WO2018123853A1 - 有機el表示装置 - Google Patents

有機el表示装置 Download PDF

Info

Publication number
WO2018123853A1
WO2018123853A1 PCT/JP2017/046098 JP2017046098W WO2018123853A1 WO 2018123853 A1 WO2018123853 A1 WO 2018123853A1 JP 2017046098 W JP2017046098 W JP 2017046098W WO 2018123853 A1 WO2018123853 A1 WO 2018123853A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
alkali
display device
group
soluble resin
Prior art date
Application number
PCT/JP2017/046098
Other languages
English (en)
French (fr)
Inventor
真一 松木
新井 猛
三好 一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/469,823 priority Critical patent/US20200091265A1/en
Priority to CN201780073485.9A priority patent/CN110024485B/zh
Priority to JP2017567818A priority patent/JP6841242B2/ja
Priority to KR1020197016660A priority patent/KR102363566B1/ko
Publication of WO2018123853A1 publication Critical patent/WO2018123853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B59/00Artificial dyes of unknown constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B7/00Indigoid dyes
    • C09B7/08Other indole-indigos
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to an organic EL display device having at least a substrate, a first electrode, a second electrode, a light emitting pixel, a planarization layer, and a pixel division layer.
  • EL organic electroluminescence
  • the organic EL display device is a self-luminous type, when outside light such as sunlight is incident outdoors, the visibility and contrast are reduced by reflection of the outside light. For this reason, a technique for reducing external light reflection is required. So far, as a highly reliable organic EL display that suppresses the occurrence of defects due to the ingress of light into the device, the light transmittance at each wavelength of 365 nm to 436 nm before the heat treatment is 50% or more. There has been proposed a display device using a heat-resistant resin film having a light transmittance of 10% or less at any wavelength of 365 nm to 436 nm after heat treatment (see, for example, Patent Document 1).
  • a colored film that is a cured product of a colored resin composition containing an alkali-soluble polyimide resin having a specific structure, a colorant, a polymer dispersant, and an organic solvent is applied on the planarizing layer and the first electrode on the drive circuit.
  • An organic EL display device having at least one of the insulating layers has been proposed (see, for example, Patent Document 2).
  • an organic pigment dispersion type color filter it is known to suppress a voltage drop of a liquid crystal display element by suppressing the amount of sodium contained in a pixel or the total amount of sodium and potassium to a low level (for example, (See Patent Document 3). Further, in a pigment dispersion containing organic pigment nanoparticles, the organic pigment has improved display unevenness when a liquid crystal display device is produced by regulating the content of alkali or alkaline earth metal in the dispersion Nanoparticle dispersions have been proposed (see, for example, Patent Document 4).
  • an insulating layer called a pixel dividing layer is formed between a first electrode and a second electrode in order to divide between light emitting pixels, and is flat on a thin film transistor (hereinafter referred to as “TFT”).
  • TFT thin film transistor
  • a layer is formed.
  • it is effective to impart light shielding properties by coloring the pixel dividing layer and the planarizing layer, and materials having high light shielding properties have been developed.
  • an object of the present invention is to provide an organic EL display device having high light shielding properties and excellent reliability.
  • the present inventors suppress pixel shrinkage by reducing the total content of metal elements and halogen elements in a cured film of a photosensitive resin composition containing a colorant, thereby preventing light shielding and reliability. It has been found that the performance can be greatly improved.
  • the present invention mainly has the following configuration.
  • the organic EL display device is a photosensitive resin composition containing (A) an alkali-soluble resin, (B) a colorant, (C) a radical polymerizable compound, and (D) a photopolymerization initiator, (A)
  • the alkali-soluble resin is (A-1) an alkali-soluble resin having a carboxyl group, and further measured by time-of-flight secondary ion mass spectrometry of a cured product obtained by curing the photosensitive resin composition.
  • the total content of metal elements and / or halogen elements in the nonvolatile component is 1 ⁇ 10 17 atoms / cm 3 or more and 1 ⁇ 10 22 atoms / cm 3 or less, and at least the substrate, the first electrode, the second electrode, and the light emission Among the organic EL elements composed of pixels, a planarization layer, and a pixel division layer, the organic EL elements are arranged in the planarization layer and / or the pixel division layer.
  • an organic EL display device having high light shielding properties and high reliability.
  • FIG. 1 is a cross-sectional view of a TFT substrate having a planarization layer and a pixel division layer.
  • FIG. 2 is a process diagram showing a manufacturing process of the organic EL display device of the present invention.
  • FIG. 3A is a schematic diagram (part 1) of a manufacturing procedure of an organic EL display device according to an example.
  • FIG. 3B is a schematic diagram (part 2) of a manufacturing procedure of the organic EL display device according to the example.
  • FIG. 3C is a schematic diagram (part 3) of a manufacturing procedure of the organic EL display device according to the example.
  • FIG. 3D is a schematic diagram (part 4) of a manufacturing procedure of the organic EL display device according to the example.
  • the present invention is an organic EL display device having an organic EL element composed of at least a substrate, a first electrode, a second electrode, a light emitting pixel, a planarization layer, and a pixel division layer, and the planarization layer and / or the pixel
  • the divided layer contains (A-1) an alkali-soluble resin having a carboxyl group (A) an alkali-soluble resin, (B) a colorant, (C) a radical polymerizable compound, and (D) a photopolymerization initiator.
  • the total content of the metal element and the halogen element in the nonvolatile component measured by time-of-flight secondary ion mass spectrometry of the cured product of the photosensitive resin composition is 1 ⁇ .
  • the organic EL display device is 10 17 atoms / cm 3 or more and 1 ⁇ 10 22 atoms / cm 3 or less.
  • the organic EL display device of the present invention has at least a substrate, a first electrode, a second electrode, a light emitting pixel, a planarization layer, and a pixel division layer.
  • An active matrix organic EL display device having a plurality of pixels formed in a matrix is preferable.
  • An active matrix display device includes a light-emitting pixel on a substrate such as glass, and a planarization layer provided so as to cover a lower portion of the light-emitting pixel and a portion other than the light-emitting pixel.
  • a first electrode provided so as to cover at least the lower part of the light emitting pixel and a second electrode provided so as to cover at least the upper part of the light emitting pixel are provided.
  • an insulating pixel dividing layer is provided to divide the light emitting pixels.
  • FIG. 1 shows a cross-sectional view of a TFT substrate having a planarization layer and a pixel division layer.
  • bottom-gate or top-gate TFTs 1 are provided in a matrix, and the TFT insulating layer 3 is formed so as to cover the TFTs 1.
  • a wiring 2 connected to the TFT 1 is provided under the TFT insulating layer 3.
  • a contact hole 7 opening the wiring 2 and a planarizing layer 4 are provided in a state in which these are embedded.
  • An opening is provided in the planarizing layer 4 so as to reach the contact hole 7 of the wiring 2.
  • An ITO 5 transparent electrode
  • the ITO 5 serves as the first electrode of the organic EL display device.
  • a pixel dividing layer 8 is formed so as to cover the periphery of the ITO 5.
  • This organic EL display device may be a top emission type that emits emitted light from the opposite side of the substrate 6 or a bottom emission type that extracts light from the substrate 6 side.
  • an organic EL display device having emission peak wavelengths in the red, green, and blue regions is arranged on the substrate 6, or a white organic EL display device is manufactured on the entire surface and used in combination with a separate color filter.
  • a color display normally, the peak wavelength of light in the red region to be displayed is 560 to 700 nm, the peak wavelength of light in the green region is 500 to 560 nm, and the peak wavelength of light in the blue region is 420 to 500 nm.
  • a TFT (thin film transistor) 1 and a wiring 2 are formed on a substrate 6 and a planarization layer 4 is formed so as to cover the unevenness. It can be obtained by forming the first electrode 5, the pixel dividing layer 8 and a light emitting pixel (not shown) on the planarizing layer 4 and further forming a second electrode (not shown) on the light emitting pixel.
  • the planarization layer 4 and the pixel division layer 8 can be formed, for example, by applying a photosensitive resin composition described later, patterning by photolithography as necessary, and curing.
  • a photosensitive resin composition described later it is common to form the second electrode with a solid over the entire light emitting region. It is preferable to perform sealing after forming the second electrode.
  • an organic EL display device is considered to be vulnerable to oxygen and moisture, and it is preferable to perform sealing in an atmosphere with as little oxygen and moisture as possible in order to obtain a highly reliable display device.
  • a glass substrate such as soda glass or non-alkali glass
  • a flexible substrate such as a polyethylene terephthalate film or a polyimide film
  • the thickness of the glass substrate is preferably 0.5 mm or more.
  • the material of the glass substrate is preferably alkali-free glass or soda lime glass with a barrier coating such as SiO 2 because there are few ions eluted from the glass.
  • the first electrode is preferably transparent or translucent in order to efficiently inject holes into the organic layer and extract light.
  • the material constituting the first electrode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO), and metals such as gold, silver, and chromium.
  • Inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole, and polyaniline, carbon nanotubes, and graphene. Two or more of these may be used, and may have a laminated structure of different materials.
  • the form is not specifically limited, For example, you may have fine structures, such as a metal mesh and silver nanowire. Among these, ITO glass and Nesa glass are preferable.
  • the first electrode preferably has a low resistance from the viewpoint of power consumption of the organic EL display device.
  • a low resistance from the viewpoint of power consumption of the organic EL display device.
  • the electric resistance value is 300 ⁇ / ⁇ or less, but since a substrate of about 10 ⁇ / ⁇ is now available, a low resistance of 20 ⁇ / ⁇ or less. It is more preferable to use the substrate.
  • the thickness of the first electrode can be arbitrarily selected according to the electric resistance value, and is generally about 45 to 300 nm.
  • the second electrode can efficiently inject electrons into the light emitting layer.
  • the material constituting the second electrode include metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, and these metals and low work function metals such as lithium, sodium, potassium, calcium, and magnesium. And alloys thereof. Two or more of these may be used, and may have a laminated structure of different materials. Among these, aluminum, silver, and magnesium are preferred from the viewpoints of electrical resistance value, ease of film formation, film stability, luminous efficiency, and the like. It is more preferable to contain magnesium and silver, electron injection into the light emitting layer is facilitated, and the driving voltage can be further reduced.
  • the method for forming the first electrode and the second electrode examples include resistance heating, electron beam, sputtering, ion plating, and coating.
  • the electrode used as the cathode preferably has a protective layer on the electrode.
  • the material constituting the protective layer include inorganic substances such as silica, titania and silicon nitride, and organic polymer compounds such as polyvinyl alcohol, polyvinyl chloride and hydrocarbon polymer compounds.
  • the material constituting the protective layer is preferably a material having light transmittance in the visible light region.
  • the light emitting pixel is a portion where the first electrode and the second electrode arranged to face each other intersect and overlap each other, and when the pixel division layer is formed on the first electrode, the range further regulated by the pixel division layer It is.
  • the shape of the light emitting pixel is not particularly limited, and may be, for example, a rectangular shape or a circular shape, and can be formed in an arbitrary shape depending on the shape of the pixel division layer.
  • the portion where the switching means is formed may be arranged so as to occupy a part of the light emitting pixel, and the shape of the light emitting pixel may be such that a part thereof is missing.
  • the configuration of the light emitting pixel for example, a configuration consisting of only a light emitting layer, 1) a light emitting layer / electron transport layer, 2) a hole transport layer / light emitting layer, 3) a hole transport layer / light emitting layer / electron transport layer, 4) Hole injection layer / hole transport layer / light emitting layer / electron transport layer, 5) Hole transport layer / light emitting layer / electron transport layer / electron injection layer, 6) Hole injection layer / hole transport layer / light emission Examples include a layered structure such as layer / electron transport layer / electron injection layer.
  • the intermediate layer is generally also called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer.
  • Examples of the tandem configuration include 7) hole transport layer / light emitting layer / electron transport layer / charge generation layer / hole transport layer / light emitting layer / electron transport layer, 8) hole injection layer / hole transport layer Laminated structure including a charge generation layer as an intermediate layer, such as / emission layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emission layer / electron transport layer / electron injection layer Can be mentioned.
  • pyridine derivatives and phenanthroline derivatives are preferable.
  • Each of the layers may be a single layer or a plurality of layers.
  • a layer (capping layer) using a capping material for improving light emission efficiency due to the optical interference effect may be included on the light emitting pixel.
  • an aromatic amine derivative is preferable.
  • the hole injection layer is a layer that is inserted between the anode and the hole transport layer and facilitates the transfer of holes from the anode to the hole transport layer. If a hole injection layer is present between the hole transport layer and the anode, it can be driven at a lower voltage, the durability life can be improved, and the carrier balance of the organic EL display device is improved. , Luminous efficiency can be improved.
  • Examples of the material constituting the hole injection layer include 4,4'-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4'-bis (N- (1 And biscarbazole derivatives such as -naphthyl) -N-phenylamino) biphenyl (NPD), bis (N-arylcarbazole), and bis (N-alkylcarbazole).
  • the hole injection layer may use two or more of these materials, or may have a stacked structure of different materials.
  • the hole injection layer is preferably further doped with an acceptor compound.
  • the acceptor compound is a material that forms a charge transfer complex with the material that forms the hole injection layer. By using such an acceptor compound, the conductivity of the hole injection layer is improved, the driving voltage of the organic EL display device can be further reduced, and the light emission efficiency and the durability life can be further improved.
  • acceptor compound examples include metal oxides, organic compounds having a nitro group, a cyano group, a halogen or a trifluoromethyl group in the molecule, quinone compounds, acid anhydride compounds, fullerenes, and the like.
  • metal oxides and cyano group-containing organic compounds are preferred because they are easy to handle and easy to deposit.
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or may be configured by laminating a plurality of layers.
  • the hole transport layer has an ionization potential of 5.1 to 6.0 eV (measured value of deposited film AC-2 (RIKEN meter)), high triplet energy level, high hole transportability and thin film stability. Is preferred.
  • the hole transport layer may be used as a hole transport material of an organic EL display device using a triplet light emitting material. Examples of the material constituting the hole transport layer include those exemplified as the material constituting the hole injection layer.
  • the light emitting layer is a layer that emits light when the light emitting material is excited by recombination energy due to collision of holes and electrons.
  • the light emitting layer may be a single layer or may be configured by laminating a plurality of layers, each formed of a light emitting material (host material, dopant material).
  • Each light emitting layer may be composed of only one of a host material and a dopant material, or may be composed of a combination of one or more host materials and one or more dopant materials. That is, in each light emitting layer, only the host material or the dopant material may emit light, or both the host material and the dopant material may emit light.
  • the light emitting layer is preferably composed of a combination of a host material and a dopant material.
  • the dopant material may be contained in the host material as a whole or partially.
  • the content of the dopant material in the light emitting layer is preferably 30 parts by weight or less and more preferably 20 parts by weight or less with respect to 100 parts by weight of the host material from the viewpoint of suppressing the concentration quenching phenomenon.
  • the light-emitting layer can be formed by a method in which a host material and a dopant material are co-evaporated, a method in which a host material and a dopant material are mixed in advance, and then evaporated.
  • Examples of the dopant material constituting the light emitting material include condensed ring derivatives such as anthracene and pyrene, metal complex compounds such as tris (8-quinolinolato) aluminum, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, and tetraphenyl.
  • Examples thereof include butadiene derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, polyphenylene vinylene derivatives, and the like.
  • the ligand constituting the metal complex compound can be appropriately selected from the required emission color, organic EL display device performance, and relationship with the host compound, and includes nitrogen-containing compounds such as phenylpyridine skeleton, phenylquinoline skeleton, and carbene skeleton.
  • It preferably has an aromatic heterocycle, and specific examples include tris (2-phenylpyridyl) iridium complex bis (2-phenylpyridyl) (acetylacetonato) iridium complex and tetraethylporphyrin platinum complex. You may comprise a metal complex compound using 2 or more types of these.
  • Examples of the host material constituting the light emitting material include compounds having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, and indene. You may comprise a luminescent material using 2 or more types of these.
  • metal chelated oxinoid compounds dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, etc. are suitable. Used for. Among them, a compound having an anthracene skeleton or a pyrene skeleton is more preferable because high-efficiency light emission is easily obtained.
  • the electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer.
  • the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, the electron transport layer is preferably a substance that has a large electron affinity and electron mobility, is excellent in stability, and is unlikely to generate trapping impurities during manufacturing and use.
  • a compound having a molecular weight of 400 or more is preferable because a low molecular weight compound is likely to be crystallized to deteriorate the film quality.
  • the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
  • the electron transport layer may be a single layer or may be configured by laminating a plurality of layers.
  • Examples of the electron transport material constituting the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene. You may comprise an electron carrying layer using 2 or more types of these. Among these, a compound having a heteroaryl ring structure containing electron-accepting nitrogen is preferable because the driving voltage is further reduced and high-efficiency light emission can be obtained.
  • the electron-accepting nitrogen mentioned here represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, such multiple bonds have electron accepting properties. Therefore, the aromatic heterocyclic ring containing electron-accepting nitrogen has high electron affinity. Since the electron transport material having electron-accepting nitrogen easily receives electrons from the cathode having high electron affinity, the driving voltage can be further reduced. In addition, the electron transport material having electron-accepting nitrogen increases the supply of electrons to the light-emitting layer and increases the recombination probability, so that the light emission efficiency is improved.
  • heteroaryl ring containing electron-accepting nitrogen examples include a triazine ring and a pyridine ring.
  • These compounds having a heteroaryl ring structure include triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, 2,5-bis (6 ′-(2 ′, 2 ′′- Bipyridyl))-1,1-dimethyl-3,4-diphenylsilole and other bipyridine derivatives, 1,3-bis (4 ′-(2,2 ′: 6′2 ′′ -terpyridinyl)) benzene and other terpyridine derivatives Two or more of these are preferably used from the viewpoint of electron transport capability.
  • the electron transport layer may contain a donor compound.
  • the donor compound is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer.
  • Examples of the donor compound include alkali metals, inorganic salts of alkali metals, complexes of alkali metals and organic substances, alkaline earth metals, inorganic salts of alkaline earth metals, or complexes of alkaline earth metals and organic substances. It is done.
  • the donor compound is easy to deposit in vacuum and is excellent in handling
  • a complex with an inorganic salt or an organic substance is preferable to a metal simple substance, and it is easy to handle in the air and easily adjust the addition concentration. And the complex is more preferable.
  • the ionization potential of the electron transport layer is preferably 5.6 eV or more, and more preferably 5.6 eV or more.
  • the ionization potential of the electron transport layer is preferably 8.0 eV or less, and more preferably 7.0 eV or less.
  • Examples of the method for forming each layer constituting the organic EL display device include a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, a molecular lamination method, and a coating method.
  • the resistance heating vapor deposition method and the electron beam vapor deposition method are preferable from the viewpoint of the characteristics of the organic EL display device.
  • the total thickness of the organic layer including the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer can be appropriately selected depending on the resistance value of the light emitting substance, and is preferably 1 to 1000 nm.
  • the thicknesses of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer are each preferably 1 nm or more, and more preferably 5 nm or more.
  • the thicknesses of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer are each preferably 200 nm or less, and more preferably 100 nm or less.
  • planarization layer and / or the pixel division layer is formed of a cured product of a photosensitive resin composition described later, and the metal element and the halogen element in the nonvolatile component measured by time-of-flight secondary ion mass spectrometry of the cured product.
  • the total content is 1.0 ⁇ 10 17 atoms / cm 3 or more and 1.0 ⁇ 10 22 atoms / cm 3 or less.
  • ITO that becomes a pattern opening due to a trace amount of the metal element and / or halogen element adhering to the substrate when forming the planarization layer and / or the pixel division layer Since the conductivity of the electrode is improved, the driving voltage of the organic EL display device can be reduced and the reliability can be improved.
  • examples of the method for bringing the metal element and / or the halogen element into the above range include a method using a photosensitive resin composition described later.
  • the metal element in the present invention refers to an element exhibiting metal properties, and includes free ions.
  • an alkali-soluble resin having (A-1) a carboxyl group is included as an alkali-soluble resin, it is easily trapped by salt formation and interaction with the carboxyl group.
  • an element and an alkaline-earth metal element are included, it is more preferable that an alkali metal element is included, and it is further preferable that sodium and potassium are included.
  • the total content of alkali metal elements and alkaline earth metal elements is preferably 1.0 ⁇ 10 17 atoms / cm 3 or more, and the drive voltage of the organic EL display device can be further reduced and the reliability can be further improved.
  • the total content of alkali metal elements and alkaline earth metal elements is preferably 5.0 ⁇ 10 21 atoms / cm 3 or less, and the reliability of the organic EL display device can be further improved.
  • the total content of alkali metal elements is preferably 1.0 ⁇ 10 17 atoms / cm 3 or more, and the driving voltage of the organic EL display device can be further reduced and the reliability can be further improved.
  • the total content of alkali metal elements is preferably 4.5 ⁇ 10 21 atoms / cm 3 or less, and the reliability of the organic EL display device can be further improved.
  • the total content of sodium and potassium is preferably 1.0 ⁇ 10 17 atoms / cm 3 or more, and the driving voltage of the organic EL display device can be further reduced.
  • the total content of sodium and potassium is preferably 4.0 ⁇ 10 21 atoms / cm 3 or less, and the reliability of the organic EL display device can be further improved.
  • the halogen element in the present invention refers to an element belonging to Group 17 in the periodic table, and includes free ions.
  • an alkali-soluble resin includes (A-1c) an alkali-soluble resin having a carboxyl group, an amino group and / or an amide group, the amino group and / or amide group is Since the salt can be formed with the halogen element and trapped, the reliability of the organic EL display device can be further improved.
  • the total chlorine content is preferably 1.0 ⁇ 10 17 atoms / cm 3 or more, and the driving voltage of the organic EL display device can be further reduced. On the other hand, the total chlorine content is preferably 5.0 ⁇ 10 21 atoms / cm 3 or less, and the reliability of the organic EL display device can be further improved.
  • the metal element and the halogen element in the nonvolatile component of the cured product of the photosensitive resin composition can be quantified by the following method.
  • a specific amount of a known element of interest is injected into the cured film using IMX-3500RS (manufactured by ULVAC), and a relative sensitivity coefficient (RSF) is calculated by the following formula.
  • RSF relative sensitivity coefficient
  • the ion implantation amount is preferably 1.0 ⁇ 10 13 atoms / cm 2 to 5.0 ⁇ 10 15 atoms / cm 2 .
  • ⁇ 0 ion implantation amount (atom / cm 2 ) ⁇ d 0 : depth per measurement cycle (cm)
  • I i Impurity ion intensity (counts)
  • I BG Background intensity (counts)
  • I ref Ionic strength (counts) of cured film
  • the concentrations of the metal element and the halogen element (target element) in the cured film can be quantified from the TOF-SIMS analysis by the following formulas.
  • Target element concentration RSF (atom / cm 3 ) ⁇ target element ionic strength (counts) / ionic strength (counts) of cured film.
  • location used for determination was calculated at a position of 0.5 ⁇ m from the surface layer of the cured film.
  • the pixel division layer aperture ratio in the display area of the organic EL display device according to the present invention is preferably 20% or less.
  • the pixel division layer opening ratio refers to the area ratio of the pixel division layer opening with respect to the area of the entire organic EL display device.
  • the pixel division layer aperture ratio decreases, and the influence of pixel shrinking increases. Since the organic EL display device of the present invention can suppress emission luminance reduction and pixel shrinkage and improve the reliability of the organic EL display device, the pixel division layer aperture ratio is 20% or less, which is greatly affected by pixel shrinkage. In some cases, the effect is particularly remarkable.
  • the photosensitive resin composition used as the raw material of the cured film which comprises a planarization layer and / or a pixel division layer is demonstrated.
  • the photosensitive resin composition contains (A) an alkali-soluble resin, (B) a colorant, (C) a radical polymerizable compound, and (D) a photopolymerization initiator.
  • the photosensitive resin composition may further contain other components.
  • the (A) alkali-soluble resin means that the pre-baked film of the resin is developed with a 2.38 mass% TMAH aqueous solution for 60 seconds and rinsed with water for 30 seconds. It refers to a resin that is at least min.
  • the (A) alkali-soluble resin preferably contains (A-1) an alkali-soluble resin having a carboxyl group from the viewpoint of developability.
  • Alkali-soluble resins having a carboxyl group include (A-1a) acrylic resins, (A-1b) cardo resins, and (A-1c) carboxyls because of the ease of introduction of carboxylic acid during resin synthesis.
  • An alkali-soluble resin having a group and an amino group and / or an amide group is preferred, and two or more of these may be contained.
  • Examples of the alkali-soluble resin having a carboxyl group and an amino group and / or an amide group include a polyimide precursor and an acrylic resin.
  • (A-1c) an alkali-soluble resin having a carboxyl group, an amino group and / or an amide group is used.
  • (A-1a) acrylic resin and (A-1b) cardo resin are more preferable.
  • the carboxylic acid equivalent of the alkali-soluble resin having a carboxyl group is preferably 400 g / mol or more from the viewpoint of improving the trapping property of the metal element and the halogen element and further improving the reliability of the organic EL display device.
  • the carboxylic acid equivalent of the alkali-soluble resin having a carboxyl group is preferably 1000 g / mol or less from the viewpoint of improving the remaining film ratio during development.
  • the acrylic resin preferably has an ethylenically unsaturated double bond.
  • the (A-1a) acrylic resin is a resin that can easily introduce an ethylenically unsaturated double bond into a side chain branched from the main chain of the resin.
  • the acrylic resin has photocurability and is cured by exposure to form a three-dimensional cross-linked structure of carbon-carbon bonds. Can be improved.
  • the acrylic resin has a structural unit represented by the following general formula (61) and / or a structure represented by the following general formula (62) from the viewpoint of improving sensitivity during exposure and mechanical properties of the cured film. It is preferable to contain a unit.
  • Rd 1 in the general formula (61) and Rd 2 in the general formula (62) are each independently an alkyl group having 1 to 10 carbon atoms substituted by an organic group having an ethylenically unsaturated double bond.
  • R 200 to R 205 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or 4 to 10 carbon atoms.
  • X 90 and X 91 each independently represent a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Rd 1 in the general formula (61) and Rd 2 in the general formula (62) are each independently an alkyl group having 1 to 6 carbon atoms substituted by an organic group having an ethylenically unsaturated double bond.
  • a cycloalkyl group having 4 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is preferable.
  • R 200 to R 205 are each independently preferably hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • X 90 and X 91 are preferably each independently a direct bond, an alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 4 to 7 carbon atoms, or an arylene group having 6 to 10 carbon atoms.
  • a cardo resin has a structure in which a main chain and a bulky side chain having a cyclic structure such as a fluorene ring having high heat resistance and a rigid structure are connected by one atom. It is a curable resin. By containing the (A-1b) cardo resin, the heat resistance of the cured product can be improved.
  • the cardo resin preferably has an ethylenically unsaturated double bond.
