WO2022019491A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2022019491A1
WO2022019491A1 PCT/KR2021/007804 KR2021007804W WO2022019491A1 WO 2022019491 A1 WO2022019491 A1 WO 2022019491A1 KR 2021007804 W KR2021007804 W KR 2021007804W WO 2022019491 A1 WO2022019491 A1 WO 2022019491A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
preparation
group
deuterium
Prior art date
Application number
PCT/KR2021/007804
Other languages
English (en)
French (fr)
Inventor
임병윤
이재철
김용욱
유소영
김신성
김영광
조범신
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/923,768 priority Critical patent/US20230180596A1/en
Priority to EP21845215.9A priority patent/EP4137472A4/en
Priority to CN202180029751.4A priority patent/CN115461317A/zh
Priority to JP2022567391A priority patent/JP2023525520A/ja
Publication of WO2022019491A1 publication Critical patent/WO2022019491A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, it may be made of an electron injection layer, etc.
  • the present invention provides a material for a novel organic light emitting device that can be used in an organic light emitting device and can be used in a solution process at the same time.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula (1):
  • Q is naphthylene unsubstituted or substituted with deuterium
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl,
  • L 1 to L 4 are each independently a substituted or unsubstituted C 6-60 arylene
  • n1 to n4 are each independently an integer of 0 to 2
  • a and b are each independently an integer from 0 to 8
  • a + b is 1 or more
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and an emission layer provided between the first electrode and the second electrode, wherein the emission layer includes the compound represented by Formula 1 above.
  • the compound represented by Chemical Formula 1 described above may be used as a material for an organic material layer of an organic light emitting device, and may be used in a solution process, and may improve efficiency and lifespan characteristics in an organic light emitting device.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 is an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron injection and transport layer 7, and a cathode 4 will show
  • substituted or unsubstituted refers to deuterium; halogen group; cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; a phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl containing one or more of N, O and S atoms
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, a biphenylyl group, or a terphenylyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrylenyl group, a fluorenyl group, a benzofluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the benzofluorenyl group may be substituted like the fluorenyl group, or two may be bonded to each other to form a spiro structure.
  • heteroaryl is a heteroaryl containing at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms.
  • heteroaryl include xanthene, thioxanthen, thiophene, furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, bipyridyl, Pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino Pyrazinyl group, isoquinoline group, indole group, carb
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the above-described aryl group.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among the heteroarylamine groups the description of the above-described heteroaryl may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • aryl group may be applied, except that arylene is a divalent group.
  • heteroaryl may be applied, except that heteroarylene is a divalent group.
  • deuterated or substituted with deuterium means that at least one available hydrogen in each formula is replaced with deuterium.
  • substituted with deuterium in the definition of each chemical formula or substituent means that at least one or more positions to which hydrogen can be bonded in a molecule are substituted with deuterium.
  • deuterium substitution rate means a percentage of the number of substituted deuterium relative to the total number of hydrogens that may be present in each chemical formula.
  • the present invention provides a compound represented by Formula 1 above.
  • the compound represented by Formula 1 is a compound having a structure in which two 9,10-anthracenylene are connected by a naphthylene linker (Q), and at least one of the hydrogens of the two 9,10-anthracenylene is deuterium It is characterized by being replaced.
  • the compound represented by Formula 1 may increase the efficiency and stability of the organic light emitting diode compared to the compound having a structure not substituted with deuterium.
  • anthracenylene when used as a host material in the emission layer of an organic light emitting device, anthracenylene does not have a CD bond and a CD bond exists only in other structures. Compared to a case in which the compound according to the present invention is used as a host material in the emission layer, the efficiency and lifespan of the organic light emitting diode may be significantly improved.
  • the compound represented by Formula 1 has high solubility in an organic solvent used in the solution process, for example, an organic solvent such as cyclohexanone, so that it is suitable for a large-area solution process such as an inkjet coating method using a solvent with a high boiling point. suitable for use
  • a indicating the number of deuterium substitutions of anthracenylene on the left side of Q in Formula 1 is 0, 1, 2, 3, 4, 5, 6, 7, or 8.
  • b indicating the number of deuterium substitutions of anthracenylene on the right side of Q in Formula 1 is 0, 1, 2, 3, 4, 5, 6, 7, or 8.
  • a+b is an integer of 1 to 16. More specifically, a+b is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16.
  • a compound in which a+b is 16, that is, a compound in which all the hydrogens bonded to carbons at positions 1 to 8 available of 9,10-anthracenylene are substituted with deuterium, has more CD bonds in the molecule, and , and thus material stability may be higher. Accordingly, in the organic light emitting device employing the compound in which a+b is 16 in Formula 1, efficiency and lifespan characteristics may be further improved.
  • Q is unsubstituted or naphthylene substituted with 1 to 6 deuterium.
  • Q is , or to be.
  • D is deuterium
  • c is an integer from 0 to 6.
  • Q may be any one of the divalent substituents represented by the following formulas 2a to 2j:
  • c is an integer from 0 to 6.
  • Ar 1 and Ar 2 may each independently be unsubstituted or C 6-20 aryl substituted with one or more deuterium.
  • Ar 1 and Ar 2 are each independently phenyl unsubstituted or substituted with 1 to 5 deuterium; or naphthyl unsubstituted or substituted with 1 to 7 deuterium.
  • At least one of Ar 1 and Ar 2 is unsubstituted or 1-naphthyl substituted with 1 to 7 deuterium; or
  • At least one of Ar 1 and Ar 2 may be unsubstituted or 2-naphthyl substituted with 1 to 7 deuterium.
  • Ar 1 and Ar 2 are each independently 1-naphthyl unsubstituted or substituted with 1 to 7 deuterium;
  • Ar 1 and Ar 2 are each independently 2-naphthyl unsubstituted or substituted with 1 to 7 deuterium;
  • Ar 1 and Ar 2 are 1-naphthyl unsubstituted or substituted with 1 to 7 deuterium, the other is 2-naphthyl unsubstituted or substituted with 1 to 7 deuterium; ;
  • Ar 1 and Ar 2 are phenyl unsubstituted or substituted with 1 to 5 deuterium and the other is 1-naphthyl unsubstituted or substituted with 1 to 7 deuterium; or
  • Ar 1 and Ar 2 may be phenyl unsubstituted or substituted with 1 to 5 deuterium, and the other may be unsubstituted or 2-naphthyl substituted with 1 to 7 deuterium.
  • Ar 1 and Ar 2 may be the same as each other.
  • Ar 1 and Ar 2 may be different.
  • L 1 to L 4 may each independently be unsubstituted or C 6-20 arylene substituted with one or more deuterium.
  • L 1 to L 4 are each independently unsubstituted or substituted with one or more deuterium phenylene; biphenyldiyl unsubstituted or substituted with one or more deuterium; or naphthylene unsubstituted or substituted with one or more deuterium.
  • L 1 and L 2 are each independently unsubstituted or substituted with 1 to 4 deuterium phenylene; or naphthylene unsubstituted or substituted with 1 to 6 deuterium.
  • n1 indicating the number of L 1 is 0, 1, or 2
  • two L 1 may be the same as or different from each other.
  • n2 indicating the number of L 2 is 0, 1, or 2 and when n2 is 2, two L 2 may be the same as or different from each other.
  • n1+n2 may be 0, 1, 2, 3, or 4.
  • L 1 and L 2 are each independently unsubstituted or 1,2-phenylene substituted with 1 to 4 deuterium; 1,3-phenylene unsubstituted or substituted with 1 to 4 deuterium; 1,4-phenylene unsubstituted or substituted with 1 to 4 deuterium; 1,2-naphthylene unsubstituted or substituted with 1 to 6 deuterium; 1,3-naphthylene unsubstituted or substituted with 1 to 6 deuterium; 1,4-naphthylene unsubstituted or substituted with 1 to 6 deuterium; 1,5-naphthylene unsubstituted or substituted with 1 to 6 deuterium; 1,6-naphthylene unsubstituted or substituted with 1 to 6 deuterium; 1,7-naphthylene unsubstituted or substituted with 1 to 6 deuterium; 1,8-naphthylene unsubstituted
  • L 3 and L 4 may each independently be unsubstituted or phenylene substituted with 1 to 4 deuterium.
  • n3 indicating the number of L 3 is 0, 1, or 2
  • two L 3 may be the same as or different from each other.
  • n4 indicating the number of L 4 is 0, 1, or 2, and when n4 is 2, two L 4 may be the same or different from each other.
  • n3+n4 may be 0, 1, 2, 3, or 4.
  • L 3 and L 4 are each independently unsubstituted or 1,2-phenylene substituted with 1 to 4 deuterium; 1,3-phenylene unsubstituted or substituted with 1 to 4 deuterium; or 1,4-phenylene unsubstituted or substituted with 1 to 4 deuterium.
  • n1+n2 may be 0, 1, 2, or 3
  • n3+n4 may be 0, 1, or 2.
  • n1+n2+n3+n4 is 0, 1, 2, 3, or 4.
  • the deuterium substitution rate of the compound may be 50% to 100%. Specifically, the deuterium substitution rate of the compound is 60% or more, 70% or more, 80% or more, 85% or more, 88% or more, 90% or more, 91% or more, 92% or more, 93% or more, or 94% or more. , and may be 100% or less.
  • the deuterium substitution rate of these compounds is calculated as the number of substituted deuteriums relative to the total number of hydrogens that may exist in the formula, where the number of substituted deuteriums is MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass It can be obtained through spectrometer analysis.
  • the compound represented by Formula 1 is a compound in which a+b is 16; Or it may be a compound having a deuterium substitution rate of 80% to 100%.
  • the compound may be represented by the following Chemical Formula 1-1:
  • Q is any one of the divalent substituents represented by the following formulas 2a to 2j,
  • c is an integer from 0 to 6
  • Ar 1 and Ar 2 are each independently phenyl or naphthyl
  • L 1 and L 2 are each independently phenylene or naphthylene
  • L 3 and L 4 are each independently phenylene
  • d and e are each independently an integer of 0 to 7,
  • f and g are each independently an integer from 0 to 6
  • h and i are each independently an integer from 0 to 4,
  • a, b, and n1 to n4 are as defined in Formula 1 above.
  • one of Ar 1 and Ar 2 is and the other one , or is;
  • L 1 and L 2 may each independently be any one selected from the group consisting of:
  • L 1 and L 2 may each independently be any one selected from the group consisting of:
  • L 3 and L 4 are each independently , or can be
  • L 1 to L 4 are each independently , or ego,
  • n1 to n4 are each independently 0 or 1
  • n1+n2+n3+n4 is 0;
  • n1+n2+n3+n4 is 1;
  • n1+n2+n3+n4 is 2;
  • n1+n2+n3+n4 is 3;
  • n1+n2+n3+n4 may be 4.
  • L 1 is phenylene or naphthylene
  • L 2 to L 4 are each independently , or ego,
  • n1 0, 1, or 2
  • n2 to n4 are each independently 0 or 1
  • n1+n2+n3+n4 is 0;
  • n1+n2+n3+n4 is 1;
  • n1+n2+n3+n4 is 2;
  • n1+n2+n3+n4 is 3;
  • n1+n2+n3+n4 is 4;
  • n1+n2+n3+n4 may be 5.
  • the compound may be represented by the following formula 1-1A or 1-1B:
  • Q is any one of the divalent substituents represented by the following formulas 2a to 2j,
  • c is an integer from 0 to 6
  • Ar 1 and Ar 2 are each independently phenyl or naphthyl
  • L 1 to L 4 are each independently phenylene
  • d and e are each independently an integer from 0 to 7,
  • f, g, h and i are each independently an integer from 0 to 4,
  • n2 to n5 are each independently 0 or 1
  • a and b are as defined in Formula 1 above,
  • Q is any one of the divalent substituents represented by the following formulas 2a to 2j,
  • c is an integer from 0 to 6
  • Ar 1 and Ar 2 are each independently phenyl or naphthyl
  • L" 1 is naphthylene
  • L 1 to L 4 are each independently phenylene
  • d and e are each independently an integer from 0 to 7,
  • f' is each independently an integer of 0 to 6
  • f, g, h and i are each independently an integer from 0 to 4,
  • n2 to n5 are each independently 0 or 1
  • a and b are as defined in Formula 1 above.
  • L 1 to L 4 are each independently phenylene
  • n1 to n4 are each independently 0 or 1
  • d and e are each independently an integer from 0 to 7,
  • f, g, h and i are each independently an integer from 0 to 4,
  • a+b is 16 and c+d+e+f+g+h+i is 0;
  • n1+n2+n3+n4 is 0 and a+b+c+d+e is 1 to 36;
  • n1+n2+n3+n4 is 1 and a+b+c+d+e+(one of f, g, h and i) is 1 to 40;
  • n1+n2+n3+n4 is 2, and a+b+c+d+e+(the sum of two of f, g, h and i) is 1 to 44;
  • n1+n2+n3+n4 is 3, and a+b+c+d+e+(the sum of three of f, g, h and i) is 1 to 48; or
  • n1+n2+n3+n4 may be 4, and a+b+c+d+e+f+g+h+i may be 1 to 52.
  • a+b is 16 and c+d+e+f+g+h+i is 0;
  • the deuterium substitution rate of the compound may be 80% to 100%.
  • the deuterium substitution rate of the compound is 80% to 100%, for example,
  • n1+n2+n3+n4 is 0 and a+b+c+d+e is 30 to 36;
  • n1+n2+n3+n4 is 1 and a+b+c+d+e+(one of f, g, h and i) is 34 to 40;
  • n1+n2+n3+n4 is 2 and a+b+c+d+e+(the sum of two of f, g, h and i) is 38 to 44;
  • n1+n2+n3+n4 is 3 and a+b+c+d+e+(the sum of three of f, g, h and i) is 42 to 48; or
  • n1+n2+n3+n4 may be 4, and a+b+c+d+e+f+g+h+i may be 46 to 52.
  • L 1 to L 4 are each independently phenylene
  • n1 to n4 are each independently 0 or 1
  • d is an integer from 0 to 5;
  • e is an integer from 0 to 7
  • f, g, h and i are each independently an integer from 0 to 4,
  • a+b is 16 and c+d+e+f+g+h+i is 0;
  • n1+n2+n3+n4 is 0 and a+b+c+d+e is 1 to 34;
  • n1+n2+n3+n4 is 1 and a+b+c+d+e+(one of f, g, h and i) is 1 to 38;
  • n1+n2+n3+n4 is 2 and a+b+c+d+e+(the sum of two of f, g, h and i) is 1 to 42;
  • n1+n2+n3+n4 is 3, and a+b+c+d+e+(the sum of three of f, g, h and i) is 1 to 46; or
  • n1+n2+n3+n4 may be 4, and a+b+c+d+e+f+g+h+i may be 1 to 50.
