。
PCT/CN2021/109536 2020-08-03 2021-07-30 一种生物基粗乙二醇的精制方法 WO2022028319A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21852894.1A EP4194431A1 (en) 2020-08-03 2021-07-30 Method for refining bio-based crude ethylene glycol
KR1020237007346A KR20230044507A (ko) 2020-08-03 2021-07-30 생물 기반 조 에틸렌 글리콜의 정제 방법
CA3188101A CA3188101A1 (en) 2020-08-03 2021-07-30 Method for refining bio-based crude ethylene glycol
MX2023001568A MX2023001568A (es) 2020-08-03 2021-07-30 Metodo para refinar etilenglicol bioderivado en bruto.
JP2023506246A JP2023537308A (ja) 2020-08-03 2021-07-30 バイオベースの粗エチレングリコールを精製するための方法
US18/040,551 US20230295064A1 (en) 2020-08-03 2021-07-30 Method for refining bio-based crude ethylene glycol
AU2021323108A AU2021323108A1 (en) 2020-08-03 2021-07-30 Method for refining bio-based crude ethylene glycol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010766596.1A CN114057547A (zh) 2020-08-03 2020-08-03 一种生物基粗乙二醇的精制方法
CN202010766596.1 2020-08-03

Publications (1)

Publication Number Publication Date
WO2022028319A1 true WO2022028319A1 (zh) 2022-02-10

Family

ID=80116950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109536 WO2022028319A1 (zh) 2020-08-03 2021-07-30 一种生物基粗乙二醇的精制方法

Country Status (12)

Country Link
US (1) US20230295064A1 (zh)
EP (1) EP4194431A1 (zh)
JP (1) JP2023537308A (zh)
KR (1) KR20230044507A (zh)
CN (1) CN114057547A (zh)
AR (1) AR123082A1 (zh)
AU (1) AU2021323108A1 (zh)
CA (1) CA3188101A1 (zh)
CL (1) CL2023000356A1 (zh)
MX (1) MX2023001568A (zh)
UY (1) UY39359A (zh)
WO (1) WO2022028319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337671A (zh) * 2022-07-14 2022-11-15 陕西榆能化学材料有限公司 一种提高煤制乙二醇产品品质的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624565A (zh) * 2022-08-12 2024-03-01 高化学株式会社 乙二醇组合物、其制备方法以及由该乙二醇组合物制备的聚酯

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289593A (en) * 1979-03-30 1981-09-15 Ppg Industries, Inc. Method for increasing the ultra-violet light transmittance of ethylene glycol
US4935102A (en) 1989-12-27 1990-06-19 Lloyd Berg Separation of 2,3-butanediol from propylene glycol by azeotropic distillation
US4966658A (en) 1989-12-27 1990-10-30 Lloyd Berg Recovery of ethylene glycol from butanediol isomers by azeotropic distillation
US5423955A (en) 1994-07-05 1995-06-13 Lloyd Berg Separation of propylene glycol from 1,2-butanediol by azeotropic
US5770777A (en) * 1996-05-09 1998-06-23 Occidental Chemical Corporation Method reducing UV absorption in ethylene glycols, water, and mixtures
US6242655B1 (en) * 2000-07-11 2001-06-05 Scientific Design Company, Inc. Glycol purification
CN101928201A (zh) * 2009-06-26 2010-12-29 上海焦化有限公司 一种煤制乙二醇粗产品的提纯工艺
CN102372598A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 乙二醇和丁二醇的分离方法
CN102649704A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 乙二醇产品的纯化方法
US8906205B2 (en) 2012-01-10 2014-12-09 China Petroleum & Chemical Corporation Process for separating ethylene glycol and 1,2-butanediol
CN104496752A (zh) * 2014-11-24 2015-04-08 中国石油化工股份有限公司 一种提高乙二醇装置副产劣质粗乙二醇紫外透光率的工艺
CN106946654A (zh) 2017-03-29 2017-07-14 东华工程科技股份有限公司 一种生物质乙二醇的分离方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276418B (zh) * 2010-06-11 2013-07-31 中国石油化工股份有限公司 乙二醇纯化的方法
CN102649692B (zh) * 2011-02-25 2015-10-21 中国石油化工股份有限公司 提高乙二醇质量的方法
CN104693007A (zh) * 2013-12-10 2015-06-10 中国科学院大连化学物理研究所 一种生物质乙二醇的吸附精制方法
CN104275157A (zh) * 2014-09-10 2015-01-14 江苏金聚合金材料有限公司 一种提纯煤质乙二醇品质的吸附剂及其制备方法
CN106866375B (zh) * 2015-12-12 2020-07-31 中国科学院大连化学物理研究所 一种沸点接近的多元醇混合物的吸附分离方法
CN107285997B (zh) * 2016-03-30 2022-04-22 长春美禾科技发展有限公司 一种改善乙二醇紫外透过率的方法
CN107973698B (zh) * 2016-10-25 2020-12-18 中国石油化工股份有限公司 提纯乙二醇的方法
CN110878007B (zh) * 2018-09-05 2023-04-28 长春美禾科技发展有限公司 一种非石油基乙二醇的精制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289593A (en) * 1979-03-30 1981-09-15 Ppg Industries, Inc. Method for increasing the ultra-violet light transmittance of ethylene glycol
US4935102A (en) 1989-12-27 1990-06-19 Lloyd Berg Separation of 2,3-butanediol from propylene glycol by azeotropic distillation
US4966658A (en) 1989-12-27 1990-10-30 Lloyd Berg Recovery of ethylene glycol from butanediol isomers by azeotropic distillation
US5423955A (en) 1994-07-05 1995-06-13 Lloyd Berg Separation of propylene glycol from 1,2-butanediol by azeotropic
US5770777A (en) * 1996-05-09 1998-06-23 Occidental Chemical Corporation Method reducing UV absorption in ethylene glycols, water, and mixtures
US6242655B1 (en) * 2000-07-11 2001-06-05 Scientific Design Company, Inc. Glycol purification
CN101928201A (zh) * 2009-06-26 2010-12-29 上海焦化有限公司 一种煤制乙二醇粗产品的提纯工艺
CN102372598A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 乙二醇和丁二醇的分离方法
CN102649704A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 乙二醇产品的纯化方法
US8906205B2 (en) 2012-01-10 2014-12-09 China Petroleum & Chemical Corporation Process for separating ethylene glycol and 1,2-butanediol
CN104496752A (zh) * 2014-11-24 2015-04-08 中国石油化工股份有限公司 一种提高乙二醇装置副产劣质粗乙二醇紫外透光率的工艺
CN106946654A (zh) 2017-03-29 2017-07-14 东华工程科技股份有限公司 一种生物质乙二醇的分离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Biopharmaceutical Technology", 28 February 2006, CHINA MEDICAL SCIENCE AND TECHNOLOGY PRESS, CN, ISBN: 7-5067-3364-1, article WU, WUTONG: "Chapter 6 Adsorption-​based Separation Method", pages: 186 - 190, XP009534112 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337671A (zh) * 2022-07-14 2022-11-15 陕西榆能化学材料有限公司 一种提高煤制乙二醇产品品质的方法

Also Published As

Publication number Publication date
CL2023000356A1 (es) 2023-09-15
US20230295064A1 (en) 2023-09-21
CN114057547A (zh) 2022-02-18
AR123082A1 (es) 2022-10-26
CA3188101A1 (en) 2022-02-10
EP4194431A1 (en) 2023-06-14
AU2021323108A1 (en) 2023-03-16
MX2023001568A (es) 2023-03-28
UY39359A (es) 2022-01-31
KR20230044507A (ko) 2023-04-04
JP2023537308A (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
WO2022028319A1 (zh) 一种生物基粗乙二醇的精制方法
CN105622348B (zh) 一种沸点接近的多元醇混合物的分离方法
US2960447A (en) Purification of synthetic glycerol
US8177980B2 (en) Separation of a mixture of polyhydric alcohols
WO1992021638A1 (en) Process for purifying aqueous crude ethanol solution
BR112015004186B1 (pt) método para reduzir contaminantes na produção de um glicol produto de hidrogenólise; e método de fabricação de propileno glicol ou etileno glicol
CN108794348A (zh) 一种生物医药产废乙腈制备高纯乙腈的方法
JP2022503653A (ja) 非石油系エチレングリコールを精製する方法
WO2000007969A1 (fr) 1,3-butylene-glycol tres pur et son procede de production
CN109456289A (zh) 一种环氧树脂关键中间体环氧氯丙烷生产废水资源化利用的方法
CN113337548B (zh) 一种生物基1,3-丙二醇的制备方法
ES2797542T3 (es) Producción de productos de etanol
CN102432427B (zh) 一种用于医药的无水乙醇的制备方法
CN116354795A (zh) 一种色谱纯异丙醇的纯化方法
CN113548949B (zh) 一种1,1,3-三氯丙酮的生产方法
CN111377801A (zh) 精制低碳醇的方法和系统
CN112479830A (zh) 从大麻花叶中提取纯化次大麻二酚和大麻二酚的方法
CN101602785B (zh) 一种硒化寡糖脱盐、纯化的方法
JP5044645B2 (ja) ホルムアルデヒドからトリオキサンを製造するための一体化法
CN111848347A (zh) 用于纯化煤制乙二醇的方法和装置
CN105566060B (zh) 醋酸加氢制备乙醇的方法
CN101987861B (zh) 一种7-去氢胆固醇脚料的提纯方法
JP4483156B2 (ja) ガンマブチロラクトンの精製方法
US20160326076A1 (en) Treatment of alcohol compositions
RU2689594C2 (ru) Установка и способ для производства очищенного метанола

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3188101

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2301000619

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023001999

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237007346

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021852894

Country of ref document: EP

Ref document number: 2023102331

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852894

Country of ref document: EP

Effective date: 20230303

ENP Entry into the national phase

Ref document number: 2021323108

Country of ref document: AU

Date of ref document: 20210730

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023001999

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230202