  • the (A-1b) cardo resin is a resin that can easily introduce an ethylenically unsaturated double bond into a side chain branched from the main chain of the resin.
  • the (A-1b) cardo resin has photocurability and is UV-cured by exposure to form a three-dimensional crosslinked structure of carbon-carbon bonds. For this reason, the sensitivity at the time of exposure can be improved.
  • Alkali-soluble resin having carboxyl group and amino group and / or amide group An alkali-soluble resin having a carboxyl group and an amino group and / or amide group traps a metal element more efficiently, and an amine structure and / or amide structure traps a halogen element more efficiently.
  • the reliability of the display device can be further improved.
  • the dispersion stability of the colorant (B) described later can be improved.
  • the amino group is preferably a tertiary amino group and can further improve the trapping property with respect to the halogen element and the dispersion stability of the colorant.
  • the alkali-soluble resin having a carboxyl group and an amino group and / or an amide group include a polyimide precursor and an acrylic resin. As an example, a polyimide precursor will be described below.
  • the polyimide precursor has a tetracarboxylic acid and / or its derivative residue and a diamine and / or its derivative residue.
  • the polyimide precursor can be obtained, for example, by reacting tetracarboxylic acid, corresponding tetracarboxylic dianhydride or tetracarboxylic diester dichloride and the like with diamine, corresponding diisocyanate compound or trimethylsilylated diamine, and the like. it can.
  • Examples of the polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide, polyisoimide, and the like.
  • the polyimide precursor is a thermosetting resin, and is formed by thermosetting at high temperature and dehydrating and ring-closing to form a highly heat-resistant imide bond, thereby obtaining a later-described (A-2a) polyimide resin. It is preferable that a polyimide precursor contains the structural unit represented by following General formula (3) from a viewpoint of the heat resistance of a cured film, and the resolution improvement after image development.
  • R 9 represents a 4- to 10-valent organic group
  • R 10 represents a 2- to 10-valent organic group
  • R 11 represents a group represented by the following general formula (5) or the following general formula (6)
  • R 12 represents a phenolic hydroxyl group, a sulfonic acid group, or a mercapto group
  • R 13 represents a phenolic hydroxyl group
  • a sulfonic acid group, a mercapto group, or a group represented by the following general formula (5) or the following general formula (6) is represented.
  • t represents an integer of 2 to 8
  • u represents an integer of 0 to 6
  • v represents an integer of 0 to 8
  • R 19 in the general formula (5) and R 20 and R 21 in the general formula (6) are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or carbon. Represents an aryl group of formula 6-15.
  • R 19 in the general formula (5) and R 20 and R 21 in the general formula (6) are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms, or carbon.
  • An aryl group having a number of 6 to 10 is preferred.
  • the above alkyl group, acyl group and aryl group may have a substituent.
  • R 9 represents a tetracarboxylic acid and / or a derivative residue thereof
  • R 10 represents a diamine and / or a derivative residue thereof.
  • the tetracarboxylic acid derivative include tetracarboxylic dianhydride, tetracarboxylic acid dichloride, and tetracarboxylic acid active diester.
  • the diamine derivative include diisocyanate compounds and trimethylsilylated diamine.
  • R 9 preferably has an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and / or an aromatic structure having 6 to 30 carbon atoms. More preferably, it has an aliphatic structure having 4 to 15 carbon atoms, an alicyclic structure having 4 to 15 carbon atoms, and / or an aromatic structure having 6 to 25 carbon atoms.
  • R 10 preferably has an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and / or an aromatic structure having 6 to 30 carbon atoms, and has 4 to 15 carbon atoms.
  • v is preferably an integer of 1 to 8.
  • Said aliphatic structure, alicyclic structure, and aromatic structure may have a hetero atom, and may have a substituent.
  • Examples of the aliphatic structure of R 9 and R 10 in the general formula (3) include an ethane structure, an n-butane structure, an n-pentane structure, an n-hexane structure, an n-decane structure, and a 3,3-dimethylpentane structure. , Di-n-butyl ether structure, di-n-butyl ketone structure, and di-n-butyl sulfone structure. Moreover, as the substituent, a halogen atom and an alkoxy group are mentioned, for example. Examples of the aliphatic structure having a substituent include a 3,3-bis (trifluoromethyl) pentane structure and a 3-methoxypentane structure.
  • Examples of the alicyclic structure of R 9 and R 10 in the general formula (3) include a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, an ethylcyclohexane structure, a tetrahydrofuran structure, a bicyclohexyl structure, a 2,2-dicyclohexylpropane structure, Examples include a dicyclohexyl ether structure, a dicyclohexyl ketone structure, and a dicyclohexyl sulfone structure.
  • substituent a halogen atom and an alkoxy group are mentioned, for example.
  • Examples of the alicyclic structure having a substituent include a 1,1-dicyclohexyl-1,1-bis (trifluoromethyl) methane structure and a 1,1-dicyclohexyl-1-methoxymethane structure.
  • Examples of the aromatic structure of R 9 and R 10 in the general formula (3) include a benzene structure, an ethylbenzene structure, a naphthalene structure, a 1,2,3,4-tetrahydronaphthalene structure, a fluorene structure, a biphenyl structure, and a terphenyl structure. 2,2-diphenylpropane structure, diphenyl ether structure, diphenyl ketone structure, diphenyl sulfone structure, and 9,9-diphenylfluorene structure.
  • a halogen atom and an alkoxy group are mentioned, for example.
  • Examples of the aromatic structure having a substituent include a 1,1-diphenyl-1,1-bis (trifluoromethyl) methane structure and a 1,1-diphenyl-1-methoxymethane structure.
  • the photosensitive resin composition used in the present invention comprises (A-1) an alkali-soluble resin having a phenolic hydroxyl group from the viewpoint of development margin and cured film pattern formation in addition to (A-1) an alkali-soluble resin having a carboxyl group. It is preferable to include a soluble resin.
  • Examples of (A-2) alkali-soluble resins having a phenolic hydroxyl group include (A-2a) polyimide resins, (A-2b) polybenzoxazole resins, (A-2c) polybenzoxazole precursors, novolak resins, and the like. And two or more of these may be contained.
  • (A-2a) polyimide resin and (A-2b) polybenzoxazole resin are preferable from the viewpoint of heat resistance.
  • the (A-2a) polyimide resin in the present invention is a resin having a structural unit composed of an imide bond as a main component, and even if it has a carboxyl group as a residue of an imide ring-closing reaction, (A- 2) It belongs to an alkali-soluble resin having a phenolic hydroxyl group.
  • the photosensitive resin composition used in the present invention comprises (A-1) (A-2) a total of 100 parts by weight of the alkali-soluble resin having a carboxyl group and (A-2) the alkali-soluble resin having a phenolic hydroxyl group. 1) It is preferable to contain 5 parts by weight or more of an alkali-soluble resin having a carboxyl group, and the pattern processability during development can be improved. On the other hand, the photosensitive resin composition preferably contains (A-1) 40 parts by weight or less of an alkali-soluble resin having a carboxyl group, and can improve the residual film ratio during development.
  • Mw of the alkali-soluble resin having a phenolic hydroxyl group (A-2) used in the present invention is preferably 500 or more, more preferably 1,000 or more, and more preferably 1,500 or more in terms of polystyrene measured by GPC. preferable. When Mw is within this range, the resolution after development can be improved.
  • Mw is preferably 100,000 or less, more preferably 50,000 or less, and further preferably 30,000 or less. When Mw is within this range, leveling properties during coating and pattern processability with an alkali developer can be improved.
  • the polyimide resin has tetracarboxylic acid and / or its derivative residue and diamine and / or its derivative residue.
  • Examples of the (A-2a) polyimide resin include imidized polyimide precursors exemplified as the above (A1-c), and the polyimide precursor is subjected to dehydration and cyclization by a reaction using heat, acid, base, or the like. Can be obtained.
  • the (A-2a) polyimide resin preferably contains a structural unit represented by the following general formula (1) from the viewpoint of improving the heat resistance of the cured film.
  • R 1 represents a 4- to 10-valent organic group
  • R 2 represents a 2- to 10-valent organic group
  • R 3 and R 4 each independently represent a phenolic hydroxyl group, a sulfonic acid group, a mercapto group, or a group represented by the general formula (5) or the general formula (6).
  • p represents an integer of 0 to 6
  • q represents an integer of 0 to 8.
  • R 1 in the general formula (1) represents a tetracarboxylic acid and / or a derivative residue thereof
  • R 2 represents a diamine and / or a derivative residue thereof.
  • the tetracarboxylic acid derivative include tetracarboxylic dianhydride, tetracarboxylic acid dichloride, and tetracarboxylic acid active diester.
  • diamine derivatives include diisocyanate compounds and trimethylsilylated diamines.
  • R 1 is a 4- to 10-valent aliphatic structure having an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and / or an aromatic structure having 6 to 30 carbon atoms.
  • An organic group is preferable, and a tetravalent to tetravalent organic group having an aliphatic structure having 4 to 15 carbon atoms, an alicyclic structure having 4 to 15 carbon atoms, and / or an aromatic structure having 6 to 25 carbon atoms is more preferable.
  • R 2 is preferably a divalent to divalent organic group having an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and / or an aromatic structure having 6 to 30 carbon atoms, A divalent to decavalent organic group having an aliphatic structure having 4 to 15 carbon atoms, an alicyclic structure having 4 to 15 carbon atoms, and / or an aromatic structure having 6 to 25 carbon atoms is more preferable.
  • q is preferably an integer of 1 to 8.
  • Said aliphatic structure, alicyclic structure, and aromatic structure may have a hetero atom, and may have a substituent.
  • Examples of the aliphatic structure, alicyclic structure, and aromatic structure of R 1 and R 2 of the general formula (1) include, for example, the aliphatic structure and alicyclic structure of R 9 and R 10 of the general formula (3), respectively. What was illustrated as a structure and an aromatic structure is mentioned.
  • the (A-2a) polyimide resin preferably contains a structural unit represented by the general formula (1) as a main component.
  • the polyimide resin is represented by the general formula (1).
  • the structural unit is preferably contained in an amount of 50 to 100 mol%.
  • cured material can be improved as content of the structural unit represented by General formula (1) exists in the said range.
  • content of the structural unit represented by General formula (1) 60 mol% or more is more preferable, and 70 mol% or more is further more preferable.
  • the polybenzoxazole resin has a dicarboxylic acid and / or a derivative residue thereof, and a bisaminophenol compound and / or a derivative residue thereof.
  • Examples of (A-2b) polybenzoxazole resins include (A-2c) dehydrated ring-closed products of polybenzoxazole precursors described later, and (A-2c) polybenzoxazole precursors are heated and phosphoric anhydride. Can be obtained by dehydration and ring closure by a reaction using a base or a carbodiimide compound.
  • the (A-2b) polybenzoxazole resin preferably contains a structural unit represented by the following general formula (2) from the viewpoint of improving the heat resistance of the cured film.
  • R 5 represents a divalent to 10 valent organic group
  • R 6 represents a 4 to 10 valent organic group having an aromatic structure
  • R 7 and R 8 each independently represent a phenolic hydroxyl group, a sulfonic acid group or a mercapto group.
  • r represents an integer of 0 to 8
  • s represents an integer of 0 to 6.
  • R 5 in the general formula (2) represents a dicarboxylic acid and / or a derivative residue thereof
  • R 6 represents a bisaminophenol compound and / or a derivative residue thereof.
  • the dicarboxylic acid derivative include dicarboxylic acid anhydrides, dicarboxylic acid chlorides, dicarboxylic acid active esters, tricarboxylic acid anhydrides, tricarboxylic acid chlorides, tricarboxylic acid active esters, and diformyl compounds.
  • R 5 is a 2 to 10 valent aliphatic structure having an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and / or an aromatic structure having 6 to 30 carbon atoms.
  • An organic group is preferable, and a divalent to decavalent organic group having an aliphatic structure having 4 to 15 carbon atoms, an alicyclic structure having 4 to 15 carbon atoms, and / or an aromatic structure having 6 to 25 carbon atoms is more preferable.
  • R 6 is preferably a 4- to 10-valent organic group having an aromatic structure having 6 to 30 carbon atoms, and more preferably a 4- to 10-valent organic group having an aromatic structure having 6 to 25 carbon atoms.
  • s is preferably an integer of 1 to 8.
  • Said aliphatic structure, alicyclic structure, and aromatic structure may have a hetero atom, and may have a substituent.
  • Examples of the aliphatic structure, alicyclic structure, and aromatic structure of R 5 and R 6 in the general formula (2) include, for example, the aliphatic structure and alicyclic structure of R 9 and R 10 in the general formula (3), respectively. What was illustrated as a structure and an aromatic structure is mentioned.
  • the polybenzoxazole precursor has a dicarboxylic acid and / or a derivative residue thereof, and a bisaminophenol compound and / or a derivative residue thereof.
  • a polybenzoxazole precursor can be obtained, for example, by reacting a dicarboxylic acid, a corresponding dicarboxylic acid dichloride or a dicarboxylic acid active diester with a bisaminophenol compound as a diamine. .
  • Examples of the (A-2c) polybenzoxazole precursor include polyhydroxyamide.
  • the polybenzoxazole precursor preferably contains a structural unit represented by the following general formula (4) from the viewpoint of improving the heat resistance of the cured film and improving the resolution after development.
  • R 14 represents a 2 to 10 valent organic group
  • R 15 represents a 4 to 10 valent organic group having an aromatic structure
  • R 16 represents a phenolic hydroxyl group, a sulfonic acid group or a mercapto group
  • R 17 represents a phenolic hydroxyl group
  • R 18 represents a sulfonic acid group or a mercapto group.
  • w represents an integer of 0 to 8
  • x represents an integer of 2 to 8
  • y represents an integer of 0 to 6, and 2 ⁇ x + y ⁇ 8.
  • R 14 in the general formula (4) represents a dicarboxylic acid and / or a derivative residue thereof
  • R 15 represents a bisaminophenol compound and / or a derivative residue thereof.
  • the dicarboxylic acid derivative include dicarboxylic acid anhydrides, dicarboxylic acid chlorides, dicarboxylic acid active esters, tricarboxylic acid anhydrides, tricarboxylic acid chlorides, tricarboxylic acid active esters, and diformyl compounds.
  • R 14 is a 2 to 10 valent aliphatic structure having an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and / or an aromatic structure having 6 to 30 carbon atoms.
  • An organic group is preferable, and a divalent to decavalent organic group having an aliphatic structure having 4 to 15 carbon atoms, an alicyclic structure having 4 to 15 carbon atoms, and / or an aromatic structure having 6 to 25 carbon atoms is more preferable.
  • R 15 is preferably a 4- to 10-valent organic group having an aromatic structure having 6 to 30 carbon atoms, and more preferably a 4- to 10-valent organic group having an aromatic structure having 6 to 25 carbon atoms.
  • Said aliphatic structure, alicyclic structure, and aromatic structure may have a hetero atom, and may have a substituent.
  • Examples of the aliphatic structure, alicyclic structure, and aromatic structure of R 14 and R 15 in the general formula (4) include, for example, the aliphatic structure and alicyclic structure of R 9 and R 10 in the general formula (3), respectively. What was illustrated as a structure and an aromatic structure is mentioned.
  • the novolak resin has an aromatic structure derived from a phenol compound.
  • the novolak resin can be obtained by reacting a phenol compound with an aldehyde compound or a ketone compound. These are preferably reacted in the presence of an acid catalyst, in a solvent, or in the absence of a solvent. When an aldehyde compound and / or a ketone compound have an aromatic structure, they also have an aromatic structure derived from them.
  • the heat resistance of the resulting cured product can be improved.
  • the novolak resin has a phenolic hydroxyl group as the alkali-soluble group, so that the alkali development margin can be improved.
  • the phenolic hydroxyl group it may further have a weakly acidic group such as a hydroxyimide group.
  • phenol compound examples include phenol, o-cresol, m-cresol, p-cresol, 2,5-xylenol, 3,5-xylenol, 2-ethylphenol, 3-ethylphenol, 4-ethylphenol, 4- n-propylphenol, 4-n-butylphenol, 4-t-butylphenol, 1-naphthol, 2-naphthol, 4,4′-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, catechol, resorcinol, 1,4-hydroquinone, pyrogallol, 1,2,4-benzenetriol, phloroglucinol and the like can be mentioned.
  • aldehyde compound examples include formaldehyde, paraformaldehyde, acetaldehyde, paraaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde, and the like.
  • ketone compound examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
  • Examples of the colorant (B) include (B-1) organic pigments, (B-2) inorganic pigments, and (B-3) dyes.
  • the colorant may contain two or more of these.
  • (B-1) organic pigments and (B-2) inorganic pigments are preferred, and from the viewpoint of bringing the content of metal elements and halogen elements into the desired ranges described above, (B-1) Organic pigments are more preferable.
  • Examples of means for bringing the total content of metal elements and halogen elements contained in the cured film of the photosensitive resin composition used in the present invention into the aforementioned range include, for example, metal elements such as copper, chlorine and bromine, and the like.
  • (B-1) a method using an organic pigment containing a halogen element.
  • (B-1) purifying a pigment dispersion containing an organic pigment in advance using an ion exchange resin or a cation exchange resin, It is also preferable to wash several times with water and dry.
  • organic pigment examples include diketopyrrolopyrrole pigments, azo pigments such as azo, disazo and polyazo, phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine and metal-free phthalocyanine, aminoanthraquinone, Anthraquinone pigments such as diaminodianthraquinone, anthrapyrimidine, flavantron, anthanthrone, indanthrone, pyranthrone, violanthrone, quinacridone pigment, dioxazine pigment, perinone pigment, perylene pigment, thioindigo pigment, isoindoline pigment, Examples thereof include isoindolinone pigments, quinophthalone pigments, selenium pigments, and metal complex pigments.
  • diketopyrrolopyrrole pigments examples include diketopyrrolopyrrole pigments, azo pigments such as azo, disazo and polyazo, phthalo
  • red organic pigment examples include Pigment Red 9, 48, 97, 122, 144, 166, 168, 180, 192, 209, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240. , 254 (both numerical values are color indexes (hereinafter referred to as “CI” numbers)).
  • orange organic pigment examples include Pigment Orange 13, 36, 38, 43, 51, 55, 59, 61, 64, 65, 71.
  • yellow organic pigment examples include Pigment Yellow 12, 13, 17, 20, 24, 83, 86, 93, 95, 109, 110, 117, 125, 129, 137, 138, 139, 147, 148, 150. , 153, 154, 166, 168, and 185 (all numerical values are CI numbers).
  • purple organic pigments include, for example, pigment violet 23, 30, 32, 40, 50 (all numerical values are CI numbers).
  • blue organic pigments include, for example, Pigment Blue 15, 15: 3, 15: 4, 15: 6, 22, 60, or 64 (all numerical values are CI numbers).
  • green organic pigments include, for example, Pigment Green 7, 10, 36, 58 (all numerical values are CI numbers).
  • black organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments (for example, pigments described in JP-T-2012-515233).
  • mixed color organic pigment include those obtained by mixing two or more pigments selected from red, blue, green, purple, yellow, magenta, cyan and the like into a pseudo black color.
  • white organic pigments include titanium dioxide, barium carbonate, zirconium oxide, calcium carbonate, barium sulfate, alumina white, and silicon dioxide.
  • the organic pigment preferably exhibits a black color by using a black pigment or a plurality of types from the viewpoint of light shielding properties.
  • the organic pigment (B-1) is preferably (B-1a) acid-treated carbon black or (B-1b) a benzofuranone-based organic pigment having an amide structure.
  • (B-1a) Acid-treated carbon black examples include channel black, furnace black, thermal black, acetylene black, and lamp black. From the viewpoint of light shielding properties, channel black is preferable.
  • surface treatment that introduces acidic groups the surface of the carbon black particles can be acidified and the surface state of the particles can be modified, and the dispersion stability of the (A) alkali-soluble resin contained in the composition is improved. Can be made.
  • the content of the metal element and the halogen element can be easily adjusted to the desired range described above.
  • the acidic group introduced into the carbon black is preferably a substituent that exhibits acidity in the Bronsted definition, and specific examples include a carboxy group, a sulfonic acid group, and a phosphoric acid group.
  • the acidic group introduced into carbon black may form a salt.
  • the cation that forms a salt with an acidic group include various metal ions, cations of nitrogen-containing compounds, arylammonium ions, alkylammonium ions, and ammonium ions. From the viewpoint of insulating properties of the cured film, aryl ammonium ions, alkyl ammonium ions, and ammonium ions are preferable.
  • Examples of the surface treatment method for introducing an acidic group into carbon black include the following methods (1) to (5).
  • the organic compound having an amino group and an acidic group used in the method (2) is preferably an organic compound in which an amino group and an acidic group are bonded to an aromatic group. For example, 4-aminobenzenesulfonic acid, 4-aminobenzoic acid An acid etc. are mentioned.
  • the number of moles of acidic groups introduced into carbon black is preferably 1 mmol or more and more preferably 5 mmol or more with respect to 100 g of carbon black. When the number of moles is within this range, the dispersion stability of carbon black can be improved.
  • the number of moles of acidic groups introduced into carbon black is preferably 200 mmol or less, and more preferably 150 mmol or less. When the number of moles is within this range, the dispersion stability of carbon black can be improved.
  • the content ratio of (B-1a) acid-treated carbon black in the solid content of the photosensitive resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. When the content ratio is within this range, the light shielding property and the toning property can be further improved.
  • the content ratio of (B-1a) acid-treated carbon black in the solid content of the photosensitive resin composition is preferably 70% by mass or less, more preferably 65% by mass or less, and further preferably 60% by mass or less. . When the content ratio is within this range, the sensitivity during exposure can be improved.
  • the benzofuranone-based organic pigment having an amide structure examples include compounds that absorb light having a wavelength of visible light and are colored white, red, orange, yellow, green, blue, or purple. By combining two or more of these pigments, the light that transmits through the resin composition film of the resin composition or the light that reflects from the resin composition film is adjusted to the desired color coordinates. The chromaticity can be improved.
  • the organic pigment having an amide structure preferably has a content ratio of (B-1b) benzofuranone-based organic pigment having an amide structure in the solid content of the photosensitive resin composition of 10% by mass or more. The sex can be further improved. On the other hand, the content ratio is preferably 70% by mass or less, and the pattern processability of the photosensitive resin composition can be improved.
  • the benzofuranone-based organic pigment having an amide structure preferably has a structure represented by the following general formula (11), and can further improve the light shielding property. Furthermore, the toning property can be improved by adjusting the transmission spectrum or absorption spectrum of the film of the resin composition, such as by transmitting or blocking light of a desired specific wavelength by chemical structure change or functional conversion. In particular, the transmittance of wavelengths in the near infrared region (for example, 700 nm or more) can be improved.
  • R 101 and R 102 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 20 carbon atoms having 1 to 20 carbon atoms.
  • R 104 to R 107 and R 109 to R 112 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a carboxy group, a sulfonic acid group, an amino group, or a nitro group.
  • R 103 and R 108 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • the content ratio of the compound represented by the general formula (11) in the solid content of the negative photosensitive resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. When the content ratio is within this range, the light shielding property and the toning property can be further improved.
  • the content ratio of the compound represented by the general formula (11) in the solid content of the negative photosensitive resin composition is preferably 70% by mass or less, more preferably 65% by mass or less, and further preferably 60% by mass or less. . When the content ratio is within this range, the sensitivity during exposure can be improved.
  • Inorganic pigment examples include titanium oxide, zinc white, zinc sulfide, white lead, calcium carbonate, precipitated barium sulfate, white carbon, alumina white, kaolin clay, talc, bentonite, cadmium red, iron oxide, bengara , Molybdenum red, molybdate orange, chrome vermilion, yellow lead, cadmium yellow, yellow iron oxide, titanium yellow, chromium oxide, viridian, titanium cobalt green, cobalt green, cobalt chrome green, Victoria green, ultramarine blue, bitumen, cobalt blue , Cerulean Blue, Cobalt Silica Blue, Cobalt Zinc Silica Blue, Manban Bio Red, Cobalt Violet, Graphite, Silver Tin Alloy, Titanium, Copper, Iron, Manganese, Cobalt, Chromium, Nickel, Zinc, Calci , Fine metal particles such as silver, oxides, composite oxides
  • the inorganic pigment is preferably titanium or silver fine particles, oxides, composite oxides, sulfides, nitrides, carbides, and oxynitrides from the viewpoint of further improving the light-shielding properties. Oxynitrides are more preferred.
  • the content ratio of the inorganic pigment (B-2) in the solid content of the photosensitive resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. When the content ratio is within this range, the light shielding property, heat resistance and weather resistance can be further improved.
  • the content ratio of the inorganic pigment (B-2) in the solid content of the photosensitive resin composition is preferably 70% by mass or less, more preferably 65% by mass or less, and further preferably 60% by mass or less. When the content ratio is within this range, the sensitivity during exposure can be improved.
  • (B-3) Dye means that a substituent such as an ionic group or a hydroxyl group in (B-3) dye is chemically adsorbed or strongly interacted with the surface structure of the object. Is generally soluble in solvents and the like.
  • (B-3) coloring with a dye has high coloring power and high coloring efficiency because each molecule is adsorbed to an object.
  • (B-3) By containing the dye, it can be colored with excellent coloring power, and the colorability and toning property of the film of the resin composition can be improved.
  • Examples of the dye include direct red 2, 4, 9, 23, 26, 28, 31, 39, 62, 63, 72, 75, 76, 79, 80, 81, 83, 84, 89. , 92, 95, 111, 173, 184, 207, 211, 212, 214, 218, 221, 223, 224, 225, 226, 227, 232, 233, 240, 241, 242, 243, 247, Acid Red 35 , 42, 51, 52, 57, 62, 80, 82, 111, 114, 118, 119, 127, 128, 131, 143, 145, 151, 154, 157, 158, 211, 249, 254, 257, 261 , 263, 266, 289, 299, 301, 305, 319, 336, 337, 361, 396, 397, Reactive Red 3, 13 17, 19, 21, 22, 23, 24, 29, 35, 37, 40, 41, 43, 45, 4, 55, Basic Red 12, 13, 14, 15, 18,
  • a radically polymerizable compound refers to a compound having a plurality of ethylenically unsaturated double bonds in the molecule.
  • (D) radicals generated from the photopolymerization initiator (D) described later cause radical polymerization of the (C) radical polymerizable compound, and the exposed portion of the resin composition film is insolubilized in the alkali developer. Thus, a negative pattern can be formed.
  • Examples of the radically polymerizable compound (C) include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra.
  • the radically polymerizable compound may contain two or more of these.
  • a photopolymerization initiator refers to a compound that generates radicals by bond cleavage and / or reaction upon exposure.
  • C radical polymerization of the above-mentioned radical polymerizable compound
  • D By containing a photopolymerization initiator, radical polymerization of the above-mentioned (C) radical polymerizable compound proceeds, and the exposed portion of the film of the resin composition is insolubilized in the alkaline developer, thereby causing a negative.
  • a pattern of the mold can be formed, and further, UV curing at the time of exposure is promoted, and sensitivity can be improved.
  • Examples of the photopolymerization initiator (D) include benzyl ketal photopolymerization initiators, ⁇ -hydroxyketone photopolymerization initiators, ⁇ -aminoketone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime esters.
  • Photopolymerization initiator acridine photopolymerization initiator, titanocene photopolymerization initiator, benzophenone photopolymerization initiator, acetophenone photopolymerization initiator, aromatic ketoester photopolymerization initiator or benzoate photopolymerization initiator
  • ⁇ -hydroxyketone photopolymerization initiator, ⁇ -aminoketone photopolymerization initiator, acylphosphine oxide photopolymerization initiator, oxime ester photopolymerization initiator, acridine -Based photopolymerization initiator or benzophenone-based photopolymerization initiator is more preferable, ⁇ -aminoketone-based photopolymerization initiator More preferred are acylphosphine oxide photopolymerization initiators and oxime ester photopolymerization initiators.
  • the content of the (D) photopolymerization initiator in the photosensitive resin composition used in the present invention is 0.1 with respect to 100 parts by mass in total of (A) the alkali-soluble resin and (C) the radical polymerizable compound. Part by mass or more is preferable, 0.5 part by mass or more is more preferable, 0.7 part by mass or more is more preferable, and 1 part by mass or more is particularly preferable.
  • the sensitivity at the time of exposure can be improved as content is in this range.
  • the content of the (D) photopolymerization initiator is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, further preferably 17 parts by mass or less, and particularly preferably 15 parts by mass or less.
  • the resolution after development can be improved, and a cured film having a low taper pattern shape can be obtained.
  • the photosensitive resin composition used in the present invention may further contain a metal or a compound containing a metal element or a halogen element as necessary, and the content of the metal element or the halogen element is adjusted to a desired range. be able to.
  • contents include alkali metals such as sodium and potassium, alkaline earth metals such as barium and calcium, heavy metals such as platinum and iridium, acids such as hydrochloric acid and hydrogen bromide, sodium hydroxide and potassium hydroxide.
  • the photosensitive resin composition may contain those contents as an aqueous solution.
  • the photosensitive resin composition preferably contains a trace amount of a diluted inorganic salt aqueous solution from the viewpoint of handling.
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarizing layer preferably further contains a dispersant.
  • the dispersant is a compound having the above-described (B) surface affinity group that interacts with the surface of the colorant and (B) a dispersion stabilization structure that improves the dispersion stability of the colorant.
  • the dispersion stabilizing structure of the dispersant include a polymer chain and / or a substituent having an electrostatic charge.
  • the dispersion stability of the colorant (B) can be improved, and the resolution after development can be improved.