  • a+b is 16 and c+d+e+f+g+h+i is 0;
  • the deuterium substitution rate of the compound may be 80% to 100%.
  • the deuterium substitution rate of the compound is 80% to 100%, for example,
  • n1+n2+n3+n4 is 0 and a+b+c+d+e is 28 to 34;
  • n1+n2+n3+n4 is 1 and a+b+c+d+e+(one of f, g, h and i) is 32 to 38;
  • n1+n2+n3+n4 is 2, and a+b+c+d+e+(the sum of two of f, g, h and i) is 36 to 42;
  • n1+n2+n3+n4 is 3, and a+b+c+d+e+(the sum of three of f, g, h and i) is 40 to 46; or
  • n1+n2+n3+n4 may be 4, and a+b+c+d+e+f+g+h+i may be 44 to 50.
  • L 1 to L 4 are each independently phenylene
  • n1 to n4 are each independently 0 or 1
  • d is an integer from 0 to 7
  • e is an integer from 0 to 5
  • f, g, h and i are each independently an integer from 0 to 4,
  • a+b is 16 and c+d+e+f+g+h+i is 0;
  • n1+n2+n3+n4 is 0 and a+b+c+d+e is 1 to 34;
  • n1+n2+n3+n4 is 1 and a+b+c+d+e+(one of f, g, h and i) is 1 to 38;
  • n1+n2+n3+n4 is 2 and a+b+c+d+e+(the sum of two of f, g, h and i) is 1 to 42;
  • n1+n2+n3+n4 is 3, and a+b+c+d+e+(the sum of three of f, g, h and i) is 1 to 46; or
  • n1+n2+n3+n4 may be 4, and a+b+c+d+e+f+g+h+i may be 1 to 50.
  • a+b is 16, c+d+e+f+g+h+i is 0; Alternatively, the deuterium substitution rate of the compound may be 80% to 100%.
  • the deuterium substitution rate of the compound is 80% to 100%, for example,
  • n1+n2+n3+n4 is 0 and a+b+c+d+e is 28 to 34;
  • n1+n2+n3+n4 is 1 and a+b+c+d+e+(one of f, g, h and i) is 32 to 38;
  • n1+n2+n3+n4 is 2, and a+b+c+d+e+(the sum of two of f, g, h and i) is 36 to 42;
  • n1+n2+n3+n4 is 3, and a+b+c+d+e+(the sum of three of f, g, h and i) is 40 to 46; or
  • n1+n2+n3+n4 may be 4, and a+b+c+d+e+f+g+h+i may be 44 to 50.
  • L" 1 is naphthylene
  • L 1 to L 4 are each independently phenylene
  • n2 to n4 are each independently 0 or 1
  • d and e are each independently an integer from 0 to 7,
  • f' is each independently an integer of 0 to 6
  • f, g, h and i are each independently an integer from 0 to 4,
  • a+b is 16 and c+d+e+f+f'+g+h+i is 0;
  • n2+n3+n4 is 0 and a+b+c+d+e+f+f' is 1 to 46;
  • n2+n3+n4 is 1 and a+b+c+d+e+f+f'+(one of g, h and i) is 1-50;
  • n2+n3+n4 is 2, and a+b+c+d+e+f+f'+(the sum of two of g, h and i) is 1 to 54; or
  • n2+n3+n4 may be 3, and a+b+c+d+e+f+f'+g+h+i may be 1 to 58.
  • a+b is 16, c+d+e+f+f'+g+h+i is 0; Alternatively, the deuterium substitution rate of the compound may be 80% to 100%.
  • the deuterium substitution rate of the compound is 80% to 100%, for example,
  • n2+n3+n4 is 0 and a+b+c+d+e+f+f' is 40 to 46;
  • n2+n3+n4 is 1 and a+b+c+d+e+f+f'+(one of g, h and i) is 44-50;
  • n2+n3+n4 is 2, and a+b+c+d+e+f+f'+(the sum of two of g, h and i) is 48 to 54; or
  • n2+n3+n4 may be 3, and a+b+c+d+e+f+f'+g+h+i may be 52 to 58.
  • Representative examples of the compound represented by the formula (1) are any one selected from the group consisting of compounds represented by the following formula:
  • a+b+c+d+e+g is 1 to 40;
  • a+b+c+d+e+g is 1 to 40;
  • a+b+c+d+e is 1 to 36;
  • a+b+c+d+e is 1 to 36;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+g is 1 to 40;
  • a+b+c+d+e+f is 1 to 40;
  • a+b is 1 to 16
  • a+b is 1 to 16
  • a+b+c+d+e+g+h is 1 to 44;
  • a+b+c+d+e+f+f'+g+h is 1 to 54;
  • a+b+c+d+e+f+f'+g+h is 1 to 54;
  • a+b+c+d+e+f+f'+g+h is 1 to 54;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+f is 1 to 40;
  • a+b+c+d+e+f is 1 to 40;
  • a+b+c+d+e+f+g+h+i is 1 to 52;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e+f+g is 1 to 42;
  • a+b+c+d+e+f+g+h is 1 to 48;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e is 1 to 36;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e is 1 to 36;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e is 1 to 36;
  • a+b is 1 to 16
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e is 1 to 36;
  • a+b+c+d+e+f+f'+g+h is 1 to 54;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e is 1 to 36;
  • a+b+c+d+e+f+g is 1 to 44;
  • a+b+c+d+e is 1 to 36;
  • the compound represented by Chemical Formula 1 may be prepared by, for example, a preparation method as shown in Scheme 1 below.
  • L' 1 , L' 2 , L' 3 , L' 4 , Ar' 1 , Ar' 2 and Q' are each L 1 , L 2 , L 3 , L 4 , Ar 1 , Ar 2
  • Q refers to a non-deuterated substituent, definitions for other substituents are the same as described above.
  • the compound represented by Formula 1 may be prepared through steps a to c.
  • step a using Tf 2 O (Trifluoromethanesulfonic anhydride), the -OTf(-O 3 SCF 3 ) group, which is a reactive group for the Suzuki coupling reaction, is introduced into compound 1-1 to prepare compound 1-2. to be.
  • Tf 2 O Trifluoromethanesulfonic anhydride
  • step b is a step of preparing the compound represented by Formula 1' through the Suzuki coupling reaction of Compounds 1-2 and 1-3.
  • the Suzuki coupling reaction is preferably performed in the presence of a palladium catalyst and a base, respectively.
  • the reactor for the Suzuki coupling reaction may be appropriately changed.
  • step c the intermediate compound 1' is deuterated to prepare a compound represented by Formula 1, wherein the deuterium substitution reaction is a benzene-D 6 (C 6 D 6 ) solution and After being added to the same deuterated solvent, it can be carried out by reacting with TfOH (trifluoromethanesulfonic acid).
  • the deuterium substitution reaction is a benzene-D 6 (C 6 D 6 ) solution and After being added to the same deuterated solvent, it can be carried out by reacting with TfOH (trifluoromethanesulfonic acid).
  • the compound represented by Chemical Formula 1 may be prepared by, for example, a preparation method as shown in Scheme 2 below.
  • the compound represented by Formula 1 may be prepared through steps d and e.
  • step d is a step of preparing compound 1-5 by introducing a -OTf(-O 3 SCF 3 ) group, which is a reactive group for the Suzuki coupling reaction, to compound 1-4 using Tf 2 O.
  • step e is a step of preparing the compound represented by Formula 1 through the Suzuki coupling reaction of compounds 1-5 and 1-6.
  • the Suzuki coupling reaction is preferably performed in the presence of a palladium catalyst and a base, respectively, and the reactor for the Suzuki coupling reaction may be appropriately changed.
  • the method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
  • the organic material layer including the compound according to the present invention can be formed using various methods such as a vacuum deposition method and a solution process, and the solution process will be described in detail below.
  • the compound according to the present invention can form the organic material layer of the organic light emitting device, particularly the light emitting layer, by a solution process.
  • the compound may be used as a host material of the light emitting layer.
  • the present invention provides a coating composition comprising the above-described compound according to the present invention and a solvent.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing the compound according to the present invention, and for example, chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o - Chlorine solvents, such as dichlorobenzene; ether solvents such as tetrahydrofuran and dioxane; aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, mesitylene, 1-methylnaphthalene, and 2-methylnaphthalene; aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Ketone solvents, such as acetone, methyl ethyl ket
  • the coating composition may further include a compound used as a dopant material, and a description of the compound used for the host material will be described later.
  • the viscosity of the coating composition is preferably 1 cP or more. In addition, in consideration of the easiness of coating the coating composition, the viscosity of the coating composition is preferably 10 cP or less.
  • the concentration of the compound according to the present invention in the coating composition is preferably 0.1 wt/v% or more. In addition, the concentration of the compound according to the present invention in the coating composition is preferably 20 wt/v% or less so that the coating composition can be optimally coated.
  • the solubility (wt%) of the compound represented by Formula 1 at room temperature/atmospheric pressure may be 0.1 wt% or more, more specifically 0.1 wt% to 5 wt%, based on the solvent cyclohexanone. Accordingly, the coating composition including the compound represented by Formula 1 and the solvent may be used in a solution process.
  • the present invention provides a method of forming a light emitting layer using the above-described coating composition. Specifically, coating the light emitting layer according to the present invention on the anode or on the hole transport layer formed on the anode in a solution process; and heat-treating the coated coating composition.
  • the solution process uses the coating composition according to the present invention described above, and refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying method, roll coating, and the like, but is not limited thereto.
  • the heat treatment temperature in the heat treatment step is preferably 150 to 230 °C.
  • the heat treatment time is 1 minute to 3 hours, more preferably 10 minutes to 1 hour.
  • the heat treatment is preferably performed in an inert gas atmosphere such as argon or nitrogen.
  • the present invention provides an organic light emitting device comprising the compound represented by Formula 1 above.
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and an emission layer provided between the first electrode and the second electrode, wherein the emission layer includes the compound represented by Formula 1 above.
  • the organic light emitting device according to the present invention is an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers and a cathode are sequentially stacked on a substrate in which a first electrode is an anode and a second electrode is a cathode can be
  • the organic light emitting device according to the present invention has an inverted type organic light emitting device in which a cathode, one or more organic material layers and an anode are sequentially stacked on a substrate in which a first electrode is a cathode and a second electrode is an anode can be
  • FIGS. 1 and 2 the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that the light emitting layer includes the compound according to the present invention and is manufactured as described above.
  • the organic light emitting device may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode
  • it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the hole transport material is a material that can transport holes from the anode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. material is suitable.
  • the hole transport material the compound represented by Formula 1, or an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together may be used, but the present invention is not limited thereto. .
  • the organic light emitting device may include an electron suppression layer between the hole transport layer and the light emitting layer.
  • the electron suppression layer is formed on the hole transport layer, preferably provided in contact with the light emitting layer, adjusts hole mobility, prevents excessive movement of electrons, and increases the hole-electron coupling probability, thereby increasing the efficiency of the organic light emitting device It means a layer that plays a role in improving
  • the electron blocking layer includes an electron blocking material, and as an example of the electron blocking material, a compound represented by Formula 1 or an arylamine-based organic material may be used, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • a compound represented by Formula 1 may be used.
  • a condensed aromatic ring derivative or a hetero ring-containing compound may be used together with the compound represented by Formula 1 above.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene, and the like, having an arylamino group.
  • the styrylamine compound a substituted or unsubstituted As a compound in which at least one arylvinyl group is substituted in the arylamine, one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the organic light emitting device may include a hole blocking layer between the light emitting layer and the electron transport layer.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to control electron mobility and prevent excessive movement of holes to increase the hole-electron coupling probability, thereby improving the efficiency of the organic light emitting device layer that plays a role.
  • the hole-blocking layer includes a hole-blocking material, and examples of the hole-blocking material include: azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.
  • the electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from the electrode and transporting the received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • the electron injection and transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable.
  • Specific examples of the electron injection and transport material include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. derivatives, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.
  • the electron injection and transport layer may be formed as a separate layer such as an electron injection layer and an electron transport layer.
  • the electron transport layer is formed on the light emitting layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer.
  • the electron injection layer is formed on the electron transport layer, and the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, etc. can be used.
  • the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the light emitting layer, the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may further include an inorganic compound or a polymer compound such as quantum dots.
  • the quantum dots may be, for example, colloidal quantum dots, alloy quantum dots, core-shell quantum dots, or core quantum dots. Elements belonging to groups 2 and 16, elements belonging to groups 13 and 15, elements belonging to groups 13 and 17, elements belonging to groups 11 and 17, or elements belonging to groups 14 and 15 It may be a quantum dot including an element belonging to group 15, and may include cadmium (Cd), selenium (Se), zinc (Zn), sulfur (S), phosphorus (P), indium (In), tellurium (Te), and lead. Quantum dots including elements such as (Pb), gallium (Ga), and arsenic (As) may be used.
  • the organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high luminous efficiency.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • Compound A4' was prepared in the same manner as in Compound A3', except that Compound 4-a was used instead of Compound 3-b.
  • Compound A5' was prepared in the same manner as in Compound A3', except that Compound 1-e was used instead of Compound 3-b.
  • Compound A6' was prepared in the same manner as in Compound A3', except that Compound 2-a was used instead of Compound 3-b.
  • Compound 11-c (99% yield) was prepared in the same manner as in Compound 1-d, except that Compound 11-b was used instead of Compound 1-c.
  • Compound C4' was prepared in the same manner as in Compound C3', except that Compound 2-a was used instead of Compound 13-b.
  • Compound F1' (90% yield) was prepared in the same manner as in Compound E1', except that Compound 21-a was used instead of Compound 19-a.
  • Compound G1' (87% yield) was prepared in the same manner as in Compound E1', except that Compound 23-a was used instead of Compound 19-a.
  • Compound G2' (91% yield) was prepared in the same manner as in Compound G1', except that Compound 4-a was used instead of Compound 1-e.
  • Compound A10 (91% yield) was prepared in the same manner as in Compound A9, except that Compound 29-a was used instead of Compound 3-a.
  • Compound G3 (87% yield) was prepared in the same manner as in Compound A9, except that Compound 23-a was used instead of Compound 3-a.
  • the number of substituted deuteriums in the compound was obtained through MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer) analysis,
  • the deuterium substitution rate was calculated as a percentage of the number of substituted deuterium relative to the total number of hydrogens that can be substituted, and it is shown in Table 1 below.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 500 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl and acetone and dried. After washing the substrate for 5 minutes, the substrate was transported to a glove box.
  • spin coating 4000 rpm a coating composition in which the compound p-dopant and compound HIL (weight ratio of 2:8) were dissolved in cyclohexanone at 20 wt/v% and heat treatment at 200 °C for 30 minutes (curing) to form a hole injection layer to a thickness of 400 ⁇ .
