WO2022019254A1 - 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および化合物 - Google Patents
樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および化合物 Download PDFInfo
- Publication number
- WO2022019254A1 WO2022019254A1 PCT/JP2021/026920 JP2021026920W WO2022019254A1 WO 2022019254 A1 WO2022019254 A1 WO 2022019254A1 JP 2021026920 W JP2021026920 W JP 2021026920W WO 2022019254 A1 WO2022019254 A1 WO 2022019254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- resin composition
- formula
- resin
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 306
- 239000011342 resin composition Substances 0.000 title claims abstract description 216
- 229920005989 resin Polymers 0.000 title claims abstract description 176
- 239000011347 resin Substances 0.000 title claims abstract description 176
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 176
- 125000005647 linker group Chemical group 0.000 claims abstract description 115
- 125000001424 substituent group Chemical group 0.000 claims abstract description 81
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 69
- 229920000642 polymer Polymers 0.000 claims abstract description 64
- 239000002904 solvent Substances 0.000 claims abstract description 34
- -1 R 21 Chemical compound 0.000 claims description 190
- 239000000049 pigment Substances 0.000 claims description 138
- 125000000217 alkyl group Chemical group 0.000 claims description 56
- 229910052731 fluorine Inorganic materials 0.000 claims description 51
- 125000003118 aryl group Chemical group 0.000 claims description 45
- 125000000623 heterocyclic group Chemical group 0.000 claims description 44
- 125000001153 fluoro group Chemical group F* 0.000 claims description 32
- 238000004040 coloring Methods 0.000 claims description 31
- 239000003999 initiator Substances 0.000 claims description 31
- 239000000178 monomer Substances 0.000 claims description 30
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 23
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 23
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 22
- 125000002947 alkylene group Chemical group 0.000 claims description 20
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 20
- 125000003700 epoxy group Chemical group 0.000 claims description 15
- 125000005843 halogen group Chemical group 0.000 claims description 15
- 125000004018 acid anhydride group Chemical group 0.000 claims description 13
- 125000003566 oxetanyl group Chemical group 0.000 claims description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 229920000728 polyester Polymers 0.000 claims description 9
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical compound C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 claims description 9
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 8
- 229920000570 polyether Polymers 0.000 claims description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- 125000000732 arylene group Chemical group 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 7
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 3
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 4
- 239000003086 colorant Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 143
- 238000000034 method Methods 0.000 description 92
- 125000004432 carbon atom Chemical group C* 0.000 description 74
- 150000002430 hydrocarbons Chemical group 0.000 description 62
- 239000002253 acid Substances 0.000 description 58
- 125000001931 aliphatic group Chemical group 0.000 description 51
- 238000002835 absorbance Methods 0.000 description 42
- 239000010410 layer Substances 0.000 description 40
- 239000008393 encapsulating agent Substances 0.000 description 38
- 230000015572 biosynthetic process Effects 0.000 description 37
- 238000003786 synthesis reaction Methods 0.000 description 37
- 238000010438 heat treatment Methods 0.000 description 34
- 239000004094 surface-active agent Substances 0.000 description 33
- 239000002270 dispersing agent Substances 0.000 description 29
- 238000002834 transmittance Methods 0.000 description 28
- 125000004122 cyclic group Chemical group 0.000 description 26
- 239000002245 particle Substances 0.000 description 26
- 239000000126 substance Substances 0.000 description 25
- 239000012299 nitrogen atmosphere Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 21
- 239000000047 product Substances 0.000 description 20
- 239000011241 protective layer Substances 0.000 description 20
- 239000011737 fluorine Substances 0.000 description 19
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 18
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 18
- 239000006185 dispersion Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 18
- 230000003595 spectral effect Effects 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 17
- 239000003960 organic solvent Substances 0.000 description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 16
- 229910052719 titanium Inorganic materials 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000003963 antioxidant agent Substances 0.000 description 15
- 230000003078 antioxidant effect Effects 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000010936 titanium Substances 0.000 description 15
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 14
- 239000011164 primary particle Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 12
- 238000001914 filtration Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910052757 nitrogen Chemical group 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 150000004292 cyclic ethers Chemical group 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 125000002950 monocyclic group Chemical group 0.000 description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 125000004434 sulfur atom Chemical group 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 230000002378 acidificating effect Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000003505 polymerization initiator Substances 0.000 description 10
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 9
- 239000000975 dye Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 8
- 125000003277 amino group Chemical group 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 8
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 7
- 239000006087 Silane Coupling Agent Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 239000001055 blue pigment Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000010954 inorganic particle Substances 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 239000001054 red pigment Substances 0.000 description 7
- 230000007261 regionalization Effects 0.000 description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000007877 V-601 Substances 0.000 description 6
- 150000008065 acid anhydrides Chemical class 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 5
- 239000012463 white pigment Substances 0.000 description 5
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 4
- FNYWFRSQRHGKJT-UHFFFAOYSA-N 3-ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane Chemical compound C1OCC1(CC)COCC1(CC)COC1 FNYWFRSQRHGKJT-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 4
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 4
- 125000005529 alkyleneoxy group Chemical group 0.000 description 4
- 125000004104 aryloxy group Chemical group 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 4
- 239000007771 core particle Substances 0.000 description 4
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 4
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000004820 halides Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 125000000101 thioether group Chemical group 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 4
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UGZAJZLUKVKCBM-UHFFFAOYSA-N 6-sulfanylhexan-1-ol Chemical compound OCCCCCCS UGZAJZLUKVKCBM-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 125000005162 aryl oxy carbonyl amino group Chemical group 0.000 description 3
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 3
- 125000005135 aryl sulfinyl group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 239000002981 blocking agent Substances 0.000 description 3
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 3
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 3
- 239000001056 green pigment Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000001023 inorganic pigment Substances 0.000 description 3
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012860 organic pigment Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000001052 yellow pigment Substances 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 2
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 2
- UJBOOUHRTQVGRU-UHFFFAOYSA-N 3-methylcyclohexan-1-one Chemical compound CC1CCCC(=O)C1 UJBOOUHRTQVGRU-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 2
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 2
- 239000012346 acetyl chloride Substances 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 2
- 125000002729 alkyl fluoride group Chemical group 0.000 description 2
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000005012 alkyl thioether group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 150000004832 aryl thioethers Chemical group 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N benzene-dicarboxylic acid Natural products OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- MYONAGGJKCJOBT-UHFFFAOYSA-N benzimidazol-2-one Chemical group C1=CC=CC2=NC(=O)N=C21 MYONAGGJKCJOBT-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- BVFSYZFXJYAPQJ-UHFFFAOYSA-N butyl(oxo)tin Chemical compound CCCC[Sn]=O BVFSYZFXJYAPQJ-UHFFFAOYSA-N 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical group C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- 125000005553 heteroaryloxy group Chemical group 0.000 description 2
- 125000005150 heteroarylsulfinyl group Chemical group 0.000 description 2
- 125000005143 heteroarylsulfonyl group Chemical group 0.000 description 2
- 125000005368 heteroarylthio group Chemical group 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 1
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- FBOUIAKEJMZPQG-AWNIVKPZSA-N (1E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol Chemical compound C1=NC=NN1/C(C(O)C(C)(C)C)=C/C1=CC=C(Cl)C=C1Cl FBOUIAKEJMZPQG-AWNIVKPZSA-N 0.000 description 1
- SKCKRZWCOYHBEC-UHFFFAOYSA-N (3-oxobutan-2-ylideneamino) benzoate Chemical compound CC(=O)C(C)=NOC(=O)C1=CC=CC=C1 SKCKRZWCOYHBEC-UHFFFAOYSA-N 0.000 description 1
- JFFCVOSCPLKMLG-UHFFFAOYSA-N (3-oxobutan-2-ylideneamino) propanoate Chemical compound CCC(=O)ON=C(C)C(C)=O JFFCVOSCPLKMLG-UHFFFAOYSA-N 0.000 description 1
- HQLZSJJJXHJANW-UHFFFAOYSA-N (3-oxopentan-2-ylideneamino) acetate Chemical compound CCC(=O)C(C)=NOC(C)=O HQLZSJJJXHJANW-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- IWDFHWZHHOSSGR-UHFFFAOYSA-N 1-ethylimidazole Chemical compound CCN1C=CN=C1 IWDFHWZHHOSSGR-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- AKIZPWSPNKVOMT-UHFFFAOYSA-N 1-sulfanylhexan-1-ol Chemical compound CCCCCC(O)S AKIZPWSPNKVOMT-UHFFFAOYSA-N 0.000 description 1
- AEUVIXACNOXTBX-UHFFFAOYSA-N 1-sulfanylpropan-1-ol Chemical compound CCC(O)S AEUVIXACNOXTBX-UHFFFAOYSA-N 0.000 description 1
- PBFKVYVGYHNCGT-UHFFFAOYSA-N 1-sulfanylpropane-1,2,3-triol Chemical compound OCC(O)C(O)S PBFKVYVGYHNCGT-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- KEMZLMBONIJEPU-UHFFFAOYSA-N 2-(2-chlorophenyl)-3-[2-(2-chlorophenyl)-4-phenylimidazol-2-yl]-4,5,5-triphenyl-4h-imidazole Chemical compound ClC1=CC=CC=C1C1=NC(C=2C=CC=CC=2)(C=2C=CC=CC=2)C(C=2C=CC=CC=2)N1C1(C=2C(=CC=CC=2)Cl)N=C(C=2C=CC=CC=2)C=N1 KEMZLMBONIJEPU-UHFFFAOYSA-N 0.000 description 1
- PUBNJSZGANKUGX-UHFFFAOYSA-N 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=C(C)C=C1 PUBNJSZGANKUGX-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- UNCGZTFKGOWFIW-UHFFFAOYSA-N 2-[3-(2-chlorophenyl)-4,5-diphenyl-4H-imidazol-2-ylidene]-4,5-diphenylimidazole Chemical compound ClC1=C(C=CC=C1)N1C(N=C(C1C1=CC=CC=C1)C1=CC=CC=C1)=C1N=C(C(=N1)C1=CC=CC=C1)C1=CC=CC=C1 UNCGZTFKGOWFIW-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- SNZYOYGFWBZAQY-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;2-methyloxirane Chemical compound CC1CO1.CCC(CO)(CO)CO SNZYOYGFWBZAQY-UHFFFAOYSA-N 0.000 description 1
- RSROEZYGRKHVMN-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;oxirane Chemical compound C1CO1.CCC(CO)(CO)CO RSROEZYGRKHVMN-UHFFFAOYSA-N 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- BHMLTIAYKIBGRK-UHFFFAOYSA-N 2-imino-1-phenylpropan-1-one Chemical compound CC(=N)C(=O)C1=CC=CC=C1 BHMLTIAYKIBGRK-UHFFFAOYSA-N 0.000 description 1
- DPNXHTDWGGVXID-UHFFFAOYSA-N 2-isocyanatoethyl prop-2-enoate Chemical compound C=CC(=O)OCCN=C=O DPNXHTDWGGVXID-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- LFSAPCRASZRSKS-UHFFFAOYSA-N 2-methylcyclohexan-1-one Chemical compound CC1CCCCC1=O LFSAPCRASZRSKS-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- GSSXLFACIJSBOM-UHFFFAOYSA-N 2h-pyran-2-ol Chemical group OC1OC=CC=C1 GSSXLFACIJSBOM-UHFFFAOYSA-N 0.000 description 1
- 125000005809 3,4,5-trimethoxyphenyl group Chemical group [H]C1=C(OC([H])([H])[H])C(OC([H])([H])[H])=C(OC([H])([H])[H])C([H])=C1* 0.000 description 1
- LVYXPOCADCXMLP-UHFFFAOYSA-N 3-butoxy-n,n-dimethylpropanamide Chemical compound CCCCOCCC(=O)N(C)C LVYXPOCADCXMLP-UHFFFAOYSA-N 0.000 description 1
- BIDWUUDRRVHZLQ-UHFFFAOYSA-N 3-ethyl-3-(2-ethylhexoxymethyl)oxetane Chemical compound CCCCC(CC)COCC1(CC)COC1 BIDWUUDRRVHZLQ-UHFFFAOYSA-N 0.000 description 1
- LMIOYAVXLAOXJI-UHFFFAOYSA-N 3-ethyl-3-[[4-[(3-ethyloxetan-3-yl)methoxymethyl]phenyl]methoxymethyl]oxetane Chemical compound C=1C=C(COCC2(CC)COC2)C=CC=1COCC1(CC)COC1 LMIOYAVXLAOXJI-UHFFFAOYSA-N 0.000 description 1
- JSGVZVOGOQILFM-UHFFFAOYSA-N 3-methoxy-1-butanol Chemical compound COC(C)CCO JSGVZVOGOQILFM-UHFFFAOYSA-N 0.000 description 1
- LBVMWHCOFMFPEG-UHFFFAOYSA-N 3-methoxy-n,n-dimethylpropanamide Chemical compound COCCC(=O)N(C)C LBVMWHCOFMFPEG-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- QJNLUNBGDFUULX-UHFFFAOYSA-N 4-n,4-n'-dimethyl-3h-pyridine-4,4-diamine Chemical compound CNC1(NC)CC=NC=C1 QJNLUNBGDFUULX-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Natural products CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 1
- 101100198630 Arabidopsis thaliana RNL gene Proteins 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- SYSPOOPLPCVGLD-UHFFFAOYSA-N C1(=CC=C(C=C1)S(=O)(=O)OC(C(C=N)=O)C)C Chemical compound C1(=CC=C(C=C1)S(=O)(=O)OC(C(C=N)=O)C)C SYSPOOPLPCVGLD-UHFFFAOYSA-N 0.000 description 1
- HZRPIZSSEMKEEW-UHFFFAOYSA-N C1CO1.O=C1NC(=O)NC(=O)N1 Chemical compound C1CO1.O=C1NC(=O)NC(=O)N1 HZRPIZSSEMKEEW-UHFFFAOYSA-N 0.000 description 1
- 101100047212 Candida albicans (strain SC5314 / ATCC MYA-2876) LIG1 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- 102100029921 Dipeptidyl peptidase 1 Human genes 0.000 description 1
- 102100020751 Dipeptidyl peptidase 2 Human genes 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108700032487 GAP-43-3 Proteins 0.000 description 1
- 101000793922 Homo sapiens Dipeptidyl peptidase 1 Proteins 0.000 description 1
- 101000931864 Homo sapiens Dipeptidyl peptidase 2 Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical class SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 101100047214 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TRL1 gene Proteins 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- DPQRMIPRAHPPNE-UHFFFAOYSA-N [(1-oxo-1-phenylpropan-2-ylidene)amino] acetate Chemical compound CC(=O)ON=C(C)C(=O)C1=CC=CC=C1 DPQRMIPRAHPPNE-UHFFFAOYSA-N 0.000 description 1
- ZNZDJSGUWLGTLA-UHFFFAOYSA-N [(1-oxo-1-phenylpropan-2-ylidene)amino] benzoate Chemical compound C=1C=CC=CC=1C(=O)C(C)=NOC(=O)C1=CC=CC=C1 ZNZDJSGUWLGTLA-UHFFFAOYSA-N 0.000 description 1
- YPCHGLDQZXOZFW-UHFFFAOYSA-N [2-[[4-methyl-3-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]carbonylamino]phenyl]carbamoyloxymethyl]-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound CC1=CC=C(NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)C=C1NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C YPCHGLDQZXOZFW-UHFFFAOYSA-N 0.000 description 1
- HIVQCJOGAHNXBO-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] propanoate Chemical compound CCC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C HIVQCJOGAHNXBO-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- CJPIDIRJSIUWRJ-UHFFFAOYSA-N benzene-1,2,4-tricarbonyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C(C(Cl)=O)=C1 CJPIDIRJSIUWRJ-UHFFFAOYSA-N 0.000 description 1
- JGFLAAWSLCPCDY-UHFFFAOYSA-N benzene;cyclopenta-1,3-diene;iron Chemical compound [Fe].C1C=CC=C1.C1=CC=CC=C1 JGFLAAWSLCPCDY-UHFFFAOYSA-N 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 1
- RKTGAWJWCNLSFX-UHFFFAOYSA-M bis(2-hydroxyethyl)-dimethylazanium;hydroxide Chemical compound [OH-].OCC[N+](C)(C)CCO RKTGAWJWCNLSFX-UHFFFAOYSA-M 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N cyclobenzothiazole Natural products C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- CGZZMOTZOONQIA-UHFFFAOYSA-N cycloheptanone Chemical compound O=C1CCCCCC1 CGZZMOTZOONQIA-UHFFFAOYSA-N 0.000 description 1
- IIRFCWANHMSDCG-UHFFFAOYSA-N cyclooctanone Chemical compound O=C1CCCCCCC1 IIRFCWANHMSDCG-UHFFFAOYSA-N 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- KVFVBPYVNUCWJX-UHFFFAOYSA-M ethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)C KVFVBPYVNUCWJX-UHFFFAOYSA-M 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005226 heteroaryloxycarbonyl group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical group C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- HSDFKDZBJMDHFF-UHFFFAOYSA-N methyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OC HSDFKDZBJMDHFF-UHFFFAOYSA-N 0.000 description 1
- BDJSOPWXYLFTNW-UHFFFAOYSA-N methyl 3-methoxypropanoate Chemical compound COCCC(=O)OC BDJSOPWXYLFTNW-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N methyl cyclohexan-4-ol Natural products CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000000199 molecular distillation Methods 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- ZBOYHAZRFJBUEL-UHFFFAOYSA-N n-[2-(4-benzhydryloxypiperidin-1-yl)ethyl]-3-hydroxy-5-(pyridin-3-ylmethoxy)naphthalene-2-carboxamide Chemical compound C1=CC=C2C=C(C(=O)NCCN3CCC(CC3)OC(C=3C=CC=CC=3)C=3C=CC=CC=3)C(O)=CC2=C1OCC1=CC=CN=C1 ZBOYHAZRFJBUEL-UHFFFAOYSA-N 0.000 description 1
- SJPFBRJHYRBAGV-UHFFFAOYSA-N n-[[3-[[bis(oxiran-2-ylmethyl)amino]methyl]phenyl]methyl]-1-(oxiran-2-yl)-n-(oxiran-2-ylmethyl)methanamine Chemical compound C1OC1CN(CC=1C=C(CN(CC2OC2)CC2OC2)C=CC=1)CC1CO1 SJPFBRJHYRBAGV-UHFFFAOYSA-N 0.000 description 1
- DAHPIMYBWVSMKQ-UHFFFAOYSA-N n-hydroxy-n-phenylnitrous amide Chemical class O=NN(O)C1=CC=CC=C1 DAHPIMYBWVSMKQ-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N omega-Hydroxydodecanoic acid Natural products OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 description 1
- 150000004010 onium ions Chemical class 0.000 description 1
- 239000001053 orange pigment Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000002921 oxetanes Chemical class 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical group C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000008301 phosphite esters Chemical group 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006350 polyacrylonitrile resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000001057 purple pigment Substances 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- GZTPJDLYPMPRDF-UHFFFAOYSA-N pyrrolo[3,2-c]pyrazole Chemical compound N1=NC2=CC=NC2=C1 GZTPJDLYPMPRDF-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000000213 sulfino group Chemical group [H]OS(*)=O 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 125000003375 sulfoxide group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 150000003513 tertiary aromatic amines Chemical class 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical group S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- HTSABYAWKQAHBT-UHFFFAOYSA-N trans 3-methylcyclohexanol Natural products CC1CCCC(O)C1 HTSABYAWKQAHBT-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 150000003627 tricarboxylic acid derivatives Chemical class 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/34—Introducing sulfur atoms or sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/912—Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
Definitions
- the present invention relates to a resin composition, a film, an optical filter, a solid-state image sensor, an image display device, a resin and a compound.
- a film containing a pigment such as a color filter is used for the solid-state image sensor.
- a film containing a color material such as a color filter is manufactured by using a resin composition containing a pigment, a resin, and a solvent.
- Patent Document 1 describes a resin composition containing a pigment, a dispersant, a binder resin, an epoxy compound, and a solvent, wherein the dispersants are a tetracarboxylic acid anhydride (b1) and a tricarboxylic acid anhydride (b2). ), A polyester moiety X1'having a carboxy group formed by reacting an acid anhydride group in one or more acid anhydrides (b) with a hydroxyl group in a hydroxyl group-containing compound (a), and ethylenically unsaturated.
- the dispersants are a tetracarboxylic acid anhydride (b1) and a tricarboxylic acid anhydride (b2).
- a polyester moiety X1' having a carboxy group formed by reacting an acid anhydride group in one or more acid anhydrides (b) with a hydroxyl group in a hydroxyl group-containing compound (a), and ethylenically unsaturated.
