WO2022025185A1 - 炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム - Google Patents

炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム Download PDF

Info

Publication number
WO2022025185A1
WO2022025185A1 PCT/JP2021/028102 JP2021028102W WO2022025185A1 WO 2022025185 A1 WO2022025185 A1 WO 2022025185A1 JP 2021028102 W JP2021028102 W JP 2021028102W WO 2022025185 A1 WO2022025185 A1 WO 2022025185A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
zeolite
purification catalyst
gas purification
multipore
Prior art date
Application number
PCT/JP2021/028102
Other languages
English (en)
French (fr)
Inventor
秀和 後藤
克彦 林
麻祐子 諏訪
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2022539563A priority Critical patent/JP7450727B2/ja
Priority to CN202180059669.6A priority patent/CN116157191A/zh
Priority to EP21848678.5A priority patent/EP4190441A4/en
Priority to US18/018,214 priority patent/US20230271136A1/en
Publication of WO2022025185A1 publication Critical patent/WO2022025185A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/9486Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material

Definitions

  • the present invention relates to a hydrocarbon adsorbent capable of adsorbing and storing hydrocarbons in exhaust gas discharged from an internal combustion engine such as an automobile, an exhaust gas purification catalyst, and an exhaust gas purification system.
  • hydrocarbons (HC) from unburned fuel, carbon monoxide (CO) due to incomplete combustion, nitrogen oxides (NOx) due to excessive combustion temperature, etc.
  • An exhaust gas purification catalyst is used to treat the exhaust gas from such an internal combustion engine.
  • hydrocarbon (HC) is oxidized and converted into water and carbon dioxide (CO 2 )
  • CO is oxidized and converted into CO 2
  • NOx is reduced and converted into nitrogen. Purify.
  • a platinum group metal for example, a platinum group metal is used, and in particular, a platinum group metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is used.
  • a hydrocarbon adsorbent having the ability to adsorb and store hydrocarbons in the exhaust gas is used as a constituent component.
  • Patent Document 1 describes a zeolite catalyst containing a base metal, a noble metal, and a zeolite, one or more platinum group metals, and one or more inorganic oxidations in order to improve the efficiency of exhaust gas purification in a cold start state.
  • a cold start catalyst is disclosed, comprising a material carrier and a supported platinum group metal catalyst comprising.
  • Patent Document 1 discloses, for example, BEA type zeolite, MFI type zeolite, CHA type zeolite and the like as zeolite contained in the cold start catalyst.
  • the cold start catalyst disclosed in Patent Document 1 stores the hydrocarbon in the cold start state, and then stores the hydrocarbon before the catalyst is sufficiently activated when the high temperature exhaust gas flows in and the catalyst warms up. Since the hydrocarbon is desorbed, the hydrocarbon may be discharged without being purified.
  • the hydrocarbon adsorbent can adsorb and store hydrocarbons up to a temperature sufficient to activate the catalyst, and at the temperature at which the catalyst is activated, it enables desorption of the adsorbed and stored hydrocarbons. Performance is required. Further, since the exhaust gas purification catalyst is exposed to high-temperature exhaust gas, a hydrocarbon adsorbent using zeolite having high heat resistance is also required.
  • the present invention can adsorb hydrocarbons and store the adsorbed hydrocarbons up to a relatively high temperature, can desorb hydrocarbons at a relatively high temperature, and adsorb hydrocarbons with excellent heat resistance. It is an object of the present invention to provide materials, exhaust gas purification catalysts and exhaust gas purification systems.
  • the present invention comprises zeolite at least one metal selected from the group consisting of transition metals belonging to groups 3-12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals and alkaline earth metals.
  • a hydrocarbon adsorbent containing a multipore zeolite contained outside the skeleton and having a metal content of 9% by mass or less with respect to the multipore zeolite containing the metal.
  • the present invention provides an exhaust gas purification catalyst comprising a base material, a hydrocarbon adsorbing unit containing the hydrocarbon adsorbent on the base material, and a purification catalyst unit on the hydrocarbon adsorbing unit.
  • the present invention comprises a base material, a hydrocarbon adsorbing unit containing the hydrocarbon adsorbent and Rh on the base material, and a purification catalyst unit containing Pd on the hydrocarbon adsorbing unit. Provide a purification catalyst.
  • the present invention comprises an internal combustion engine, a first exhaust gas purification catalyst provided on the upstream side in an exhaust gas flow path connected to the internal combustion engine, and an exhaust gas flow in the exhaust gas flow path rather than the first exhaust gas purification catalyst.
  • An exhaust gas purification system including a second exhaust gas purification catalyst provided on the downstream side in the direction, wherein the second exhaust gas purification catalyst is the exhaust gas purification catalyst, and a platinum group metal in the second exhaust gas purification catalyst.
  • an exhaust gas purification system in which the content ratio of the above is 0.1 g / L or more and 3.0 g / L or less with respect to the volume of the second exhaust gas purification catalyst.
  • the present invention is an exhaust gas purification system including an internal combustion engine and a single exhaust gas purification catalyst in an exhaust gas flow path connected to the internal combustion engine, wherein the exhaust gas purification catalyst is the above-mentioned exhaust gas purification catalyst. Provides an exhaust gas purification system.
  • the present invention is an exhaust gas purification system including an internal combustion engine and a plurality of exhaust gas purification catalysts provided in an exhaust gas flow path connected to the internal combustion engine, and the exhaust gas flow among the plurality of exhaust gas purification catalysts.
  • the first exhaust gas purification catalyst arranged on the most upstream side in the direction provides the exhaust gas purification system which is the exhaust gas purification catalyst.
  • a combustion exhaust gas containing a hydrocarbon is brought into contact with the exhaust gas purification catalyst to adsorb the hydrocarbon to the exhaust gas purification catalyst, and then the exhaust gas purification catalyst is used at a temperature of 170 ° C. or higher.
  • hydrocarbon exhaust gas purification catalyst can be used without considering the readsorption of hydrocarbons to the exhaust gas purification catalyst. Can be evaluated for adsorption or desorption.
  • hydrocarbons can be adsorbed and stored until they are activated based on a temperature of 170 ° C. After activation, the adsorbed hydrocarbons can be desorbed and purified. Provides a way to handle.
  • the hydrocarbon adsorbent provided by the present invention contains a multipore zeolite containing a specific metal outside the zeolite skeleton, and can adsorb and store hydrocarbons up to a relatively high temperature, for example, as high as 170 ° C. or higher. Hydrocarbons stored at temperature can be desorbed. Further, this hydrocarbon adsorbent is also excellent in heat resistance, and can improve the hydrocarbon removal performance in an exhaust gas purification catalyst using this hydrocarbon adsorbent and an exhaust gas purification system including the exhaust gas purification catalyst.
  • FIG. 1 is a schematic perspective view showing an exhaust gas purification catalyst.
  • FIG. 2 shows a first example of an exhaust gas purification catalyst, and is an enlarged view of a part of a cross section.
  • FIG. 3 shows a second example of an exhaust gas purification catalyst, and is an enlarged view of a part of a cross section.
  • FIG. 4 is a schematic configuration diagram showing a first example of an exhaust gas purification system.
  • FIG. 5 is a schematic configuration diagram showing a second example of the exhaust gas purification system.
  • FIG. 6 is a schematic configuration diagram showing a third example of the exhaust gas purification system.
  • FIG. 7 shows the X-ray diffraction spectrum of the obtained MSE-type zeolite.
  • FIG. 8 shows the X-ray diffraction spectrum of the obtained EON-type zeolite.
  • An example of an embodiment of the present invention is at least selected from the group consisting of transition metals belonging to groups 3-12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals, and alkaline earth metals. It contains a multipore zeolite containing one kind of metal outside the zeolite skeleton, and the content ratio of the metal is 9% by mass or less with respect to the multipore zeolite containing the metal.
  • the hydrocarbon adsorbent is at least one selected from the group consisting of transition metals belonging to groups 3-12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals, and alkaline earth metals.
  • the multipore zeolite containing the metal outside the zeolite skeleton it is possible to adsorb hydrogen at a relatively low temperature of, for example, about 50 ° C., and store the hydrogen at a relatively high temperature of, for example, up to 200 ° C.
  • a relatively low temperature for example, about 50 ° C.
  • hydrocarbons stored at a relatively high temperature exceeding 200 ° C. can be desorbed.
  • water is contained in the exhaust gas, among the adsorption, desorption and readsorption of hydrocarbons of the hydrocarbon adsorbent, up to 170 ° C, which can evaluate the adsorption and desorption of hydrocarbons without considering readsorption.
  • Hydrocarbons can be stored up to a relatively high temperature, and the stored hydrocarbons can be desorbed at temperatures above 170 ° C.
  • Zeolites have a crystalline or quasicrystalline aluminosilicate crystal structure composed of repeating units of SiO 4 and AlO 4 tetrahedra.
  • the unit forming the skeleton structure of zeolite may be described as TO 4 unit.
  • the skeleton structure of zeolite is given a structure code of three uppercase letters defined by the International Zeolite Society. This structure can be confirmed by a database (Databe of Zeolite Structures, Structure Committee of the International Zeolites Association) by the Structural Committee of the International Zeolite Society.
  • Multipore zeolite is a zeolite having multiple types of pore structures of different sizes.
  • Examples of the multipore zeolite used in the embodiment of the present invention include zeolites having a large pore tunnel type pore and a small pore cage as the pore structure.
  • the tunnel-type pores may also be referred to as linear pores, and may be referred to as "tunnel-type (linear) pores" in the present specification.
  • the multipore zeolite may further contain a cage with large pores.
  • Large-pore tunnel-type (linear) pores include tunnel-type (linear) pores with a maximum of 12-membered rings and tunnel-type (linear) pores with a maximum of 10-membered rings.
  • Examples thereof include tunnel type (linear type) pores having a ring.
  • Examples of the cage having large pores include a cage having a maximum of 10-membered rings and a cage having a ring having 10 or more members.
  • Examples of the cages having small pores include cages having a maximum ring of 8 members and cages having a maximum ring of 6 members, and cages having a maximum ring of 8 members or less.
  • Examples of the multipore zeolite used in the embodiment of the present invention include a tunnel type (linear) pore having a maximum of 12-membered ring, a cage having a maximum of 10-membered ring, and a cage having a maximum of 6-membered ring (6-membered ring and a cage).
  • MSE-type zeolite having a 4-membered ring), a tunnel-type (linear) pore having a maximum of 12-membered rings, and a cage having a maximum of 8-membered rings (a cage consisting of an 8-membered ring, a 6-membered ring, and a 4-membered ring).
  • MOR-type zeolite having a tunnel-type (linear) pore having a maximum of 12-membered ring and a cage having a maximum of 8-membered ring.
  • EON-type zeolite having pores and a cage having a maximum of 8-membered ring is preferable, and MSE-type zeolite is particularly preferable.
  • BEA type zeolite having only tunnel type (linear) pores with a maximum of 12 member rings and MFI type zeolite having only tunnel type (linear) pores with a maximum of 10 member rings are types of pore structure. Since there is only one, it does not correspond to multipore zeolite.
  • the MSE-type zeolite has a tunnel type (linear type) having a maximum of 12-membered rings, cage pores having a maximum of 10-membered rings, and a cage having a maximum of 6-membered rings (cage consisting of a 6-membered ring and a 4-membered ring).
  • the crystal structure of a typical MSE-type zeolite belongs to the tetragonal, P4 2 / nmm space group. The space group may change when the MSE-type zeolite is modified with metal ions.
  • the database by the Structural Committee of the International Zeolite Society Databe of Zeolite Structures, Structure Committee of the Intentional Zeolite Association
  • the EON-type zeolite has a tunnel-type (linear) pore having a maximum of 12-membered rings and a cage having a maximum of 8-membered rings (a cage consisting of an 8-membered ring, a 6-membered ring, and a 4-membered ring).
  • the crystal structure of a typical EON-type zeolite belongs to the orthorhombic, Pmmn space group. The space group may change when the EON-type zeolite is modified with metal ions.
  • the SiO 2 / Al 2 O 3 molar ratio of the multipore zeolite is preferably 10 or more and 600 or less.
  • the SiO 2 / Al 2 O 3 molar ratio of the multipore zeolite may be 12 or more, 15 or more, 18 or more, 20 or more, and 500 or less. It may be 400 or less, 300 or less, or 250 or less.
  • the SiO 2 / Al 2 O 3 molar ratio of the multipore zeolite is more preferably 12 or more and 500 or less, further preferably 13 or more and 400 or less, and preferably 15 or more and 250 or less. Especially preferable.
  • the SiO 2 / Al 2 O 3 molar ratio of the multipore zeolite is 10 or more, the crystal structure is stable and the multipore zeolite has excellent heat resistance.
  • the SiO 2 / Al 2 O 3 molar ratio of the multipore zeolite is 600 or less, the transition metal belonging to groups 3 to 12 in the periodic table, the amphoteric metal belonging to groups 13 and 14 in the periodic table, and the alkali metal.
  • at least one metal ion selected from the group consisting of alkaline earth metals is facilitated ion exchange at a group containing an oxygen atom that becomes a Bronsted acid point adjacent to the Al atom of the multipore zeolite, and the zeolite skeleton. It is contained outside.
  • the SiO 2 / Al 2 O 3 molar ratio contained in the multipore zeolite or the hydrocarbon adsorbent described later is determined by elemental analysis using, for example, a scanning fluorescent X-ray analyzer (ZSX Primus II, manufactured by Rigaku Co., Ltd.). And Al amount is measured, and the SiO 2 / Al 2 O 3 molar ratio can be measured from the obtained Si amount and Al amount.
  • An example of an embodiment of the present invention is a group in which a multipore zeolite is composed of a transition metal belonging to groups 3 to 12 in the periodic table, an amphoteric metal belonging to groups 13 and 14 in the periodic table, an alkali metal, and an alkaline earth metal.
  • a multipore zeolite is composed of a transition metal belonging to groups 3 to 12 in the periodic table, an amphoteric metal belonging to groups 13 and 14 in the periodic table, an alkali metal, and an alkaline earth metal.
  • the metal is preferably introduced into the multipore zeolite by ion exchange, but may be modified as an oxide with respect to the multipore zeolite.
  • a metal introduced by ion exchange and a metal modified as an oxide may be mixed.
  • the multipore zeolite When the multipore zeolite is ion-exchanged with the ions of the metal, the cations present in the pores of the multipore zeolite function as acid points and can chemically adsorb hydrocarbons.
  • metal ions By exchanging metal ions with the multipore zeolite exchanged with basic ammonium ions, the generation of protons (H + ) can be minimized, and the ions of the multipore zeolite at a high pH of pH 4 or higher can be minimized.
  • the formation of hydroxylus in the zeolite skeleton can be suppressed.
  • the multipore zeolite preferentially adsorbs hydrogen at a relatively low temperature of, for example, about 50 ° C., and relatively, for example, 200 ° C. or higher.
  • Zeolites can be stored up to high temperatures and desorbed at relatively high temperatures, for example above 200 ° C.
  • the exhaust gas contains water
  • the multipore zeolite is a transition metal belonging to groups 3 to 12 in the periodic table, an amphoteric metal belonging to groups 13 and 14 in the periodic table, an alkali metal, and an alkaline earth metal.
  • the multipore zeolite can be used for hydrocarbon adsorption, desorption and readsorption without considering readsorption.
  • Hydrocarbons can be stored up to a relatively high temperature of up to 170 ° C, where adsorption and desorption can be evaluated, and hydrocarbons stored at temperatures above 170 ° C can be desorbed.
  • the ion exchange sites in the zeolite pores are composed of transition metals belonging to groups 3 to 12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals, and alkaline earth metals. Ion exchange may occur with at least one metal selected from the group.
  • the "ion exchange site in the zeolite pores" specifically means a group containing an oxygen atom that becomes a Bronsted acid point adjacent to an Al atom that is a part of the T site constituting the skeleton.
  • the multipore zeolite is ion-exchanged at the Bronsted acid point of the repeating unit of the SiO 4 and AlO 4 tetrahedrons constituting the zeolite skeleton, and contains a specific metal outside the zeolite skeleton.
  • Metals are ion-exchanged at the ion exchange sites of the multipore zeolite, and the presence of the metal outside the zeolite skeleton allows hydrocarbons to be preferentially adsorbed and the ability to adsorb hydrocarbons can be improved.
  • the content ratio of one kind of metal is 9% by mass or less, preferably 8% by mass or less, more preferably 7% by mass or less, and may be 1% by mass or more with respect to the multipore zeolite containing a metal. It is preferably 1.2% by mass or more, and more preferably 1.5% by mass or more.
  • the content ratio of the specific metal contained in the multipore zeolite is 9% by mass or less, the decrease in heat resistance of the multipore zeolite containing the metal can be suppressed.
  • the metal content means the sum of the multiple specific metals.
  • the transition metals contained in the multipore zeolite belonging to groups 3 to 12 in the periodic table are iron (Fe), palladium (Pd), rhodium (Rh), platinum (Pt), manganese (Mn), nickel (Ni), and zinc. (Zn), silver (Ag), copper (Cu), titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium Included are at least one element selected from the group consisting of (Tc) and ruthenium (Ru). In the present specification, the Group 12 metal is also included in the transition metal in the periodic table.
  • Amphoteric metals belonging to groups 13 and 14 in the periodic table contained in multipore zeolite are aluminum (Al), gallium (Ga), indium (In), thallium (Tl), germanium (Ge), tin (Sn), and Included are at least one element selected from the group consisting of lead (Pb).
  • the amphoteric metal belonging to groups 13 and 14 in the periodic table included outside the zeolite skeleton does not have to contain indium (Al), and both sexes belonging to groups 13 and 14 in the periodic table contained outside the zeolite skeleton.
  • the metal may be at least one element selected from the group consisting of gallium (Ga), indium (In), thallium (Tl), germanium (Ge), tin (Sn), and lead (Pb). ..
  • the alkali metal contained in the multipore zeolite may be at least one ion selected from the group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). preferable.
  • the alkaline earth metal contained in the multipore zeolite is preferably at least one selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba).
  • the metals contained in the multipore zeolite are Fe, Pd, Rh, Pt, Mn, Ni, Zn, Ag, Cu, Ti, V, Cr, Co, Zr, Nb, Mo, Tc, Ru, Al, Ga, In. , Tl, Ge, Sn, Pb, Li, Na, K, Rb, Cs, Ca, Sr, and Ba. Further, the multipore zeolite may contain magnesium (Mg).
  • the metal contained outside the zeolite skeleton of the multipore zeolite may be at least one selected from the group consisting of Mn, Fe, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Sn, Sc and Pt. More preferred.
  • the ion exchange site is ion-exchanged with at least one metal selected from the group consisting of Mn, Fe, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Sn, Sc and Pt.
  • the zeolite stably adsorbed in the pores can be more stably present in the pores by chemically adsorbing to the metal, so that the hydrocarbon can be stored up to a higher temperature.
  • the ion exchange site of the multipore zeolite may be ion-exchanged with hydrogen ions in addition to metal ions.
  • the multipore zeolite is a metal selected from the group consisting of transition metals belonging to groups 3 to 12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals, and alkaline earth metals. It is preferably contained outside the zeolite skeleton so that the metal / Al ratio, which is the molar ratio of metal and Al contained outside the zeolite skeleton of the multipore zeolite, is in the range of 0.01 or more and 2.5 or less.
  • the total value of the molar ratios of each metal (M x1, M x2, ...) And Al (M x1 / Al + M x2 / Al +) ...) is preferably contained so as to be in the range of 0.01 or more and 2.5 or less. It is preferable that the metal / Al ratio, which is the molar ratio of metal and Al contained outside the zeolite skeleton of the multipore zeolite, is in the range of 0.01 or more and 2.5 or less because the zeolite structure has stability.
  • the metal / Al ratio which is the molar ratio of metal and Al contained outside the zeolite skeleton of the multipore zeolite, is in the range of 0.05 or more and 2.5 or less, it is more preferable because the adsorption performance of hydrocarbon (HC) is excellent.
  • the amounts of the elements M and Al contained in the multipore zeolite or the composition for purifying exhaust gas described later can be measured by, for example, elemental analysis of a scanning fluorescent X-ray analyzer (ZSX Primus II, manufactured by Rigaku Co., Ltd.). ..
  • the multipore zeolite may contain phosphorus or sulfur, and preferably contains phosphorus.
  • phosphorus or sulfur is contained in the multipore zeolite, phosphorus or sulfur is easily modified in the portion causing the skeletal structure defect, and phosphorus or sulfur is modified in the portion causing the skeletal structure defect. Even when placed in a harsh thermal environment, the skeleton structure of the multipore zeolite can be maintained and the heat resistance can be improved.
  • Phosphorus or sulfur generated from a phosphorus source or sulfur source is, for example, in the form of phosphate ion or sulfate ion, and is more likely to bind to the Lewis acid point, which is a metal ion, than the Bronsted acid point.
  • the Bronsted acid point which is the active point for oxidation of the adsorbed hydrocarbon (HC)
  • the phosphate ion, sulfate ion, etc. are bonded to the metal ion causing the defect of the skeletal structure to form the skeleton. Since the structure is maintained, the skeletal structure can be maintained and the heat resistance can be improved even when the hydrocarbon is placed in a harsh thermal environment while maintaining the purification performance of the hydrocarbon.
  • the P / Al molar ratio which is the molar ratio of phosphorus to aluminum of the phosphorus-containing multipore zeolite, is preferably in the range of 0.4 or more and 1.1 or less.
  • the P / Al molar ratio is more preferably in the range of 0.8 or more and 1.0 or less.
  • the phosphorus contained in the multipore zeolite is modified to the Lewis acid point formed by Al, and the Bronsted acid point, which is the active point for oxidation of the adsorbed hydrocarbon (HC), is maintained, so that the purification performance is maintained. It is possible to suppress the loss of the skeletal structure and maintain the skeletal structure even in a harsh thermal environment to further improve the heat resistance.
  • the P / Al molar ratio in the phosphorus-containing multipore zeolite is in the range of 0.4 or more and 1.1 or less, the defect of the skeletal structure is suppressed and the adsorption performance and purification performance of the hydrocarbon are maintained. be able to.
  • the amount of aluminum (Al) and the amount of phosphorus (P) in the phosphorus-containing multipore zeolite are determined by using a scanning fluorescent X-ray analyzer (for example, manufactured by Rigaku Co., Ltd.) as in the method of Examples described later.
  • the amount of aluminum (Al) and the amount of phosphorus (P) in the multipore zeolite containing the above can be measured and calculated from the obtained measured values.
  • the BET specific surface area A of the multipore zeolite is preferably in the range of 400 m 2 / g or more and 1000 m 2 / g or less.
  • the BET specific surface area of the multipore zeolite is within the range of 400 m 2 / g or more and 1000 m 2 / g or less, so that the adsorption performance of hydrocarbon (HC) is excellent. ..
  • the BET specific surface area of the multipore zeolite is more preferably 450 m 2 / g or more.
  • the BET specific surface area of the multipore zeolite is preferably 800 m 2 / g or less, even if it is 700 m 2 / g or less, even when it is placed in a harsh thermal environment. It may be 600 m 2 / g or less.
  • the ratio B / A of the BET specific surface area A of the multipore zeolite before the heat treatment and the BET specific surface area B of the multipore zeolite after the heat treatment satisfying the heat treatment conditions (1) to (5) below is 0.35 or more and 1 or less. It is preferably within the range of.
  • the ratio B / A of the BET specific surface area A of the multipore zeolite before the heat treatment and the BET specific surface area B of the multipore zeolite after the heat treatment is 1, the structure of the multipore zeolite does not change before and after the heat treatment. , Means that the structure is maintained.
  • the ratio B / A of the BET specific surface area of the multipore zeolite before and after the heat treatment is in the range of 0.35 or more and 1 or less, the micropore structure is relatively large even when placed in a harsh thermal environment. It is preferable because it is maintained.
  • the ratio B / A of the specific surface area of the multipore zeolite before and after the heat treatment is more preferably in the range of 0.4 or more and 1 or less, further preferably in the range of 0.3 or more and 1 or less, and 0.5 or more. It is more preferably within the range of 1 or less, and particularly preferably within the range of 0.5 or more and 0.9 or less.
  • Heat treatment conditions (1) Temperature: 850 ° C ( 2 ) Time: 25 hours (3) Atmosphere: Atmosphere containing 10% by volume of water vapor, vaporizing water vapor from a tank containing water, adjusting the saturated water vapor pressure according to the temperature, and 10% by volume of water vapor. The atmosphere is including. (4) Model gas flow mode: The model gas of the following (5) is circulated alternately for 80 seconds at 3 L / min and 20 seconds at Air (air) 3 L / min. (5) Model gas: The total of C 3 H 6 , O 2 and N 2 is 3 L / min, C 3 H 6 is 70 mL / min, O 2 is 70 mL / min, and the balance is N 2 .
  • the MSE-type zeolite is diffracted at the diffraction angle position of 21.7 ° ⁇ 1.0 °, which represents the diffraction index (420) of the X-ray diffraction spectrum of the MSE-type zeolite.
  • the ratio D / C of the peak intensity C of the diffraction index (420) before the heat treatment and the peak intensity D of the diffraction index (420) after the heat treatment satisfying the heat treatment conditions (1) to (5) has a peak. It is preferably in the range of 0.3 or more and 1.5 or less.
  • the peak intensity ratio D / C is in the range of 0.3 or more and 1.5 or less in order to maintain the skeletal structure even when placed in a harsh thermal environment.
  • the peak intensity ratio D / C is more preferably in the range of 0.4 or more and 1.4 or less, further preferably in the range of 0.5 or more and 1.3 or less, and 0.6 or more and 1 It is more preferable that it is within the range of .2 or less.
  • the X-ray diffraction spectrum of the MSE-type zeolite can be measured using an X-ray diffractometer (for example, model number: MiniFlex600, manufactured by Rigaku Co., Ltd.).