  • the compound HTL (Mn: 27,900; Mw: 35,600; measured by GPC using PC Standard using Agilent 1200 series) was dissolved in toluene at 6 wt/v% by spin coating ( 4000 rpm) and heat treatment at 200 °C for 30 minutes to form a hole transport layer having a thickness of 200 ⁇ .
  • the above-prepared light emitting layer host compound A1 and the light emitting layer dopant prepared above on the hole transport layer was spin-coated (4000 rpm) of a coating composition in which the compound Dopant (weight ratio of 98:2) was dissolved in cyclohexanone at 2 wt/v% (4000 rpm), and 30 at 180 ° C.
  • a light emitting layer was formed to a thickness of 400 ⁇ by heat treatment for minutes.
  • the compound ETL was vacuum deposited to a thickness of 350 ⁇ on the emission layer to form an electron injection and transport layer.
  • a cathode was formed by sequentially depositing LiF to a thickness of 10 ⁇ and aluminum to a thickness of 1000 ⁇ on the electron injection and transport layer.
  • the deposition rate of the organic material was maintained at 0.4 to 0.7 ⁇ /sec, the deposition rate of 0.3 ⁇ /sec for LiF and 2 ⁇ /sec for aluminum was maintained, and the vacuum degree during deposition was 2*10 -7 to 5 *10 -8 torr was maintained.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound A1 as the host of the light emitting layer. At this time, the compounds used in the Examples are summarized as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 7월 24일자 한국 특허 출원 제10-2020-0092539호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한편, 최근에는 공정 비용 절감을 위하여 기존의 증착 공정 대신 용액 공정, 특히 잉크젯 공정을 이용한 유기 발광 소자가 개발되고 있다. 초창기에는 모든 유기 발광 소자 층을 용액 공정으로 코팅하여 유기 발광 소자를 개발하려 하였으나 현재 기술로는 한계가 있어, HIL, HTL, EML만을 용액 공정으로 진행하고 추후 공정은 기존의 증착 공정을 활용하는 하이브리드(hybrid) 공정이 연구 중이다.
이에 본 발명에서는 유기 발광 소자에 사용될 수 있으면서 동시에 용액 공정에 사용 가능한 신규한 유기 발광 소자의 소재를 제공한다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2021007804-appb-img-000001
상기 화학식 1에서,
D는 중수소를 의미하고,
Q는 비치환되거나, 또는 중수소로 치환된 나프틸렌이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴이고,
L1 내지 L4는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴렌이고,
n1 내지 n4는 각각 독립적으로 0 내지 2의 정수이고,
a 및 b는 각각 독립적으로 0 내지 8의 정수이고,
단, a+b는 1 이상이고,
n1 내지 n4가 각각 2인 경우, 괄호([ ]) 안의 구조는 서로 동일하거나 또는 상이하다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하는 유기 발광 소자로서, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 또한 용액 공정에 사용이 가능하며, 유기 발광 소자에서 효율 및 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자주입 및 수송층(7) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
Figure PCTKR2021007804-appb-img-000002
Figure PCTKR2021007804-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미하고, D는 중수소를 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021007804-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021007804-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021007804-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되는 것은 아니다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 1-메틸헥실, 2-메틸헥실, 3-메틸헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐릴기, 터페닐릴기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트릴기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기, 벤조플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021007804-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 또한, 벤조플루오레닐기도 상기 플루오레닐기와 마찬가지로 치환되거나, 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민기 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
본 명세서 있어서, 용어 "중수소화된 또는 중수소로 치환된"이란, 각 화학식에서 적어도 하나의 이용가능한 수소가 중수소로 치환된 것을 의미한다. 구체적으로, 각 화학식 또는 치환기의 정의에서 중수소로 치환된다는 것은, 분자 내 수소가 결합될 수 있는 위치 중 적어도 하나 이상이 중수소로 치환되는 것을 의미한다.
또한, 본 명세서에 있어서, 용어 "중수소 치환율"이란, 각 화학식에 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수의 백분율을 의미한다.
(화합물)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
상기 화학식 1로 표시되는 화합물은 2개의 9,10-안트라세닐렌이 나프틸렌 링커(Q)로 연결된 구조를 갖는 화합물로, 상기 2개의 9,10-안트라세닐렌의 수소 중 적어도 하나는 중수소로 치환되는 것을 특징으로 한다.
이때, C-D 결합의 결합 에너지(bond energy)가 C-H 결합의 결합 에너지보다 크기 때문에, 상기 화합물은 중수소로 치환되지 않은 화합물에 비하여, 분자 내 더 강한 결합 에너지를 갖게 되고, 이에 따라 물질 안정성이 높아질 수 있다. 따라서, 상기 화학식 1로 표시되는 화합물은 중수소로 치환되어 있지 않은 구조를 갖는 화합물 대비, 유기 발광 소자의 효율 및 안정성을 높일 수 있다.
특히, 특정 구조를 갖는 화합물이 중수소 치환에 따른 분자 내 결합 에너지의 증가 및 물질 안정성 향상 효과를 나타내기 위해서는, 화합물의 중수소 치환율이 높을수록, 구체적으로는 중수소 치환율이 80% 이상인 것이 바람직하다. 이때, 2개의 9,10-안트라세닐렌이 나프틸렌 링커로 연결된 구조를 갖는 화합물이 80% 이상의 중수소 치환율을 나타내기 위해서는 안트라세닐렌 모이어티 내의 적어도 하나의 수소가 중수소로 치환되어 있어야 하므로, 2개의 9,10-안트라세닐렌이 나프틸렌 링커로 연결된 구조를 갖는 화합물의 중수소 치환에 따른 소자 특성 향상 효과를 나타내기 위해서는 2개의 안트라세닐렌의 수소 중 적어도 하나가 중수소로 치환된 상기 화학식 1과 같은 구조를 갖는 것이 필요하다.
따라서, 이러한 C-D 결합이 안트라세닐렌에 존재하는 상기 화학식 1로 표시되는 화합물이 유기 발광 소자의 발광층 내 호스트 물질로 사용되는 경우, 안트라세닐렌에는 C-D 결합이 존재하지 않고 다른 구조에만 C-D 결합이 존재하는 화합물이 발광층 내 호스트 물질로 사용되는 경우에 비하여, 유기 발광 소자의 효율 및 수명이 현저히 향상될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 용액 공정에 사용되는 유기 용매, 예를 들어 사이클로헥사논과 같은 유기 용매에 대한 용해도가 높아, 높은 끓는점의 용매를 사용하는 잉크젯 도포법 등의 대면적 용액 공정에 사용이 적합하다.
한편, 상기 화학식 1에서의 Q의 좌측의 안트라세닐렌의 중수소 치환 개수를 의미하는 a는 0, 1, 2, 3, 4, 5, 6, 7, 또는 8이다. 또한, 상기 화학식 1에서의 Q의 우측의 안트라세닐렌의 중수소 치환 개수를 의미하는 b는 0, 1, 2, 3, 4, 5, 6, 7, 또는 8이다.
또한, 상기 화학식 1에서의 2개의 안트라세닐렌의 수소 중 적어도 하나는 중수소이므로, a+b는 1 내지 16의 정수이다. 보다 구체적으로는, a+b는 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 또는 16이다. 이때, a+b가 16인 화합물, 즉, 9,10-안트라세닐렌의 이용가능한 1 내지 8번 위치의 탄소와 결합된 수소가 모두 중수소로 치환된 화합물은 분자 내 보다 많은 C-D 결합을 갖게 되고, 이에 따라 물질 안정성이 보다 높아질 수 있다. 따라서, 상기 화학식 1에서 a+b가 16인 화합물을 채용한 유기 발광 소자는 효율 및 수명 특성이 보다 향상될 수 있다.
또한, 상기 화학식 1에서, Q는 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 나프틸렌이다.
구체적으로, Q는
Figure PCTKR2021007804-appb-img-000008
, 또는
Figure PCTKR2021007804-appb-img-000009
이다. 여기서, D는 중수소이고, c는 0 내지 6의 정수이다.
보다 구체적으로는, Q는 하기 화학식 2a 내지 2j로 표시되는 2가의 치환기 중 어느 하나일 수 있다:
Figure PCTKR2021007804-appb-img-000010
상기 화학식 2a 내지 2j에서,
c는 0 내지 6의 정수이다.
즉, 상기 화학식 2a 내지 2j에서, 중수소 치환 개수를 의미하는 c는 0, 1, 2, 3, 4, 5, 또는 6이다.
또한, 상기 화학식 1에서, Ar1 및 Ar2는 각각 독립적으로 비치환되거나, 1개 이상의 중수소로 치환된 C6-20 아릴일 수 있다.
구체적으로는, Ar1 및 Ar2는 각각 독립적으로 비치환되거나, 또는 1개 내지 5개의 중수소로 치환된 페닐; 또는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 나프틸일 수 있다.
이때, Ar1 및 Ar2 중 적어도 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 1-나프틸이거나; 또는
Ar1 및 Ar2 중 적어도 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 2-나프틸일 수 있다.
예를 들어, Ar1 및 Ar2이 각각 독립적으로 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 1-나프틸이거나;
Ar1 및 Ar2이 각각 독립적으로 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 2-나프틸이거나;
Ar1 및 Ar2 중 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 1-나프틸이고, 나머지 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 2-나프틸이거나;
Ar1 및 Ar2 중 하나는 비치환되거나, 또는 1개 내지 5개의 중수소로 치환된 페닐이고, 나머지 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 1-나프틸이거나; 또는
Ar1 및 Ar2 중 하나는 비치환되거나, 또는 1개 내지 5개의 중수소로 치환된 페닐이고, 나머지 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 2-나프틸일 수 있다.
이때, Ar1 및 Ar2는 서로 동일할 수 있다. 또는, Ar1 및 Ar2는 상이할 수 있다.
또한, 상기 화학식 1에서, L1 내지 L4는 각각 독립적으로 비치환되거나, 또는 1개 이상의 중수소로 치환된 C6-20 아릴렌일 수 있다.
구체적으로, L1 내지 L4는 각각 독립적으로 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐렌; 비치환되거나, 또는 1개 이상의 중수소로 치환된 비페닐디일; 또는 비치환되거나, 또는 1개 이상의 중수소로 치환된 나프틸렌일 수 있다.
보다 구체적으로는, L1 및 L2는 각각 독립적으로 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 페닐렌; 또는 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 나프틸렌일 수 있다.
이때, L1의 개수를 의미하는 n1은 0, 1, 또는 2이고, n1이 2인 경우, 2개의 L1은 서로 동일하거나 또는 상이할 수 있다.
또한, L2의 개수를 의미하는 n2는 0, 1, 또는 2이고, n2가 2인 경우, 2개의 L2는 서로 동일하거나 또는 상이할 수 있다.
이에 따라, n1+n2는 0, 1, 2, 3, 또는 4일 수 있다.
예를 들어, L1 및 L2는 각각 독립적으로 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 1,2-페닐렌; 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 1,3-페닐렌; 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 1,4-페닐렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,2-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,3-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,4-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,5-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,6-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,7-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 1,8-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 2,3-나프틸렌; 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 2,6-나프틸렌; 또는 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 2,7-나프틸렌일 수 있다.
보다 구체적으로는, L3 및 L4는 각각 독립적으로 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 페닐렌일 수 있다.
이때, L3의 개수를 의미하는 n3은 0, 1, 또는 2이고, n3이 2인 경우, 2개의 L3은 서로 동일하거나 또는 상이할 수 있다.
또한, L4의 개수를 의미하는 n4는 0, 1, 또는 2이고, n4가 2인 경우, 2개의 L4는 서로 동일하거나 또는 상이할 수 있다.
이에 따라, n3+n4는 0, 1, 2, 3, 또는 4일 수 있다.
예를 들어, L3 및 L4는 각각 독립적으로 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 1,2-페닐렌; 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 1,3-페닐렌; 또는 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 1,4-페닐렌일 수 있다.
또는, n1+n2는 0, 1, 2, 또는 3이고, n3+n4는 0, 1, 또는 2일 수 있다.
바람직하게는, n1+n2+n3+n4는 0, 1, 2, 3, 또는 4이다.
한편, 상기 화합물의 중수소 치환율은 50% 내지 100%일 수 있다. 구체적으로는, 상기 화합물의 중수소 치환율은 60% 이상, 70% 이상, 80% 이상, 85% 이상, 88% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 또는 94% 이상이면서, 100% 이하일 수 있다. 이러한 화합물의 중수소 치환율은 화학식 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수로 계산되며, 이때 치환된 중수소의 개수는 MALDI-TOF MS(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer) 분석을 통해 구해질 수 있다.
보다 구체적으로는, 상기 화학식 1로 표시되는 화합물은 a+b가 16인 화합물이거나; 또는 중수소 치환율이 80% 내지 100%인 화합물일 수 있다.
또한, 상기 화합물은 하기 화학식 1-1로 표시될 수 있다:
[화학식 1-1]
Figure PCTKR2021007804-appb-img-000011
상기 화학식 1-1에서,
Q는 하기 화학식 2a 내지 2j로 표시되는 2가의 치환기 중 어느 하나이고,
Figure PCTKR2021007804-appb-img-000012
상기 화학식 2a 내지 2j에서,
c는 0 내지 6의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 페닐, 또는 나프틸이고,
L1 및 L2는 각각 독립적으로 페닐렌, 또는 나프틸렌이고,
L3 및 L4는 각각 독립적으로 페닐렌이고,
d 및 e는 각각 독립적으로 0 내지 7의 정수이고,
f 및 g는 각각 독립적으로 0 내지 6의 정수이고,
h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
a, b 및 n1 내지 n4는 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 1-1에서, Ar1 및 Ar2 중 하나는
Figure PCTKR2021007804-appb-img-000013
이고, 나머지 하나는
Figure PCTKR2021007804-appb-img-000014
, 또는
Figure PCTKR2021007804-appb-img-000015
이거나;
Ar1 및 Ar2 중 하나는
Figure PCTKR2021007804-appb-img-000016
이고, 나머지 하나는
Figure PCTKR2021007804-appb-img-000017
이거나;
Ar1 및 Ar2 모두
Figure PCTKR2021007804-appb-img-000018
이거나; 또는
Ar1 및 Ar2 모두
Figure PCTKR2021007804-appb-img-000019
일 수 있다.
또는, L1 및 L2는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure PCTKR2021007804-appb-img-000020
.
예를 들어, L1 및 L2는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure PCTKR2021007804-appb-img-000021
.
또한, L3 및 L4는 각각 독립적으로
Figure PCTKR2021007804-appb-img-000022
, 또는
Figure PCTKR2021007804-appb-img-000023
일 수 있다.