- the monomer (c) is radically polymerized and has a vinyl polymer moiety X2'having a thermally crosslinkable functional group, and the thermally crosslinkable functional group is a hydroxyl group, an oxetane group, a t-butyl group, or a block.
- a resin composition containing a dispersant (X), which is at least one selected from the group consisting of an isocyanate group and a (meth) acryloyl group, is described.
- the dispersibility of the pigment is good. If the dispersibility of the pigment is insufficient, the pigment tends to aggregate and coarsen in the resin composition, or the viscosity of the resin composition tends to increase. Further, even if the viscosity of the resin composition immediately after production is low, the viscosity may increase with time.
- an object of the present invention is to provide a resin composition having excellent dispersibility of a pigment. Another object of the present invention is to provide a film, an optical filter, a solid-state image pickup device, and an image display device using a resin composition. Further, an object of the present invention is to provide a resin and a compound.
- the resin B contains a resin b-1 containing a structure represented by the formula (1).
- X 1 represents a tetravalent linking group.
- X 2 represents a divalent linking group R 11 , R 12 , R 21 , R 22 and R 23 each independently represent a hydrogen atom or substituent.
- Lp 1 represents an n + 1 valent linking group.
- Lp 2 represents a divalent linking group P 1 represents a polymer chain n represents an integer of 1 or more.
- ⁇ 2> The resin composition according to ⁇ 1>, wherein Lp 2 of the above formula (1) is —O— or —S—.
- ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein X 1 of the above formula (1) is a group containing an aromatic hydrocarbon ring.
- X 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein X 2 of the above formula (1) is a group containing a fluorine atom and an aromatic hydrocarbon ring.
- the polymer chain represented by P 1 of ⁇ 1> to ⁇ 4> contains a repeating unit of at least one structure selected from a poly (meth) acrylic structure, a polystyrene structure, a polyether structure and a polyester structure.
- the polymer chain represented by P 1 is one of ⁇ 1> to ⁇ 4>, which comprises a repeating unit represented by any of the formulas (P1-1) to (P1-6).
- RG1 and RG2 each represent an alkylene group
- RG3 represents a hydrogen atom, a methyl group, a fluorine atom, a chlorine atom or a hydroxymethyl group
- Q G1 represents -O- or -NR q- , and R q represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group
- LG1 represents a single bond or an arylene group
- LG2 represents a single bond or a divalent linking group
- RG4 represents a hydrogen atom or substituent
- RG5 represents a hydrogen atom or a methyl group
- RG6 represents an aryl group.
- ⁇ 7> substituent represented by R G4 ethylenically unsaturated bond-containing group, an epoxy group, at least one selected from an oxetanyl group, and t- butyl group, a resin composition according to ⁇ 6>.
- X 1 represents a tetravalent linking group.
- X 2 represents a divalent linking group
- R 11 , R 12 , R 21 , R 22 and R 23 each independently represent a hydrogen atom or substituent.
- Rp 11 represents a substituent, and m Rp 11 may be the same or different.
- Lp 11 represents an n + 1 valent linking group.
- Lp 2 represents a divalent linking group
- P 1 represents a polymer chain
- n represents an integer of 1 or more
- m represents an integer from 0 to 4.
- the solvent C contains at least one selected from an ester solvent, an ether solvent, an alcohol solvent and a ketone solvent. .. ⁇ 10>
- the coloring material A contains at least one selected from a diketopyrrolopyrrole pigment and a phthalocyanine pigment.
- ⁇ 11> The resin composition according to any one of ⁇ 1> to ⁇ 10>, which further contains a polymerizable monomer.
- ⁇ 12> The resin composition according to any one of ⁇ 1> to ⁇ 11>, further comprising a photopolymerization initiator.
- ⁇ 13> A film obtained by using the resin composition according to any one of ⁇ 1> to ⁇ 12>.
- ⁇ 14> An optical filter having the film according to ⁇ 13>.
- ⁇ 15> A solid-state image sensor having the film according to ⁇ 13>.
- ⁇ 16> An image display device having the film according to ⁇ 13>.
- ⁇ 17> Resin containing the structure represented by the formula (1); In formula (1), X 1 represents a tetravalent linking group.
- X 2 represents a divalent linking group R 11 , R 12 , R 21 , R 22 and R 23 each independently represent a hydrogen atom or substituent.
- Lp 1 represents an n + 1 valent linking group.
- Lp 2 represents a divalent linking group P 1 represents a polymer chain n represents an integer of 1 or more.
- EDM1 Compound represented by the formula (EDM1); In formula (EDM1), R ED1 represents an acid anhydride group.
- Lp ED1 represents n + 1 valent group, the n + 1 valent group or a hydrocarbon group, or a hydrocarbon group and -NRp ED1 -, - N ⁇ , - SO -, - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - NRp ED1 CO- and -CONRp ED1 - from a structure group formed by combining at least one group selected, Rp ED1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- Lp ED2 represents -O- or -S-
- P ED1 represents a polymer chain containing a repeating unit represented by any of the formulas (P1-1) to (P1-4).
- n represents an integer from 1 to 4;
- R G1 and R G2 are each represents an alkylene group.
- the compound represented by the above formula (EDM1) is a compound represented by the formula (EDM2), and the compound according to ⁇ 18>;
- R ED12 represents a halogen atom, an alkyl group, a carboxy group or a hydroxy group.
- Lp ED1a represents an n + 1-valent group
- the n + 1-valent group is a hydrocarbon group or a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group
- the linking group is a group.
- Rp ED1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- Lp ED2 represents -O- or -S-
- P ED1 represents a polymer chain containing a repeating unit represented by any of the above formulas (P1-1) to (P1-4).
- r represents an integer from 0 to 3 and represents n represents an integer of 1 to 4.
- a resin composition having excellent dispersibility of a pigment. Further, it is possible to provide a film, an optical filter, a solid-state image pickup device, and an image display device using a resin composition. Also, resins and compounds can be provided.
- the present invention is not limited to the specified embodiments.
- "to” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
- the notation not describing substitution and non-substitution also includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
- the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- the term "exposure” includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
- Examples of the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, active rays such as electron beams, or radiation.
- the (meth) allyl group represents both allyl and metharyl, or either, and "(meth) acrylate” represents both acrylate and methacrylate, or either, and "(meth)”.
- “Acrylic” represents both acrylic and methacrylic, or either, and “(meth) acryloyl” represents both acryloyl and methacrylic, or either.
- the weight average molecular weight and the number average molecular weight are polystyrene-equivalent values measured by a GPC (gel permeation chromatography) method.
- the near infrared ray means light having a wavelength of 700 to 2500 nm.
- the total solid content means the total mass of all the components of the composition excluding the solvent.
- the term "process” does not only refer to an independent process, but also to the present term if the intended action of the process is achieved even if it cannot be clearly distinguished from other processes. included.
- the term pigment means a compound that is difficult to dissolve in a solvent.
- a symbol (for example, A) added before or after a name is a term used to distinguish components, and the type of component, the number of components, and the structure. It does not limit the superiority or inferiority of the elements.
- the resin composition of the present invention contains a coloring material A containing a pigment, a resin B, and a solvent C, and the resin B is a resin b-1 containing a structure represented by the formula (1) (hereinafter referred to as a resin b-1). It is characterized by containing (also referred to as a specific resin).
- the resin composition of the present invention is excellent in dispersibility of pigments.
- the resin composition of the present invention it is possible to form a film having excellent heat resistance, which is hardly decomposed even at a high temperature and is less likely to cause film shrinkage even after heat treatment at a high temperature. Therefore, even if a film is formed using the resin composition of the present invention and then the obtained film is heat-treated at a high temperature (for example, 300 ° C. or higher), the film shrinkage is suppressed and the film is formed on the film. Even when another film such as an inorganic film is formed, it is possible to suppress the occurrence of cracks in the other film. Therefore, according to the resin composition of the present invention, the process window of the process after manufacturing the film can be expanded.
- the film was heat-treated at 300 ° C. for 5 hours under a nitrogen atmosphere.
- the thickness of the film is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more of the thickness of the film before the heat treatment.
- the thickness of the film after being heat-treated at 350 ° C. for 5 hours in a nitrogen atmosphere is preferably 70% or more, preferably 80% or more of the thickness of the film before the heat treatment. Is more preferable, and 90% or more is further preferable.
- the above physical properties can be achieved by a method such as adjusting the type and content of the specific resin to be used.
- the rate of change ⁇ A of the absorbance of the film after the heat treatment represented by the following formula (A1) is preferably 50% or less, more preferably 45% or less, and more preferably 40% or less. It is more preferably 35% or less, and particularly preferably 35% or less.
- ⁇ A (%)
- A1 is the maximum value of the absorbance in the wavelength range of 400 to 1100 nm of the film before the heat treatment.
- A2 is the absorbance of the film after the heat treatment, and is the absorbance at a wavelength indicating the maximum value of the absorbance in the wavelength range of 400 to 1100 nm of the film before the heat treatment.
- the above physical properties can be achieved by a method such as adjusting the type and content of the specific resin to be used.
- the wavelength ⁇ 1 showing the maximum value of the absorbance of the film in the wavelength range of 400 to 1100 nm.
- the absolute value of the difference from the wavelength ⁇ 2, which indicates the maximum value of the absorbance of the film after heat-treating the film at 300 ° C. for 5 hours in a nitrogen atmosphere, is preferably 50 nm or less, preferably 45 nm or less. It is more preferably present, and further preferably 40 nm or less.
- the above physical properties can be achieved by a method such as adjusting the type and content of the specific resin to be used.
- the film was heat-treated at 300 ° C. for 5 hours in a nitrogen atmosphere.
- the maximum value of the rate of change ⁇ A ⁇ of the absorbance in the wavelength range of 400 to 1100 nm after the heat treatment is preferably 30% or less, more preferably 27% or less, and further preferably 25% or less. preferable.
- A1 ⁇ is the absorbance at the wavelength ⁇ of the film before heat treatment.
- A2 ⁇ is the absorbance at the wavelength ⁇ of the film after the heat treatment.
- the resin composition of the present invention is preferably used as a resin composition for an optical filter.
- the optical filter include a color filter, a near-infrared transmission filter, a near-infrared cut filter, and the like, and a color filter is preferable.
- the resin composition of the present invention can be preferably used as a resin composition for a solid-state image sensor, and more preferably as a resin composition for forming pixels of an optical filter used in a solid-state image sensor.
- the color filter examples include filters having colored pixels that transmit light of a specific wavelength, and at least one colored pixel selected from red pixels, blue pixels, green pixels, yellow pixels, cyan pixels, and magenta pixels. It is preferable that the filter has.
- the color filter can be formed by using a resin composition containing a chromatic color material.
- the near-infrared cut filter examples include a filter having a maximum absorption wavelength in the wavelength range of 700 to 1800 nm.
- the maximum absorption wavelength of the near-infrared cut filter is preferably in the wavelength range of 700 to 1300 nm, and more preferably in the wavelength range of 700 to 1100 nm.
- the transmittance of the near-infrared cut filter in the entire wavelength range of 400 to 650 nm is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. Further, the transmittance at at least one point in the wavelength range of 700 to 1800 nm is preferably 20% or less.
- the absorbance Amax / absorbance A550 which is the ratio of the absorbance Amax at the maximum absorption wavelength of the near-infrared cut filter to the absorbance A550 at a wavelength of 550 nm, is preferably 20 to 500, more preferably 50 to 500. , 70 to 450, more preferably 100 to 400, and particularly preferably 100 to 400.
- the near-infrared cut filter can be formed by using a resin composition containing a near-infrared absorbing color material.
- the near-infrared ray transmission filter is a filter that transmits at least a part of near-infrared rays.
- the near-infrared transmission filter is preferably a filter that blocks at least a part of visible light and transmits at least a part of near-infrared light.
- the maximum value of the transmittance in the wavelength range of 400 to 640 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the transmittance in the wavelength range of 1100 to 1300 nm.
- a filter satisfying the spectral characteristics having a minimum value of 70% or more (preferably 75% or more, more preferably 80% or more) is preferably mentioned.
- the near-infrared transmission filter is preferably a filter that satisfies any of the following spectral characteristics (1) to (5).
- the maximum value of the transmittance in the wavelength range of 400 to 640 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 800 to 1500 nm is.
- a filter of 70% or more preferably 75% or more, more preferably 80% or more.
- the maximum value of the transmittance in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 900 to 1500 nm is.
- a filter of 70% or more (preferably 75% or more, more preferably 80% or more).
- the maximum value of the transmittance in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 1000 to 1500 nm is.
- a filter of 70% or more (preferably 75% or more, more preferably 80% or more).
- the maximum value of the transmittance in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 1100 to 1500 nm is.
- a filter of 70% or more (preferably 75% or more, more preferably 80% or more).
- the maximum value of the transmittance in the wavelength range of 400 to 1050 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 1200 to 1500 nm is.
- a filter of 70% or more preferably 75% or more, more preferably 80% or more).
- a preferred embodiment of the spectral characteristics of the resin composition of the present invention is that when a film having a thickness of 5 ⁇ m is formed using the resin composition, the wavelength of the light transmittance in the thickness direction of the film is 360 to 700 nm.
- Examples thereof include an embodiment satisfying the spectral characteristics in which the maximum value in the range is 50% or more.
- a resin composition satisfying such spectral characteristics can be preferably used as a resin composition for forming pixels of a color filter. Specifically, it can be preferably used as a resin composition for forming colored pixels selected from red pixels, blue pixels, green pixels, yellow pixels, cyan pixels and magenta colors.
- the resin composition having the above spectral characteristics preferably contains a chromatic coloring material.
- a resin composition containing a red color material and a yellow color material can be preferably used as a resin composition for forming red pixels.
- the resin composition containing the blue color material and the purple color material can be preferably used as the resin composition for forming blue pixels.
- the resin composition containing the green color material can be preferably used as the resin composition for forming green or cyan color pixels.
- Another preferred embodiment of the spectral characteristics of the resin composition of the present invention is that Amin / B, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm to the absorbance B in the wavelength range of 1500 nm, is 5 or more.
- An embodiment that satisfies a certain spectral characteristic can be mentioned.
- a resin composition satisfying such spectral characteristics can be preferably used as a resin composition for forming a near-infrared transmission filter.
- the value of Amin / B which is the above-mentioned absorbance ratio, is preferably 7.5 or more, more preferably 15 or more, and even more preferably 30 or more.
- the absorbance A ⁇ at the wavelength ⁇ is defined by the following equation ( ⁇ 1).
- a ⁇ -log (T ⁇ / 100) ...
- T ⁇ is the transmittance (%) at the wavelength ⁇ .
- the value of the absorbance may be a value measured in the state of a solution or a value of a film formed by using the composition.
- the composition is applied onto a glass substrate by a method such as spin coating, and the film is dried at 100 ° C. for 120 seconds using a hot plate or the like for measurement. Is preferable.
- the resin composition of the present invention preferably satisfies any of the following spectral characteristics (Ir1) to (Ir5).
- (Ir1) The value of A1 / B1, which is the ratio of the minimum value A1 of the absorbance in the wavelength range of 400 to 640 nm and the maximum value B1 of the absorbance in the wavelength range of 800 to 1500 nm, is 4.5 or more. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more. According to this aspect, it is possible to form a film capable of transmitting light having a wavelength of more than 750 nm by blocking light in the wavelength range of 400 to 640 nm.
- the value of A2 / B2 which is the ratio of the minimum value A2 of the absorbance in the wavelength range of 400 to 750 nm and the maximum value B2 of the absorbance in the wavelength range of 900 to 1500 nm, is 4.5 or more. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more. According to this aspect, it is possible to form a film capable of transmitting light having a wavelength of more than 850 nm by blocking light in the wavelength range of 400 to 750 nm.
- the value of A4 / B4 which is the ratio of the minimum value A4 of the absorbance in the wavelength range of 400 to 950 nm and the maximum value B4 of the absorbance in the wavelength range of 1100 to 1500 nm, is 4.5 or more. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more. According to this aspect, it is possible to form a film capable of transmitting light having a wavelength of more than 1050 nm by blocking light in the wavelength range of 400 to 950 nm.
- the resin composition of the present invention is a resin composition for pattern formation by a photolithography method. According to this aspect, pixels having a fine size can be easily formed. Therefore, it can be particularly preferably used as a resin composition for forming pixels of an optical filter used in a solid-state image sensor.
- a resin composition containing a component having an ethylenically unsaturated bond-containing group for example, a resin having an ethylenically unsaturated bond-containing group or a monomer having an ethylenically unsaturated bond-containing group
- a photopolymerization initiator can be preferably used as a resin composition for pattern formation in a photolithography method. It is also preferable that the resin composition for pattern formation in the photolithography method further contains an alkali-soluble resin.
- the resin composition of the present invention can also be used as a resin composition for forming a black matrix or a resin composition for forming a light-shielding film.
- the resin composition of the present invention contains a coloring material A (hereinafter referred to as a coloring material).
- a coloring material include a white coloring material, a black coloring material, a chromatic coloring material, and a near-infrared absorbing coloring material.
- the white color material includes not only pure white color material but also a light gray color material close to white (for example, grayish white, light gray, etc.).
- the color material preferably contains at least one selected from the group consisting of a chromatic color material, a black color material, and a near-infrared absorbing color material, and is selected from the group consisting of a chromatic color material and a near-infrared absorbing color material. It is more preferable to contain at least one chromatic color material, further preferably to contain a chromatic color material, and at least one chromatic color selected from the group consisting of a red color material, a yellow color material, a blue color material and a purple color material. It is more preferable to include a material.
- the coloring material preferably contains a chromatic color material and a near-infrared absorbing color material, and preferably contains two or more kinds of chromatic color materials and a near-infrared absorbing color material.
- black may be formed by a combination of two or more kinds of chromatic color materials.
- the coloring material contains a black coloring material and a near-infrared absorbing coloring material.
- the resin composition of the present invention can be preferably used as a resin composition for forming a near-infrared transmission filter.
- Japanese Patent Application Laid-Open No. 2013-077009, Japanese Patent Application Laid-Open No. 2014-130338, International Publication No. 2015/166779 and the like can be referred to.
- the coloring material contained in the coloring composition of the present invention one containing a pigment is used.
- the pigment may be either an inorganic pigment or an organic pigment, but is preferably an organic pigment from the viewpoint of many color variations, ease of dispersion, safety and the like. Further, the pigment preferably contains at least one selected from a chromatic pigment and a near-infrared absorbing pigment, and more preferably contains a chromatic pigment.
- the pigment may include at least one selected from phthalocyanine pigments, dioxazine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, azo pigments, diketopyrrolopyrrole pigments, pyrolopyrrolop pigments, isoindrin pigments and quinophthalone pigments. It is more preferable that it contains at least one selected from a phthalocyanine pigment, a diketopyrrolopyrrole pigment and a pyrolopyrrolop pigment, and even more preferably it contains a phthalocyanine pigment or a diketopyrrolopyrrole pigment.
- the phthalocyanine pigment has a phthalocyanine pigment having no central metal and copper or zinc as the central metal because it is easy to form a film whose spectral characteristics do not easily change even after heating to a high temperature (for example, 300 ° C. or higher). Phthalocyanine pigments are preferred.
- the average primary particle size of the pigment is preferably 1 to 200 nm.
- the lower limit is preferably 5 nm or more, more preferably 10 nm or more.
- the upper limit is preferably 180 nm or less, more preferably 150 nm or less, still more preferably 100 nm or less.
- the average primary particle size of the pigment can be obtained from a photograph obtained by observing the primary particles of the pigment with a transmission electron microscope. Specifically, the projected area of the primary particles of the pigment is obtained, and the corresponding circle-equivalent diameter is calculated as the primary particle diameter of the pigment.
- the average primary particle size in the present invention is an arithmetic average value of the primary particle size for the primary particles of 400 pigments.
- the primary particles of the pigment refer to independent particles without aggregation.
- the chromatic color material examples include a color material having a maximum absorption wavelength in the wavelength range of 400 to 700 nm. For example, a yellow color material, an orange color material, a red color material, a green color material, a purple color material, a blue color material, and the like can be mentioned. From the viewpoint of heat resistance, the chromatic color material is preferably a pigment (chromatic pigment), more preferably a red pigment, a yellow pigment, and a blue pigment, and even more preferably a red pigment and a blue pigment. Specific examples of the chromatic pigment include those shown below.
- C.I. I. Pigment Red 254, C.I. I. Pigment Red 264, C.I. I. Pigment Red 272, C.I. I. Pigment Red 122, C.I. I. Pigment Red 177 is preferred.
- C.I. I. Pigment Blue 15: 3 is preferred.
- C.I. I. Pigment Blue 15: 4 is preferred.
- C.I. I. Pigment Blue 15: 6 is preferred.
- a halogenated zinc phthalocyanine pigment having an average of 10 to 14 halogen atoms in one molecule, an average of 8 to 12 bromine atoms, and an average of 2 to 5 chlorine atoms.