  • Method for producing MSE-type zeolite MSE-type zeolite is prepared by preparing a raw material mixture containing a silica source, an aluminum source, an alkali metal source, an organic structure-defining agent (template), and water, and heating and crystallizing the raw material mixture. Includes the steps of obtaining MSE-type zeolite.
  • silica source for example, a compound containing silicon can be used. Specific examples thereof include wet silica, dry silica, colloidal silica, sodium silicate, potassium silicate, and aluminosilicate gel. These silica sources can be used alone or in combination of two or more. Among these silica sources, silica (silicon dioxide), aluminosilicate gel, and colloidal silica are preferably used because by-products are less likely to be generated and the desired MSE-type zeolite can be produced.
  • a water-soluble aluminum-containing compound can be used.
  • specific examples thereof include sodium aluminate, aluminum nitrate, aluminum sulfate, aluminum hydroxide, and aluminosilicate gel.
  • These aluminum sources can be used alone or in combination of two or more.
  • sodium aluminate or aluminosilicate gel is preferably used because by-products are less likely to be generated and the desired MSE-type zeolite can be produced.
  • alkali metal source for example, cesium hydroxide, potassium hydroxide, and sodium hydroxide can be used.
  • sodium silicate is used as the silica source or sodium aluminate is used as the aluminum source
  • sodium which is an alkali metal component contained therein, is also an alkali metal component.
  • the alkali metal source is calculated as the sum of all alkali metal components in the reaction mixture.
  • Examples of the organic structure defining agent include those containing N, N, N', N'-tetraalkylbicyclo [2.2.2] octo-7-en-2, 3: 5,6-dipyrrolidinium ion. ..
  • the organic structure regulator may be N, N, N', N'-tetraalkylbicyclo [2.2.2] oct-7-en-2,3: 5,6-dipyrrolidinium iodide, alkyl.
  • the groups may be the same or different.
  • Step of preparing the raw material mixture As the order of adding each raw material when preparing the raw material mixture, a method can be adopted in which a uniformly mixed raw material mixture can be easily obtained. For example, at room temperature, an aluminum source is added to an alkali metal source acting as a mineralizing agent to dissolve it, and then a silica source is added and stirred and mixed to obtain a uniformly mixed raw material mixture.
  • the temperature at which the raw material mixture is prepared is generally room temperature (20 ° C. to 25 ° C.), and the raw material mixture can be prepared.
  • the raw material mixture can be heated and crystallized at a temperature of 70 ° C. or higher and 240 ° C. or lower.
  • the heating performed on the raw material mixture is also referred to as the first heating.
  • the first heating may be performed by allowing the raw material mixture to stand still, or may be performed while stirring the raw material mixture.
  • the heating temperature may be 80 ° C. or higher and 200 ° C. or lower.
  • the heating time may be 5 hours or more and 400 hours or less, 48 hours or more and 200 hours or less, or 72 hours or more and 80 hours or less.
  • the heating may be performed under atmospheric pressure or under pressure.
  • the raw material mixture Before heating, the raw material mixture may be allowed to stand at a temperature lower than the heating temperature for a certain period of time for aging. Aging refers to holding the reaction mixture at the same temperature for a certain period of time at a temperature lower than the heating temperature at the time of crystallization.
  • the aging temperature may be a temperature of room temperature (20 ° C. to 25 ° C.) or more and 160 ° C. or less, and the aging time may be 2 hours or more and 160 hours or less.
  • the crystallized powder can be separated from the mother liquor by filtration, washed with water or deionized water and dried to obtain MSE-type zeolite.
  • the obtained MSE-type zeolite is heated to remove organic substances remaining in the crystals.
  • the heating for removing the organic matter remaining in the crystal is also referred to as a second heating.
  • the second heating may be performed at a temperature at which organic substances can be removed, and is preferably performed in the range of 500 ° C. or higher and 800 ° C. or lower.
  • it is preferable to raise the temperature to the heating temperature over 2 hours or more, and the heating time for maintaining the heating temperature after raising the temperature to the heating temperature is 0. It is preferably 5 hours or more and 3 hours or less.
  • the obtained MSE-type zeolite is an MSE-type zeolite by measuring using a powder X-ray diffractometer.
  • a powder X-ray diffractometer In the X-ray diffraction spectrum using the powder X-ray diffractometer, 6.56 ⁇ 0.15 °, 6.8 ⁇ 0.15 °, 8.04 ⁇ 0.15 °, 19.38 ⁇ 0.15 °, 19.42 ⁇ 0.15 °, 21.68 ⁇ 0.15 °, 22.28 ⁇ 0.15 °, 22.32 ⁇ 0.15 °, 22.84 ⁇ 0.15 °, 27.5 ° ⁇ If there is a diffraction peak at the diffraction angle (2 ⁇ ) position of 0.15 °, it can be confirmed that it is an MSE type zeolite.
  • Method for producing EON-type zeolite is prepared by preparing a raw material mixture containing a silica source, an aluminum source, an alkali metal source, water, and if necessary, an organic structure-defining agent (template), and heating the raw material mixture. It includes a step of crystallizing to obtain an EON-type zeolite.
  • silica source aluminum source and alkali metal source, the same ones used in the above-mentioned method for producing MSE-type zeolite can be used.
  • organic structure regulating agent examples include those containing bis (2-hydroxyethyl) dimethylammonium ion and tris (2-hydroxyethyl) methylammonium.
  • the organic structure defining agent may be bis (2-hydroxyethyl) dimethylammonium chloride or tris (2-hydroxyethyl) methylammonium hydroxide.
  • Step of preparing the raw material mixture The preparation of the raw material mixture can be the same as the above-mentioned method for producing MSE-type zeolite.
  • the raw material mixture can be heated and crystallized at a temperature of 70 ° C. or higher and 240 ° C. or lower.
  • the heating performed on the raw material mixture is also referred to as the first heating.
  • the first heating may be performed by allowing the raw material mixture to stand still, or may be performed while stirring the raw material mixture.
  • the heating temperature may be 80 ° C. or higher and 200 ° C. or lower.
  • the heating time may be 24 hours or more and 400 hours or less, 48 hours or more and 200 hours or less, or 72 hours or more and 170 hours or less.
  • the heating may be performed under atmospheric pressure or under pressure.
  • the raw material mixture Before heating, the raw material mixture may be allowed to stand at a temperature lower than the heating temperature for a certain period of time for aging. Aging refers to holding the reaction mixture at the same temperature for a certain period of time at a temperature lower than the heating temperature at the time of crystallization.
  • the aging temperature may be a temperature of room temperature (20 ° C. to 25 ° C.) or more and 80 ° C. or less, and the aging time may be 2 hours or more and 80 hours or less.
  • the crystallized powder can be separated from the mother liquor by filtration, washed with water or deionized water and dried to obtain an EON-type zeolite.
  • the EON-type zeolite is heated to remove organic substances remaining in the crystals.
  • the heating for removing the organic matter remaining in the crystal is also referred to as a second heating.
  • the second heating may be performed at a temperature at which organic substances can be removed, and is preferably performed in the range of 500 ° C. or higher and 800 ° C. or lower.
  • the temperature to the heating temperature it is preferable to raise the temperature to the heating temperature over 2 hours or more, and the heating time for maintaining the heating temperature after raising the temperature to the heating temperature is 0. It is preferably 5 hours or more and 3 hours or less.
  • the obtained EON-type zeolite can be confirmed to be an EON-type zeolite by measuring using a powder X-ray diffractometer.
  • a powder X-ray diffractometer In the X-ray diffraction spectrum using the powder X-ray diffractometer, 6.42 ⁇ 0.14 °, 9.66 ⁇ 0.15 °, 13.02 ⁇ 0.15 °, 13.38 ⁇ 0.15 °, 23.12 ⁇ 0.15 °, 25.44 ⁇ 0.15 °, 26.18 ⁇ 0.15 °, 27.56 ⁇ 0.15 °, 27.78 ⁇ 0.16 °, 28.06 ⁇ 0 If there is a diffraction peak at the diffraction angle (2 ⁇ ) position of .17 °, it can be confirmed that it is an EON type zeolite.
  • the multipore zeolite can contain a metal by a liquid phase ion exchange method, a solid phase ion exchange method, or an impregnation method.
  • the embodiment containing the metal include an embodiment in which the metal is introduced into the multipore zeolite by ion exchange, and an embodiment in which the attribution to the surface of the multipore zeolite is modified in the state of an oxide.
  • the liquid phase ion exchange method is at least one selected from the group consisting of transition metals belonging to groups 3 to 12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals and alkaline earth metals.
  • the solid phase ion exchange method is selected from the group consisting of multipore zeolites, transition metals belonging to groups 3-12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals and alkaline earth metals.
  • This is a method of exchanging ions by mixing a metal salt or a metal oxide containing at least one kind of metal ion and heat-treating in a reducing atmosphere or an inert atmosphere at a temperature of, for example, 300 ° C. or higher and 800 ° C. or lower.
  • the type of the metal salt examples include a metal acetate, a metal chloride salt, a metal sulfate, a metal nitrate and the like.
  • the ion-exchanged multipore zeolite was washed, dried at, for example, 100 ° C to 300 ° C, and then fired at, for example, 400 ° C to 1000 ° C, so that the ion exchange sites on Al were ion-exchanged. Multipore zeolite can be obtained.
  • the impregnation method uses at least one metal ion selected from the group consisting of transition metals belonging to groups 3 to 12 in the periodic table, amphoteric metals belonging to groups 13 and 14 in the periodic table, alkali metals and alkaline earth metals.
  • This is a method in which a multipore zeolite is immersed in a solution of a metal salt or a metal oxide containing the metal, and dried by, for example, heat-treating at a temperature of 30 ° C. or higher and 200 ° C. or lower to contain a metal. After drying, it can be calcined at, for example, 400 ° C. to 1000 ° C.
  • a multipore zeolite in which ion exchange sites on Al are ion-exchanged examples of the type of the metal salt include a metal acetate, a metal chloride salt, a metal sulfate, a metal nitrate and the like.
  • the impregnation method include an incipient wetness method, an evaporation dry solid method, a pore-filling method, a spray method, an equilibrium adsorption method and the like.
  • the precipitation method include a kneading method and a deposition method.
  • Certain metals introduced into multipore zeolites are at least partially in small pore cages (cage with a maximum ring of 8 or less), especially cages of up to 8 or 6 members. It is preferable to be introduced.
  • the firing temperature is preferably 450 ° C. or higher, and firing may be performed in an air atmosphere, under an inert atmosphere or under a reduced pressure of 0.1 MPa or less. It is desirable to bake at.
  • a metal By introducing a metal into a cage of small pores, large pores (pores having a ring of 10-membered rings or more) that adsorb hydrocarbons (pores having a ring of 10-membered rings or more), particularly tunnel-type (linear) pores having a maximum of 12-membered rings and a maximum
  • the volume of caged pores with a 10-membered ring can be maintained.
  • the specific metal acts on the zeolite skeleton because the specific metal does not act directly on the hydrocarbon, the multipore zeolite containing the specific metal can adsorb the hydrocarbon up to a high temperature.
  • a specific metal is introduced into the cage of the small pores of the multipore zeolite can be indirectly confirmed by the measurement of X-ray diffraction by the change of the lattice constant of the zeolite.
  • cages with small pores are used for the content of specific metals introduced into tunnel-type (linear) pores with a maximum of 12-membered rings and cage-type pores with a maximum of 10-membered rings.
  • the content of the specific metal introduced therein is preferably larger than 0.5, more preferably 1.0 or more, and even more preferably 2.0 or more in terms of molar ratio. It is particularly preferable that it is 0.0 or more.
  • the content of a specific metal in a tunnel-type (straight) pore with a maximum of 12-membered ring, a cage-type pore with a maximum of 10-membered ring, or a small pore can be obtained by analysis using an X-ray diffractometer or the like. It can be indirectly obtained from the change in the TO bond distance of TO 4 units forming the skeletal structure and the distance from the skeletal element.
  • Phosphorus or sulfur can be contained in multipore zeolite by contacting the multipore zeolite with a compound containing phosphorus or a compound containing sulfur.
  • Examples of the method for containing phosphorus or sulfur in the multipore zeolite include a vapor deposition method, an impregnation method, a precipitation method, an ion exchange method and the like.
  • a vapor deposition method a multipore zeolite and a phosphorus-containing compound or a sulfur-containing compound are placed in a container and heated at room temperature or heated to evaporate phosphorus or sulfur, so that the multipore zeolite contains phosphorus or sulfur. The method can be mentioned.
  • the multipore zeolite is immersed in a liquid containing a phosphorus-containing compound or a sulfur-containing compound and a solvent, and the mixed liquid is heated and dried under normal pressure or reduced pressure to mulch phosphorus or sulfur.
  • Examples thereof include a method of containing it in pore zeolite.
  • the compound containing phosphorus may be phosphorus or an ion containing phosphorus.
  • the sulfur-containing compound may be sulfur or an ion containing sulfur.
  • the impregnation method include an incipient wetness method, an evaporation dry solid method, a pore-filling method, a spray method, an equilibrium adsorption method and the like.
  • Examples of the precipitation method include a kneading method and a deposition method.
  • examples of the phosphorus-containing compound include trimethyl phosphate, triethyl phosphate, trimethyl phosphite, and triethyl phosphite. Trimethyl phosphate is preferred because of its low boiling point.
  • the phosphorus-containing compound is preferably water-soluble, for example, trimethyl phosphate, triethyl phosphate, trimethyl phosphite, triethyl phosphite, phosphoric acid.
  • Phosphate dihydrogen salt such as ammonium dihydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, hydrogen phosphate such as diammonium hydrogen phosphate, dipotassium hydrogen phosphate and the like.
  • phosphoric acid include orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), triphosphoric acid (H 5 P 3 O 10 ), polyphosphoric acid, metaphosphoric acid (HPO 3 ), ultra-phosphoric acid and the like. Can be mentioned. From the viewpoint of easy drying, phosphoric acid such as orthophosphoric acid, trimethyl phosphate, ammonium dihydrogen phosphate or ammonium diammonium phosphate is preferable.
  • Examples of the solvent to be mixed with the phosphorus-containing compound include polar organic solvents such as deionized water, ethanol, 2-propanol and acetone. It is preferable to use deionized water or ethanol because it is easy to handle and dry.
  • the compound containing phosphorus may be in the range of 1% by mass or more and 25% by mass or less, and may be in the range of 2% by mass or more and 20% by mass or less with respect to 100% by mass of the total amount of the mixed solution. It may be in the range of 5% by mass or more and 15% by mass or less.
  • the time for impregnating the multipore zeolite in the mixed solution can be 0.5 hours or more and 2 hours or less.
  • the multipore zeolite containing a phosphorus-containing compound may be dried, the drying temperature may be 80 ° C. or higher and 200 ° C. or lower, and the drying time may be 0.5 hours or longer and 5 hours or lower. can.
  • the pressure at the time of drying is not particularly limited, and may be atmospheric pressure (0.1 MPa) or may be under reduced pressure of 0.1 MPa or less.
  • sulfur is contained in the multipore zeolite, it is preferable to use a sulfate.
  • a compound containing phosphorus or sulfur is attached to the multipore zeolite by a vapor deposition method or an impregnation method, and then heat-treated to obtain a multipore zeolite containing phosphorus or sulfur.
  • the heat treatment temperature is preferably in the range of 200 ° C. or higher and 800 ° C. or lower, and more preferably in the range of 400 ° C. or higher and 700 ° C. or lower in order to maintain the skeleton structure of the multipore zeolite.
  • the atmosphere for heat treatment may be an atmospheric atmosphere or an atmosphere of an inert gas such as nitrogen.
  • Multipore zeolite containing a specific metal can be used as a hydrocarbon adsorbent.
  • the hydrocarbon adsorbent constituting the hydrocarbon adsorbing portion includes BEA type (zeolite having only a 12-membered ring) and MTW type (12-membered) in addition to the multipore zeolite containing a specific metal. It may contain non-multipore zeolites such as ring-only zeolites).
  • the MSE-type zeolite which is a multi-pore zeolite may include a MOR-type zeolite which is a multi-pore zeolite, a BEA-type zeolite which is a non-multi-pore zeolite, and an MTW-type zeolite which is a non-multi-pore zeolite.
  • the hydrocarbon adsorbent may be made of 100% by mass of a multipore zeolite containing a specific metal, and in addition to the multipore zeolite containing a specific metal, for example, non-multi such as BEA type and MTW type.
  • the content of the multipore zeolite containing a specific metal is preferably in the range of 50% by mass or more and 99% by mass or less in 100% by mass of the hydrocarbon adsorbent, preferably 80% by mass. It is more preferably in the range of 99% by mass or more, and further preferably in the range of 90% by mass or more and 99% by mass or less.
  • a hydrocarbon adsorbent made of multipore zeolite containing a specific metal can be used as an exhaust gas purification catalyst by combining a hydrocarbon adsorbent containing this hydrocarbon adsorbent and a purification catalyst portion.
  • a hydrocarbon adsorbent made of a multipore zeolite containing a specific metal element can produce a composition for a hydrocarbon adsorbent containing the hydrocarbon adsorbent to form a hydrocarbon adsorbent.
  • a first example of the embodiment of the present invention includes a base material, a hydrocarbon adsorption unit containing the hydrocarbon adsorbent on the base material, and a purification catalyst unit on the hydrocarbon adsorption unit. It is also an exhaust gas purification catalyst.
  • FIG. 1 and 2 show an example of the exhaust gas purification catalyst 10.
  • FIG. 1 shows a base material 1 made of ceramics, and the base material 1 has a plurality of cells 1a and a partition wall 1b for partitioning the cells 1a.
  • FIG. 2 shows a part of a cross section obtained by cutting the exhaust gas purification catalyst of the first example, and the exhaust gas purification catalyst 10 includes a base material 1, a hydrocarbon adsorption unit 2 provided on the base material 1, and a hydrocarbon adsorption unit.
  • a purification catalyst unit 3 is provided on the 2.
  • reference numeral 30 is an exhaust gas flow path.
  • the purification catalyst unit 3 of the first example contains at least one of Rh and Pt, and has a Pd content of 0.1% by mass or less.
  • a second purification catalyst unit 3b having a Rh content of 0.1% by mass or less is provided, the first purification catalyst unit 3a is arranged on the hydrocarbon adsorption unit 2 side, and the first purification catalyst unit 3a is provided.
  • a second purification catalyst unit 3b may be provided on the top.
  • the first purification catalyst section contains a cerium oxide - zirconium oxide composite oxide (CeO2 - ZrO2).
  • the content of CeO 2 in the cerium oxide-zirconium oxide composite oxide is preferably in the range of more than 0% by mass and 30% by mass or less, more preferably 15% by mass or more and 30% by mass or less.
  • the hydrocarbon desorbed from the hydrocarbon adsorption section can be directly oxidized. preferable.
  • the second example of the embodiment of the present invention contains a base material, a hydrocarbon adsorbent on the base material, and at least one of Rh and Pt, and has a Pd content of 0.1% by mass or less.
  • An exhaust gas purification catalyst including a hydrocarbon adsorption unit and a purification catalyst unit containing at least one of Pd and Pt on the hydrocarbon adsorption unit and having a Rh content of 0.1% by mass or less. ..
  • FIG. 3 shows a part of a cross section obtained by cutting the exhaust gas purification catalyst of the second example, and the exhaust gas purification catalyst 10 has a base material 1, a hydrocarbon adsorption portion 2 provided on the base material 1, and a hydrocarbon adsorption portion.
  • a purification catalyst unit 3 is provided on the 2.
  • reference numeral 30 is an exhaust gas flow path.
  • Base material As the base material, a known base material for an exhaust gas catalyst can be used.
  • the material of the base material include ceramics and metals.
  • the ceramic base material include refractory ceramic materials, and examples thereof include cordierite, hydrocarbons, mullite, silica-alumina, and alumina.
  • the metal base material include refractory metals such as stainless steel.
  • a base material having a large number of cells parallel to the inside of the base material and which are fine flow passages, such as a honeycomb-shaped base material can be used. Examples of the shape of such a base material include a wall flow type base material and a flow-through type base material.
  • the hydrogen adsorbing part is a hydrocarbon adsorbent containing the above-mentioned metal-containing multipore zeolite or a hydrocarbon adsorbent made of the above-mentioned metal-containing multipore zeolite, and alumina particles, oxygen absorbing / releasing material, and alumina sol.
  • Silica sol, zirconia sol and other inorganic oxides are prepared in a slurry form for a hydrocarbon adsorbing part, and this slurry form for a hydrocarbon adsorbing part is applied to a substrate and dried as necessary. And this can be fired to form a hydrocarbon adsorption portion.
  • Examples of the oxygen absorbing / releasing material include inorganic oxides such as ceria-zirconia composite oxide. Rare earths may be contained in the inorganic oxide.
  • the composition for a hydrocarbon adsorbing portion for forming a hydrocarbon adsorbing portion may contain Rh and / or Pt.
  • the hydrocarbon adsorbent contained in the composition for the hydrocarbon adsorbent is a hydrocarbon adsorbent made of MSE-type zeolite among the multipore zeolites
  • the content of the hydrocarbon adsorbent is the composition for the hydrocarbon adsorbent.
  • the hydrocarbon adsorbing portion contains Rh and / or Pt
  • the total content of Rh and Pt contained in the hydrocarbon adsorbing portion is 0. It is preferably 05% by mass or more and 0.8% by mass or less, more preferably 0.14% by mass or more and 0.7% by mass or less, and 0.2% by mass or more and 0.5% by mass or less. Is even more preferable. Since the hydrocarbon adsorbing portion contains Rh and / or Pt, the hydrocarbon desorbed in the hydrocarbon adsorbing portion can be effectively purified.
  • the purification catalyst section prepares a slurry-like composition for the purification catalyst section, and coats the slurry-like composition for the exhaust gas purification catalyst section on the hydrocarbon adsorption section formed on the base material, if necessary. It can be dried and fired to form a purification catalyst section.
  • the slurry-shaped composition for the purification catalyst section can be produced by mixing and stirring an element as a catalytically active component, a NOx storage material, a catalyst carrier, a stabilizer, a binder, other components, and water as needed.
  • the binder an inorganic binder, for example, a water-soluble solution such as alumina sol can be used.
  • the composition for the exhaust gas purification catalyst section constituting each layer contains the catalytically active element necessary for the catalytic activity of each layer.
  • a composition for the catalyst part can be used.
  • the purification catalyst unit includes a first purification catalyst unit containing Rh and a second purification catalyst unit containing Pd, and the first purification catalyst unit is arranged on the hydrocarbon adsorption unit side and is on the first purification catalyst unit.
  • a composition for the first purification catalyst section containing Rh and a composition for the second purification catalyst section containing Pd are prepared.
  • the hydrocarbon adsorbing section contains the above-mentioned hydrocarbon adsorbent and Rh, a composition for a purification catalyst section containing Pd is prepared.
  • the composition for the first purification catalyst section contains Rh and / or Pt.
  • the total content of Rh and Pt in the composition for the first purification catalyst section shall be 0.1% by mass or more and 1.8% by mass or less with respect to the solid content of the composition for the first purification catalyst section. Is more preferable, 0.2% by mass or more and 1.2% by mass or less is more preferable, and 0.5% by mass or more and 1.0% by mass or less is further preferable.
  • the composition for the first catalyst part has a CeO 2 content of preferably more than 0% by mass and 30% by mass or less, more preferably 15% by mass or more and 30% by mass or less of the cerium oxide-zirconium oxide composite oxide. It is preferable to include (CeO 2 -ZrO 2 ).
  • the cerium oxide-zirconium oxide composite oxide having a CeO 2 content in the range of 15% by mass or more and 30% by mass and containing more ZrO 2 than CeO 2 is referred to as “ZC composite oxide”. Also called.
  • the content of the ZC composite oxide in the composition for the first catalyst section is preferably 30% by mass or more and 80% by mass or less, preferably 50% by mass, based on the solid content of the composition for the first purification catalyst section. It is more preferably 80% by mass or more, and further preferably 55% by mass or more and 75% by mass or less.
  • the composition for the first purification catalyst section may contain platinum group metals other than Rh and Pt.
  • the content of platinum group metals other than Rh and Pt in the composition for the first catalyst section is less than 50% by mass with respect to the total amount of platinum group metals contained in the composition for the first purification catalyst section. It is preferable to have. It is preferable that the composition for the first purification catalyst section contains substantially no Pd. The fact that the composition for the first catalyst part does not contain Pd substantially means that when Pd is contained with respect to the solid content of the composition for the first catalyst part, it is less than 0.1% by mass. It is preferable that Pd is 0% by mass with respect to the solid content of the composition for the first catalyst section.
  • Platinum group metals refer to Pt, Pd, Rh, Ir, Ru, and Os.
  • the composition for the second purification catalyst section or the composition for the purification catalyst section contains Pd and / or Pt.
  • the total content of Pd and Pt in the composition for the second purification catalyst section shall be 0.5% by mass or more and 8.0% by mass or less with respect to the solid content of the composition for the second purification catalyst section. Is more preferable, 0.8% by mass or more and 7.0% by mass or less is more preferable, and 1.5% by mass or more and 3.5% by mass or less is further preferable.
  • the composition for the second purification catalyst section preferably contains a cerium oxide - zirconium oxide composite oxide (CeO2 - ZrO2) having a CeO2 content in the range of 25% by mass to 55% by mass.
  • CZ composite oxide a cerium oxide-zirconium oxide composite oxide having a CeO 2 content in the range of 25% by mass to 55% by mass and containing ZrO 2 less than CeO 2
  • the content of the CZ composite oxide in the composition for the second catalyst section is preferably 20% by mass or more and 80% by mass or less, preferably 30% by mass, based on the solid content of the composition for the second purification catalyst section. It is more preferably 70% by mass or more, and further preferably 40% by mass or more and 60% by mass or less.
  • the composition for the second purification catalyst section may contain platinum group metals other than Pd and Pt.