또한, 상기 화학식 1-1에서, L1 내지 L4는 각각 독립적으로
Figure PCTKR2021007804-appb-img-000024
, 또는
Figure PCTKR2021007804-appb-img-000025
이고,
n1 내지 n4는 각각 독립적으로 0 또는 1이고,
n1+n2+n3+n4는 0이거나;
n1+n2+n3+n4는 1이거나;
n1+n2+n3+n4는 2이거나;
n1+n2+n3+n4는 3이거나; 또는
n1+n2+n3+n4는 4일 수 있다.
또는, 상기 화학식 1-1에서, L1는 페닐렌, 또는 나프틸렌이고,
L2 내지 L4는 각각 독립적으로
Figure PCTKR2021007804-appb-img-000026
, 또는
Figure PCTKR2021007804-appb-img-000027
이고,
n1은 0, 1, 또는 2이고,
n2 내지 n4는 각각 독립적으로 0 또는 1이고,
n1+n2+n3+n4는 0이거나;
n1+n2+n3+n4는 1이거나;
n1+n2+n3+n4는 2이거나;
n1+n2+n3+n4는 3이거나;
n1+n2+n3+n4는 4이거나; 또는
n1+n2+n3+n4는 5일 수 있다.
또한, 상기 화합물은 하기 화학식 1-1A 또는 1-1B로 표시될 수 있다:
[화학식 1-1A]
Figure PCTKR2021007804-appb-img-000028
상기 화학식 1-1A에서,
Q는 하기 화학식 2a 내지 2j로 표시되는 2가의 치환기 중 어느 하나이고,
Figure PCTKR2021007804-appb-img-000029
상기 화학식 2a 내지 2j에서,
c는 0 내지 6의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 페닐, 또는 나프틸이고,
L1 내지 L4는 각각 독립적으로 페닐렌이고,
d 및 e는 각각 독립적으로 0 내지 7의 정수이고,
f, g, h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
n2 내지 n5는 각각 독립적으로 0 또는 1이고,
a 및 b는 상기 화학식 1에서 정의한 바와 같고,
[화학식 1-1B]
Figure PCTKR2021007804-appb-img-000030
상기 화학식 1-1B에서,
Q는 하기 화학식 2a 내지 2j로 표시되는 2가의 치환기 중 어느 하나이고,
Figure PCTKR2021007804-appb-img-000031
상기 화학식 2a 내지 2j에서,
c는 0 내지 6의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 페닐, 또는 나프틸이고,
L"1은 나프틸렌이고,
L1 내지 L4는 각각 독립적으로 페닐렌이고,
d 및 e는 각각 독립적으로 0 내지 7의 정수이고,
f'는 각각 독립적으로 0 내지 6의 정수이고,
f, g, h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
n2 내지 n5는 각각 독립적으로 0 또는 1이고,
a 및 b는 상기 화학식 1에서 정의한 바와 같다.
또한, 상기 화합물은 하기 화학식 1-1-1로 표시될 수 있다:
[화학식 1-1-1]
Figure PCTKR2021007804-appb-img-000032
상기 화학식 1-1-1에서,
L1 내지 L4는 각각 독립적으로 페닐렌이고,
n1 내지 n4는 각각 독립적으로 0 또는 1이고,
d 및 e는 각각 독립적으로 0 내지 7의 정수이고,
f, g, h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
Q, a 및 b는 상기 화학식 1-1에서 정의한 바와 같고,
a+b가 16이고, c+d+e+f+g+h+i는 0이거나;
n1+n2+n3+n4는 0이고, a+b+c+d+e는 1 내지 36이거나;
n1+n2+n3+n4는 1이고, a+b+c+d+e+(f, g, h 및 i 중 하나)는 1 내지 40이거나;
n1+n2+n3+n4는 2이고, a+b+c+d+e+(f, g, h 및 i 중 둘의 합)은 1 내지 44이거나;
n1+n2+n3+n4는 3이고, a+b+c+d+e+(f, g, h 및 i 중 셋의 합)은 1 내지 48이거나; 또는
n1+n2+n3+n4는 4이고, a+b+c+d+e+f+g+h+i는 1 내지 52일 수 있다.
보다 구체적으로는,
상기 화학식 1-1-1로 표시되는 화합물은, a+b가 16이고, c+d+e+f+g+h+i는 0이거나; 또는 상기 화합물의 중수소 치환율이 80% 내지 100%일 수 있다.
상기 화합물의 중수소 치환율이 80% 내지 100%인 경우는 예를 들어,
n1+n2+n3+n4는 0이고, a+b+c+d+e는 30 내지 36이거나;
n1+n2+n3+n4는 1이고, a+b+c+d+e+(f, g, h 및 i 중 하나)는 34 내지 40이거나;
n1+n2+n3+n4는 2이고, a+b+c+d+e+(f, g, h 및 i 중 둘의 합)은 38 내지 44이거나;
n1+n2+n3+n4는 3이고, a+b+c+d+e+(f, g, h 및 i 중 셋의 합)은 42 내지 48이거나; 또는
n1+n2+n3+n4는 4이고, a+b+c+d+e+f+g+h+i는 46 내지 52일 수 있다.
또한, 상기 화합물은 하기 화학식 1-1-2로 표시될 수 있다:
[화학식 1-1-2]
Figure PCTKR2021007804-appb-img-000033
상기 화학식 1-1-2에서,
L1 내지 L4는 각각 독립적으로 페닐렌이고,
n1 내지 n4는 각각 독립적으로 0 또는 1이고,
d는 0 내지 5의 정수이고,
e는 0 내지 7의 정수이고,
f, g, h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
Q, a 및 b는 상기 화학식 1-1에서 정의한 바와 같고,
a+b가 16이고, c+d+e+f+g+h+i는 0이거나;
n1+n2+n3+n4는 0이고, a+b+c+d+e는 1 내지 34이거나;
n1+n2+n3+n4는 1이고, a+b+c+d+e+(f, g, h 및 i 중 하나)는 1 내지 38이거나;
n1+n2+n3+n4는 2이고, a+b+c+d+e+(f, g, h 및 i 중 둘의 합)은 1 내지 42이거나;
n1+n2+n3+n4는 3이고, a+b+c+d+e+(f, g, h 및 i 중 셋의 합)은 1 내지 46이거나; 또는
n1+n2+n3+n4는 4이고, a+b+c+d+e+f+g+h+i는 1 내지 50일 수 있다.
보다 구체적으로는,
상기 화학식 1-1-2로 표시되는 화합물은, a+b가 16이고, c+d+e+f+g+h+i는 0이거나; 또는 상기 화합물의 중수소 치환율이 80% 내지 100%일 수 있다.
상기 화합물의 중수소 치환율이 80% 내지 100%인 경우는 예를 들어,
n1+n2+n3+n4는 0이고, a+b+c+d+e는 28 내지 34이거나;
n1+n2+n3+n4는 1이고, a+b+c+d+e+(f, g, h 및 i 중 하나)는 32 내지 38이거나;
n1+n2+n3+n4는 2이고, a+b+c+d+e+(f, g, h 및 i 중 둘의 합)은 36 내지 42이거나;
n1+n2+n3+n4는 3이고, a+b+c+d+e+(f, g, h 및 i 중 셋의 합)은 40 내지 46이거나; 또는
n1+n2+n3+n4는 4이고, a+b+c+d+e+f+g+h+i는 44 내지 50일 수 있다.
또한, 상기 화합물은 하기 화학식 1-1-3으로 표시될 수 있다:
[화학식 1-1-3]
Figure PCTKR2021007804-appb-img-000034
상기 화학식 1-1-3에서,
L1 내지 L4는 각각 독립적으로 페닐렌이고,
n1 내지 n4는 각각 독립적으로 0 또는 1이고,
d는 0 내지 7의 정수이고,
e는 0 내지 5의 정수이고,
f, g, h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
Q, a 및 b는 상기 화학식 1-1에서 정의한 바와 같고,
a+b가 16이고, c+d+e+f+g+h+i는 0이거나;
n1+n2+n3+n4는 0이고, a+b+c+d+e는 1 내지 34이거나;
n1+n2+n3+n4는 1이고, a+b+c+d+e+(f, g, h 및 i 중 하나)는 1 내지 38이거나;
n1+n2+n3+n4는 2이고, a+b+c+d+e+(f, g, h 및 i 중 둘의 합)은 1 내지 42이거나;
n1+n2+n3+n4는 3이고, a+b+c+d+e+(f, g, h 및 i 중 셋의 합)은 1 내지 46이거나; 또는
n1+n2+n3+n4는 4이고, a+b+c+d+e+f+g+h+i는 1 내지 50일 수 있다.
보다 구체적으로는,
상기 화학식 1-1-3으로 표시되는 화합물은, a+b가 16이고, c+d+e+f+g+h+i는 0이거나; 또는 상기 화합물의 중수소 치환율이 80% 내지 100%일 수 있다.
상기 화합물의 중수소 치환율이 80% 내지 100%인 경우는 예를 들어,
n1+n2+n3+n4는 0이고, a+b+c+d+e는 28 내지 34이거나;
n1+n2+n3+n4는 1이고, a+b+c+d+e+(f, g, h 및 i 중 하나)는 32 내지 38이거나;
n1+n2+n3+n4는 2이고, a+b+c+d+e+(f, g, h 및 i 중 둘의 합)은 36 내지 42이거나;
n1+n2+n3+n4는 3이고, a+b+c+d+e+(f, g, h 및 i 중 셋의 합)은 40 내지 46이거나; 또는
n1+n2+n3+n4는 4이고, a+b+c+d+e+f+g+h+i는 44 내지 50일 수 있다.
또한, 상기 화합물은 하기 화학식 1-1-4로 표시될 수 있다:
[화학식 1-1-4]
Figure PCTKR2021007804-appb-img-000035
상기 화학식 1-1-4에서,
L"1은 나프틸렌이고,
L1 내지 L4는 각각 독립적으로 페닐렌이고,
n2 내지 n4는 각각 독립적으로 0 또는 1이고,
d 및 e는 각각 독립적으로 0 내지 7의 정수이고,
f'는 각각 독립적으로 0 내지 6의 정수이고,
f, g, h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
Q, a 및 b는 상기 화학식 1-1에서 정의한 바와 같고,
a+b가 16이고, c+d+e+f+f'+g+h+i는 0이거나;
n2+n3+n4는 0이고, a+b+c+d+e+f+f'는 1 내지 46이거나;
n2+n3+n4는 1이고, a+b+c+d+e+f+f'+( g, h 및 i 중 하나)는 1 내지 50이거나;
n2+n3+n4는 2이고, a+b+c+d+e+f+f'+( g, h 및 i 중 둘의 합)은 1 내지 54이거나; 또는
n2+n3+n4는 3이고, a+b+c+d+e+f+f'+g+h+i는 1 내지 58일 수 있다.
보다 구체적으로는,
상기 화학식 1-1-3으로 표시되는 화합물은, a+b가 16이고, c+d+e+f+f'+g+h+i는 0이거나; 또는 상기 화합물의 중수소 치환율이 80% 내지 100%일 수 있다.
상기 화합물의 중수소 치환율이 80% 내지 100%인 경우는 예를 들어,
n2+n3+n4는 0이고, a+b+c+d+e+f+f'는 40 내지 46이거나;
n2+n3+n4는 1이고, a+b+c+d+e+f+f'+( g, h 및 i 중 하나)는 44 내지 50이거나;
n2+n3+n4는 2이고, a+b+c+d+e+f+f'+( g, h 및 i 중 둘의 합)은 48 내지 54이거나; 또는
n2+n3+n4는 3이고, a+b+c+d+e+f+f'+g+h+i는 52 내지 58일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기 화학식으로 표시되는 화합물로 구성되는 군으로부터 선택되는 어느 하나이다:
[화학식 A1]
Figure PCTKR2021007804-appb-img-000036
상기 화학식 A1에서,
a+b+c+d+e+g는 1 내지 40이고,
[화학식 A2]
Figure PCTKR2021007804-appb-img-000037
상기 화학식 A2에서,
a+b+c+d+e+g는 1 내지 40이고,
[화학식 A3]
Figure PCTKR2021007804-appb-img-000038
상기 화학식 A3에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 A4]
Figure PCTKR2021007804-appb-img-000039
상기 화학식 A4에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 A5]
Figure PCTKR2021007804-appb-img-000040
상기 화학식 A5에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 A6]
Figure PCTKR2021007804-appb-img-000041
상기 화학식 A6에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 A7]
Figure PCTKR2021007804-appb-img-000042
상기 화학식 A7에서,
a+b+c+d+e+g는 1 내지 40이고,
[화학식 A8]
Figure PCTKR2021007804-appb-img-000043
상기 화학식 A8에서,
a+b+c+d+e+f는 1 내지 40이고,
[화학식 A9]
Figure PCTKR2021007804-appb-img-000044
상기 화학식 A9에서,
a+b는 1 내지 16이고,
[화학식 A10]
Figure PCTKR2021007804-appb-img-000045
상기 화학식 A10에서,
a+b는 1 내지 16이고,
[화학식 A11]
Figure PCTKR2021007804-appb-img-000046
상기 화학식 A11에서,
a+b+c+d+e+g+h는 1 내지 44이고,
[화학식 A12]
Figure PCTKR2021007804-appb-img-000047
상기 화학식 A12에서,
a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
[화학식 A13]
Figure PCTKR2021007804-appb-img-000048
상기 화학식 A13에서,
a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
[화학식 A14]
Figure PCTKR2021007804-appb-img-000049
상기 화학식 A14에서,
a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
[화학식 B1]
Figure PCTKR2021007804-appb-img-000050
상기 화학식 B1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 B2]
Figure PCTKR2021007804-appb-img-000051
상기 화학식 B2에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 C1]
Figure PCTKR2021007804-appb-img-000052
상기 화학식 C1에서,
a+b+c+d+e+f는 1 내지 40이고,
[화학식 C2]
Figure PCTKR2021007804-appb-img-000053
상기 화학식 C2에서,
a+b+c+d+e+f는 1 내지 40이고,
[화학식 C3]
Figure PCTKR2021007804-appb-img-000054
상기 화학식 C3에서,
a+b+c+d+e+f+g+h+i는 1 내지 52이고,
[화학식 C4]
Figure PCTKR2021007804-appb-img-000055
상기 화학식 C4에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 D1]
Figure PCTKR2021007804-appb-img-000056
상기 화학식 D1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 D2]
Figure PCTKR2021007804-appb-img-000057
상기 화학식 D2에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 D3]
Figure PCTKR2021007804-appb-img-000058
상기 화학식 D3에서,
a+b+c+d+e+f+g는 1 내지 42이고,
[화학식 D4]
Figure PCTKR2021007804-appb-img-000059
상기 화학식 D4에서,
a+b+c+d+e+f+g+h는 1 내지 48이고,
[화학식 E1]
Figure PCTKR2021007804-appb-img-000060
상기 화학식 E1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 E2]
Figure PCTKR2021007804-appb-img-000061
상기 화학식 E2에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 F1]
Figure PCTKR2021007804-appb-img-000062
상기 화학식 F1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 F2]
Figure PCTKR2021007804-appb-img-000063
상기 화학식 F2에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 G1]
Figure PCTKR2021007804-appb-img-000064
상기 화학식 G1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 G2]
Figure PCTKR2021007804-appb-img-000065
상기 화학식 G2에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 G3]
Figure PCTKR2021007804-appb-img-000066
상기 화학식 G3에서,
a+b는 1 내지 16이고,
[화학식 H1]
Figure PCTKR2021007804-appb-img-000067
상기 화학식 H1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 H2]
Figure PCTKR2021007804-appb-img-000068
상기 화학식 H2에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 H3]
Figure PCTKR2021007804-appb-img-000069
상기 화학식 H3에서,
a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
[화학식 I1]
Figure PCTKR2021007804-appb-img-000070
상기 화학식 I1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 I2]
Figure PCTKR2021007804-appb-img-000071
상기 화학식 I2에서,
a+b+c+d+e는 1 내지 36이고,
[화학식 J1]
Figure PCTKR2021007804-appb-img-000072
상기 화학식 J1에서,
a+b+c+d+e+f+g는 1 내지 44이고,
[화학식 J2]
Figure PCTKR2021007804-appb-img-000073
상기 화학식 J2에서,
a+b+c+d+e는 1 내지 36이다.