- Specific examples include the compounds described in International Publication No. 2015/118720.
- Phthalocyanine compounds, phthalocyanine compounds described in JP-A-2018-180023, compounds described in JP-A-2019-038958, and the like can also be used.
- an aluminum phthalocyanine compound having a phosphorus atom can also be used. Specific examples thereof include the compounds described in paragraph numbers 0022 to 0030 of JP2012-247591A and paragraph numbers 0047 of JP2011-157478A.
- X 1 to X 16 independently represent a hydrogen atom or a halogen atom, and Z 1 represents an alkylene group having 1 to 3 carbon atoms.
- Specific examples of the compound represented by the formula (QP1) include the compound described in paragraph No. 0016 of Japanese Patent No. 6443711.
- Y 1 ⁇ Y 3 represents a halogen atom independently.
- n and m represent integers of 0 to 6, and p represents an integer of 0 to 5.
- N + m is 1 or more.
- Specific examples of the compound represented by the formula (QP2) include the compounds described in paragraphs 0047 to 0048 of Japanese Patent No. 6432077.
- red pigment As the red pigment, a diketopyrrolopyrrole compound in which at least one bromine atom is substituted in the structure described in JP-A-2017-201384, a diketopyrrolopyrrole compound described in paragraphs 0016 to 0022 of Patent No. 6248838, Diketopyrrolopyrrole compound described in WO2012 / 102399, diketopyrrolopyrrole compound described in WO2012 / 117965, naphtholazo compound described in JP2012-229344, patent No. 6516119. , The compound described in Japanese Patent No. 6525101, and the like can also be used.
- red pigment a compound having a structure in which an aromatic hydrocarbon group having an oxygen atom, a sulfur atom or a nitrogen atom bonded to the aromatic hydrocarbon ring is bonded to a diketopyrrolopyrrole skeleton is used. It can also be used. As such a compound, a compound represented by the formula (DPP1) is preferable, and a compound represented by the formula (DPP2) is more preferable.
- R 11 and R 13 independently represent a substituent
- R 12 and R 14 independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
- n 11 and n 13 are independent of each other.
- X 12 and X 14 independently represent an oxygen atom, a sulfur atom or a nitrogen atom
- m12 represents 1 and X.
- m12 represents 2 when X 14 is a nitrogen atom.
- the substituents represented by R 11 and R 13 include an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heteroaryloxycarbonyl group, an amide group, a cyano group, a nitro group and a trifluoro group.
- Preferred specific examples include a methyl group, a sulfoxide group, and a sulfo group.
- the chromatic dyes include pyrazole azo compound, anilino azo compound, triarylmethane compound, anthraquinone compound, anthrapyridone compound, benzylidene compound, oxonol compound, pyrazolotriazole azo compound, pyridone azo compound, cyanine compound, phenothiazine compound and pyrrolopyrazole azomethine compound. , Xanthene compound, phthalocyanine compound, benzopyran compound, indigo compound, pyrromethene compound and the like.
- Two or more kinds of chromatic color materials may be used in combination. Further, when two or more kinds of chromatic color materials are used in combination, black may be formed by a combination of two or more kinds of chromatic color materials. Examples of such a combination include the following aspects (1) to (7).
- the resin composition of the present invention forms a near-infrared ray transmitting filter. It can be preferably used as a resin composition for use.
- An embodiment containing a red color material, a blue color material, and a yellow color material are examples of such a combination.
- An embodiment containing a red color material, a blue color material, a yellow color material, and a purple color material (3) An embodiment containing a red color material, a blue color material, a yellow color material, and a purple color material. (4) An embodiment containing a red color material, a blue color material, a yellow color material, a purple color material, and a green color material. (5) An embodiment containing a red color material, a blue color material, a yellow color material, and a green color material. (6) An embodiment containing a red color material, a blue color material, and a green color material. (7) An embodiment containing a yellow color material and a purple color material.
- White coloring materials include titanium oxide, strontium titanate, barium titanate, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, Examples thereof include hollow resin particles and inorganic pigments (white pigments) such as zinc sulfide.
- the white pigment is preferably particles having a titanium atom, and more preferably titanium oxide.
- the white pigment is preferably particles having a refractive index of 2.10 or more with respect to light having a wavelength of 589 nm. The above-mentioned refractive index is preferably 2.10 to 3.00, and more preferably 2.50 to 2.75.
- titanium oxide described in "Titanium Oxide Physical Properties and Applied Technology, by Manabu Kiyono, pp. 13-45, published on June 25, 1991, published by Gihodo Publishing" can also be used.
- the white pigment is not limited to a single inorganic substance, but particles compounded with other materials may be used. For example, particles having pores or other materials inside, particles in which a large number of inorganic particles are attached to core particles, core particles composed of core particles composed of polymer particles, and core and shell composite particles composed of a shell layer composed of inorganic nanoparticles are used. Is preferable.
- the core and shell composite particles composed of the core particles composed of the polymer particles and the shell layer composed of the inorganic nanoparticles for example, the description in paragraphs 0012 to 0042 of JP2015-047520 can be referred to. This content is incorporated herein.
- Hollow inorganic particles can also be used as the white pigment.
- Hollow inorganic particles are inorganic particles having a structure having cavities inside, and refer to inorganic particles having cavities surrounded by an outer shell.
- Examples of the hollow inorganic particles include the hollow inorganic particles described in JP-A-2011-075786, International Publication No. 2013/06621, JP-A-2015-164881, and the like, and the contents thereof are incorporated in the present specification. Is done.
- Black color material The black color material is not particularly limited, and known materials can be used.
- examples of the inorganic black coloring material include inorganic pigments (black pigments) such as carbon black, titanium black, and graphite, with carbon black and titanium black being preferable, and titanium black being more preferable.
- Titanium black is black particles containing a titanium atom, and low-order titanium oxide or titanium oxynitride is preferable. Titanium black can modify the surface as needed for the purpose of improving dispersibility and suppressing cohesion. For example, it is possible to coat the surface of titanium black with silicon oxide, titanium oxide, germanium oxide, aluminum oxide, magnesium oxide, or zirconium oxide.
- Titanium black preferably has a small primary particle size and an average primary particle size of each particle. Specifically, it is preferable that the average primary particle size is 10 to 45 nm. Titanium black can also be used as a dispersion. For example, a dispersion containing titanium black particles and silica particles and having a content ratio of Si atoms and Ti atoms in the dispersion adjusted to be in the range of 0.20 to 0.50 can be mentioned.
- titanium black products include titanium black 10S, 12S, 13R, 13M, 13M-C, 13RN, 13M-T (trade name: manufactured by Mitsubishi Materials Corporation), Tilak D (Tilak) D (trade name: manufactured by Mitsubishi Materials Corporation). Product name: Ako Kasei Co., Ltd.) and the like.
- examples of the organic black color material include a bisbenzofuranone compound, an azomethine compound, a perylene compound, and an azo compound.
- examples of the bisbenzofuranone compound include the compounds described in JP-A-2010-534726, JP-A-2012-515233, JP-A-2012-515234, etc., for example, as "Irgaphor Black” manufactured by BASF. It is available.
- Examples of the perylene compound include the compounds described in paragraphs 0016 to 0020 of JP-A-2017-226821, C.I. I. Pigment Black 31, 32 and the like can be mentioned.
- Examples of the azomethin compound include the compounds described in JP-A No. 01-17601, JP-A-02-0346664, and the like, and can be obtained as, for example, "Chromofine Black A1103" manufactured by Dainichiseika Co., Ltd.
- the coloring material used in the resin composition of the present invention may be only the above-mentioned black coloring material, or may further contain a chromatic coloring material. According to this aspect, it is easy to obtain a resin composition capable of forming a film having excellent light-shielding property in the visible region.
- chromatic color material 100: 10 to 300, preferably 100: 20 to 200. Is more preferable.
- Preferred combinations of the black color material and the chromatic color material include, for example, the following.
- A-1) An embodiment containing an organic black color material and a blue color material.
- A-2) An embodiment containing an organic black color material, a blue color material, and a yellow color material.
- A-3) An embodiment containing an organic black color material, a blue color material, a yellow color material, and a red color material.
- A-4) An embodiment containing an organic black color material, a blue color material, a yellow color material, and a purple color material.
- the near-infrared absorbing color material is preferably a pigment, more preferably an organic pigment. Further, the near-infrared absorbing color material preferably has a maximum absorption wavelength in a range of more than 700 nm and 1400 nm or less. The maximum absorption wavelength of the near-infrared absorbing color material is preferably 1200 nm or less, more preferably 1000 nm or less, and further preferably 950 nm or less.
- the near-infrared absorbing color material preferably has A 550 / A max, which is the ratio of the absorbance A 550 at a wavelength of 550 nm and the absorbance A max at the maximum absorption wavelength, to be 0.1 or less, preferably 0.05 or less. It is more preferably 0.03 or less, and particularly preferably 0.02 or less.
- the lower limit is not particularly limited, but may be, for example, 0.0001 or more, and may be 0.0005 or more.
- the maximum absorption wavelength of the near-infrared absorbing color material and the value of the absorbance at each wavelength are values obtained from the absorption spectrum of the film formed by using the resin composition containing the near-infrared absorbing color material.
- the near-infrared absorbing color material is not particularly limited, but is limited to pyrolopyrrole compound, cyanine compound, squarylium compound, phthalocyanine compound, naphthalocyanine compound, quaterylene compound, merocyanine compound, croconium compound, oxonol compound, iminium compound, dithiol compound, and tria.
- Examples thereof include a reelmethane compound, a pyrromethene compound, an azomethin compound, an anthraquinone compound, a dibenzofuranone compound, and a dithiolene metal complex.
- Examples of the pyrrolopyrrole compound include the compounds described in paragraphs 0016 to 0058 of JP2009-263614, the compounds described in paragraphs 0037-0052 of JP2011-066731A, and International Publication No. 2015/166783. Examples thereof include the compounds described in paragraphs 0010 to 0033.
- Examples of the squarylium compound include the compounds described in paragraphs 0044 to 0049 of JP2011-208101A, the compounds described in paragraphs 0060 to 0061 of Patent No. 6065169, and paragraph numbers 0040 of International Publication No. 2016/181987. , The compound described in JP-A-2015-176046, the compound described in paragraph No. 0072 of International Publication No.
- JP2012-077153 the oxytitanium phthalocyanine described in JP2006-343631, and paragraphs 0013 to 0029 of JP2013-195480.
- Examples of the naphthalocyanine compound include the compounds described in paragraph No. 0093 of JP2012-07715A.
- dithiolene metal complex include the compounds described in Japanese Patent No. 5733804.
- Examples of the near-infrared absorbing color material include a squarylium compound described in JP-A-2017-197437, a squarylium compound described in JP-A-2017-025311, a squarylium compound described in International Publication No. 2016/154782, and a patent.
- Squarylium compound described in Japanese Patent No. 5884953 Squalylium compound described in Japanese Patent No. 6036689
- Squalylium compound described in Japanese Patent No. 5810604 Squalylium compound described in paragraph Nos. 0090 to 0107 of International Publication No. 2017/213047.
- the amide-linked squarylium compound of JP-A-2017-141215 a compound having a pyrrolbis-type squarylium skeleton or a croconium skeleton described in JP-A-2017-141215, a dihydrocarbazole-type squarylium compound described in JP-A-2017-082029, JP-A-2017.
- the content of the coloring material in the total solid content of the resin composition is preferably 20 to 90% by mass.
- the lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more.
- the upper limit is preferably 80% by mass or less, and more preferably 70% by mass or less.
- the content of the pigment in the total solid content of the resin composition is preferably 20 to 90% by mass.
- the lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more.
- the upper limit is preferably 80% by mass or less, and more preferably 70% by mass or less.
- the content of the dye in the coloring material is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. Further, it is also preferable that the resin composition of the present invention does not substantially contain a dye because it is easy to more effectively suppress the change in film thickness when the obtained film is heated to a high temperature.
- the content of the dye in the total solid content of the resin composition of the present invention is preferably 0.1% by mass or less, preferably 0.05% by mass. The following is more preferable, and it is particularly preferable that the content is not contained.
- the resin composition of the present invention contains resin B (hereinafter, also referred to as resin).
- the resin contained in the resin composition includes a resin b-1 (hereinafter, also referred to as a specific resin) containing a structure represented by the formula (1).
- the specific resin is also the resin of the present invention.
- X 1 represents a tetravalent linking group.
- X 2 represents a divalent linking group R 11 , R 12 , R 21 , R 22 and R 23 each independently represent a hydrogen atom or substituent.
- Lp 1 represents an n + 1 valent linking group.
- Lp 2 represents a divalent linking group P 1 represents a polymer chain n represents an integer of 1 or more.
- n represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably 1 or 2, and even more preferably 1.
- the tetravalent linking group represented by X 1 is preferably a group containing a hydrocarbon group.
- the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic.
- the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring.
- the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent. Examples of the substituent include the substituent T described later.
- Examples of the group containing the above-mentioned hydrocarbon group include a hydrocarbon group and a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- linking group for linking the above two or more hydrocarbon groups -NR X1- , -SO-, -SO 2- , -CO-, -O-, -COO-, -OCO-, -S-,- Examples thereof include NR X1 CO-, -CONR X1- and -C (CF 3 ) 2- .
- RX1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the tetravalent linking group represented by X 1 is preferably a group containing an aliphatic hydrocarbon ring or an aromatic hydrocarbon ring, and more preferably a group containing an aromatic hydrocarbon ring. Further, tetravalent linking group represented by X 1 is a fluorine atom or a sulfonyl group, since they can improve the solubility in solvents of the specific resin - is preferably a group containing a (-SO 2). Among them, the tetravalent linking group represented by X 1 is a group containing a fluorine atom and an aromatic hydrocarbon ring because it can form a film having excellent solubility in a solvent of a specific resin and excellent heat resistance. Is preferable.
- the group containing a fluorine atom and an aromatic hydrocarbon ring is a group in which two or more aromatic hydrocarbon groups are bonded with a linking group, and the linking group is a linking group containing a fluorine atom, or 2 It is preferable that the group is a group in which the above aromatic hydrocarbon groups are bonded by a single bond or a linking group, and the above aromatic hydrocarbon group is substituted with a group containing a fluorine atom.
- the linking group containing a fluorine atom include -C (CF 3 ) 2- and the like.
- the group containing a fluorine atom an alkyl fluoride group is preferable, and a trifluoromethyl group is more preferable.
- the tetravalent linking group represented by X 1 is a group represented by any of the formulas (D-1) to (D-3).
- Cy independently represents an aliphatic hydrocarbon ring
- R d1 represents a linear or branched aliphatic hydrocarbon group
- X d1 Represents a single bond or a divalent linking group
- * 1 to * 4 represent a linking hand, respectively.
- the aliphatic hydrocarbon ring represented by Cy in the formulas (D-1) to (D-3) may be a monocyclic ring or a condensed ring. Further, the aliphatic hydrocarbon ring may have a crosslinked structure.
- the aliphatic hydrocarbon ring represented by Cy is preferably a monocyclic aliphatic hydrocarbon ring or an aliphatic hydrocarbon ring having a crosslinked structure.
- * 1 and * 2 , * 3 and * 4 are preferably present at adjacent positions in the aliphatic hydrocarbon ring Cy.
- R d1 of the formula (D-2) represents a linear or branched aliphatic hydrocarbon group, and is preferably a linear or branched aliphatic saturated hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 2 to 10, more preferably 2 to 4, and even more preferably 2.
- * 3 and * 4 are preferably present at adjacent positions in the aliphatic hydrocarbon ring Cy.
- the tetravalent linking group represented by X 1 is a group represented by the formula (E-1).
- Ar independently represents an aromatic hydrocarbon ring
- X e1 represents a divalent linking group containing a fluorine atom
- * 1 to * 4 represent linking hands, respectively.
- the number of carbon atoms of the aromatic hydrocarbon ring represented by Ar in the formula (E-1) is preferably 6 to 30, and more preferably 6 to 20.
- the aromatic hydrocarbon ring represented by Ar is preferably a benzene ring.
- X e1 of the formula (E-1) an alkylene group having 1 to 10 carbon atoms substituted with a fluorine atom is preferable, an alkylene group having 1 to 5 carbon atoms substituted with a fluorine atom is more preferable, and —C (CF).
- tetravalent linking group represented by X 1 include a group having a structure represented by any of the formulas (I-1) to (I-28).
- X 1 to X 3 represent a single bond or a divalent linking group
- R 1 and R 2 independently represents a hydrogen atom or a substituent
- R 1 and R 2 may be bonded to form a ring structure
- * represents a link with another structure in the formula (1).
- Rx indicates a hydrogen atom or a substituent.
- Rx When Rx is a substituent, they may be linked to each other to form a ring. Good), -O-, -SO 2- , -CO-, -S-, -NR N- , phenylene group, or a combination thereof.
- Rx indicates a substituent, specific examples thereof include. Examples thereof include an alkyl group which may be substituted with a fluorine atom.
- RN represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- X 1 ⁇ X 3 are each independently a single bond, -SO 2 - or -C (Rx) 2 - are preferred, -SO 2 - or -C (Rx) 2 - are more preferable, -C (Rx ) 2 -is more preferable. Further, as for -C (Rx) 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2- is preferable, and -C (CF 3 ) 2- is more preferable.
- R 1 and R 2 are each independently preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
- X 2 represents a divalent linking group.
- the divalent linking group represented by X 2 include a hydrocarbon group and a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic. Further, the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring.
- the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent. Examples of the substituent include the substituent T described later.
- linking group for linking the above two or more hydrocarbon groups examples include -O-, -S-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CO-, -SO 2- , -SiR 2- (R independently represents a hydrocarbon group, preferably an alkyl group or a phenyl group having 1 to 4 carbon atoms), a polysiloxane group (-Si (R)-(O-Si) n-).
- R represents a hydrocarbon group, and an alkyl group or a phenyl group having 1 to 4 carbon atoms is preferable.
- N represents an integer of 1 or more, and 1 to 10 is preferable).
- the divalent linking group represented by X 2 is preferably a group containing an aliphatic hydrocarbon ring or an aromatic hydrocarbon ring, and more preferably a group containing an aromatic hydrocarbon ring. Further, the divalent linking group represented by X 2 is preferably a group containing a fluorine atom or a sulfonyl group (-SO 2- ) because the solubility of the specific resin in a solvent can be improved. Among them, the divalent linking group represented by X 2 is a group containing a fluorine atom and an aromatic hydrocarbon ring because it can form a film having excellent solubility in a solvent of a specific resin and excellent heat resistance. Is preferable.
- the group containing a fluorine atom and an aromatic hydrocarbon ring is a group in which two or more aromatic hydrocarbon groups are bonded with a linking group, and the linking group is a linking group containing a fluorine atom, or 2 It is preferable that the group is a group in which the above aromatic hydrocarbon groups are bonded by a single bond or a linking group, and the above aromatic hydrocarbon group is substituted with a group containing a fluorine atom.
- the linking group containing a fluorine atom include -C (CF 3 ) 2- and the like.
- the group containing a fluorine atom an alkyl fluoride group is preferable, and a trifluoromethyl group is more preferable.
- the divalent linking group represented by X 2 is a group containing a fluorine atom and an aromatic hydrocarbon ring, for example, a group having the following structure is preferable. In the above structure, * represents a binding site with another structure.
- the divalent linking group represented by X 2 is preferably a group having a structure derived from a diamine compound.
- Examples of the diamine compound include the following compounds.
- R 11 , R 12 , R 21 , R 22 and R 23 each independently represent a hydrogen atom or a substituent.
- Examples of the substituent include an alkyl group, an aryl group, a heterocyclic group and the like.
- the number of carbon atoms of the alkyl group is preferably 1 to 30, more preferably 1 to 15, further preferably 1 to 8, further preferably 1 to 5, and particularly preferably 1 to 3.
- the alkyl group may be linear, branched or cyclic, preferably linear or branched, more preferably linear.
- the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 12 carbon atoms.
- the heterocyclic group may be a non-aromatic heterocyclic group or an aromatic heterocyclic group.
- the heterocyclic group is preferably a 5-membered ring or a 6-membered ring.
- the heteroatom constituting the heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
- the number of heteroatoms constituting the heterocyclic group is preferably 1 to 3.
- the heterocyclic group may be a monocyclic ring or a condensed ring.
- the above-mentioned alkyl group, aryl group and heterocyclic group may have a substituent or may be unsubstituted. Examples of the substituent include a substituent T described later, an ethylenically unsaturated bond-containing group, an epoxy group, an oxetanyl group, a blocked isocyanate group and the like.
- R 11 and R 12 are preferably hydrogen atoms. Further, it is preferable that R 21 , R 22 and R 23 are also hydrogen atoms. Further, a carboxylic acid salt or an amine salt may be partially formed.