  • the content of platinum group metals other than Pd and Pt in the composition for the second catalyst section is less than 50% by mass with respect to the total amount of platinum group metals contained in the composition for the second purification catalyst section. It is preferable to have. It is preferable that the composition for the second purification catalyst section or the composition for the purification catalyst section contains substantially no Rh.
  • the fact that the composition for the second purification catalyst section does not contain Rh substantially means that when Rh is contained in the solid content of the composition for the second purification catalyst section, it is less than 0.1% by mass. Rh is preferably 0% by mass with respect to the solid content of the composition for the second purification catalyst section.
  • the composition for the purification catalyst section, the composition for the first purification section, or the composition for the second purification catalyst section can be produced by any known means.
  • a compound containing a specific element of Rh, Pt or Pd is brought into contact with an inorganic oxide carrier (for example, a cerium oxide-zyryl oxide composite oxide) to obtain an inorganic oxide carrier carrying the specific element.
  • an inorganic oxide carrier for example, a cerium oxide-zyryl oxide composite oxide
  • the composition for a purification catalyst part containing this inorganic oxide carrier may be used.
  • Examples of the method for adhering the specific element to the inorganic oxide carrier include a vapor deposition method, an impregnation method, a precipitation method, an ion exchange method and the like.
  • Examples of the vapor deposition method include a method in which an inorganic oxide or a compound containing a specific element is placed in a container and heated at room temperature or heated to evaporate the compound containing the element and adhered to the inorganic oxide.
  • an impregnation method an inorganic oxide is immersed in a liquid obtained by mixing a compound containing the element and a solvent, and the mixed liquid is heated and dried under normal pressure or reduced pressure to convert the compound containing the element into an inorganic oxide.
  • the method of adhering can be mentioned.
  • Examples of the impregnation method include an impingient wetness method, an evaporation dry solid method, a pore-filling method, a spray method, and an equilibrium adsorption method.
  • the precipitation method examples include a kneading method and a deposition method.
  • the zeolite to which the compound containing the element is attached may be dried at a temperature of, for example, 80 ° C. or higher and 150 ° C. or lower, the drying time is 0.5 hours or more and 5 hours or less, and the drying pressure is as follows.
  • the pressure is not particularly limited, and the pressure may be atmospheric pressure (0.1 MPa) or the pressure may be reduced to 0.1 MPa or less.
  • the zeolite to which the element is attached may be dried and further heat-treated.
  • the heat treatment temperature may be in the range of 200 ° C. or higher and 800 ° C. or lower, or 400 ° C. or higher and 700 ° C. or lower, in order to prevent the pores of the zeolite from being damaged.
  • the purification catalyst unit includes a first purification catalyst unit containing at least one of Rh and Pt and a second purification catalyst unit containing at least one of Pd and Pt.
  • the composition for the first purification catalyst section may be applied onto the hydrocarbon adsorption section formed on the substrate, dried if necessary, and fired to form the first purification catalyst section. can.
  • the composition for the second purification catalyst section can be applied onto the first purification catalyst section, dried if necessary, and fired to form the second purification catalyst section.
  • the first purification catalyst unit and the second purification catalyst unit can discriminate by quantitatively analyzing the cross section of the exhaust gas purification catalyst cut by an electron probe microanalyzer (EPMA: Electron Probe Micro Analyzer).
  • EPMA Electron Probe Micro Analyzer
  • the platinum group metals contained are mainly Rh and Pt, and Pd is substantially not contained.
  • the content of Pd is 0.1% by mass with respect to 100% by mass of the solid content of the composition for the first catalyst section.
  • the platinum group metals contained are mainly Pd and Pt, and Rh is substantially not contained.
  • the cross section of the exhaust gas purification catalyst cut by the second purification catalyst section is quantitatively analyzed by EPMA, the content of Rh is 0.1% by mass with respect to the solid content of 100% by mass of the composition for the second catalyst section.
  • a purification catalyst composition containing Pd is applied onto the hydrocarbon adsorbing portion formed on the substrate. Then, if necessary, it can be dried and calcined to form a purification catalyst portion.
  • the purification catalyst unit can discriminate the cross section of the exhaust gas purification catalyst by quantitative analysis using an electron probe microanalyzer (EPMA: Electron Probe Micro Analyzer).
  • EPMA Electron Probe Micro Analyzer
  • the platinum group metals contained are mainly Pd and Pt, and Rh is substantially not contained.
  • the purification catalyst section refers to a portion where Rh is 0.1% by mass or less with respect to 100% by mass of the solid content of the composition for the purification catalyst section when the cross section obtained by cutting the exhaust gas purification catalyst is quantitatively analyzed by EPMA. ..
  • the exhaust gas purification catalyst can also be used in selective catalytic reduction (SCR) systems.
  • SCR selective catalytic reduction
  • SCR can reduce NOx to N 2 by reacting with a nitrogen compound such as ammonia or urea or a hydrocarbon.
  • the exhaust gas purification catalyst can be used to purify the exhaust gas of an internal combustion engine powered by fuel such as a gasoline engine or a diesel engine, and can adsorb and store hydrocarbons up to a relatively high temperature.
  • the removal performance and NOx reduction performance can be improved.
  • Exhaust gas purification system An exhaust gas purification system using the above-mentioned exhaust gas purification catalyst will be described. 4 to 6 show the exhaust gas purification system of the first to third examples of the present invention.
  • the exhaust gas purification system 100 of the first example includes an internal combustion engine 20, a first exhaust gas purification catalyst 40 provided on the upstream side in an exhaust gas flow path 30 connected to the internal combustion engine, and an exhaust gas flow.
  • a second exhaust gas purification catalyst 10 provided on the downstream side in the exhaust gas flow direction with respect to the first exhaust gas purification catalyst 40 is provided.
  • the second exhaust gas purification catalyst 10 is the exhaust gas purification catalyst 10 of the first or second example of the present invention described above.
  • the exhaust gas having a relatively high temperature of about 1000 ° C. discharged from the internal combustion engine 10 is the first.
  • the second exhaust gas purification catalyst 10 which is the above-mentioned exhaust gas purification catalyst, has a platinum group content in the range of 0.1 g / L or more and 3.0 g / L or less with respect to the volume of the second exhaust gas purification catalyst. ..
  • the content ratio of the platinum group metal in the second exhaust gas purification catalyst 10 which is the above-mentioned exhaust gas purification catalyst is within the range of 0.1 g / L or more and 3.0 g / L or less with respect to the volume of the second exhaust gas purification catalyst. If there is, the desorbed hydrocarbon can be purified more efficiently.
  • FIG. 4 shows an example in which the exhaust gas purification catalyst is two, the first exhaust gas purification catalyst 40 and the second exhaust gas purification catalyst 10, the exhaust gas purification catalyst may be three or more.
  • another exhaust gas purification catalyst may be provided on the downstream side in the exhaust gas flow direction with respect to the second exhaust gas purification catalyst 10.
  • the other exhaust gas purification catalyst provided on the downstream side of the second exhaust gas purification catalyst 10 may be the exhaust gas purification catalyst 10 of the first or second example of the present invention described above, or other exhaust gas purification catalysts. It may be a catalyst.
  • As the shape of the base material used for the other exhaust gas purification catalyst a wall flow type base material, a flow-through type base material, or the like can be appropriately used.
  • the exhaust gas purification system 200 of the second example includes an internal combustion engine 20 and a single exhaust gas purification catalyst 10 provided in an exhaust gas flow path 30 connected to the internal combustion engine, and exhaust gas.
  • the purification catalyst 10 is the exhaust gas purification catalyst of the present invention described above. Since the exhaust gas purification system 200 of the second example of the present invention includes the exhaust gas purification catalyst 10 of the present invention having high hydrocarbon removal performance, the exhaust gas purification performance is improved when applied to an internal combustion engine having a relatively small exhaust amount. Since the number of exhaust gas purification catalysts 10 can be made single while being sufficient, both high purification performance and low cost can be achieved at the same time.
  • the exhaust gas purification system 300 of the third example includes an internal combustion engine 20 and a plurality of exhaust gas purification catalysts 10, 50, 60 in an exhaust gas flow path 30 connected to the internal combustion engine.
  • the first exhaust gas purification catalyst 10 arranged on the most upstream side in the exhaust gas flow direction is the exhaust gas purification catalyst of the present invention described above.
  • three exhaust gas purification catalysts of the most upstream exhaust gas purification catalyst 10, the second exhaust gas purification catalyst 50, and the third exhaust gas purification catalyst 60 are provided in the exhaust gas flow path 30. An example is shown.
  • the exhaust gas purification system 300 may include two or more exhaust gas purification catalysts in the exhaust gas flow path 30, and the number of exhaust gas purification catalysts is not limited.
  • the exhaust gas purification system 300 of the third example of the present invention includes a plurality of exhaust gas purification catalysts in the exhaust gas flow path 30, and the first exhaust gas purification catalyst 10 arranged on the most upstream side is the exhaust gas purification catalyst of the present invention. , The desorbed hydrocarbon can be purified more efficiently with the downstream exhaust gas purification catalyst.
  • the combustion exhaust gas containing a hydrocarbon is brought into contact with the exhaust gas purification catalyst of the embodiment of the present invention to bring a hydrocarbon into contact with each other. Is adsorbed on the exhaust gas purification catalyst, and then the hydrocarbon is desorbed from the exhaust gas purification catalyst at a temperature of 200 ° C. or higher.
  • MSE-type zeolite Deionized water pure water
  • potassium hydroxide aluminum hydroxide
  • Oct-7-en-2 , 3 5,6-Dipyrrolidinium and colloidal silica (LUDOX® HS-40, manufactured by Sigma-Aldrich Japan Co., Ltd.) are prepared and mixed, and the molar ratio of each raw material is as follows. A raw material composition having a composition was obtained.
  • the obtained raw material composition was filled in a closed container and allowed to stand, and then heated at 160 ° C. for 16 days to crystallize.
  • the raw material composition after crystallization was separated into solid and liquid, washed with deionized water, and the crystals were recovered.
  • the obtained crystals were dried at 100 ° C. for 8 hours and heat-treated at 600 ° C. for 1 hour in an air atmosphere to obtain MSE-type zeolite. It was confirmed by measuring using a powder X-ray diffractometer that the obtained zeolite was of the MSE type.
  • the zeolite is an MSE type zeolite.
  • the diffraction angle (2 ⁇ ) position of the diffraction peak in the X-ray diffraction spectrum is the same as the diffraction angle (2 ⁇ ) position of the diffraction peak in the X-ray diffraction spectrum published by the International Society of Zeolles.
  • FIG. 7 shows the X-ray diffraction spectrum of the obtained MSE-type zeolite.
  • the obtained raw material composition was filled in a closed container and allowed to stand, and then heated at 150 ° C. for 7 days to crystallize.
  • the raw material composition after crystallization was separated into solid and liquid, washed with deionized water, and the crystals were recovered.
  • the obtained crystals were dried at 100 ° C. for 8 hours and heat-treated at 600 ° C. for 1 hour in an air atmosphere to obtain an EON-type zeolite. It was confirmed by measuring using a powder X-ray diffractometer that the obtained zeolite was of the EON type.
  • the zeolite is an EON type zeolite.
  • the diffraction angle (2 ⁇ ) position of the diffraction peak in the X-ray diffraction spectrum is the same as the diffraction angle (2 ⁇ ) position of the diffraction peak in the X-ray diffraction spectrum published by the International Society of Zeolles.
  • FIG. 8 shows the X-ray diffraction spectrum of the obtained EON-type zeolite.
  • Example 1 Production of Hydrocarbon Adsorbent 1 g of the obtained MSE-type zeolite is immersed in 10 g of a 1 mol / L ammonium chloride aqueous solution at 80 ° C., solid-liquid separated, and washed with deionized water to obtain NH4 type MSE - type zeolite.
  • rice field. 1 g of the obtained NH4 type MSE - type zeolite was immersed in 100 g of a 0.25 mol / L cupric acetate (II) aqueous solution at 60 ° C., solid-liquid separated, washed with deionized water, and the wet powder was recovered. The obtained wet powder was dried at 100 ° C.
  • II cupric acetate
  • Example 2 1 g of the obtained MSE-type zeolite was immersed in 10 g of a 1 mol / L ammonium chloride aqueous solution at 80 ° C., separated into solid and liquid, and washed with deionized water to obtain NH4 type MSE - type zeolite. 1 g of the obtained NH4 type MSE type zeolite was immersed in 100 g of a 0.25 mol / L cesium chloride aqueous solution, separated into solid and liquid, and washed with deionized water to obtain a wet Cs type MSE type zeolite. .. The obtained Cs-containing MSE-type zeolite was dried at 100 ° C.
  • Example 3 1 g of the obtained EON-type zeolite was immersed in 10 g of a 1 mol / L ammonium chloride aqueous solution at 60 ° C., separated into solid and liquid, and washed with deionized water to obtain NH4 type EON - type zeolite. 1 g of the obtained NH4 type EON type zeolite was immersed in 2.5 g of 1 mol / L sulfuric acid at 60 ° C., separated into solid and liquid, and washed with deionized water to obtain an H type EON type zeolite.
  • the MSE-type zeolite was ion-exchanged with Cs and H.
  • the composition of the MFI-type zeolite containing Cs was as shown in the molar ratio below.
  • Comparative Example 4 The wet powder of NH4 type MSE type zeolite obtained in Example 1 described above was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere to obtain a hydrocarbon adsorbent as it was.
  • SiO 2 / Al 2 O 3 molar ratio scanning fluorescent X-ray analyzer ZSX PrimusII, manufactured by Rigaku Co., Ltd.
  • Si amount and Al amount in the measurement sample were measured by elemental analysis, and the measured Si amount and Al amount were measured.
  • the SiO 2 / Al 2 O 3 ratio was calculated from the amount.
  • Cu / Al ratio Using the above-mentioned scanning fluorescent X-ray analyzer, the amount of Cu and the amount of Al in the measurement sample were measured by elemental analysis, and the amount of Cu and Cu / Al were calculated. In Table 1, the amount of Cu is shown as the metal content ratio, and Cu / Al is shown as the metal / Al ratio.
  • Cs / Al ratio Using the above-mentioned scanning fluorescent X-ray analyzer, the amount of Cs and the amount of Al in the measurement sample were measured by elemental analysis, and Cs / Al was calculated. In Table 1, the amount of Cs is described as the metal content ratio, and Cs / Al is described as the metal / Al ratio.
  • Toluene Desorption Amount / Adsorption Amount Each of the hydrocarbon adsorbents of Examples and Comparative Examples is heated from 50 ° C. to 500 ° C. while flowing toluene by a temperature rise reaction method, and the toluene adsorption temperature, desorption temperature, and adsorption are performed. The amount and the amount of desorption were measured. Specifically, 0.1 g of a measurement sample of each hydrocarbon adsorbent is filled in a quartz reaction tube of a flow reaction device, and a fixed bed flow reaction device is used as the flow reaction device, and an evaluation gas containing 71 ppm of toluene is used. Toluene was adsorbed and desorbed by raising the temperature from 50 ° C.
  • Adsorbed hydrocarbons are desorbed in the region where a value equal to or greater than the amount distributed to the hydrocarbon adsorbent is detected.
  • Peak intensity ratio of X-ray diffraction spectrum The hydrocarbon adsorbents before and after the heat treatment of Examples 1, 2 and 4 and Comparative Examples 1 to 4 were measured using an X-ray diffractometer (model number: MiniFlex600, manufactured by Rigaku). The peak intensity ratio of the X-ray diffraction spectrum before and after the heat treatment was calculated by the following formula.
  • Peak intensity ratio (%) (peak intensity after heat treatment / peak intensity before heat treatment) ⁇ 100
  • the hydrocarbon adsorbents of Examples 1 to 4 desorb / adsorb toluene as compared with the zeolites of Comparative Examples 2 to 4.
  • toluene can be stored up to a temperature of about 200 ° C, and toluene from the hydrocarbon adsorbent can be stored at a relatively high temperature of 200 ° C or higher. It was confirmed that it was possible to desorb.
  • hydrocarbon adsorbents of Examples 1, 2 and 4 have a higher peak intensity ratio of the X-ray diffraction spectrum than the zeolite of Comparative Example 1, and the crystals are maintained even after the heat treatment and are excellent in heat resistance.
  • zeolite has a low skeleton density (total amount of Si and Al per unit volume), and the larger the amount of metal introduced, the lower the heat resistance.
  • the MSE-type zeolite or the EON-type zeolite, which are multipore zeolites have a higher skeleton density than the BEA-type zeolite and the MFI-type zeolite, and are therefore considered to be more excellent in heat resistance.
  • Example 3 Although the hydrocarbon adsorbent of Example 3 has not measured the peak intensity ratio, it is considered that the value of the peak intensity ratio is at least higher than that of the BEA type zeolite of Comparative Example 1. This is because, when Example 3 and Comparative Example 1 are compared, the amount of metal is the same, but the skeleton density is high.
  • Example 5 1 g of the obtained MSE-type zeolite was immersed in 10 g of a 1 mol / L ammonium chloride aqueous solution at 80 ° C., separated into solid and liquid, and washed with deionized water to obtain NH4 type MSE - type zeolite. 1 g of the obtained NH4 type MSE type zeolite was immersed in 9.5 g of a 0.05 mol / L cupric acetate (II) aqueous solution at 60 ° C., solid-liquid separated, washed with deionized water, and the wet powder was recovered. did. The obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C.
  • II 0.05 mol / L cupric acetate
  • Example 6 NH4 type MSE type zeolite was obtained in the same manner as in Example 5 .
  • the Cu ion-exchanged MSE-type zeolite was prepared in the same manner as in Example 5 except that 1 g of the obtained NH4 type MSE - type zeolite was immersed in 6 g of a 0.05 mol / L copper acetate (II) aqueous solution at 60 ° C. Obtained.
  • Example 8 NH4 type MSE type zeolite was obtained in the same manner as in Example 5 . 1 g of the obtained NH4 type MSE type zeolite was immersed in 10 g of 0.1 mol / L sulfuric acid at 80 ° C., separated into solid and liquid, and washed with deionized water to obtain an H type MSE type zeolite. 1 g of the obtained H-type MSE-type zeolite was impregnated into 1 g of a 0.2 mol / L cupric acetate (II) aqueous solution, and the wet powder was recovered. The obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • II cupric acetate
  • Example 9 NH4 type MSE type zeolite was obtained in the same manner as in Example 5 .
  • 1 g of the obtained NH4 type MSE type zeolite was immersed in 10 g of 1 mol / L sulfuric acid at 80 ° C., separated into solid and liquid, and washed with deionized water to obtain an H type MSE type zeolite.
  • 1 g of the obtained H-type MSE-type zeolite was impregnated into 1 g of a 0.2 mol / L cupric acetate (II) aqueous solution, and the wet powder was recovered.
  • the obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • Example 10 NH4 type MSE type zeolite was obtained in the same manner as in Example 5 .
  • 1 g of the obtained NH4 type MSE type zeolite was immersed in 10 g of 3 mol / L sulfuric acid at 80 ° C., separated into solid and liquid, and washed with deionized water to obtain an H type MSE type zeolite.
  • 1 g of the obtained H-type MSE-type zeolite was impregnated into 1 g of a 0.2 mol / L cupric acetate (II) aqueous solution, and the wet powder was recovered.
  • the obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • Example 11 NH4 type MSE type zeolite was obtained in the same manner as in Example 5 . 1 g of the obtained NH4 type MSE type zeolite was immersed in 10 g of 5 mol / L sulfuric acid at 80 ° C., separated into solid and liquid, and washed with deionized water to obtain an H type MSE type zeolite. 1 g of the obtained H-type MSE-type zeolite was impregnated into 1 g of a 0.2 mol / L cupric acetate (II) aqueous solution, and the wet powder was recovered. The obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • II cupric acetate
  • Example 12 1 g of the obtained MSE-type zeolite was immersed in 6.7 g of 6 mol / L sulfuric acid at 100 ° C., separated into solid and liquid, and washed with deionized water to obtain an H-type MSE-type zeolite. 1 g of the obtained H-type MSE-type zeolite was suspended in 5.8 g of a 0.05 mol / L cupric acetate (II) aqueous solution, and the wet powder was recovered by evaporation to dryness. The obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • II 0.05 mol / L cupric acetate
  • Example 13 1 g of the obtained MSE-type zeolite was immersed in 6.7 g of 6 mol / L sulfuric acid at 100 ° C., separated into solid and liquid, and washed with deionized water to obtain an H-type MSE-type zeolite. 1 g of the obtained H-type MSE-type zeolite was suspended so as to be 5.2 g of a mixed aqueous solution of 0.03 mol / L gallium nitrate (III) and 0.015 mol / L platinum nitrate, and a wet powder was evaporated to dryness. Was recovered. The obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • MSE-type zeolite containing Ga and Pt having the following molar ratio composition.
  • MSE-type zeolite containing Ga and Pt was used as a hydrocarbon adsorbent.
  • Example 14 1 g of the obtained MSE-type zeolite was immersed in 6.7 g of 6 mol / L sulfuric acid at 100 ° C., separated into solid and liquid, and washed with deionized water to obtain an H-type MSE-type zeolite. 1 g of the obtained H-type MSE-type zeolite was suspended in 11 g of a 0.05 mol / L tin (II) acetate aqueous solution, and the wet powder was recovered by evaporation to dryness. The obtained wet powder was dried at 100 ° C. for 8 hours and heat-treated at 550 ° C. for 3 hours in an air atmosphere.
  • II 0.05 mol / L tin
  • an MSE-type zeolite containing Sn having the following molar ratio composition was obtained.
  • the obtained MSE-type zeolite containing Sn was used as a hydrocarbon adsorbent.
  • the measurement sample, the measurement of the SiO 2 / Al 2 O 3 molar ratio, and the Cu / Al ratio were measured in the same manner as in Examples 1 to 4 and Comparative Example.
  • the measurement and the measurement of the Cs / Al ratio were performed.
  • Ga / Al ratio and Pt / Al ratio Using the above-mentioned scanning fluorescent X-ray analyzer, the Ga amount, Pt amount and Al amount in the measurement sample are measured by elemental analysis, and Ga / Al and Pt / Al are calculated. did.
  • the amount of Ga was 1.9% by mass
  • the amount of Pt was 1.3% by mass
  • Ga / Al was 1.74
  • Pt / Al was 0.42, respectively.
  • Table 2 the total amount of Ga and Pt is shown as the metal content ratio
  • the total amount of Ga / Al and Pt / Al is shown as the metal / Al ratio.
  • Sn / Al ratio Using the above-mentioned scanning fluorescent X-ray analyzer, the Sn / Al amount in the measurement sample was measured by elemental analysis, and Sn / Al was calculated. In Table 2, the Sn amount is described as the metal content ratio, and Sn / Al is described as the metal / Al ratio.
  • Amount of Toluene Desorption / Adsorption Amount Each of the hydrocarbon adsorbents of Examples 5 to 14 and Comparative Example 5 is heated from 50 ° C. to 500 ° C. while flowing toluene and water by a temperature rise reaction method, and the adsorption temperature of toluene is obtained. , Desorption temperature, adsorption amount and desorption amount were measured. Specifically, 0.1 g of a measurement sample of each hydrocarbon adsorbent is filled in a quartz reaction tube of a flow reaction device, and 71 ppm of toluene is contained using a fixed bed flow type reaction device as a flow reaction device.
  • the ratio of the total molar amount ZD 2 (ZD 2 / ZD 1 ⁇ 100) desorbed from the hydrocarbon adsorbent at 170 ° C. or lower to the total molar amount ZD 1 of toluene adsorbed at 50 ° C. or higher and lower than 170 ° C. is the ratio of toluene desorption. It was defined as the release amount / adsorption amount. The results are shown in Table 2.
  • the adsorption / desorption behavior of toluene in the presence of water is complicated by the occurrence of adsorption / desorption / readsorption, and the adsorption / desorption / readsorption behavior depends on the SiO 2 / Al2O3 ratio, the amount of metal and the type of metal.
  • the evaluation was performed based on 170 ° C, which is a temperature that can be compared only by adsorption / desorption.
  • Gas for evaluation of measurement conditions Toluene 71 ppm, the balance is nitrogen (N 2 ).
  • Atmosphere An atmosphere containing 10% by volume of water vapor ( H2O ), an atmosphere containing 10% by volume of water vapor is prepared by vaporizing water vapor from a water-filled tank and adjusting the saturated water vapor pressure according to the temperature.
  • BET specific surface area For each of the hydrocarbon adsorbents of Examples 5, 11, 13, 14 and Comparative Example 5, the BET specific surface area was determined by the BET method from the nitrogen adsorption isotherm measured in accordance with ISO 9277 (JIS Z8330: 2013). Calculated.
  • the hydrocarbon adsorbents of Examples 5 to 12 have a lower toluene desorption / adsorption amount than the zeolite of Comparative Example 5. It is a value, that is, the amount of desorption is smaller than the amount of adsorption, and toluene can be stored up to a temperature of about 170 ° C, which makes it easy to evaluate the behavior of adsorption and desorption of toluene on the hydrocarbon adsorbent. It was confirmed that toluene can be desorbed from the hydrocarbon adsorbent at a relatively high temperature of 170 ° C. or higher.
  • hydrocarbon adsorbents of Examples 12 to 14 had heat resistance because the amount of toluene desorbed and adsorbed even after the heat treatment.
  • the zeolite of Comparative Example 5 did not adsorb toluene after the heat treatment.
  • the hydrocarbon adsorbents of Examples 12 to 14 have a higher peak intensity ratio of the X-ray diffraction spectrum than the zeolite of Comparative Example 5, and the crystals are maintained even after the heat treatment to improve the heat resistance. It was confirmed to be excellent.
  • the hydrocarbon adsorbents of Examples 13 and 14 have a BET specific surface area ratio B / A of 0.5 or more and 0.9 or less before and after the heat treatment, and are before and after the heat treatment.
  • the structure of the multipore zeolite used as the hydrocarbon adsorbent did not change much, and the structure was maintained and had heat resistance.
  • the hydrocarbon adsorbent according to the present disclosure can adsorb hydrocarbons and store the adsorbed hydrocarbons up to a relatively high temperature, and desorbs the adsorbed and stored hydrocarbons at a relatively high temperature in which the catalyst can be activated. Since it can be separated, the exhaust gas purification performance can be improved when it is used as a hydrocarbon adsorption portion of the exhaust gas purification catalyst. Further, the exhaust gas purification catalyst using the hydrocarbon adsorbent can be suitably used for purifying the exhaust gas discharged from the internal combustion engine such as a motorcycle or a motorcycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