  • the surface area of the (B) colorant particle increases, so that the aggregation of the (B) colorant particle is increased. It tends to occur.
  • the dispersant preferably has a structure in which an amino group and / or an acidic group which is a surface affinity group is salted with an acid and / or a base.
  • dispersant having a surface affinity group examples include “DISPERBYK (registered trademark)”-108, -109, -160, -161, -162, -163, -164, -166, -167, -168, -182, -184, -184, -185, -2000, -2008, -2009, -2022, -2050, -2055, -2150,- 2155, -2163, -2164, -2061, "BYK (registered trademark)” -9075, -9077, -LP-N6919, -LP-N21116, -LP-N21324 (all above) Bicchemy Japan Co., Ltd.), "EFKA (registered trademark)” 4015, 4020, 4046, 4047, 4050, 4050, 4055, 406 , 4080, 4300, 4330, 4340, 4400, 4400, 4401, 4402, 4403, 4403 (all are manufactured by BASF), "A
  • the amine value of the dispersant is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, and even more preferably 10 mgKOH / g or more. When the amine value is within this range, the dispersion stability of the (B) colorant can be improved.
  • the amine value of the dispersant is preferably 150 mgKOH / g or less, more preferably 120 mgKOH / g or less, and even more preferably 100 mgKOH / g or less.
  • the storage stability of the resin composition can be improved.
  • the amine value here refers to the weight of potassium hydroxide equivalent to the acid reacting with 1 g of the dispersant, and the unit is mgKOH / g.
  • the amine value can be determined by neutralizing 1 g of the dispersant with an acid and titrating with an aqueous potassium hydroxide solution. From the amine value, the amine equivalent (unit: g / mol) which is the resin weight per mol of amino groups can be calculated, and the number of amino groups in the dispersant can be determined.
  • the acid value of the dispersant is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, and even more preferably 10 mgKOH / g or more. When the acid value is within this range, the dispersion stability of the colorant (B) can be improved.
  • the acid value of the dispersant is preferably 200 mgKOH / g or less, more preferably 170 mgKOH / g or less, and even more preferably 150 mgKOH / g or less.
  • the storage stability of the resin composition can be improved.
  • the acid value means the weight of potassium hydroxide that reacts with 1 g of the dispersant, and the unit is mgKOH / g. It can be determined by titrating 1 g of a dispersant with an aqueous potassium hydroxide solution. From the value of the acid value, the acid equivalent (unit: g / mol) which is the resin weight per 1 mol of acidic groups can be calculated, and the number of acidic groups in the dispersant can be determined.
  • Examples of the dispersant having a polymer chain include an acrylic resin dispersant, a polyoxyalkylene ether dispersant, a polyester dispersant, a polyurethane dispersant, a polyol dispersant, a polyethyleneimine dispersant, and a polyallylamine dispersant. Can be mentioned. From the viewpoint of pattern processability with an alkaline developer, acrylic resin dispersants, polyoxyalkylene ether dispersants, polyester dispersants, polyurethane dispersants, and polyol dispersants are preferred.
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarizing layer preferably further contains a chain transfer agent.
  • the chain transfer agent refers to a compound that can receive a radical from a polymer growth end of a polymer chain obtained by radical polymerization at the time of exposure and can undergo radical transfer to another polymer chain.
  • a thiol chain transfer agent is preferable.
  • the thiol chain transfer agent include 1,4-bis (3-mercaptobutanoyloxy) butane, 1,4-bis (3-mercaptopropionyloxy) butane, 1,4-bis (thioglycroyloxy) Butane, ethylene glycol bis (thioglycolate), trimethylol ethane tris (3-mercaptopropionate), trimethylol ethane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptopropionate), tri Methylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (thioglycolate), 1,3,5-tris [(3-mercaptopropionyloxy) ethyl] isocyanuric acid, 1,3,5-tris [( 3-mercaptobutanoyloxy) ethyl] Sociauric acid
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarization layer preferably further contains a polymerization inhibitor.
  • a polymerization inhibitor refers to stopping radical polymerization by capturing radicals generated during exposure or radicals at the polymer growth end of the polymer chain obtained by radical polymerization during exposure and holding them as stable radicals. A possible compound. By containing an appropriate amount of the polymerization inhibitor, generation of residues after development can be suppressed and resolution after development can be improved. This is presumed to be because the polymerization inhibitor inhibits the progress of excessive radical polymerization by capturing an excessive amount of radicals generated during exposure or a radical at the growing end of a high molecular weight polymer chain.
  • a phenol polymerization inhibitor is preferable.
  • phenol polymerization inhibitors include 4-methoxyphenol, 1,4-hydroquinone, 1,4-benzoquinone, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 4 -T-butylcatechol, 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-1,4-hydroquinone, 2,5-di-t-amyl-1,4 -Hydroquinone, "IRGANOX (registered trademark)" 1010, 1035, 1076, 1098, 1135, 1330, 1726, 1425, 1520, 245, 259, 3114, 565, 295 (All are manufactured by BASF).
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarization layer preferably further contains a sensitizer.
  • a sensitizer is a compound that absorbs energy from exposure, generates excited triplet electrons by internal conversion and intersystem crossing, and can undergo energy transfer to the photopolymerization initiator (D) described above.
  • the sensitivity at the time of exposure can be improved by containing a sensitizer. This is because (D) the photopolymerization initiator does not absorb, the sensitizer absorbs long wavelength light, and the energy is transferred from the sensitizer to (D) the photopolymerization initiator. Thus, it is presumed that the photoreaction efficiency can be improved.
  • a thioxanthone sensitizer is preferable.
  • the thioxanthone sensitizer include thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone.
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarization layer preferably further contains a crosslinking agent.
  • a cross-linking agent refers to a compound having a cross-linkable group capable of binding to a resin.
  • the crosslinking agent a compound having two or more thermal crosslinking properties in the molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group is preferable.
  • the content of the crosslinking agent in the photosensitive resin composition is preferably 0.1 parts by mass or more, and 0.5 parts by mass with respect to a total of 100 parts by mass of (A) the alkali-soluble resin and (C) the radical polymerizable compound.
  • the above is more preferable, and 1 part by mass or more is more preferable. When the content is within this range, the hardness and chemical resistance of the cured film can be improved.
  • the content of the crosslinking agent in the photosensitive resin composition is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and still more preferably 50 parts by mass or less.
  • the content is within this range, the hardness and chemical resistance of the cured film can be improved.
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarization layer preferably further contains a silane coupling agent.
  • a silane coupling agent refers to a compound having a hydrolyzable silyl group or silanol group.
  • trifunctional organosilane examples include methyltrimethoxysilane, methyltriethoxysilane, and methyltri-n-propoxysilane.
  • tetrafunctional organosilane or silicate compound examples include an organosilane represented by the following general formula (68).
  • R 226 to R 229 each independently represents hydrogen, an alkyl group, an acyl group, or an aryl group, and x represents an integer of 1 to 15.
  • R 226 to R 229 are each independently preferably hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • an alkyl group having 2 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferable.
  • the alkyl group, acyl group and aryl group may be either unsubstituted or substituted.
  • organosilane represented by the general formula (68) examples include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetraacetoxysilane.
  • methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51, silicate 40, silicate 45 (all of which are manufactured by Tama Chemical Industry Co., Ltd.), methyl silicate 51, methyl silicate 53A, ethyl silicate 40 And silicate compounds such as ethyl silicate 48 (all of which are manufactured by Colcoat Co., Ltd.).
  • the photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarization layer preferably further contains a solvent.
  • the solvent refers to a compound that can dissolve various resins and various additives to be contained in the resin composition.
  • various resins and various additives to be contained in the resin composition can be uniformly dissolved, and the transmittance of the cured film can be improved.
  • the viscosity of a resin composition can be arbitrarily adjusted by making a photosensitive resin composition contain a solvent, and it can form into a film with a desired film thickness on a board
  • the surface tension of the resin composition or the drying speed at the time of coating can be arbitrarily adjusted, leveling properties at the time of coating, and uniform film thickness of the coating film Can be improved.
  • the solvent from the viewpoint of solubility of various resins and various additives, a compound having an alcoholic hydroxyl group, a compound having a carbonyl group, and a compound having three or more ether bonds are preferable.
  • a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure is more preferable as the solvent.
  • the solvent is appropriately volatilized at the time of coating and the coating film is dried, so that coating unevenness can be suppressed and film thickness uniformity can be improved.
  • the amount of solvent remaining in the coating film can be reduced by setting the boiling point to 250 ° C. or less, the amount of film shrinkage during thermosetting can be reduced, and the flatness of the cured film is improved.
  • the film thickness uniformity can be improved.
  • the solvent is preferably a solvent having a carbonyl group and / or an ester bond.
  • a solvent having a carbonyl group and / or an ester bond the dispersion stability of the organic pigment (B-1) can be improved.
  • a solvent having an acetate bond is more preferable.
  • the solvent having an acetate bond examples include 3-methoxy-n-butyl acetate and ethylene glycol monomethyl ether acetate.
  • the content ratio of the solvent having a carbonyl group and / or an ester bond in the solvent is preferably within a range of 30 to 100% by mass, and within a range of 50 to 100% by mass. Is more preferable, and the range of 70 to 100% by mass is more preferable.
  • the content ratio is in the above range, (B-1) the dispersion stability of the organic pigment can be further improved.
  • the photosensitive resin composition that is a raw material constituting the pixel division layer and / or the planarization layer may further contain other resins or their precursors.
  • other resins or precursors thereof include polyamide, epoxy resin, polysiloxane resin, urea resin, polyurethane, and precursors thereof.
  • ⁇ Method for producing photosensitive resin composition A typical method for producing a photosensitive resin composition that is a raw material constituting the pixel dividing layer and / or the planarizing layer will be described.
  • the colorant contains (B-1) an organic pigment
  • (A) a dispersant is added to the alkali-soluble resin solution
  • (B-1) organic is added to this mixed solution using a disperser. It is preferable to prepare a pigment dispersion by dispersing the pigment.
  • (C) a radical polymerizable compound, (D) a photopolymerization initiator, other additives and an optional solvent as necessary are added to this pigment dispersion, and the mixture is stirred for 20 minutes to 3 hours to be uniform.
  • a solution is preferred.
  • the photosensitive resin composition is obtained by filtering the obtained solution after stirring.
  • the disperser examples include a ball mill, a bead mill, a sand grinder, a three-roll mill, and a high-speed impact mill.
  • the disperser is preferably a bead mill from the viewpoint of dispersion efficiency and fine dispersion.
  • Examples of the bead mill include a coball mill, a basket mill, a pin mill, and a dyno mill.
  • Examples of the bead material for the bead mill include titania beads, zirconia beads, and zircon beads.
  • the bead diameter of the bead mill is preferably 0.01 to 6 mm, more preferably 0.015 to 5 mm, and further preferably 0.03 to 3 mm.
  • (B-1) Fine beads having a bead diameter of 0.015 to 0.1 mm when the primary particle diameter of the organic pigment and the secondary particles formed by aggregation of the primary particles are several hundred nm or less Is preferred.
  • a bead mill having a centrifugal separator capable of separating fine beads and pigment dispersion is preferable.
  • the organic pigment (B-1) contains coarse particles of several hundred nm or more, beads having a bead diameter of 0.1 to 6 mm are preferable from the viewpoint of increasing dispersion efficiency.
  • the optical density (hereinafter referred to as OD) per 1 ⁇ m thickness of the cured film obtained by curing the photosensitive resin composition is preferably 0.7 or more, and more preferably 1.0 or more.
  • the optical density per 1 ⁇ m thickness of the cured film obtained by curing the photosensitive resin composition is preferably 4.0 or less, and more preferably 3.0 or less.
  • the optical density per 1 ⁇ m thickness of the cured film obtained by curing the photosensitive resin composition can be adjusted by the composition and content ratio of the colorant (B) described above.
  • FIG. 2 An example of the manufacturing method of the organic EL display device of the present invention will be described with reference to FIG.
  • a cured film of a negative photosensitive resin composition is used as a light-shielding pixel dividing layer.
  • (1) to (7) in FIG. 2 correspond to the following processes (1) to (7), respectively.
  • a thin film transistor (hereinafter referred to as “TFT”) 102 is formed on a glass substrate 101, a photosensitive material for a TFT flattening layer is formed, patterned by photolithography, and thermally cured to flatten the TFT.
  • a cured film 103 is formed as a conversion layer.
  • An alloy of magnesium and silver is formed by sputtering, and patterned by etching using a photoresist to form the reflective electrode 104 as the first electrode.
  • the negative photosensitive resin composition of the present invention is applied and prebaked to form the prebaked film 105a.
  • a cured pattern 105b having a desired pattern as a light-shielding pixel division layer.
  • An EL light-emitting material is formed by vapor deposition through a mask to form an EL light-emitting layer (light-emitting pixel) 108, ITO is formed by sputtering, and pattern processing is performed by etching using a photoresist.
  • a transparent electrode 109 is formed as two electrodes.
  • (7) After forming a photosensitive material for a flattening film, patterning by photolithography, thermosetting to form a cured film 110 for flattening, and then bonding a cover glass 111, An organic EL display device is obtained.
  • Examples of the method for patterning the first electrode or the second electrode include etching.
  • etching a method of patterning the first electrode by etching will be described as an example. It is preferable that after the material constituting the first electrode is applied on the substrate, a photoresist is applied on the first electrode and prebaked. Thereafter, a photoresist pattern is preferably formed on the first electrode by photolithography by exposing and developing the photoresist. It is preferable to heat-treat the resulting pattern after development. By performing heat treatment, chemical resistance and dry etching resistance are improved by thermal curing of the photoresist, so that the photoresist pattern can be suitably used as an etching mask.
  • Examples of the heat treatment apparatus include an oven, a hot plate, an infrared ray, a flash annealing apparatus, and a laser annealing apparatus.
  • the heat treatment temperature is preferably 70 to 200 ° C.
  • the heat treatment time is preferably 30 seconds to several hours.
  • the first electrode by etching using the photoresist pattern as an etching mask.
  • the etching method include wet etching using an etchant, dry etching using an etching gas, and the like.
  • the etchant include acidic or alkaline etchants and organic solvents. Two or more kinds of these etchants may be used.
  • the pattern of the first electrode can be obtained by removing the photoresist remaining on the first electrode.
  • Examples of the method for applying the photosensitive resin composition include microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating.
  • Examples of the method for applying the photosensitive resin composition in a pattern include letterpress printing, intaglio printing, stencil printing, planographic printing, screen printing, inkjet printing, offset printing, and laser printing.
  • the coating thickness varies depending on the coating method, solid content concentration and viscosity of the photosensitive resin composition, but it is preferable that the coating thickness is 0.1 to 30 ⁇ m after coating and pre-baking.
  • pre-bake After applying the photosensitive resin composition, it is preferable to pre-bake to form a film.
  • the heat treatment apparatus used for pre-baking include an oven, a hot plate, infrared rays, a flash annealing apparatus, and a laser annealing apparatus.
  • the prebake temperature is preferably 50 to 150 ° C.
  • the prebake time is preferably 30 seconds to several hours. After pre-baking at 80 ° C. for 2 minutes, pre-baking at 120 ° C. for 2 minutes may be used, and pre-baking may be performed in two or more stages.
  • Examples of the method of patterning the planarization layer and / or the pixel division layer include a method of patterning directly by photolithography and a method of patterning by etching. From the viewpoint of improving productivity by reducing the number of steps and reducing process time, a method of directly patterning by photolithography is preferable.
  • the pre-baked film of the photosensitive resin composition formed by the above-described method using an exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA).
  • an exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA).
  • the active actinic radiation to be irradiated during exposure include ultraviolet light, visible light, electron beam, X-ray, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like. It is preferable to use a j-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp.
  • the exposure amount is usually about 100 to 40,000 J / m 2 (10 to 4,000 mJ / cm 2 ) (i-line
  • the photosensitive resin composition has negative photosensitivity, after development, the unexposed portion can be removed with a developer, and a relief pattern can be obtained.
  • the alkaline developer is preferably an organic alkaline solution or an aqueous solution of an alkaline compound, and more preferably an aqueous solution of an alkaline compound, ie, an alkaline aqueous solution, from the viewpoint of the environment.
  • organic alkaline solution or the alkaline compound examples include tetramethylammonium hydroxide and tetraethylammonium hydroxide.
  • Examples of the developing method include a method of applying a developer to the exposed film.
  • the exposed film is preferably brought into contact with the developer for 5 seconds to 10 minutes.
  • the obtained relief pattern is preferably washed with a rinse solution.
  • a rinse solution water is preferable when an alkaline aqueous solution is used as the developer.
  • ⁇ Breaching exposure may be performed on the patterned photosensitive resin film.
  • the pattern shape after thermosetting can be arbitrarily adjusted, and the transparency of the cured film can be improved.
  • a planarization layer and / or a pixel division layer can be formed by thermally curing the photosensitive resin composition film or its pattern.
  • the heat treatment apparatus used for thermosetting include those exemplified as the heat treatment apparatus used for pre-baking.
  • the thermosetting temperature is preferably 150 ° C. or higher, more preferably 250 ° C. or higher.
  • the thermosetting temperature is preferably 500 ° C. or less, and more preferably 400 ° C. or less.
  • the heat curing time is preferably 1 minute or longer, particularly preferably 30 minutes or longer.
  • the thermosetting time is within the above range, the pattern shape after thermosetting can be further reduced in taper.
  • the light emitting pixel can be formed by, for example, a mask vapor deposition method or an ink jet method.
  • a typical mask vapor deposition method there is a method in which an organic compound is vapor-deposited using a vapor deposition mask and patterned, and a vapor deposition mask having a desired pattern as an opening is arranged on the vapor deposition source side of the substrate for vapor deposition. It is done.
  • a solution of 14.22 g (100 mol%) of GMA, 0.135 g (1 mol%) of DBA and 0.037 g (3 mol%) of 4-MOP was added to 10.00 g of MBA.
  • the mixture was stirred at 90 ° C. for 4 hours to obtain a cardo resin (CD-1) solution.
  • the obtained cardo resin (CD-1) had a Mw of 4,000, a carboxylic acid equivalent of 800 g / mol, a double bond equivalent of 800 g / mol, and an alkali dissolution rate of 7000 nm / min.
  • Synthesis Example 4 Synthesis of Polyimide Precursor (PIP-1) In a three-necked flask under a dry nitrogen stream, 31.02 g (0.10 mol; 100 mol% with respect to a structural unit derived from all carboxylic acids and derivatives thereof), 150 g of NMP was weighed and dissolved. Here, 25.64 g of BAHF (0.070 mol; 56.0 mol% with respect to the structural units derived from all amines and derivatives thereof) and 1.24 g (0.0050 mol; total amines and derivatives thereof) of SiDA were added to 50 g of NMP. 4.0 mol% dissolved solution was added and stirred at 20 ° C. for 1 hour and then at 50 ° C. for 2 hours.
  • PIP-1 Polyimide Precursor
  • the obtained solid was washed three times with water and then dried for 24 hours in a vacuum dryer at 80 ° C. to obtain a polyimide precursor (PIP-1).
  • Mw of the obtained polyimide precursor (PIP-1) was 20000, the carboxylic acid equivalent was 450 g / mol, and the alkali dissolution rate was 400 nm / min.
  • Synthesis Example 5 Synthesis of Polybenzoxazole Precursor (PBOP-1) In a 500 mL round bottom flask equipped with a Dean-Stark water separator filled with toluene and a condenser tube, 34.79 g (0.095 mol; total amine and its amine) 95.0 mol% with respect to the structural unit derived from the derivative), 1.24 g of SiDA (0.0050 mol; 5.0 mol% with respect to the structural unit derived from the total amine and its derivatives), and 70.00 g of NMP. And dissolved.
  • PBOP-1 Polybenzoxazole Precursor
  • a solution prepared by dissolving 19.06 g of BFE (0.080 mol; 66.7 mol% with respect to the structural units derived from all carboxylic acids and derivatives thereof) was added to 20.00 g of NMP, and the mixture was stirred at 20 ° C. for 1 hour. Then, the mixture was stirred at 50 ° C. for 2 hours.
  • a solution obtained by dissolving 6.57 g (0.040 mol; 33.3 mol% with respect to the structural units derived from all carboxylic acids and derivatives thereof) of NA in 10 g of NMP was added as a terminal blocking agent. Stir for hours. Then, it stirred at 100 degreeC under nitrogen atmosphere for 2 hours.
  • the reaction solution was poured into 3 L of water, and the precipitated solid precipitate was obtained by filtration.
  • the obtained solid was washed with water three times, then dried with an 80 ° C. vacuum dryer for 24 hours, washed with water three times, and then dried with an 80 ° C. vacuum dryer for 24 hours to obtain a polybenzoxazole precursor.
  • PBOP-1 polybenzoxazole precursor
  • the obtained polybenzoxazole precursor (PBO-P) had an Mw of 20000, a carboxylic acid equivalent of 330 g / mol, and an alkali dissolution rate of 300 nm / min.
  • Synthesis Example 6 Synthesis of Polyimide Resin (PI-1) In a three-necked flask under a dry nitrogen stream, 31.13 g (0.085 mol; 77.3 mol% based on the structural units derived from all amines and derivatives thereof), 6.21 g of SiDA (0.0050 mol; 4.5 mol% with respect to the structural units derived from all amines and derivatives thereof), and 2.18 g (0.020 mol; total amines and derivatives thereof) of MAP as end-capping agents NMP was weighed and dissolved in 150.00 g.
  • PI-1 Polyimide Resin
  • Synthesis Example 7 Synthesis of polybenzoxazole resin (PBO-1) In a 500 mL round bottom flask equipped with a Dean-Stark water separator and a condenser tube filled with toluene, 34.79 g (0.095 mol; total amine and its derivatives) were added. Weighed 95.0 mol% with respect to the structural unit derived from Nd), 1.24 g SiDA (0.0050 mol; 5.0 mol% with respect to the structural unit derived from all amines and derivatives thereof), and 75.00 g NMP. And dissolved.
  • PBO-1 polybenzoxazole resin
  • the obtained solid was washed with water three times, then dried with an 80 ° C. vacuum dryer for 24 hours, washed with water three times, then dried with an 80 ° C. vacuum dryer for 24 hours, and polybenzoxazole resin ( PBO-1) was obtained.
  • Mw of the obtained polybenzoxazole resin (PBO-1) was 25000, the carboxylic acid equivalent was 330 g / mol, and the alkali dissolution rate was 500 nm / min.
  • a pigment dispersion (Bk-1) of 30/10 (mass ratio) was obtained.
  • the number average particle diameter of the pigment in the obtained pigment dispersion was 50 nm.
  • the composition of Preparation Example 1 is shown in Table 8.
  • the prepared pre-baked film was developed with a 2.38 mass% TMAH aqueous solution for 60 seconds using a small photolithography developing device (AC3000; manufactured by Takizawa Sangyo Co., Ltd.) and rinsed with water for 30 seconds to reduce the film thickness.
  • the value was calculated according to the following formula, with the alkali dissolution rate (unit: nm / min).
  • Film thickness reduction value film thickness value before development-film thickness value after development.
  • OD value of pixel division layer For the pixel division layer of the organic EL display device obtained in each of the examples and comparative examples, incident light of the cured film was measured using an optical densitometer (361 Television; manufactured by X-Rite). And the intensity
  • equation (X). OD value log 10 (I 0 / I ) ⁇ formula (X) I 0 : Incident light intensity I: Transmitted light intensity.
  • the organic EL display device obtained by each example and comparative example was allowed to emit light for 250 hours, 500 hours, and 1000 hours by DC drive at 10 mA / cm 2 , and in each light emission time.
  • the area ratio of the light emitting portion with respect to the area of the light emitting pixel was measured. If the pixel emission area ratio after 250 hours, 500 hours, and 1000 hours has passed is 80% or more, it can be said that long-term reliability is excellent, and 90% or more is more preferable.
  • Example 1 Under a yellow light, 0.256 g of NCI-831 was weighed, 10.186 g of MBA was added, and dissolved by stirring. Next, 0.015 g of a 30% by mass MBA solution of the acrylic resin (AC-2) obtained in Synthesis Example 2 and a 30% by mass MBA solution of the polyimide resin (PI-1) obtained in Synthesis Example 6 Of 0.285 g and 1.422 g of an 80 wt% DPHA MBA solution were added and stirred to obtain a mixed solution as a homogeneous solution. Next, 12.968 g of the pigment dispersion (Bk-1) obtained in Preparation Example 1 was weighed, and 12.032 g of the prepared liquid obtained above was added thereto and stirred to obtain a uniform solution. Furthermore, 0.01 g of 5% sodium chloride aqueous solution was added, and then the obtained solution was filtered with a 0.45 ⁇ m ⁇ filter to prepare Composition 1.
  • composition 1 was applied to the entire surface of a 38 mm ⁇ 46 mm non-alkali glass substrate 201 by spin coating using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.), and then a hot plate (SCW-636; large size). Nippon Screen Manufacturing Co., Ltd.) was used for pre-baking at 100 ° C. for 120 seconds to prepare a pre-baked film having a thickness of 2.0 ⁇ m.
  • MS-A100 spin coater
  • SCW-636 hot plate
  • Nippon Screen Manufacturing Co., Ltd. was used for pre-baking at 100 ° C. for 120 seconds to prepare a pre-baked film having a thickness of 2.0 ⁇ m.
  • the entire pre-baked film was exposed with the ultra-high pressure mercury lamp i-line, h-line, and g-line through a photomask.
  • a small photolithography developing device AC3000; manufactured by Takizawa Sangyo Co., Ltd.
  • the film was developed with a 2.38 mass% TMAH aqueous solution for 60 seconds and rinsed with water for 30 seconds.
  • This substrate was thermally cured at 230 ° C. using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo System Co., Ltd.) to produce a planarizing layer 202 having a thickness of about 1.0 ⁇ m.
  • an ITO transparent conductive film having a thickness of 100 nm was formed by sputtering and etched as the first electrode 203 to form a transparent electrode.
  • an auxiliary electrode 204 was formed at the same time to take out the second electrode (FIG. 3A).
  • the obtained substrate was subjected to ultrasonic cleaning with Semico Clean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 10 minutes, and then washed with ultrapure water.
  • composition 1 was applied to the entire surface of the substrate by spin coating at an arbitrary rotation number using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.), and then hot plate (SCW-636; Dainippon Screen). Was used for pre-baking at 100 ° C. for 120 seconds to prepare a pre-baked film having a thickness of about 2.0 ⁇ m.
  • the prepared pre-baked film was subjected to i-line, h-line and ultra-high pressure mercury lamp via a photomask having a predetermined pattern.
  • a photomask having a predetermined pattern.
  • development was performed with a 2.38 mass% TMAH aqueous solution for 60 seconds using a small photolithography developing device (AC3000; manufactured by Takizawa Sangyo Co., Ltd.), and rinsed with water for 30 seconds.
  • openings having a width of 50 ⁇ m and a length of 260 ⁇ m are arranged with a pitch of 155 ⁇ m in the width direction and a pitch of 465 ⁇ m in the length direction, and each opening forms a pixel dividing layer 205 having a shape in which the first electrode is exposed.
  • the substrate is limited to the effective area (FIG. 3B). Note that the opening finally becomes a light emitting pixel of the organic EL display device.
  • the effective area (display area) of the substrate is 16 mm square, and a pixel division layer 205 having an aperture ratio of 18% is provided.
  • the pixel division layer 205 is formed with a thickness of about 1.0 ⁇ m.
  • an organic EL layer 206 including a light emitting layer was formed by a vacuum deposition method (FIG. 3C).
  • the degree of vacuum at the time of vapor deposition was 1 ⁇ 10 ⁇ 3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during the vapor deposition.
  • 10 nm of the compound (HT-1) was deposited as a hole injection layer, and 50 nm of the compound (HT-2) was deposited as a hole transport layer.
  • a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited on the light emitting layer in a thickness of 40 nm so that the doping concentration was 10%.
  • the compound (ET-1) and the compound (LiQ) as an electron transporting material were laminated at a volume ratio of 1: 1 to a thickness of 40 nm.
  • the structure of the compound used in the organic EL layer is shown below.
  • the cap-shaped glass plate is sealed by adhering with an epoxy resin adhesive in a low-humidity nitrogen atmosphere, and an organic EL display device having a square of 5 mm on one side is formed on one substrate.
  • the film thickness said here is a display value in a crystal oscillation type film thickness monitor.
  • compositions 2 to 10 were prepared in the same manner as in Example 1 except that the type and blending amount of the (A) alkali-soluble resin used in the photosensitive resin composition were changed as shown in Table 9.
  • An organic EL display device was produced in the same manner as in Example 1 using each of the obtained compositions.
  • Example 11 Composition 11 was prepared in the same manner as in Example 1 except that 5% sodium chloride aqueous solution was changed to 5% potassium chloride aqueous solution. An organic EL display device was produced using the obtained composition 11 in the same manner as in Example 1.
  • Example 12 to 13 An organic EL display device was produced in the same manner as in Example 2 except that the aperture ratio in the display area of the composition 2 was changed.
  • Composition 16 was prepared in the same manner as in Example 1 except that the amount of 5% aqueous sodium chloride solution added to composition 1 was changed to 0.1 g.
  • An organic EL display device was produced in the same manner as in Example 1 using the obtained composition.
  • Tables 9 to 11 show the results of evaluating each example and comparative example by the above-described method. The driving voltage was recorded as the voltage when DC driving was performed at 10 mA / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Materials For Photolithography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