한편, 상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다.
[반응식 1]
Figure PCTKR2021007804-appb-img-000074
상기 반응식 1에서, L'1, L'2, L'3, L'4, Ar'1, Ar'2 및 Q'는 각각 L1, L2, L3, L4, Ar1, Ar2 및 Q가 중수소화되지 않은 치환기를 의미하고, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 단계 a 내지 단계 c를 통해 제조될 수 있다.
먼저, 상기 단계 a는 Tf2O(Trifluoromethanesulfonic anhydride)를 사용하여, 화합물 1-1에 스즈키 커플링 반응을 위한 반응기인 -OTf(-O3SCF3)기를 도입하여 화합물 1-2를 제조하는 단계이다.
다음으로 상기 단계 b는 화합물 1-2 및 1-3의 스즈키 커플링 반응을 통해 상기 화학식 1'로 표시되는 화합물을 제조하는 단계이다. 이러한 스즈키 커플링 반응은 각각 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 스즈키 커플링 반응을 위한 상기 반응기는 적절히 변경될 수 있다.
다음으로, 상기 단계 c는 중간체 화합물 1'를 중수소화하여 화학식 1로 표시되는 화합물을 제조하는 단계로, 이때 중수소 치환 반응은 상기 중간체 화합물 1'를 벤젠-D6(C6D6) 용액과 같은 중수소화된 용매에 투입한 후 TfOH(trifluoromethanesulfonic acid)와 반응시켜 수행될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로도 제조할 수 있다.
[반응식 2]
Figure PCTKR2021007804-appb-img-000075
상기 반응식 2에서, 각 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 단계 d 및 단계 e를 통해 제조될 수 있다.
먼저, 상기 단계 d는 Tf2O를 사용하여, 화합물 1-4에 스즈키 커플링 반응을 위한 반응기인 -OTf(-O3SCF3)기를 도입하여 화합물 1-5를 제조하는 단계이다.
다음으로 상기 단계 e는 화합물 1-5 및 1-6의 스즈키 커플링 반응을 통해 상기 화학식 1로 표시되는 화합물을 제조하는 단계이다. 이러한 스즈키 커플링 반응은 각각 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하고, 상기 스즈키 커플링 반응을 위한 상기 반응기는 적절히 변경될 수 있다.
이러한, 화학식 1로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
한편, 본 발명에 따른 화합물을 포함하는 유기물층은 진공 증착법, 용액 공정 등과 같은 다양한 방법을 이용하여 형성할 수 있으며, 용액 공정에 대해서는 이하 상세히 설명한다.
(코팅 조성물)
한편, 본 발명에 따른 화합물은 용액 공정으로 유기 발광 소자의 유기물 층, 특히 발광층을 형성할 수 있다. 구체적으로, 상기 화합물은 발광층의 호스트 재료로 사용될 수 있다. 이를 위하여, 본 발명은 상술한 본 발명에 따른 화합물 및 용매를 포함하는 코팅 조성물을 제공한다.
상기 용매는 본 발명에 따른 화합물을 용해 또는 분산시킬 수 있는 용매이면 특별히 제한되지 않으며, 일례로 클로로포름, 염화메틸렌, 1,2-디클로로에탄, 1,1,2-트리클로로에탄, 클로로벤젠, o-디클로로벤젠 등의 염소계 용매; 테트라하이드로퓨란, 디옥산 등의 에테르계 용매; 톨루엔, 크실렌, 트리메틸벤젠, 메시틸렌, 1-메틸나프탈렌, 2-메틸나프탈렌 등의 방향족 탄화수소계 용매; 시클로헥산, 메틸시클로헥산, n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸 등의 지방족 탄화수소계 용매; 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매; 아세트산에틸, 아세트산부틸, 에틸셀로솔브아세테이트 등의 에스테르계 용매; 에틸렌글리콜, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디메톡시에탄, 프로필렌글리콜, 디에톡시메탄, 트리에틸렌글리콜모노에틸에테르, 글리세린, 1,2-헥산디올 등의 다가 알코올 및 그의 유도체; 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올 등의 알코올계 용매; 디메틸술폭사이드 등의 술폭사이드계 용매; 및 N-메틸-2-피롤리돈, N,N-디메틸포름아미드 등의 아미드계 용매; 부틸벤조에이트, 메틸-2-메톡시벤조에이트, 에틸벤조에이트 등의 벤조에이트계 용매; 디메틸 프탈레이트, 디에틸 프탈레이트, 디페닐 프탈레이트 등의 프탈레이트 계 용매; 테트랄린; 3-페녹시톨루엔 등의 용매를 들 수 있다. 또한, 상술한 용매를 1종 단독으로 사용하거나 2종 이상의 용매를 혼합하여 사용할 수 있다. 바람직하게는 상기 용매로 사이클로헥사논를 사용할 수 있다.
또한, 상기 코팅 조성물은 도펀트 재료로 사용되는 화합물을 더 포함할 수 있고, 상기 호스트 재료에 사용되는 화합물에 대한 설명은 후술한다.
또한, 상기 코팅 조성물의 점도는 1 cP 이상이 바람직하다. 또한, 상기 코팅 조성물의 코팅 용이성을 감안하여, 상기 코팅 조성물의 점도는 10 cP 이하가 바람직하다. 또한, 상기 코팅 조성물 내 본 발명에 따른 화합물의 농도는 0.1 wt/v% 이상이 바람직하다. 또한, 상기 코팅 조성물이 최적으로 코팅될 수 있도록, 상기 코팅 조성물 내 본 발명에 따른 화합물의 농도는 20 wt/v%이하가 바람직하다.
또한, 상기 화학식 1로 표시되는 화합물의 상온/상압에서의 용해도(wt%)는 용매 사이클로헥사논을 기준으로 0.1 wt% 이상, 보다 구체적으로는 0.1 wt% 내지 5 wt%일 수 있다. 이에 따라, 상기 화학식 1로 표시되는 화합물 및 용매를 포함하는 코팅 조성물은 용액 공정에 사용될 수 있다.
또한, 본 발명은 상술한 코팅 조성물을 사용하여 발광층을 형성하는 방법을 제공한다. 구체적으로, 양극 상에, 또는 양극 상에 형성된 정공 수송층 상에 상술한 본 발명에 따른 발광층을 용액 공정으로 코팅하는 단계; 및 상기 코팅된 코팅 조성물을 열처리하는 단계를 포함한다.
상기 용액 공정은 상술한 본 발명에 따른 코팅 조성물을 사용하는 것으로, 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
상기 열처리 단계에서 열처리 온도는 150 내지 230℃가 바람직하다. 또한, 상기 열처리 시간은 1분 내지 3시간이고, 보다 바람직하게는 10분 내지 1시간이다. 또한, 상기 열처리는 아르곤, 질소 등의 불활성 기체 분위기에서 수행하는 것이 바람직하다.
(유기 발광 소자)
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하는 유기 발광 소자로서, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다.
또한, 본 발명에 따른 유기 발광 소자는, 제1 전극이 양극이고, 제2 전극이 음극인, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 제1 전극이 음극이고, 제2 전극이 양극인, 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자주입 및 수송층(7) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 발광층이 본 발명에 따른 화합물을 포함하고, 상술한 방법과 같이 제조되는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조할 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 상기 정공 수송 물질로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 유기 발광 소자에는 상기 정공수송층과 발광층 사이에 전자 억제층이 구비되어 있을 수 있다. 상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료로는 상기 화학식 1로 표시되는 화합물이 사용될 수 있다. 또한, 상기 호스트 재료로 상기 화학식 1로 표시되는 화합물과 함께 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 사용될 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되는 것은 아니다.
또한, 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
한편, 상기 유기 발광 소자에는 상기 발광층과 전자 수송층 사이에 정공저지층이 구비되어 있을 수 있다. 상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
상술한 재료 외에도, 상기 발광층, 정공 주입층, 정공 수송층, 전자 수송층, 및 전자 주입층에는 퀀텀닷 등의 무기 화합물 또는 고분자 화합물을 추가로 포함할 수 있다.
상기 퀀텀닷은 예를 들어, 콜로이드 퀀텀닷, 합금 퀀텀닷, 코어셸 퀀텀닷, 또는 코어 퀀텀닷일 수 있다. 제2족 및 제16족에 속하는 원소, 제13족 및 제15족에 속하는 원소, 제13족 및 제17족에 속하는 원소, 제11족 및 제17족에 속하는 원소, 또는 제14족 및 제15족에 속하는 원소를 포함하는 퀀텀닷일 수 있으며, 카드뮴(Cd), 셀레늄(Se), 아연(Zn), 황(S), 인(P), 인듐(In), 텔루륨(Te), 납(Pb), 갈륨(Ga), 비소(As) 등의 원소를 포함하는 퀀텀닷이 사용될 수 있다.
본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예]
제조예 1: 화합물 A1의 제조
단계 1-1) 화합물 1-c의 제조
Figure PCTKR2021007804-appb-img-000076
화합물 1-a(10.0 g, 1.0 eq.) 및 화합물 1-b(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 1-c(93% 수율)를 제조하였다.
m/z [M+H]+ = 447.2
단계 1-2) 화합물 1-d의 제조
Figure PCTKR2021007804-appb-img-000077
화합물 1-c(15 g, 1.0 eq.)를 둥근 바닥 플라스크에 넣고 무수 CH2Cl2에 용해하였다. 이후, pyridine(2.0 eq.)을 상온에서 적가한 뒤, bath 온도를 0℃로 낮춰 10분 동안 교반하였다. 이후, 무수 CH2Cl2에 용해한 Tf2O(1.2 eq.)를 dropping funnel을 이용하여 천천히 혼합물에 적가하고, bath 온도를 서서히 0℃에서 상온으로 올려준 뒤, 하룻밤 동안 교반하였다. 반응 후, 반응물을 CH2Cl2에 충분히 묽힌 뒤, CH2Cl2/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 1-d(98% 수율)를 제조하였다.
m/z [M+H]+ = 579.1
단계 1-3) 화합물 A1'의 제조
Figure PCTKR2021007804-appb-img-000078
화합물 1-d(3 g, 1.0 eq.) 및 화합물 1-e(1.03 eq.)를 둥근 바닥 플라스크에 넣고 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 A1'(91% 수율)를 제조하였다.
m/z [M+H]+ = 809.3
단계 1-4) 화합물 A1의 제조
Figure PCTKR2021007804-appb-img-000079
질소 분위기 하에 화합물 A1' (2.0 g, 1.0 eq.)를 둥근 바닥 플라스크에 넣고 benzene-D6 (150 eq.)에 용해시켰다. TfOH (2.0 eq.)를 반응물에 천천히 적가하고, 25℃에서 2시간 동안 교반하였다. 반응물에 D2O를 적가하여 반응을 종결시키고, potassium phosphate tribasic(30 wt% in aqueous solution, 2.4 eq.)를 적가하여 수층의 pH를 9-10으로 맞추었다. CH2Cl2/DI water로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 A1(a+b+c+d+e+g=36-40, 96% 수율)을 제조하였다.
m/z [M+H]+ = 849.3
제조예 2: 화합물 A2의 제조
단계 2-1) 화합물 A2'의 제조
Figure PCTKR2021007804-appb-img-000080
화합물 1-e 대신 화합물 2-a를 사용한 것을 제외하고는 상기 화합물 A1'와 동일하게 화합물 A2'(92% 수율)을 제조하였다.
m/z [M+H]+ = 809.3
단계 2-2) 화합물 A2의 제조
Figure PCTKR2021007804-appb-img-000081
화합물 A1' 대신 화합물 A2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 A2(a+b+c+d+e+g=36-40, 88% 수율)를 제조하였다.
m/z [M+H]+ = 849.3
제조예 3: 화합물 A3의 제조
단계 3-1) 화합물 3-a의 제조
Figure PCTKR2021007804-appb-img-000082
화합물 1-a(20 g, 1.0 eq.)를 둥근 바닥 플라스크에 넣고 무수 CH2Cl2에 용해하였다. 이후, pyridine(2.0 eq.)을 상온에서 적가한 뒤, bath 온도를 0℃로 낮춰 10분 동안 교반하였다. 이후, 무수 CH2Cl2에 용해한 Tf2O(1.2 eq.)를 dropping funnel을 이용하여 천천히 혼합물에 적가하고, bath 온도를 서서히 0℃에서 상온으로 올려준 뒤, 하룻밤 동안 교반하였다. 반응 후, 반응물을 CH2Cl2에 충분히 묽힌 뒤, CH2Cl2/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 3-a(99% 수율)를 제조하였다.
m/z [M+H]+ = 354.9
단계 3-2) 화합물 A3'의 제조
Figure PCTKR2021007804-appb-img-000083
화합물 3-a(1 g, 1.0 eq.) 및 화합물 1-b(2.1 eq.)를 둥근 바닥 플라스크에 넣고 PhMe(Toluene)에 용해시켰다. 물에 용해된 C2CO3(10 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (20 mol%)를 적가하고 3일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 A3'(86% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 3-3) 화합물 A3의 제조
Figure PCTKR2021007804-appb-img-000084
화합물 A1' 대신 화합물 A3'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 A3(a+b+c+d+e=34-36, 92% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 4: 화합물 A4의 제조
단계 4-1) 화합물 A4'의 제조
Figure PCTKR2021007804-appb-img-000085
화합물 3-b 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 A3'와 동일하게 화합물 A4'를 제조하였다.