- Lp 1 represents an n + 1 valent linking group.
- the n + 1 valent connecting group a hydrocarbon group, -NRp -, - N ⁇ , - SO -, - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - Examples thereof include groups consisting of NRpCO-, -CONRP-, and a combination of two or more of these.
- Rp represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- n + 1 valent linking group examples include a group represented by the formula (Lp-1) and a group represented by the formula (Lp-2).
- Rp 1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group
- Lp 1a is a hydrocarbon group or two or more hydrocarbon groups bonded by a single bond or a linking group. Represents the group that was used.
- Lp 1b represents a hydrocarbon group or a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- n represents an integer of 1 or more
- * 1 represents a link with the carbonyl carbon in ⁇ NR 23 CO— of the formula (1)
- * 2 represents a link with the carbonyl carbon. It represents a connecting hand with Lp 2 of the equation (1).
- Examples of the hydrocarbon group represented by Lp 1a and Lp 1b include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic.
- the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring.
- the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent. Examples of the substituent include the substituent T described later.
- Rp 1b represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the n + 1 valent linking group represented by Lp 1 is preferably a group represented by the formula (Lp-10), and more preferably a group represented by the formula (Lp-11).
- Lp 11 represents a single bond or an n + 1 valent linking group
- Rp 11 represents a substituent
- n represents an integer of 1 or more
- m represents an integer of 0 to 4.
- * 1 represents a link with the carbonyl carbon in -NR 23 CO- of the formula (1)
- * 2 represents a link with Lp 2 in the formula (1).
- the m Rp 11 may be the same or different.
- Lp 12 represents a single bond or an n + 1 valent linking group
- Rp 11 represents a substituent
- n represents an integer of 1 or more
- m represents an integer of 0 to 4.
- * 1 represents a link with the carbonyl carbon in -NR 23 CO- of the formula (1)
- * 2 represents a link with Lp 2 in the formula (1).
- the m Rp 11 may be the same or different.
- n + 1 valent linking group Lp 11 represents the formula (Lp-10), a hydrocarbon group, -NRp 12 -, - N ⁇ , - SO -, - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - NRp 12 CO -, - CONRp 12 - and a group formed by combining two or more thereof.
- the hydrocarbon group include those described above.
- Rp 12 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the n + 1-valent linking group represented by Lp 12 of the formula (Lp-11) is preferably a hydrocarbon group or a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- Rp 13 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- Examples of the substituent represented by Rp 11 of the formula (Lp-10) and the formula (Lp-11) include a substituent T described later, which is preferably a carboxy group, a halogen atom or a hydroxy group, and is preferably a carboxy group. Is more preferable.
- n represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably 1 or 2, and further preferably 1. preferable.
- M in the formula (Lp-10) and the formula (Lp-11) represents an integer of 0 to 4, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and 1 or 2. Is more preferable. Further, it is preferable that at least one or more of the m Rp 11 is a carboxy group.
- Lp 2 represents a divalent linking group.
- the divalent linking group a hydrocarbon group, -NRp 21 -, - SO - , - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - NRp 21 CO -, - CONRp 21 -, and include a group formed by combining two or more of these.
- Rp 21 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic. Further, the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring. Further, the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent. Examples of the substituent include a hydroxy group and the like.
- the divalent linking group is preferably a group containing an oxygen atom or a sulfur atom, more preferably a group containing a sulfur atom, and further preferably a group containing —S—.
- the divalent linking group represented by Lp 2 is preferably —S— or —O—, and more preferably —S—.
- P 1 represents a polymer chain.
- the weight average molecular weight of P 1 is preferably 500 to 50,000.
- the lower limit is preferably 800 or more, and more preferably 1000 or more.
- the upper limit is preferably 20,000 or less, and more preferably 10,000 or less.
- the weight average molecular weight of the polymer chain can be measured by a GPC (gel permeation chromatography) method. More specifically, it can be calculated from the weight average molecular weight of the raw material monomer used for introducing the polymer chain.
- the polymer chain represented by P 1 preferably contains repeating units of at least one structure selected from poly (meth) acrylic structure, polystyrene structure, polyether structure and polyester structure, and poly (meth) acrylic structure and polystyrene structure. It is more preferable to include a repeating unit having at least one structure selected from the above, and it is further preferable to include a repeating unit having a poly (meth) acrylic structure from the viewpoint of dispersibility and heat resistance of the pigment. It is also preferable that the polymer chain represented by P 1 contains a repeating unit of a polyether structure or a repeating unit of a polyester structure.
- the number of repeating units of the polyether structure is preferably 9 or more.
- the number of repeating units of the polyester structure is preferably 5 or more.
- the polymer chain represented by P 1 may have a crosslinkable group.
- the crosslinkable group include an ethylenically unsaturated bond-containing group such as a vinyl group, a (meth) allyl group and a (meth) acryloyl group, a cyclic ether group such as an epoxy group and an oxetane group, and a blocked isocyanate group.
- the blocked isocyanate group is a group capable of generating an isocyanate group by heat, and for example, a group in which a blocking agent and an isocyanate group are reacted to protect the isocyanate group can be preferably exemplified.
- the blocking agent examples include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, imide compounds and the like.
- the blocking agent examples include the compounds described in paragraphs 0115 to 0117 of JP-A-2017-06793, the contents of which are incorporated in the present specification.
- the blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 to 260 ° C.
- the polymer chain represented by P 1 has a tertiary alkyl group.
- the tertiary alkyl group include a t-butyl group.
- the polymer chain represented by P 1 preferably contains a repeating unit represented by any of the formulas (P1-1) to (P1-6), and is preferably represented by the formula (P1-5) or the formula (P1-6). It is more preferable to include the repeating unit represented by the formula (P1-5), and further preferably to include the repeating unit represented by the formula (P1-5). Further, it is also preferable that the polymer chain represented by P 1 contains a repeating unit represented by any of the formulas (P1-1) to (P1-4). When the polymer chain represented by P 1 contains repeating units of the formula (P1-4), the number of repeating units of the formula (P1-4) is preferably 9 or more. When the polymer chain represented by P 1 contains repeating units of the formulas (P1-1) to (P1-3), the number of repeating units of these structures is preferably 5 or more.
- RG1 and RG2 each represent an alkylene group.
- the alkylene group represented R G1 and R G2 are, it is preferable, a linear or branched alkylene group having 2 to 16 carbon atoms is a linear or branched alkylene group having 1 to 20 carbon atoms More preferably, it is a linear or branched alkylene group having 3 to 12 carbon atoms.
- RG3 represents a hydrogen atom, a methyl group, a fluorine atom, a chlorine atom or a hydroxymethyl group, and is preferably a hydrogen atom or a methyl group.
- Q G1 represents -O- or -NR q-
- R q represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- Q G1 is preferably —O—.
- the number of carbon atoms of the alkyl group represented by R q is 1-30, more preferably 1-15, more preferably 1-8, more preferably more 1 to 5, it is 1-3 especially preferred.
- the alkyl group may be linear, branched or cyclic, preferably linear or branched, more preferably linear.
- the number of carbon atoms of the aryl group R q represents is preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12.
- the heterocyclic group represented by R q may be a non-aromatic heterocyclic group or an aromatic heterocyclic group.
- the heterocyclic group is preferably a 5-membered ring or a 6-membered ring.
- Examples of the heteroatom constituting the heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
- the number of heteroatoms constituting the heterocyclic group is preferably 1 to 3.
- the heterocyclic group may be a monocyclic ring or a fused ring.
- the above-mentioned alkyl group, aryl group and heterocyclic group may have a substituent or may be unsubstituted. Examples of the substituent include the substituent T described later.
- L G1 represents a single bond or an arylene group, is preferably a single bond.
- LG2 represents a single bond or a divalent linking group.
- the divalent linking group includes an alkylene group (preferably an alkylene group having 1 to 12 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NR LG1- , -SO-, and -SO 2.
- -, -CO-, -O-, -COO-, -OCO- , -S-, -NR LG1 CO-, -CONR LG1-, and a group consisting of a combination of two or more of these can be mentioned as an alkylene group or a group. It is preferably a group containing an arylene group.
- RLG1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the above-mentioned alkylene group and arylene may have a substituent or may be unsubstituted. Examples of the substituent include the substituent T described later.
- RG4 represents a hydrogen atom or a substituent.
- Substituents include hydroxy group, carboxy group, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthioether group, arylthioether group, heterocyclic thioether group and ethylenically unsaturated group. Examples thereof include a bond-containing group, an epoxy group, an oxetanyl group and a blocked isocyanate group.
- R G4 represents an alkyl group, an aryl group, an ethylenically unsaturated bond-containing group is preferably at least one selected from epoxy group and oxetanyl group, an ethylenically unsaturated bond-containing group, an epoxy group, oxetanyl group, and More preferably, it is at least one selected from t-butyl groups.
- RG5 represents a hydrogen atom or a methyl group
- RG6 represents an aryl group.
- the aryl group represented by RG6 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 12 carbon atoms.
- the aryl group represented by RG6 may have a substituent.
- Substituents include hydroxy group, carboxy group, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthioether group, arylthioether group, heterocyclic thioether group and ethylenically unsaturated group. Examples thereof include a bond-containing group, an epoxy group, an oxetanyl group and a blocked isocyanate group.
- the polymer chain represented by P 1 may contain two or more repeating units.
- An alkyl group preferably an alkyl group having 1 to 30 carbon atoms
- an alkenyl group preferably an alkenyl group having 2 to 30 carbon atoms
- an alkynyl group preferably an alkynyl group having 2 to 30 carbon atoms
- an aryl group preferably an aryl group.
- Aryl groups with 6 to 30 carbon atoms amino groups (preferably amino groups with 0 to 30 carbon atoms), alkoxy groups (preferably alkoxy groups with 1 to 30 carbon atoms), aryloxy groups (preferably 6 to 30 carbon atoms).
- aryloxy groups include heteroaryloxy groups (preferably heteroaryloxy groups with 1 to 30 carbon atoms), acyl groups (preferably acyl groups with 2 to 30 carbon atoms), alkoxycarbonyl groups (preferably 2 carbon atoms). ⁇ 30 alkoxycarbonyl groups), aryloxycarbonyl groups (preferably aryloxycarbonyl groups with 7-30 carbon atoms), acyloxy groups (preferably acyloxy groups with 2-30 carbon atoms), acylamino groups (preferably 2 carbon atoms).
- acylamino groups alkoxycarbonylamino groups (preferably alkoxycarbonylamino groups having 2 to 30 carbon atoms), aryloxycarbonylamino groups (preferably aryloxycarbonylamino groups having 7 to 30 carbon atoms), sulfamoyl groups (preferably aryloxycarbonylamino groups having 7 to 30 carbon atoms).
- a carbamoyl group preferably a carbamoyl group having 1 to 30 carbon atoms
- an alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms
- an arylthio group preferably 6 carbon atoms.
- arylthio groups preferably heteroarylthio groups with 1 to 30 carbon atoms
- alkylsulfonyl groups preferably alkylsulfonyl groups with 1 to 30 carbon atoms
- arylsulfonyl groups preferably carbons.
- Arylsulfonyl groups with a number of 6 to 30 heteroarylsulfonyl groups (preferably heteroarylsulfonyl groups with 1 to 30 carbon atoms), alkylsulfinyl groups (preferably alkylsulfinyl groups with 1 to 30 carbon atoms), arylsulfinyl groups (preferably arylsulfinyl groups with 1 to 30 carbon atoms).
- Group preferably a phosphate amide group having 1 to 30 carbon atoms
- hydroxy group preferably a phosphate amide group having 1 to 30 carbon atoms
- mercapto group preferably a phosphate amide group having 1 to 30 carbon atoms
- halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
- cyano group preferably a phosphate amide group having 1 to 30 carbon atoms
- sulfo group carboxy group, nitro Group
- hydroxamic acid group preferably sulfino group, hydrazino group, imino group, heterocyclic group.
- substituent include the group described in Substituent T described above.
- the structure represented by the above formula (1) is preferably the structure represented by the formula (1-1).
- X 1 represents a tetravalent linking group.
- X 2 represents a divalent linking group R 11 , R 12 , R 21 , R 22 and R 23 each independently represent a hydrogen atom or substituent.
- Rp 11 represents a substituent, and m Rp 11 may be the same or different.
- Lp 11 represents an n + 1 valent linking group.
- Lp 2 represents a divalent linking group
- P 1 represents a polymer chain
- n represents an integer of 1 or more
- m represents an integer from 0 to 4.
- Equation (1-1) X 1 , X 2 , R 11 , R 12 , R 21 , R 22 , R 23 , Lp 2 , P 1 and n are X 1 , X 2 , R 11 of equation (1). , R 12 , R 21 , R 22 , R 23 , Lp 2 , P 1 and n.
- Lp 11, Rp 11 and m of formula (1-1) has the same meaning as Lp 11, Rp 11 and m of formula (Lp-10).
- the specific resin may contain an imide cyclized structure having a structure represented by the above-mentioned formula (1).
- the special resin may further contain a structure represented by the formula (100). According to this aspect, better dispersibility can be obtained.
- X 101 represents a linking group with a 4 + q valence.
- X 102 represents a divalent linking group R 111 , R 112 , R 121 and R 122 independently represent hydrogen atoms or substituents, respectively.
- Lp 101 represents a divalent linking group.
- P 101 represents a polymer chain and represents q represents an integer of 1 or more.
- R 111 , R 112 , R 121 , R 122 and P 101 of the formula (100) are synonymous with R 11 , R 12 , R 21 , R 22 and P 1 of the formula (1).
- q represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably 1 or 2, and even more preferably 1.
- Examples of the divalent linking group represented by X 102 of the formula (100) include the divalent linking group described by X 2 of the formula (1), and the preferred range is also the same.
- the 4 + q-valent linking group represented by X 101 is preferably a group containing a hydrocarbon group.
- the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic.
- the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring.
- the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent. Examples of the substituent include the above-mentioned substituent T.
- Examples of the group containing the above-mentioned hydrocarbon group include a hydrocarbon group and a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- Rx 101 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom. It is preferable that the carbon atom of X 101 is bonded to Lp 101. It is also preferable that the nitrogen atom of X 101 is bonded to Lp 101.
- the 4 + q-valent linking group represented by X 101 is preferably a group containing an aromatic hydrocarbon ring because it has a strong affinity for pigments and is unlikely to generate foreign substances.
- Examples of the group containing an aromatic hydrocarbon ring include a group represented by the formula (X-1).
- * 1 represents a connecting hand with P 101 of the formula (100)
- * 2 represents a connecting hand with -CO- that is bound to X 101 of the formula (100).
- Rx 1 and Rx 2 each independently represent a substituent
- m1 represents an integer of 0 to 3
- m2 represents an integer of 0 to 3
- n represents an integer of 1 or more
- X 100 represents a 2 + n valence. Represents a linking group of.
- the 2 + n valent linking group X 100 represents a hydrocarbon group, -NRx 101 -, - N ⁇ , - SO -, - SO 2 -, - CO -, - O -, - COO -, - OCO-, Examples thereof include -S-, -NRx 101 CO-, -CONRx 101- , -C (CF 3 ) 2-, and a group consisting of a combination of two or more of these.
- the hydrocarbon group include those described above.
- Rx 101 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- Examples of the substituent represented by Rx 1 and Rx 2 include the above-mentioned substituent T. Specific examples include a halogen atom, an alkyl group, a carboxy group and the like.
- n1 and m2 are independently integers of 0 to 2, more preferably 0 or 1, and even more preferably 0.
- Lp 101 represents a divalent linking group.
- the divalent linking group a hydrocarbon group, -NR L1 -, - SO - , - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - NR L1 CO -, - CONR L1 -, and include a group formed by combining two or more of these.
- RL1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic. Further, the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring. Further, the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent.
- the divalent linking group is preferably a group containing an oxygen atom or a sulfur atom, more preferably a group containing a sulfur atom, and further preferably a group containing —S—.
- the divalent linking group represented by Lp 101 is preferably a group represented by the formula (Lp-101) or the formula (Lp-201), and may be a group represented by the formula (Lp-101). More preferred.
- Lp 111 represents a single bond or a divalent linking group
- * 1 is a linking hand with X 101 of formula (100)
- * 2 Is a connecting hand with P 101 of the formula (100).
- Examples of the divalent linking group represented by Lp 111 include a hydrocarbon group and a group having a structure in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- the linking group -NR L1 -, - SO - , - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - NR L1 CO-, and -CONR L1 - Can be mentioned.
- RL1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and is preferably a hydrogen atom.
- the specific resin may contain an imide cyclized structure having a structure represented by the above-mentioned formula (100).
- the acid value of the specific resin is preferably 10 to 150 mgKOH / g.
- the upper limit is preferably 100 mgKOH / g or less, more preferably 80 mgKOH / g or less.
- the lower limit is preferably 20 mgKOH / g or more, and more preferably 30 mgKOH / g or more.
- the weight average molecular weight (Mw) of the specific resin is preferably 2000 to 200,000, more preferably 2500 to 100,000, and even more preferably 3000 to 50,000.
- the 5% mass reduction temperature of the specific resin by TG / DTA (thermogravimetric measurement / differential thermal measurement) in a nitrogen atmosphere is preferably 280 ° C. or higher, more preferably 300 ° C. or higher, and 320 ° C. or higher. Is more preferable.
- the upper limit of the 5% mass reduction temperature is not particularly limited, and may be, for example, 1,000 ° C. or lower.
- the 5% mass loss temperature is determined by a known TG / DTA measuring method as a temperature at which the mass loss rate becomes 5% when the mixture is allowed to stand at a specific temperature for 5 hours in a nitrogen atmosphere.
- the specific resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and more preferably 2% or less when left to stand at 300 ° C. for 5 hours in a nitrogen atmosphere. More preferred.
- the lower limit of the mass reduction rate is not particularly limited, and may be 0% or more.
- the mass reduction rate is a value calculated as the rate of mass reduction in the specific resin before and after standing at 300 ° C. for 5 hours in a nitrogen atmosphere.
- the specific resin is, for example, a terminal sealant having a group that reacts with the terminal amine moiety of the polyamic acid and a polymer chain after synthesizing a polyamic acid by reacting an acid dianhydride with a diamine compound (terminal seal). It can be synthesized by reacting with a stop agent macromonomer). If necessary, an end-capping agent (another end-capping agent) other than the end-capping agent macromonomer may be further used.
- Examples of other terminal encapsulants include monoamines, acid anhydrides, monocarboxylic acids, monocarboxylic acid salts, monocarboxylic acid halide compounds, monocarboxylic acid active esters and the like.
- the molar ratio of the acid dianhydride to the diamine compound is preferably 0.5 to 1.5 mol, preferably 0.7 to 1.3 mol, with respect to 1 mol of the diamine compound. More preferably, it is more preferably 0.9 to 1.1 mol.
- the molar ratio of the diamine compound to the terminal encapsulant macromonomer is preferably 0.1 to 2 mol, and 0.2 to 1.5 mol, to 1 mol of the diamine compound. It is more preferably mol, and even more preferably 0.5 to 1.2 mol.
- Examples of the terminal encapsulant macromonomer include a compound represented by the formula (EDM).
- EDM represents an acid anhydride group, an acid halide group or an isocyanate group.
- Lp ED1 represents a group of n + 1 valences The n + 1 valent group or a hydrocarbon group, or a hydrocarbon group and -NRp ED1 -, - N ⁇ , - SO -, - SO 2 -, - CO -, - O -, - COO-, -OCO -, - S -, - NRp ED1 CO- and -CONRp ED1 - from a structure group formed by combining at least one group selected, Rp ED1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- Lp ED2 represents -O- or -S-
- P ED1 represents a polymer chain and represents n represents an
- Acid anhydride group represented by R ED of formula (EDM) is preferably a cyclic acid anhydride group.
- Acid anhydride group represented by R ED is preferably a group represented by the formula (R ED1 -11) ⁇ formula (R ED1 -13), a group represented by the formula (R ED1 -13) Is more preferable.
- the acid halide group is preferably a group represented by the formula (R ED1-21).
- R ED11 represents a hydrogen atom or a substituent
- R ED12 represents a substituent
- R ED21 represents a halogen atom
- r represents an integer of 0 to 3
- * represents a link with Lp ED1.
- R ED11 and R ED12 examples include the above-mentioned substituent T, which is preferably a halogen atom, a carboxy group, an alkyl group or a hydroxy group, and more preferably a carboxy group.
- the halogen atom represented by R ED21 is preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom.
- R is preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
- Examples of the hydrocarbon group in Lp ED1 of the formula (EDM) include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
- the aliphatic hydrocarbon group may be linear, branched or cyclic.