炭化水素を吸着し、比較的高い温度まで吸着した炭化水素を貯蔵することができ、比較的高い温度で吸着し貯蔵した炭化水素を脱離することができる炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システムを提供する。 周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択された少なくとも1種の金属をゼオライト骨格外に含むマルチポアゼオライトを含有し、前記金属の含有割合が、前記金属を含むマルチポアゼオライトに対して9質量%以下である、炭化水素吸着材である。

Description

炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム
 本発明は、自動車等の内燃機関から排出される排ガス中の炭化水素を、吸着し貯蔵することができる炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システムに関する。
 ガソリンを燃料とする自動車等の内燃機関の排ガス中には、未燃燃料による炭化水素(HC)、不完全燃焼による一酸化炭素(CO)、過度の燃焼温度による窒素酸化物(NOx)等の有害成分が含まれている。このような内燃機関からの排ガスを処理するために、排ガス浄化触媒が用いられている。このような排ガス浄化触媒は、例えば炭化水素(HC)は酸化して水と二酸化炭素(CO)に転化させ、COは酸化してCOに転化させ、NOxは還元して窒素に転化させて浄化する。このような排ガス浄化触媒には、例えば白金族金属が用いられ、なかでも、特に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の白金族金属が用いられている。また、排ガス浄化触媒は、構成成分として、排ガス中の炭化水素を吸着し貯蔵する性能を有する炭化水素吸着材が用いられている。
 このような排ガス浄化触媒は、例えば内燃機関のコールドスタート状態のような低温の環境においては、比較的排ガスの処理が非効率であることが知られている。特許文献1には、コールドスタート状態での排ガス浄化の効率を向上するために、卑金属と貴金属とゼオライトとを含むゼオライト触媒と、1種又は複数の白金族金属と、1種又は複数の無機酸化物担体と、を含む担持白金族金属触媒とを含む、コールドスタート触媒が開示されている。特許文献1には、コールドスタート触媒に含まれるゼオライトとして、例えばBEA型ゼオライト、MFI型ゼオライト、CHA型ゼオライト等が開示されている。
特表2014-519975号公報
 しかしながら、特許文献1に開示されているコールドスタート触媒は、コールドスタート状態において炭化水素を貯蔵した後、高温な排ガスが流入されて触媒が温まると、触媒が十分に活性化する前に、貯蔵した炭化水素が脱離してしまうため、炭化水素が浄化されずに排出されてしまう場合がある。炭化水素吸着材は、触媒が活性化するために十分な温度まで、炭化水素を吸着し貯蔵することができ、触媒が活性化する温度で、吸着し貯蔵した炭化水素の脱離を可能とする性能が求められている。また、排ガス浄化触媒は、高温の排ガスにさらされるため、耐熱性が高いゼオライトを用いた炭化水素吸着材も求められている。
 そこで本発明は、炭化水素を吸着し、比較的高い温度まで吸着した炭化水素を貯蔵することができ、比較的高い温度で炭化水素を脱離することができ、しかも耐熱性に優れる炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システムを提供することを目的とする。
 本発明は、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択された少なくとも1種の金属をゼオライト骨格外に含むマルチポアゼオライトを含有し、前記金属の含有割合が、前記金属を含むマルチポアゼオライトに対して9質量%以下である炭化水素吸着材を提供する。
 本発明は、基材と、前記基材上に前記炭化水素吸着材を含む炭化水素吸着部と、前記炭化水素吸着部上に浄化触媒部と、を備えた、排ガス浄化触媒を提供する。
 本発明は、基材と、前記基材上に前記炭化水素吸着材と、Rhとを含む炭化水素吸着部と、前記炭化水素吸着部上にPdを含む浄化触媒部と、を備えた、排ガス浄化触媒を提供する。
 本発明は、内燃機関と、前記内燃機関に接続された排ガス流路内の上流側に設けられた第1排ガス浄化触媒と、前記排ガス流路内において、前記第1排ガス浄化触媒よりも排ガス流れ方向の下流側に設けられた第2排ガス浄化触媒と、を備える排ガス浄化システムであって、前記第2排ガス浄化触媒が、前記排ガス浄化触媒であり、前記第2排ガス浄化触媒中の白金族金属の含有割合が、前記第2排ガス浄化触媒の体積に対して0.1g/L以上3.0g/L以下である、排ガス浄化システムを提供する。
 本発明は、内燃機関と、前記内燃機関に接続された排ガス流路内に単一の排ガス浄化触媒と、を備える排ガス浄化システムであって、前記排ガス浄化触媒が、上述の排ガス浄化触媒である排ガス浄化システムを提供する。
 本発明は、内燃機関と、前記内燃機関に接続された排ガス流路内に設けられた複数の排ガス浄化触媒と、を備える排ガス浄化システムであって、前記複数の排ガス浄化触媒のうち、排ガス流れ方向の最も上流側に配置された第1排ガス浄化触媒が、前記排ガス浄化触媒である排ガス浄化システムを提供する。
 本発明は、炭化水素を含む燃焼排ガスと、前記排ガス浄化用触媒とを接触させて、炭化水素を前記排ガス浄化用触媒に吸着させた後、170℃以上の温度で前記排気ガス浄化用触媒から炭化水素を脱離させることを含む、排ガスを処理するための方法を提供する。燃焼排ガス中に水が含まれていると、炭化水素は、200℃以下の温度で排ガス浄化用触媒に吸着と、脱離と、再吸着と、を繰り返すため、炭化水素の吸着及び脱離の挙動が複雑となる傾向がある。燃焼排ガス中に水が含まれている場合であっても、170℃以下の温度であれば、炭化水素は排ガス浄化用触媒に再吸着することなく、排ガス浄化用触媒に炭化水素が吸着又は脱離する。170℃以下の温度を基準とすれば、燃焼排ガス中に水が含まれている場合であっても炭化水素の排ガス浄化触媒への再吸着を考慮せずに、炭化水素の排気ガス浄化触媒への吸着又は脱離の評価を行うことができる。本発明は、170℃の温度を基準にして、活性化するまで炭化水素を吸着し貯蔵しておくこと可能となり、活性化後は、吸着した炭化水素を脱離して浄化を行うことができる排ガスを処理するための方法を提供する。
 本発明が提供する炭化水素吸着材は、特定の金属をゼオライト骨格外に含有するマルチポアゼオライトを含有し、比較的高い温度まで炭化水素を吸着し貯蔵することができ、例えば170℃以上の高い温度で貯蔵された炭化水素を脱離させることができる。また、この炭化水素吸着材は耐熱性にも優れ、この炭化水素吸着材を用いた排ガス浄化触媒及びその排ガス浄化触媒を含む排ガス浄化システムにおいて、炭化水素の除去性能を向上することができる。
図1は、排ガス浄化触媒を示す概略斜視図である。 図2は、排ガス浄化触媒の第一例を示し、断面の一部の拡大図である。 図3は、排ガス浄化触媒の第二例を示し、断面の一部の拡大図である。 図4は、排ガス浄化システムの第一例を示す概略構成図である。 図5は、排ガス浄化システムの第二例を示す概略構成図である。 図6は、排ガス浄化システムの第三例を示す概略構成図である。 図7は、得られたMSE型ゼオライトのX線回折スペクトルを示す。 図8は、得られたEON型ゼオライトのX線回折スペクトルを示す。
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
 本発明の実施態様の一例は、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の金属をゼオライト骨格外に含むマルチポアゼオライトを含有し、前記金属の含有割合が、前記金属を含むマルチポアゼオライトに対して9質量%以下である。炭化水素吸着材が、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の金属をゼオライト骨格外に含むマルチポアゼオライトを含有することによって、例えば50℃程度の比較的低温で、炭化水素を吸着し、例えば200℃までの比較的高い温度まで炭化水素を貯蔵することができ、例えば200℃を超える比較的高い温度で貯蔵した炭化水素を脱離させることができる。また、排ガス中に水分が含まれる場合は、炭化水素吸着材の炭化水素の吸着と脱離と再吸着のうち、再吸着を考慮せずに炭化水素の吸着と脱離を評価できる170℃までの比較的高い温度まで炭化水素を貯蔵することができ、170℃を超える温度で貯蔵した炭化水素を脱離させることができる。
 ゼオライトは、SiO及びAlO四面体の繰り返し単位で構成された結晶性又は準結晶性のアルミノケイ酸塩の結晶構造を有する。ゼオライトの骨格構造を形成する単位をTO単位と記載する場合がある。ゼオライトの骨格構造は、国際ゼオライト学会で定義されたアルファベット大文字3文字の構造コードが付与されている。この構造は、国際ゼオライト学会の構造委員会によるデータベース(Databese of Zeolite Structures、Structure Commission of the Intenational Zeolite Association)により確認することができる。
 マルチポアゼオライトは、大きさが異なる複数種の細孔構造を有するゼオライトである。本発明の実施態様で用いるマルチポアゼオライトとしては、細孔構造として、大細孔のトンネル型細孔、小細孔のケージとを含有するゼオライトが挙げられる。トンネル型細孔は、直線型細孔ともいう場合があり、本明細書において、「トンネル型(直線型)細孔」と記載する場合がある。また、マルチポアゼオライトは、大細孔のケージをさらに含有してもよい。大細孔のトンネル型(直線型)細孔としては、最大12員環のトンネル型(直線型)細孔、及び最大10員環のトンネル型(直線型)細孔など、10員環以上の環を有するトンネル型(直線型)細孔が挙げられる。大細孔のケージとしては、最大10員環のケージなど、10員環以上の環を有するケージが挙げられる。小細孔のケージとしては、最大8員環であるケージ及び最大6員環であるケージなど、最大環が8員環以下であるケージが挙げられる。本発明の実施態様で用いるマルチポアゼオライトとしては、例えば、最大12員環であるトンネル型(直線型)細孔、最大10員環であるケージ及び最大6員環であるケージ(6員環及び4員環からなるケージ)を有するMSE型ゼオライト、最大12員環であるトンネル型(直線型)細孔及び最大8員環であるケージ(8員環、6員環及び4員環からなるケージ)を有するEON型ゼオライト、最大12員環であるトンネル型(直線型)細孔及び最大8員環であるケージを有するMOR型ゼオライトが挙げられる。なかでも、最大12員環であるトンネル型(直線型)細孔、最大10員環であるケージ及び最大6員環であるケージを有するMSE型ゼオライト及び最大12員環であるトンネル型(直線型)細孔及び最大8員環であるケージを有するEON型ゼオライトが好ましく、MSE型ゼオライトが特に好ましい。なお、最大12員環のトンネル型(直線型)細孔のみであるBEA型ゼオライトや、最大10員環のトンネル型(直線型)細孔のみであるMFI型ゼオライトなどは、細孔構造の種類が1つのみであるため、マルチポアゼオライトには該当しない。
 MSE型ゼオライトは、最大12員環のトンネル型(直線型)、最大10員環であるケージ細孔及び最大6員環であるケージ(6員環及び4員環からなるケージ)を有する。典型的なMSE型ゼオライトの結晶構造は、正方晶系(tetragonal)、P4/mnm空間群に属する。なお、空間群は、MSE型ゼオライトを金属イオンで修飾すると変化することがある。また、典型的なMSE型ゼオライトは、単位格子の軸の長さを示す格子定数aが18.2461オングストローム(a=18.2461Å)、格子定数bが18.2461オングストローム(b=18.2461Å)、格子定数cが20.5569オングストローム(c=20.5569Å)であり、単位格子の軸間の角度を示すα、β、γは、それぞれ90度(α=90.000°、β=90.000°、γ=90.000°)である。ゼオライトの結晶構造は、国際ゼオライト学会の構造委員会によるデータベース(Databese of Zeolite Structures、Structure Commission of the Intenational Zeolite Association)を参照することができる。
 EON型ゼオライトは、最大12員環であるトンネル型(直線型)細孔及び最大8員環であるケージ(8員環、6員環及び4員環からなるケージ)を有する。典型的なEON型ゼオライトの結晶構造は、直方晶系(orthorhombic)、Pmmn空間群に属する。なお、空間群は、EON型ゼオライトを金属イオンで修飾すると変化することがある。また、典型的なEON型ゼオライトは、単位格子の軸の長さを示す格子定数aが7.5709オングストローム(a=7.5709Å)、格子定数bが18.1480オングストローム(b=18.1480Å)、格子定数cが25.9324オングストローム(c=25.9324Å)であり、単位格子の軸間の角度を示すα、β、γは、それぞれ90度(α=90.000°、β=90.000°、γ=90.000°)である。
 マルチポアゼオライトのSiO/Alモル比は、10以上600以下であることが好ましい。マルチポアゼオライトのSiO/Alモル比は、12以上であってもよく、15以上であってもよく、18以上であってもよく、20以上であってもよく、500以下であってもよく、400以下であってもよく、300以下であってもよく、250以下であってもよい。マルチポアゼオライトのSiO/Alモル比は、12以上500以下であることがより好ましく、13以上400以下の範囲であることがよりさらに好ましく、15以上250以下の範囲であることが特に好ましい。マルチポアゼオライトのSiO/Alモル比が10以上であると、結晶構造が安定であり、優れた耐熱性を有する。また、マルチポアゼオライトのSiO/Alモル比が600以下であると、周期表で3~12に族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の金属イオンが、マルチポアゼオライトのAl原子に隣接するブレンステッド酸点となる酸素原子を含む基でイオン交換されやすくなり、ゼオライト骨格外に含有される。マルチポアゼオライト又は後述する炭化水素吸着材に含まれるSiO/Alモル比は、例えば走査型蛍光X線分析装置(ZSX Primus II、株式会社リガク製)を用いた元素分析によりSi量及びAl量を測定し、得られたSi量及びAl量から、SiO/Alモル比を測定することができる。
 本発明の実施態様の一例は、マルチポアゼオライトが、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の金属をゼオライト骨格外に含有する。当該金属は、マルチポアゼオライトに対してイオン交換により導入されることが好ましいが、マルチポアゼオライトに対して酸化物として修飾するものであってもよい。イオン交換により導入される金属と、酸化物として修飾する金属とが混在してもよい。マルチポアゼオライトが当該金属のイオンでイオン交換された場合には、マルチポアゼオライトの細孔に存在するカチオンが酸点として機能し、炭化水素を化学吸着できる。塩基性であるアンモニウムイオンで交換されたマルチポアゼオライトに対し金属イオン交換することで、プロトン(H)の生成を最小限に抑えることができ、またpH4以上の高いpHでマルチポアゼオライトのイオン交換することで、ゼオライト骨格の水酸基の生成を抑制することができるため、マルチポアゼオライトは、例えば50℃程度の比較的低い温度で優先的に炭化水素を吸着し、例えば200℃以上の比較的高い温度まで炭化水素を貯蔵することができ、例えば200℃を超える比較的高い温度で炭化水素を脱離させることができる。また、排ガス中に水分が含まれる場合は、マルチポアゼオライトが、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の金属をゼオライト骨格外に含有することによって、マルチポアゼオライトは、炭化水素の吸着と脱離と再吸着のうち、再吸着を考慮せずに炭化水素の吸着と脱離を評価できる170℃までの比較的高い温度まで炭化水素を貯蔵することができ、170℃を超える温度で貯蔵した炭化水素を脱離させることができる。
 マルチポアゼオライトは、ゼオライト細孔内のイオン交換サイトが、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の金属でイオン交換される場合がある。「ゼオライト細孔内のイオン交換サイト」は、具体的には、骨格を構成するTサイトの一部であるAl原子に隣接するブレンステッド酸点となる酸素原子を含む基を意味する。つまり、マルチポアゼオライトは、ゼオライトの骨格を構成するSiO及びAlO四面体の繰り返し単位のブレンステッド酸点でイオン交換され、ゼオライト骨格外に特定の金属を含有する。マルチポアゼオライトのイオン交換サイトに、金属がイオン交換され、ゼオライト骨格外に金属が存在することにより、炭化水素が優先的に吸着され、炭化水素の吸着能を向上することができる。
 マルチポアゼオライトのゼオライト骨格外に含まれる周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも1種の金属の含有割合は、金属を含むマルチポアゼオライトに対して9質量%以下であり、8質量%以下が好ましく、7質量%以下がより好ましく、1質量%以上であってもよく、1.2質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。マルチポアゼオライトに含まれる特定の金属の含有割合が9質量%以下であると、金属を含有するマルチポアゼオライトの耐熱性の低下を抑制できる。特に、特定の金属をマルチポアゼオライト骨格中のSiと置換させる態様で導入し、金属の含有量が増加してしまうと、マルチポアゼオライトの耐熱性が低下しやすくなるため好ましくない。マルチポアゼオライトに複数種の特定の金属が含まれる場合には、金属の含有割合は、複数種の特定の金属の合計を意味する。
 マルチポアゼオライトに含まれる周期表で3~12族に属する遷移金属は、鉄(Fe)、パラジウム(Pd)、ロジウム(Rh)、白金(Pt)、マンガン(Mn)、ニッケル(Ni)、亜鉛(Zn)、銀(Ag)、銅(Cu)、チタン(Ti)、バナジウム(V)、クロム(Cr)、コバルト(Co)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、及びルテニウム(Ru)からなる群から選択される少なくとも1種の元素が挙げられる。本明細書において、周期表で12族金属も遷移金属に含まれるものとする。マルチポアゼオライトに含まれる周期表で13族及び14族に属する両性金属はアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、ゲルマニウム(Ge)、スズ(Sn)、及び鉛(Pb)からなる群から選択される少なくとも1種の元素が挙げられる。ゼオライト骨格外に含まれる周期表で13族及び14族に属する両性金属は、アルミニウム(Al)を含んでいなくてもよく、ゼオライト骨格外に含まれる周期表で13族及び14族に属する両性金属は、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、ゲルマニウム(Ge)、スズ(Sn)、及び鉛(Pb)からなる群から選択される少なくとも1種の元素であってもよい。マルチポアゼオライトに含まれるアルカリ金属は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群から選択される少なくとも1種のイオンであることが好ましい。マルチポアゼオライトに含まれるアルカリ土類金属は、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群から選択される少なくとも1種であることが好ましい。マルチポアゼオライトに含まれる金属は、Fe、Pd、Rh、Pt、Mn、Ni、Zn、Ag、Cu、Ti、V、Cr、Co、Zr、Nb、Mo、Tc、Ru、Al、Ga、In、Tl、Ge、Sn、Pb、Li、Na、K、Rb、Cs、Ca、Sr、及びBaからなる群から選択される少なくとも1種であってもよい。また、マルチポアゼオライトには、マグネシウム(Mg)が含まれていてもよい。
 マルチポアゼオライトのゼオライト骨格外に含まれる金属は、Mn、Fe、Ni、Cu、Zn、Ga、Rh、Pd、Ag、Sn、Sc及びPtからなる群から選択される少なくとも1種であることがより好ましい。マルチポアゼオライトは、イオン交換サイトが、Mn、Fe、Ni、Cu、Zn、Ga、Rh、Pd、Ag、Sn、Sc及びPtからなる群から選択される少なくとも1種の金属でイオン交換されていることにより、細孔内に安定に吸着した炭化水素が金属に化学吸着することでさらに安定に細孔内に存在できるため、より高い温度まで炭化水素を貯蔵することができる。マルチポアゼオライトのイオン交換サイトは、金属イオンの他に水素イオンでイオン交換されていてもよい。