m/z [M+H]+ = 733.3
단계 4-2) 화합물 A4의 제조
Figure PCTKR2021007804-appb-img-000086
화합물 A1' 대신 화합물 A4'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 A4(a+b+c+d+e=34-36, 91% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 5: 화합물 A5의 제조
단계 5-1) 화합물 A5'의 제조
Figure PCTKR2021007804-appb-img-000087
화합물 3-b 대신 화합물 1-e를 사용한 것을 제외하고는 상기 화합물 A3'와 동일하게 화합물 A5'를 제조하였다.
m/z [M+H]+ = 885.3
단계 5-2) 화합물 A5의 제조
Figure PCTKR2021007804-appb-img-000088
화합물 A1' 대신 화합물 A5'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 A5(a+b+c+d+e+f+g=40-44, 90% 수율)를 제조하였다.
m/z [M+H]+ = 929.3
제조예 6: 화합물 A6의 제조
단계 6-1) 화합물 A6'의 제조
Figure PCTKR2021007804-appb-img-000089
화합물 3-b 대신 화합물 2-a를 사용한 것을 제외하고는 화합물 A3'와 동일하게 화합물 A6'를 제조하였다.
m/z [M+H]+ = 885.3
단계 6-2) 화합물 A6의 제조
Figure PCTKR2021007804-appb-img-000090
화합물 A1' 대신 화합물 A6'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 A6(a+b+c+d+e+f+g=40-44, 90% 수율)을 제조하였다.
m/z [M+H]+ = 929.3
제조예 7: 화합물 A7의 제조
단계 7-1) 화합물 7-a의 제조
Figure PCTKR2021007804-appb-img-000091
화합물 1-b 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 1-c와 동일하게 화합물 7-a(수율 92%)를 제조하였다.
m/z [M+H]+ = 447.2
단계 7-2) 화합물 7-b의 제조
Figure PCTKR2021007804-appb-img-000092
화합물 1-c 대신 화합물 7-a를 사용한 것을 제외하고는 상기 화합물 1-d와 동일하게 화합물 7-b(수율 99%)를 제조하였다.
m/z [M+H]+ = 579.1
단계 7-3) 화합물 A7'의 제조
Figure PCTKR2021007804-appb-img-000093
화합물 1-d 대신 화합물 7-b를 사용한 것을 제외하고는 화합물 A1'와 동일하게 화합물 A7'(수율 84%)를 제조하였다.
m/z [M+H]+ = 809.3
단계 7-4) 화합물 A7의 제조
Figure PCTKR2021007804-appb-img-000094
화합물 A1' 대신 화합물 A7' 를 사용한 것을 제외하고는 화합물 A1'와 동일하게 화합물 A7(a+b+c+d+e+g=36-40, 97% 수율)을 제조하였다.
m/z [M+H]+ = 849.3
제조예 8: 화합물 A8의 제조
단계 8-1) 화합물 8-a의 제조
Figure PCTKR2021007804-appb-img-000095
화합물 1-b 대신 화합물 1-e를 사용한 것을 제외하고는 상기 화합물 1-c와 동일하게 화합물 8-a(수율 89%)를 제조하였다.
m/z [M+H]+ = 523.2
단계 8-2) 화합물 8-b의 제조
Figure PCTKR2021007804-appb-img-000096
화합물 1-c 대신 화합물 8-a를 사용한 것을 제외하고는 상기 화합물 1-d와 동일하게 화합물 8-b(수율 99%)를 제조하였다.
m/z [M+H]+ = 655.2
단계 8-3) 화합물 A8'의 제조
Figure PCTKR2021007804-appb-img-000097
화합물 8-b(3 g, 1.0 eq.) 및 화합물 1-b(1.03 eq.)를 둥근 바닥 플라스크에 넣고 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 A8'(92% 수율)를 제조하였다.
m/z [M+H]+ = 809.3
단계 8-4) 화합물 A8의 제조
Figure PCTKR2021007804-appb-img-000098
화합물 A1' 대신 화합물 A8'를 사용한 것을 제외하고는 상기 화합물 A1'와 동일하게 화합물 A8(a+b+c+d+e+f=36-40, 93% 수율)을 제조하였다.
m/z [M+H]+ = 849.3
제조예 9: 화합물 B1의 제조
단계 9-1) 화합물 B1'의 제조
Figure PCTKR2021007804-appb-img-000099
화합물 9-a(1 g, 1.0 eq.) 및 화합물 1-e(2.1 eq.)를 둥근 바닥 플라스크에 넣고 PhMe에 용해시켰다. 물에 용해된 C2CO3(10 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (20 mol%)를 적가하고 3일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 B1'(86% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 9-2) 화합물 B1의 제조
Figure PCTKR2021007804-appb-img-000100
화합물 A1' 대신 화합물 B1'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 B1(a+b+c+d+e+f+g=40-44, 90% 수율)를 제조하였다.
m/z [M+H]+ = 929.4
제조예 10: 화합물 B2의 제조
단계 10-1) 화합물 10-a의 제조
Figure PCTKR2021007804-appb-img-000101
화합물 9-a(1 g, 1.0 eq.) 및 화합물 1-e(1.03 eq.)를 둥근 바닥 플라스크에 넣고 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 하룻밤 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 10-a(83% 수율)를 제조하였다.
m/z [M+H]+ = 585.1
단계 10-2) 화합물 B2' 제조
Figure PCTKR2021007804-appb-img-000102
화합물 10-a(1 g, 1.0 eq.) 및 화합물 2-a(1.03 eq.)를 둥근 바닥 플라스크에 넣고 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 하룻밤 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 B2' (85% 수율)를 제조하였다.
m/z [M+H]+ = 585.1
단계 10-2) 화합물 B2의 제조
Figure PCTKR2021007804-appb-img-000103
화합물 A1' 대신 화합물 B2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 B2(a+b+c+d+e+f+g=40-44, 87% 수율)를 제조하였다.
m/z [M+H]+ = 929.4
제조예 11: 화합물 C1의 제조
단계 11-1) 화합물 11-b의 제조
Figure PCTKR2021007804-appb-img-000104
화합물 11-a(10.0 g, 1.0 eq.) 및 화합물 4-a(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 11-b(97% 수율)를 제조하였다.
m/z [M+H]+ = 447.2
단계 11-2) 화합물 11-c의 제조
Figure PCTKR2021007804-appb-img-000105
화합물 1-c 대신 화합물 11-b을 사용한 것을 제외하고는 상기 화합물 1-d와 동일하게 화합물 11-c(99% 수율)를 제조하였다.
m/z [M+H]+ = 579.1
단계 11-3) 화합물 C1'의 제조
Figure PCTKR2021007804-appb-img-000106
화합물 1-d 대신 화합물 11-c를 사용한 것을 제외하고는 상기 화합물 A1'와 동일하게 화합물 C1'(92% 수율)를 제조하였다.
m/z [M+H]+ = 809.3
단계 11-4) 화합물 C1의 제조
Figure PCTKR2021007804-appb-img-000107
화합물 A1' 대신 화합물 C1'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 C1(a+b+c+d+e+f=36-40, 92% 수율)을 제조하였다.
m/z [M+H]+ = 849.3
제조예 12: 화합물 C2의 제조
단계 12-1) 화합물 C2'의 제조
Figure PCTKR2021007804-appb-img-000108
화합물 1-e 대신 화합물 2-a를 사용한 것을 제외하고는 상기 화합물 C1'와 동일하게 화합물 C2'(96% 수율)를 제조하였다.
m/z [M+H]+ = 809.3
단계 12-2) 화합물 C2의 제조
Figure PCTKR2021007804-appb-img-000109
화합물 A1' 대신 화합물 C2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 C2(a+b+c+d+e+f=36-40, 88% 수율)를 제조하였다.
m/z [M+H]+ = 849.3
제조예 13: 화합물 C3의 제조
단계 13-1) 화합물 C3'의 제조
Figure PCTKR2021007804-appb-img-000110
화합물 13-a(10.0 g, 1.0 eq.) 및 화합물 13-b(2.4 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (10 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (20 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 C3'(83% 수율)를 제조하였다.
m/z [M+H]+ = 1037.4
단계 13-2) 화합물 C3의 제조
Figure PCTKR2021007804-appb-img-000111
화합물 A1' 대신 화합물 C3'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 C3(a+b+c+d+e+f+g+h+i=48-52, 93% 수율)를 제조하였다.
m/z [M+H]+ = 1089.2
제조예 14: 화합물 C4의 제조
단계 14-1) 화합물 C4'의 제조
Figure PCTKR2021007804-appb-img-000112
화합물 13-b 대신 화합물 2-a를 사용한 것을 제외하고는 상기 화합물 C3'와 동일하게 화합물 C4'를 제조하였다.
m/z [M+H]+ = 885.3
단계 14-2) 화합물 C4의 제조
Figure PCTKR2021007804-appb-img-000113
화합물 A1' 대신 화합물 C4'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 C4(a+b+c+d+e+f+g=40-44, 92% 수율)를 제조하였다.
m/z [M+H]+ = 929.3
제조예 15: 화합물 D1의 제조
단계 15-1) 화합물 D1'의 제조
Figure PCTKR2021007804-appb-img-000114
화합물 15-a(10.0 g, 1.0 eq.) 및 화합물 1-e(2.4 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (10 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (20 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 D1'(83% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 15-2) 화합물 D1의 제조
Figure PCTKR2021007804-appb-img-000115
화합물 A1' 대신 화합물 15을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 D1(a+b+c+d+e+f+g=40-44, 93% 수율)을 제조하였다.
m/z [M+H]+ = 929.3
제조예 16: 화합물 D2의 제조
단계 16-1) 화합물 16-a의 제조
Figure PCTKR2021007804-appb-img-000116
화합물 15-a(10.0 g, 1.0 eq.) 및 화합물 1-e(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 하룻밤 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 16-a(91% 수율)를 제조하였다.
m/z [M+H]+ = 585.1
단계 16-2) 화합물 D2'의 제조
Figure PCTKR2021007804-appb-img-000117
화합물 16-a(10.0 g, 1.0 eq.) 및 화합물 2-a(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 하룻밤 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 D2'(87% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 16-3) 화합물 D2의 제조
Figure PCTKR2021007804-appb-img-000118
화합물 A1' 대신 화합물 D2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 D2(a+b+c+d+e+f+g=40-44, 95% 수율)를 제조하였다.
m/z [M+H]+ = 929.3
제조예 17: 화합물 D3의 제조
단계 17-1) 화합물 D3'의 제조
Figure PCTKR2021007804-appb-img-000119
화합물 16-a(10.0 g, 1.0 eq.) 및 화합물 17-a(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 하룻밤 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 D3'(91% 수율)를 제조하였다.
m/z [M+H]+ = 835.3
단계 17-2) 화합물 D3의 제조
Figure PCTKR2021007804-appb-img-000120
화합물 A1' 대신 화합물 D3'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 D3(a+b+c+d+e+f+g=38-42, 93% 수율)를 제조하였다.
m/z [M+H]+ = 877.3
제조예 18: 화합물 D4의 제조
단계 18-1) 화합물 D4'의 제조
Figure PCTKR2021007804-appb-img-000121
화합물 16-a(10.0 g, 1.0 eq.) 및 화합물 13-b(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 하룻밤 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 D4'(85% 수율)를 제조하였다.
m/z [M+H]+ = 961.4
단계 18-2) 화합물 D4의 제조
Figure PCTKR2021007804-appb-img-000122
화합물 A1' 대신 화합물 D4'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 D4(a+b+c+d+e+f+g+h=44-48, 94% 수율)를 제조하였다.
m/z [M+H]+ = 1009.4
제조예 19: 화합물 E1의 제조
단계 19-1) 화합물 E1'의 제조
Figure PCTKR2021007804-appb-img-000123
화합물 19-a(10.0 g, 1.0 eq.) 및 화합물 1-e(2.4 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (10 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (20 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 E1'(88% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 19-2) 화합물 E1의 제조
Figure PCTKR2021007804-appb-img-000124
화합물 A1' 대신 화합물 E1'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 E1(a+b+c+d+e+f+g=40-44, 93% 수율)을 제조하였다.
m/z [M+H]+ = 929.3
제조예 20: 화합물 E2의 제조
단계 20-1) 화합물 E2'의 제조
Figure PCTKR2021007804-appb-img-000125
화합물 1-e 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 E1'와 동일하게 화합물 E2'(83% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 20-2) 화합물 E2의 제조
Figure PCTKR2021007804-appb-img-000126
화합물 A1' 대신 화합물 E2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 E2(a+b+c+d+e=34-36, 93% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 21: 화합물 F1의 제조
단계 21-1) 화합물 F1'의 제조
Figure PCTKR2021007804-appb-img-000127
화합물 19-a 대신 화합물 21-a를 사용한 것을 제외하고는 상기 화합물 E1'와 동일하게 화합물 F1'(90% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 21-2) 화합물 F1의 제조
Figure PCTKR2021007804-appb-img-000128
화합물 A1' 대신 화합물 F1'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 F1(a+b+c+d+e+f+g=40-44, 93% 수율)를 제조하였다.
m/z [M+H]+ = 929.3
제조예 22: 화합물 F2의 제조
단계 22-1) 화합물 F2'의 제조
Figure PCTKR2021007804-appb-img-000129
화합물 1-e 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 F1'와 동일하게 화합물 F2'(87% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 22-2) 화합물 F2의 제조
Figure PCTKR2021007804-appb-img-000130
화합물 A1' 대신 화합물 F2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 F2(a+b+c+d+e=34-36, 93% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 23: 화합물 G1의 제조
단계 23-1) 화합물 G1'의 제조
Figure PCTKR2021007804-appb-img-000131
화합물 19-a 대신 화합물 23-a를 사용한 것을 제외하고는 상기 화합물 E1'와 동일하게 화합물 G1'(87% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 23-2) 화합물 G1의 제조
Figure PCTKR2021007804-appb-img-000132
화합물 A1' 대신 화합물 G1'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 G1(a+b+c+d+e+f+g=40-44, 95% 수율)를 제조하였다.
m/z [M+H]+ = 929.3
제조예 24: 화합물 G2의 제조
단계 24-1) 화합물 G2'의 제조
Figure PCTKR2021007804-appb-img-000133
화합물 1-e 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 G1'와 동일하게 화합물 G2'(91% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 24-2) 화합물 G2의 제조
Figure PCTKR2021007804-appb-img-000134
화합물 A1' 대신 화합물 G2'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 G2(a+b+c+d+e=34-36, 93% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 25: 화합물 H1의 제조
단계 25-1) 화합물 H1'의 제조
Figure PCTKR2021007804-appb-img-000135
화합물 19-a 대신 화합물 25-a를 사용한 것을 제외하고는 상기 화합물 E1'와 동일하게 화합물 H1'(86% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 25-2) 화합물 H1의 제조
Figure PCTKR2021007804-appb-img-000136
화합물 A1' 대신 화합물 H1'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 H1(a+b+c+d+e+f+g=40-44, 90% 수율)을 제조하였다.