- the cyclic aliphatic hydrocarbon group may be a monocyclic ring or a condensed ring.
- the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
- the hydrocarbon group may have a substituent. Examples of the substituent include the above-mentioned substituent T.
- Lp ED2 of the formula (EDM) represents —O— or —S—, preferably —S—.
- the polymer chain represented by P ED 1 of the formula (EDM) is synonymous with the polymer chain represented by P 1 of the formula (1).
- the n in the formula (EDM) is preferably 1 or 2.
- the terminal encapsulant macromonomer is preferably a compound having an acid anhydride group, more preferably a compound represented by the formula (EDM1), and preferably a compound represented by the formula (EDM2). More preferred.
- the compound represented by the formula (EDM1) and the compound represented by the formula (EDM2) are the compounds of the present invention.
- R ED1 represents an acid anhydride group.
- Lp ED1 represents a group of n + 1 valences The n + 1 valent group or a hydrocarbon group, or a hydrocarbon group and -NRp ED1 -, - N ⁇ , - SO -, - SO 2 -, - CO -, - O -, - COO-, -OCO -, - S -, - NRp ED1 CO- and -CONRp ED1 - from a structure group formed by combining at least one group selected, Rp ED1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- Lp ED2 represents -O- or -S-
- P ED1 represents a polymer chain containing a repeating unit represented by any of the formulas (P1-1) to (P1-4).
- n represents an integer of 1 to 4.
- R ED12 represents a halogen atom, an alkyl group, a carboxy group or a hydroxy group.
- Lp ED1a represents a group of n + 1 valences.
- the n + 1 valent group is a hydrocarbon group or a group in which two or more hydrocarbon groups are bonded by a single bond or a linking group.
- the linking group, -NRp ED1 -, - SO - , - SO 2 -, - CO -, - O -, - COO -, - OCO -, - S -, - be NRp ED1 CO- or -CONRp ED1
- Rp ED1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group.
- Lp ED2 represents -O- or -S-
- P ED1 represents a polymer chain containing a repeating unit represented by any of the formulas (P1-1) to (P1-4).
- r represents an integer from 0 to 3 and represents n represents an integer of 1 to 4.
- R G1 and R G2 are each represents an alkylene group.
- the acid anhydride group represented by R ED1 of the formula (EDM1) is synonymous with the acid anhydride group described by R ED of the formula (EDM).
- R ED1 of formula (EDM1) For more information on polymer chains represented by P ED1 of formula (EDM1), it is the same as those described in the polymer chain represented by P 1 of the formula (1).
- Lp ED1, Lp ED2 and n of formula (EDM1) has the same meaning as Lp ED1, Lp ED2 and n of formula (EDM).
- r represents an integer of 0 to 3, r is preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
- the hydrocarbon group in Lp ED1a of the formula (EDM2) has the same meaning as the hydrocarbon group described in the formula (EDM).
- the n + 1 valent group represented by Lp ED1a of the formula (EDM2) is preferably a hydrocarbon group.
- P ED1 of formula (EDM2) it is the same as those described in the polymer chain represented by P 1 of the formula (1).
- Lp ED2 and n in formula (EDM2) are synonymous with Lp ED2 and n in formula (EDM).
- terminal encapsulant macromonomer examples include end encapsulant macromonomers EDM-1 to EDM-40 described in Examples described later.
- the terminal encapsulant macromonomer can be synthesized, for example, by the following method.
- a macromonomer obtained by radical polymerization of a radically polymerizable compound using a chain transfer agent having one hydroxy group and one or two mercapto groups is esterified with an acid anhydride or an acid anhydride chloride.
- a macromonomer obtained by radically polymerizing a radically polymerizable compound using a chain transfer agent having one hydroxy group and one or two mercapto groups is coupled with an acid anhydride having a halogen atom.
- trimellitic acid anhydride and trimeris can be synthesized because a macromonomer can be synthesized with high purity and high yield.
- Acid anhydride chloride is preferred.
- a macromonomer obtained by radically polymerizing a radically polymerizable compound using a chain transfer agent having one carboxy group and one mercapto group (for example, mercaptopropionic acid) is acid chlorided and synthesized. how to.
- the base may be an organic base or an inorganic base.
- a tertiary alkyl amine, a tertiary aromatic amine, a heterocyclic aromatic amine and the like are used.
- a method of filtering using a filter naturally filtration, pressure filtration, vacuum filtration, centrifugal filtration
- a method of separating liquid between an organic layer and an aqueous layer a method of centrifugation, a method of centrifugation, adsorption (silica gel column, activated carbon). Etc.), etc.
- the resin composition of the present invention may contain a resin other than the above-mentioned specific resin as the resin.
- the other resin include a resin having alkali developability, a resin as a dispersant, and the like. Further, it may contain by-products when a specific resin is synthesized, such as a decomposition product of the terminal encapsulant macromonomer and a reaction product of the diamine and the terminal encapsulant macromonomer.
- the weight average molecular weight (Mw) of the alkali-developable resin is preferably 3000 to 2000000.
- the upper limit is more preferably 1,000,000 or less, still more preferably 500,000 or less.
- the lower limit is more preferably 4000 or more, further preferably 5000 or more.
- Examples of the resin having alkali developability include (meth) acrylic resin, polyimine resin, polyether resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin, and polyimide resin, and (meth) acrylic resin and polyimine resin. Is preferable, and (meth) acrylic resin is more preferable.
- the resin described in JP-A-032685, the resin described in JP-A-2017-075248, and the resin described in JP-A-2017-066240 can also be used.
- the resin having alkali developability it is preferable to use a resin having an acid group.
- the developability of the resin composition can be further improved.
- the acid group include a phenolic hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group, a sulfonamide group and the like, and a carboxy group is preferable.
- a resin in which an acid anhydride is reacted with a hydroxy group generated by epoxy ring opening and an acid group is introduced may be used. Examples of such a resin include the resin described in Japanese Patent No. 6349629.
- the resin having an acid group can be used, for example, as an alkali-soluble resin.
- the alkali-developable resin preferably contains a repeating unit having an acid group in the side chain, and more preferably contains 1 to 70 mol% of the repeating unit having an acid group in the side chain in all the repeating units of the resin.
- the upper limit of the content of the repeating unit having an acid group in the side chain is preferably 50 mol% or less, more preferably 40 mol% or less.
- the lower limit of the content of the repeating unit having an acid group in the side chain is preferably 2 mol% or more, and more preferably 5 mol% or more.
- the acid value of the alkali-developable resin is preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, further preferably 120 mgKOH / g or less, and particularly preferably 100 mgKOH / g or less.
- the acid value of the resin having an acid group is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, and even more preferably 20 mgKOH / g or more.
- the resin having alkali developability further has an ethylenically unsaturated bond-containing group.
- the ethylenically unsaturated bond-containing group include a vinyl group, an allyl group, a (meth) acryloyl group, and the like, an allyl group and a (meth) acryloyl group are preferable, and a (meth) acryloyl group is more preferable.
- the resin having an ethylenically unsaturated bond-containing group preferably contains a repeating unit having an ethylenically unsaturated bond-containing group in the side chain, and the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is the whole of the resin. It is more preferable to contain 5 to 80 mol% in the repeating unit.
- the upper limit of the content of the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is preferably 60 mol% or less, more preferably 40 mol% or less.
- the lower limit of the content of the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is preferably 10 mol% or more, more preferably 15 mol% or more.
- the alkali-developable resin contains a compound represented by the following formula (ED1) and / or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer”). It is also preferable to include repeating units derived from the monomer component.
- R 1 and R 2 each independently represent a hydrocarbon group having 1 to 25 carbon atoms which may have a hydrogen atom or a substituent.
- R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
- paragraph number 0317 of JP2013-029760A can be referred to, and this content is incorporated in the present specification.
- the alkali-developable resin preferably contains a repeating unit derived from the compound represented by the following formula (X).
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents an alkylene group having 2 to 10 carbon atoms
- R 3 represents a hydrogen atom or a benzene ring having 1 to 20 carbon atoms.
- n represents an integer from 1 to 15.
- Examples of the resin having alkali developability include a resin having the following structure.
- Me represents a methyl group.
- the resin composition of the present invention may also contain a resin as a dispersant.
- the dispersant include an acidic dispersant (acidic resin) and a basic dispersant (basic resin).
- the acidic dispersant (acidic resin) represents a resin in which the amount of acid groups is larger than the amount of basic groups.
- the acid dispersant (acidic resin) is preferably a resin in which the amount of acid groups is 70 mol% or more when the total amount of the amount of acid groups and the amount of basic groups is 100 mol%, and is substantially acid. A resin consisting only of a group is more preferable.
- the acid group of the acidic dispersant (acidic resin) is preferably a carboxy group.
- the acid value of the acidic dispersant (acidic resin) is preferably 40 to 105 mgKOH / g, more preferably 50 to 105 mgKOH / g, and even more preferably 60 to 105 mgKOH / g.
- the basic dispersant (basic resin) represents a resin in which the amount of basic groups is larger than the amount of acid groups.
- the basic dispersant (basic resin) is preferably a resin in which the amount of basic groups exceeds 50 mol% when the total amount of the amount of acid groups and the amount of basic groups is 100 mol%.
- the basic group of the basic dispersant is preferably an amino group.
- the resin used as the dispersant preferably contains a repeating unit having an acid group.
- the resin used as the dispersant is a graft polymer.
- the graft polymer include the resins described in paragraphs 0025 to 0094 of JP2012-255128, the contents of which are incorporated in the present specification.
- the resin used as the dispersant is a polyimine-based dispersant (polyimine resin) containing a nitrogen atom in at least one of the main chain and the side chain.
- the polyimine-based dispersant has a main chain having a partial structure having a functional group of pKa14 or less, a side chain having 40 to 10,000 atoms, and a basic nitrogen atom in at least one of the main chain and the side chain.
- the resin to have is preferable.
- the basic nitrogen atom is not particularly limited as long as it is a nitrogen atom exhibiting basicity.
- Examples of the polyimine-based dispersant include the resins described in paragraphs 0102 to 0166 of JP2012-255128A, the contents of which are incorporated in the present specification.
- the resin used as the dispersant is a resin having a structure in which a plurality of polymer chains are bonded to the core portion.
- a resin include dendrimers (including star-shaped polymers).
- specific examples of the dendrimer include the polymer compounds C-1 to C-31 described in paragraphs 0196 to 0209 of JP2013-043962.
- the dispersant is also available as a commercially available product, and specific examples thereof include DISPERBYK series manufactured by BYK Chemie (for example, DISPERBYK-111, 161 etc.) and Solsperse series manufactured by Lubrizol (for example, Solsperse 36000). And so on. Further, the pigment dispersants described in paragraphs 0041 to 0130 of JP2014-130338A can also be used, and the contents thereof are incorporated in the present specification.
- the dispersants are JP-A-2018-150498, JP-A-2017-100116, JP-A-2017-100115, JP-A-2016-108520, JP-A-2016-10851, JP-A-2015.
- the compound described in JP-A-232105 may be used.
- the resin described above as the dispersant can also be used for purposes other than the dispersant.
- it can also be used as a binder.
- the content of the resin in the total solid content of the resin composition is preferably 5 to 60% by mass.
- the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more.
- the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less.
- the content of the above-mentioned specific resin in the total solid content of the resin composition is preferably 5 to 60% by mass.
- the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more.
- the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less.
- the content of the above-mentioned specific resin is preferably 10 to 80 parts by mass with respect to 100 parts by mass of the pigment.
- the lower limit is preferably 20 parts by mass or more, and more preferably 30 parts by mass or more.
- the upper limit is preferably 70 parts by mass or less, more preferably 50 parts by mass or less.
- the resin composition of the present invention preferably contains the specific resin in an amount of 20% by mass or more, more preferably 30% by mass or more, and more preferably 40% by mass, in the components obtained by removing the coloring material from the total solid content of the resin composition. It is more preferable to contain% or more.
- the upper limit may be 100% by mass, 90% by mass or less, or 85% by mass or less.
- the total content of the coloring material and the above-mentioned specific resin in the total solid content of the resin composition is preferably 25 to 100% by mass.
- the lower limit is more preferably 30% by mass or more, further preferably 40% by mass or more.
- the upper limit is more preferably 90% by mass or less, further preferably 80% by mass or less.
- the content of the above-mentioned other resin is preferably 230 parts by mass or less, more preferably 200 parts by mass or less, and 150 parts by mass with respect to 100 parts by mass of the above-mentioned specific resin.
- the lower limit may be 0 parts by mass, 5 parts by mass or more, or 10 parts by mass or more.
- the resin composition does not substantially contain the above-mentioned other resins. According to this aspect, it is easy to form a film having more excellent heat resistance.
- the case where the other resin is substantially not contained means that the content of the other resin in the total solid content of the resin composition is 0.1% by mass or less, and is 0.05% by mass or less. It is preferable, and it is more preferable that it is not contained.
- the resin composition of the present invention contains a solvent C (hereinafter referred to as a solvent).
- the solvent is basically not particularly limited as long as it satisfies the solubility of each component and the coatability of the resin composition.
- the solvent is preferably an organic solvent.
- the organic solvent include ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, ether-based solvents, hydrocarbon-based solvents, and the like, from ester-based solvents, ether-based solvents, alcohol-based solvents, and ketone-based solvents. It is preferably at least one selected. For these details, paragraph No. 0223 of International Publication No.
- organic solvent examples include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2 -Heptanone, 4-heptanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, cyclooctanone, cyclohexyl acetate, cyclopentanone, ethylcarbitol acetate, butylcarbitol acetate, propylene Glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide,
- aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as organic solvents may need to be reduced for environmental reasons (for example, 50 parts by mass (parts) with respect to the total amount of organic solvent. Per millision) or less, 10 mass ppm or less, or 1 mass ppm or less).
- an organic solvent having a low metal content it is preferable to use an organic solvent having a low metal content, and the metal content of the organic solvent is preferably, for example, 10 mass ppb (parts per parts) or less. If necessary, an organic solvent at the mass ppt (parts per trillion) level may be used, and such an organic solvent is provided by, for example, Toyo Gosei Co., Ltd. (The Chemical Daily, November 13, 2015). Examples of the method for removing impurities such as metals from the organic solvent include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
- the filter pore diameter of the filter used for filtration is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
- the filter material is preferably polytetrafluoroethylene, polyethylene or nylon.
- the organic solvent may contain isomers (compounds having the same number of atoms but different structures). Further, only one kind of isomer may be contained, or a plurality of kinds may be contained.
- the content of peroxide in the organic solvent is preferably 0.8 mmol / L or less, and more preferably substantially free of peroxide.
- the content of the solvent in the resin composition is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and even more preferably 30 to 90% by mass.
- the resin composition of the present invention preferably contains a pigment derivative.
- the pigment derivative include compounds having a structure in which a part of the chromophore is replaced with an acid group, a basic group or a phthalimide methyl group.
- the chromogens constituting the pigment derivative include quinoline skeleton, benzoimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, phthalocyanine skeleton, anthracinone skeleton, quinacridone skeleton, dioxazine skeleton, perinone skeleton, perylene skeleton, thioindigo skeleton, and iso.
- the azo skeleton and the benzoimidazolone skeleton are more preferable.
- the acid group of the pigment derivative a sulfo group and a carboxy group are preferable, and a sulfo group is more preferable.
- the basic group of the pigment derivative an amino group is preferable, and a tertiary amino group is more preferable.
- a pigment derivative having excellent visible light transparency (hereinafter, also referred to as a transparent pigment derivative) can be used.
- the maximum value of the molar extinction coefficient in the wavelength region of 400 ⁇ 700 nm of the transparent pigment derivative (.epsilon.max) is that it is preferable, 1000L ⁇ mol -1 ⁇ cm -1 or less is not more than 3000L ⁇ mol -1 ⁇ cm -1 Is more preferable, and 100 L ⁇ mol -1 ⁇ cm -1 or less is further preferable.
- the lower limit of ⁇ max is, for example, 1 L ⁇ mol -1 ⁇ cm -1 or more, and may be 10 L ⁇ mol -1 ⁇ cm -1 or more.
- pigment derivative examples include JP-A-56-118462, JP-A-63-264674, JP-A-01-217777, JP-A-03-09961 and JP-A-03-026767.
- the content of the pigment derivative is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the pigment.
- the pigment derivative only one kind may be used, or two or more kinds may be used in combination.
- the resin composition of the present invention preferably contains a polymerizable monomer.
- a polymerizable monomer for example, a known compound that can be crosslinked by radicals, acids or heat can be used.
- the polymerizable monomer include a compound having an ethylenically unsaturated bond-containing group, a compound having a cyclic ether group, and the like, and a compound having an ethylenically unsaturated bond-containing group is preferable.
- the ethylenically unsaturated bond-containing group include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
- Examples of the cyclic ether group include an epoxy group and an oxetane group.
- a compound having an ethylenically unsaturated bond-containing group can be preferably used as a radically polymerizable monomer.
- the compound having a cyclic ether group can be preferably used as the cationically polymerizable monomer.
- the polymerizable monomer is preferably a polyfunctional polymerizable monomer. That is, the polymerizable monomer is preferably a monomer having two or more polymerizable groups such as an ethylenically unsaturated bond-containing group and a cyclic ether group.
- the molecular weight of the polymerizable monomer is preferably 100 to 3000.
- the upper limit is more preferably 2000 or less, and even more preferably 1500 or less.
- the lower limit is more preferably 150 or more, and even more preferably 250 or more.
- the compound having an ethylenically unsaturated bond-containing group used as the polymerizable monomer is preferably a polyfunctional compound. That is, it is preferably a compound containing two or more ethylenically unsaturated bond-containing groups, more preferably a compound containing three or more ethylenically unsaturated bond-containing groups, and three ethylenically unsaturated bond-containing groups. It is more preferably a compound containing up to 15 elements, and even more preferably a compound containing 3 to 6 ethylenically unsaturated bond-containing groups.
- the compound having an ethylenically unsaturated bond-containing group is preferably a 3- to 15-functional (meth) acrylate compound, and more preferably a 3- to 6-functional (meth) acrylate compound.
- Specific examples of the compound having an ethylenically unsaturated bond-containing group include paragraph Nos. 0095 to 0108 of JP2009-288705, paragraph 0227 of JP2013-209760, and paragraphs of JP-A-2008-292970. Nos. 0254 to 0257, paragraph numbers 0034 to 0038 of JP2013-253224A, paragraph numbers 0477 of JP2012-208494A, JP-A-2017-048367, Patent No. 6057891 and Patent No. 6031807. , JP-A-2017-194662, and the contents thereof are incorporated in the present specification.
- Compounds having an ethylenically unsaturated bond-containing group include dipentaerythritol tri (meth) acrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.) and dipentaerythritol tetra (meth) acrylate (commercially available).
- KAYARAD D-320 manufactured by Nippon Kayaku Co., Ltd.
- dipentaerythritol penta (meth) acrylate commercially available KAYARAD D-310; manufactured by Nihon Kayaku Co., Ltd.
- dipentaerythritol hexa (meth) ) Acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., NK ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
- these (meth) acryloyl groups are ethylene glycol and / or Compounds having a structure bonded via a propylene glycol residue (for example, SR454, SR499 commercially available from Sartmer) are preferable.
- Compounds having an ethylenically unsaturated bond-containing group include diglycerin EO (ethylene oxide) modified (meth) acrylate (commercially available M-460; manufactured by Toa Synthetic) and pentaerythritol tetraacrylate (Shin-Nakamura Chemical Industry Co., Ltd. (Shin-Nakamura Chemical Industry Co., Ltd.).
- NK Ester A-TMMT (manufactured by Nippon Kayaku Co., Ltd.), 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA), RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), Aronix TO-2349 (manufactured by Nippon Kayaku Co., Ltd.)
- NK Oligo UA-7200 Shin-Nakamura Chemical Industry Co., Ltd.
- 8UH-1006, 8UH-1012 Taisei Fine Chemical Co., Ltd.
- Light Acrylate POB-A0 (Kyoeisha Chemical Co., Ltd.)
- Etc. can also be used.
- Examples of the compound having an ethylenically unsaturated bond-containing group include trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, and isocyanuric acid ethylene oxide modified. It is also preferable to use a trifunctional (meth) acrylate compound such as a tri (meth) acrylate or a pentaerythritol tri (meth) acrylate.
- trifunctional (meth) acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, and M-305. , M-303, M-452, M-450 (manufactured by Toa Synthetic Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin Nakamura Chemical Industry Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) And so on.
- a compound having an acid group can also be used as the compound having an ethylenically unsaturated bond-containing group.
- the generation of development residue can be suppressed.
- the acid group include a carboxy group, a sulfo group, a phosphoric acid group and the like, and a carboxy group is preferable.
- Examples of commercially available products of the polymerizable monomer having an acid group include Aronix M-305, M-510, M-520, and Aronix TO-2349 (manufactured by Toagosei Co., Ltd.).