有機EL表示装置は、(A)アルカリ可溶性樹脂、(B)着色剤、(C)ラジカル重合性化合物、及び(D)光重合開始剤を含有する感光性樹脂組成物であり、(A)アルカリ可溶性樹脂が、(A-1)カルボキシル基を有するアルカリ可溶性樹脂であり、さらに、前記感光性樹脂組成物を硬化した硬化物の、飛行時間型二次イオン質量分析により測定される不揮発成分中の金属元素および/またはハロゲン元素の含有量の総和が1×1017atom/cm以上1×1022atom/cm以下であり、少なくとも基板、第一電極、第二電極、発光画素、平坦化層及び画素分割層で構成された有機EL素子のうち、平坦化層および/または画素分割層に配置された。

Description

有機EL表示装置
 本発明は、少なくとも基板、第一電極、第二電極、発光画素、平坦化層および画素分割層を有する有機EL表示装置に関する。
 近年、スマートフォン、タブレットPC及びテレビなど、薄型表示装置を有する表示装置において、有機エレクトロルミネッセンス(以下、「EL」)表示装置を用いた製品が多く開発されている。
 有機EL表示装置は自発光型であるため、屋外における太陽光などの外光が入射すると、その外光反射によって視認性及びコントラストが低下する。そのため、外光反射を低減する技術が要求されている。これまでに、装置内への光の進入に起因する不具合の発生を抑制した、信頼性の高い有機ELディスプレイとして、加熱処前の波長365nm~436nmの各波長における光透過率が50%以上であり、加熱処理後の365nm~436nmのいずれかの波長における光透過率が10%以下となる耐熱性樹脂膜を用いた表示装置が提案されている(例えば、特許文献1参照)。また、特定の構造を有するアルカリ可溶性ポリイミド樹脂、着色材、高分子分散剤および有機溶剤を含有する着色樹脂組成物の硬化物である着色膜を、駆動回路上の平坦化層及び第一電極上の絶縁層の少なくともひとつの層の上に有する有機EL表示装置が提案されている(例えば、特許文献2参照)。
 一方、有機顔料分散型カラーフィルターにおいて、画素に含有されるナトリウム量またはナトリウムとカリウムの合計量を低レベルに抑えることにより、液晶表示素子の電圧降下を抑制することが知られている(例えば、特許文献3参照)。さらに、有機顔料のナノ粒子を含有する顔料分散物において、該分散物中のアルカリまたはアルカリ土類金属の含有量を規制することで、液晶表示装置を作製した時の表示ムラを改善した有機顔料ナノ粒子分散物が提案されている(例えば、特許文献4参照)。
国際公開第2016/56451号 国際公開第2016/158672号 特開平7-198928号公報 特開2008-7774号公報
 一般に、有機EL表示装置は、発光画素間を分割するために、第一電極と第二電極との間に画素分割層と呼ばれる絶縁層が形成され、薄膜トランジスタ(以下、「TFT」)上に平坦化層が形成される。有機EL表示装置において外光反射を防ぐためには、画素分割層や平坦化層を着色することにより遮光性を付与することが有効であり、遮光性の高い材料が開発されている。
 一方、近年、有機EL表示装置において、画素の端部から発光輝度が低下する、または、点灯画素の一部が非点灯化する、画素シュリンクと呼ばれる現象が発生しており、画素シュリンクを抑制する、より高い信頼性が求められている。
 特許文献1~4に記載された着色組成物を有機EL表示装置の画素分割層や平坦化層に適用しても、なお遮光性および信頼性が不十分である課題があった。そこで、本発明は、遮光性が高く、信頼性に優れた有機EL表示装置を提供することを目的とする。
 本発明者らは、着色剤を含む感光性樹脂組成物の硬化膜中の、金属元素およびハロゲン元素の含有量の総和を特定の範囲にすることにより、画素シュリンクを抑制し、遮光性と信頼性を大きく向上させることができることを見出した。本発明は、主として以下の構成を有する。
 本発明に係る有機EL表示装置は、(A)アルカリ可溶性樹脂、(B)着色剤、(C)ラジカル重合性化合物、及び(D)光重合開始剤を含有する感光性樹脂組成物であり、(A)アルカリ可溶性樹脂が、(A-1)カルボキシル基を有するアルカリ可溶性樹脂であり、さらに、前記感光性樹脂組成物を硬化した硬化物の、飛行時間型二次イオン質量分析により測定される不揮発成分中の金属元素および/またはハロゲン元素の含有量の総和が1×1017atom/cm以上1×1022atom/cm以下であり、少なくとも基板、第一電極、第二電極、発光画素、平坦化層及び画素分割層で構成された有機EL素子のうち、平坦化層および/または画素分割層に配置された。
 本発明によれば、遮光性が高く、信頼性の高い有機EL表示装置を提供することができる。
図1は、平坦化層と画素分割層を有するTFT基板の断面図である。 図2は、本発明の有機EL表示装置の製造プロセスを示す工程図である。 図3Aは、実施例における有機EL表示装置の作製手順の概略図(その1)である。 図3Bは、実施例における有機EL表示装置の作製手順の概略図(その2)である。 図3Cは、実施例における有機EL表示装置の作製手順の概略図(その3)である。 図3Dは、実施例における有機EL表示装置の作製手順の概略図(その4)である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について詳細に説明する。なお、本発明は、以下に説明する実施の形態によってのみ限定されるべきものではない。
 本発明は、少なくとも基板、第一電極、第二電極、発光画素、平坦化層および画素分割層で構成された有機EL素子を有する有機EL表示装置であって、前記平坦化層および/または画素分割層が、(A-1)カルボキシル基を有するアルカリ可溶性樹脂を含む(A)アルカリ可溶性樹脂、(B)着色剤、(C)ラジカル重合性化合物および(D)光重合開始剤を含有する感光性樹脂組成物の硬化物からなり、前記感光性樹脂組成物の硬化物の、飛行時間型二次イオン質量分析により測定される不揮発成分中の金属元素およびハロゲン元素の含有量の総和が1×1017atom/cm以上1×1022atom/cm以下である有機EL表示装置である。
 <有機EL表示装置>
 本発明の有機EL表示装置は、少なくとも基板、第一電極、第二電極、発光画素、平坦化層および画素分割層を有する。マトリックス状に形成された複数の画素を有するアクティブマトリックス型の有機EL表示装置が好ましい。アクティブマトリックス型の表示装置は、ガラスなどの基板上に、発光画素を有し、発光画素および発光画素以外の部位の下部を覆うように設けられた平坦化層を有する。さらに、平坦化層上に、少なくとも発光画素の下部を覆うように設けられた第一電極と、少なくとも発光画素の上部を覆うように設けられた第二電極を有する。また、発光画素間を分割するために、絶縁性の画素分割層を有する。
 図1に、平坦化層と画素分割層を有するTFT基板の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT1が行列状に設けられており、このTFT1を覆う状態でTFT絶縁層3が形成されている。また、このTFT絶縁層3の下にTFT1に接続された配線2が設けられている。さらにTFT絶縁層3上には、配線2を開口するコンタクトホール7とこれらを埋め込む状態で平坦化層4が設けられている。平坦化層4には、配線2のコンタクトホール7に達するように開口部が設けられている。そして、このコンタクトホール7を介して、配線2に接続された状態で、平坦化層4上にITO5(透明電極)が形成されている。ここで、ITO5は、有機EL表示装置の第一電極となる。そしてITO5の周縁を覆うように画素分割層8が形成される。この有機EL表示装置は、基板6の反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。
 また、この基板6に、赤、緑、青色領域にそれぞれ発光ピーク波長を有する有機EL表示装置が配列したものや、全面に白色の有機EL表示装置を作製して別途カラーフィルタと組み合わせて使用するようなものをカラーディスプレイと呼ぶ。カラーディスプレイにおいて、通常、表示される赤色領域の光のピーク波長は560~700nm、緑色領域の光のピーク波長は500~560nm、青色領域の光のピーク波長は420~500nmの範囲である。
 <有機EL表示装置の製造方法>
 本発明の実施の形態に係る有機EL表示装置の製造方法の概要について説明する。有機EL表示装置は、例えば、基板6上に、TFT(薄膜トランジスタ)1と配線2を形成し、その凹凸を覆うように平坦化層4を形成する。平坦化層4上に、第一電極5、画素分割層8および図示しない発光画素を形成し、さらにその発光画素の上に図示しない第二電極を形成することにより得ることができる。平坦化層4および画素分割層8は、例えば、後述の感光性樹脂組成物を塗布し、必要に応じてフォトリソグラフィーによりパターン加工し、硬化させることにより形成することができる。アクティブマトリックス型の場合、発光領域全体に渡って第二電極をベタで形成することが一般的である。第二電極を形成後、封止を行うことが好ましい。一般的に、有機EL表示装置は酸素や水分に弱いとされ、信頼性の高い表示装置を得るためにはできるだけ酸素と水分の少ない雰囲気下で封止を行うことが好ましい。
 <基板>
 基板としては、ソーダガラスや無アルカリガラスなどのガラス基板、ポリエチレンテレフタレートフィルム、ポリイミドフィルムなどのフレキシブル基板が好適に用いられる。ガラス基板の厚みは、0.5mm以上が好ましい。ガラス基板の材質は、ガラスからの溶出イオンが少ないことから、無アルカリガラスや、SiOなどのバリアコートを施したソーダライムガラスなどが好ましい。
 <第一電極>
 第一電極は、正孔を有機層に効率よく注入でき、光を取り出すために透明または半透明であることが好ましい。第一電極を構成する材料としては、例えば、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマー、カーボンナノチューブ、グラフェンなどが挙げられる。これらを2種以上用いてもよく、異なる材料による積層構造を有してもよい。また、その形態も特に限定されず、例えば、メタルメッシュや銀ナノワイヤーなどの微細な構造を有してもよい。これらの中でも、ITOガラスやネサガラスが好ましい。
 第一電極は、有機EL表示装置の消費電力の観点から低抵抗であることが好ましい。例えば、ITO基板の場合、電気抵抗値が300Ω/□以下であれば素子電極として機能するが、現在では10Ω/□程度の基板が入手可能になっていることから、20Ω/□以下の低抵抗の基板を使用することがより好ましい。第一電極の厚みは、電気抵抗値に合わせて任意に選択することができ、45~300nm程度が一般的である。
 <第二電極>
 第二電極は、電子を効率よく発光層に注入できることが好ましい。第二電極を構成する材料としては、例えば、白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、これらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金などが挙げられる。これらを2種以上用いてもよく、異なる材料による積層構造を有してもよい。これらの中でも、アルミニウム、銀、マグネシウムを主成分とすることが、電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。マグネシウムおよび銀を含有することがより好ましく、発光層への電子注入が容易になり、駆動電圧をより低減することができる。
 第一電極および第二電極の形成方法としては、例えば、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなどが挙げられる。
 第一電極および第二電極のうち、陰極として用いられる電極は、電極上に保護層を有することが好ましい。保護層を構成する材料としては、例えば、シリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物などが挙げられる。陰極側から光を取り出すトップエミッション構造の場合は、保護層を構成する材料は、可視光領域で光透過性を有するものが好ましい。
 <発光画素>
 発光画素は、対向配置された第一電極と第二電極とが交差し重なる部分であって、第一電極上に画素分割層が形成される場合には、さらに画素分割層により規制される範囲である。発光画素の形状は特に限定されず、例えば、矩形状であってもよいし、円形状であってもよく、画素分割層の形状により、任意の形状に形成することができる。アクティブマトリックス型ディスプレイにおいては、スイッチング手段が形成される部分が発光画素の一部を占有するように配置されることがあり、発光画素の形状は、一部分が欠落したような形でもよい。
 発光画素の構成としては、例えば、発光層のみからなる構成や、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの積層構成が挙げられる。
 さらに、上記の積層構成を、中間層を介して複数積層したタンデム型であってもよい。中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれる。タンデム型の構成としては、例えば、7)正孔輸送層/発光層/電子輸送層/電荷発生層/正孔輸送層/発光層/電子輸送層、8)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの、中間層として電荷発生層を含む積層構成が挙げられる。中間層を構成する材料としては、ピリジン誘導体、フェナントロリン誘導体が好ましい。
 また、上記各層は、それぞれ単一層、複数層のいずれでもよい。さらに、上記発光画素上に、光学干渉効果に起因して発光効率を向上させるためのキャッピング材料を用いた層(キャッピング層)を含んでいてもよい。キャッピング層を構成する材料としては、芳香族アミン誘導体が好ましい。
 <正孔注入層>
 正孔注入層は、陽極と正孔輸送層の間に挿入され、陽極から正孔輸送層への正孔の授受を容易にする層である。正孔輸送層と陽極の間に正孔注入層が存在すると、より低電圧で駆動することができ、耐久寿命を向上させることができ、さらに、有機EL表示装置のキャリアバランスが向上することから、発光効率を向上させることができる。
 正孔注入層を構成する材料としては、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、ビス(N-アリールカルバゾール)、ビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体などが挙げられる。正孔注入層は、これらの材料を2種以上用いてもよいし、異なる材料による積層構造を有してもよい。
 正孔注入層は、さらにアクセプター性化合物をドープすることが好ましい。アクセプター性化合物とは、正孔注入層を構成する材料と電荷移動錯体を形成する材料である。このようなアクセプター性化合物を用いることにより、正孔注入層の導電性が向上し、有機EL表示装置の駆動電圧をより低減し、発光効率および耐久寿命をより向上させることができる。
 アクセプター性化合物としては、例えば、金属酸化物、分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物、キノン系化合物、酸無水物系化合物、フラーレンなどが挙げられる。これらの中でも、取り扱いやすく、蒸着しやすいことから、金属酸化物やシアノ基含有有機化合物が好ましい。
 <正孔輸送層>
 正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は、単層であっても複数の層が積層されて構成されていてもよい。正孔輸送層は、5.1~6.0eVのイオン化ポテンシャル(蒸着膜のAC-2(理研計器)測定値)、高い三重項エネルギー準位、高い正孔輸送性および薄膜安定性を有することが好ましい。正孔輸送層は、三重項発光材料を使用した有機EL表示装置の正孔輸送材料として用いてもよい。正孔輸送層を構成する材料としては、例えば、正孔注入層を構成する材料として例示したものが挙げられる。
 <発光層>
 発光層は、正孔および電子の衝突による再結合エネルギーにより発光材料が励起され、発光する層である。発光層は単層であっても、複数の層が積層されて構成されていてもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成される。各発光層は、ホスト材料またはドーパント材料のいずれか一方のみから構成されていても、それぞれ1種以上のホスト材料と1種以上のドーパント材料との組み合わせにより構成されていてもよい。すなわち、各発光層において、ホスト材料またはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層は、ホスト材料とドーパント材料の組み合わせにより構成されることが好ましい。ドーパント材料は、ホスト材料の全体に含まれていても、部分的に含まれていてもよい。発光層中のドーパント材料の含有量は、濃度消光現象を抑制する観点から、ホスト材料100重量部に対して30重量部以下が好ましく、20重量部以下がより好ましい。発光層は、ホスト材料とドーパント材料とを共蒸着する方法や、ホスト材料とドーパント材料とを予め混合してから蒸着する方法などにより形成することができる。
 発光材料を構成するドーパント材料としては、例えば、アントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラート)アルミニウムなどの金属錯体化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリフェニレンビニレン誘導体などが挙げられる。
 発光層が三重項発光(りん光発光)を行う際に用いられるドーパント材料としては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)およびレニウム(Re)からなる群から選択される少なくとも一種の金属を含む金属錯体化合物が好ましい。金属錯体化合物を構成する配位子は、要求される発光色、有機EL表示装置性能、ホスト化合物との関係から適宜選択することができ、フェニルピリジン骨格、フェニルキノリン骨格、カルベン骨格などの含窒素芳香族複素環を有することが好ましく、具体的には、トリス(2-フェニルピリジル)イリジウム錯体ビス(2-フェニルピリジル)(アセチルアセトナート)イリジウム錯体、テトラエチルポルフィリン白金錯体などが挙げられる。これらを2種以上用いて金属錯体化合物を構成してもよい。
 発光材料を構成するホスト材料としては、例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物などが挙げられる。これらを2種以上用いて発光材料を構成してもよい。
 発光層が三重項発光(りん光発光)を行う際に用いられるホストとしては、金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、トリフェニレン誘導体などが好適に用いられる。その中でも、アントラセン骨格やピレン骨格を有する化合物が、高効率発光が得られやすいため、より好ましい。
 <電子輸送層>
 電子輸送層は、陰極から注入された電子を発光層まで輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため、電子輸送層は、電子親和力および電子移動度が大きく、安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。特に、電子輸送層の膜厚が厚い場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、分子量400以上の化合物が好ましい。なお、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れることを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料によって電子輸送層が構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。このため、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。電子輸送層は、単層であっても複数の層が積層されて構成されていてもよい。
 電子輸送層を構成する電子輸送材料としては、例えば、ナフタレン、アントラセンなどの縮合多環芳香族誘導体などが挙げられる。これらを2種以上用いて電子輸送層を構成してもよい。これらの中でも、駆動電圧をより低減し、高効率発光が得られることから、電子受容性窒素を含むヘテロアリール環構造を有する化合物が好ましい。
 ここで言う電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、かかる多重結合は電子受容的な性質を有する。そのため、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすいことから、駆動電圧をより低減することができる。また、電子受容性窒素を有する電子輸送材料は、発光層への電子の供給が多くなり、再結合確率が高くなるため、発光効率が向上する。
 電子受容性窒素を含むヘテロアリール環としては、例えば、トリアジン環、ピリジン環などが挙げられる。これらのヘテロアリール環構造を有する化合物としては、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体またはこれらの2種以上が、電子輸送能力の観点から好ましく用いられる。
 電子輸送層には、ドナー性化合物を含有してもよい。ここで、ドナー性化合物とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。
 ドナー性化合物としては、例えば、アルカリ金属、アルカリ金属の無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属の無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。
 ドナー性化合物は、真空中における蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩または有機物との錯体が好ましく、大気中での取扱が容易で添加濃度を調整しやすいことから、有機物との錯体がより好ましい。
 電子輸送層のイオン化ポテンシャルは、5.6eV以上が好ましく、5.6eV以上がより好ましい。一方、電子輸送層のイオン化ポテンシャルは、8.0eV以下が好ましく、7.0eV以下がより好ましい。
 有機EL表示装置を構成する上記各層の形成方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、分子積層法、コーティング法などが挙げられる。これらの中でも、有機EL表示装置特性の観点から、抵抗加熱蒸着法、電子ビーム蒸着法が好ましい。
 正孔注入層、正孔輸送層、発光層、電子輸送層を含む有機層の合計の厚みは、発光物質の抵抗値により適宜選択することができ、1~1000nmが好ましい。正孔注入層、正孔輸送層、発光層、電子輸送層の厚みは、それぞれ、1nm以上が好ましく、5nm以上がより好ましい。一方、正孔注入層、正孔輸送層、発光層、電子輸送層の厚みは、それぞれ、200nm以下が好ましく、100nm以下がより好ましい。
 <平坦化層および画素分割層>
 平坦化層および/または画素分割層は、後述する感光性樹脂組成物の硬化物からなり、硬化物の、飛行時間型二次イオン質量分析により測定される不揮発成分中の金属元素およびハロゲン元素の含有量の総和が1.0×1017atom/cm以上1.0×1022atom/cm以下であることを特徴とする。硬化物中に金属元素やハロゲン元素を微量含有することにより、平坦化層および/または画素分割層の形成に際して基板上に付着する微量の金属元素および/またはハロゲン元素により、パターン開口部となるITO電極の導電性が向上するため、有機EL表示装置の駆動電圧を低減し、信頼性を向上させることができる。また、これらの元素が(A-1)カルボキシル基を有するアルカリ可溶性樹脂と塩形成する元素トラップ効果により、過剰の金属元素やハロゲン元素に由来するアルカリマイグレーションなどの電極腐食やそれによる発光輝度低下や画素シュリンクを抑制し、有機EL表示装置の信頼性を向上させることができる。金属元素および/またはハロゲン元素の含有量の総和が1.0×1017atom/cm未満であると、パターン開口部となるITO電極の導電性が低く、有機EL表示装置を長時間駆動した場合に高電圧化しやすいことから、信頼性が低下する。一方、金属元素および/またはハロゲン元素の含有量の総和が1.0×1022atom/cmを超えると、元素トラップ効果により捕捉できない過剰の金属元素やハロゲン元素が、パターン開口部において電極腐食を発生させやすいことから、有機EL表示装置を長時間駆動した場合に発光輝度低下や画素シュリンクにより、信頼性が低下する。
 本発明において、金属元素および/またはハロゲン元素を上記の範囲にする方法としては、例えば、後述する感光性樹脂組成物を用いる方法が挙げられる。
 <金属元素>
 本発明における金属元素とは、金属の性質を示す元素を指し、遊離したイオンも含まれる。後述する感光性樹脂組成物において、(A)アルカリ可溶性樹脂として(A-1)カルボキシル基を有するアルカリ可溶性樹脂を含む場合、カルボキシル基との塩形成および相互作用によりトラップされやすいことから、アルカリ金属元素、アルカリ土類金属元素を含むことが好ましく、アルカリ金属元素を含むことがより好ましく、ナトリウム、カリウムを含むことがさらに好ましい。アルカリ金属元素およびアルカリ土類金属元素含有量の総和は、1.0×1017atom/cm以上が好ましく、有機EL表示装置の駆動電圧をより低減し、信頼性をより向上させることができる。一方、アルカリ金属元素およびアルカリ土類金属元素含有量の総和は、5.0×1021atom/cm以下が好ましく、有機EL表示装置の信頼性をより向上させることができる。また、アルカリ金属元素含有量の総和は、1.0×1017atom/cm以上が好ましく、有機EL表示装置の駆動電圧をより低減し、信頼性をより向上させることができる。一方、アルカリ金属元素含有量の総和は、4.5×1021atom/cm以下が好ましく、有機EL表示装置の信頼性をより向上させることができる。さらに、ナトリウムおよびカリウム含有量の総和は、1.0×1017atom/cm以上が好ましく、有機EL表示装置の駆動電圧をより低減することができる。一方、ナトリウムおよびカリウム含有量の総和は、4.0×1021atom/cm以下が好ましく、有機EL表示装置の信頼性をより向上させることができる。
 <ハロゲン元素>
 本発明におけるハロゲン元素とは、周期表において第17族に属する元素を指し、遊離したイオンも含まれる。後述する感光性樹脂組成物において、(A)アルカリ可溶性樹脂として(A-1c)カルボキシル基と、アミノ基および/またはアミド基とを有するアルカリ可溶性樹脂を含む場合、アミノ基および/またはアミド基がハロゲン元素と塩形成し、トラップすることができることから、有機EL表示装置の信頼性をより向上させることができる。ハロゲン元素のなかでも、アミノ基および/またはアミド基にトラップされやすいことから、塩素を含むことが好ましい。塩素含有量の総和は、1.0×1017atom/cm以上が好ましく、有機EL表示装置の駆動電圧をより低減させることができる。一方、塩素含有量の総和は、5.0×1021atom/cm以下が好ましく、有機EL表示装置の信頼性をより向上させることができる。
 <金属元素およびハロゲン元素の定量方法>
 感光性樹脂組成物の硬化物の不揮発成分中の金属元素およびハロゲン元素は、以下の方法により定量することができる。まず、硬化膜中に、IMX-3500RS(アルバック社製)を用いて、既知の注目元素を特定量注入し、下記式により相対感度係数(RSF)を算出する。後述するTOF-SIMSの感度(atom/cm)を良好にするために、イオン注入量は、1.0×1013atom/cm~5.0×1015atom/cmが好ましい。
Figure JPOXMLDOC01-appb-M000002
Φ:イオン注入量(atom/cm
Δd:1測定サイクルあたりの深さ(cm)
:不純物イオン強度(counts)
BG:バックグラウンド強度(counts)
ref:硬化膜のイオン強度(counts)
 得られた相対感度係数を基に、下記式により、TOF-SIMS分析から、硬化膜中における金属元素およびハロゲン元素(対象元素)濃度をそれぞれ定量することができる。
対象元素濃度=RSF(atom/cm)×対象元素イオン強度(counts)/硬化膜のイオン強度(counts)。
 なお、定量に用いた箇所は、硬化膜の表層から0.5μmの位置で算出した。
 <画素分割層開口率>
 本発明に係る有機EL表示装置の表示エリアにおける画素分割層開口率は、20%以下が好ましい。ここで、画素分割層開口率とは、有機EL表示装置全体の面積に対する画素分割層開口部の面積率を指す。画素の高精細化が進むと画素分割層開口率が低くなり、画素シュリンクの影響が大きくなる。本発明の有機EL表示装置は、発光輝度低下や画素シュリンクを抑制し、有機EL表示装置の信頼性を向上させることができることから、画素シュリンクによる影響の大きい、画素分割層開口率20%以下の場合に、特に顕著な効果を奏する。
 <感光性樹脂組成物>
 次に、平坦化層および/または画素分割層を構成する硬化膜の原料となる感光性樹脂組成物について説明する。感光性樹脂組成物は、(A)アルカリ可溶性樹脂、(B)着色剤、(C)ラジカル重合性化合物および(D)光重合開始剤を含有する。感光性樹脂組成物は、さらに他の成分を含有してもよい。
 <(A)アルカリ可溶性樹脂>
 本発明における(A)アルカリ可溶性樹脂とは、樹脂のプリベーク膜を2.38質量%TMAH水溶液で60秒間現像し、水で30秒間リンスした時の膜厚減少値であるアルカリ溶解速度が1nm/min以上である樹脂を指す。(A)アルカリ可溶性樹脂は、現像性の観点から、(A-1)カルボキシル基を有するアルカリ可溶性樹脂を含有することが好ましい。
 <(A-1)カルボキシル基を有するアルカリ可溶性樹脂>