 マルチポアゼオライトは、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属、及びアルカリ土類金属からなる群から選択される1種の金属をゼオライト骨格外に含み、マルチポアゼオライトのゼオライト骨格外に含まれる金属とAlのモル比である金属/Al比が、0.01以上2.5以下の範囲となるように含まれることが好ましく、複数種の金属種(Mx1,Mx2,・・・)が含まれる場合、各金属(Mx1,x2,・・・)とAlのモル比の合計値(Mx1/Al+Mx2/Al+・・・)は0.01以上2.5以下の範囲となるように含まれることが好ましい。マルチポアゼオライトのゼオライト骨格外に含まれる金属とAlのモル比である金属/Al比が0.01以上2.5以下の範囲であると、ゼオライト構造が安定性を有するため好ましい。マルチポアゼオライトのゼオライト骨格外に含まれる金属とAlのモル比である金属/Al比が0.05以上2.5以下の範囲であると、炭化水素(HC)の吸着性能に優れるためより好ましい。マルチポアゼオライト又は後述する排ガス浄化用組成物中に含まれる元素M及びAlの量は、例えば走査型蛍光X線分析装置(ZSX Primus II、株式会社リガク製)の元素分析により測定することができる。
 マルチポアゼオライトは、リン又は硫黄を含んでいてもよく、リンを含むことが好ましい。マルチポアゼオライトにリン又は硫黄が含まれていると、骨格構造の欠損の起因となる部分にリン又は硫黄が修飾されやすく、骨格構造の欠損の起因となる部分にリン又は硫黄が修飾されていると、厳しい熱環境下におかれた場合であっても、マルチポアゼオライトの骨格構造を維持し、耐熱性を向上することができる。リン源又は硫黄源から発生したリン又は硫黄は、例えばリン酸イオン又は硫酸イオンの形態となって、ブレンステッド酸点よりも金属イオンであるルイス酸点に結合しやすい。マルチポアゼオライトは、吸着する炭化水素(HC)の酸化の活性点となるブレンステッド酸点が維持され、骨格構造の欠損の起因となる金属イオンにリン酸イオン又は硫酸イオン等が結合して骨格構造が維持されるため、炭化水素の浄化性能を維持しつつ、厳しい熱環境下におかれた場合であっても骨格構造を維持して耐熱性を向上することができる。
 マルチポアゼオライトにリンを含有する場合、リンを含有するマルチポアゼオライトのアルミニウムに対するリンのモル比であるP/Alモル比は、0.4以上1.1以下の範囲内であることが好ましい。P/Alモル比は、0.8以上1.0以下の範囲内であることがより好ましい。マルチポアゼオライトの骨格構造を形成するTO単位のT原子(中心原子)としてのAlに対するリン(P)のモル比であるP/Alモル比が0.4以上1.1以下の範囲内であれば、マルチポアゼオライトに含まれるリンは、Alによって形成されるルイス酸点に修飾され、吸着した炭化水素(HC)の酸化の活性点となるブレンステッド酸点が維持されるため、浄化性能を維持したまま、骨格構造の欠損を抑制し、厳しい熱環境下においても骨格構造を維持して、耐熱性をより向上することができる。リンを含有するマルチポアゼオライト中のP/Alモル比が0.4以上1.1以下の範囲内であれば、骨格構造の欠損を抑制して、炭化水素の吸着性能及び浄化性能を維持することができる。リンを含有するマルチポアゼオライト中のアルミニウム(Al)量及びリン(P)量は、後述する実施例の方法のように、走査型蛍光X線分析装置(例えば株式会社リガク製)を用いてリンを含有すマルチポアゼオライト中のアルミニウム(Al)量及びリン(P)量を測定し、得られた測定値から算出することができる。
 マルチポアゼオライトのBET比表面積Aは、400m/g以上1000m/g以下の範囲内であることが好ましい。マルチポアゼオライトのBET比表面積が400m/g以上1000m/g以下の範囲内であると、マルチポアゼオライト単位重量当たりの炭化水素吸着量が多いため、炭化水素(HC)の吸着性能に優れる。マルチポアゼオライトのBET比表面積は、450m/g以上であることがより好ましい。厳しい熱環境下におかれた場合であっても、骨格構造を維持するために、マルチポアゼオライトのBET比表面積は800m/g以下であることが好ましく、700m/g以下であってもよく、600m/g以下であってもよい。
 熱処理前のマルチポアゼオライトのBET比表面積Aと、下記(1)から(5)の熱処理条件を満たす熱処理後のマルチポアゼオライトのBET比表面積Bの比B/Aが、0.35以上1以下の範囲内であることが好ましい。熱処理前のマルチポアゼオライトのBET比表面積Aと、熱処理後のマルチポアゼオライトのBET比表面積Bの比B/Aが1であると熱処理前と後でマルチポアゼオライトの構造が変化しておらず、構造が維持されていることを意味する。熱処理前後のマルチポアゼオライトのBET比表面積の比B/Aが0.35以上1以下の範囲内であると、厳しい熱環境下におかれた場合であっても、マイクロ細孔構造が比較的維持されるため、好ましい。熱処理前後のマルチポアゼオライト比表面積の比B/Aは、0.4以上1以下の範囲内であることがより好ましく、0.3以上1以下の範囲であることがさらに好ましく、0.5以上1以下の範囲内であることがよりさらに好ましく、0.5以上0.9以下の範囲内であることが特に好ましい。
熱処理条件
(1)温度:850℃
(2)時間:25時間
(3)雰囲気:10体積%の水蒸気(HO)を含む雰囲気、水入りタンクから水蒸気を気化させて、温度により飽和水蒸気圧を調整し、10体積%の水蒸気を含む大気雰囲気とする。
(4)モデルガス流通モード:下記(5)のモデルガス3L/分で80秒、Air(空気)3L/分で20秒を交互に流通させる。
(5)モデルガス:C、O及びNの合計が3L/分であり、Cが70mL/分、Oが70mL/分、残部がNである。
 マルチポアゼオライトのなかでも、MSE型ゼオライトは、MSE型ゼオライトのX線回折スペクトルの回折指数(420)を表す回折角度(2θ)位置が21.7°±1.0°の回折角度位置に回折ピークを有し、熱処理前の回折指数(420)のピーク強度Cと、前記(1)から(5)の熱処理条件を満たす熱処理後の回折指数(420)のピーク強度Dの比D/Cが0.3以上1.5以下の範囲内であることが好ましい。MSE型ゼオライトのX線回折スペクトルにおいて、回折指数(420)を表す回折角度(2θ)位置が21.7°±1.0°に現れる熱処理前のピーク強度Cと、熱処理後のピーク強度Dのピーク強度比D/Cが0.3以上1.5以下の範囲内であると、厳しい熱環境下におかれた場合であっても、骨格構造を維持するために、好ましい。前記ピーク強度比D/Cは、0.4以上1.4以下の範囲内であることがより好ましく、0.5以上1.3以下の範囲内であることがさらに好ましく、0.6以上1.2以下の範囲内であることがよりさらに好ましい。MSE型ゼオライトのX線回折スペクトルは、X線回折装置(例えば、型番:MiniFlex600、株式会社リガク製)を用いて測定することができる。
MSE型ゼオライトの製造方法
 MSE型ゼオライトは、シリカ源、アルミニウム源、アルカリ金属源、有機構造規定剤(テンプレート)及び水を含む原料混合物を準備する工程と、この原料混合物を加熱し結晶化させてのMSE型ゼオライトを得る工程とを含む。
 シリカ源は、例えばケイ素を含む化合物を用いることができる。具体的には、湿式法シリカ、乾式法シリカ、コロイダルシリカ、ケイ酸ナトリウム、ケイ酸カリウム、アルミノシリケートゲルなどが挙げられる。これらのシリカ源は、単独で又は2種以上を組み合わせて用いることができる。これらのシリカ源のなかでも、副生物が生成されにくく、目的とするMSE型ゼオライトを製造することができるため、シリカ(二酸化ケイ素)やアルミノシリケートゲル、コロイダルシリカを用いることが好ましい。
 アルミニウム源は、例えば水溶性アルミニウム含有化合物を用いることができる。具体的には、アルミン酸ナトリウム、硝酸アルミニウム、硫酸アルミニウム、水酸化アルミニウム、アルミノシリケートゲルなどが挙げられる。これらのアルミニウム源は、単独で又は2種以上を組み合わせて用いることができる。これらのアルミニウム源のなかでも、副生物が生成されにくく、目的するMSE型ゼオライトを製造することができるため、アルミン酸ナトリウム又はアルミノシリケートゲルを用いることが好ましい。
 アルカリ金属源としては、例えば水酸化セシウム、水酸化カリウム、水酸化ナトリウムを用いることができる。なお、シリカ源としてケイ酸ナトリウムを用いた場合やアルミニウム源としてアルミン酸ナトリウムを用いた場合、そこに含まれるアルカリ金属成分であるナトリウムは、アルカリ金属成分でもある。アルカリ金属源は、反応混合物中の全てのアルカリ金属成分の和として算出される。
 有機構造規定剤は、N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムイオンを含むものが挙げられる。有機構造規定剤は、ヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムであってもよく、アルキル基は、同じであっても異なってもよい。
原料混合物を準備する工程
 原料混合物を準備する際の各原料の添加順序は、均一に混合された原料混合物が得られ易い方法を採用することができる。例えば、室温下、鉱化剤として作用するアルカリ金属源にアルミニウム源を添加して溶解させ、次いでシリカ源を添加して撹拌混合することにより、均一に混合した原料混合物を得ることができる。原料混合物を調製するときの温度は、一般的には室温(20℃から25℃)で原料混合物を準備することができる。
結晶化させる工程
 原料混合物は、70℃以上240℃以下の温度で加熱し結晶化させることができる。原料混合物に行う加熱を第1加熱とも称する。第1加熱は、原料混合物を静置させて行ってもよく、原料混合物を撹拌しながら行ってもよい。加熱温度は、80℃以上200℃以下の温度であってもよい。加熱時間は、5時間以上400時間以内であってもよく、48時間以上200時間以内であってもよく、72時間以上80時間以内であってもよい。加熱は、大気圧下で行っても良く、加圧下で行ってもよい。
 原料混合物は、加熱前に、加熱温度よりも低い温度で一定時間静置し、熟成を行ってもよい。熟成は、結晶化させる際の加熱温度よりも低い温度で、一定時間同じ温度で反応混合物を保持することをいう。熟成温度は、室温(20℃から25℃)以上160℃以下の温度でもよく、熟成時間は、2時間以上160時間以内であってもよい。
 加熱後、結晶化した粉末は、ろ過によって母液と分離し、水又は脱イオン水で洗浄し乾燥して、MSE型ゼオライトを得ることができる。得られたMSE型ゼオライトは、加熱して、結晶中に残存する有機物を除去する。結晶中に残存する有機物を除去するための加熱を第2加熱とも称する。第2加熱は、有機物が除去できる温度であればよく、500℃以上800℃以下の範囲で行うことが好ましい。また、得られたMSE型ゼオライトの骨格構造を維持するために、加熱温度まで、2時間以上かけて昇温することが好ましく、加熱温度まで昇温した後に加熱温度を維持する加熱時間は0.5時間以上3時間以内であることが好ましい。
 得られたMSE型ゼオライトは、粉末X線回折装置を用いて測定することによってMSE型ゼオライトであることを確認することができる。粉末X線回折装置を用いたX線回折スペクトルにおいて、6.56±0.15°、6.8±0.15°、8.04±0.15°、19.38±0.15°、19.42±0.15°、21.68±0.15°、22.28±0.15°、22.32±0.15°、22.84±0.15°、27.5°±0.15°の回折角度(2θ)位置に回折ピークがあれば、MSE型ゼオライトであることが確認できる。
EON型ゼオライトの製造方法
 EON型ゼオライトは、シリカ源、アルミニウム源、アルカリ金属源、水及び必要に応じて有機構造規定剤(テンプレート)を含む原料混合物を準備する工程と、この原料混合物を加熱し結晶化させてのEON型ゼオライトを得る工程とを含む。
 シリカ源、アルミニウム源及びアルカリ金属源としては、上述したMSE型ゼオライトの製造方法で用いたものと同じものを用いることができる。
 有機構造規定剤は、ビス(2-ヒドロキシエチル)ジメチルアンモニウムイオンを含むもの、及びトリス(2-ヒドロキシエチル)メチルアンモニウムが挙げられる。有機構造規定剤は、塩化ビス(2-ヒドロキシエチル)ジメチルアンモニウムであってもよく、水酸化トリス(2-ヒドロキシエチル)メチルアンモニウムであってもよい。
原料混合物を準備する工程
 原料混合物の準備は、上述したMSE型ゼオライトの製造方法と同様とすることができる。
結晶化させる工程
 原料混合物は、70℃以上240℃以下の温度で加熱し結晶化させることができる。原料混合物に行う加熱を第1加熱とも称する。第1加熱は、原料混合物を静置させて行ってもよく、原料混合物を撹拌しながら行ってもよい。加熱温度は、80℃以上200℃以下の温度であってもよい。加熱時間は、24時間以上400時間以内であってもよく、48時間以上200時間以内であってもよく、72時間以上170時間以内であってもよい。加熱は、大気圧下で行っても良く、加圧下で行ってもよい。
 原料混合物は、加熱前に、加熱温度よりも低い温度で一定時間静置し、熟成を行ってもよい。熟成は、結晶化させる際の加熱温度よりも低い温度で、一定時間同じ温度で反応混合物を保持することをいう。熟成温度は、室温(20℃から25℃)以上80℃以下の温度でもよく、熟成時間は、2時間以上80時間以内であってもよい。
 加熱後、結晶化した粉末は、ろ過によって母液と分離し、水又は脱イオン水で洗浄し乾燥して、EON型ゼオライトを得ることができる。有機構造規定剤を用いて合成した場合にEON型ゼオライトは、加熱して、結晶中に残存する有機物を除去する。結晶中に残存する有機物を除去するための加熱を第2加熱とも称する。第2加熱は、有機物が除去できる温度であればよく、500℃以上800℃以下の範囲で行うことが好ましい。また、得られたEON型ゼオライトの骨格構造を維持するために、加熱温度まで、2時間以上かけて昇温することが好ましく、加熱温度まで昇温した後に加熱温度を維持する加熱時間は0.5時間以上3時間以内であることが好ましい。
 得られたEON型ゼオライトは、粉末X線回折装置を用いて測定することによってEON型ゼオライトであることを確認することができる。粉末X線回折装置を用いたX線回折スペクトルにおいて、6.42±0.14°、9.66±0.15°、13.02±0.15°、13.38±0.15°、23.12±0.15°、25.44±0.15°、26.18±0.15°、27.56±0.15°、27.78±0.16°、28.06±0.17°の回折角度(2θ)位置に回折ピークがあれば、EON型ゼオライトであることが確認できる。
マルチポアゼオライトに金属を含有させる方法
 マルチポアゼオライトは、液相イオン交換法、固相イオン交換法、含浸法により金属を含有させることができる。金属を含有させる態様としては、マルチポアゼオライトにイオン交換により金属を導入する態様や、マルチポアゼオライトの表面に帰属が酸化物の状態で修飾する態様などが挙げられる。液相イオン交換法は、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも1種の金属イオンからなる金属塩の溶液にマルチポアゼオライトを分散又は浸漬することによってイオン交換する方法である。固相イオン交換法は、マルチポアゼオライトと、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも1種の金属イオンを含む金属塩又は金属酸化物を混合し、還元雰囲気又は不活性雰囲気で例えば300℃以上800℃以下の温度で熱処理することによって、イオン交換する方法である。金属塩の種類としては、例えば酢酸金属塩、塩化金属塩、硫酸金属塩、硝酸金属塩等を挙げることができる。イオン交換処理後、イオン交換されたマルチポアゼオライトを洗浄し、例えば100℃から300℃で乾燥させた後、例えば400℃から1000℃で焼成して、Al上のイオン交換サイトがイオン交換されたマルチポアゼオライトを得ることができる。含浸法は、周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも1種の金属イオンを含む金属塩又は金属酸化物の溶液にマルチポアゼオライトを浸漬し、例えば30℃以上200℃以下の温度で熱処理することによって乾燥させ、金属を含有させる方法である。乾燥させた後、例えば400℃から1000℃で焼成して、Al上のイオン交換サイトがイオン交換されたマルチポアゼオライトを得ることができる。金属塩の種類としては、例えば酢酸金属塩、塩化金属塩、硫酸金属塩、硝酸金属塩等を挙げることができる。含浸法としては、インシピエントウェットネス(incipientwetness)法、蒸発乾固法、ポアフィリング(pore-filling)法、スプレー法、平衡吸着法等が挙げられる。沈殿法としては、混錬法、沈着法等が挙げられる。マルチポアゼオライトに導入される特定の金属は、少なくとも一部が、小細孔のケージ(最大環が8員環以下であるケージ)、特に最大8員環のケージ又は最大6員環のケージに導入されることが好ましい。小細孔のケージに特定の金属を導入するため、焼成温度は450℃以上であることが好ましく、空気雰囲気下での焼成であってもよく、不活性雰囲気下又は0.1MPa以下の減圧下で焼成するのが望ましい。小細孔のケージに金属を導入することで、炭化水素を吸着する大細孔(10員環以上の環を有する細孔)、特に最大12員環のトンネル型(直線型)細孔及び最大10員環のケージ型細孔の容積を維持することができる。また特定の金属が炭化水素と直接作用しないことでゼオライト骨格に対し特定の金属が作用するため、特定の金属を含有したマルチポアゼオライトは炭化水素を高温まで吸着することができる。
 マルチポアゼオライトの小細孔のケージに特定の金属が導入されていることは、X線回折の測定によりゼオライトの格子定数の変化などにより間接的に確認することができる。また、マルチポアゼオライトにおいて、最大12員環のトンネル型(直線型)細孔及び最大10員環のケージ型細孔に導入されている特定の金属の含有量に対して、小細孔のケージ中に導入されている特定の金属の含有量は、モル比で、0.5より大きいことが好ましく、1.0以上であることがより好ましく、2.0以上であることがさらに好ましく、3.0以上であることが特に好ましい。最大12員環のトンネル型(直線型)細孔、最大10員環のケージ型細孔又は小細孔のケージ中の特定の金属の含有量は、X線回折装置等を用いた解析により得られる、骨格構造を形成するTO単位のT-O結合距離の変化や、骨格元素からの距離から間接的に求めることができる。
マルチポアゼオライトにリン又は硫黄を含有させる方法
 マルチポアゼオライトと、リンを含有する化合物又は硫黄を含有する化合物とを接触させて、リン又は硫黄をマルチポアゼオライトに含有させることができる。マルチポアゼオライトにリン又は硫黄を含有させる方法としては、蒸着法、含浸法、沈殿法、イオン交換法等が挙げられる。蒸着法としては、マルチポアゼオライトと、リンを含有する化合物又は硫黄を含有する化合物を容器に入れて、常温又は加熱してリン又は硫黄を蒸発させて、マルチポアゼオライトにリン又は硫黄を含有させる方法が挙げられる。含浸法としては、リンを含有する化合物又は硫黄を含有する化合物と溶媒とを混合した液体にマルチポアゼオライトを浸漬し、常圧又は減圧下で混合液を加熱乾燥させて、リン又は硫黄をマルチポアゼオライトに含有させる方法が挙げられる。ここで、リンを含有する化合物は、リンであってもよく、リンを含むイオンであってもよい。また、硫黄を含有する化合物は、硫黄であってもよく、硫黄を含むイオンであってもよい。含浸法としては、インシピエントウェットネス(incipientwetness)法、蒸発乾固法、ポアフィリング(pore-filling)法、スプレー法、平衡吸着法等が挙げられる。沈殿法としては、混錬法、沈着法等が挙げられる。
 蒸着法によりリンをマルチポアゼオライトに含有させる場合には、リンを含有する化合物として、リン酸トリメチル、リン酸トリエチル、亜リン酸トリメチル、亜リン酸トリエチル等が挙げられる。沸点が低い点から、リン酸トリメチルが好ましい。含浸法によりリンをマルチポアゼオライトに含有させる場合には、リンを含有する化合物は水溶性であることが好ましく、例えばリン酸トリメチル、リン酸トリエチル、亜リン酸トリメチル、亜リン酸トリエチル、リン酸、リン酸二水素アンモニウム、リン酸二水素ナトリウム、リン酸二水素カリウム等のリン酸二水素塩、リン酸水素二アンモニウム、リン酸水素二カリウム等のリン酸水素塩等が挙げられる。リン酸としては、オルトリン酸(HPO)、ピロリン酸(H)、トリリン酸(H10)、ポリリン酸、メタリン酸(HPO)、ウルトラリン酸等が挙げられる。乾燥が容易である点から、オルトリン酸等のリン酸、リン酸トリメチル、リン酸二水素アンモニウム又はリン酸水素二アンモニウムのリン酸アンモニウムが好ましい。リンを含有する化合物と混合する溶媒としては、例えば脱イオン水、エタノール、2-プロパノール、アセトン等の極性有機溶媒が挙げられる。取り扱い易く、乾燥しやすい点から脱イオン水、エタノールを用いることが好ましい。混合液の全体量100質量%に対して、リンを含有する化合物は、1質量%以上25質量%以下の範囲内であってもよく、2質量%以上20質量%以下の範囲内であってもよく、5質量%以上15質量%以下の範囲内であってもよい。含浸法によりマルチポアゼオライトにリンを含有する化合物を付着させる場合は、混合液中にマルチポアゼオライトを含浸する時間は、0.5時間以上2時間以内とすることができる。含浸後、リンを含有する化合物を含むマルチポアゼオライトを乾燥してもよく、乾燥温度は80℃以上200℃以下とすることができ、乾燥時間は0.5時間以上5時間以内とすることができる。また、乾燥時の圧力は、特に制限されず、大気圧(0.1MPa)であってもよく、0.1MPa以下の減圧下であってもよい。硫黄をマルチポアゼオライトに含有させる場合には、硫酸塩を用いることが好ましい。