- the preferable acid value of the polymerizable monomer having an acid group is 0.1 to 40 mgKOH / g, and more preferably 5 to 30 mgKOH / g.
- the acid value of the polymerizable compound is 0.1 mgKOH / g or more, the solubility in a developing solution is good, and when the acid value is 40 mgKOH / g or less, it is advantageous in production and handling.
- the compound having an ethylenically unsaturated bond-containing group is a compound having a caprolactone structure.
- Compounds having a caprolactone structure are commercially available from Nippon Kayaku Co., Ltd. as the KAYARAD DPCA series, and examples thereof include DPCA-20, DPCA-30, DPCA-60, and DPCA-120.
- a compound having an alkyleneoxy group can also be used as the compound having an ethylenically unsaturated bond-containing group.
- the compound having an alkyleneoxy group is preferably a compound having an ethyleneoxy group and / or a propyleneoxy group, more preferably a compound having an ethyleneoxy group, and a 3 to 6 functional (meth) acrylate having 4 to 20 ethyleneoxy groups.
- Compounds are more preferred.
- Commercially available products of the compound having an alkyleneoxy group include, for example, SR-494, which is a tetrafunctional (meth) acrylate having four ethyleneoxy groups manufactured by Sartmer, and a trifunctional (meth) acrylate having three isobutyleneoxy groups.
- SR-494 which is a tetrafunctional (meth) acrylate having four ethyleneoxy groups manufactured by Sartmer, and a trifunctional (meth) acrylate having three isobutyleneoxy groups.
- a compound having a fluorene skeleton can also be used as the compound having an ethylenically unsaturated bond-containing group.
- examples of commercially available compounds having a fluorene skeleton include Ogsol EA-0200 and EA-0300 (manufactured by Osaka Gas Chemical Co., Ltd., a (meth) acrylate monomer having a fluorene skeleton).
- the compound having an ethylenically unsaturated bond-containing group it is also preferable to use a compound that does not substantially contain an environmentally regulatory substance such as toluene.
- an environmentally regulatory substance such as toluene.
- commercially available products of such compounds include KAYARAD DPHA LT and KAYARAD DPEA-12 LT (manufactured by Nippon Kayaku Co., Ltd.).
- Examples of the compound having an ethylenically unsaturated bond-containing group are described in JP-A-48-041708, JP-A-51-037193, JP-B-02-032293, and JP-B-02-016765.
- Such urethane acrylates and urethane compounds having an ethylene oxide-based skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418. is also suitable.
- a polymerizable compound having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A No. 01-105238.
- the polymerizable compounds are UA-7200 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, Commercially available products such as T-600, AI-600, and LINK-202UA (manufactured by Kyoeisha Chemical Co., Ltd.) can also be used.
- Examples of the compound having a cyclic ether group, which is also used as a polymerizable monomer, include a compound having an epoxy group (hereinafter, also referred to as an epoxy compound) and a compound having an oxetane group (hereinafter, also referred to as an oxetane compound).
- the epoxy compound is preferably a polyfunctional epoxy compound. That is, the epoxy compound is preferably a compound having two or more epoxy groups. The upper limit of the number of epoxy groups is preferably 20 or less, and more preferably 10 or less.
- the oxetane compound is preferably a polyfunctional oxetane compound. That is, the oxetane compound is preferably a compound having two or more oxetane groups. The upper limit of the number of oxetane groups is preferably 20 or less, and more preferably 10 or less.
- epoxy compounds include JER828, JER1007, JER157S70 (manufactured by Mitsubishi Chemical Corporation), JER157S65 (manufactured by Mitsubishi Chemical Holdings, Inc.), and the commercial products described in paragraph 0189 of JP2011-221494. Can be mentioned.
- Other commercially available products include ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4011S (all manufactured by ADEKA Co., Ltd.), NC-2000, NC-3000, NC-7300, XD-1000, EPPN.
- OXT-201 Commercially available products of oxetane compounds include OXT-201, OXT-221, OXT-212, OXT-213, OXT-121, OXT-221, OX-SQ TX-100, etc. (all manufactured by Toagosei Co., Ltd.). Can be used.
- the content of the polymerizable monomer in the total solid content of the resin composition is preferably 0.1 to 40% by mass.
- the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
- the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less.
- the content of the compound having an ethylenically unsaturated bond-containing group as the polymerizable monomer is 1 with respect to 100 parts by mass of the above-mentioned specific resin. It is preferably about 50 parts by mass.
- the lower limit is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more.
- the upper limit is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less.
- the content of the compound having a cyclic ether group as a polymerizable monomer may be 1 to 50 parts by mass with respect to 100 parts by mass of the above-mentioned specific resin.
- the lower limit is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more.
- the upper limit is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less.
- the resin composition is a cyclic ether with respect to 100 parts by mass of the compound having an ethylenically unsaturated bond-containing group. It is preferable to contain 10 to 500 parts by mass of the compound having a group.
- the lower limit is preferably 20 parts by mass or more, and more preferably 30 parts by mass or more.
- the upper limit is preferably 400 parts by mass or less, and more preferably 300 parts by mass or less.
- the resin composition of the present invention preferably contains a photopolymerization initiator.
- the photopolymerization initiator is not particularly limited and may be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light rays in the ultraviolet region to the visible region is preferable.
- the photopolymerization initiator is preferably a photoradical polymerization initiator.
- the photopolymerization initiator examples include halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having an imidazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazoles, oxime compounds, and organic compounds.
- halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having an imidazole skeleton, etc.
- acylphosphine compounds examples include hexaarylbiimidazoles, oxime compounds, and organic compounds.
- peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds and ⁇ -aminoketone compounds examples include peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds and ⁇ -aminok
- the photopolymerization initiator is a trihalomethyltriazine compound, a biimidazole compound, a benzyldimethylketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, or an oxime compound.
- Triarylimidazole dimer onium compound, benzothiazole compound, benzophenone compound, acetophenone compound, cyclopentadiene-benzene-iron complex, halomethyloxadiazole compound and 3-aryl substituted coumarin compound, preferably biimidazole compound,
- a compound selected from an oxime compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, and an acylphosphine compound is more preferable, and an oxime compound is further preferable.
- the photopolymerization initiator the compound described in paragraphs 0065 to 0111 of JP-A-2014-130173, the compound described in Japanese Patent No.
- biimidazole compound examples include 2,2-bis (2-chlorophenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (o-chlorophenyl) -4,4', 5 , 5-Tetrakiss (3,4,5-trimethoxyphenyl) -1,2'-biimidazole, 2,2'-bis (2,3-dichlorophenyl) -4,4', 5,5'-tetraphenyl Examples thereof include biimidazole and 2,2'-bis (o-chlorophenyl) -4,4,5,5'-tetraphenyl-1,2'-biimidazole.
- ⁇ -hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (above, IGM Resins B.V.), Irgacure 184, Irgacure 1173, Irgacure27, Irgacure29. (Manufactured by the company) and the like.
- Commercially available ⁇ -aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (above, IGM Resins BV), Irgacure 907, Irgacure 369, Irgacure 369, Irger Made) and so on.
- acylphosphine compounds examples include Omnirad 819, Omnirad TPO (above, manufactured by IGM Resins BV), Irgacure 819, and Irgacure TPO (above, manufactured by BASF).
- Examples of the oxime compound include the compound described in JP-A-2001-233842, the compound described in JP-A-2000-080068, the compound described in JP-A-2006-342166, and J. Am. C. S. The compound according to Perkin II (1979, pp. 1653-1660), J. Mol. C. S. The compound described in Perkin II (1979, pp. 156-162), the compound described in Journal of Photopolisr Science and Technology (1995, pp. 202-232), the compound described in JP-A-2000-066385, the compound described in JP-A-2000-066385.
- oxime compound examples include 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminovtan-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxyiminopentane-3-one, and the like.
- An oxime compound having a fluorene ring can also be used as the photopolymerization initiator.
- Specific examples of the oxime compound having a fluorene ring include the compounds described in JP-A-2014-137466.
- an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring can also be used.
- Specific examples of such an oxime compound include the compounds described in International Publication No. 2013/083505.
- An oxime compound having a fluorine atom can also be used as the photopolymerization initiator.
- Specific examples of the oxime compound having a fluorine atom are described in the compounds described in JP-A-2010-262028, compounds 24, 36-40 described in JP-A-2014-500852, and JP-A-2013-164471.
- Compound (C-3) and the like can be mentioned.
- an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
- Examples of such a photopolymerization initiator include the compounds described in International Publication No. 2019/088055.
- An oxime compound having a nitro group can be used as the photopolymerization initiator.
- the oxime compound having a nitro group is also preferably a dimer.
- Specific examples of the oxime compound having a nitro group include the compounds described in paragraphs 0031 to 0047 of JP2013-114249A and paragraphs 0008-0012 and 0070-0079 of JP-A-2014-137466. Examples thereof include the compound described in paragraphs 0007 to 0025 of Japanese Patent No. 4223071, ADEKA ARCULDS NCI-831 (manufactured by ADEKA Corporation).
- An oxime compound having a benzofuran skeleton can also be used as the photopolymerization initiator.
- Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
- an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
- Examples of such a photopolymerization initiator include the compounds described in International Publication No. 2019/088055.
- the oxime compound is preferably a compound having a maximum absorption wavelength in the wavelength range of 350 to 500 nm, and more preferably a compound having a maximum absorption wavelength in the wavelength range of 360 to 480 nm.
- the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or a wavelength of 405 nm is preferably high, more preferably 1000 to 300,000, still more preferably 2000 to 300,000, and more preferably 5000 to 200,000. It is particularly preferable to have.
- the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using ethyl acetate with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
- a bifunctional or trifunctional or higher photoradical polymerization initiator may be used as the photopolymerization initiator.
- two or more radicals are generated from one molecule of the photoradical polymerization initiator, so that good sensitivity can be obtained.
- the crystallinity is lowered, the solubility in a solvent or the like is improved, the precipitation is less likely to occur with time, and the stability of the resin composition with time can be improved.
- Specific examples of the bifunctional or trifunctional or higher functional photo-radical polymerization initiators include Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
- the content of the photopolymerization initiator in the total solid content of the resin composition is preferably 0.1 to 30% by mass.
- the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
- the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less. Only one kind of photopolymerization initiator may be used, or two or more kinds may be used.
- the resin composition of the present invention can contain a silane coupling agent.
- the silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
- the hydrolyzable group refers to a substituent that is directly linked to a silicon atom and can form a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction.
- the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group and the like, and an alkoxy group is preferable. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group.
- Examples of the functional group other than the hydrolyzable group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a mercapto group, an epoxy group, an amino group, a ureido group, a sulfide group, an isocyanate group and a phenyl group. And the like, an amino group, a (meth) acryloyl group and an epoxy group are preferable.
- Specific examples of the silane coupling agent include the compounds described in paragraphs 0018 to 0036 of JP2009-288703 and the compounds described in paragraphs 0056 to 0066 of JP2009-242604A. The contents of are incorporated herein by reference.
- the content of the silane coupling agent in the total solid content of the resin composition is preferably 0.1 to 5% by mass.
- the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less.
- the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
- the silane coupling agent may be only one kind or two or more kinds.
- the resin composition of the present invention may further contain a curing accelerator for the purpose of accelerating the reaction of the resin or the polymerizable compound and lowering the curing temperature.
- the curing accelerator is a methylol-based compound (for example, a compound exemplified as a cross-linking agent in paragraph No. 0246 of JP-A-2015-034963), amines, a phosphonium salt, an amidin salt, and an amide compound (for example, JP-A-2015).
- the base generator for example, the ionic compound described in JP-A-2014-0551114
- the cyanate compound for example, JP-A-2012-150180.
- the compound described in paragraph No. 0071 the alkoxysilane compound (for example, the alkoxysilane compound having an epoxy group described in JP-A-2011-253504), and the onium salt compound (for example, the paragraph number of JP-A-2015-034963).
- a compound exemplified as an acid generator in 0216, a compound described in JP-A-2009-180949) and the like can also be used.
- the content of the curing accelerator is preferably 0.3 to 8.9% by mass, preferably 0.8 to 6.4% by mass in the total solid content of the resin composition. More preferably by mass.
- the resin composition of the present invention can contain a polymerization inhibitor.
- the polymerization inhibitor include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol), and the like. Examples thereof include 2,2'-methylenebis (4-methyl-6-t-butylphenol) and N-nitrosophenylhydroxyamine salts (ammonium salt, first cerium salt, etc.). Of these, p-methoxyphenol is preferable.
- the content of the polymerization inhibitor in the total solid content of the resin composition is preferably 0.0001 to 5% by mass.
- the resin composition of the present invention can contain a surfactant.
- a surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicon-based surfactant can be used.
- the surfactant the surfactant described in paragraph Nos. 0238 to 0245 of International Publication No. 2015/166779 is mentioned, and the content thereof is incorporated in the present specification.
- the surfactant is preferably a fluorine-based surfactant.
- a fluorine-based surfactant in the resin composition, the liquid characteristics (particularly, fluidity) can be further improved, and the liquid saving property can be further improved. It is also possible to form a film having a small thickness unevenness.
- the fluorine content in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
- a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity in the thickness of the coating film and liquid saving, and has good solubility in the resin composition.
- fluorine-based surfactant examples include the surfactants described in paragraphs 0060 to 0064 of Japanese Patent Laid-Open No. 2014-041318 (paragraphs 0060 to 0064 of the corresponding International Publication No. 2014/017669) and the like, Japanese Patent Application Laid-Open No. 2011-.
- the surfactants described in paragraphs 0117 to 0132 of Japanese Patent Application Laid-Open No. 132503 and the surfactants described in JP-A-2020-008634 are mentioned, and the contents thereof are incorporated in the present specification.
- fluorine-based surfactants include, for example, Megafax F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144. , F-437, F-475, F-477, F-479, F-482, F-554, F-555-A, F-556, F-557, F-558, F-559, F-560.
- the fluorine-based surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
- a fluorine-based surfactant the description in JP-A-2016-216602 can be referred to, and the content thereof is incorporated in the present specification.
- the fluorine-based surfactant a block polymer can also be used.
- the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups) (meth).
- a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
- the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
- the weight average molecular weight of the above compounds is preferably 3000 to 50,000, for example 14000.
- % indicating the ratio of the repeating unit is mol%.
- a fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in the side chain can also be used.
- Specific examples thereof include compounds described in paragraphs 0050 to 0090 and paragraph numbers 0289 to 0295 of JP2010-164965, for example, Megafuck RS-101, RS-102, RS-718K manufactured by DIC Corporation. , RS-72-K and the like.
- the fluorine-based surfactant the compounds described in paragraphs 0015 to 0158 of JP-A-2015-117327 can also be used.
- the content of the surfactant in the total solid content of the resin composition is preferably 0.001% by mass to 5.0% by mass, more preferably 0.005 to 3.0% by mass.
- the surfactant may be only one kind or two or more kinds. In the case of two or more kinds, it is preferable that the total amount is within the above range.
- the resin composition of the present invention can contain an ultraviolet absorber.
- an ultraviolet absorber a conjugated diene compound, an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a hydroxyphenyltriazine compound, an indole compound, a triazine compound and the like can be used.
- paragraph numbers 0052 to 0072 of JP2012-208374A paragraph numbers 0317 to 0334 of JP2013-066814, and paragraph numbers 0061 to 0080 of JP2016-162946. It can be taken into consideration and these contents are incorporated in the present specification.
- Examples of commercially available products of ultraviolet absorbers include UV-503 (manufactured by Daito Kagaku Co., Ltd.).
- Examples of the benzotriazole compound include the MYUA series made of Miyoshi Oil & Fat (The Chemical Daily, February 1, 2016).
- the ultraviolet absorber the compounds described in paragraphs 0049 to 0059 of Japanese Patent No. 6268967 can also be used.
- the content of the ultraviolet absorber in the total solid content of the resin composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass. Only one kind of ultraviolet absorber may be used, or two or more kinds may be used. When two or more kinds are used, it is preferable that the total amount is within the above range.
- the resin composition of the present invention can contain an antioxidant.
- the antioxidant include phenol compounds, phosphite ester compounds, thioether compounds and the like.
- the phenol compound any phenol compound known as a phenolic antioxidant can be used.
- Preferred phenolic compounds include hindered phenolic compounds.
- a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxy group is preferable.
- a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable.
- the antioxidant a compound having a phenol group and a phosphite ester group in the same molecule is also preferable.
- a phosphorus-based antioxidant can also be preferably used.
- the compound described in Korean Patent Publication No. 10-2019-0059371 can also be used.
- the content of the antioxidant in the total solid content of the resin composition is preferably 0.01 to 20% by mass, more preferably 0.3 to 15% by mass. Only one kind of antioxidant may be used, or two or more kinds may be used. When two or more kinds are used, it is preferable that the total amount is within the above range.
- the resin composition of the present invention can be used as a sensitizer, a filler, a thermosetting accelerator, a plasticizer and other auxiliaries (for example, conductive particles, a filler, a defoaming agent, a flame retardant, a leveling), if necessary.
- auxiliaries for example, conductive particles, a filler, a defoaming agent, a flame retardant, a leveling
- properties such as film physical characteristics can be adjusted.
- the resin composition may contain a latent antioxidant, if necessary.
- the latent antioxidant is a compound in which the site that functions as an antioxidant is protected by a protecting group, and is heated at 100 to 250 ° C. or at 80 to 200 ° C. in the presence of an acid / base catalyst. This includes compounds in which the protecting group is desorbed and functions as an antioxidant.
- Examples of the latent antioxidant include compounds described in International Publication No. 2014/021023, International Publication No. 2017/030005, and JP-A-2017-008219.
- Examples of commercially available products include ADEKA ARKULS GPA-5001 (manufactured by ADEKA Corporation) and the like.
- the resin composition of the present invention may contain a metal oxide in order to adjust the refractive index of the obtained film.
- the metal oxide include TiO 2 , ZrO 2 , Al 2 O 3 , SiO 2 and the like.
- the primary particle size of the metal oxide is preferably 1 to 100 nm, more preferably 3 to 70 nm, still more preferably 5 to 50 nm.
- the metal oxide may have a core-shell structure. Further, in this case, the core portion may be hollow.
- the resin composition of the present invention may contain a light resistance improving agent.
- the light resistance improving agent include the compounds described in paragraphs 0036 to 0037 of JP-A-2017-198787, the compounds described in paragraphs 0029 to 0034 of JP-A-2017-146350, and JP-A-2017-129774.
- the resin composition of the present invention preferably has a free metal content of 100 ppm or less, more preferably 50 ppm or less, and further preferably 10 ppm or less, which is not bonded or coordinated with a pigment or the like. , It is particularly preferable that it is not substantially contained.
- stabilization of pigment dispersibility agglomeration suppression
- improvement of spectral characteristics due to improvement of dispersibility agglomeration suppression
- stabilization of curable components suppression of conductivity fluctuation due to elution of metal atoms / metal ions
- Effects such as improvement of characteristics can be expected.
- the types of free metals include Na, K, Ca, Sc, Ti, Mn, Cu, Zn, Fe, Cr, Co, Mg, Al, Sn, Zr, Ga, Ge, Ag, Au, Pt, and the like.
- the resin composition of the present invention preferably has a content of free halogen not bonded or coordinated with a pigment or the like of 100 ppm or less, more preferably 50 ppm or less, and more preferably 10 ppm or less. It is more preferable, and it is particularly preferable that it is not substantially contained.
- the halogen include F, Cl, Br, I and their anions.
- the method for reducing free metals and halogens in the resin composition include washing with ion-exchanged water, filtration, ultrafiltration, and purification with an ion-exchange resin.
- perfluoroalkyl sulfonic acid and its salt and perfluoroalkyl carboxylic acid and its salt may be restricted.
- the perfluoroalkyl sulfonic acid particularly the perfluoroalkyl sulfonic acid having 6 to 8 carbon atoms in the perfluoroalkyl group
- a salt thereof and a per.
- the content of the fluoroalkylcarboxylic acid (particularly the perfluoroalkylcarboxylic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salt is 0.01 ppb to 1,000 ppb with respect to the total solid content of the resin composition. It is preferably in the range of 0.05 ppb to 500 ppb, and even more preferably in the range of 0.1 ppb to 300 ppb.
- the resin composition of the present invention may be substantially free of perfluoroalkyl sulfonic acid and salts thereof, as well as perfluoroalkyl carboxylic acid and salts thereof.
- a compound that can substitute for perfluoroalkyl sulfonic acid and its salt and a compound that can substitute for perfluoroalkyl carboxylic acid and its salt, perfluoroalkyl sulfonic acid and its salt, and perfluoroalkyl carboxylic acid can be used.