 (A-1)カルボキシル基を有するアルカリ可溶性樹脂としては、樹脂合成時のカルボン酸導入の容易性から、(A-1a)アクリル樹脂、(A-1b)カルド系樹脂、(A-1c)カルボキシル基と、アミノ基および/またはアミド基とを有するアルカリ可溶性樹脂が好ましく、これらを2種以上含有してもよい。(A-1c)カルボキシル基と、アミノ基および/またはアミド基とを有するアルカリ可溶性樹脂としては、ポリイミド前駆体、アクリル樹脂などが挙げられる。ただし、アクリル樹脂またはポリイミド前駆体がカルボキシル基とアミノ基および/またはアミド基を有する場合は、(A-1c)カルボキシル基と、アミノ基および/またはアミド基とを有するアルカリ可溶性樹脂とする。特に、アルカリ現像マージンの観点から、(A-1a)アクリル樹脂、(A-1b)カルド系樹脂がより好ましい。(A-1)カルボキシル基を有するアルカリ可溶性樹脂のカルボン酸当量は、金属元素およびハロゲン元素のトラップ性を向上させ、有機EL表示装置の信頼性をより向上させる観点から、400g/mol以上が好ましい。また、(A-1)カルボキシル基を有するアルカリ可溶性樹脂のカルボン酸当量は、現像時の残膜率向上の観点から、1000g/mol以下が好ましい。
 <(A-1a)アクリル樹脂>
 (A-1a)アクリル樹脂は、エチレン性不飽和二重結合を有することが好ましい。(A-1a)アクリル樹脂は、樹脂の主鎖から分岐した側鎖にエチレン性不飽和二重結合を容易に導入可能な樹脂である。エチレン性不飽和二重結合を有する場合、(A-1a)アクリル樹脂は光硬化性を有し、露光により硬化し、炭素-炭素結合の三次元架橋構造が形成されるため、露光時の感度を向上させることができる。(A-1a)アクリル樹脂は、露光時の感度および硬化膜の機械特性向上の観点から、下記一般式(61)で表される構造単位及び/又は下記一般式(62)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(61)中のRd及び一般式(62)中のRdは、それぞれ独立して、エチレン性不飽和二重結合を有する有機基により置換された、炭素数1~10のアルキル基、炭素数4~15のシクロアルキル基又は炭素数6~15のアリール基を表し、R200~R205は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表す。X90及びX91は、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。
 一般式(61)中のRd及び一般式(62)中のRdは、それぞれ独立して、エチレン性不飽和二重結合を有する有機基により置換された、炭素数1~6のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~10のアリール基が好ましい。また、R200~R205は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数4~7のシクロアルキル基又は炭素数6~10のアリール基が好ましい。また、X90及びX91は、それぞれ独立して、直接結合、炭素数1~6のアルキレン基、炭素数4~7のシクロアルキレン基又は炭素数6~10のアリーレン基が好ましい。
 <(A-1b)カルド系樹脂>
 (A-1b)カルド系樹脂は、主鎖と、高い耐熱性と剛直な構造を有するフルオレン環などの環状構造を有する嵩高い側鎖とが、一つの原子で繋がれた構造を有する、熱硬化性樹脂である。かかる(A-1b)カルド系樹脂を含有することにより、硬化物の耐熱性を向上させることができる。
 (A-1b)カルド系樹脂は、エチレン性不飽和二重結合を有することが好ましい。(A-1b)カルド系樹脂は、樹脂の主鎖から分岐した側鎖にエチレン性不飽和二重結合を容易に導入可能な樹脂である。エチレン性不飽和二重結合を有する場合、(A-1b)カルド系樹脂は光硬化性を有し、露光によりUV硬化し、炭素-炭素結合の三次元架橋構造が形成される。このため、露光時の感度を向上させることができる。
 <(A-1c)カルボキシル基と、アミノ基および/またはアミド基とを有するアルカリ可溶性樹脂>
 (A-1c)カルボキシル基と、アミノ基および/またはアミド基を有するアルカリ可溶性樹脂は、カルボキシル基が金属元素を、アミン構造および/またはアミド構造がハロゲン元素をより効率よくトラップするため、有機EL表示装置の信頼性をより向上させることができる。さらに、後述する(B)着色剤の分散安定性を向上させることができる。アミノ基は、3級アミノ基が好ましく、ハロゲン元素に対するトラップ性および着色剤の分散安定性をより向上させることができる。カルボキシル基と、アミノ基および/またはアミド基とを有するアルカリ可溶性樹脂としては、例えば、ポリイミド前駆体、アクリル樹脂などが挙げられる。一例として、以下に、ポリイミド前駆体について説明する。
 ポリイミド前駆体は、テトラカルボン酸及び/又はその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。ポリイミド前駆体は、例えば、テトラカルボン酸、対応するテトラカルボン酸二無水物又はテトラカルボン酸ジエステル二塩化物などと、ジアミン、対応するジイソシアネート化合物又はトリメチルシリル化ジアミンなどとを反応させることによって得ることができる。ポリイミド前駆体としては、例えば、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド、ポリイソイミドなどが挙げられる。ポリイミド前駆体は、熱硬化性樹脂であり、高温で熱硬化させて脱水閉環させることにより、高耐熱性のイミド結合が形成され、後述する(A-2a)ポリイミド樹脂が得られる。ポリイミド前駆体は、硬化膜の耐熱性及び現像後の解像度向上の観点から、下記一般式(3)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(3)において、Rは、4~10価の有機基を表し、R10は、2~10価の有機基を表す。R11は、下記一般式(5)又は下記一般式(6)で表される基を表し、R12は、フェノール性水酸基、スルホン酸基又はメルカプト基を表し、R13は、フェノール性水酸基、スルホン酸基、メルカプト基又は下記一般式(5)または下記一般式(6)で表される基を表す。tは、2~8の整数を表し、uは、0~6の整数を表し、vは、0~8の整数を表し、2≦t+u≦8である。
Figure JPOXMLDOC01-appb-C000005
 一般式(5)中のR19及び一般式(6)中のR20、R21は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基を表す。一般式(5)中のR19及び一般式(6)中のR20、R21は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~4のアシル基又は炭素数6~10のアリール基が好ましい。上記のアルキル基、アシル基及びアリール基は、置換基を有してもよい。
 一般式(3)において、Rは、テトラカルボン酸及び/又はその誘導体残基を表し、R10は、ジアミン及び/又はその誘導体残基を表す。テトラカルボン酸誘導体としては、テトラカルボン酸二無水物、テトラカルボン酸二塩化物、テトラカルボン酸活性ジエステルが挙げられる。ジアミン誘導体としては、ジイソシアネート化合物、トリメチルシリル化ジアミンが挙げられる。
 一般式(3)において、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び/または炭素数6~30の芳香族構造を有することが好ましく、炭素数4~15の脂肪族構造、炭素数4~15の脂環式構造及び/または炭素数6~25の芳香族構造を有することがより好ましい。また、R10は、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び/または炭素数6~30の芳香族構造を有することが好ましく、炭素数4~15の脂肪族構造、炭素数4~15の脂環式構造及び/または炭素数6~25の芳香族構造を有することがより好ましい。vは、1~8の整数が好ましい。上記の脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、置換基を有してもよい。
 一般式(3)のR及びR10の脂肪族構造としては、例えば、エタン構造、n-ブタン構造、n-ペンタン構造、n-ヘキサン構造、n-デカン構造、3,3-ジメチルペンタン構造、ジ-n-ブチルエーテル構造、ジ-n-ブチルケトン構造、ジ-n-ブチルスルホン構造が挙げられる。また、その置換基としては、例えば、ハロゲン原子、アルコキシ基が挙げられる。置換基を有する脂肪族構造としては、例えば、3,3-ビス(トリフルオロメチル)ペンタン構造、3-メトキシペンタン構造が挙げられる。
 一般式(3)のR及びR10の脂環式構造としては、例えば、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、エチルシクロヘキサン構造、テトラヒドロフラン構造、ビシクロヘキシル構造、2,2-ジシクロヘキシルプロパン構造、ジシクロヘキシルエーテル構造、ジシクロヘキシルケトン構造、ジシクロヘキシルスルホン構造が挙げられる。また、その置換基としては、例えば、ハロゲン原子、アルコキシ基が挙げられる。置換基を有する脂環式構造としては、例えば、1,1-ジシクロヘキシル-1,1-ビス(トリフルオロメチル)メタン構造、1,1-ジシクロヘキシル-1-メトキシメタン構造が挙げられる。
 一般式(3)のR及びR10の芳香族構造としては、例えば、ベンゼン構造、エチルベンゼン構造、ナフタレン構造、1,2,3,4-テトラヒドロナフタレン構造、フルオレン構造、ビフェニル構造、ターフェニル構造、2,2-ジフェニルプロパン構造、ジフェニルエーテル構造、ジフェニルケトン構造、ジフェニルスルホン構造、9,9-ジフェニルフルオレン構造が挙げられる。また、その置換基としては、例えば、ハロゲン原子、アルコキシ基が挙げられる。置換基を有する芳香族構造としては、例えば、1,1-ジフェニル-1,1-ビス(トリフルオロメチル)メタン構造、1,1-ジフェニル-1-メトキシメタン構造が挙げられる。
 <(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂>
 本発明に用いられる感光性樹脂組成物は、(A-1)カルボキシル基を有するアルカリ可溶性樹脂に加え、現像マージンおよび硬化膜のパターン形成の観点から、(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂を含むことが好ましい。(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂としては、例えば、(A-2a)ポリイミド樹脂、(A-2b)ポリベンゾオキサゾール樹脂、(A-2c)ポリベンゾオキサゾール前駆体、ノボラック樹脂などが挙げられ、これらを2種以上含有してもよい。これらの中でも、耐熱性の観点から、(A-2a)ポリイミド樹脂、(A-2b)ポリベンゾオキサゾール樹脂が好ましい。ここで、本発明における(A-2a)ポリイミド樹脂は、イミド結合から成る構造単位を主成分とする樹脂であり、イミド閉環反応の残基としてカルボキシル基を有する場合であっても、(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂に属するものとする。
 本発明に用いられる感光性樹脂組成物は、(A-1)カルボキシル基を有するアルカリ可溶性樹脂および(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂の合計100重量部に対して、(A-1)カルボキシル基を有するアルカリ可溶性樹脂を5重量部以上含有することが好ましく、現像時のパターン加工性を向上させることができる。一方、感光性樹脂組成物は、(A-1)カルボキシル基を有するアルカリ可溶性樹脂を40重量部以下含有することが好ましく、現像時の残膜率を向上させることができる。
 本発明に用いられる(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂のMwは、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましく、1,500以上がさらに好ましい。Mwがこの範囲内であると、現像後の解像度を向上させることができる。
 一方、Mwとしては、100,000以下が好ましく、50,000以下がより好ましく、30,000以下がさらに好ましい。Mwがこの範囲内であると、塗布時のレベリング性及びアルカリ現像液でのパターン加工性を向上させることができる。
 <(A-2a)ポリイミド樹脂>
 (A-2a)ポリイミド樹脂は、テトラカルボン酸及び/又はその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。(A-2a)ポリイミド樹脂として、例えば、前記(A1-c)として例示したポリイミド前駆体のイミド化物が挙げられ、ポリイミド前駆体を、加熱、酸または塩基などを用いた反応により脱水閉環させることによって、得ることができる。(A-2a)ポリイミド樹脂は、硬化膜の耐熱性向上の観点から、下記一般式(1)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)において、Rは、4~10価の有機基を表し、Rは、2~10価の有機基を表す。R及びRは、それぞれ独立して、フェノール性水酸基、スルホン酸基、メルカプト基、前記一般式(5)または一般式(6)で表される基を表す。pは、0~6の整数を表し、qは、0~8の整数を表す。
 一般式(1)のRは、テトラカルボン酸及び/又はその誘導体残基を表し、Rは、ジアミン及び/又はその誘導体残基を表す。テトラカルボン酸誘導体としては、テトラカルボン酸二無水物、テトラカルボン酸二塩化物、テトラカルボン酸活性ジエステルなどが挙げられる。ジアミン誘導体としては、ジイソシアネート化合物、トリメチルシリル化ジアミンなどが挙げられる。
 一般式(1)において、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び/又は炭素数6~30の芳香族構造を有する4~10価の有機基が好ましく、炭素数4~15の脂肪族構造、炭素数4~15の脂環式構造及び/又は炭素数6~25の芳香族構造を有する4~10価の有機基がより好ましい。また、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び/又は炭素数6~30の芳香族構造を有する2~10価の有機基が好ましく、炭素数4~15の脂肪族構造、炭素数4~15の脂環式構造及び/又は炭素数6~25の芳香族構造を有する2~10価の有機基がより好ましい。qは、1~8の整数が好ましい。上記の脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、置換基を有してもよい。
 一般式(1)のR及びRの脂肪族構造、脂環式構造、芳香族構造としては、例えば、それぞれ、一般式(3)のR及びR10の脂肪族構造、脂環式構造、芳香族構造として例示したものが挙げられる。
 (A-2a)ポリイミド樹脂は、一般式(1)で表される構造単位を主成分として含有することが好ましく、(A-2a)ポリイミド樹脂の全構造単位中、一般式(1)で表される構造単位を50~100mol%含有することが好ましい。一般式(1)で表される構造単位の含有量が上記範囲内であると、硬化物の耐熱性を向上させることができる。一般式(1)で表される構造単位の含有量は、60mol%以上がより好ましく、70mol%以上がさらに好ましい。
 <(A-2b)ポリベンゾオキサゾール樹脂>
 (A-2b)ポリベンゾオキサゾール樹脂は、ジカルボン酸及び/又はその誘導体残基と、ビスアミノフェノール化合物及び/又はその誘導体残基を有する。(A-2b)ポリベンゾオキサゾール樹脂として、例えば、後述する(A-2c)ポリベンゾオキサゾール前駆体の脱水閉環物が挙げられ、(A-2c)ポリベンゾオキサゾール前駆体を、加熱、無水リン酸、塩基またはカルボジイミド化合物などを用いた反応により脱水閉環させることによって、得ることができる。(A-2b)ポリベンゾオキサゾール樹脂は、硬化膜の耐熱性向上の観点から、下記一般式(2)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(2)において、Rは、2~10価の有機基を表し、Rは、芳香族構造を有する4~10価の有機基を表す。R及びRは、それぞれ独立して、フェノール性水酸基、スルホン酸基またはメルカプト基を表す。rは、0~8の整数を表し、sは、0~6の整数を表す。
 一般式(2)のRは、ジカルボン酸及び/又はその誘導体残基を表し、Rは、ビスアミノフェノール化合物及び/又はその誘導体残基を表す。ジカルボン酸誘導体としては、ジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル、トリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル、ジホルミル化合物が挙げられる。
 一般式(2)において、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び/又は炭素数6~30の芳香族構造を有する2~10価の有機基が好ましく、炭素数4~15の脂肪族構造、炭素数4~15の脂環式構造及び/又は炭素数6~25の芳香族構造を有する2~10価の有機基がより好ましい。また、Rは、炭素数6~30の芳香族構造を有する4~10価の有機基が好ましく、炭素数6~25の芳香族構造を有する4~10価の有機基がより好ましい。sは、1~8の整数が好ましい。上記の脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、置換基を有してもよい。
 一般式(2)のR及びRの脂肪族構造、脂環式構造、芳香族構造としては、例えば、それぞれ、一般式(3)のR及びR10の脂肪族構造、脂環式構造、芳香族構造として例示したものが挙げられる。
 <(A-2c)ポリベンゾオキサゾール前駆体>
 (A-2c)ポリベンゾオキサゾール前駆体は、ジカルボン酸及び/又はその誘導体残基と、ビスアミノフェノール化合物及び/又はその誘導体残基を有する。(A-2c)ポリベンゾオキサゾール前駆体は、例えば、ジカルボン酸、対応するジカルボン酸二塩化物又はジカルボン酸活性ジエステルなどと、ジアミンとしてビスアミノフェノール化合物などとを反応させることによって、得ることができる。(A-2c)ポリベンゾオキサゾール前駆体としては、例えば、ポリヒドロキシアミドが挙げられる。(A-2c)ポリベンゾオキサゾール前駆体は、硬化膜の耐熱性向上及び現像後の解像度向上の観点から、下記一般式(4)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(4)において、R14は、2~10価の有機基を表し、R15は、芳香族構造を有する4~10価の有機基を表す。R16は、フェノール性水酸基、スルホン酸基またはメルカプト基を表し、R17は、フェノール性水酸基を表し、R18は、スルホン酸基またはメルカプト基を表す。wは、0~8の整数を表し、xは、2~8の整数を表し、yは、0~6の整数を表し、2≦x+y≦8である。
 一般式(4)のR14は、ジカルボン酸及び/又はその誘導体残基を表し、R15は、ビスアミノフェノール化合物及び/又はその誘導体残基を表す。ジカルボン酸誘導体としては、ジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル、トリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル、ジホルミル化合物が挙げられる。
 一般式(4)において、R14は、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び/又は炭素数6~30の芳香族構造を有する2~10価の有機基が好ましく、炭素数4~15の脂肪族構造、炭素数4~15の脂環式構造及び/又は炭素数6~25の芳香族構造を有する2~10価の有機基がより好ましい。また、R15は、炭素数6~30の芳香族構造を有する4~10価の有機基が好ましく、炭素数6~25の芳香族構造を有する4~10価の有機基がより好ましい。上記の脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、置換基を有してもよい。
 一般式(4)のR14及びR15の脂肪族構造、脂環式構造、芳香族構造としては、例えば、それぞれ、一般式(3)のR及びR10の脂肪族構造、脂環式構造、芳香族構造として例示したものが挙げられる。
 <(A-2d)ノボラック樹脂>
 (A-2d)ノボラック樹脂は、フェノール化合物に由来する芳香族構造を有する。(A-2d)ノボラック樹脂は、フェノール化合物と、アルデヒド化合物又はケトン化合物とを反応させることにより、得ることができる。これらを酸触媒下、溶媒中または無溶媒下で反応させることが好ましい。アルデヒド化合物及び/又はケトン化合物が芳香族構造を有する場合、それらに由来する芳香族構造も有する。(A-2d)ノボラック樹脂を含有することにより、得られる硬化物の耐熱性を向上させることができる。
 (A-2d)ノボラック樹脂は、アルカリ可溶性基として、フェノール性水酸基を有することにより、アルカリ現像マージンを向上させることができる。フェノール性水酸基に加え、さらに、ヒドロキシイミド基などの弱酸性基を有しても構わない。
 フェノール化合物としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,5-キシレノール、3,5-キシレノール、2-エチルフェノール、3-エチルフェノール、4-エチルフェノール、4-n-プロピルフェノール、4-n-ブチルフェノール、4-t-ブチルフェノール、1-ナフトール、2-ナフトール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、カテコール、レゾルシノール、1,4-ヒドロキノン、ピロガロール、1,2,4-ベンゼントリオール、フロログルシノールなどが挙げられる。
 アルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、パラアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒドなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノンなどが挙げられる。
 <(B)着色剤>
 (B)着色剤としては、(B-1)有機顔料、(B-2)無機顔料、(B-3)染料などが挙げられる。着色剤は、これらを2種以上含有してもよい。これらの中でも、耐熱性および信頼性の観点から、(B-1)有機顔料、(B-2)無機顔料が好ましく、金属元素およびハロゲン元素の含有量を前述の所望の範囲にする観点から、(B-1)有機顔料がより好ましい。
 本発明に用いられる感光性樹脂組成物の硬化膜中に含まれる、金属元素及びハロゲン元素の含有量の総和を前述の範囲にする手段としては、例えば、銅などの金属元素および塩素や臭素などのハロゲン元素を含む(B-1)有機顔料を用いる方法が挙げられる。金属元素及びハロゲン元素の含有量の総和を前述の範囲にするために、(B-1)有機顔料を含む顔料分散液をイオン交換樹脂または陽イオン交換樹脂を用いて予め精製することや、精製水で数回洗浄し、乾燥することも好ましい。
 <(B-1)有機顔料>
 (B-1)有機顔料としては、例えば、ジケトピロロピロール系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料、銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料、アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、金属錯体系顔料などが挙げられる。
 赤色の有機顔料としては、例えば、ピグメントレッド9,48,97,122,144,166,168,180,192,209,215,216,217,220,223,224,226,227,228,240,254が挙げられる(数値はいずれもカラーインデックス(以下、「CI」ナンバー))。
 橙色の有機顔料としては、例えば、ピグメントオレンジ13,36,38,43,51,55,59,61,64,65,71が挙げられる。
 黄色の有機顔料としては、例えば、ピグメントイエロー12,13,17,20,24,83,86,93,95,109,110,117,125,129,137,138,139,147,148,150,153,154,166,168,185が挙げられる(数値はいずれもCIナンバー)。
 紫色の有機顔料としては、例えば、ピグメントバイオレット23,30,32,40,50が挙げられる(数値はいずれもCIナンバー)。
 青色の有機顔料としては、例えば、ピグメントブルー15,15:3,15:4,15:6,22,60又は64が挙げられる(数値はいずれもCIナンバー)。
 緑色の有機顔料としては、例えば、ピグメントグリーン7,10,36,58が挙げられる(数値はいずれもCIナンバー)。
 黒色の有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料(例えば、特表2012-515233号公報記載の顔料)が挙げられる。混色有機顔料としては、赤、青、緑、紫、黄色、マゼンダ、シアン等から選ばれる2種類以上の顔料を混合して疑似黒色化したものが挙げられる。
 白色の有機顔料としては、例えば、二酸化チタン、炭酸バリウム、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、アルミナホワイト、二酸化珪素が挙げられる。
 (B-1)有機顔料は、遮光性の観点から黒色顔料または複数種の使用によって黒色を呈することが好ましい。(B-1)有機顔料としては、(B-1a)酸処理されたカーボンブラックや(B-1b)アミド構造を有するベンゾフラノン系有機顔料が好ましい。
 <(B-1a)酸処理されたカーボンブラック>
 (B-1a)酸処理されたカーボンブラックを構成するカーボンブラックとしては、例えば、チャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック、ランプブラックが挙げられる。遮光性の観点から、チャンネルブラックが好ましい。酸性基を導入する表面処理をすることにより、カーボンブラックの粒子表面を酸性化し粒子の表面状態を改質することができ、組成物中に含まれる(A)アルカリ可溶性樹脂による分散安定性を向上させることができる。また、金属元素およびハロゲン元素の含有量を、前述の所望の範囲に容易に調整することができる。
 カーボンブラックに導入される酸性基としては、ブレンステッドの定義において酸性を示す置換基が好ましく、具体例としては、カルボキシ基、スルホン酸基、リン酸基が挙げられる。
 カーボンブラックに導入される酸性基は、塩を形成しても構わない。酸性基と塩を形成するカチオンとしては、種々の金属イオン、含窒素化合物のカチオン、アリールアンモニウムイオン、アルキルアンモニウムイオン、アンモニウムイオンが挙げられる。硬化膜の絶縁性の観点から、アリールアンモニウムイオン、アルキルアンモニウムイオン、アンモニウムイオンが好ましい。
 カーボンブラックに酸性基を導入する表面処理方法としては、例えば、以下の(1)~(5)の方法が挙げられる。
(1)濃硫酸、発煙硫酸若しくはクロロスルホン酸を用いる直接置換法又は亜硫酸塩若しくは亜硫酸水素塩を用いる間接置換法により、カーボンブラックにスルホン酸基を導入する方法。
(2)アミノ基と酸性基を有する有機化合物と、カーボンブラックとを、ジアゾカップリングさせる方法。
(3)ハロゲン原子と酸性基を有する有機化合物と、ヒドロキシ基を有するカーボンブラックとを、ウィリアムソンのエーテル化法により反応させる方法。
(4)ハロゲン化カルボニル基と保護基により保護された酸性基を有する有機化合物と、ヒドロキシ基を有するカーボンブラックとを、反応させる方法。
(5)ハロゲン化カルボニル基と保護基により保護された酸性基を有する有機化合物と、カーボンブラックとを、フリーデルクラフツ反応させた後、酸性基を脱保護させる方法。
 このうち、酸性基の導入処理が、容易かつ安全である観点から、(2)の方法が好ましい。(2)の方法で用いられるアミノ基と酸性基を有する有機化合物としては、芳香族基にアミノ基と酸性基が結合した有機化合物が好ましく、例えば、4-アミノベンゼンスルホン酸、4-アミノ安息香酸などが挙げられる。
 カーボンブラックに導入される酸性基のモル数は、カーボンブラック100gに対して、1mmol以上が好ましく、5mmol以上がより好ましい。モル数がこの範囲内であると、カーボンブラックの分散安定性を向上させることができる。
 一方、カーボンブラックに導入される酸性基のモル数は、200mmol以下が好ましく、150mmol以下がより好ましい。モル数がこの範囲内であると、カーボンブラックの分散安定性を向上させることができる。
 感光性樹脂組成物の固形分に占める(B-1a)酸処理されたカーボンブラックの含有比率は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。含有比率がこの範囲内であると、遮光性及び調色性をより向上させることができる。
 一方、感光性樹脂組成物の固形分に占める(B-1a)酸処理されたカーボンブラックの含有比率は、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましい。含有比率がこの範囲内であると、露光時の感度を向上させることができる。
 <(B-1b)アミド構造を有するベンゾフラノン系有機顔料>
 (B-1b)アミド構造を有するベンゾフラノン系有機顔料を含有することにより、分散剤との相互作用により分散安定化するため、樹脂組成物から得られる膜を着色させることができ、樹脂組成物の膜を透過する光、又は、樹脂組成物の膜から反射する光を、所望の色に着色させる、着色性を付与することができる。また、樹脂組成物の膜を透過する光、又は、樹脂組成物の膜から反射する光から、(B-1b)アミド構造を有するベンゾフラノン系有機顔料が吸収する波長の光を遮光する、遮光性をより向上させることができる。また、金属元素およびハロゲン元素の含有量を、前述の所望の範囲に容易に調整することができる。