 蒸着法又は含浸法によりマルチポアゼオライトにリン又は硫黄を含有する化合物を付着させた後、熱処理し、リン又は硫黄を含むマルチポアゼオライトを得る。熱処理温度は、マルチポアゼオライトの骨格構造を維持するため、200℃以上800℃以下の範囲内であることが好ましく、400℃以上700℃以下の範囲内であることがより好ましい。熱処理する雰囲気は、大気雰囲気、窒素等の不活性ガス雰囲気であってもよい。
 特定の金属を含有するマルチポアゼオライトは、炭化水素吸着材として用いることができる。後述する排ガス浄化触媒において、炭化水素吸着部を構成する炭化水素吸着材は、特定の金属を含有するマルチポアゼオライトの他に、さらにBEA型(12員環のみのゼオライト)及びMTW型(12員環のみのゼオライト)などの非マルチポアゼオライトを含んでいてもよい。例えば、マルチポアゼオライトであるMSE型ゼオライトは、マルチポアゼオライトであるMOR型ゼオライト、非マルチポアゼオライトであるBEA型ゼオライト、非マルチポアゼオライトであるMTW型ゼオライトを含む場合がある。炭化水素吸着材は、特定の金属を含有するマルチポアゼオライト100質量%からなるものであってもよく、特定の金属を含有するマルチポアゼオライトの他に、例えばBEA型及びMTW型などの非マルチポアゼオライトを含む場合には、炭化水素吸着材100質量%中、特定の金属を含有するマルチポアゼオライトの含有量が50質量%以上99質量%以下の範囲内であることが好ましく、80質量%以上99質量%以下の範囲内であることがより好ましく、90質量%以上99質量%以下の範囲内であることがさらに好ましい。
 特定の金属を含有するマルチポアゼオライトからなる炭化水素吸着材は、この炭化水素吸着材を含む炭化水素吸着部と、浄化触媒部とを組み合わせて排ガス浄化触媒に用いることができる。特定の金属元素を含有するマルチポアゼオライトからなる炭化水素吸着材は、この炭化水素吸着材を含む炭化水素吸着部用組成物を製造し、炭化水素吸着部を形成することができる。
排ガス浄化触媒
 本発明の実施態様の第一例は、基材と、前記基材上に前記炭化水素吸着材を含む炭化水素吸着部と、前記炭化水素吸着部上に浄化触媒部と、を備えた、排ガス浄化触媒である。
 図1及び図2は、排ガス浄化触媒10の一例を示す。図1は、セラミックス製の基材1を示し、基材1は、複数のセル1aと、セル1aを仕切る隔壁1bと有する。図2は、第一例の排ガス浄化触媒を切断した断面の一部を示し、排ガス浄化触媒10は、基材1と、基材1上に設けられ炭化水素吸着部2と、炭化水素吸着部2上に浄化触媒部3を備えている。図2中、符号30は、排ガス流路である。
 第一例の浄化触媒部3は、Rh及びPtのうち少なくとも1種を含み、Pdの含有量が0.1質量%以下である第1浄化触媒部3aと、Pd及びPtのうち少なくとも1種を含み、Rhの含有量が0.1質量%以下である第2浄化触媒部3bとを備え、第1浄化触媒部3aが、炭化水素吸着部2側に配置され、第1浄化触媒部3a上に第2浄化触媒部3bを備えていてもよい。
 第1浄化触媒部が、酸化セリウム-酸化ジルコニウム複合酸化物(CeO-ZrO)を含むことが好ましい。酸化セリウム-酸化ジルコニウム複合酸化物中のCeOの含有量は、好ましくは0質量%超30質量%以下、より好ましくは15質量%以上30質量%以下の範囲内である。第1浄化触媒部が、CeOの含有量が15質量%以上30質量%以下の範囲内である酸化セリウム-酸化ジルコニウムを含む場合、炭化水素吸着部から脱離した炭化水素を直接酸化できるため好ましい。
 本発明の実施態様の第二例は、基材と、基材上に炭化水素吸着材と、Rh及びPtのうち少なくとも1種とを含み、Pdの含有量が0.1質量%以下である炭化水素吸着部と、炭化水素吸着部上にPd及びPtのうち少なくとも1種を含み、Rhの含有量が0.1質量%以下である浄化触媒部と、を備えた、排ガス浄化触媒である。
 図3は、第二例の排ガス浄化触媒を切断した断面の一部を示し、排ガス浄化触媒10は、基材1と、基材1上に設けられ炭化水素吸着部2と、炭化水素吸着部2上に浄化触媒部3を備えている。図3中、符号30は、排ガス流路である。
 以下、排ガス浄化触媒を構成する各部について、説明する。
基材
 基材は、公知の排ガス触媒用基材を用いることができる。基材の材質としては、セラミックスや金属が挙げられる。セラミックス製基材としては、耐火性セラミックス材料が挙げられ、例えばコージェライト、炭化水素、ムライト、シリカ-アルミナ、アルミナ等が挙げられる。金属製基材としては、耐火性金属、例えばステンレス鋼等が挙げられる。また、基材の形状は、例えばハニカム形状の基材のように、基材内部に平行で微細な流通路となるセルを多数有する形状の基材を用いることができる。このような基材の形状としては、ウォールフロー型基材、フロースルー型基材等が挙げられる。
炭化水素吸着部
 炭化水素吸着部は、前述の金属を含むマルチポアゼオライトを含む炭化水素吸着材又は前述の金属を含むマルチポアゼオライトからなる炭化水素吸着材と、アルミナ粒子、酸素吸放出材料、アルミナゾル、シリカゾル、ジルコニアゾルなどの無機酸化物を含むスラリー状の炭化水素吸着部用組成物を調製し、このスラリー状の炭化水素吸着部用組成物を基材に塗工し、必要に応じて乾燥させ、これを焼成して、炭化水素吸着部を形成することができる。酸素吸放出材料としては、セリア-ジルコニア複合酸化物などの無機酸化物が挙げられる。無機酸化物には希土類が含まれていても良い。炭化水素吸着部を形成するための炭化水素吸着部用組成物には、Rh及び/又はPtを含んでいてもよい。炭化水素吸着部用組成物に含まれる炭化水素吸着材が、マルチポアゼオライトのなかでもMSE型ゼオライトからなる炭化水素吸着材である場合、炭化水素吸着材の含有量は、炭化水素吸着部用組成物の固形分に対して、10質量%以上85質量%以下であることが好ましく、50質量%以上75質量%以下であることがより好ましく、60質量%以上70質量%以下であることがさらに好ましい。炭化水素吸着部にRh及び/又はPtが含まれる場合には、炭化水素吸着部に含まれるRh及びPtの合計の含有量は、炭化水素吸着部用組成物の固形分に対して、0.05質量%以上0.8質量%以下であることが好ましく、0.14質量%以上0.7質量%以下であることがより好ましく、0.2質量%以上0.5質量%以下であることがさらに好ましい。炭化水素吸着部にRh及び/又はPtが含まれていることによって、炭化水素吸着部内で脱離した炭化水素を効果的に浄化できる。
 浄化触媒部は、スラリー状の浄化触媒部用組成物を調製し、このスラリー状の排ガス浄化触媒部用組成物を基材上に形成された炭化水素吸着部上に塗工し、必要に応じて乾燥させ、これを焼成して、浄化触媒部を形成することができる。スラリー状の浄化触媒部用組成物は、触媒活性成分となる元素、NOx吸蔵材、触媒担体、必要に応じて安定剤、バインダー、その他の成分、水を混合撹拌して製造することができる。バインダーとしては、無機系バインダー、例えばアルミナゾル等の水溶性溶液を使用することができる。排ガス浄化触媒が、酸化触媒層、NOx吸蔵層、還元触媒層の各層を含む場合には、各層を構成する排ガス浄化触媒部用組成物に、各層の触媒活性に必要な触媒活性元素を含む浄化触媒部用組成物を用いることができる。
 浄化触媒部が、Rhを含む第1浄化触媒部と、Pdを含む第2浄化触媒部とを備え、第1浄化触媒部が、前記炭化水素吸着部側に配置され、第1浄化触媒部上に第2浄化触媒部を備える場合には、Rhを含む第1浄化触媒部用組成物及びPdを含む第2浄化触媒部用組成物を準備する。また、炭化水素吸着部が、前述の炭化水素吸着材とRhとを含む場合には、Pdを含む浄化触媒部用組成物を準備する。
 第1浄化触媒部用組成物は、Rh及び/又はPtを含む。第1浄化触媒部用組成物中のRh及びPtの合計の含有量は、第1浄化触媒部用組成物の固形分に対して、0.1質量%以上1.8質量%以下であることが好ましく、0.2質量%以上1.2質量%以下であることがより好ましく、0.5質量%以上1.0質量%以下であることがさらに好ましい。
 第1触媒部用組成物は、CeOの含有量が好ましくは0質量%超30質量%以下、より好ましくは15質量%以上30質量%以下の範囲内である酸化セリウム-酸化ジルコニウム複合酸化物(CeO-ZrO)を含むことが好ましい。本明細書において、CeOの含有量が15質量%以上30質量%の範囲内であり、CeOよりも多くのZrOを含有する酸化セリウム-酸化ジルコニウム複合酸化物を、「ZC複合酸化物」ともいう。第1触媒部用組成物中のZC複合酸化物の含有量は、第1浄化触媒部用組成物の固形分に対して、30質量%以上80質量%以下であることが好ましく、50質量%以上80質量%以下であることがより好ましく、55質量%以上75質量%以下であることがさらに好ましい。
 第1浄化触媒部用組成物は、Rh及びPt以外の他の白金族金属を含んでいても良い。第1触媒部用組成物中の、Rh及びPt以外の他の白金族金属の含有量は、第1浄化触媒部用組成物に含まれる白金族金属の総量に対して、50質量%未満であることが好ましい。第1浄化触媒部用組成物には、実質的にPdを含まないことが好ましい。第1触媒部用組成物に実質的にPdを含まないとは、第1触媒部用組成物の固形分に対してPdが含まれる場合には、0.1質量未満であることをいい、第1触媒部用組成物の固形分に対してPdが0質量%であることが好ましい。白金族金属は、Pt、Pd、Rh、Ir、Ru、及びOsをいう。
 第2浄化触媒部用組成物又は浄化触媒部用組成物は、Pd及び/又はPtを含む。第2浄化触媒部用組成物中のPd及びPtの合計の含有量は、第2浄化触媒部用組成物の固形分に対して、0.5質量%以上8.0質量%以下であることが好ましく、0.8質量%以上7.0質量%以下であることがより好ましく、1.5質量%以上3.5質量%以下であることがさらに好ましい。
 第2浄化触媒部用組成物は、CeOの含有量が25質量%から55質量%の範囲内である酸化セリウム-酸化ジルコニウム複合酸化物(CeO-ZrO)を含むことが好ましい。本明細書において、CeOの含有量が25質量%から55質量%の範囲内であり、CeOよりも少ないZrOを含有する酸化セリウム-酸化ジルコニウム複合酸化物を、「CZ複合酸化物」ともいう。第2触媒部用組成物中のCZ複合酸化物の含有量は、第2浄化触媒部用組成物の固形分に対して、20質量%以上80質量%以下であることが好ましく、30質量%以上70質量%以下であることがより好ましく、40質量%以上60質量%以下であることがさらに好ましい。
 第2浄化触媒部用組成物は、Pd及びPt以外の他の白金族金属を含んでいても良い。第2触媒部用組成物中の、Pd及びPt以外の他の白金族金属の含有量は、第2浄化触媒部用組成物に含まれる白金族金属の総量に対して、50質量%未満であることが好ましい。
 第2浄化触媒部用組成物又は浄化触媒部用組成物は、実質的にRhを含まないことが好ましい。第2浄化触媒部用組成物に実質的にRhを含まないとは、第2浄化触媒部用組成物の固形分に対してRhが含まれる場合には、0.1質量%未満であることをいい、第2浄化触媒部用組成物の固形分に対してRhが0質量%であることが好ましい。
 浄化触媒部用組成物、第1浄化部用組成物、又は、第2浄化触媒部用組成物は、任意の既知の手段により製造することができる。例えば、Rh、Pt又はPdの特定元素を含む化合物と、無機酸化物担体(例えば酸化セリウム-酸化ジルコニウム複合酸化物)とを接触させて、特定元素が担持された無機酸化物担体を得て、この無機酸化物担体を含む浄化触媒部用組成物としてもよい。特定元素を無機酸化物担体に付着させる方法としては、例えば蒸着法、含浸法、沈殿法、イオン交換法等が挙げられる。蒸着法としては、無機酸化物、特定元素を含む化合物を容器に入れて、常温又は加熱して前記元素を含む化合物を蒸発させて、無機酸化物に付着させる方法が挙げられる。含浸法としては、前記元素を含有する化合物と溶媒とを混合した液体に無機酸化物を浸漬し、常圧又は減圧下で混合液を加熱乾燥させて、前記元素を含む化合物を無機酸化物に付着させる方法が挙げられる。含浸法としては、インシピエントウェットネス(incipient wetness)法、蒸発乾固法、ポアフィリング(pore-filling)法、スプレー法、平衡吸着法等が挙げられる。沈殿法としては、混錬法、沈着法等が挙げられる。前記元素を含有する化合物を付着させたゼオライトは、例えば80℃以上150℃以下の温度で乾燥させてもよく、乾燥時間は、0.5時間以上5時間以内であり、乾燥時の圧力は、特に制限されず、大気圧(0.1MPa)であってもよく、0.1MPa以下の減圧下であってもよい。前記元素を付着させたゼオライトは、必要に応じて乾燥させ、さらに熱処理を行ってもよい。熱処理温度は、ゼオライトが有する細孔の欠損を防ぐために、200℃以上800℃以下の範囲であってもよく、400℃以上700℃以下の範囲であってもよい。
 浄化触媒部が、Rh及びPtのうち少なくとも1種を含む第1浄化触媒部と、Pd及びPtのうち少なくとも1種を含む第2浄化触媒部とを備える第一例の排ガス浄化触媒の場合、基材上に形成された炭化水素吸着部上に、第1浄化触媒部用組成物を塗工し、必要に応じて乾燥させ、これを焼成して、第1浄化触媒部を形成することができる。次いで、第1浄化触媒部上に、第2浄化触媒部用組成物を塗工し、必要に応じて乾燥させ、これを焼成して、第2浄化触媒部を形成することができる。第1浄化触媒部及び第2浄化触媒部は、排ガス浄化触媒を切断した断面を、電子線マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)によって定量分析を行い判別することができる。第1浄化触媒部は、含まれている白金族金属が主にRh及びPtであり、Pdは実質的に含まれていない。第1浄化触媒部は、排ガス浄化触媒を切断した断面をEPMAによって定量分析した場合に、第1触媒部用組成物の固形分100質量%に対して、Pdの含有量が0.1質量%以下である部位をいう。第2浄化触媒部は、含まれている白金族金属が主にPd及びPtであり、Rhは実質的に含まれていない。第2浄化触媒部は、排ガス浄化触媒を切断した断面をEPMAによって定量分析した場合に、第2触媒部用組成物の固形分100質量%に対して、Rhの含有量が0.1質量%以下である部位をいう。
 炭化水素吸着部が炭化水素吸着材とRhとを含む、第二例の排ガス浄化触媒の場合、基材上に形成された炭化水素吸着部上に、Pdを含む浄化触媒用組成物を塗工し、必要に応じて乾燥させ、これを焼成して、浄化触媒部を形成することができる。浄化触媒部は、排ガス浄化触媒を切断した断面を、電子線マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)によって定量分析を行い判別することができる。浄化触媒部は、含まれている白金族金属が主にPd及びPtであり、Rhは実質的に含まれていない。浄化触媒部は、排ガス浄化触媒を切断した断面をEPMAによって定量分析した場合に、浄化触媒部用組成物の固形分100質量%に対して、Rhが0.1質量%以下である部位をいう。
 排ガス浄化触媒は、選択触媒還元(SCR)システムに用いることもできる。選択触媒還元(SCR)は、アンモニア又は尿素などの窒素化合物又は炭化水素と反応させることにより、NOxをNに還元することができる。
 排ガス浄化触媒は、ガソリンエンジンやディーゼルエンジン等の燃料を動力源とする内燃機関の排気ガスの浄化に用いることができ、比較的高い温度まで炭化水素を吸着し貯蔵することができ、炭化水素の除去性能、NOxの還元性能を向上することができる。
排ガス浄化システム
 前述の排ガス浄化触媒を用いた排ガス浄化システムについて説明する。
 図4から6は、本発明の第一例から第三例の排ガス浄化システムを示す。
 第一例の排ガス浄化システム100は、図4に示すように、内燃機関20と、内燃機関に接続された排ガス流路30内の上流側に設けられた第1排ガス浄化触媒40と、排ガス流路30内において、第1排ガス浄化触媒40よりも排ガス流れ方向の下流側に設けられた第2排ガス浄化触媒10とを、備える。第2排ガス浄化触媒10は、前述の本発明の第一例又は第二例の排ガス浄化触媒10である。第2排ガス浄化触媒10が、第1排ガス浄化触媒よりも排ガス流路30内の下流側に設けられていると、内燃機関10から排出された1000℃程度の比較的高い温度の排ガスが、第1排ガス浄化触媒40を通過して、排ガスの温度が低下するため、第2排ガス浄化触媒の炭化水素吸着部に含まれるマルチポアゼオライトの熱による劣化を抑制でき、炭化水素吸着部の炭化水素の吸着能を維持することができる。前述の排ガス浄化触媒である第2排ガス浄化触媒10は、白金族の含有割合が、第2排ガス浄化触媒の体積に対して、0.1g/L以上3.0g/L以下の範囲内である。前述の排ガス浄化触媒である第2排ガス浄化触媒10中の白金族金属の含有割合が、第2排ガス浄化触媒の体積に対して、0.1g/L以上3.0g/L以下の範囲内であると脱離した炭化水素をより効率的に浄化できる。なお、図4では、排ガス浄化触媒が、第1排ガス浄化触媒40及び第2排ガス浄化触媒10の2つである例を示したが、排ガス浄化触媒は3つ以上であってもよい。例えば、第2排ガス浄化触媒10よりも排ガス流れ方向の下流側に、その他の排ガス浄化触媒が設けられていてもよい。第2排ガス浄化触媒10よりも下流側に設けられるその他の排ガス浄化触媒としては、前述の本発明の第一例又は第二例の排ガス浄化触媒10であってもよいし、それ以外の排ガス浄化触媒であってもよい。その他の排ガス浄化触媒に用いる基材の形状としては、ウォールフロー型基材、フロースルー型基材などを適宜用いることができる。
 第二例の排ガス浄化システム200は、図5に示すように、内燃機関20と、内燃機関に接続された排ガス流路30内に設けられた単一の排ガス浄化触媒10と、を備え、排ガス浄化触媒10が前述の本発明の排ガス浄化触媒である。本発明の第二例の排ガス浄化システム200は、炭化水素の除去性能が高い本発明の排ガス浄化触媒10を備えるため、排気量が比較的少ない内燃機関に適用する場合に、排ガスの浄化性能を十分なものとしながら、排ガス浄化触媒10の数を単一とすることができるため、高い浄化性能と低いコストとを両立させることができる。
 第三例の排ガス浄化システム300は、図6に示すように、内燃機関20と、内燃機関に接続された排ガス流路30内に複数の排ガス浄化触媒10、50、60と、を備え、複数の排ガス浄化触媒10、50、60のうち、排ガス流れ方向の最も上流側に配置された第1排ガス浄化触媒10が前述の本発明の排ガス浄化触媒である。図6に示す第三例の排ガス浄化システム300においては、最上流排ガス浄化触媒10、第2排ガス浄化触媒50、第3排ガス浄化触媒60の3つの排ガス浄化触媒を排ガス流路30内に備えた例を示している。排ガス浄化システム300は、排ガス流路30内に2つ以上の排ガス浄化触媒を備えていればよく、排ガス浄化触媒の数は限定されない。本発明の第三例の排ガス浄化システム300は、排ガス流路30内に複数の排ガス浄化触媒を備え、最も上流側に配置された第1排ガス浄化触媒10が、本発明の排ガス浄化触媒であり、脱離した炭化水素を下流の排ガス浄化触媒でより効率的に浄化することができる。
排ガスを処理するための方法
 本発明の実施形態の一例の排ガスを処理するための方法は、炭化水素を含む燃焼排ガスと、本発明の実施形態の排ガス浄化用触媒とを接触させて、炭化水素を前記排ガス浄化用触媒に吸着させた後、200℃以上の温度で前記排気ガス浄化用触媒から炭化水素を脱離させることを含む。
 以下、本発明を実施例及び比較例に基づいてさらに詳述する。本発明は、これらの実施例に限定されるものではない。
MSE型ゼオライトの製造
 脱イオン水(純水)、水酸化カリウム、水酸化アルミニウム、ヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウム、及び、コロイド状シリカ(LUDOX(登録商標)HS-40、シグマアルドリッチ・ジャパン株式会社製)を準備し、これらを混合して、各原料のモル比が以下の組成となる原料組成物を得た。
SiO/Al=20
K/Si=0.38
ヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウム/Si=0.1
O/Si=30
 得られた原料組成物を密閉容器に充填し、静置した状態で、160℃で16日間加熱し結晶化させた。結晶化後の原料組成物を固液分離し、脱イオン水で洗浄し、結晶を回収した。得られた結晶を100℃で8時間乾燥し、大気雰囲気中、600℃で1時間熱処理して、MSE型ゼオライトを得た。得られたゼオライトがMSE型であることは、粉末X線回折装置を用いて測定することによって確認した。粉末X線回折装置を用いたX線回折スペクトルにおいて、上述した回折角度(2θ)位置に回折ピークがあれば、MSE型ゼオライトであることが確認できる。X線回折スペクトルにおける回折ピークの回折角度(2θ)位置は、国際ゼオライト学会によって公開されているX線回折スペクトルの回折ピークの回折角度(2θ)位置と同じである。図7に、得られたMSE型ゼオライトのX線回折スペクトルを示す。
 得られたMSE型ゼオライトは、各成分のモル比が以下のようになる組成を有していた。
SiO/Al=20
EON型ゼオライトの製造
 脱イオン水(純水)、水酸化ナトリウム、アルミン酸ナトリウム、及び、3号ケイ酸ソーダを準備し、これらを混合して、各原料のモル比が以下の組成となる原料組成物を得た。
SiO/Al=10
Na/Si=0.44
O/Si=20