m/z [M+H]+ = 929.3
제조예 26: 화합물 H2의 제조
단계 26-1) 화합물 H2'의 제조
Figure PCTKR2021007804-appb-img-000137
화합물 1-e 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 H1'와 동일하게 화합물 H2'(86% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 26-2) 화합물 H2의 제조
Figure PCTKR2021007804-appb-img-000138
화합물 A1' 대신 화합물 H2'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 H2(a+b+c+d+e=34-36, 93% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 27: 화합물 I1의 제조
단계 27-1) 화합물 I1'의 제조
Figure PCTKR2021007804-appb-img-000139
화합물 19-a 대신 화합물 27-a를 사용한 것을 제외하고는 상기 화합물 E1'와 동일하게 화합물 I1' (89% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 27-2) 화합물 I1의 제조
Figure PCTKR2021007804-appb-img-000140
화합물 A1' 대신 화합물 I1'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 I1(a+b+c+d+e+f+g=40-44, 92% 수율)를 제조하였다.
m/z [M+H]+ = 929.3
제조예 28: 화합물 I2의 제조
단계 28-1) 화합물 I2' 제조
Figure PCTKR2021007804-appb-img-000141
화합물 1-e 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 I1'과 동일하게 화합물 I2'(91% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 28-2) 화합물 I2의 제조
Figure PCTKR2021007804-appb-img-000142
화합물 A1’ 대신 화합물 I2'를 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 I2(a+b+c+d+e=34-36, 91% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 29: 화합물 J1의 제조
단계 29-1) 화합물 J1' 의 제조
Figure PCTKR2021007804-appb-img-000143
화합물 19-a 대신 화합물 29-a를 사용한 것을 제외하고는 상기 화합물 E1'와 동일하게 화합물 J1' (91% 수율)를 제조하였다.
m/z [M+H]+ = 885.3
단계 29-2) 화합물 J1의 제조
Figure PCTKR2021007804-appb-img-000144
화합물 A1' 대신 화합물 J1'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 J1(a+b+c+d+e+f+g=40-44, 96% 수율)을 제조하였다.
m/z [M+H]+ = 929.3
제조예 30: 화합물 J2의 제조
단계 30-1) 화합물 J2'의 제조
Figure PCTKR2021007804-appb-img-000145
화합물 1-e 대신 화합물 4-a를 사용한 것을 제외하고는 상기 화합물 J1' 와 동일하게 화합물 J2'(91% 수율)를 제조하였다.
m/z [M+H]+ = 733.3
단계 30-2) 화합물 J2의 제조
Figure PCTKR2021007804-appb-img-000146
화합물 A1' 대신 화합물 J2'을 사용한 것을 제외하고는 상기 화합물 A1과 동일하게 화합물 J2(a+b+c+d+e=34-36, 93% 수율)를 제조하였다.
m/z [M+H]+ = 769.3
제조예 31: 화합물 A9의 제조
단계 31-1) 화합물 31-b의 제조
Figure PCTKR2021007804-appb-img-000147
질소 분위기 하에 화합물 31-a(20.0 g, 1.0 eq.)를 둥근 바닥 플라스크에 넣고 benzene-D6 (150 eq.)에 용해시켰다. TfOH(2.0 eq.)를 반응물에 천천히 적가하고, 25℃에서 2시간 동안 교반하였다. 반응물에 D2O를 적가하여 반응을 종결시키고, potassium phosphate tribasic(30 wt% in aqueous solution, 2.4 eq.)를 적가하여 수층의 pH를 9-10으로 맞추었다. CH2Cl2/DI water로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 31-b(91% 수율)를 제조하였다.
m/z [M+H]+ = 342.9
단계 31-2) 화합물 31-d의 제조
Figure PCTKR2021007804-appb-img-000148
화합물 31-b(20.0 g, 1.0 eq.) 및 화합물 31-c(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 4시간 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 31-d(91% 수율)를 제조하였다.
m/z [M+H]+ = 391.1
단계 31-3) 화합물 31-f의 제조
Figure PCTKR2021007804-appb-img-000149
화합물 31-d(15.0 g, 1.0 eq.) 및 화합물 31-e(1.03 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3(5 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (10 mol%)를 적가하고 4시간 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 31-f(85% 수율)를 제조하였다.
m/z [M+H]+ = 515.3
단계 31-4) 화합물 A9의 제조
Figure PCTKR2021007804-appb-img-000150
화합물 3-a(2.0 g, 1.0 eq.) 및 화합물 31-f(2.4 eq.)를 둥근 바닥 플라스크에 넣고 무수 PhMe에 용해시켰다. 물에 용해된 C2CO3 (10 eq.)를 주입하였다. Bath 온도 90℃ 하에서 Pd(PPh3)4 (20 mol%)를 적가하고 2일 동안 교반하였다. 반응 후, 반응물을 상온에서 식히고 EtOAc에 충분히 묽힌 뒤, EtOAc/brine로 수세하여 유기층을 분리하였다. MgSO4로 물을 제거하고 Celite-Florisil-Silica pad에 통과시켰다. 통과된 용액을 감압 하에 농축시킨 뒤, Column Chromatography 정제하여 화합물 A9(84% 수율)를 제조하였다.
m/z [M+H]+ = 901.4
제조예 32: 화합물 A10의 제조
단계 32-1) 화합물 A10의 제조
Figure PCTKR2021007804-appb-img-000151
화합물 3-a 대신 화합물 29-a를 사용한 것을 제외하고는 상기 화합물 A9와 동일하게 화합물 A10(91% 수율)를 제조하였다.
m/z [M+H]+ = 901.4
제조예 33: 화합물 G3의 제조
단계 33-1) 화합물 G3의 제조
Figure PCTKR2021007804-appb-img-000152
화합물 3-a 대신 화합물 23-a를 사용한 것을 제외하고는 상기 화합물 A9와 동일하게 화합물 G3(87% 수율)를 제조하였다.
실험예 1: 중수소 치환율 확인
상기 제조예 1 내지 30에서 제조한 화합물에 대하여, 화합물 내 치환된 중수소의 개수를 MALDI-TOF MS(Matrix-Assisted Laser Desorption/ Ionization Time-of-Flight Mass Spectrometer) 분석을 통해 구한 후, 화학식 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수의 백분율로 중수소 치환율을 계산하였으며, 이를 하기 표 1에 나타내었다.
구분 화합물 중수소
치환율 (%)
구분 화합물 중수소
치환율 (%)
제조예 1 화합물 A1 90-100 제조예 16 화합물 D2 90.9-100
제조예 2 화합물 A2 90-100 제조예 17 화합물 D3 90.5-100
제조예 3 화합물 A3 88.9-100 제조예 18 화합물 D4 91.7-100
제조예 4 화합물 A4 94.4-100 제조예 19 화합물 E1 90.9-100
제조예 5 화합물 A5 90.9-100 제조예 20 화합물 E2 94.4-100
제조예 6 화합물 A6 90.9-100 제조예 21 화합물 F1 90.9-100
제조예 7 화합물 A7 90-100 제조예 22 화합물 F2 94.4-100
제조예 8 화합물 A8 90-100 제조예 23 화합물 G1 90.9-100
제조예 9 화합물 B1 90.9-100 제조예 24 화합물 G2 94.4-100
제조예 10 화합물 B2 90.9-100 제조예 25 화합물 H1 90.9-100
제조예 11 화합물 C1 90-100 제조예 26 화합물 H2 94.4-100
제조예 12 화합물 C2 90-100 제조예 27 화합물 I1 90.9-100
제조예 13 화합물 C3 92.3-100 제조예 28 화합물 I2 94.4-100
제조예 14 화합물 C4 90.9-100 제조예 29 화합물 J1 90.9-100
제조예 15 화합물 D1 90.9-100 제조예 30 화합물 J2 94.4-100
실시예 1
ITO(indium tin oxide)가 500 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후, 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필, 아세톤의 용제로 초음파 세척을 하고 건조시킨 후, 상기 기판을 5 분 간 세정한 후 글로브박스로 기판을 수송시켰다.
Figure PCTKR2021007804-appb-img-000153
상기 ITO 투명 전극 위에, 상기 화합물 p-dopant 및 화합물 HIL(2:8의 중량비)를 20 wt/v%로 사이클로헥사논에 녹인 코팅 조성물을 스핀 코팅(4000 rpm)하고 200 ℃에서 30 분 동안 열처리(경화)하여 400 Å 두께로 정공주입층을 형성하였다.
Figure PCTKR2021007804-appb-img-000154
상기 정공주입층 위에 상기 화합물 HTL(Mn: 27,900; Mw: 35,600; Agilent 1200 series를 이용하여 PC 스텐다드(Standard)를 이용한 GPC로 측정)를 6 wt/v%로 톨루엔에 녹인 코팅 조성물을 스핀 코팅(4000 rpm)하고 200 ℃에서 30 분 동안 열처리하여 200 Å 두께의 정공수송층을 형성하였다.
Figure PCTKR2021007804-appb-img-000155
Figure PCTKR2021007804-appb-img-000156
상기 정공수송층 위에 앞서 제조한 발광층 호스트 화합물 A1과 발광층 도펀트 상기 화합물 Dopant(98:2의 중량비)를 2 wt/v%로 사이클로헥사논에 녹인 코팅 조성물을 스핀 코팅(4000 rpm)하고 180℃에서 30 분 동안 열처리하여 400 Å 두께로 발광층을 형성하였다.
Figure PCTKR2021007804-appb-img-000157
진공 증착기로 이송한 후, 상기 발광층 위에 상기 화합물 ETL를 350 Å 두께로 진공 증착하여 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 10 Å 두께로 LiF와 1000 Å 두께로 알루미늄을 증착하여 캐소드를 형성하였다.
상기의 과정에서 유기물의 증착 속도는 0.4 내지 0.7 Å/sec를 유지하였고, LiF는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착 시 진공도는 2*10-7 내지 5*10-8 torr를 유지하였다.
실시예 2 내지 실시예 33
발광층의 호스트로 화합물 A1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 이때, 실시예에 사용된 화합물에 대해 정리하면 하기와 같다.
Figure PCTKR2021007804-appb-img-000158
Figure PCTKR2021007804-appb-img-000159
Figure PCTKR2021007804-appb-img-000160
Figure PCTKR2021007804-appb-img-000161
Figure PCTKR2021007804-appb-img-000162
Figure PCTKR2021007804-appb-img-000163
상기 화합물에서, 중수소의 치환 개수를 의미하는 a,b,c,d,e,f,g,h 및 i에 대한 설명은 상술한 바와 같다.
비교예 1 내지 비교예 8
발광층의 호스트로 화합물 A1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 이때, 비교예에 사용된 화합물은 하기와 같다.
Figure PCTKR2021007804-appb-img-000164
Figure PCTKR2021007804-appb-img-000165
Figure PCTKR2021007804-appb-img-000166
실험예 2: 유기 발광 소자의 특성 평가
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 10 mA/cm2의 전류 밀도에서의 구동 전압, 외부 양자 효율(external quantum efficiency, EQE) 및 수명을 측정한 결과를 하기 표 2에 나타내었다. 이때, 외부양자효율(EQE)은 "(방출된 광자 수)/(주입된 전하운반체 수)*100"으로 구하였고, T90는 휘도가 초기 휘도(500 nit)에서 90 %로 감소하는데 소요되는 시간을 의미한다.
구분 발광층
호스트
구동전압
(V @10mA/cm2)
EQE
(% @10mA/cm2)
수명(hr)
(T90 @500 nit)
실시예 1 화합물 A1 4.58 9.71 388
실시예 2 화합물 A2 4.60 9.72 393
실시예 3 화합물 A3 4.61 9.71 372
실시예 4 화합물 A4 4.60 9.72 381
실시예 5 화합물 A5 4.62 9.79 383
실시예 6 화합물 A6 4.61 9.77 379
실시예 7 화합물 A7 4.62 9.73 381
실시예 8 화합물 A8 4.58 9.73 381
실시예 9 화합물 B1 4.63 9.74 379
실시예 10 화합물 B2 4.64 9.75 378
실시예 11 화합물 C1 4.64 9.69 375
실시예 12 화합물 C2 4.60 9.74 374
실시예 13 화합물 C3 4.61 9.69 379
실시예 14 화합물 C4 4.59 9.72 378
실시예 15 화합물 D1 4.62 9.73 373
실시예 16 화합물 D2 4.64 9.69 380
실시예 17 화합물 D3 4.61 9.73 376
실시예 18 화합물 D4 4.61 9.74 373
실시예 19 화합물 E1 4.60 9.78 379
실시예 20 화합물 E2 4.59 9.62 380
실시예 21 화합물 F1 4.60 9.60 379
실시예 22 화합물 F2 4.60 9.74 380
실시예 23 화합물 G1 4.62 9.75 381
실시예 24 화합물 G2 4.62 9.69 385
실시예 25 화합물 H1 4.61 9.73 382
실시예 26 화합물 H2 4.63 9.75 380
실시예 27 화합물 I1 4.62 9.70 379
실시예 28 화합물 I2 4.62 9.69 380
실시예 29 화합물 J1 4.61 9.71 378
실시예 30 화합물 J2 4.64 9.72 376
실시예 31 화합물 A9 4.60 9.70 383
실시예 32 화합물 A10 4.59 9.65 379
실시예 33 화합물 G3 4.57 9.64 373
비교예 1 화합물 X1 4.61 6.05 182
비교예 2 화합물 X2 4.64 6.03 186
비교예 3 화합물 X3 4.65 6.08 183
비교예 4 화합물 X4 4.62 6.02 186
비교예 5 화합물 X5 4.63 6.01 181
비교예 6 화합물 X6 4.63 5.96 183
비교예 7 화합물 X7 4.63 6.02 191
비교예 8 화합물 X8 4.59 3.59 87
상기 표 2에 나타난 바와 같이, 발광층의 호스트 물질로 상기 화학식 1로 표시되는 화합물을 사용한 실시예의 유기 발광 소자는, 비교예의 유기 발광 소자에 비하여, 높은 효율과 현저히 긴 수명을 나타내었다.
구체적으로, 상기 화학식 1로 표시되는 화합물을 발광층의 호스트로 사용한 실시예의 유기 발광 소자는, 비교 화합물 X1 내지 X7을 각각 발광층의 호스트로 사용한 비교예 1 내지 7의 유기 발광 소자에 비하여, 효율 및 수명이 향상되었다. 이는, 상기 화학식 1로 표시되는 화합물에서의 2개의 안트라센 구조가 중수소로 치환됨으로써, 물질 안정성이 향상되었기 때문인 것으로 판단된다. 또한, 비교 화합물 X8을 발광층의 호스트로 사용한 비교예 8의 유기 발광 소자는, 유기용매에 대한 용해도 개선을 위해 비교 화합물 X8에 도입된 알킬기로 인하여 효율 및 수명이 현저히 저하됨을 확인할 수 있다.