 (B-1b)アミド構造を有するベンゾフラノン系有機顔料としては、可視光線の波長の光を吸収し、白、赤、橙、黄、緑、青又は紫色に着色する化合物が挙げられる。これらの顔料を二色以上組み合わせることで、樹脂組成物の所望の樹脂組成物の膜を透過する光、又は、樹脂組成物の膜から反射する光を、所望の色座標に調色する、調色性を向上させることができる。アミド構造を有する有機顔料は、遮光性の観点から、感光性樹脂組成物の固形分に占める(B-1b)アミド構造を有するベンゾフラノン系有機顔料の含有比率は、10質量%以上が好ましく、遮光性をより向上させることができる。一方、その含有比率は70質量%以下が好ましく、感光性樹脂組成物のパターン加工性を向上させることができる。
 (B-1b)アミド構造を有するベンゾフラノン系有機顔料は、下記一般式(11)で表される構造を有することが好ましく、遮光性をより向上させることができる。さらに、化学構造変化又は官能変換により、所望の特定波長の光を透過又は遮光するなど、樹脂組成物の膜の透過スペクトル又は吸収スペクトルを調整し、調色性を向上させることができる。特に、近赤外領域の波長(例えば、700nm以上)の透過率を向上させることができる。
Figure JPOXMLDOC01-appb-C000009
 一般式(11)中、R101、R102はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基又はフッ素原子を1~20個有する炭素数1~10のアルキル基を表す。R104~R107、R109~R112はそれぞれ独立して、水素、ハロゲン原子、炭素数1~10のアルキル基、カルボキシ基、スルホン酸基、アミノ基又はニトロ基を表す。R103、R108はそれぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。
 一般式(11)で表される化合物としては、例えば、“IRGAPHOR(登録商標)”BLACK S0100CF(BASF製)、国際公開第2010/081624号記載の黒色顔料又は国際公開第2010/081756号記載の黒色顔料が挙げられる。
 ネガ感光性樹脂組成物の固形分に占める一般式(11)で表される化合物の含有比率は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。含有比率がこの範囲内であると、遮光性及び調色性をより向上させることができる。
 一方、ネガ感光性樹脂組成物の固形分に占める一般式(11)で表される化合物の含有比率は、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましい。含有比率がこの範囲内であると、露光時の感度を向上させることができる。
 <(B-2)無機顔料>
 (B-2)無機顔料としては、酸化チタン、亜鉛華、硫化亜鉛、鉛白、炭酸カルシウム、沈降性硫酸バリウム、ホワイトカーボン、アルミナホワイト、カオリンクレー、タルク、ベントナイト、カドミウムレッド、酸化鉄、べんがら、モリブデンレッド、モリブデードオレンジ、クロムバーミリオン、黄鉛、カドミウムイエロー、黄色酸化鉄、チタンイエロー、酸化クロム、ビリジアン、チタンコバルトグリーン、コバルトグリーン、コバルトクロムグリーン、ビクトリアグリーン、群青、紺青、コバルトブルー、セルリアンブルー、コバルトシリカブルー、コバルト亜鉛シリカブルー、マンバンバイオレッド、コバルトバイオレット、グラファイト、銀スズ合金、チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀などの金属の微粒子、酸化物、複合酸化物、硫化物、硫酸塩、硝酸塩、炭酸塩、窒化物、炭化物、酸窒化物が挙げられる。(B-2)無機顔料は、遮光性をより向上させる観点から、チタンまたは銀の微粒子、酸化物、複合酸化物、硫化物、窒化物、炭化物、酸窒化物が好ましく、チタンの窒化物または酸窒化物がより好ましい。
 感光性樹脂組成物の固形分に占める(B-2)無機顔料の含有比率は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。含有比率がこの範囲内であると、遮光性、耐熱性及び耐候性をより向上させることができる。
 一方、感光性樹脂組成物の固形分に占める(B-2)無機顔料の含有比率は、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましい。含有比率がこの範囲内であると、露光時の感度を向上させることができる。
 <(B-3)染料>
 (B-3)染料とは、対象物の表面構造に、(B-3)染料中のイオン性基若しくはヒドロキシ基などの置換基が、化学吸着又は強く相互作用などをすることで、対象物を着色させる化合物をいい、一般的に溶剤等に可溶である。また、(B-3)染料による着色は、分子一つ一つが対象物と吸着するため、着色力が高く、発色効率が高い。
 (B-3)染料を含有することにより、着色力に優れた色に着色することでき、樹脂組成物の膜の着色性及び調色性を向上させることができる。
 (B-3)染料としては、例えば、ダイレクトレッド2,4,9,23,26,28,31,39,62,63,72,75,76,79,80,81,83,84,89,92,95,111,173,184,207,211,212,214,218,221,223,224,225,226,227,232,233,240,241,242,243,247、アシッドレッド35,42,51,52,57,62,80,82,111,114,118,119,127,128,131,143,145,151,154,157,158,211,249,254,257,261,263,266,289,299,301,305,319,336,337,361,396,397、リアクティブレッド3,13,17,19,21,22,23,24,29,35,37,40,41,43,45,4,55、ベーシックレッド12,13,14,15,18,22,23,24,25,27,29,35,36,38,39,45,46、ダイレクトバイオレット7,9,47,48,51,66,90,93,94,95,98,100,101、アシッドバイオレット5,9,11,34,43,47,48,51,75,90,103,126、リアクティブバイオレット1,3,4,5,6,7,8,9,16,17,22,23,24,26,27,33,34、ベーシックバイオレット1,2,3,7,10,15,16,20,21,25,27,28,35,37,39,40,48、ダイレクトイエロー8,9,11,12,27,28,29,33,35,39,41,44,50,53,58,59,68,87,93,95,96,98,100,106,108,109,110,130,142,144,161,163、アシッドイエロー17,19,23,25,39,40,42,44,49,50,61,64,76,79,110,127,135,143,151,159,169,174,190,195,196,197,199,218,219,222,227、リアクティブイエロー2,3,13,14,15,17,18,23,24,25,26,27,29,35,37,41,42、ベーシックイエロー1,2,4,11,13,14,15,19,21,23,24,25,28,29,32,36,39,40、アシッドグリーン16、アシッドブルー9,45,80,83,90,185,ベーシックオレンジ21,23が挙げられる(数値はいずれもCIナンバー)。
 <(C)ラジカル重合性化合物>
 (C)ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合を有する化合物をいう。露光時、後述する(D)光重合開始剤から発生するラジカルによって、(C)ラジカル重合性化合物のラジカル重合が進行し、樹脂組成物の膜の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成することができる。
 (C)ラジカル重合性化合物を含有することにより、露光時のUV硬化が促進されて、露光時の感度を向上させることができる。加えて、熱硬化後の架橋密度が向上し、硬化物の硬度を向上させることができる。
 (C)ラジカル重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。(C)ラジカル重合性化合物は、これらを2種以上含有してもよい。
 <(D)光重合開始剤>
 (D)光重合開始剤とは、露光によって結合開裂及び/又は反応してラジカルを発生する化合物をいう。(D)光重合開始剤を含有することにより、前述した(C)ラジカル重合性化合物のラジカル重合が進行し、樹脂組成物の膜の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成することができ、さらに、露光時のUV硬化が促進されて、感度を向上させることができる。
 (D)光重合開始剤としては、例えば、ベンジルケタール系光重合開始剤、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、ベンゾフェノン系光重合開始剤、アセトフェノン系光重合開始剤、芳香族ケトエステル系光重合開始剤又は安息香酸エステル系光重合開始剤が好ましく、露光時の感度向上の観点から、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤又はベンゾフェノン系光重合開始剤がより好ましく、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤がさらに好ましい。
 本発明に用いられる感光性樹脂組成物に占める(D)光重合開始剤の含有量は、(A)アルカリ可溶性樹脂及び(C)ラジカル重合性化合物の合計100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.7質量部以上がさらに好ましく、1質量部以上が特に好ましい。含有量がこの範囲内であると、露光時の感度を向上させることができる。
 一方、(D)光重合開始剤の含有量は、25質量部以下が好ましく、20質量部以下がより好ましく、17質量部以下がさらに好ましく、15質量部以下が特に好ましい。含有量がこの範囲内であると、現像後の解像度を向上させることができるとともに、低テーパーのパターン形状の硬化膜を得ることができる。
 <金属元素やハロゲン元素を含有する金属または化合物>
 本発明に用いられる感光性樹脂組成物は、必要に応じて、金属元素やハロゲン元素を含む金属や化合物をさらに含有してもよく、金属元素やハロゲン元素の含有量を所望の範囲に調整することができる。このような含有物として、例えば、ナトリウム、カリウムなどのアルカリ金属、バリウム、カルシウムなどのアルカリ土類金属、白金、イリジウムなどの重金属、塩酸、臭化水素などの酸、水酸化ナトリウム、水酸化カリウムなどの塩基、塩化ナトリウム、塩化カリウムなどの無機塩、銅フタロシアニンなどの金属錯体、N-クロロスクシンイミド、N-ブロモスクシンイミドなどのハロゲン化試薬などが挙げられる。感光性樹脂組成物は、それらの含有物を水溶液として含有してもよい。感光性樹脂組成物は、取り扱いの観点から、希釈した無機塩の水溶液を微量含有することが好ましい。
 <分散剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、分散剤を含有することが好ましい。分散剤とは、前述した(B)着色剤の表面と相互作用する表面親和性基、及び、(B)着色剤の分散安定性を向上させる分散安定化構造を有する化合物をいう。分散剤の分散安定化構造としては、ポリマー鎖及び/又は静電荷を有する置換基などが挙げられる。
 感光性樹脂組成物が分散剤を含有することにより、(B)着色剤の分散安定性を向上させることができ、現像後の解像度を向上させることができる。特に、例えば、(B)着色剤が1μm以下の数平均粒子径に解砕された粒子の場合、(B)着色剤の粒子の表面積が増大するため、(B)着色剤の粒子の凝集が発生しやすくなる。一方、(B)着色剤を含有する場合、解砕された(B)着色剤の表面と分散剤の表面親和性基とが相互作用するとともに、分散剤の分散安定化構造による立体障害及び/又は静電反発により、(B)着色剤の粒子の凝集を阻害し、分散安定性を向上させることができる。
 分散剤は、表面親和性基であるアミノ基及び/又は酸性基が、酸及び/又は塩基と塩形成した構造を有することが好ましい。
 表面親和基を有する分散剤としては、例えば、“DISPERBYK(登録商標)”-108、同-109、同-160、同-161、同-162、同-163、同-164、同-166、同-167、同-168、同-182、同-184、同-185、同-2000、同-2008、同-2009、同-2022、同-2050、同-2055、同-2150、同-2155、同-2163、同-2164、同-2061、“BYK(登録商標)”-9075、同-9077、同-LP-N6919、同-LP-N21116、同-LP-N21324(以上、何れもビックケミー・ジャパン(株)製)、“EFKA(登録商標)” 4015、同 4020、同 4046、同 4047、同 4050、同 4055、同 4060、同 4080、同 4300、同 4330、同 4340、同 4400、同 4401、同 4402、同 4403、同 4800(以上、何れもBASF製)、“アジスパー(登録商標)” PB711(味の素ファインテクノ(株)製)、“SOLSPERSE(登録商標)” 13240、同 13940、同 20000、同 71000若しくは同 76500(以上、何れもLubrizol製)、“ANTI-TERRA(登録商標)”-U100、同-204、“DISPERBYK(登録商標)”-106、同-140、同-142、同-145、同-180、同-2001、同-2013、同-2020、同-2025、同-187、同-191、“BYK(登録商標)”-9076(ビックケミー・ジャパン(株)製、“アジスパー(登録商標)” PB821、同 PB880、同 PB881(以上、何れも味の素ファインテクノ(株)製)、“SOLSPERSE(登録商標)” 9000、同 11200、同 13650、同 24000、同 32000、同 32500、同 32500、同 32600、同 33000、同 34750、同 35100、同35200、同 37500、同 39000、同 56000、同 76500(以上、何れもLubrizol製)などが挙げられる。
 分散剤のアミン価は、5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、10mgKOH/g以上がさらに好ましい。アミン価がこの範囲内であると、(B)着色剤の分散安定性を向上させることができる。
 一方、分散剤のアミン価は、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましく、100mgKOH/g以下がさらに好ましい。アミン価がこの範囲内であると、樹脂組成物の保管安定性を向上させることができる。
 ここでいうアミン価とは、分散剤1g当たりと反応する酸と当量の水酸化カリウムの重量をいい、単位はmgKOH/gである。アミン価は、分散剤1gを酸で中和させた後、水酸化カリウム水溶液で滴定することにより求めることができる。アミン価の値から、アミノ基1mol当たりの樹脂重量であるアミン当量(単位はg/mol)を算出することができ、分散剤中のアミノ基の数を求めることができる。
 分散剤の酸価は、5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、10mgKOH/g以上がさらに好ましい。酸価がこの範囲内であると、(B)着色剤の分散安定性を向上させることができる。
 一方、分散剤の酸価は、200mgKOH/g以下が好ましく、170mgKOH/g以下がより好ましく、150mgKOH/g以下がさらに好ましい。酸価がこの範囲内であると、樹脂組成物の保管安定性を向上させることができる。
 ここでいう酸価とは、分散剤1g当たりと反応する水酸化カリウムの重量をいい、単位はmgKOH/gである。分散剤1gを水酸化カリウム水溶液で滴定することにより求めることができる。酸価の値から、酸性基1mol当たりの樹脂重量である酸当量(単位はg/mol)を算出することができ、分散剤中の酸性基の数を求めることができる。
 ポリマー鎖を有する分散剤としては、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤、ポリエチレンイミン系分散剤、ポリアリルアミン系分散剤が挙げられる。アルカリ現像液でのパターン加工性の観点から、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤が好ましい。
 <連鎖移動剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、連鎖移動剤を含有することが好ましい。連鎖移動剤とは、露光時のラジカル重合により得られるポリマー鎖の、ポリマー生長末端からラジカルを受け取り、他のポリマー鎖へのラジカル移動を介することが可能な化合物をいう。
 連鎖移動剤としては、チオール系連鎖移動剤が好ましい。チオール系連鎖移動剤としては、例えば、1,4-ビス(3-メルカプトブタノイルオキシ)ブタン、1,4-ビス(3-メルカプトプロピオニルオキシ)ブタン、1,4-ビス(チオグリコロイルオキシ)ブタン、エチレングリコールビス(チオグリコレート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(チオグリコレート)、1,3,5-トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌル酸、1,3,5-トリス[(3-メルカプトブタノイルオキシ)エチル]イソシアヌル酸、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)などが挙げられる。チオール系連鎖移動剤は、これらを2種以上含有してもよい。
 <重合禁止剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、重合禁止剤を含有することが好ましい。重合禁止剤とは、露光時に発生したラジカル、又は、露光時のラジカル重合により得られるポリマー鎖の、ポリマー生長末端のラジカルを捕捉し、安定ラジカルとして保持することで、ラジカル重合を停止することが可能な化合物をいう。重合禁止剤を適量含有させることにより、現像後の残渣発生を抑制し、現像後の解像度を向上させることができる。これは、露光時に発生した過剰量のラジカル、又は、高分子量のポリマー鎖の生長末端のラジカルを重合禁止剤が捕捉することにより、過剰なラジカル重合の進行を抑制するためと推測される。
 重合禁止剤としては、フェノール系重合禁止剤が好ましい。フェノール系重合禁止剤としては、例えば、4-メトキシフェノール、1,4-ヒドロキノン、1,4-ベンゾキノン、2-t-ブチル-4-メトキシフェノール、3-t-ブチル-4-メトキシフェノール、4-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-1,4-ヒドロキノン、2,5-ジ-t-アミル-1,4-ヒドロキノン、“IRGANOX(登録商標)” 1010、同 1035、同 1076、同 1098、同 1135、同 1330、同 1726、同 1425、同 1520、同 245、同 259、同 3114、同 565、同 295(以上、何れもBASF製)が挙げられる。
 <増感剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、増感剤を含有することが好ましい。増感剤とは、露光によるエネルギーを吸収し、内部転換及び項間交差によって励起三重項の電子を生じ、前述した(D)光重合開始剤などへのエネルギー移動を介することが可能な化合物をいう。増感剤を含有させることにより、露光時の感度を向上させることができる。これは、(D)光重合開始剤などが吸収を持たない、長波長の光を増感剤が吸収し、そのエネルギーを増感剤から(D)光重合開始剤などへエネルギー移動をすることで、光反応効率を向上させることができるためであると推測される。
 増感剤としては、チオキサントン系増感剤が好ましい。チオキサントン系増感剤としては、例えば、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントンが挙げられる。
 <架橋剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、架橋剤を含有することが好ましい。架橋剤とは、樹脂と結合可能な架橋性基を有する化合物をいう。架橋剤を含有させることにより、硬化膜の硬度及び耐薬品性を向上させることができる。これは、架橋剤により、樹脂組成物の硬化膜に新たな架橋構造を導入することができるため、架橋密度が向上するためと推測される。架橋剤としては、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基などの熱架橋性を、分子内に二つ以上有する化合物が好ましい。
 感光性樹脂組成物における架橋剤の含有量は、(A)アルカリ可溶性樹脂及び(C)ラジカル重合性化合物の合計100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましい。含有量がこの範囲内であると、硬化膜の硬度及び耐薬品性を向上させることができる。
 一方、感光性樹脂組成物における架橋剤の含有量は、70質量部以下が好ましく、60質量部以下がより好ましく、50質量部以下がさらに好ましい。含有量がこの範囲内であると、硬化膜の硬度及び耐薬品性を向上させることができる。
 <シランカップリング剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、シランカップリング剤を含有することが好ましい。シランカップリング剤とは、加水分解性のシリル基又はシラノール基を有する化合物をいう。感光性樹脂組成物がシランカップリング剤を含有することにより、樹脂組成物の硬化膜と下地の基板界面における相互作用が増大し、下地の基板との密着性及び硬化膜の耐薬品性を向上させることができる。
 シランカップリング剤としては、三官能オルガノシラン、四官能オルガノシラン、シリケート化合物が好ましい。三官能オルガノシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシランなどが挙げられる。四官能オルガノシラン又はシリケート化合物としては、例えば、下記一般式(68)で表されるオルガノシランが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 一般式(68)において、R226~R229は、それぞれ独立して、水素、アルキル基、アシル基又はアリール基を表し、xは1~15の整数を表す。R226~R229は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基が好ましく、水素、炭素数1~4のアルキル基、炭素数2~4のアシル基又は炭素数6~10のアリール基がより好ましい。上記のアルキル基、アシル基及びアリール基は、無置換体又は置換体のいずれであっても構わない。
 一般式(68)で表されるオルガノシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトラアセトキシシランなどの四官能オルガノシラン、メチルシリケート51(扶桑化学工業(株)製)、Mシリケート51、シリケート40、シリケート45(以上、何れも多摩化学工業(株)製)、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48(以上、何れもコルコート(株)製)などのシリケート化合物が挙げられる。
 <溶剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、溶剤を含有することが好ましい。溶剤とは、樹脂組成物中に含有させる各種樹脂及び各種添加剤を溶解させることができる化合物をいう。感光性樹脂組成物に溶剤を含有させることにより、樹脂組成物中に含有させる各種樹脂及び各種添加剤を均一に溶解させ、硬化膜の透過率を向上させることができる。また、感光性樹脂組成物に溶剤を含有させることにより、樹脂組成物の粘度を任意に調整することができ、基板上に所望の膜厚で成膜することができる。加えて、感光性樹脂組成物に溶剤を含有させることにより、樹脂組成物の表面張力又は塗布時の乾燥速度などを任意に調整することができ、塗布時のレベリング性及び塗膜の膜厚均一性を向上させることができる。
 溶剤としては、各種樹脂及び各種添加剤の溶解性の観点から、アルコール性水酸基を有する化合物、カルボニル基を有する化合物、エーテル結合を3つ以上有する化合物が好ましい。加えて、大気圧下の沸点が、110~250℃である化合物が溶剤としてより好ましい。沸点を110℃以上とすることで、塗布時に適度に溶剤が揮発して塗膜の乾燥が進行するため、塗布ムラを抑制し、膜厚均一性を向上させることができる。一方、沸点を250℃以下とすることで、塗膜中に残存する溶剤量を低減することができるため、熱硬化時の膜収縮量を低減させることができ、硬化膜の平坦性を高め、膜厚均一性を向上させることができる。
 (B)着色剤として、(B-1)有機顔料を含有する場合、溶剤としては、カルボニル基及び/又はエステル結合を有する溶剤が好ましい。カルボニル基及び/又はエステル結合を有する溶剤を含有させることで、(B-1)有機顔料の分散安定性を向上させることができる。分散安定性の観点から、溶剤としては、アセテート結合を有する溶剤がより好ましい。アセテート結合を有する溶剤を含有させることで、(B-1)有機顔料の分散安定性を向上させることができる。アセテート結合を有する溶剤としては、例えば、3-メトキシ-n-ブチルアセテート、エチレングリコールモノメチルエーテルアセテートなどが挙げられる。
 本発明に用いられる感光性樹脂組成物において、溶剤に占める、カルボニル基及び/又はエステル結合を有する溶剤の含有比率は、30~100質量%の範囲内が好ましく、50~100質量%の範囲内がより好ましく、70~100質量%の範囲内がさらに好ましい。含有比率が上記範囲内であると、(B-1)有機顔料の分散安定性をより向上させることができる。
 <その他の添加剤>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物は、さらに、他の樹脂又はそれらの前駆体を含有しても構わない。他の樹脂又はそれらの前駆体としては、例えば、ポリアミド、エポキシ樹脂、ポリシロキサン樹脂、ウレア樹脂、ポリウレタンやそれらの前駆体が挙げられる。
 <感光性樹脂組成物の製造方法>
 画素分割層および/または平坦化層を構成する原料である感光性樹脂組成物の、代表的な製造方法について説明する。例えば、(B)着色剤が(B-1)有機顔料を含有する場合、(A)アルカリ可溶性樹脂の溶液に分散剤を加え、分散機を用いて、この混合溶液に(B-1)有機顔料を分散させ、顔料分散液を調製することが好ましい。次に、この顔料分散液に、(C)ラジカル重合性化合物、(D)光重合開始剤、必要に応じてその他の添加剤及び任意の溶剤を加え、20分~3時間撹拌して均一な溶液とすることが好ましい。撹拌後、得られた溶液をろ過することにより、感光性樹脂組成物が得られる。
 分散機としては、例えば、ボールミル、ビーズミル、サンドグラインダー、3本ロールミル、高速度衝撃ミルなどが挙げられる。分散機は、分散効率化及び微分散化の観点から、ビーズミルが好ましい。ビーズミルとしては、例えば、コボールミル、バスケットミル、ピンミル、ダイノーミルなどが挙げられる。ビーズミルのビーズ素材としては、例えば、チタニアビーズ、ジルコニアビーズ、ジルコンビーズなどが挙げられる。ビーズミルのビーズ径としては、0.01~6mmが好ましく、0.015~5mmがより好ましく、0.03~3mmがさらに好ましい。(B-1)有機顔料の一次粒子径及び一次粒子が凝集して形成された二次粒子の粒子径が、数百nm以下の場合、ビーズ径が0.015~0.1mmの微小なビーズが好ましい。この場合、微小なビーズと顔料分散液とを分離することが可能な、遠心分離方式によるセパレータを備えるビーズミルが好ましい。一方、(B-1)有機顔料が、数百nm以上の粗大な粒子を含む場合、分散効率化の観点から、ビーズ径が0.1~6mmのビーズが好ましい。
 <光学濃度>
 本発明において、感光性樹脂組成物を硬化した硬化膜の膜厚1μm当たりの光学濃度(以下、OD)は、0.7以上が好ましく、1.0以上がより好ましい。光学濃度が上記範囲内であると、硬化膜によって遮光性を向上させることができるため、有機ELディスプレイ又は液晶ディスプレイなどの表示装置において、電極配線の可視化や外光反射をより低減し、画像表示におけるコントラストを向上させることができる。一方、感光性樹脂組成物を硬化した硬化膜の膜厚1μm当たりの光学濃度は、4.0以下が好ましく、3.0以下がさらに好ましい。光学濃度が上記範囲内であると、露光時の感度を向上させることができる。感光性樹脂組成物を硬化した硬化膜の膜厚1μm当たりの光学濃度は、上述した(B)着色剤の組成及び含有比率により調節することができる。
 <有機EL表示装置の製造方法>
 本発明の有機EL表示装置の製造方法の一例について、図2を参照して説明する。図2においては、ネガ型感光性樹脂組成物の硬化膜を遮光性の画素分割層として用いている。なお、図2の(1)~(7)は、以下の(1)~(7)のプロセスにそれぞれ対応している。
(1)ガラス基板101上に、薄膜トランジスタ(以下、「TFT」)102を形成し、TFT平坦化層用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させてTFT平坦化層として硬化膜103を形成する。
(2)マグネシウムと銀の合金をスパッタにより成膜し、フォトレジストを用いてエッチングによりパターン加工し、第一電極として反射電極104を形成する。
(3)本発明のネガ型感光性樹脂組成物を塗布及びプリベークして、プリベーク膜105aを形成する。
(4)所望のパターンを有するマスク106を介して、活性化学線107を照射する。