- a resin composition that is substantially free of salts thereof may be selected.
- compounds that can substitute for the regulated compound include compounds excluded from the regulation due to the difference in the number of carbon atoms of the perfluoroalkyl group.
- the above-mentioned contents do not prevent the use of perfluoroalkyl sulfonic acid and its salt, and perfluoroalkyl carboxylic acid and its salt.
- the resin composition of the present invention may contain a perfluoroalkyl sulfonic acid and a salt thereof, and a perfluoroalkyl carboxylic acid and a salt thereof within the maximum allowable range.
- the resin composition of the present invention does not substantially contain a terephthalic acid ester.
- substantially free means that the content of the terephthalic acid ester is 1000 mass ppb or less in the total amount of the resin composition, and more preferably 100 mass ppb or less. Zero is particularly preferred.
- the storage container for the resin composition is not particularly limited, and a known storage container can be used.
- a storage container for the purpose of suppressing contamination of raw materials and resin compositions with impurities, a multi-layer bottle having a container inner wall composed of 6 types and 6 layers of resin and a bottle having 6 types of resin having a 7-layer structure. It is also preferable to use. Examples of such a container include the container described in JP-A-2015-123351.
- the inner wall of the container is preferably made of glass or stainless steel for the purpose of preventing metal elution from the inner wall of the container, improving the storage stability of the resin composition, and suppressing the deterioration of the components.
- the resin composition of the present invention can be prepared by mixing the above-mentioned components.
- all the components may be simultaneously dissolved and / or dispersed in an organic solvent to prepare a resin composition, or if necessary, each component may be appropriately dissolved in two or more solutions or dispersions. However, these may be mixed at the time of use (at the time of application) to prepare a resin composition.
- the mechanical force used for dispersing the pigment includes compression, squeezing, impact, shearing, cavitation and the like.
- Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion and the like.
- the process and disperser for dispersing pigments are "Dispersion Technology Complete Works, Published by Information Organization Co., Ltd., July 15, 2005" and "Dispersion technology centered on suspension (solid / liquid dispersion system) and industrial”. Practical application The process and disperser described in paragraph No.
- JP-A-2015-157893 "Comprehensive Data Collection, Published by Management Development Center Publishing Department, October 10, 1978" can be preferably used.
- the particles may be miniaturized in the salt milling step.
- the materials, equipment, processing conditions, etc. used in the salt milling step for example, the descriptions in JP-A-2015-194521 and JP-A-2012-046629 can be referred to.
- any filter that has been conventionally used for filtration or the like can be used without particular limitation.
- fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF)
- polyamide resins such as nylon (eg, nylon-6, nylon-6,6)
- polyolefin resins such as polyethylene and polypropylene (PP)
- PP polypropylene
- a filter using a material such as (including a high-density, ultra-high molecular weight polyethylene resin) and the like can be mentioned.
- polypropylene (including high-density polypropylene) and nylon are preferable.
- the pore diameter of the filter is preferably 0.01 to 7.0 ⁇ m, more preferably 0.01 to 3.0 ⁇ m, and even more preferably 0.05 to 0.5 ⁇ m. If the pore diameter of the filter is within the above range, fine foreign matter can be removed more reliably.
- the nominal value of the filter manufacturer can be referred to.
- various filters provided by Nippon Pole Co., Ltd. DFA4201NXEY, DFA4201NAEY, DFA4201J006P, etc.
- Advantech Toyo Co., Ltd. Japan Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), KITZ Microfilter Co., Ltd., etc.
- KITZ Microfilter Co., Ltd. etc.
- a fiber-like filter medium As the filter.
- the fiber-like filter medium include polypropylene fiber, nylon fiber, glass fiber and the like.
- examples of commercially available products include SBP type series (SBP008, etc.), TPR type series (TPR002, TPR005, etc.) and SHPX type series (SHPX003, etc.) manufactured by Roki Techno Co., Ltd.
- filters for example, a first filter and a second filter
- the filtration with each filter may be performed only once or twice or more.
- filters having different pore diameters may be combined within the above-mentioned range.
- the filtration with the first filter may be performed only on the dispersion liquid, and after mixing the other components, the filtration may be performed with the second filter.
- the filter can be appropriately selected according to the hydrophobicity of the resin composition.
- the film of the present invention is a film obtained from the above-mentioned resin composition of the present invention.
- the film of the present invention can be used for an optical filter such as a color filter, a near-infrared transmission filter, and a near-infrared cut filter.
- the film of the present invention can also be used as a black matrix, a light-shielding film, or the like.
- the film thickness of the film of the present invention can be appropriately adjusted according to the purpose.
- the film thickness is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
- the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more.
- the film of the present invention When the film of the present invention is used as a color filter, the film of the present invention preferably has a hue of green, red, blue, cyan, magenta or yellow. Further, the film of the present invention can be preferably used as a colored pixel of a color filter. Examples of the colored pixel include a red pixel, a green pixel, a blue pixel, a magenta color pixel, a cyan color pixel, and a yellow pixel.
- the maximum absorption wavelength of the film of the present invention preferably exists in the wavelength range of 700 to 1800 nm, more preferably in the wavelength range of 700 to 1300 nm. It is more preferably present in the wavelength range of 700 to 1100 nm.
- the transmittance of the film in the entire wavelength range of 400 to 650 nm is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. Further, the transmittance at at least one point in the wavelength range of 700 to 1800 nm of the film is preferably 20% or less.
- the absorbance Amax / absorbance A550 which is the ratio of the absorbance Amax at the maximum absorption wavelength to the absorbance A550 at a wavelength of 550 nm, is preferably 20 to 500, more preferably 50 to 500, and 70 to 450. It is more preferably present, and particularly preferably 100 to 400.
- the film of the present invention When the film of the present invention is used as a near-infrared ray transmitting filter, it is preferable that the film of the present invention has, for example, any of the following spectral characteristics (i1) to (i5).
- (I1) The maximum value of the transmittance in the wavelength range of 400 to 640 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 800 to 1500 nm is.
- a filter of 70% or more preferably 75% or more, more preferably 80% or more).
- a film having such spectral characteristics can block light in the wavelength range of 400 to 640 nm and transmit light having a wavelength of more than 750 nm.
- the maximum value of the transmittance in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 900 to 1500 nm is.
- a filter of 70% or more preferably 75% or more, more preferably 80% or more).
- a film having such spectral characteristics can block light in the wavelength range of 400 to 750 nm and transmit light having a wavelength of more than 850 nm.
- the maximum value of the transmittance in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 1000 to 1500 nm is.
- a filter of 70% or more (preferably 75% or more, more preferably 80% or more).
- a film having such spectral characteristics can block light in the wavelength range of 400 to 830 nm and transmit light having a wavelength exceeding 950 nm.
- the maximum value of the transmittance in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 1100 to 1500 nm is.
- a filter of 70% or more (preferably 75% or more, more preferably 80% or more).
- a film having such spectral characteristics can block light in the wavelength range of 400 to 950 nm and transmit light having a wavelength exceeding 1050 nm.
- the maximum value of the transmittance in the wavelength range of 400 to 1050 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the transmittance in the wavelength range of 1200 to 1500 nm is.
- a filter of 70% or more preferably 75% or more, more preferably 80% or more).
- a film having such spectral characteristics can block light in the wavelength range of 400 to 1050 nm and transmit light having a wavelength exceeding 1150 nm.
- the thickness of the film of the present invention after being heat-treated at 300 ° C. for 5 hours in a nitrogen atmosphere is preferably 70% or more, preferably 80% or more of the thickness of the film before the heat treatment. It is more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
- the thickness of the film after being heat-treated at 350 ° C. for 5 hours in a nitrogen atmosphere is preferably 70% or more, preferably 80% or more of the thickness of the film before the heat treatment. Is more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
- the thickness of the film after being heat-treated at 400 ° C. for 5 hours in a nitrogen atmosphere is preferably 70% or more, preferably 80% or more of the thickness of the film before the heat treatment. Is more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
- the film of the present invention can be produced through the steps of applying the above-mentioned resin composition of the present invention onto a support.
- the film manufacturing method of the present invention preferably further includes a step of forming a pattern (pixel).
- Examples of the pattern (pixel) forming method include a photolithography method and a dry etching method, and a photolithography method is preferable.
- the pattern formation by the photolithography method includes a step of forming a resin composition layer on a support using the resin composition of the present invention, a step of exposing the resin composition layer in a pattern, and a step of exposing the resin composition layer in a pattern. It is preferable to include a step of developing and removing the exposed portion to form a pattern (pixel). If necessary, a step of baking the resin composition layer (pre-baking step) and a step of baking the developed pattern (pixels) (post-baking step) may be provided.
- the resin composition layer of the present invention is used to form the resin composition layer on the support.
- the support is not particularly limited and may be appropriately selected depending on the intended use. Examples thereof include a glass substrate and a silicon substrate, and a silicon substrate is preferable. Further, a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, or the like may be formed on the silicon substrate. Further, a black matrix that separates each pixel may be formed on the silicon substrate. Further, the silicon substrate may be provided with a base layer for improving the adhesion with the upper layer, preventing the diffusion of substances, or flattening the surface of the substrate.
- the surface contact angle of the base layer is preferably 20 to 70 ° when measured with diiodomethane. Further, it is preferably 30 to 80 ° when measured with water. When the surface contact angle of the base layer is within the above range, the coating property of the resin composition is good.
- the surface contact angle of the base layer can be adjusted by, for example, adding a surfactant.
- a known method can be used as a method for applying the resin composition.
- a drop method drop cast
- a slit coat method for example, a spray method; a roll coat method; a rotary coating method (spin coating); a cast coating method; a slit and spin method; a pre-wet method (for example, JP-A-2009-145395).
- Methods described in the publication Inkjet (for example, on-demand method, piezo method, thermal method), ejection system printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, metal mask printing, etc.
- Various printing methods; transfer method using a mold or the like; nano-imprint method and the like can be mentioned.
- the method of application in inkjet is not particularly limited, and is, for example, the method shown in "Expandable / usable inkjet-infinite possibilities seen in patents-, published in February 2005, Sumi Betechno Research" (especially from page 115). Page 133), JP-A-2003-262716, JP-A-2003-185831, JP-A-2003-261827, JP-A-2012-126830, JP-A-2006-169325, and the like. Can be mentioned. Further, as a method for applying the resin composition, the methods described in International Publication No. 2017/030174 and International Publication No. 2017/018419 can also be used, and these contents are incorporated in the present specification.
- the resin composition layer formed on the support may be dried (prebaked).
- prebaking may not be performed.
- the prebake temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, still more preferably 110 ° C. or lower.
- the lower limit can be, for example, 50 ° C. or higher, or 80 ° C. or higher.
- the prebake time is preferably 10 to 300 seconds, more preferably 40 to 250 seconds, still more preferably 80 to 220 seconds. Pre-baking can be performed on a hot plate, an oven, or the like.
- the resin composition layer is exposed in a pattern (exposure step).
- the resin composition layer can be exposed in a pattern by exposing the resin composition layer through a mask having a predetermined mask pattern using a stepper exposure machine, a scanner exposure machine, or the like. As a result, the exposed portion can be cured.
- Examples of radiation (light) that can be used for exposure include g-line and i-line. Further, light having a wavelength of 300 nm or less (preferably light having a wavelength of 180 to 300 nm) can also be used. Examples of the light having a wavelength of 300 nm or less include KrF line (wavelength 248 nm) and ArF line (wavelength 193 nm), and KrF line (wavelength 248 nm) is preferable. Further, a long wave light source having a diameter of 300 nm or more can also be used.
- the pulse exposure is an exposure method of a method in which light irradiation and pause are repeated in a cycle of a short time (for example, a millisecond level or less).
- the pulse width is preferably 100 nanoseconds (ns) or less, more preferably 50 nanoseconds or less, and even more preferably 30 nanoseconds or less.
- the lower limit of the pulse width is not particularly limited, but may be 1 femtosecond (fs) or more, and may be 10 femtoseconds or more.
- the frequency is preferably 1 kHz or higher, more preferably 2 kHz or higher, and even more preferably 4 kHz or higher.
- the upper limit of the frequency is preferably 50 kHz or less, more preferably 20 kHz or less, and further preferably 10 kHz or less.
- Maximum instantaneous intensity is preferably at 50000000W / m 2 or more, more preferably 100000000W / m 2 or more, more preferably 200000000W / m 2 or more.
- the upper limit of the maximum instantaneous intensity is preferably at 1000000000W / m 2 or less, more preferably 800000000W / m 2 or less, further preferably 500000000W / m 2 or less.
- the pulse width is the time during which light is irradiated in the pulse period.
- the frequency is the number of pulse cycles per second.
- the maximum instantaneous illuminance is the average illuminance within the time when the light is irradiated in the pulse cycle.
- the pulse cycle is a cycle in which irradiation and pause of light in pulse exposure are set as one cycle.
- Irradiation dose for example, preferably 0.03 ⁇ 2.5J / cm 2, more preferably 0.05 ⁇ 1.0J / cm 2.
- the oxygen concentration at the time of exposure can be appropriately selected, and in addition to the oxygen concentration performed in the atmosphere, for example, in a low oxygen atmosphere having an oxygen concentration of 19% by volume or less (for example, 15% by volume, 5% by volume, or substantially). It may be exposed in an oxygen-free environment), or may be exposed in a high oxygen atmosphere (for example, 22% by volume, 30% by volume, or 50% by volume) in which the oxygen concentration exceeds 21% by volume.
- the exposure illuminance can be set as appropriate, and is usually selected from the range of 1000 W / m 2 to 100,000 W / m 2 (for example, 5000 W / m 2 , 15,000 W / m 2 , or 35,000 W / m 2). Can be done. Oxygen concentration and exposure illuminance may appropriately combined conditions, for example, illuminance 10000 W / m 2 at an oxygen concentration of 10 vol%, oxygen concentration of 35 vol% can be such illuminance 20000W / m 2.
- the unexposed portion of the resin composition layer is developed and removed to form a pattern (pixel).
- the unexposed portion of the resin composition layer can be developed and removed using a developing solution.
- the resin composition layer in the unexposed portion in the exposure step is eluted in the developer, and only the photocured portion remains.
- the temperature of the developer is preferably, for example, 20 to 30 ° C.
- the development time is preferably 20 to 180 seconds. Further, in order to improve the residue removability, the steps of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
- Examples of the developing solution include organic solvents and alkaline developing solutions, and alkaline developing solutions are preferably used.
- the alkaline developer an alkaline aqueous solution (alkaline developer) obtained by diluting an alkaline agent with pure water is preferable.
- the alkaline agent include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
- Ethyltrimethylammonium hydroxide Ethyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, dimethylbis (2-hydroxyethyl) ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene and other organic substances.
- alkaline compounds examples include alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, sodium silicate and sodium metasilicate.
- the alkaline agent a compound having a large molecular weight is preferable in terms of environment and safety.
- the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.
- the developer may further contain a surfactant.
- the surfactant include the above-mentioned surfactants, and nonionic surfactants are preferable.
- the developer may be once produced as a concentrated solution and diluted to a concentration required for use.
- the dilution ratio is not particularly limited, but can be set in the range of, for example, 1.5 to 100 times. It is also preferable to wash (rinse) with pure water after development.
- the rinsing is performed by supplying the rinsing liquid to the developed resin composition layer while rotating the support on which the developed resin composition layer is formed. It is also preferable to move the nozzle for discharging the rinse liquid from the central portion of the support to the peripheral edge of the support. At this time, when moving the nozzle from the central portion of the support to the peripheral portion, the nozzle may be moved while gradually reducing the moving speed. By rinsing in this way, in-plane variation of the rinse can be suppressed. Further, the same effect can be obtained by gradually reducing the rotation speed of the support while moving the nozzle from the central portion of the support to the peripheral portion.
- Additional exposure processing and post-baking are post-development curing treatments to complete the curing.
- the heating temperature in the post-bake is, for example, preferably 100 to 240 ° C, more preferably 200 to 240 ° C.
- Post-baking can be performed on the developed film in a continuous or batch manner using a heating means such as a hot plate, a convection oven (hot air circulation type dryer), or a high frequency heater so as to meet the above conditions. ..
- the light used for the exposure is preferably light having a wavelength of 400 nm or less. Further, the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
- the pattern formation by the dry etching method includes a step of forming a resin composition layer on a support using the resin composition of the present invention and curing the entire resin composition layer to form a cured product layer.
- the optical filter of the present invention has the above-mentioned film of the present invention.
- the type of optical filter include a color filter, a near-infrared transmission filter, a near-infrared cut filter, and the like, and a color filter is preferable.
- the color filter it is preferable to have the film of the present invention as the colored pixels of the color filter.
- the optical filter of the present invention can be used for a solid-state image pickup device such as a CCD (charge-coupled device) or CMOS (complementary metal oxide semiconductor), an image display device, or the like.
- the film thickness of the film of the present invention can be appropriately adjusted according to the purpose.
- the film thickness is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.6 ⁇ m or less.
- the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more.
- the width of the pixels included in the optical filter is preferably 0.4 to 10.0 ⁇ m.
- the lower limit is preferably 0.4 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 0.6 ⁇ m or more.
- the upper limit is preferably 5.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, further preferably 1.0 ⁇ m or less, and even more preferably 0.8 ⁇ m or less.
- the Young's modulus of the pixel is preferably 0.5 to 20 GPa, more preferably 2.5 to 15 GPa.
- each pixel included in the optical filter has high flatness.
- the surface roughness Ra of the pixel is preferably 100 nm or less, more preferably 40 nm or less, and further preferably 15 nm or less.
- the lower limit is not specified, but it is preferably 0.1 nm or more, for example.
- the surface roughness of the pixel can be measured using, for example, an AFM (atomic force microscope) Measurement 3100 manufactured by Veeco.
- the contact angle of water on the pixel can be appropriately set to a preferable value, but is typically in the range of 50 to 110 °.
- the contact angle can be measured using, for example, a contact angle meter CV-DT ⁇ A type (manufactured by Kyowa Interface Science Co., Ltd.). Further, it is preferable that the volume resistance value of the pixel is high. Specifically, it is preferred that the volume resistivity value of the pixel is 10 9 ⁇ ⁇ cm or more, and more preferably 10 11 ⁇ ⁇ cm or more. The upper limit is not specified, but it is preferably 10 14 ⁇ ⁇ cm or less, for example.
- the volume resistance value of the pixel can be measured using an ultra-high resistance meter 5410 (manufactured by Advantest).
- a protective layer may be provided on the surface of the film of the present invention.
- various functions such as oxygen blocking, low reflection, prohydrophobicization, and shielding of light of a specific wavelength (ultraviolet rays, near infrared rays, etc.) can be imparted.
- the thickness of the protective layer is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
- Examples of the method for forming the protective layer include a method of applying a resin composition for forming a protective layer dissolved in an organic solvent to form the protective layer, a chemical vapor deposition method, and a method of attaching the molded resin with an adhesive.
- the components constituting the protective layer include (meth) acrylic resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide resin, and polyimide.
- Resin polyamideimide resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin, polyol resin, polyvinylidene chloride resin, melamine resin, urethane resin, aramid resin, polyamide resin, alkyd resin, epoxy resin, modified silicone resin, fluorine Examples thereof include resins, polycarbonate resins, polyacrylonitrile resins, cellulose resins, Si, C, W, Al 2 O 3 , Mo, SiO 2 , Si 2 N 4, and the like, and two or more of these components may be contained.
- the protective layer for the purpose of blocking oxygen, it is preferable that the protective layer contains a polyol resin, SiO 2 , and Si 2 N 4. Further, in the case of a protective layer for the purpose of reducing reflection, it is preferable that the protective layer contains a (meth) acrylic resin and a fluororesin.
- the protective layer forming resin composition When the protective layer forming resin composition is applied to form the protective layer, known methods such as a spin coating method, a casting method, a screen printing method, and an inkjet method are used as the coating method of the protective layer forming resin composition. Can be used.
- a known organic solvent for example, propylene glycol 1-monomethyl ether 2-acetate, cyclopentanone, ethyl lactate, etc.
- the protective layer is formed by the chemical vapor deposition method, the known chemical vapor deposition method (thermochemical vapor deposition method, plasma chemical vapor deposition method, photochemical vapor deposition method) is used as the chemical vapor deposition method. Can be used.
- the protective layer may be an additive such as organic / inorganic fine particles, an absorber for light of a specific wavelength (for example, ultraviolet rays, near infrared rays, etc.), a refractive index adjusting agent, an antioxidant, an adhesive, and a surfactant, if necessary. May be contained.
- organic / inorganic fine particles include polymer fine particles (for example, silicone resin fine particles, polystyrene fine particles, melamine resin fine particles), titanium oxide, zinc oxide, zirconium oxide, indium oxide, aluminum oxide, titanium nitride, and titanium oxynitride. , Magnesium fluoride, hollow silica, silica, calcium carbonate, barium sulfate and the like.