따라서, 유기 발광 소자의 호스트 물질로 상기 화학식 1로 표시되는 화합물을 채용하는 경우, 유기 발광 소자의 발광 효율 및/또는 수명 특성을 향상시킬 수 있음을 알 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자주입 및 수송층

Claims (15)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2021007804-appb-img-000167
    상기 화학식 1에서,
    D는 중수소를 의미하고,
    Q는 비치환되거나, 또는 중수소로 치환된 나프틸렌이고,
    Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴이고,
    L1 내지 L4는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴렌이고,
    n1 내지 n4는 각각 독립적으로 0 내지 2의 정수이고,
    a 및 b는 각각 독립적으로 0 내지 8의 정수이고,
    단, a+b는 1 이상이다.
  2. 제1항에 대하여,
    Q는 하기 화학식 2a 내지 2j로 표시되는 2가의 치환기 중 어느 하나인,
    화합물:
    Figure PCTKR2021007804-appb-img-000168
    상기 화학식 2a 내지 2j에서,
    c는 0 내지 6의 정수이다.
  3. 제1항에 대하여,
    Ar1 및 Ar2는 각각 독립적으로 비치환되거나, 또는 1개 내지 5개의 중수소로 치환된 페닐; 또는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 나프틸인,
    화합물.
  4. 제1항에 대하여,
    Ar1 및 Ar2 중 적어도 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 1-나프틸이거나; 또는
    Ar1 및 Ar2 중 적어도 하나는 비치환되거나, 또는 1개 내지 7개의 중수소로 치환된 2-나프틸인,
    화합물.
  5. 제1항에 대하여,
    L1 및 L2는 각각 독립적으로 비치환되거나, 또는 1개 내지 4개의 중수소로 치환된 페닐렌; 또는 비치환되거나, 또는 1개 내지 6개의 중수소로 치환된 나프틸렌인,
    화합물.
  6. 제1항에 대하여,
    L3 및 L4는 각각 독립적으로 비치환되거나, 또는 1개 내지 4개 중수소로 치환된 페닐렌인,
    화합물.
  7. 제1항에 대하여,
    n1+n2는 0, 1, 2, 또는 3이고,
    n3+n4는 0, 1, 또는 2인,
    화합물.
  8. 제1항에 대하여,
    a+b는 16인,
    화합물.
  9. 제1항에 대하여,
    상기 화합물의 중수소 치환율은 80% 내지 100%인,
    화합물.
  10. 제1항에 대하여,
    상기 화합물은 하기 화학식 1-1로 표시되는 화합물:
    [화학식 1-1]
    Figure PCTKR2021007804-appb-img-000169
    상기 화학식 1-1에서,
    Q는 하기 화학식 2a 내지 2j로 표시되는 2가의 치환기 중 어느 하나이고,
    Figure PCTKR2021007804-appb-img-000170
    상기 화학식 2a 내지 2j에서,
    c는 0 내지 6의 정수이고,
    Ar1 및 Ar2는 각각 독립적으로 페닐, 또는 나프틸이고,
    L1 및 L2는 각각 독립적으로 페닐렌, 또는 나프틸렌이고,
    L3 및 L4는 각각 독립적으로 페닐렌이고,
    d 및 e는 각각 독립적으로 0 내지 7의 정수이고,
    f 및 g는 각각 독립적으로 0 내지 6의 정수이고,
    h 및 i는 각각 독립적으로 0 내지 4의 정수이고,
    a, b 및 n1 내지 n4는 제1항에서 정의한 바와 같다.
  11. 제10항에 대하여,
    Ar1 및 Ar2 중 하나는
    Figure PCTKR2021007804-appb-img-000171
    이고, 나머지 하나는
    Figure PCTKR2021007804-appb-img-000172
    , 또는
    Figure PCTKR2021007804-appb-img-000173
    이거나;
    Ar1 및 Ar2 중 하나는
    Figure PCTKR2021007804-appb-img-000174
    이고, 나머지 하나는
    Figure PCTKR2021007804-appb-img-000175
    이거나;
    Ar1 및 Ar2 모두
    Figure PCTKR2021007804-appb-img-000176
    이거나; 또는
    Ar1 및 Ar2 모두
    Figure PCTKR2021007804-appb-img-000177
    인,
    화합물.
  12. 제10항에 대하여,
    L1 및 L2는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2021007804-appb-img-000178
    .
  13. 제10항에 대하여,
    L3 및 L4는 각각 독립적으로
    Figure PCTKR2021007804-appb-img-000179
    , 또는
    Figure PCTKR2021007804-appb-img-000180
    인,
    화합물.
  14. 제1항에 대하여,
    상기 화합물은 하기 화학식으로 표시되는 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    [화학식 A1]
    Figure PCTKR2021007804-appb-img-000181
    상기 화학식 A1에서,
    a+b+c+d+e+g는 1 내지 40이고,
    [화학식 A2]
    Figure PCTKR2021007804-appb-img-000182
    상기 화학식 A2에서,
    a+b+c+d+e+g는 1 내지 40이고,
    [화학식 A3]
    Figure PCTKR2021007804-appb-img-000183
    상기 화학식 A3에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 A4]
    Figure PCTKR2021007804-appb-img-000184
    상기 화학식 A4에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 A5]
    Figure PCTKR2021007804-appb-img-000185
    상기 화학식 A5에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 A6]
    Figure PCTKR2021007804-appb-img-000186
    상기 화학식 A6에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 A7]
    Figure PCTKR2021007804-appb-img-000187
    상기 화학식 A7에서,
    a+b+c+d+e+g는 1 내지 40이고,
    [화학식 A8]
    Figure PCTKR2021007804-appb-img-000188
    상기 화학식 A8에서,
    a+b+c+d+e+f는 1 내지 40이고,
    [화학식 A9]
    Figure PCTKR2021007804-appb-img-000189
    상기 화학식 A9에서,
    a+b는 1 내지 16이고,
    [화학식 A10]
    Figure PCTKR2021007804-appb-img-000190
    상기 화학식 A10에서,
    a+b는 1 내지 16이고,
    [화학식 A11]
    Figure PCTKR2021007804-appb-img-000191
    상기 화학식 A11에서,
    a+b+c+d+e+g+h는 1 내지 44이고,
    [화학식 A12]
    Figure PCTKR2021007804-appb-img-000192
    상기 화학식 A12에서,
    a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
    [화학식 A13]
    Figure PCTKR2021007804-appb-img-000193
    상기 화학식 A13에서,
    a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
    [화학식 A14]
    Figure PCTKR2021007804-appb-img-000194
    상기 화학식 A14에서,
    a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
    [화학식 B1]
    Figure PCTKR2021007804-appb-img-000195
    상기 화학식 B1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 B2]
    Figure PCTKR2021007804-appb-img-000196
    상기 화학식 B2에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 C1]
    Figure PCTKR2021007804-appb-img-000197
    상기 화학식 C1에서,
    a+b+c+d+e+f는 1 내지 40이고,
    [화학식 C2]
    Figure PCTKR2021007804-appb-img-000198
    상기 화학식 C2에서,
    a+b+c+d+e+f는 1 내지 40이고,
    [화학식 C3]
    Figure PCTKR2021007804-appb-img-000199
    상기 화학식 C3에서,
    a+b+c+d+e+f+g+h+i는 1 내지 52이고,
    [화학식 C4]
    Figure PCTKR2021007804-appb-img-000200
    상기 화학식 C4에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 D1]
    Figure PCTKR2021007804-appb-img-000201
    상기 화학식 D1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 D2]
    Figure PCTKR2021007804-appb-img-000202
    상기 화학식 D2에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 D3]
    Figure PCTKR2021007804-appb-img-000203
    상기 화학식 D3에서,
    a+b+c+d+e+f+g는 1 내지 42이고,
    [화학식 D4]
    Figure PCTKR2021007804-appb-img-000204
    상기 화학식 D4에서,
    a+b+c+d+e+f+g+h는 1 내지 48이고,
    [화학식 E1]
    Figure PCTKR2021007804-appb-img-000205
    상기 화학식 E1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 E2]
    Figure PCTKR2021007804-appb-img-000206
    상기 화학식 E2에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 F1]
    Figure PCTKR2021007804-appb-img-000207
    상기 화학식 F1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 F2]
    Figure PCTKR2021007804-appb-img-000208
    상기 화학식 F2에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 G1]
    Figure PCTKR2021007804-appb-img-000209
    상기 화학식 G1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 G2]
    Figure PCTKR2021007804-appb-img-000210
    상기 화학식 G2에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 G3]
    Figure PCTKR2021007804-appb-img-000211
    상기 화학식 G3에서,
    a+b는 1 내지 16이고,
    [화학식 H1]
    Figure PCTKR2021007804-appb-img-000212
    상기 화학식 H1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 H2]
    Figure PCTKR2021007804-appb-img-000213
    상기 화학식 H2에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 H3]
    Figure PCTKR2021007804-appb-img-000214
    상기 화학식 H3에서,
    a+b+c+d+e+f+f'+g+h는 1 내지 54이고,
    [화학식 I1]
    Figure PCTKR2021007804-appb-img-000215
    상기 화학식 I1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 I2]
    Figure PCTKR2021007804-appb-img-000216
    상기 화학식 I2에서,
    a+b+c+d+e는 1 내지 36이고,
    [화학식 J1]
    Figure PCTKR2021007804-appb-img-000217
    상기 화학식 J1에서,
    a+b+c+d+e+f+g는 1 내지 44이고,
    [화학식 J2]
    Figure PCTKR2021007804-appb-img-000218
    상기 화학식 J2에서,
    a+b+c+d+e는 1 내지 36이다.
  15. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하는 유기 발광 소자로서, 상기 발광층은 제1항 내지 제14항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
PCT/KR2021/007804 2020-07-24 2021-06-22 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2022019491A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/923,768 US20230180596A1 (en) 2020-07-24 2021-06-22 Novel Compound and Organic Light Emitting Device Comprising the Same
EP21845215.9A EP4137472A4 (en) 2020-07-24 2021-06-22 NOVEL CONNECTION AND ORGANIC LIGHT EMITTING DEVICE THEREFROM
CN202180029751.4A CN115461317A (zh) 2020-07-24 2021-06-22 新化合物和包含其的有机发光器件
JP2022567391A JP2023525520A (ja) 2020-07-24 2021-06-22 新規な化合物およびこれを利用した有機発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0092539 2020-07-24
KR1020200092539A KR20220013228A (ko) 2020-07-24 2020-07-24 신규한 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2022019491A1 true WO2022019491A1 (ko) 2022-01-27

Family

ID=79729247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007804 WO2022019491A1 (ko) 2020-07-24 2021-06-22 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (6)

Country Link
US (1) US20230180596A1 (ko)
EP (1) EP4137472A4 (ko)
JP (1) JP2023525520A (ko)
KR (1) KR20220013228A (ko)
CN (1) CN115461317A (ko)
WO (1) WO2022019491A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
KR20110085178A (ko) * 2010-01-19 2011-07-27 주식회사 엘지화학 유기전자소자 재료 및 이를 이용한 유기전자소자
KR20120097322A (ko) * 2011-02-24 2012-09-03 제이엔씨 주식회사 신규한 2,7-비스안트릴나프탈렌 화합물 및 이것을 사용한 유기 전계 발광 소자
KR20140058292A (ko) * 2012-11-06 2014-05-14 에스에프씨 주식회사 안트라센 유도체 화합물 및 이를 포함하는 유기전계발광소자
US20170365789A1 (en) * 2015-01-13 2017-12-21 Guangzhou Chinaray Optoelectronic Materials Ltd. Compound, mixture comprising the same, composition and organic electronic device
KR20200070801A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101115702A (zh) * 2005-02-10 2008-01-30 出光兴产株式会社 双蒽衍生物以及使用其的有机电致发光元件
CN101374789B (zh) * 2006-01-27 2014-04-30 Lg化学株式会社 新的蒽衍生物、其制备方法以及采用该蒽衍生物的有机发光二极管
JP5676579B2 (ja) * 2009-05-19 2015-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電子用途用の重水素化合物
KR20120135501A (ko) * 2012-10-29 2012-12-14 에스에프씨 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
WO2018017288A1 (en) * 2016-07-20 2018-01-25 E. I. Du Pont De Nemours And Company Electroactive materials
KR102156912B1 (ko) * 2018-07-06 2020-10-23 네이버 주식회사 동영상 내 포함된 음원에 대한 검색 서비스 제공 방법 및 이를 이용하는 서버
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
KR102639105B1 (ko) * 2018-11-08 2024-02-20 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR101978650B1 (ko) * 2018-11-14 2019-05-15 머티어리얼사이언스 주식회사 중수소화 방향족 화합물의 중간체 및 이를 이용한 중수소화 방향족 화합물의 제조 방법
CN110642724A (zh) * 2019-10-15 2020-01-03 吉林奥来德光电材料股份有限公司 一种蓝光电致发光材料及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
KR20110085178A (ko) * 2010-01-19 2011-07-27 주식회사 엘지화학 유기전자소자 재료 및 이를 이용한 유기전자소자
KR20120097322A (ko) * 2011-02-24 2012-09-03 제이엔씨 주식회사 신규한 2,7-비스안트릴나프탈렌 화합물 및 이것을 사용한 유기 전계 발광 소자
KR20140058292A (ko) * 2012-11-06 2014-05-14 에스에프씨 주식회사 안트라센 유도체 화합물 및 이를 포함하는 유기전계발광소자
US20170365789A1 (en) * 2015-01-13 2017-12-21 Guangzhou Chinaray Optoelectronic Materials Ltd. Compound, mixture comprising the same, composition and organic electronic device
KR20200070801A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4137472A4

Also Published As

Publication number Publication date
US20230180596A1 (en) 2023-06-08
CN115461317A (zh) 2022-12-09
EP4137472A1 (en) 2023-02-22
EP4137472A4 (en) 2023-11-01
JP2023525520A (ja) 2023-06-16
KR20220013228A (ko) 2022-02-04

Similar Documents

Publication Publication Date Title
WO2021182775A1 (ko) 유기 발광 소자
WO2016195441A1 (ko) 함질소 축합고리 화합물 및 이를 이용한 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022086168A1 (ko) 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2021210911A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020222569A1 (ko) 유기 발광 소자
WO2020159333A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022080715A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2021096331A1 (ko) 유기 발광 소자
WO2021150048A1 (ko) 유기 발광 소자
WO2022191561A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2021177632A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2021177633A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021210910A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020263000A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022019491A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021177631A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2024063592A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023239092A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2024080748A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567391

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021845215

Country of ref document: EP

Effective date: 20221117

NENP Non-entry into the national phase

Ref country code: DE