(5)現像してパターン加工をした後、必要に応じてブリーチング露光及びミドルベークし、熱硬化させることで、遮光性の画素分割層として、所望のパターンを有する硬化パターン105bを形成する。
(6)EL発光材料を、マスクを介した蒸着によって成膜してEL発光層(発光画素)108を形成し、ITOをスパッタにより成膜し、フォトレジストを用いてエッチングによりパターン加工し、第二電極として透明電極109を形成する。
(7)平坦化膜用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させて平坦化用の硬化膜110を形成し、その後、カバーガラス111を接合させることで、有機EL表示装置を得る。
 <第一電極又は第二電極をパターン加工する工程>
 第一電極又は第二電極をパターン加工する方法としては、例えば、エッチングが挙げられる。以下に、第一電極をエッチングによりパターン加工する方法を例に説明する。
 基板上に第一電極を構成する材料を塗布した後、第一電極上にフォトレジストを塗布し、プリベークすることが好ましい。その後、フォトレジストを露光及び現像することにより、フォトリソグラフィーにより、第一電極上にフォトレジストのパターンを形成することが好ましい。現像後、得られたパターンを加熱処理することが好ましい。加熱処理することにより、フォトレジストの熱硬化により耐薬品性及びドライエッチング耐性が向上することから、フォトレジストのパターンをエッチングマスクとして好適に用いることができる。加熱処理装置としては、例えば、オーブン、ホットプレート、赤外線、フラッシュアニール装置、レーザーアニール装置などが挙げられる。加熱処理温度は70~200℃が好ましく、加熱処理時間は30秒間~数時間が好ましい。
 次に、フォトレジストのパターンをエッチングマスクとして、第一電極をエッチングによりパターン加工することが好ましい。エッチング方法としては、例えば、エッチング液を用いるウェットエッチングや、エッチングガスを用いるドライエッチングなどが挙げられる。エッチング液としては、酸性またはアルカリ性のエッチング液や有機溶媒などが挙げられる。エッチング液は、これらを2種以上用いてもよい。
 エッチング後、第一電極上に残存するフォトレジストを除去することにより、第一電極のパターンが得られる。
 <感光性樹脂組成物を塗布する工程>
 感光性樹脂組成物を塗布する方法としては、例えば、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどが挙げられる。また、感光性樹脂組成物をパターン状に塗布する方法としては、例えば、凸版印刷、凹版印刷、孔版印刷、平版印刷、スクリーン印刷、インクジェット印刷、オフセット印刷、レーザー印刷などが挙げられる。
 塗布膜厚は、塗布方法、感光性樹脂組成物の固形分濃度や粘度などによって異なるが、塗布及びプリベーク後の膜厚が0.1~30μmになるように塗布することが好ましい。
 感光性樹脂組成物を塗布した後、プリベークして成膜することが好ましい。プリベークに用いる加熱処置装置としては、例えば、オーブン、ホットプレート、赤外線、フラッシュアニール装置、レーザーアニール装置などが挙げられる。プリベーク温度は50~150℃が好ましく、プリベーク時間は30秒間~数時間が好ましい。80℃で2分間プリベークした後、120℃で2分間プリベークするなど、二段以上の多段でプリベークしても構わない。
 <感光性樹脂組成物膜をパターン加工する工程>
 平坦化層および/または画素分割層をパターン加工する方法としては、例えば、フォトリソグラフィーにより直接パターン加工する方法、エッチングによりパターン加工する方法が挙げられる。工程数の削減による生産性の向上及びプロセスタイム短縮の観点から、フォトリソグラフィーにより直接パターン加工する方法が好ましい。
 前述の方法により形成した感光性樹脂組成物のプリベーク膜に、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(PLA)などの露光機を用いて露光することが好ましい。露光時に照射する活性化学線としては、例えば、紫外線、可視光線、電子線、X線、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどが挙げられる。水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)、g線(波長436nm)を用いることが好ましい。露光量は、通常100~40,000J/m(10~4,000mJ/cm)程度(i線照度計の値)であり、必要に応じて所望のパターンを有するマスクを介して露光することができる。
 露光後、自動現像装置などを用いて現像することが好ましい。感光性樹脂組成物が、ネガ型の感光性を有する場合、現像後、未露光部が現像液で除去され、レリーフ・パターンを得ることができる。
 現像液としては、アルカリ現像液や有機溶媒が一般的に用いられる。アルカリ現像液としては、有機系のアルカリ溶液、アルカリ性を示す化合物の水溶液が好ましく、環境面の観点から、アルカリ性を示す化合物の水溶液すなわちアルカリ水溶液がより好ましい。
 有機系のアルカリ溶液又はアルカリ性を示す化合物としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムなどが挙げられる。
 現像方法としては、例えば、露光後の膜に現像液を塗布する方法が挙げられる。露光後の膜は、現像液に5秒間~10分間接触させることが好ましい。
 現像後、得られたレリーフ・パターンを、リンス液で洗浄することが好ましい。リンス液としては、現像液としてアルカリ水溶液を用いた場合、水が好ましい。
 パターン形成した感光性樹脂膜に、ブリーチング露光をしても構わない。ブリーチング露光をすることにより、熱硬化後のパターン形状を任意に調整することができ、硬化膜の透明性を向上させることができる。
 <感光性樹脂組成物の硬化物を得る工程>
 感光性樹脂組成物膜またはそのパターンを熱硬化することにより、平坦化層および/または画素分割層を形成することができる。熱硬化に用いられる加熱処理装置としては、プリベークに用いられる加熱処理装置として例示したものが挙げられる。感光性樹脂組成物のパターンを加熱して熱硬化させることにより、硬化膜の耐熱性を向上させることができるとともに、低テーパー形状のパターンを形成することができる。
 熱硬化温度は、150℃以上が好ましく、250℃以上がさらに好ましい。熱硬化温度が上記範囲内であると、硬化膜の耐熱性を向上させることができるとともに、熱硬化後のパターン形状をより低テーパー化させることができる。一方、タクトタイム短縮の観点から、熱硬化温度は、500℃以下が好ましく、400℃以下がさらに好ましい。
 熱硬化時間は、1分間以上が好ましく、30分間以上が特に好ましい。熱硬化時間が上記範囲内であると、熱硬化後のパターン形状をより低テーパー化させることができる。
 <発光画素の作製>
 発光画素は、例えば、マスク蒸着法やインクジェット法によって形成することができる。代表的なマスク蒸着法として、蒸着マスクを用いて有機化合物を蒸着してパターニングする方法で、所望のパターンを開口部とした蒸着マスクを基板の蒸着源側に配置して蒸着を行う方法が挙げられる。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明する。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
4-MOP:4-メトキシフェノール
AIBN:2,2’-アゾビス(イソブチロニトリル)
BAHF:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
BFE:1,2-ビス(4-ホルミルフェニル)エタン
BHPF:9,9-ビス(4-ヒドロキシフェニル)フルオレン
S0100CF:“IRGAPHOR(登録商標)” BLACK S0100CF(BASF製;一次粒子径40~80nmのベンゾフラノン系黒色顔料)
cyEpoTMS:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
DBA:ジベンジルアミン
DFA:N,N-ジメチルホルムアミドジメチルアセタール
DMF:N,N-ジメチルホルムアミド
DMAEAM:メタクリル酸-2-ジメチルアミノエチル
DPHA:“KAYARAD(登録商標)” DPHA(日本化薬(株)製;ジペンタエリスリトールヘキサアクリレート)
GMA:メタクリル酸グリシジル
ICl:一塩化ヨウ素
ITO:酸化インジウムスズ
KI:ヨウ化カリウム
MAA:メタクリル酸
MMAM:メタクリル酸メチル
MAP:3-アミノフェノール;メタアミノフェノール
MBA:3-メトキシ-n-ブチルアセテート
Mg:マグネシウム
Ag:銀
NA:5-ノルボルネン-2,3-ジカルボン酸無水物;ナジック酸無水物
Na:チオ硫酸ナトリウム
NCI-831:“アデカアークルズ(登録商標)”NCI-831((株)ADEKA製;1-(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)-1-[2-メチル-4-(1-メトキシプロパン-2-イルオキシ)フェニル]メタノン-1-(O-アセチル)オキシム)
NDM:ノルマルドデシルメルカプタン
NMP:N-メチル-2-ピロリドン
ODPA:ビス(3,4-ジカルボキシフェニル)エーテル二無水物;オキシジフタル酸二無水物
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PHA:フタル酸無水物
PI:ポリイミド
S-20000:“SOLSPERSE(登録商標)” 20000(Lubrizol製;ポリエーテル系分散剤)
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
STR:スチレン
TCDM:メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル;ジメチロール-トリシクロデカンジメタアクリレート
THF:テトラヒドロフラン
MCS:m-クレゾール
ASL:アニソール
OXAH:シュウ酸二水和物
MIBK:メチルイソブチルケトン
HAD:ホルムアルデヒド。
 合成例1 アクリル樹脂(AC-1)の合成
 三口フラスコに、AIBNを0.821g(1mol%)、PGMEAを29.29g仕込んだ。次に、MAAを21.52g(50mol%)、TCDMを22.03g(20mol%)、STRを15.62g(30mol%)仕込み、室温でしばらく撹拌して、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間撹拌した。次に、得られた溶液に、PGMEA59.47gにGMAを14.22g(20mol%)、DBAを0.676g(1mol%)、4-MOPを0.186g(0.3mol%)溶かした溶液を添加し、90℃で4時間撹拌して、アクリル樹脂(AC-1)の溶液を得た。得られたアクリル樹脂(AC-1)のMwは15,000、カルボン酸当量は500g/molであり、二重結合当量は730g/mol、アルカリ溶解速度は5500nm/minであった。
 合成例2 アクリル樹脂(AC-2)の合成
 三口フラスコに、PGMEAを200g仕込んだ。次に、90℃まで昇温を行い、DMAEAM10g(20mol%)、MAA50g(50mol%)、STR20g(30mol%)、MMAM8g(10mol%)、AIBN4g(1mol%)、NDM3g(1mol%)を混合したものを滴下用ポンプにて3時間かけて滴下し、撹拌した。その後、反応容器内を空気で置換してGMA20g(20mol%)を滴下用ポンプにて1時間かけて滴下して付加反応させ、さらに2時間容器内を撹拌し、アクリル樹脂(AC-2)の溶液を得た。得られたアクリル樹脂(AC-2)のMwは5000、カルボン酸当量は750g/molであり、二重結合当量は600g/mol、アルカリ溶解速度は6000nm/minであった。
 合成例3 カルド系樹脂(CD-1)の合成
 三口フラスコに、BHPFを35.04g(100mol%)、MBAを40.31g秤量して溶解させた。ここに、MBA30.00gにODPAを27.92g(90mol%)、末端封止剤として、PHAを2.96g(20mol%)溶かした溶液を添加し、20℃で1時間撹拌した。その後、窒素雰囲気下、150℃で5時間撹拌した。反応終了後、得られた溶液に、MBA10.00gにGMAを14.22g(100mol%)、DBAを0.135g(1mol%)、4-MOPを0.037g(3mol%)溶かした溶液を添加し、90℃で4時間撹拌して、カルド系樹脂(CD-1)の溶液を得た。得られたカルド系樹脂(CD-1)のMwは4,000、カルボン酸当量は800g/molであり、二重結合当量は800g/mol、アルカリ溶解速度は7000nm/minであった。
 合成例4 ポリイミド前駆体(PIP-1)の合成
 乾燥窒素気流下、三口フラスコに、ODPAを31.02g(0.10mol;全カルボン酸及びその誘導体に由来する構造単位に対して100mol%)、NMPを150g秤量して溶解させた。ここに、NMP50gにBAHFを25.64g(0.070mol;全アミン及びその誘導体に由来する構造単位に対して56.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して4.0mol%)溶かした溶液を添加し、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。次に、末端封止剤として、NMP15gにMAPを5.46g(0.050mol;全アミン及びその誘導体に由来する構造単位に対して40.0mol%)溶かした溶液を添加し、50℃で2時間撹拌した。その後、NMP15gにDFAを23.83g(0.20mol)を溶かした溶液を10分間かけて滴下した。滴下終了後、50℃で3時間撹拌した。反応終了後、反応溶液を室温に冷却した後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド前駆体(PIP-1)を得た。得られたポリイミド前駆体(PIP-1)のMwは20000、カルボン酸当量は450g/mol、アルカリ溶解速度は400nm/minであった。
 合成例5 ポリベンゾオキサゾール前駆体(PBOP-1)の合成
 トルエンを満たしたディーンスターク水分離器及び冷却管を付けた500mL丸底フラスコに、BAHFを34.79g(0.095mol;全アミン及びその誘導体に由来する構造単位に対して95.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して5.0mol%)、NMPを70.00g秤量して、溶解させた。ここに、NMP20.00gに、BFEを19.06g(0.080mol;全カルボン酸及びその誘導体に由来する構造単位に対し66.7mol%)溶かした溶液を添加し、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。次に、末端封止剤として、NMP10gにNAを6.57g(0.040mol;全カルボン酸及びその誘導体に由来する構造単位に対し33.3mol%)溶かした溶液を添加し、50℃で2時間撹拌した。その後、窒素雰囲気下、100℃で2時間撹拌した。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール前駆体(PBOP-1)を得た。得られたポリベンゾオキサゾール前駆体(PBO-P)のMwは20000、カルボン酸当量は330g/mol、アルカリ溶解速度は300nm/minであった。
 合成例6 ポリイミド樹脂(PI-1)の合成
 乾燥窒素気流下、三口フラスコに、BAHFを31.13g(0.085mol;全アミン及びその誘導体に由来する構造単位に対して77.3mol%)、SiDAを6.21g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して4.5mol%)、末端封止剤として、MAPを2.18g(0.020mol;全アミン及びその誘導体に由来する構造単位に対して9.5mol%)、NMPを150.00g秤量して溶解させた。ここに、NMP50.00gにODPAを31.02g(0.10mol;全カルボン酸及びその誘導体に由来する構造単位に対して100mol%)溶かした溶液を添加し、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレン15gを添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド樹脂(PI-1)を得た。得られたポリイミド樹脂(PI-1)のMwは27000、カルボン酸当量は350g/mol、アルカリ溶解速度は1200nm/minであった。
 合成例7 ポリベンゾオキサゾール樹脂(PBO-1)の合成
 トルエンを満たしたディーンスターク水分離器及び冷却管を付けた500mL丸底フラスコに、BAHFを34.79g(0.095mol;全アミン及びその誘導体に由来する構造単位に対して95.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して5.0mol%)、NMPを75.00g秤量して、溶解させた。ここに、NMP25.00gに、BFEを19.06g(0.080mol;全カルボン酸及びその誘導体に由来する構造単位に対し66.7mol%)、末端封止剤として、NAを6.57g(0.040mol;全カルボン酸及びその誘導体に由来する構造単位に対し33.3mol%)溶かした溶液を添加し、20℃で1時間撹拌し、次いで50℃で1時間撹拌した。その後、窒素雰囲気下、200℃以上で10時間加熱撹拌し、脱水反応を行った。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール樹脂(PBO-1)を得た。得られたポリベンゾオキサゾール樹脂(PBO-1)のMwは25000、カルボン酸当量は330g/mol、アルカリ溶解速度は500nm/minであった。
 合成例8 ノボラック樹脂(NL-1)の合成
 三口フラスコに、MCSを70.29g(0.65mol)、ASLを37.85g(0.35mol)、OXAHを0.62g(0.005mol)、MIBKを198.85g秤量して溶解させた。ここに、HAD(37質量%の水溶液)を243.49g(3.00mol)添加し、95℃で5時間撹拌した。その後、内温を1時間30分かけて180℃に昇温して水を系外へ留去した。その後、さらに内温を195℃に昇温し、150torr(2.0kPa)の減圧下、未反応のモノマーを留去して除去した。混合溶液を室温に冷却して、混合溶液中に溶解している樹脂を析出させ、ノボラック樹脂(NL-1)を得た。得られたノボラック樹脂(NL-1)のMwは5,000、カルボン酸当量は310g/mol、アルカリ溶解速度は400nm/minであった。
 合成例1~8の組成を、表1~7に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 調製例1 顔料分散液(Bk-1)の調製
 顔料としてS0100CF、樹脂として、合成例6で得られたポリイミド樹脂(PI-1)、分散剤としてS-20000(DP-1)を質量比で顔料/樹脂/分散剤=60/30/10(質量比)になるように秤量して混合し、溶剤として、PGMEAを固形分濃度が15質量%になるように加え、顔料分散用のセラミックビーズとして、0.10mmφのジルコニア粉砕ボールが75%充填された縦型ビーズミルに、得られた液を供給し、3時間処理して、固形分濃度15質量%、顔料/樹脂/分散剤=60/30/10(質量比)の顔料分散液(Bk-1)を得た。得られた顔料分散液中の顔料の数平均粒子径は50nmであった。調製例1の組成を表8に示す。
Figure JPOXMLDOC01-appb-T000018
 各実施例および比較例に用いた原料の評価、各実施例および比較例における特性評価は以下の方法により行った。
 (1)(A)アルカリ可溶性樹脂の重量平均分子量
 GPC分析装置(HLC-8220;東ソー(株)製)を用い、流動層としてTHF又はNMP又はクロロホルムを用いて、「JIS K7252-3:2008」に基づき、常温付近での方法により、ポリスチレン換算の重量平均分子量を測定した。
 (2)(A)アルカリ可溶性樹脂のアルカリ溶解速度
 樹脂をγ-ブチロラクトンに溶解した溶液を、Siウェハ上にスピンコーター(MS-A100;ミカサ(株)製)を用いて任意の回転数でスピンコーティングにより塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて120℃で4分間プリベークし、膜厚10.0μm±0.5μmのプリベーク膜を作製した。
 作製したプリベーク膜を、フォトリソグラフィー用小型現像装置(AC3000;滝沢産業(株)製)を用いて、2.38質量%TMAH水溶液で60秒間現像し、水で30秒間リンスした後の膜厚減少値をアルカリ溶解速度(単位はnm/min)として、以下の式に従って算出した。
膜厚減少値=現像前の膜厚値-現像後の膜厚値。
 (3)(A)アルカリ可溶性樹脂の酸価
 電位差自動滴定装置(AT-510;京都電子工業(株)製)を用い、滴定試薬として0.1mol/LのNaOH/エタノール溶液、滴定溶剤としてキシレン/DMF=1/1(質量比)を用いて、「JIS K2501:2003」に基づき、電位差滴定法により、酸価(単位はmgKOH/g)を測定した。
 (4)(A)アルカリ可溶性樹脂の二重結合当量
 電位差自動滴定装置(AT-510;京都電子工業(株)製)を用い、ヨウ素供給源としてICl溶液(ICl3=7.9g、I2=8.9g、AcOH=1,000mLの混合溶液)、未反応ヨウ素の捕捉水溶液として100g/LのKI水溶液、滴定試薬として0.1mol/LのNa水溶液を用いて、「JIS K0070:1992」の「6.よう素価」に基づき、ウィイス法により、樹脂のヨウ素価を測定した。測定したヨウ素価(単位はgI/100g)の値から、二重結合当量(単位はg/mol)を算出した。
 (5)画素分割層のOD値
 各実施例および比較例により得られた有機EL表示装置の画素分割層について、光学濃度計(361TVisual;X-Rite社製)を用いて、硬化膜の入射光及び透過光の強度をそれぞれ測定し、以下の式(X)より遮光性OD値を算出した。
OD値 = log10(I/I) ・・・ 式(X)
:入射光強度
I:透過光強度。
 (6)画素分割層の金属元素およびハロゲン元素量
 各実施例および比較例により得られた有機EL表示装置の画素分割層中に、IMX-3500RS(アルバック社製)を用いて、塩素およびリチウムイオンをそれぞれ3.5×1014個/cm、1.2×1014個/cm注入し、相対感度係数(RSF)を算出した。
 得られた相対感度係数を基に、下記式により、TOF-SIMS分析から、画素分割層中、層表面から0.5μm付近の金属元素およびハロゲン元素(対象元素)濃度をそれぞれ定量した。
対象元素濃度=RSF(atom/cm)×対象元素イオン強度(counts)/硬化膜のイオン強度(counts)。
 (7)表示装置の長期信頼性
 各実施例および比較例により得られた有機EL表示装置を、10mA/cmで直流駆動にて250時間、500時間、1000時間発光させ、それぞれの発光時間における発光画素の面積に対する発光部の面積率(画素発光面積率)を測定した。250時間、500時間、1000時間経過後の画素発光面積率が80%以上であれば長期信頼性が優れていると言え、90%以上であればより好ましい。
 [実施例1]
 黄色灯下、NCI-831を0.256g秤量し、MBAを10.186g添加し、撹拌して溶解させた。次に、合成例2で得られたアクリル樹脂(AC-2)の30質量%のMBA溶液を0.015g、合成例6で得られたポリイミド樹脂(PI-1)の30質量%のMBA溶液を0.285g、DPHAの80質量%のMBA溶液を1.422g添加して撹拌し、均一溶液として調合液を得た。次に、調製例1で得られた顔料分散液(Bk-1)を12.968g秤量し、ここに、上記で得られた調合液を12.032g添加して撹拌し、均一溶液とした。さらに、5%塩化ナトリウム水溶液0.01gを添加し、その後、得られた溶液を0.45μmφのフィルターでろ過し、組成物1を調製した。
 有機EL表示装置を以下の方法により作製した。作製手順について、図3A~図3Dを参照して説明する。まず、38mm×46mmの無アルカリガラス基板201の全面に、スピンコーター(MS-A100;ミカサ(株)製)を用いてスピンコーティングにより組成物1を塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて100℃で120秒間プリベークし、膜厚2.0μmのプリベーク膜を作製した。
 作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学(株)製)を用いて、フォトマスクを介して、超高圧水銀灯のi線、h線及びg線で全面露光した後、フォトリソグラフィー用小型現像装置(AC3000;滝沢産業(株)製)を用いて、2.38質量%TMAH水溶液で60秒間現像し、水で30秒間リンスした。この基板を、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて、230℃で熱硬化させ、膜厚約1.0μmの平坦化層202を作製した。
 次に、スパッタ法によりITO透明導電膜100nmを形成し、第一電極203としてエッチングし、透明電極を形成した。また、第二電極を取り出すため補助電極204も同時に形成した(図3A)。得られた基板をセミコクリーン56(商品名、フルウチ化学(株)製)で10分間超音波洗浄してから、超純水で洗浄した。次に、この基板全面に、組成物1をスピンコーター(MS-A100;ミカサ(株)製)を用いて任意の回転数でスピンコーティングにより塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて100℃で120秒間プリベークし、膜厚約2.0μmのプリベーク膜を作製した。
 作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学(株)製)を用いて、所定のパターンを有するフォトマスクを介して、超高圧水銀灯のi線、h線及びg線でパターニング露光した後、フォトリソグラフィー用小型現像装置(AC3000;滝沢産業(株)製)を用いて、2.38質量%TMAH水溶液で60秒間現像し、水で30秒間リンスした。このようにして、幅50μm、長さ260μmの開口部が幅方向にピッチ155μm、長さ方向にピッチ465μmで配置され、それぞれの開口部が、第一電極が露出した形状の画素分割層205を、基板有効エリアに限定して形成した(図3B)。なお、この開口部が、最終的に有機EL表示装置の発光画素となる。また、基板有効エリア(表示エリア)は16mm四方にし、開口率18%の画素分割層205を設け、その画素分割層205の厚さは約1.0μmで形成した。
 得られた基板に窒素プラズマ処理を行った後、真空蒸着法により発光層を含む有機EL層206を形成した(図3C)。なお、蒸着時の真空度は1×10-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として化合物(HT-1)を10nm、正孔輸送層として化合物(HT-2)を50nm蒸着した。次に発光層に、ホスト材料としての化合物(GH-1)とドーパント材料としての化合物(GD-1)を、ドープ濃度が10%になるようにして40nmの厚さに蒸着した。次に、電子輸送材料として化合物(ET-1)と化合物(LiQ)を体積比1:1で40nmの厚さに積層した。有機EL層で用いた化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000019
 次に、化合物(LiQ)を2nm蒸着した後、MgおよびAgを体積比10:1で100nm蒸着して第二電極207とした(図3D)。最後に、低湿窒素雰囲気下でキャップ状ガラス板を、エポキシ樹脂系接着剤を用いて接着することで封止をし、1枚の基板上に1辺が5mmの四角形である有機EL表示装置を4つ作製した。なお、ここで言う膜厚は水晶発振式膜厚モニターにおける表示値である。
 なお、光学濃度は、光学濃度計(361TVisual;X-Rite社製)を用いて、上記有機EL表示装置の硬化膜の入射光及び透過光の強度をそれぞれ測定し、以下の式(X)より遮光性OD値を算出した。
OD値 = log10(I/I) ・・・ 式(X)
:入射光強度
I:透過光強度。
 [実施例2~10]
 感光性樹脂組成物に用いる(A)アルカリ可溶性樹脂の種類および配合量を表9の記載のとおり変更した以外は、実施例1と同様に組成物2~10を調製した。得られた各組成物を用いて、実施例1と同様に有機EL表示装置を作製した。
 [比較例1~4]
 組成物1にかえて表9に記載の組成物12~15を用いたこと以外は、実施例1と同様に有機EL表示装置を作製した。
 [実施例11]
 組成物1のうち、5%塩化ナトリウム水溶液を5%塩化カリウム水溶液に変更した以外は、実施例1と同様に組成物11を調製した。得られた組成物11を用いて、実施例1と同様に有機EL表示装置を作製した。
 [実施例12~13]
 組成物2のうち、表示エリアにおける開口率を変更した以外は実施例2と同様に有機EL表示装置を作製した。
 [比較例5]
 組成物1のうち、5%塩化ナトリウム水溶液の添加量を0.1gに変更した以外は、実施例1と同様に組成物16を調製した。得られた組成物を用いて、実施例1と同様に有機EL表示装置を作製した。
 各実施例および比較例について、前述の方法により評価した結果を表9~11に示す。なお、駆動電圧は10mA/cmで直流駆動したときの電圧を記録した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
1、102 TFT
2 配線
3 TFT絶縁層
4、202 平坦化層
5 ITO
6 基板
7 コンタクトホール
8、205 画素分割層
101、201 ガラス基板
103 硬化膜
104 反射電極
105a プリベーク膜
105b 硬化パターン
106 マスク
107 活性化学線
108 EL発光層
109 透明電極
110 平坦化用の硬化膜
111 カバーガラス
203 第一電極
204 補助電極
206 有機EL層
207 第二電極