- a known absorber can be used as the absorber of light having a specific wavelength.
- the content of these additives can be adjusted as appropriate, but is preferably 0.1 to 70% by mass, more preferably 1 to 60% by mass, based on the total mass of the protective layer.
- the protective layer the protective layer described in paragraphs 0073 to 0092 of JP-A-2017-151176 can also be used.
- the optical filter may have a structure in which each pixel is embedded in a space partitioned by a partition wall, for example, in a grid pattern.
- the resin composition of the present invention can also be suitably used for the pixel configuration described in International Publication No. 2019/1028887.
- the solid-state image sensor of the present invention has the above-mentioned film of the present invention.
- the configuration of the solid-state image pickup device of the present invention is not particularly limited as long as it includes the film of the present invention and functions as a solid-state image pickup device, and examples thereof include the following configurations.
- a solid-state image pickup device CCD (charge-coupled device) image sensor, CMOS (complementary metal oxide semiconductor) image sensor, etc.
- a transfer electrode made of polysilicon or the like.
- the color filter may have a structure in which each colored pixel is embedded in a space partitioned by a partition wall, for example, in a grid pattern.
- the partition wall preferably has a lower refractive index than each colored pixel. Examples of the image pickup apparatus having such a structure are described in JP-A-2012-227478, JP-A-2014-179757, International Publication No. 2018/043654, and US Patent Application Publication No.
- an ultraviolet absorbing layer may be provided in the structure of the solid-state image sensor to improve the light resistance.
- the image pickup device provided with the solid-state image pickup device of the present invention can be used not only for digital cameras and electronic devices having an image pickup function (mobile phones and the like), but also for in-vehicle cameras and surveillance cameras. Further, in the solid-state image sensor incorporating the color filter of the present invention, in addition to the color filter of the present invention, another color filter, a near-infrared cut filter, an organic photoelectric conversion film and the like may be incorporated.
- the image display device of the present invention has the above-mentioned film of the present invention.
- the image display device include a liquid crystal display device and an organic electroluminescence display device.
- the liquid crystal display device is described in, for example, “Next Generation Liquid Crystal Display Technology (edited by Tatsuo Uchida, Kogyo Chosakai Co., Ltd., published in 1994)”.
- the liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the above-mentioned "next-generation liquid crystal display technology".
- the acid value of the sample represents the mass of potassium hydroxide required to neutralize the acidic component per 1 g of solid content in the sample.
- the acid value was calculated by the following equation with the inflection point of the titration pH curve as the titration end point.
- A 56.11 x Vs x 0.5 x f / w
- Vs Amount of 0.1 mol / L potassium hydroxide aqueous solution required for titration (mL)
- f Potency of 0.1 mol / L potassium hydroxide aqueous solution
- the obtained polymer solution of terminal hydroxy groups was cooled to 5 ° C., 32.1 g of anhydrous trimellitic acid chloride was added, and 15.3 g of pyridine was added dropwise over 6 hours. Further, the mixture was stirred at room temperature for 24 hours, and the insoluble material was filtered off.
- the weight average molecular weight of the obtained terminal encapsulant macromonomer EDM-21 was 7800.
- the structures and weight average molecular weights (Mw) of the terminal encapsulant macromonomers EDM-1 to EDM-40 are shown below.
- the numerical values added to the repeating units of EDM-1 to EDM-3, EDM-8 to EDM-15, and EDM-27 to EDM-29 represent the number of repeating units, and EDM-4 and EDM-6.
- the structure described in Poly is P 1 of the formula (1).
- the terminal encapsulant macromonomers EDM-1 to EDM-40 are compounds having the above-mentioned structures, respectively.
- the acid dianhydrides AA-1 to AA-8, diamines DA-1 to DA-7, and end-capping agents ED-1 to ED-3 are compounds having the following structures, respectively.
- the mixed solution containing the raw materials shown in the table below is mixed and dispersed for 3 hours using a bead mill (using zirconia beads having a diameter of 0.3 mm), and then a high pressure disperser with a decompression mechanism NANO-3000-10 (Nippon BEE).
- a dispersion treatment was carried out at a flow rate of 500 g / min under a pressure of 2000 MPa using (manufactured by Co., Ltd.). This dispersion treatment was repeated 10 times to obtain each dispersion.
- Pigment Green 7 PG36 C.I. I. Pigment Green 36 PG58: C.I. I. Pigment Green 58 PY129: C.I. I. Pigment Yellow 129 PY185: C.I. I. Pigment Yellow 185 PY215: C.I. I. Pigment Yellow 215 PV23: C.I. I. Pigment Violet 23 IRGAPHORE: Irgaphor Black S 0100 CF (manufactured by BASF, a compound having the following structure, a lactam pigment) PBk32: C.I. I. Pigment Black 32 (compound with the following structure, perylene pigment)
- (Comparative resin) cB-1 Resin having the following structure (weight average molecular weight is 10885, acid value is 74 mgKOH / g. In the description of "Polym”, the repeating units of the structure indicated by “Polym” are combined by the number of subscripts. It shows that the polymer chain of the structure is bonded to the sulfur atom (S).)
- Dispersions R1 to R26, B1 to B25, G1 to G27, Bk1 to Bk20, CR1, CB1, CG1, CBk1 to 3 Dispersions described above
- ⁇ resin ⁇ Ba-1 Resin having the following structure (the numerical value added to the main chain is the molar ratio. Weight average molecular weight 11000)
- Ba-2 Resin having the following structure (the numerical value added to the main chain is the molar ratio.
- Bb-1 Resin having the following structure (the numerical value added to the main chain is the molar ratio. Weight average molecular weight 13000)
- D-1 Acrylate compound (KAYARAD DPHA, manufactured by Nippon Kayaku Co., Ltd., a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate)
- D-2 Epoxy compound (TETRAD-X, manufactured by Mitsubishi Gas Chemical Company, Inc., N, N, N', N'-tetraglycidyl-m-xylylenediamine)
- D-3 Oxetane compound (OXT-221, manufactured by Toagosei Co., Ltd., 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane)
- D-4 Oxetane compound (OX-SQ TX-100, manufactured by Toagosei Co., Ltd.)
- E-1 Omnirad 379EG (manufactured by IGM Resins B.V., 2-dimethylamino-2- (4-methyl-benzyl) -1- (4-morpholin-4-yl-phenyl) -butane-1- on)
- E-2 Irgure OXE01 (Oxime compound manufactured by BASF)
- E-3 Compound with the following structure
- ⁇ Vis was 0.5 mPa ⁇ s or less.
- B ⁇ Vis exceeded 0.5 mPa ⁇ s and was 1.0 mPa ⁇ s or less.
- C ⁇ Vis exceeded 1.0 mPa ⁇ s and was 2.0 mPa ⁇ s or less.
- D ⁇ Vis exceeded 2.0 mPa ⁇ s and was 2.5 mPa ⁇ s or less.
- A The number average particle size of the pigment was 0.05 ⁇ m or less.
- B The number average particle size of the pigment exceeded 0.05 ⁇ m and was 0.10 ⁇ m or less.
- C The number average particle size of the pigment exceeded 0.10 ⁇ m and was 0.20 ⁇ m or less.
- D The number average particle size of the pigment was more than 0.20 ⁇ m and 0.50 ⁇ m or less.
- E The number average particle size of the pigment exceeded 0.50 ⁇ m.
- the resin composition was applied on a glass substrate by spin coating, dried (prebaked) at 100 ° C. for 120 seconds using a hot plate, and then heated at 200 ° C. for 30 minutes using an oven. (Post-baked) to produce a film having a thickness of 0.60 ⁇ m.
- the film thickness is measured by scraping a part of the film to expose the surface of the glass substrate and measuring the step between the surface of the glass substrate and the coating film (the film thickness of the coating film) using a stylus type step meter (DektakXT, manufactured by BRUKER). did.
- the obtained membrane was heat-treated at 300 ° C. for 5 hours under a nitrogen atmosphere.
- the film shrinkage rate was obtained from the following formula, and the film shrinkage rate was evaluated according to the following evaluation criteria.
- T 0 and T 1 below were measured in a laboratory where the temperature and humidity were controlled to 22 ⁇ 5 ° C. and 60 ⁇ 20%, with the substrate temperature adjusted to 25 ° C. It can be said that the smaller the membrane shrinkage rate, the more the membrane shrinkage is suppressed, which is a preferable result.
- Membrane shrinkage rate (%) (1- (T 1 / T 0 )) x 100
- T 1 Film thickness after heat treatment at 300 ° C for 5 hours in a nitrogen atmosphere-evaluation criteria-
- D The membrane shrinkage rate was more than 10% and 30% or less.
- E The membrane shrinkage rate exceeded 30%.
- the resin composition was applied on a glass substrate by spin coating, dried (prebaked) at 100 ° C. for 120 seconds using a hot plate, and then heated at 200 ° C. for 30 minutes using an oven. (Post-baked) to produce a film having a thickness of 0.60 ⁇ m.
- SiO 2 was laminated at 200 nm on the surface of the obtained film by a sputtering method to form an inorganic film.
- the film on which the inorganic film was formed was heat-treated at 300 ° C. for 5 hours in a nitrogen atmosphere.
- the surface of the inorganic film after the heat treatment was observed with an optical microscope, the number of cracks per 1 cm 2 was counted, and the presence or absence of cracks was evaluated according to the following evaluation criteria.
- E The number of cracks per 1 cm 2 was 101 or more.
- the storage stability and the particle size were excellently evaluated, and the dispersibility of the pigment was excellent, as compared with the case where the resin composition of the comparative example was used. Furthermore, when the resin composition of the example was used, the film shrinkage rate was small and the generation of cracks was suppressed as compared with the case of using the resin composition of the comparative example. Therefore, it can be said that it is possible to expand the process window in the process after manufacturing the film as compared with the resin composition of the comparative example.
- Example 1000 Pattern formation by photolithography method
- the resin composition of Example 1 was applied on a silicon wafer by spin coating, dried at 100 ° C. for 120 seconds (pre-baked) using a hot plate, and then heated at 200 ° C. for 30 minutes (post-baked) using an oven.
- a resin composition layer having a thickness of 0.60 ⁇ m was formed.
- an i-line stepper exposure apparatus FPA-3000i5 + (Canon, Inc.) is provided via a mask pattern in which square non-masked portions having a side of 1.1 ⁇ m are arranged in a region of 4 mm ⁇ 3 mm.
- the produced silicon wafer with pixels was divided into two, and one was heat-treated at 300 ° C. for 5 hours in a nitrogen atmosphere (hereinafter, one is a substrate before heat treatment at 300 ° C. and the other is a substrate after heat treatment at 300 ° C.).
- one is a substrate before heat treatment at 300 ° C. and the other is a substrate after heat treatment at 300 ° C.
- the cross sections of the pixels formed on the substrate before the heat treatment at 300 ° C. and the substrate after the heat treatment at 300 ° C. were evaluated by a scanning electron microscope (SEM), the height of the pixels formed on the substrate after the heat treatment at 300 ° C. was evaluated.
- the thickness (thickness) was 97% of the height (thickness) of the pixels formed on the substrate before the heat treatment at 300 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Filters (AREA)
- Materials For Photolithography (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022537993A JP7515592B2 (ja) | 2020-07-22 | 2021-07-19 | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および化合物 |
CN202180044097.4A CN115916902B (zh) | 2020-07-22 | 2021-07-19 | 树脂组合物、膜、滤光器、固体摄像元件、图像显示装置、树脂及化合物 |
CN202411425699.6A CN119306932A (zh) | 2020-07-22 | 2021-07-19 | 树脂组合物、膜、滤光器、固体摄像元件、图像显示装置、树脂及化合物 |
KR1020227045784A KR102846367B1 (ko) | 2020-07-22 | 2021-07-19 | 수지 조성물, 막, 광학 필터, 고체 촬상 소자, 화상 표시 장치, 수지 및 화합물 |
KR1020257026471A KR20250123943A (ko) | 2020-07-22 | 2021-07-19 | 수지 조성물, 막, 광학 필터, 고체 촬상 소자, 화상 표시 장치, 수지 및 화합물 |
JP2024105893A JP7717231B2 (ja) | 2020-07-22 | 2024-07-01 | 化合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020124897 | 2020-07-22 | ||
JP2020-124897 | 2020-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022019254A1 true WO2022019254A1 (ja) | 2022-01-27 |
Family
ID=79729586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026920 WO2022019254A1 (ja) | 2020-07-22 | 2021-07-19 | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および化合物 |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP7515592B2 (enrdf_load_stackoverflow) |
KR (2) | KR102846367B1 (enrdf_load_stackoverflow) |
CN (2) | CN119306932A (enrdf_load_stackoverflow) |
WO (1) | WO2022019254A1 (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022176788A1 (ja) * | 2021-02-18 | 2022-08-25 | 富士フイルム株式会社 | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および樹脂の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140048A (ja) * | 1982-02-15 | 1983-08-19 | Shiyoufuu:Kk | トリメリツト酸エステルおよびその酸無水物 |
WO2001004170A1 (fr) * | 1999-07-08 | 2001-01-18 | Mitsui Chemicals, Inc. | Polymere thermoplastique contenant un groupe polaire, son utilisation et ses composes non satures contenant un groupe polaire |
JP2013125065A (ja) * | 2011-12-13 | 2013-06-24 | Nissan Chem Ind Ltd | エステル基含有ジカルボン酸無水物、製造法及びその用途 |
JP2015151465A (ja) * | 2014-02-14 | 2015-08-24 | 富士フイルム株式会社 | 着色樹脂組成物およびこれを用いた硬化膜、カラーフィルタおよびその製造方法、固体撮像素子ならびに画像表示装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5011958B2 (enrdf_load_stackoverflow) * | 1971-11-22 | 1975-05-08 | ||
US5017673A (en) * | 1989-10-12 | 1991-05-21 | Basf Corporation | Nonionically stabilized polyester urethane resin for water-borne coating compositions |
JP2612524B2 (ja) * | 1991-07-09 | 1997-05-21 | 株式会社巴川製紙所 | ポリアニリン誘導体およびその製造方法 |
JPH08100061A (ja) * | 1994-09-28 | 1996-04-16 | Hitachi Chem Co Ltd | ブロックコポリマ、その製造法、液晶配向材料、液晶配向膜、液晶挾持基板及び液晶表示素子 |
KR100813242B1 (ko) | 2006-02-14 | 2008-03-13 | 삼성에스디아이 주식회사 | 고분자 전해질막, 이의 제조 방법 및 이를 구비한 연료전지 |
WO2008147128A1 (en) * | 2007-05-29 | 2008-12-04 | Youl Chon Chemical Co., Ltd. | Chain-end functionalized methoxy poly(ethylene glycol)and metal nano-particles using the same |
JP5909468B2 (ja) * | 2012-08-31 | 2016-04-26 | 富士フイルム株式会社 | 分散組成物、これを用いた硬化性組成物、透明膜、マイクロレンズ、及び固体撮像素子 |
JP6746888B2 (ja) * | 2014-09-30 | 2020-08-26 | 東レ株式会社 | ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ |
JP6589305B2 (ja) | 2015-03-13 | 2019-10-16 | 東洋インキScホールディングス株式会社 | カラーフィルタ用着色組成物、およびカラーフィルタ |
SG11201807941YA (en) * | 2016-03-18 | 2018-10-30 | Toray Industries | Negative-type photosensitive resin composition, cured film, display device provided with cured film, and production method therefor |
KR102516074B1 (ko) * | 2016-11-28 | 2023-03-30 | 토요잉크Sc홀딩스주식회사 | (메타)아크릴계 중합체, (메타)아크릴계 블록 공중합체, 안료 분산체, 감광성 착색 조성물, 컬러 필터, 잉크 조성물, 복합 블록 공중합체, 안료 분산제, 및, 코팅제 |
WO2018123853A1 (ja) * | 2016-12-26 | 2018-07-05 | 東レ株式会社 | 有機el表示装置 |
KR102299736B1 (ko) * | 2017-02-23 | 2021-09-08 | 후지필름 가부시키가이샤 | 감광성 조성물, 경화막, 컬러 필터, 고체 촬상 소자 및 화상 표시 장치 |
CN111164512A (zh) * | 2017-09-29 | 2020-05-15 | 东丽株式会社 | 感光性树脂组合物、固化膜、具备固化膜的元件和有机el显示器及有机el显示器的制造方法 |
KR20200074145A (ko) * | 2017-10-31 | 2020-06-24 | 도레이 카부시키가이샤 | 네가티브형 감광성 수지 조성물, 경화막, 그리고 유기 el 디스플레이 및 그의 제조 방법 |
CN111656277A (zh) * | 2018-01-31 | 2020-09-11 | 东丽株式会社 | 负型感光性树脂组合物、固化膜、具备固化膜的元件及显示装置以及其制造方法 |
JP7095404B2 (ja) | 2018-05-24 | 2022-07-05 | 東洋インキScホールディングス株式会社 | ブロックポリマー |
-
2021
- 2021-07-19 KR KR1020227045784A patent/KR102846367B1/ko active Active
- 2021-07-19 KR KR1020257026471A patent/KR20250123943A/ko active Pending
- 2021-07-19 JP JP2022537993A patent/JP7515592B2/ja active Active
- 2021-07-19 CN CN202411425699.6A patent/CN119306932A/zh active Pending
- 2021-07-19 WO PCT/JP2021/026920 patent/WO2022019254A1/ja active Application Filing
- 2021-07-19 CN CN202180044097.4A patent/CN115916902B/zh active Active
-
2024
- 2024-07-01 JP JP2024105893A patent/JP7717231B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140048A (ja) * | 1982-02-15 | 1983-08-19 | Shiyoufuu:Kk | トリメリツト酸エステルおよびその酸無水物 |
WO2001004170A1 (fr) * | 1999-07-08 | 2001-01-18 | Mitsui Chemicals, Inc. | Polymere thermoplastique contenant un groupe polaire, son utilisation et ses composes non satures contenant un groupe polaire |
JP2013125065A (ja) * | 2011-12-13 | 2013-06-24 | Nissan Chem Ind Ltd | エステル基含有ジカルボン酸無水物、製造法及びその用途 |
JP2015151465A (ja) * | 2014-02-14 | 2015-08-24 | 富士フイルム株式会社 | 着色樹脂組成物およびこれを用いた硬化膜、カラーフィルタおよびその製造方法、固体撮像素子ならびに画像表示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022176788A1 (ja) * | 2021-02-18 | 2022-08-25 | 富士フイルム株式会社 | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および樹脂の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202208470A (zh) | 2022-03-01 |
KR102846367B1 (ko) | 2025-08-14 |
JP7515592B2 (ja) | 2024-07-12 |
JPWO2022019254A1 (enrdf_load_stackoverflow) | 2022-01-27 |
KR20230016676A (ko) | 2023-02-02 |
JP2024124473A (ja) | 2024-09-12 |
CN119306932A (zh) | 2025-01-14 |
CN115916902A (zh) | 2023-04-04 |
KR20250123943A (ko) | 2025-08-18 |
JP7717231B2 (ja) | 2025-08-01 |
CN115916902B (zh) | 2024-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7498837B2 (ja) | 着色樹脂組成物、膜、カラーフィルタ、固体撮像素子、及び、画像表示装置 | |
JP7425093B2 (ja) | 着色樹脂組成物、膜、カラーフィルタ、固体撮像素子、及び、画像表示装置 | |
JP7717231B2 (ja) | 化合物 | |
JP7385758B2 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および化合物 | |
JP2025063188A (ja) | 着色感光性組成物、硬化物、カラーフィルタ、固体撮像素子、画像表示装置、及び、非対称ジケトピロロピロール化合物 | |
JP7229354B2 (ja) | 樹脂組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置、樹脂および化合物 | |
WO2021075393A1 (ja) | 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ | |
WO2022176787A1 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および樹脂の製造方法 | |
WO2022270209A1 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置 | |
JP7397201B2 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置及び樹脂 | |
TWI889869B (zh) | 樹脂組成物、膜、濾光器、固體攝像元件、圖像顯示裝置、樹脂及化合物 | |
TWI895462B (zh) | 樹脂組成物、膜、濾光器、固體攝像元件、圖像顯示裝置、樹脂及化合物 | |
JP7344370B2 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子、及び、画像表示装置 | |
WO2022176788A1 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および樹脂の製造方法 | |
WO2023182017A1 (ja) | 着色組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置 | |
TW202523721A (zh) | 著色樹脂組成物、膜、濾色器、固體攝像元件及圖像顯示裝置 | |
WO2021182268A1 (ja) | 樹脂組成物、膜、光学フィルタ、固体撮像素子、及び、画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21846078 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022537993 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227045784 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21846078 Country of ref document: EP Kind code of ref document: A1 |