 得られた原料組成物を密閉容器に充填し、静置した状態で、150℃で7日間加熱し結晶化させた。結晶化後の原料組成物を固液分離し、脱イオン水で洗浄し、結晶を回収した。得られた結晶を100℃で8時間乾燥し、大気雰囲気中、600℃で1時間熱処理して、EON型ゼオライトを得た。得られたゼオライトがEON型であることは、粉末X線回折装置を用いて測定することによって確認した。粉末X線回折装置を用いたX線回折スペクトルにおいて、上述した回折角度(2θ)位置に回折ピークがあれば、EON型ゼオライトであることが確認できる。X線回折スペクトルにおける回折ピークの回折角度(2θ)位置は、国際ゼオライト学会によって公開されているX線回折スペクトルの回折ピークの回折角度(2θ)位置と同じである。図8に、得られたEON型ゼオライトのX線回折スペクトルを示す。
 得られたEON型ゼオライトは、各成分のモル比が以下のようになる組成を有していた。
SiO/Al=7.6
Na/Al=0.95
実施例1
炭化水素吸着材の製造
 得られたMSE型ゼオライト1gを80℃の1mol/Lの塩化アンモニウム水溶液10gに浸漬し、固液分離し、脱イオン水で洗浄し、NH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを60℃の0.25mol/Lの酢酸銅(II)水溶液100gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=20
Cu/Al=0.75
実施例2
 得られたMSE型ゼオライト1gを80℃の1mol/Lの塩化アンモニウム水溶液10gに浸漬し、固液分離し、脱イオン水で洗浄し、NH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを0.25mol/Lの塩化セシウム水溶液100gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤状態のCs型のMSE型ゼオライトを得た。得られたCsを含有するMSE型ゼオライト100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Csイオン交換MSE型ゼオライトを得た。MSE型ゼオライトは、Cs及びHでイオン交換されていた。得られたCsを含むMSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=20
Cs/Al=0.22
実施例3
 得られたEON型ゼオライト1gを60℃の1mol/Lの塩化アンモニウム水溶液10gに浸漬し、固液分離し、脱イオン水で洗浄し、NH型のEON型ゼオライトを得た。得られたNH型のEON型ゼオライト1gを60℃の1mol/Lの硫酸2.5gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のEON型ゼオライトを得た。得られたH型のEON型ゼオライト1gを0.50mol/Lの酢酸銅(II)水溶液10gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換EON型ゼオライトを得た。得られたCuイオン交換EON型ゼオライトを炭化水素吸着材とした。
SiO/Al=20
Cu/Al=0.5
実施例4
 上述した実施例3で得られたH型のEON型ゼオライトの湿潤粉末1gを60℃の0.30mol/Lの炭酸セシウム水溶液5.0gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Csイオン交換EON型ゼオライトを得た。得られたCsイオン交換EON型ゼオライトを炭化水素吸着材とした。
SiO/Al=13
Cs/Al=0.25
比較例1
 市販のH型BEA型ゼオライト(SiO/Alモル比=37)1gを60℃の酢酸銅(II)水溶液5gに懸濁し、蒸発乾固により湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuを含むBEA型ゼオライトを得た。得られたCuを含むBEA型ゼオライトを炭化水素吸着材とした。
SiO/Al=37
Cu/Al=0.88
比較例2
 BEA型ゼオライト(SiO/Alモル比=37)1gを60℃の0.1mol/Lの塩化アンモニウム水溶液10gに浸漬し、固液分離し、脱イオン水で洗浄し、NH型のBEA型ゼオライトを得た。得られたNH型のBEA型ゼオライト1gを60℃の0.05mol/Lの酢酸セシウム水溶液30gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Csを含むBEA型ゼオライトを得た。MSE型ゼオライトは、Cs及びHでイオン交換されていた。得られたCsを含むBEA型ゼオライトを炭化水素吸着材とした。
SiO/Al=37
Cs/Al=0.18
比較例3
 BEA型ゼオライトに代えて、MFI型ゼオライト(SiO/Alモル比=39)を用いた以外は、比較例3と同様にして、Csを含むMFI型ゼオライトを得た。MSE型ゼオライトは、Cs及びHでイオン交換されていた。Csを含むMFI型ゼオライトの組成は下記のモル比のとおりであった。得られたCsを含むMFI型ゼオライトを炭化水素吸着材とした。
SiO/Al=39
Cs/Al=0.17
比較例4
 上述した実施例1で得られたNH型のMSE型ゼオライトの湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理し、そのまま炭化水素吸着材とした。
測定試料の調製
 原料組成物又は各ゼオライトを、直径30mmの塩化ビニル管に充填し、圧縮成形して測定試料を調製した。
SiO/Alモル比
 走査型蛍光X線分析装置(ZSX PrimusII、リガク社製)を用いて、元素分析により測定試料中のSi量及びAl量を測定し、測定したSi量及びAl量からSiO/Al比を算出した。
Cu/Al比
 上述の走査型蛍光X線分析装置を用いて、元素分析により測定試料中のCu量及びAl量を測定し、Cu量及びCu/Alを算出した。表1において、Cu量は金属の含有割合として、Cu/Alは金属/Al比としてそれぞれ記載した。
Cs/Al比
 上述の走査型蛍光X線分析装置を用いて、元素分析により測定試料中のCs量及びAl量を測定し、Cs/Alを算出した。表1において、Cs量は金属の含有割合として、Cs/Alは金属/Al比としてそれぞれ記載した。
トルエンの脱離量/吸着量
 実施例及び比較例の各炭化水素吸着材について、昇温反応法により50℃から500℃までトルエンを流通しながら加熱し、トルエンの吸着温度、脱離温度、吸着量及び脱離量を測定した。
 具体的には、各炭化水素吸着材の測定試料0.1gを流通反応装置の石英製反応管に充填し、流通反応装置として固定床流通式反応装置を用いて、トルエン71ppmを含む評価用ガスを1L/分で流通させながら、昇温反応法により50℃から500℃まで20℃/分の昇温速度で昇温させ、トルエンを吸着・脱離させた。ゼオライトに対するトルエンの吸着脱離の測定には、トルエンの流通量に対して、下流の検出器(VMS-1000F、株式会社島津製作所製)の検出量の減少を吸着量及び浄化量とした。炭化水素吸着材への流通量以上の値が検出される領域は吸着炭化水素が脱離している。50℃以上200℃未満で吸着したトルエンの合計モル量ZDに対する200℃以下で炭化水素吸着材から脱離した合計モル量ZDの割合(ZD/ZD×100)を、トルエンの脱離量/吸着量とした。結果を表1に示す。
測定条件
評価用ガス:トルエン71ppm、残部が窒素(N)である。
熱処理
 実施例1,2,4及び比較例1~4の各炭化水素吸着材に対して、下記条件で熱処理を施した。
(1)温度:850℃
(2)時間:25時間
(3)雰囲気:10体積%の水蒸気(HO)を含む雰囲気、水入りタンクから水蒸気を気化させて、温度により飽和水蒸気圧を調整し、10体積%の水蒸気を含む大気雰囲気とする。
(4)モデルガス流通モード:下記(5)のモデルガス3L/分で80秒、Air(空気)3L/分で20秒を交互に流通させる。
(5)モデルガス:C、O及びNの合計が3L/分であり、Cが70mL/分、Oが70mL/分、残部が窒素(N)である。
X線回折スペクトルのピーク強度比
 実施例1、2、4及び比較例1~4の熱処理前後の炭化水素吸着材について、X線回折装置(型番:MiniFlex600、リガク社製)を用いて測定し、熱処理前後のX線回折スペクトルのピーク強度比を下記式により求めた。ピーク強度比を求めるための回折ピークの回折角度(2θ)位置は、それぞれ、MSE型ゼオライトは2θ=21.7°付近の最強ピーク、BEA型ゼオライトは2θ=22.4°付近の最強ピーク、MFI型ゼオライトは2θ=22.9°付近の最強ピーク、EON型ゼオライトは2θ=25.6°付近の最強ピークとした。求めたピーク強度比が高いほど、ゼオライトが熱処理後も結晶構造を維持していることを示している。
ピーク強度比(%)=(熱処理後のピーク強度/熱処理前のピーク強度)×100
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1から4(特定の金属を含有するマルチポアゼオライト)の炭化水素吸着材は、比較例2から4のゼオライトと比較して、トルエンの脱離量/吸着量が低い値であり、すなわち吸着量に対して脱離量が少ないものであり、200℃程度の温度までトルエンを貯蔵することができ、200℃以上の比較的高い温度で炭化水素吸着材からトルエンを脱離させることができることが確認できた。また、実施例1,2,4の炭化水素吸着材は、比較例1のゼオライトと比較して、X線回折スペクトルのピーク強度比が高く、熱処理後でも結晶が維持されて耐熱性に優れることが確認された。なお、ゼオライトは、一般的に、骨格密度(単位体積当たりのSi及びAlの合計量)が低く、導入した金属量が多いほど、耐熱性が低下する。これに対して、マルチポアゼオライトであるMSE型ゼオライト又はEON型ゼオライトは、骨格密度がBEA型ゼオライト、MFI型ゼオライトと比較して高いため、より耐熱性に優れると考えられる。実施例3の炭化水素吸着材は、ピーク強度比を測定していないが、少なくとも比較例1のBEA型ゼオライトよりもピーク強度比の値が高いと考えられる。実施例3と比較例1とを比較すると、金属量が同じであるものの、骨格密度は高いためである。
実施例5
 得られたMSE型ゼオライト1gを80℃の1mol/Lの塩化アンモニウム水溶液10gに浸漬し、固液分離し、脱イオン水で洗浄し、NH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを60℃の0.05mol/Lの酢酸銅(II)水溶液9.5gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=20
Cu/Al=0.19
実施例6
 実施例5と同様にしてNH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを60℃の0.05mol/Lの酢酸銅(II)水溶液6gに浸漬したこと以外は、実施例5と同様にして、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型の組成は下記の通りであった。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=20
Cu/Al=0.15
実施例7
 実施例5と同様にしてNH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを0.05mol/Lの炭酸セシウム水溶液5.3gに浸漬し、固液分離し、脱イオン水で洗浄し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Csイオン交換MSE型ゼオライトを得た。MSE型ゼオライトは、Cs及びHでイオン交換されていた。得られたCsを含むMSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=20
Cs/Al=0.07
実施例8
 実施例5と同様にしてNH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを80℃の0.1mol/Lの硫酸10gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.2mol/Lの酢酸銅(II)水溶液1gに含侵し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=22
Cu/Al=0.21
実施例9
 実施例5と同様にしてNH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを80℃の1mol/Lの硫酸10gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.2mol/Lの酢酸銅(II)水溶液1gに含侵し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=58
Cu/Al=0.50
実施例10
 実施例5と同様にしてNH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを80℃の3mol/Lの硫酸10gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.2mol/Lの酢酸銅(II)水溶液1gに含侵し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=76
Cu/Al=0.70
実施例11
 実施例5と同様にしてNH型のMSE型ゼオライトを得た。得られたNH型のMSE型ゼオライト1gを80℃の5mol/Lの硫酸10gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.2mol/Lの酢酸銅(II)水溶液1gに含侵し、湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=181
Cu/Al=1.65
実施例12
 得られたMSE型ゼオライト1gを100℃の6mol/Lの硫酸6.7gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.05mol/Lの酢酸銅(II)水溶液5.8gに懸濁し、蒸発乾固により湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuイオン交換MSE型ゼオライトを得た。得られたCuイオン交換MSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=200
Cu/Al=2.09
実施例13
 得られたMSE型ゼオライト1gを100℃の6mol/Lの硫酸6.7gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.03mol/Lの硝酸ガリウム(III)かつ0.015mol/Lの硝酸白金の混合水溶液5.2gになるように懸濁し、蒸発乾固により湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Ga及びPtを含むMSE型ゼオライトを得た。Ga及びPtを含むMSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=200
Ga/Al=1.74
Pt/Al=0.42
実施例14
 得られたMSE型ゼオライト1gを100℃の6mol/Lの硫酸6.7gに浸漬し、固液分離し、脱イオン水で洗浄し、H型のMSE型ゼオライトを得た。得られたH型のMSE型ゼオライト1gを0.05mol/Lの酢酸スズ(II)水溶液11gに懸濁し、蒸発乾固により湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Snを含むMSE型ゼオライトを得た。得られたSnを含むMSE型ゼオライトを炭化水素吸着材とした。
SiO/Al=200
Sn/Al=0.93
比較例5
 市販のH型BEA型ゼオライト(SiO/Alモル比=37)1gを0.05mol/Lの酢酸銅(II)水溶液5gに懸濁し、蒸発乾固により湿潤粉末を回収した。得られた湿潤粉末を100℃で8時間乾燥し、大気雰囲気中、550℃で3時間熱処理した。これにより、下記のモル比の組成を有する、Cuを含むBEA型ゼオライトを得た。得られたCuを含むBEA型ゼオライトを炭化水素吸着材とした。
SiO/Al=37
Cu/Al=0.37
 実施例5~14及び比較例5の各炭化水素吸着材について、実施例1~4及び比較例と同様にして、測定試料、SiO/Alモル比の測定、Cu/Al比の測定、及びCs/Al比の測定を行った。
Ga/Al比及びPt/Al比
 上述の走査型蛍光X線分析装置を用いて、元素分析により測定試料中のGa量、Pt量及びAl量を測定し、Ga/Al及びPt/Alを算出した。実施例13においては、それぞれ、Ga量は1.9質量%、Pt量は1.3質量%、Ga/Alは1.74、Pt/Alは0.42であった。表2において、Ga量及びPt量の合計を金属の含有割合として、Ga/Al及びPt/Alの合計を金属/Al比としてそれぞれ記載した。
Sn/Al比
 上述の走査型蛍光X線分析装置を用いて、元素分析により測定試料中のSn量及びAl量を測定し、Sn/Alを算出した。表2において、Sn量は金属の含有割合として、Sn/Alは金属/Al比としてそれぞれ記載した。
トルエンの脱離量/吸着量
 実施例5~14及び比較例5の各炭化水素吸着材について、昇温反応法により50℃から500℃までトルエン及び水を流通しながら加熱し、トルエンの吸着温度、脱離温度、吸着量及び脱離量を測定した。
 具体的には、各炭化水素吸着材の測定試料0.1gを流通反応装置の石英製反応管に充填し、流通反応装置として固定床流通式反応装置)を用いて、トルエン71ppmを含み、10体積%の水蒸気を含む大気雰囲気とした評価用ガスを1L/分で流通させながら、昇温反応法により50℃から500℃まで20℃/分の昇温速度で昇温させ、トルエンを吸着・脱離させた。ゼオライトに対するトルエンの吸着脱離の測定には、トルエンの流通量に対して、下流の検出器(VMS-1000F、株式会社島津製作所製)の検出量の減少を吸着量及び浄化量とした。炭化水素吸着材への流通量以上の値が検出される領域は吸着炭化水素が脱離している。50℃以上170℃未満で吸着したトルエンの合計モル量ZDに対する170℃以下で炭化水素吸着材から脱離した合計モル量ZDの割合(ZD/ZD×100)を、トルエンの脱離量/吸着量とした。結果を表2に示す。
 水の存在下でのトルエン吸脱着挙動は、吸着・脱離・再吸着が生じることで複雑になり、SiO/Al比、金属量及び金属種によって吸着・脱離・再吸着挙動が異なるものとなるため、吸着・脱離のみで比較できる温度である170℃を基準に評価を行った。
測定条件
評価用ガス:トルエン71ppm、残部が窒素(N)である。
雰囲気:10体積%の水蒸気(HO)を含む雰囲気、水入りタンクから水蒸気を気化させて、温度により飽和水蒸気圧を調整し、10体積%の水蒸気を含む大気雰囲気とする。
BET比表面積
 実施例5,11,13,14及び比較例5の各炭化水素吸着材について、ISO 9277(JIS Z8330:2013)に準拠して測定した窒素吸着等温線からBET法によりBET比表面積を算出した。
熱処理、トルエンの脱離量/吸着量、ピーク強度比、BET比表面積
 実施例12~14、比較例5の各炭化水素吸着材に対して、上述した条件で熱処理を行った後、上述した条件にて、前述の実施例1等の各炭化水素吸着材と同様にして、トルエンの脱離量/吸着量の測定、X線回折スペクトルのピーク強度比の測定、及びBET比表面積の測定を行った。
 なお、比較例5は、熱処理後に粉末X線回折によって確認したところ、BEA型ゼオライトの骨格構造を維持していないことが確認されたため、吸着測定を行わなかった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例5から12(特定の金属を含有するマルチポアゼオライト)の炭化水素吸着材は、比較例5のゼオライトと比較して、トルエンの脱離量/吸着量が低い値であり、すなわち吸着量に対して脱離量が少ないものであり、トルエンの炭化水素吸着材への吸着・脱離の挙動を評価しやすい170℃程度の温度までトルエンを貯蔵することができ、170℃以上の比較的高い温度で炭化水素吸着材からトルエンを脱離させることができることが確認できた。また、実施例12から14の炭化水素吸着材は、熱処理後も、トルエンの脱離量及び吸着が行われ、耐熱性を有していることが確認できた。比較例5のゼオライトは、熱処理後は、トルエンを吸着しなかった。
 表2に示すように、実施例12から14の炭化水素吸着材は、比較例5のゼオライトと比べて、X線回折スペクトルのピーク強度比が高く、熱処理後でも結晶が維持されて耐熱性に優れることが確認された。
 表2に示すように、実施例13及び14の炭化水素吸着材は、熱処理前後のBET比表面積比B/Aが0.5以上0.9以下の範囲内であり、熱処理の前と後で炭化水素吸着材に用いたマルチポアゼオライトの構造の変化が少なく、構造が維持されて耐熱性を有していた。
 本開示に係る炭化水素吸着材は、炭化水素を吸着し、比較的高い温度まで吸着した炭化水素を貯蔵することができ、触媒が活性可能な比較的高い温度で吸着し貯蔵した炭化水素を脱離することができるため、排ガス浄化触媒の炭化水素吸着部として用いた場合に、排ガス浄化性能を向上することができる。また、炭化水素吸着材を用いた排ガス浄化触媒は、自動四輪車や自動二輪車などの内燃機関から排出される排気ガスを浄化するために好適に用いることができる。
 1:基材、1a:セル、1b:隔壁、2:炭化水素吸着部、3:浄化触媒部、3a:第1浄化触媒部、3b:第2浄化触媒部、10:排ガス浄化触媒(第1排ガス浄化触媒又は第2排ガス浄化触媒)、20:内燃機関、30:排ガス流路、40、50:排ガス浄化触媒、100、200、300:排ガス浄化システム。