Claims (21)

  1.  (A)アルカリ可溶性樹脂、(B)着色剤、(C)ラジカル重合性化合物、及び(D)光重合開始剤を含有する感光性樹脂組成物であり、
     (A)アルカリ可溶性樹脂が、(A-1)カルボキシル基を有するアルカリ可溶性樹脂であり、
     さらに、前記感光性樹脂組成物を硬化した硬化物の、飛行時間型二次イオン質量分析により測定される不揮発成分中の金属元素および/またはハロゲン元素の含有量の総和が1×1017atom/cm以上1×1022atom/cm以下であり、
     少なくとも基板、第一電極、第二電極、発光画素、平坦化層及び画素分割層で構成された有機EL素子のうち、平坦化層および/または画素分割層に配置された有機EL表示装置。
  2.  前記金属元素および/またはハロゲン元素が、イオン性化合物である、請求項1に記載の有機EL表示装置。
  3.  (A-1)カルボキシル基を有するアルカリ可溶性樹脂のカルボン酸当量が400g/mol以上800g/mol以下である、請求項1に記載の有機EL表示装置。
  4.  (A-1)カルボキシル基を有するアルカリ可溶性樹脂のカルボン酸当量が500g/mol以上600g/mol以下である、請求項1~3のいずれかに記載の有機EL表示装置。
  5.  前記(A)アルカリ可溶性樹脂が(A-1)カルボキシル基を有するアルカリ可溶性樹脂および(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂を含み、
     (A-1)カルボキシル基を有するアルカリ可溶性樹脂および(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂の合計100重量%に占める、(A-1)カルボキシル基を有するアルカリ可溶性樹脂の含有比率が5~40重量%の範囲内である、請求項1~4のいずれかに記載の有機EL表示装置。
  6.  硬化膜の1μm当たりODが1.5以上である硬化膜である、請求項1~5のいずれかに記載の有機EL表示装置。
  7.  硬化膜の1μm当たりODが1.0以上である硬化膜である、請求項1~5のいずれかに記載の有機EL表示装置。
  8.  前記(A-1)カルボキシル基を有するアルカリ可溶性樹脂が、さらに(A-3)アミノ基および/またはアミド基を有するアルカリ可溶性樹脂を含む、請求項1~4のいずれかに記載の有機EL表示装置。
  9.  (A-1)カルボキシル基を有するアルカリ可溶性樹脂が、(A-1a)アクリル樹脂または(A-1b)カルド系樹脂である、請求項1~8のいずれかに記載の有機EL表示装置。
  10.  (A-1)カルボキシル基を有するアルカリ可溶性樹脂が、(A-1b)カルド系樹脂である、請求項1~8のいずれかに記載の有機EL表示装置。
  11.  前記(A)アルカリ可溶性樹脂が(A-1)カルボキシル基を有するアルカリ可溶性樹脂および(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂を含み、
     前記(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂が(A-1c)ポリイミド樹脂及び(A-1d)ポリベンゾオキサゾール樹脂である、請求項5~10のいずれかに記載の有機EL表示装置。
  12.  前記(A)アルカリ可溶性樹脂が(A-1)カルボキシル基を有するアルカリ可溶性樹脂および(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂を含み、
     (A-1)カルボキシル基を有するアルカリ可溶性樹脂および(A-2)フェノール性水酸基を有するアルカリ可溶性樹脂の合計100重量%に占める、(A-1)カルボキシル基を有するアルカリ可溶性樹脂の含有比率が5~10重量%の範囲内である、請求項5~11のいずれかに記載の有機EL表示装置。
  13.  表示エリアにおける画素分割層開口率が20%以下である、請求項1~12のいずれかに記載の有機EL表示装置。
  14.  前記金属元素がアルカリ金属元素またはアルカリ土類金属元素である、請求項1~13のいずれかに記載の有機EL表示装置。
  15.  前記金属元素がアルカリ金属元素である、請求項14に記載の有機EL表示装置。
  16.  前記金属元素がナトリウムおよび/またはカリウムである、請求項15に記載の有機EL表示装置。
  17.  前記ハロゲン元素が塩素である、請求項1~13のいずれかに記載の有機EL表示装置。
  18.  前記感光性樹脂組成物が、飛行時間型二次イオン質量分析により測定される、不揮発成分中の金属元素および/またはハロゲン元素の含有量の総和が1×1017atom/cm以上1×1020atom/cm以下である、請求項1~17のいずれかに記載の有機EL表示装置。
  19.  (B)着色剤が、(B-1)有機顔料である、請求項1~18のいずれかに記載の有機EL表示装置。
  20.  (B-1)有機顔料が、(B-2)酸処理されたカーボンブラックおよび/または(B-3)アミド構造を有するベンゾフラノン系有機顔料を含む、請求項1~19のいずれかに記載の有機EL表示装置。
  21.  (B-3)アミド構造を有するベンゾフラノン系有機顔料が、下記一般式(11)で表される化合物である、請求項20に記載の有機EL表示装置。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(11)中、R101、R102はそれぞれ独立して、水素、ハロゲン原子、炭素数1~10のアルキル基又はフッ素原子を1~20個有する炭素数1~10のアルキル基を表す。R104~R107、R109~R112はそれぞれ独立して、水素、ハロゲン原子、炭素数1~10のアルキル基、カルボキシ基、スルホン酸基、アミノ基又はニトロ基を表す。R103、R108はそれぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。)
PCT/JP2017/046098 2016-12-26 2017-12-22 有機el表示装置 WO2018123853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/469,823 US20200091265A1 (en) 2016-12-26 2017-12-22 Organic el display device
CN201780073485.9A CN110024485B (zh) 2016-12-26 2017-12-22 有机el显示装置
JP2017567818A JP6841242B2 (ja) 2016-12-26 2017-12-22 有機el表示装置
KR1020197016660A KR102363566B1 (ko) 2016-12-26 2017-12-22 유기 el 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016251206 2016-12-26
JP2016-251206 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123853A1 true WO2018123853A1 (ja) 2018-07-05

Family

ID=62707645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046098 WO2018123853A1 (ja) 2016-12-26 2017-12-22 有機el表示装置

Country Status (6)

Country Link
US (1) US20200091265A1 (ja)
JP (1) JP6841242B2 (ja)
KR (1) KR102363566B1 (ja)
CN (1) CN110024485B (ja)
TW (1) TWI720276B (ja)
WO (1) WO2018123853A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838692B1 (ja) * 2019-10-01 2021-03-03 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
WO2021065318A1 (ja) * 2019-10-01 2021-04-08 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2022000684A (ja) * 2020-06-17 2022-01-04 富士フイルム株式会社 導電性パターンの形成方法、メタルメッシュセンサーの製造方法、及び、構造体の製造方法
KR20220119002A (ko) 2019-12-20 2022-08-26 도레이 카부시키가이샤 감광성 수지 조성물, 경화막, 유기 el 디스플레이 및 표시장치, 및 경화막의 제조 방법
WO2024057730A1 (ja) * 2022-09-16 2024-03-21 東レ株式会社 有機el表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110619818B (zh) * 2019-08-27 2021-04-27 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
TW202206500A (zh) * 2020-07-22 2022-02-16 日商富士軟片股份有限公司 樹脂組成物、膜、濾光器、固體攝像元件、圖像顯示裝置及樹脂
CN114137010B (zh) * 2021-11-05 2024-02-13 上海交通大学 一种高温合金微量元素分布状态的测定方法
CN114156329B (zh) * 2021-11-30 2023-07-04 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198928A (ja) * 1993-12-28 1995-08-01 Toray Ind Inc カラーフィルター、電子工業用カラーペースト、その製造方法、顔料分散液およびその製造方法
JPH1164619A (ja) * 1997-08-12 1999-03-05 Toray Ind Inc カラーフィルター用カラーペーストおよびその製造方法並びにカラーフィルター
JP2002241640A (ja) * 2000-12-14 2002-08-28 Fuji Photo Film Co Ltd 顔料分散組成物、それを用いた着色感光性組成物及びカラーフィルタ
JP2003045671A (ja) * 2001-05-22 2003-02-14 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2012208494A (ja) * 2011-03-17 2012-10-25 Fujifilm Corp 着色感放射線性組成物、着色硬化膜、カラーフィルタ及びカラーフィルタの製造方法、固体撮像素子、液晶表示装置、並びに、染料の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG102064A1 (en) * 2001-12-25 2004-02-27 Toray Industries Color filter, liquid crystal display device, and method for making color filter
JP2008007774A (ja) 2006-06-02 2008-01-17 Fujifilm Corp 有機顔料ナノ粒子分散物およびその製造方法、それを含むインクジェットインク、着色感光性樹脂組成物、および感光性樹脂転写材料、ならびにそれらを用いたカラーフィルタ、液晶表示装置、およびccdデバイス
WO2012086610A1 (ja) * 2010-12-20 2012-06-28 旭硝子株式会社 感光性樹脂組成物、隔壁、カラーフィルタおよび有機el素子
WO2013175978A1 (ja) * 2012-05-23 2013-11-28 東レ株式会社 着色材分散液および感光性着色樹脂組成物
JP6111643B2 (ja) * 2012-12-17 2017-04-12 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、及び電子機器
JP6314451B2 (ja) * 2012-12-27 2018-04-25 大日本印刷株式会社 カラーフィルタ形成基板および有機el表示装置
US20170293224A1 (en) * 2014-09-26 2017-10-12 Toray Industries, Inc. Organic el display device
KR102510370B1 (ko) 2014-10-06 2023-03-17 도레이 카부시키가이샤 수지 조성물, 내열성 수지막의 제조 방법, 및 표시 장치
SG11201707367VA (en) 2015-03-30 2017-10-30 Toray Industries Colored resin composition, colored film, decorative substrate and touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198928A (ja) * 1993-12-28 1995-08-01 Toray Ind Inc カラーフィルター、電子工業用カラーペースト、その製造方法、顔料分散液およびその製造方法
JPH1164619A (ja) * 1997-08-12 1999-03-05 Toray Ind Inc カラーフィルター用カラーペーストおよびその製造方法並びにカラーフィルター
JP2002241640A (ja) * 2000-12-14 2002-08-28 Fuji Photo Film Co Ltd 顔料分散組成物、それを用いた着色感光性組成物及びカラーフィルタ
JP2003045671A (ja) * 2001-05-22 2003-02-14 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2012208494A (ja) * 2011-03-17 2012-10-25 Fujifilm Corp 着色感放射線性組成物、着色硬化膜、カラーフィルタ及びカラーフィルタの製造方法、固体撮像素子、液晶表示装置、並びに、染料の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838692B1 (ja) * 2019-10-01 2021-03-03 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
WO2021065318A1 (ja) * 2019-10-01 2021-04-08 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
KR20220119002A (ko) 2019-12-20 2022-08-26 도레이 카부시키가이샤 감광성 수지 조성물, 경화막, 유기 el 디스플레이 및 표시장치, 및 경화막의 제조 방법
JP2022000684A (ja) * 2020-06-17 2022-01-04 富士フイルム株式会社 導電性パターンの形成方法、メタルメッシュセンサーの製造方法、及び、構造体の製造方法
JP7389071B2 (ja) 2020-06-17 2023-11-29 富士フイルム株式会社 導電性パターンの形成方法、メタルメッシュセンサーの製造方法、及び、構造体の製造方法
WO2024057730A1 (ja) * 2022-09-16 2024-03-21 東レ株式会社 有機el表示装置

Also Published As

Publication number Publication date
KR20190096999A (ko) 2019-08-20
JPWO2018123853A1 (ja) 2019-10-31
TWI720276B (zh) 2021-03-01
CN110024485B (zh) 2021-03-12
TW201833153A (zh) 2018-09-16
CN110024485A (zh) 2019-07-16
KR102363566B1 (ko) 2022-02-16
JP6841242B2 (ja) 2021-03-10
US20200091265A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP6841242B2 (ja) 有機el表示装置
US10983436B2 (en) Negative-type photosensitive resin composition, cured film, display device provided with cured film, and production method therefor
JP6418248B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
US11086219B2 (en) Negative-type photosensitive resin composition, cured film, display device that includes the cured film, and production method therefor
JPWO2018181311A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法
JPWO2019065902A1 (ja) 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法
TWI725250B (zh) 樹脂組成物、樹脂薄片、硬化膜、有機el顯示裝置、半導體電子零件、半導體裝置及有機el顯示裝置之製造方法
JP7120022B2 (ja) 有機el表示装置、ならびに画素分割層および平坦化層の形成方法
JPWO2019087985A1 (ja) ネガ型感光性樹脂組成物、硬化膜、並びに有機elディスプレイ及びその製造方法
KR102360394B1 (ko) 감광성 수지 조성물, 감광성 시트, 경화막, 소자, 유기 el 표시 장치, 반도체 전자 부품, 반도체 장치 및 유기 el 표시 장치의 제조 방법
CN111886544B (zh) 固化膜的制造方法以及有机el显示器的制造方法
WO2018003808A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子、素子を具備する表示装置、及び有機elディスプレイ
WO2021182499A1 (ja) 有機el表示装置および感光性樹脂組成物
KR20190085929A (ko) 유기 el 표시 장치
JP7310349B2 (ja) 有機el表示装置
WO2022270182A1 (ja) ポジ型感光性顔料組成物、およびその硬化物を含有する硬化膜、ならびに、有機el表示装置
WO2022202782A1 (ja) 有機el表示装置およびその製造方法
WO2024057730A1 (ja) 有機el表示装置
CN117043676A (zh) 正型感光性颜料组合物、及含有其硬化物的硬化膜、以及有机el显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017567818

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016660

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887990

Country of ref document: EP

Kind code of ref document: A1