Claims (19)

  1.  周期表で3~12族に属する遷移金属、周期表で13族及び14族に属する両性金属、アルカリ金属及びアルカリ土類金属からなる群から選択された少なくとも1種の金属をゼオライト骨格外に含むマルチポアゼオライトを含有し、
     前記金属の含有割合が、前記金属を含むマルチポアゼオライトに対して9質量%以下である炭化水素吸着材。
  2.  前記マルチポアゼオライトのSiO/Alモル比が10以上600以下である、請求項1に記載の炭化水素吸着材。
  3.  前記金属が、Mn、Fe、Ni、Cu、Zn、Ga、Rh、Pd、Ag、Sn、Sc及びPtからなる群から選択される少なくとも1種である、請求項1又は2に記載の炭化水素吸着材。
  4.  マルチポアゼオライトに含まれる前記金属とAlのモル比である金属/Al比が0.01以上2.5以下の範囲内である、請求項1から3のいずれか1項に記載の炭化水素吸着材。
  5.  大細孔のトンネル型細孔と、最大環が8員環以下である小細孔のケージとを含み、
     前記マルチポアゼオライトにおいて、前記金属の少なくとも一部が小細孔のケージ中に存在する、請求項1から4のいずれか1項に記載の炭化水素吸着材。
  6.  前記マルチポアゼオライトがリンを含む、請求項1から5のいずれか1項に記載の炭化水素吸着材。
  7.  前記リンを含有するマルチポアゼオライト中のP/Alモル比が0.4以上1.1以下である、請求項6に記載の炭化水素吸着材。
  8.  前記マルチポアゼオライトのBET比表面積Aが400m/g以上1000m/g以下の範囲内である、請求項1から7のいずれか1項に記載の炭化水素吸着材。
  9.  熱処理前の前記マルチポアゼオライトのBET比表面積Aと、下記(1)から(5)の熱処理条件を満たす熱処理後の前記マルチポアゼオライトのBET比表面積Bの比表面積比B/Aが、0.35以上1以下の範囲内である、請求項8に記載の炭化水素吸着材。
    熱処理条件
    (1)温度:850℃
    (2)時間:25時間
    (3)雰囲気:10体積%の水蒸気(HO)を含む雰囲気、水入りタンクから水蒸気を気化させて、温度により飽和水蒸気圧を調整し、10体積%の水蒸気を含む大気雰囲気とする。
    (4)モデルガス流通モード:点火燃焼及び充填(FC)モードで、下記(5)のモデルガス3L/分で80秒、Air(空気)3L/分で20秒を交互に流通させる。
    (5)モデルガス:C、O及びNの合計が3L/分であり、Cが70mL/分、Oが70mL/分、残部がNである。
  10.  前記マルチポアゼオライトがMSE型ゼオライト又はEON型ゼオライトである請求項1から9のいずれか1項に記載の炭化水素吸着材。
  11.  前記MSE型ゼオライトは、X線回折スペクトルの(420)面を表す回折角度(2θ)が21.7°±1.0°の回折角度(2θ)位置にピーク強度を有し、熱処理前の前記MSE型ゼオライトの(420)面のピーク強度Cと、下記(1)から(5)の熱処理条件を満たす熱処理後の前記MSE型ゼオライトの(420)面のピーク強度Dのピーク強度比D/Cが0.3以上1.5以下の範囲内である、請求項10に記載の炭化水素吸着材。
    (1)温度:850℃
    (2)時間:25時間
    (3)雰囲気:10体積%の水蒸気(HO)を含む雰囲気、水入りタンクから水蒸気を気化させて、温度により飽和水蒸気圧を調整し、10体積%の水蒸気を含む大気雰囲気とする。
    (4)モデルガス流通モード:点火燃焼及び充填(FC)モードで、下記(5)のモデルガス3L/分で80秒、Air(空気)3L/分で20秒を交互に流通させる。
    (5)モデルガス:C、O及びNの合計が3L/分であり、Cが70mL/分、Oが70mL/分、残部がNである。
  12.  基材と、前記基材上に前記請求項1から11のいずれか1項に記載の炭化水素吸着材を含む炭化水素吸着部と、前記炭化水素吸着部上に浄化触媒部と、を備えた、排ガス浄化触媒。
  13.  前記浄化触媒部が、Rh及びPtのうち少なくとも1種を含む第1浄化触媒部と、Pd及びPtのうち少なくとも1種を含む第2浄化触媒部とを備え、第1浄化触媒部が、前記炭化水素吸着部側に配置され、第1浄化触媒部上に第2浄化触媒部を備えた、請求項12に記載の排ガス浄化触媒。
  14.  前記第1浄化触媒部が、CeOの含有量が15質量%以上30質量%以下の範囲内である酸化セリウム-酸化ジルコニウム複合酸化物(CeO-ZrO)を含む、請求項13に記載の排ガス浄化触媒。
  15.  基材と、前記基材上に前記請求項1から11のいずれか1項に記載の炭化水素吸着材と、Rhとを含む炭化水素吸着部と、前記炭化水素吸着部上にPdを含む浄化触媒部と、を備えた、排ガス浄化触媒。
  16.  内燃機関と、
     前記内燃機関に接続された排ガス流路内の上流側に設けられた第1排ガス浄化触媒と、
     前記排ガス流路内において、前記第1排ガス浄化触媒よりも排ガス流れ方向の下流側に設けられた第2排ガス浄化触媒と、を備える排ガス浄化システムであって、
     前記第2排ガス浄化触媒が、前記請求項12~15のいずれか1項に記載された排ガス浄化触媒であり、
     前記第2排ガス浄化触媒中の白金族金属の含有割合が、前記第2排ガス浄化触媒の体積に対して0.1g/L以上3.0g/L以下である排ガス浄化システム。
  17.  内燃機関と、
     前記内燃機関に接続された排ガス流路内に単一の排ガス浄化触媒と、を備える排ガス浄化システムであって、
     前記排ガス浄化触媒が、前記請求項12~15のいずれか1項に記載された排ガス浄化触媒である排ガス浄化システム。
  18.  内燃機関と、
     前記内燃機関に接続された排ガス流路内に設けられた複数の排ガス浄化触媒と、を備える排ガス浄化システムであって、
     前記複数の排ガス浄化触媒のうち、排ガス流れ方向の最も上流側に配置された第1排ガス浄化触媒が、前記請求項12~15のいずれか1項に記載された排ガス浄化触媒である排ガス浄化システム。
  19.  炭化水素を含む燃焼排ガスと、前記請求項12~15のいずれか1項に記載の排ガス浄化用触媒とを接触させて、炭化水素を前記排ガス浄化用触媒に吸着させた後、170℃以上の温度で前記排気ガス浄化用触媒から炭化水素を脱離させることを含む、排ガスを処理するための方法。
PCT/JP2021/028102 2020-07-31 2021-07-29 炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム WO2022025185A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022539563A JP7450727B2 (ja) 2020-07-31 2021-07-29 炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム
CN202180059669.6A CN116157191A (zh) 2020-07-31 2021-07-29 烃吸附材、废气净化催化剂及废气净化系统
EP21848678.5A EP4190441A4 (en) 2020-07-31 2021-07-29 HYDROCARBON ADSORPTION MATERIAL, EMISSION TREATMENT CATALYST AND EMISSION TREATMENT SYSTEM
US18/018,214 US20230271136A1 (en) 2020-07-31 2021-07-29 Hydrocarbon adsorption material, exhaust gas cleaning catalyst, and exhaust gas cleaning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/029445 2020-07-31
JP2020029445 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022025185A1 true WO2022025185A1 (ja) 2022-02-03

Family

ID=80036340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028102 WO2022025185A1 (ja) 2020-07-31 2021-07-29 炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム

Country Status (5)

Country Link
US (1) US20230271136A1 (ja)
EP (1) EP4190441A4 (ja)
JP (1) JP7450727B2 (ja)
CN (1) CN116157191A (ja)
WO (1) WO2022025185A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531359A (ja) * 1990-11-09 1993-02-09 Ngk Insulators Ltd 自動車排ガス浄化用吸着材および触媒コンバーター
JPH10263364A (ja) * 1997-03-26 1998-10-06 Ngk Insulators Ltd 排ガス浄化システム
JP2004209323A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2009520583A (ja) * 2005-12-22 2009-05-28 ズード−ケミー アーゲー 鉄含有モレキュラーシーブから作製された吸着材料を含んでいる揮発性炭化水素の吸着ユニット
JP2014043371A (ja) * 2012-08-27 2014-03-13 Yokohama National Univ Mse型ゼオライト及びその製法
CN107262145A (zh) * 2017-07-24 2017-10-20 安徽纳蓝环保科技有限公司 一种沸石碳氢吸附重整催化剂的制备方法
WO2017188341A1 (ja) * 2016-04-26 2017-11-02 ユニゼオ株式会社 Mse型ゼオライトの製造方法
WO2019168148A1 (ja) * 2018-03-02 2019-09-06 東ソー株式会社 炭化水素吸着剤
WO2019172284A1 (ja) * 2018-03-09 2019-09-12 三井金属鉱業株式会社 排ガス浄化触媒及び排ガス浄化システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699811B1 (en) * 1999-05-05 2004-03-02 Exxon Mobil Chemical Patents Inc. Tailored zeolite bound zeolite catalyst and its use for hydrocarbon conversion
JP2004105821A (ja) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd 排気ガス用炭化水素吸着材及びそれを用いた排気ガス浄化用触媒
WO2005092482A1 (ja) 2004-03-05 2005-10-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha 排ガス浄化装置
DE102009053951A1 (de) * 2009-11-18 2011-05-19 Süd-Chemie AG Alterungsstabiler Rh-Zeolith Katalysator
DE102012006542A1 (de) 2012-04-02 2013-10-02 Clariant Produkte (Deutschland) Gmbh Methyliodidadsorber, Verwendung desselben und Verfahren zur Adsorption von Methyliodid
KR101970138B1 (ko) * 2014-08-20 2019-04-18 쇼와 덴코 가부시키가이샤 올리고실란의 제조 방법
KR101795404B1 (ko) * 2016-05-18 2017-11-08 현대자동차 주식회사 촉매 및 촉매의 제조 방법
WO2019229675A1 (en) * 2018-05-29 2019-12-05 Basf Corporation Diesel oxidation catalysts for ultralow nox control
CN115003411B (zh) 2020-01-27 2024-10-11 巴斯夫公司 钇掺杂催化剂载体
JP2022068871A (ja) 2020-10-22 2022-05-10 東ソー株式会社 炭化水素吸着剤及び炭化水素の吸着方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531359A (ja) * 1990-11-09 1993-02-09 Ngk Insulators Ltd 自動車排ガス浄化用吸着材および触媒コンバーター
JPH10263364A (ja) * 1997-03-26 1998-10-06 Ngk Insulators Ltd 排ガス浄化システム
JP2004209323A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2009520583A (ja) * 2005-12-22 2009-05-28 ズード−ケミー アーゲー 鉄含有モレキュラーシーブから作製された吸着材料を含んでいる揮発性炭化水素の吸着ユニット
JP2014043371A (ja) * 2012-08-27 2014-03-13 Yokohama National Univ Mse型ゼオライト及びその製法
WO2017188341A1 (ja) * 2016-04-26 2017-11-02 ユニゼオ株式会社 Mse型ゼオライトの製造方法
CN107262145A (zh) * 2017-07-24 2017-10-20 安徽纳蓝环保科技有限公司 一种沸石碳氢吸附重整催化剂的制备方法
WO2019168148A1 (ja) * 2018-03-02 2019-09-06 東ソー株式会社 炭化水素吸着剤
WO2019172284A1 (ja) * 2018-03-09 2019-09-12 三井金属鉱業株式会社 排ガス浄化触媒及び排ガス浄化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4190441A4

Also Published As

Publication number Publication date
EP4190441A4 (en) 2024-02-07
US20230271136A1 (en) 2023-08-31
JP7450727B2 (ja) 2024-03-15
CN116157191A (zh) 2023-05-23
JPWO2022025185A1 (ja) 2022-02-03
EP4190441A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP6951343B2 (ja) 鉄含有aeiゼオライト触媒の直接合成のための方法
JP5622944B2 (ja) 窒素含有化合物の変換方法
JP7502196B2 (ja) 安定なchaゼオライト
KR20180105230A (ko) 알칼리 금속을 본질적으로 함유하지 않는 Fe-AEI 제올라이트 재료를 포함하는 촉매의 존재하에 배출 가스로부터 아산화질소를 제거하는 방법
WO1998023373A1 (fr) Procede de production d'un catalyseur pour l'epuration des gaz d'echappement
KR20210002659A (ko) 높은 산도를 갖는 저-실리카 캐버자이트 제올라이트
KR20180111907A (ko) 알칼리 금속을 본질적으로 함유하지 않는 Fe-AEI 제올라이트 재료를 포함하는 SCR 촉매의 존재하에 선택적 촉매 환원에 의해 배기 가스로부터 질소 산화물을 제거하는 방법
JPH11216358A (ja) 炭化水素吸着剤及び排ガス浄化触媒
WO2022025185A1 (ja) 炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム
JP5594121B2 (ja) 新規メタロシリケート及び窒素酸化物浄化触媒
JP2018079428A (ja) 炭化水素吸着剤及び炭化水素の吸着除去方法
JP3207577B2 (ja) 炭化水素の吸着剤及び吸着浄化方法
JPH06312132A (ja) 炭化水素の吸着剤及び吸着除去方法
JP7234765B2 (ja) 窒素酸化物吸着材、及びその製造方法
JP7460753B2 (ja) 炭化水素吸着材
JP2021161019A (ja) 複合材、窒素酸化物吸着材、窒素酸化物の吸着方法、及び窒素酸化物の除去装置
JPH07144134A (ja) 排気ガス浄化用触媒
JP2018020295A (ja) NOx選択還元触媒及びそれを用いたNOx浄化方法
JP6339306B1 (ja) 排気ガス浄化用組成物
JPH05317725A (ja) 排ガス処理触媒及び排ガス処理方法
JPH0751577A (ja) 排ガス浄化用触媒
WO2021201018A1 (ja) 炭化水素吸着剤及び炭化水素の吸着方法
WO2023182344A1 (ja) ゼオライト、その製造方法、炭化水素吸着材及び排気ガス浄化触媒
JPH07328448A (ja) 排気ガス浄化触媒および排気ガス浄化装置
JP2004169583A (ja) ガソリンエンジンの排気ガス浄化装置及び排気ガス浄化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539563

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021848678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021848678

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE