WO2022270209A1 - 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置 - Google Patents

樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置 Download PDF

Info

Publication number
WO2022270209A1
WO2022270209A1 PCT/JP2022/021442 JP2022021442W WO2022270209A1 WO 2022270209 A1 WO2022270209 A1 WO 2022270209A1 JP 2022021442 W JP2022021442 W JP 2022021442W WO 2022270209 A1 WO2022270209 A1 WO 2022270209A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
resin
pigment
compounds
Prior art date
Application number
PCT/JP2022/021442
Other languages
English (en)
French (fr)
Inventor
雅臣 牧野
純一 伊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023529726A priority Critical patent/JPWO2022270209A1/ja
Publication of WO2022270209A1 publication Critical patent/WO2022270209A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers

Definitions

  • the present invention relates to resin compositions, films, optical filters, solid-state imaging devices, and image display devices.
  • a film containing pigments such as color filters is used in solid-state imaging devices.
  • a film containing a colorant such as a color filter is manufactured using a resin composition containing a pigment, a resin, and a solvent.
  • Patent Document 1 discloses a polymer obtained by polymerizing an ethylenically unsaturated monomer in the presence of a compound having two carboxyl groups and one or more thiol groups in the molecule, and two carboxyl groups in one terminal region.
  • the dispersibility of the pigment is good. If the dispersibility of the pigment is insufficient, the pigment tends to agglomerate in the resin composition and become coarse, or the viscosity of the resin composition tends to increase. Further, even if the viscosity of the resin composition immediately after production is low, the viscosity may increase over time.
  • an object of the present invention is to provide a resin composition having excellent pigment dispersibility. Another object of the present invention is to provide a film, an optical filter, a solid-state imaging device, and an image display device using the resin composition.
  • a coloring material A containing a pigment containing a pigment
  • a resin B is a resin composition containing a resin B1 containing an acid anhydride group and a polymer chain containing a repeating unit having at least one structure selected from a polyether structure and a polyester structure.
  • R 1 represents an acid anhydride group
  • X 1 and X 2 each independently represent a single bond, -O-, -CO-, -COO-, -OCO-, -NR x1 -, -CONR x1 -, -NR x1 CO- or -S- and
  • R x1 represents a hydrogen atom or a substituent
  • L 1 represents a single bond or an m+n-valent linking group
  • P 1 represents a polymer chain containing repeating units of at least one structure selected from a polyether structure and a polyester structure
  • m and n each independently represent an integer of 1 or more.
  • R AH1 , R AH7 , R AH8 , R AH10 and R AH11 each independently represent a hydrogen atom or a substituent
  • R AH2 , R AH3 , R AH4 , R AH5 , R AH6 and R AH9 represent substituents
  • r2, r3, r4, r6 and r7 each independently represent an integer of 0 to 3
  • r5 represents an integer of 0 to 2
  • ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the resin B1 is a resin represented by formula (2);
  • X 2 represents a single bond, -O-, -CO-, -COO-, -OCO-, -NR x1 -, -CONR x1 -, -NR x1 CO- or -S-
  • R x1 represents a hydrogen
  • ⁇ 7> The resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the resin B1 has a weight average molecular weight of 500 or more and less than 10,000.
  • the solvent C contains at least one solvent selected from ether solvents, ester solvents and ketone solvents.
  • the coloring material A contains a black pigment, The resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein the content of the black pigment in the total solid content of the resin composition is 65% by mass or more.
  • ⁇ 10> The resin composition according to any one of ⁇ 1> to ⁇ 9>, further comprising a polymerizable monomer.
  • ⁇ 11> The resin composition according to any one of ⁇ 1> to ⁇ 10>, further comprising a photopolymerization initiator.
  • ⁇ 12> A film obtained using the resin composition according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> An optical filter comprising the film according to ⁇ 12>.
  • ⁇ 14> A solid-state imaging device having the film according to ⁇ 12>.
  • ⁇ 15> An image display device comprising the film according to ⁇ 12>.
  • the present invention it is possible to provide a resin composition with excellent pigment dispersibility. Also, a film, an optical filter, a solid-state imaging device, and an image display device using the resin composition can be provided.
  • is used to include the numerical values before and after it as lower and upper limits.
  • a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • Exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
  • Light used for exposure includes actinic rays or radiation such as emission line spectra of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • the (meth)allyl group represents both or either allyl and methallyl
  • “(meth)acrylate” represents both or either acrylate and methacrylate
  • “(meth) "Acrylic” represents both or either of acrylic and methacrylic
  • “(meth)acryloyl” represents both or either of acryloyl and methacryloyl.
  • the weight average molecular weight and number average molecular weight are polystyrene equivalent values measured by GPC (gel permeation chromatography).
  • near-infrared light refers to light with a wavelength of 700 to 2500 nm.
  • total solid content refers to the total mass of all components of the composition excluding the solvent.
  • process does not refer only to an independent process, and even if it cannot be clearly distinguished from other processes, the term can be used as long as the intended action of the process is achieved. included.
  • a pigment means a compound that is difficult to dissolve in a solvent.
  • symbols e.g., A, etc.
  • the symbols before or after the name are terms used to distinguish the components, and the type of component, the number of components, and the configuration It does not limit the superiority or inferiority of elements.
  • the resin composition of the present invention is A coloring material A containing a pigment; a resin B; a solvent C,
  • the resin B is characterized by containing a resin B1 containing an acid anhydride group and a polymer chain containing a repeating unit of at least one structure selected from a polyether structure and a polyester structure.
  • the resin composition of the present invention has excellent pigment dispersibility. Although the detailed reason why such an effect is obtained is unknown, it is presumed to be due to the following. In the resin composition, it is presumed that the acid anhydride group of Resin B1 adsorbs to the surface of the pigment, and the polymer chain of Resin B1 acts as a steric repulsion group. In addition, since the polymer chain is a polymer chain containing repeating units of at least one structure selected from a polyether structure and a polyester structure, the resin B1 is presumed to have excellent affinity with the solvent in the resin composition. be done. For this reason, it is presumed that the resin composition of the present invention could be made into a resin composition having excellent pigment dispersibility by including the resin B1.
  • the resin composition of the present invention is preferably used as a resin composition for optical filters.
  • the optical filter include a color filter, a near-infrared transmission filter, a near-infrared cut filter, and the like, and a color filter is preferable.
  • the resin composition of the present invention can be preferably used as a resin composition for solid-state imaging devices, and more preferably used as a resin composition for pixel formation of optical filters used in solid-state imaging devices.
  • color filters include filters having colored pixels that transmit light of a specific wavelength, and at least one colored pixel selected from red pixels, blue pixels, green pixels, yellow pixels, cyan pixels, and magenta pixels.
  • the filter has A color filter can be formed using a resin composition containing a chromatic colorant.
  • Examples of near-infrared cut filters include filters having a maximum absorption wavelength in the wavelength range of 700 to 1800 nm.
  • the maximum absorption wavelength of the near-infrared cut filter preferably exists in the wavelength range of 700 to 1300 nm, more preferably in the wavelength range of 700 to 1100 nm.
  • the transmittance of the near-infrared cut filter over the entire wavelength range of 400 to 650 nm is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. Also, the transmittance at at least one point in the wavelength range of 700 to 1800 nm is preferably 20% or less.
  • absorbance Amax/absorbance A550 which is the ratio of absorbance Amax at the maximum absorption wavelength of the near-infrared cut filter and absorbance A550 at a wavelength of 550 nm, is preferably 20 to 500, more preferably 50 to 500. , more preferably 70-450, and particularly preferably 100-400.
  • a near-infrared cut filter can be formed using a resin composition containing a near-infrared absorbing colorant.
  • a near-infrared transmission filter is a filter that transmits at least part of near-infrared rays.
  • the near-infrared transmission filter is preferably a filter that blocks at least part of visible light and transmits at least part of near-infrared light.
  • the near-infrared transmission filter has a maximum transmittance of 20% or less (preferably 15% or less, more preferably 10% or less) in the wavelength range of 400 to 640 nm, and has a transmittance in the wavelength range of 1100 to 1300 nm. Filters satisfying spectral characteristics with a minimum value of 70% or more (preferably 75% or more, more preferably 80% or more) are preferred.
  • the near-infrared transmission filter is preferably a filter that satisfies any one of the following spectral characteristics (1) to (5).
  • the maximum transmittance in the wavelength range of 400 to 640 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 800 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum transmittance in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 900 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum transmittance in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 1000 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum transmittance in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 1100 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum transmittance in the wavelength range of 400 to 1050 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 1200 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the transmittance of light in the thickness direction of the film has a wavelength of 360 to 700 nm.
  • An aspect that satisfies the spectral characteristics in which the maximum value in the range is 50% or more is exemplified.
  • a resin composition satisfying such spectral characteristics can be preferably used as a resin composition for forming pixels of a color filter. Specifically, it can be preferably used as a resin composition for forming colored pixels selected from red pixels, blue pixels, green pixels, yellow pixels, cyan pixels and magenta pixels.
  • the resin composition having the above spectral characteristics preferably contains a chromatic coloring material.
  • a resin composition containing a red colorant and a yellow colorant can be preferably used as a resin composition for forming red pixels.
  • a resin composition containing a blue colorant and a purple colorant can be preferably used as a resin composition for forming a blue pixel.
  • a resin composition containing a green colorant can be preferably used as a resin composition for forming green or cyan pixels.
  • the resin composition is used as a resin composition for forming green pixels, it is preferable that the resin composition further contains a yellow colorant in addition to the green colorant.
  • spectral characteristics of the resin composition of the present invention is that Amin/B, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm and the absorbance B at a wavelength of 1500 nm, is 5 or more.
  • An embodiment that satisfies certain spectral characteristics is mentioned.
  • a resin composition satisfying such spectral characteristics can be preferably used as a resin composition for forming a near-infrared transmission filter.
  • the value of Amin/B, which is the absorbance ratio is preferably 7.5 or more, more preferably 15 or more, and even more preferably 30 or more.
  • the absorbance A ⁇ at the wavelength ⁇ is defined by the following formula ( ⁇ 1).
  • a ⁇ ⁇ log(T ⁇ /100) ( ⁇ 1)
  • a ⁇ is the absorbance at wavelength ⁇
  • T ⁇ is the transmittance (%) at wavelength ⁇ .
  • the absorbance value may be the value measured in the state of solution or the value of the film formed using the composition.
  • the composition is applied onto a glass substrate by a method such as spin coating, and dried using a hot plate or the like at 100° C. for 120 seconds to obtain a film. is preferred.
  • the resin composition of the present invention preferably satisfies any one of the following spectral characteristics (Ir1) to (Ir5).
  • A4/B4 which is the ratio of the minimum absorbance value A4 in the wavelength range of 400 to 950 nm to the maximum absorbance value B4 in the wavelength range of 1100 to 1500 nm, is 4.5 or more;7. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more.
  • A5/B5 which is the ratio of the minimum absorbance value A5 in the wavelength range of 400 to 1050 nm to the maximum absorbance value B5 in the wavelength range of 1200 to 1500 nm, is 4.5 or more;7. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more. According to this aspect, it is possible to form a film that can block light in the wavelength range of 400 to 1050 nm and transmit light in the wavelength range of 1150 nm or more.
  • the resin composition of the present invention can also be used as a resin composition for forming a light shielding film.
  • the resin composition of the present invention preferably contains a black colorant as a colorant, and more preferably contains a black pigment.
  • the content of the black pigment in the total solid content of the resin composition is preferably 65% by mass or more, more preferably 70% by mass or more, and even more preferably 75% by mass or more.
  • the film formed using the resin composition has an optical density (OD : Optical Density) is preferably 2.5 or more, more preferably 3.0 or more.
  • OD Optical Density
  • the upper limit is not particularly limited, generally 10 or less is preferable.
  • the optical density per 1.5 ⁇ m film thickness in the wavelength region of 400 to 1100 nm is 2.5 or more, which means that the optical density per 1.5 ⁇ m film thickness is 2.5 or more in the entire wavelength range of 400 to 1100 nm. is 2.5 or more.
  • the reflectance of the film is preferably less than 8%, more preferably less than 6%, and even more preferably less than 4%.
  • the lower limit is preferably 0% or more.
  • the reflectance is determined from the reflectance spectrum obtained by using a spectroscope V7200 (trade name) VAR unit manufactured by JASCO Corporation to irradiate light with a wavelength of 400 to 1100 nm at an incident angle of 5°. Specifically, the reflectance of the light having the maximum reflectance in the wavelength range of 400 to 1100 nm is taken as the reflectance of the film.
  • the resin composition of the present invention is also preferably a resin composition for pattern formation by photolithography. According to this aspect, fine-sized pixels can be easily formed. Therefore, it can be particularly preferably used as a resin composition for forming pixels of optical filters used in solid-state imaging devices.
  • a component having an ethylenically unsaturated bond-containing group e.g., a resin having an ethylenically unsaturated bond-containing group or a monomer having an ethylenically unsaturated bond-containing group
  • a resin composition containing a photopolymerization initiator can be preferably used as a resin composition for pattern formation in photolithography. It is also preferable that the resin composition for pattern formation by photolithography further contains an alkali-soluble resin.
  • the resin composition of the present invention contains coloring material A (hereinafter referred to as coloring material).
  • coloring material A examples include white colorants, black colorants, chromatic colorants, and near-infrared absorption colorants.
  • the white colorant includes not only a pure white colorant but also a light gray colorant close to white (for example, grayish white, light gray, etc.).
  • the colorant preferably contains at least one selected from the group consisting of a chromatic colorant, a black colorant, and a near-infrared absorbing colorant, and at least one selected from the group consisting of a chromatic colorant and a black colorant. It is more preferable to contain seeds, and it is still more preferable to contain a black colorant.
  • the colorant preferably contains two or more chromatic colorants and a near-infrared absorbing colorant.
  • black may be formed by a combination of two or more chromatic colorants.
  • the colorant preferably contains a black colorant and a near-infrared absorbing colorant.
  • the resin composition of the present invention can be preferably used as a resin composition for forming a near-infrared transmission filter.
  • a pigment-containing coloring material is used as the coloring material contained in the coloring composition of the present invention.
  • the pigment may be either an inorganic pigment or an organic pigment.
  • the crystallite size of the organic pigment is preferably 0.1 to 50 nm, more preferably 0.5 to 30 nm, even more preferably 1 to 15 nm.
  • the crystallite size can be obtained from the half width of the diffraction angle peak using an X-ray diffractometer, and is calculated using Scherrer's formula.
  • the crystallite size of the organic pigment can be adjusted by known methods such as adjustment of production conditions and pulverization after production. As a pulverization method, any method may be used as long as the crystallite size can be adjusted, and examples include dry pulverization and wet pulverization. Dry milling is preferred because it does not require solvent removal and is less likely to re-agglomerate.
  • dry pulverization methods include impact crushing using a hammer crusher and the like, jet crushing using a jet mill and the like, ball mills, rod mills, and the like.
  • a known dry grinding device can be used as the dry grinding device, and devices manufactured by Nippon Coke Kogyo Co., Ltd., Kurimoto, Ltd., Ashizawa Fine Tech, and Sugino Machine can be used.
  • chromatic coloring materials include coloring materials having a maximum absorption wavelength in the wavelength range of 400 to 700 nm. Examples thereof include yellow colorant, orange colorant, red colorant, green colorant, purple colorant, and blue colorant. From the viewpoint of heat resistance, the chromatic colorant is preferably a pigment (chromatic pigment), more preferably a red pigment, a yellow pigment, and a blue pigment, and still more preferably a red pigment and a blue pigment.
  • the average primary particle size of the chromatic pigment is preferably 1 to 200 nm.
  • the lower limit is preferably 5 nm or more, more preferably 10 nm or more.
  • the upper limit is preferably 180 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
  • the average primary particle size of the chromatic pigment is within the above range, the chromatic pigment has good dispersion stability in the resin composition.
  • the average primary particle size of the pigment is a number-average particle size calculated by arithmetically averaging the number-based particle sizes measured by the dynamic light scattering method according to JIS8826:2005. .
  • Examples of the measuring device include a dynamic light scattering particle size distribution measuring device (LB-500, manufactured by Horiba, Ltd.).
  • chromatic pigments include the following.
  • C.I. I. Pigment Red 254, C.I. I. Pigment Red 264, C.I. I. Pigment Red 272, C.I. I. Pigment Red 122, C.I. I. Pigment Red 177 is preferred.
  • As a blue pigment C.I. I. Pigment Blue 15:3, C.I. I. Pigment Blue 15:4, C.I. I. Pigment Blue 15:6, C.I. I. Pigment Blue 16 is preferred.
  • a halogenated zinc phthalocyanine pigment having an average number of halogen atoms of 10 to 14, an average number of bromine atoms of 8 to 12, and an average number of chlorine atoms of 2 to 5 per molecule.
  • Specific examples include compounds described in International Publication No. 2015/118720.
  • a phthalocyanine compound, a phthalocyanine compound described in JP-A-2018-180023, a compound described in JP-A-2019-038958, and the like can also be used.
  • An aluminum phthalocyanine compound having a phosphorus atom can also be used as a blue pigment.
  • Specific examples include compounds described in paragraph numbers 0022 to 0030 of JP-A-2012-247591 and paragraph number 0047 of JP-A-2011-157478.
  • X 1 to X 16 each independently represent a hydrogen atom or a halogen atom
  • Z 1 represents an alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the compound represented by formula (QP1) include compounds described in paragraph 0016 of Japanese Patent No. 6443711.
  • Y 1 to Y 3 each independently represent a halogen atom.
  • n and m are integers from 0 to 6; p is an integer from 0 to 5; (n+m) is 1 or more.
  • Specific examples of the compound represented by formula (QP2) include compounds described in paragraphs 0047 to 0048 of Japanese Patent No. 6432077.
  • diketopyrrolopyrrole compounds in which at least one bromine atom is substituted in the structure described in JP-A-2017-201384, diketopyrrolopyrrole compounds described in paragraphs 0016 to 0022 of Japanese Patent No. 6248838, Diketopyrrolopyrrole compounds described in WO 2012/102399, diketopyrrolopyrrole compounds described in WO 2012/117965, naphthol azo compounds described in JP 2012-229344, Patent No. 6516119 and the compounds described in Japanese Patent No. 6525101 can also be used.
  • red pigment a compound having a structure in which an aromatic hydrocarbon group in which a group having an oxygen atom, a sulfur atom or a nitrogen atom is bonded to an aromatic hydrocarbon ring is bonded to a diketopyrrolopyrrole skeleton.
  • DPP1 compound represented by formula (DPP1)
  • DPP2 a compound represented by formula (DPP2)
  • R 11 and R 13 each independently represent a substituent
  • R 12 and R 14 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • n11 and n13 each independently represents an integer of 0 to 4
  • X 12 and X 14 each independently represents an oxygen atom, a sulfur atom or a nitrogen atom
  • m12 represents 1
  • X m12 represents 2 when 12 is a nitrogen atom
  • m14 represents 1 when X14 is an oxygen atom or a sulfur atom
  • m14 represents 2 when X14 is a nitrogen atom.
  • Substituents represented by R 11 and R 13 include an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heteroaryloxycarbonyl group, an amide group, a cyano group, a nitro group, and trifluoro.
  • Preferred specific examples include a methyl group, a sulfoxide group, and a sulfo group.
  • pyrazole azo compounds As chromatic dyes, pyrazole azo compounds, anilinoazo compounds, triarylmethane compounds, anthraquinone compounds, anthrapyridone compounds, benzylidene compounds, oxonol compounds, pyrazolotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, pyrrolopyrazole azomethine compounds , xanthene compounds, phthalocyanine compounds, benzopyran compounds, indigo compounds, and pyrromethene compounds.
  • 10-2020-0069730 Compound represented by 1, Compound represented by Formula 1 described in Korean Patent Publication No. 10-2020-0069070, Compound represented by Formula 1 described in Korean Patent Publication No. 10-2020-0069067 , the compound represented by Formula 1 described in Korean Patent Publication No. 10-2020-0069062, the halogenated zinc phthalocyanine pigment described in Patent No. 6809649, and the isoindoline compound described in JP-A-2020-180176.
  • the chromatic colorant may be a rotaxane
  • the dye skeleton may be used in the cyclic structure of the rotaxane, may be used in the rod-like structure, or may be used in both structures. .
  • Two or more chromatic colorants may be used in combination.
  • the combination of two or more chromatic colorants may form black. Examples of such combinations include the following aspects (1) to (7).
  • the resin composition of the present invention forms a near-infrared transmission filter. It can be preferably used as a resin composition for (1) A mode containing a red colorant and a blue colorant. (2) A mode containing a red colorant, a blue colorant, and a yellow colorant. (3) A mode containing a red colorant, a blue colorant, a yellow colorant, and a purple colorant.
  • a mode containing a red colorant, a blue colorant, a yellow colorant, a purple colorant, and a green colorant (5) A mode containing a red colorant, a blue colorant, a yellow colorant, and a green colorant. (6) A mode containing a red colorant, a blue colorant, and a green colorant. (7) A mode containing a yellow colorant and a purple colorant.
  • White colorants include titanium oxide, strontium titanate, barium titanate, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, Examples include hollow resin particles and inorganic pigments (white pigments) such as zinc sulfide.
  • the white pigment is preferably particles containing titanium atoms, more preferably titanium oxide.
  • the white pigment is preferably particles having a refractive index of 2.10 or more for light with a wavelength of 589 nm. The aforementioned refractive index is preferably 2.10 to 3.00, more preferably 2.50 to 2.75.
  • the white pigment can also use the titanium oxide described in "Titanium Oxide Physical Properties and Application Techniques Manabu Seino, Pages 13-45, June 25, 1991, published by Gihodo Publishing".
  • the white pigment is not only made of a single inorganic substance, but also particles combined with other materials may be used.
  • particles having voids or other materials inside, particles in which a large number of inorganic particles are attached to a core particle, and core-shell composite particles consisting of a core particle made of polymer particles and a shell layer made of inorganic nanoparticles are used. is preferred.
  • the core and shell composite particles composed of the core particles composed of the polymer particles and the shell layer composed of the inorganic nanoparticles for example, the description of paragraphs 0012 to 0042 of JP-A-2015-047520 can be referred to, The contents of which are incorporated herein.
  • Hollow inorganic particles can also be used as the white pigment.
  • a hollow inorganic particle is an inorganic particle having a structure having a cavity inside, and refers to an inorganic particle having a cavity surrounded by an outer shell.
  • Examples of hollow inorganic particles include hollow inorganic particles described in JP 2011-075786, WO 2013/061621, JP 2015-164881, etc., the contents of which are incorporated herein. be
  • the black colorant is not particularly limited, and known ones can be used.
  • the black colorant means a colorant that exhibits absorption over the entire wavelength range of 400 to 700 nm.
  • the black colorant is preferably a black pigment.
  • the black pigment is preferably a black pigment that meets the evaluation criteria Z described below.
  • the light-shielding property of the cured film after drying is evaluated using a spectrophotometer (UV-3600 manufactured by Hitachi, Ltd., etc.). If the maximum transmittance of the dried cured film at a wavelength of 400 to 700 nm is less than 10%, it can be determined that the black pigment satisfies the evaluation criteria Z. Regarding the black pigment, the maximum transmittance of the dried cured film at a wavelength of 400 to 700 nm is more preferably less than 8%, more preferably less than 5%, according to evaluation criteria Z.
  • the average primary particle size of the black pigment is preferably 250 nm or less, more preferably 200 nm or less, and even more preferably 150 nm or less.
  • the average primary particle size is preferably 1 nm or more, more preferably 5 nm or more, and even more preferably 20 nm or more, from the viewpoint of better handling.
  • the black pigment may be an inorganic pigment (inorganic black pigment) or an organic pigment (organic black pigment).
  • the black pigment is preferably an inorganic black pigment because the resulting film has better light resistance.
  • black pigments tend to have lower dispersibility in resin compositions than other pigments.
  • inorganic black pigments tend to have low dispersibility in resin compositions.
  • the resin composition of the present invention even if it contains a black pigment, it can be a resin composition having excellent dispersibility of the pigment. , the effect of the present invention is exhibited remarkably.
  • the inorganic black pigment is not particularly limited as long as it is a particle that has light shielding properties and contains an inorganic compound, but known inorganic pigments can be used.
  • inorganic black pigments include Group 4 metal elements such as titanium (Ti) and zirconium (Zr), Group 5 metal elements such as vanadium (V) and niobium (Nb), yttrium (Y), aluminum (Al ), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), ruthenium (Ru), iron (Fe), nickel (Ni), tin (Sn), and silver (Ag) Metal oxides, metal nitrides and metal oxynitrides containing one or more metal elements selected from the group are mentioned.
  • Group 4 metal elements such as titanium (Ti) and zirconium (Zr)
  • Group 5 metal elements such as vanadium (V) and niobium (Nb), yttrium (Y), aluminum (Al ), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), ruthenium (Ru), iron (Fe), nickel (Ni), t
  • the inorganic black pigment may contain two or more metal atoms.
  • metal oxides metal nitrides and metal oxynitrides, particles in which other metal atoms are mixed may be used.
  • metal nitride-containing particles further containing atoms (preferably oxygen atoms and/or sulfur atoms) selected from elements of Groups 13 to 17 of the periodic table can be used.
  • the metal oxide, metal nitride and metal oxynitride may be coated with an inorganic substance and/or an organic substance.
  • the inorganic substance include metal atoms contained in the inorganic black pigment.
  • the organic substance include organic substances having a hydrophobic group, and silane compounds are preferred.
  • the method for producing the above metal nitride, metal oxide or metal oxynitride is not particularly limited as long as a black pigment having desired physical properties can be obtained. You can use the method.
  • the vapor phase reaction method includes an electric furnace method, a thermal plasma method, and the like, but the thermal plasma method is preferable from the viewpoints of less impurity contamination, easier particle diameter uniformity, and higher productivity.
  • the metal nitride, metal oxide or metal oxynitride described above may be subjected to a surface modification treatment.
  • the surface may be modified with a surface treatment agent having both a silicone group and an alkyl group. Examples of such inorganic particles include the "KTP-09" series (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Inorganic black pigments also include, for example, zirconium nitride containing yttrium.
  • the particle size (average primary particle size) of the yttrium-containing zirconium nitride is preferably 10 to 100 nm from the viewpoint of suppressing a decrease in light shielding properties at a wavelength of 550 nm (visible light).
  • the average primary particle size of the yttrium-containing zirconium nitride powder can be measured by converting the measured specific surface area into spheres. Note that yttrium is contained in a solid solution state in the zirconium nitride powder.
  • X1 is the light transmittance at a wavelength of 550 nm and X2 is the light transmittance at a wavelength of 365 nm. 5% or less is preferable, and 6.5% or less is more preferable.
  • X2 is preferably 25% or more, more preferably 26% or more.
  • the ratio of X2 to X1 (X2/X1) is preferably 3.5 or more, more preferably 4.0 or more.
  • the content of yttrium is preferably 1.0 to 12.0% by mass, relative to the total mass of zirconium nitride and yttrium, from the viewpoint of suppressing a decrease in light shielding properties at a wavelength of 550 nm (visible light), and 2.0 to 2.0%. 11.0% by mass is more preferred.
  • the above content can be measured by ICP (high frequency inductively coupled plasma) emission spectrometry.
  • Yttrium-containing zirconium nitride and its production method include, for example, those described in JP-A-2020-180036, the contents of which are incorporated herein.
  • Inorganic black pigments also include, for example, zirconium nitride containing aluminum.
  • Alumina-coated zirconium nitride is preferable as the aluminum-containing zirconium nitride.
  • Moisture resistance is improved by coating zirconium nitride with alumina.
  • the zirconium nitride coated with alumina preferably has a volume resistivity of 1 ⁇ 10 6 ⁇ cm or more, more preferably 1 ⁇ 10 7 ⁇ cm or more. The volume resistivity of zirconium nitride coated with alumina is determined as follows.
  • Alumina-coated zirconium nitride is placed in a pressure vessel and compressed at 5 to 10 MPa to form a compact, and the resistance value of the compact is measured with a digital multimeter. Then, the obtained resistance value is multiplied by a resistivity correction factor (RCF) that is referred to based on the thickness of the green compact, the shape of the apparatus, and the thickness of the green compact, to obtain the volume resistivity of the powder ( ⁇ cm) is obtained.
  • RCF resistivity correction factor
  • the coating amount of alumina is preferably 1.5 to 9% by mass, more preferably 3 to 7% by mass with respect to 100% by mass of zirconium nitride.
  • the isoelectric point of zirconium nitride coated with alumina is preferably 5.7 or higher, more preferably 5.8 or higher.
  • the “isoelectric point of alumina-coated zirconium nitride” means that when the pH of a dispersion liquid in which alumina-coated zirconium nitride is dispersed, the charge per particle becomes zero as a whole, and the dispersion It means the pH at which the powder does not move even if a voltage is applied to the liquid.
  • an inorganic nitride powder such as a zirconium nitride powder, exhibits a large change in zeta potential when the pH changes, and at a certain pH, the surface potential (zeta potential) becomes zero and the isoelectric potential does not exhibit any electrophoresis. have a point.
  • zeta potential is an electric double layer, which is an electric double structure formed by attracting ions with opposite polar charges around powder with a certain polar charge in a dispersion liquid. , means the potential of the sliding surface at which liquid flow begins to occur. This zeta potential is measured as follows using, for example, a zeta potential meter (model: DT1202) manufactured by Dispersion Technology.
  • the device is measured using the colloidal oscillating current method.
  • the above dispersion is placed in a container and sandwiched between a pair of electrodes, and a predetermined voltage is applied to these electrodes to move the powder in the dispersion.
  • a predetermined voltage is applied to these electrodes to move the powder in the dispersion.
  • the charged particles and their surrounding counter ions are polarized, generating an electric field called the colloidal oscillation potential, which can be detected as a current.
  • This current becomes a colloidal oscillation current.
  • the zeta potential is determined from the measured colloidal oscillatory currents using Smoluchowski's equation and coupling theory.
  • the pH at which the zeta potential becomes zero is the isoelectric point of the powder.
  • the L * value of zirconium nitride coated with alumina is preferably 13 or less.
  • the “L * value of zirconium nitride coated with alumina” is the lightness index in the CIE1976 L * a * b * color space (measurement light source C: color temperature 6774K).
  • the CIE1976L * a * b * color space was converted from the CIEXYZ color system in 1976 by the Commission Internationale de l'Eclairage (CIE). It is a color space defined so that a constant distance in the color system has a perceptually uniform difference in any color area.
  • L * value, a * value, and b * value are quantities determined by an orthogonal coordinate system in the CIE1976L * a * b * color space, and are expressed by equations (1) to (3).
  • L * 116(Y/Y0) 1/ 3-16 ( 1 )
  • a * 500 [(X/X 0 ) 1/3 - (Y/Y 0 ) 1/3 ]
  • b * 200 [(Y/Y 0 ) 1/3 - (Z/Z 0 ) 1/3 ] (3)
  • X/X 0 , Y/Y 0 , Z/Z 0 >0.008856
  • X, Y, and Z are the tristimulus values of the object color.
  • the lightness index L * value of zirconium nitride coated with alumina is determined using, for example, a spectral color difference meter (model: SE7700) manufactured by Nippon Denshoku Industries Co., Ltd. When the L * value is 13 or less, the blackness is sufficient and a predetermined color tone can be obtained as a black pigment.
  • the BET specific surface area of zirconium nitride coated with alumina is preferably 20 m 2 /g or more.
  • the upper limit is preferably 1000 m 2 /g or less.
  • the BET specific surface area is measured by using, for example, a specific surface area measuring device (model: SA1100) manufactured by Shibata Kagaku Co., Ltd., on the surface of the powder (black pigment), a gas molecule (for example, nitrogen gas, etc.) whose adsorption area is known. is adsorbed and calculated from the adsorption amount.
  • the BET equation when adsorption is in equilibrium at a constant temperature, adsorption
  • the amount of gas molecules in only one layer is measured, making it possible to measure the exact specific surface area.
  • the BET specific surface area is 20 m 2 /g or more, a decrease in coloring power (color development power) can be suppressed.
  • Alumina-coated zirconium nitride and its manufacturing method include, for example, those described in JP-A-2020-158377, the contents of which are incorporated herein.
  • nitrides or oxynitrides of one or more metals selected from the group consisting of titanium, vanadium, zirconium, niobium, and iron are more preferable because they can suppress the occurrence of undercuts when forming a light-shielding film.
  • zirconium nitrides or oxynitrides or titanium nitrides or oxynitrides are more preferred.
  • Titanium black is black particles containing titanium oxynitride. Titanium black can be surface-modified as necessary for the purpose of improving dispersibility, suppressing cohesion, and the like. Titanium black can be coated with silicon oxide, titanium oxide, germanium oxide, aluminum oxide, magnesium oxide or zirconium oxide. processing is also possible.
  • Titanium black can be produced by heating a mixture of titanium dioxide and metallic titanium in a reducing atmosphere (JP-A-49-005432), and ultrafine dioxide obtained by high-temperature hydrolysis of titanium tetrachloride.
  • a method of reducing titanium in a reducing atmosphere containing hydrogen JP-A-57-205322
  • a method of reducing titanium dioxide or titanium hydroxide at high temperature in the presence of ammonia JP-A-60-065069, JP-A-61-201610
  • a method of adhering a vanadium compound to titanium dioxide or titanium hydroxide and reducing it at high temperature in the presence of ammonia JP-A-61-201610.
  • the particle size of titanium black is not particularly limited, but is preferably 10 to 45 nm, more preferably 12 to 20 nm.
  • the specific surface area of titanium black is not particularly limited, but since the water repellency after surface treatment with a water repellent agent has a predetermined performance, the value measured by the BET (Brunauer, Emmett, Teller) method is 5 to 5. It is preferably 150 m 2 /g, more preferably 20 to 100 m 2 /g.
  • titanium black for example, titanium black 10S, 12S, 13R, 13M, 13M-C, 13R, 13R-N, 13M-T (trade name, manufactured by Mitsubishi Materials Corporation), Tilac D (trade name) , manufactured by Ako Kasei Co., Ltd.) and MT-150A (trade name, manufactured by Teika Co., Ltd.).
  • the resin composition of the present invention contains titanium black as a dispersant containing titanium black and Si atoms.
  • titanium black is contained as a dispersed substance in the resin composition.
  • the content ratio (Si/Ti) of Si atoms and Ti atoms in the material to be dispersed is preferably 0.05 to 0.5, more preferably 0.07 to 0.4 in terms of mass.
  • the material to be dispersed includes both titanium black in the state of primary particles and titanium black in the state of aggregates (secondary particles).
  • the Si/Ti ratio of the substance to be dispersed is at least a predetermined value
  • a composition layer using the substance to be dispersed is patterned by photolithography or the like, it is difficult for a residue to remain in the removed portion. If /Ti is equal to or less than a predetermined value, the light shielding ability tends to be good.
  • the following means can be used. First, titanium oxide and silica particles are dispersed using a disperser to obtain a dispersion, and this mixture is subjected to a reduction treatment at a high temperature (for example, 850 to 1000 ° C.), so that titanium black particles are the main component. Then, a dispersed material containing Si and Ti can be obtained. Titanium black in which Si/Ti is adjusted can be produced, for example, by the method described in paragraphs 0005 and 0016 to 0021 of JP-A-2008-266045. The content ratio (Si/Ti) of Si atoms and Ti atoms in the material to be dispersed is, for example, the method (2-1) or method (2 -3) can be used.
  • the above titanium black can be used.
  • a composite oxide of a plurality of metals selected from Cu, Fe, Mn, V, Ni, etc., cobalt oxide, Black pigments such as iron oxide, carbon black, and aniline black may be used singly or in combination of two or more as an object to be dispersed.
  • the dispersed material comprising titanium black accounts for 50% by mass or more of the total dispersed material.
  • Inorganic black pigments also include carbon black.
  • Carbon blacks include, for example, furnace black, channel black, thermal black, acetylene black and lamp black.
  • As the carbon black carbon black, carbon black produced by a known method such as an oil furnace method may be used, or a commercially available product may be used. Specific examples of commercial products of carbon black include C.I. I. Inorganic black pigments such as Pigment Black 7 are included.
  • Carbon black that has undergone surface treatment is preferable as the carbon black.
  • the surface treatment can modify the surface state of the carbon black particles and improve the dispersion stability in the composition.
  • Examples of the surface treatment include coating treatment with a resin, surface treatment for introducing an acidic group, and surface treatment with a silane coupling agent.
  • Coating resins include epoxy resins, polyamides, polyamideimides, novolac resins, phenolic resins, urea resins, melamine resins, polyurethanes, diallyl phthalate resins, alkylbenzene resins, polystyrene, polycarbonates, polybutylene terephthalate, and modified polyphenylene oxides.
  • the content of the coating resin is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass, based on the total of the carbon black and the coating resin, from the viewpoint of better light shielding properties and insulating properties.
  • the crystallite size of the inorganic black pigment is preferably 10 nm or more, more preferably 20 nm or more.
  • the upper limit is preferably 60 nm or less, more preferably 50 nm or less, and even more preferably 40 nm or less.
  • the crystallite size is 10 nm or more, the particle surface is less likely to be oxidized, and a decrease in light shielding properties is suppressed.
  • the crystallite size is 60 nm or less, the shift of the transmission peak to a longer wavelength when formed into a colored film is suppressed, the decrease in light transmittance in the ultraviolet region is suppressed, and light blocking in the visible light region is suppressed. Decrease in sexuality is suppressed.
  • the crystallite size is determined, for example, by the following method. It can be calculated from the half width of the X-ray diffraction peak derived from the (111) plane in the X-ray diffraction spectrum when CuK ⁇ rays are used as the X-ray source.
  • K represents a constant of 0.9.
  • represents 0.15406 (nm).
  • is a value represented by the above formula (5).
  • is as described above.
  • Equation (5) ⁇ e represents the half width of the diffraction peak.
  • ⁇ O represents the half width correction value (0.12°).
  • ⁇ , ⁇ e and ⁇ O are calculated in radians.
  • the X-ray diffraction spectrum is measured by a wide-angle X-ray diffraction method using CuK ⁇ rays as an X-ray source.
  • RU-200R manufactured by Rigakusha
  • the measurement conditions are an output of 50 kV/200 mA, a slit system of 1°-1°-0.15 mm-0.45 mm, a measurement step (2 ⁇ ) of 0.02°, and a scan speed of 2°/min.
  • examples of the diffraction peak values include those shown in paragraphs 0027 to 0028 of JP-A-2009-091205, the contents of which are incorporated herein.
  • a method of adjusting the crystallite size within the above range includes, for example, a method of adjusting crystal growth conditions during particle synthesis by gas phase reaction.
  • the crystallite size can be easily adjusted within the above range by adjusting the cooling time and cooling rate after the particles are vaporized.
  • inorganic black pigments examples include zirconium in JP-A-2017-222559, WO-2019/130772, WO-2019/059359 and JP-A-2009-091205. incorporated into the specification.
  • Organic black pigments used as black pigments are not particularly limited as long as they are particles that have light shielding properties and contain an organic compound, and known organic black pigments can be used.
  • organic black pigments include bisbenzofuranone compounds, azomethine compounds, perylene compounds and azo compounds, with bisbenzofuranone compounds and perylene compounds being preferred.
  • Examples of the bisbenzofuranone compound include compounds described in Japanese Patent Publication No. 2010-534726, Japanese Patent Publication No. 2012-515233 and Japanese Patent Publication No. 2012-515234.
  • a bisbenzofuranone compound is available as “Irgaphor Black” (trade name) manufactured by BASF.
  • Perylene compounds include those described in JP-A-62-001753 and JP-B-63-026784. The perylene compound is C.I. I. Pigment Black 21, 30, 31, 32, 33 and 34.
  • the colorant used in the resin composition of the present invention may be the above-described black colorant only, or may further include a chromatic colorant. According to this aspect, it is easy to obtain a resin composition capable of forming a film having excellent light-shielding properties in the visible light region.
  • chromatic colorant 100:10 to 300, preferably 100:20 to 200. is more preferable.
  • it is preferable to use a black pigment as the black colorant and it is preferable to use a chromatic pigment as the chromatic colorant.
  • Preferred combinations of black colorants and chromatic colorants include, for example, the following.
  • A-1 An embodiment containing an organic black colorant and a blue colorant.
  • A-2) An embodiment containing an organic black colorant, a blue colorant and a yellow colorant.
  • A-3) An embodiment containing an organic black colorant, a blue colorant, a yellow colorant and a red colorant.
  • A-4) An embodiment containing an organic black colorant, a blue colorant, a yellow colorant and a purple colorant.
  • the near-infrared absorbing colorant is preferably a pigment, more preferably an organic pigment. Also, the near-infrared absorbing colorant preferably has a maximum absorption wavelength in the range of more than 700 nm and 1400 nm or less. Also, the maximum absorption wavelength of the near-infrared absorbing colorant is preferably 1200 nm or less, more preferably 1000 nm or less, and even more preferably 950 nm or less.
  • the near-infrared absorbing colorant preferably has an A 550 /A max ratio of the absorbance A 550 at a wavelength of 550 nm to the absorbance A max at the maximum absorption wavelength of 0.1 or less, and is 0.05 or less. is more preferably 0.03 or less, and particularly preferably 0.02 or less.
  • the lower limit is not particularly limited, but can be, for example, 0.0001 or more, and can also be 0.0005 or more. If the absorbance ratio is within the above range, a near-infrared absorbing colorant having excellent visible light transparency and near-infrared shielding properties can be obtained.
  • the maximum absorption wavelength of the near-infrared absorbing colorant and the absorbance at each wavelength are values obtained from the absorption spectrum of a film formed using a resin composition containing the near-infrared absorbing colorant.
  • the near-infrared absorbing colorant is not particularly limited, but pyrrolopyrrole compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, iminium compounds, dithiol compounds, tria
  • pyrrolopyrrole compounds cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, iminium compounds, dithiol compounds, tria
  • reelmethane compounds include reelmethane compounds, pyrromethene compounds, azomethine compounds, anthraquinone compounds, dibenzofuranone compounds, and dithiolene metal complexes.
  • pyrrolopyrrole compound compounds described in paragraph numbers 0016 to 0058 of JP-A-2009-263614, compounds described in paragraph numbers 0037-0052 of JP-A-2011-068731, WO 2015/166873 Compounds described in Paragraph Nos. 0010 to 0033 and the like.
  • examples of the squarylium compound include compounds described in paragraph numbers 0044 to 0049 of JP-A-2011-208101, compounds described in paragraph numbers 0060 to 0061 of Japanese Patent No. 6065169, and paragraph number 0040 of WO 2016/181987.
  • Examples of croconium compounds include compounds described in JP-A-2017-082029.
  • As the iminium compound for example, compounds described in JP-A-2008-528706, compounds described in JP-A-2012-012399, compounds described in JP-A-2007-092060, International Publication No. 2018/043564 and the compounds described in paragraphs 0048 to 0063 of.
  • phthalocyanine compound examples include compounds described in paragraph number 0093 of JP-A-2012-077153, oxytitanium phthalocyanine described in JP-A-2006-343631, and paragraph numbers 0013 to 0029 of JP-A-2013-195480. compounds, vanadium phthalocyanine compounds described in Japanese Patent No. 6081771, and compounds described in International Publication No. 2020/071470. Examples of naphthalocyanine compounds include compounds described in paragraph number 0093 of JP-A-2012-077153. Dithiolene metal complexes include compounds described in Japanese Patent No. 5733804.
  • the near-infrared absorbing colorant the squarylium compound described in JP-A-2017-197437, the squarylium compound described in JP-A-2017-025311, the squarylium compound described in International Publication No. 2016/154782, the patent Squarylium compounds described in Japanese Patent No. 5884953, squarylium compounds described in Japanese Patent No. 6036689, squarylium compounds described in Japanese Patent No. 5810604, squarylium compounds described in paragraph numbers 0090 to 0107 of International Publication No.
  • amide-linked squarylium compounds compounds having a pyrrole bis-type squarylium skeleton or croconium skeleton described in JP-A-2017-141215, dihydrocarbazole bis-type squarylium compounds described in JP-A-2017-082029, JP-A-2017 -Asymmetric compounds described in paragraphs 0027 to 0114 of JP-A-068120, pyrrole ring-containing compounds (carbazole type) described in JP-A-2017-067963, phthalocyanine compounds described in Japanese Patent No. 6251530, A squarylium compound described in JP-A-2020-075959, a copper complex described in Korean Patent Publication No. 10-2019-0135217, and the like can also be used.
  • the content of the coloring material in the total solid content of the resin composition is preferably 20 to 90% by mass.
  • the lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the content of the pigment in the total solid content of the resin composition is preferably 20 to 90% by mass.
  • the lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the content of the dye in the coloring material is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the colorant contained in the resin composition contains a black pigment, and the content of the black pigment in the total solid content of the resin composition is 65% by mass or more.
  • the content of the black pigment in the total solid content of the resin composition is preferably 70% by mass or more, more preferably 75% by mass or more.
  • the upper limit is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the content of the black pigment in the colorant is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 99% by mass or more, and 100% by mass. is particularly preferred.
  • the resin composition of the present invention contains resin B (hereinafter also referred to as resin).
  • resin B hereinafter also referred to as resin
  • the resin contained in the resin composition is a resin B1 (hereinafter also referred to as a specific resin) containing an acid anhydride group and a polymer chain containing a repeating unit having at least one structure selected from a polyether structure and a polyester structure. include.
  • the specific resin preferably has an acid anhydride group at the end of the specific resin.
  • the number of acid anhydride groups possessed by the specific resin is preferably 1 to 5, more preferably 1 to 3, and preferably 1 for the reason that the dispersibility of the pigment can be further improved. Especially preferred.
  • the acid anhydride group possessed by the specific resin is preferably a cyclic acid anhydride group because it can further improve the dispersibility of the pigment.
  • the acid anhydride group possessed by the specific resin is preferably a group represented by any one of formulas (RAH-1) to (RAH-7), and is a group represented by formula (RAH-4). is more preferable.
  • * represents a link
  • R AH1 , R AH7 , R AH8 , R AH10 and R AH11 each independently represent a hydrogen atom or a substituent
  • R AH2 , R AH3 , R AH4 , R AH5 , R AH6 and R AH9 represent substituents
  • r2, r3, r4, r6 and r7 each independently represent an integer of 0 to 3
  • r5 represents an integer of 0 to 2;
  • Each of r2, r3, r4, r6 and r7 is preferably an integer of 0 to 2, more preferably 0 or 1, even more preferably 0.
  • r5 is preferably 0 or 1, more preferably 0.
  • Substituents represented by R AH1 to R AH11 include a substituent T described later, preferably a halogen atom, a carboxy group, an alkyl group or a hydroxy group, more preferably a carboxy group.
  • the polymer chain possessed by the specific resin may contain at least one selected from ethylenically unsaturated bond-containing groups, epoxy groups and oxetanyl groups. These groups are preferably contained at the ends of the polymer chain. Examples of ethylenically unsaturated bond-containing groups include vinyl groups, (meth)allyl groups, and (meth)acryloyl groups.
  • the polymer chain possessed by the specific resin is preferably a polymer chain containing repeating units represented by any one of formulas (P-1) to (P-4).
  • R G1 to R G4 each independently represent an alkylene group.
  • the alkylene group represented by R G1 to R G4 is preferably a linear or branched alkylene group having 1 to 20 carbon atoms, and is a linear or branched alkylene group having 2 to 16 carbon atoms. More preferably, it is a linear or branched alkylene group having 3 to 12 carbon atoms.
  • the polymer chain possessed by the specific resin may contain two or more repeating units.
  • a repeating unit represented by any one of formulas (P1-1) to (P1-3) and a repeating unit represented by formula (P1-4) may be included.
  • the terminal structure of the polymer chain is not particularly limited. It may be a hydrogen atom or a substituent.
  • Substituents include alkyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, alkylthioether groups, arylthioether groups, heteroarylthioether groups, ethylenically unsaturated bond-containing groups, and epoxy groups. and an oxetanyl group.
  • the specific resin is preferably a resin represented by formula (1).
  • R 1 represents an acid anhydride group
  • X 1 and X 2 each independently represent a single bond, -O-, -CO-, -COO-, -OCO-, -NR x1 -, -CONR x1 -, -NR x1 CO- or -S- and R x1 represents a hydrogen atom or a substituent
  • L 1 represents a single bond or an m+n-valent linking group
  • P 1 represents a polymer chain containing repeating units of at least one structure selected from a polyether structure and a polyester structure
  • m and n each independently represent an integer of 1 or more.
  • the acid anhydride group represented by R 1 in formula (1) is preferably a cyclic acid anhydride group because it can further improve the dispersibility of the pigment.
  • the acid anhydride group represented by R 1 in formula (1) is preferably a group represented by any one of formulas (RAH-1) to (RAH-7) described above, and formula (RAH-4). is more preferably a group represented by
  • the polymer chain represented by P1 in formula ( 1 ) may contain at least one selected from an ethylenically unsaturated bond-containing group, an epoxy group and an oxetanyl group. These groups are preferably contained at the ends of the polymer chain. Examples of ethylenically unsaturated bond-containing groups include vinyl groups, (meth)allyl groups, and (meth)acryloyl groups.
  • the polymer chain represented by P 1 in formula (1) is preferably a polymer chain containing a repeating unit represented by any one of formulas (P-1) to (P-4) described above.
  • the terminal structure of the polymer chain represented by P1 in formula ( 1 ) is not particularly limited. It may be a hydrogen atom or a substituent.
  • Substituents include alkyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, alkylthioether groups, arylthioether groups, heteroarylthioether groups, ethylenically unsaturated bond-containing groups, and epoxy groups. and an oxetanyl group.
  • the polymer chain represented by P1 is preferably a polymer chain represented by formula (P100).
  • *-P 10 -Lp 10 -(Rp 10 ) q (P100) In the formula (P100), * represents a connecting hand, P 10 represents a polymer chain containing repeating units of at least one structure selected from a polyether structure and a polyester structure, Lp 10 represents a single bond or a q+1 valent group, Rp 10 represents a hydrogen atom or a substituent, q represents 1 or 2;
  • the repeating unit having a polyether structure in P10 of formula (P100) is preferably a repeating unit represented by formula (P - 4) described above.
  • the repeating unit of the polyester structure in P 10 of formula (P100) is preferably a repeating unit represented by any one of formulas (P-1) to (P-3) described above.
  • the q+1 valent group represented by Lp 10 in the formula (P100) includes a hydrocarbon group, a heterocyclic group, -NRp L1 -, -N ⁇ , -SO-, -SO 2 -, -CO-, -O-, --COO--, --OCO--, --S--, --NRp L1 CO-- and --CONRp L1-- and groups consisting of combinations of two or more of these.
  • Rp L1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, preferably a hydrogen atom.
  • Hydrocarbon groups include aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
  • the number of carbon atoms in the aliphatic hydrocarbon group is preferably 1-30, more preferably 1-20, even more preferably 1-15.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic.
  • the cyclic aliphatic hydrocarbon group may be monocyclic or condensed.
  • the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-30, more preferably 6-20, even more preferably 6-10.
  • the hydrocarbon group may have a substituent. Substituents include the substituent T described later.
  • the heterocyclic group may be a non-aromatic heterocyclic group or an aromatic heterocyclic group.
  • the heterocyclic group is preferably a 5- or 6-membered ring.
  • Types of heteroatoms constituting the ring of the heterocyclic group include a nitrogen atom, an oxygen atom, a sulfur atom and the like.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1-3.
  • the heterocyclic group may be monocyclic or condensed.
  • the heterocyclic group may have a substituent. Substituents include the substituent T described later.
  • substituents represented by Rp 10 in formula (P100) include alkyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, alkylthioether groups, arylthioether groups, heteroarylthioether groups, and ethylene. and an ethylenically unsaturated bond-containing group, an epoxy group and an oxetanyl group, preferably an ethylenically unsaturated bond-containing group, an epoxy group and an oxetanyl group.
  • Examples of ethylenically unsaturated bond-containing groups include vinyl groups, (meth)allyl groups, and (meth)acryloyl groups.
  • q in formula (P100) represents 1 or 2, preferably 1.
  • P1 polymer chain represented by P1
  • P1-1 to P1-22 shown below.
  • * is a linker.
  • L 1 in formula (1) represents a single bond or an m+n-valent linking group.
  • the m+n-valent linking group represented by L 1 includes a hydrocarbon group, a heterocyclic group, -NR L1 -, -N ⁇ , -SO-, -SO 2 -, -CO-, -O-, -COO-, -OCO-, -S-, -NR L1 CO- and -CONR L1 - and groups formed by combinations of two or more of these.
  • R L1 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, preferably a hydrogen atom.
  • Hydrocarbon groups include aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
  • the number of carbon atoms in the aliphatic hydrocarbon group is preferably 1-30, more preferably 1-20, even more preferably 1-15.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic.
  • the cyclic aliphatic hydrocarbon group may be monocyclic or condensed.
  • the cyclic aliphatic hydrocarbon group may have a crosslinked structure.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-30, more preferably 6-20, even more preferably 6-10.
  • the hydrocarbon group may have a substituent. Substituents include the substituent T described later.
  • the heterocyclic group may be a non-aromatic heterocyclic group or an aromatic heterocyclic group.
  • the heterocyclic group is preferably a 5- or 6-membered ring.
  • Types of heteroatoms constituting the ring of the heterocyclic group include a nitrogen atom, an oxygen atom, a sulfur atom and the like.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1-3.
  • the heterocyclic group may be monocyclic or condensed.
  • the heterocyclic group may have a substituent. Substituents include the substituent T described below.
  • the m+n-valent linking group is hydrocarbon group; heterocyclic group; a hydrocarbon group, a heterocyclic group, -NR L1 -, -N ⁇ , -SO-, -SO 2 -, -CO-, -O-, -COO-, -OCO-, -S-, -NR L1 a group having a structure in combination with at least one group selected from CO— and —CONR L1 ; or a heterocyclic group, a hydrocarbon group, -NR L1 -, -N ⁇ , -SO-, -SO 2 -, -CO-, -O-, -COO-, -OCO-, -S-, -NR L1 It is preferably a group having a structure in combination with at least one group selected from CO-- and --CONR L1 .
  • m+n-valent linking group represented by L 1 examples include -(CH 2 ) 2 -, -(CH 2 ) 3 -, -(CH 2 ) 4 -, -(CH 2 ) 5 -, -(CH 2 ) 6 -, and (Z1-1) to (Z1-23) shown below.
  • X 1 and X 2 in formula (1) are each independently a single bond, -O-, -CO-, -COO-, -OCO-, -NR x1 -, -CONR x1 -, -NR x1 CO- or represents -S-.
  • R x1 represents a hydrogen atom or a substituent. Examples of the substituent represented by R x1 include a substituent T described later, and an alkyl group is preferable.
  • R x1 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom.
  • X 1 in formula (1) is preferably -S-, -CO-, -COO-, -OCO-, -NR x1 -, -CONR x1 - or -NR x1 CO-, and -CO-, -COO- or -OCO- is more preferred, and -COO- is even more preferred.
  • X 2 in formula (1) is preferably a single bond, -O- or -NR x1 -. When L 1 in formula (1) is a single bond and X 1 is --COO--, X 2 is preferably a single bond.
  • m and n in formula (1) each independently represent an integer of 1 or more.
  • m is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, more preferably 1 or 2, and 1 for the reason that the dispersibility of the pigment can be further improved. is particularly preferred.
  • n is preferably an integer of 1 to 5, more preferably an integer of 1 to 4, even more preferably an integer of 1 to 3, even more preferably 1 or 2, and development residue 1 is particularly preferable because the occurrence of is more suppressed.
  • the specific resin is preferably a resin represented by Formula (2).
  • X 2 represents a single bond, -O-, -CO-, -COO-, -OCO-, -NR x1 -, -CONR x1 -, -NR x1 CO- or -S-
  • R x1 represents a hydrogen atom or a substituent
  • L 1 represents a single bond or an m+n-valent linking group
  • P 1 represents a polymer chain containing repeating units of at least one structure selected from a polyether structure and a polyester structure
  • m and n each independently represent an integer of 1 or more.
  • X 2 in formula (2) has the same definition as X 2 in formula (1), and the preferred range is also the same.
  • L 1 in formula (2) has the same meaning as L 1 in formula (1), and the preferred range is also the same.
  • P 1 in formula (2) has the same meaning as P 1 in formula (1), and the preferred range is also the same.
  • m in formula (2) has the same meaning as m in formula (1), and the preferred range is also the same.
  • n in formula (2) has the same meaning as n in formula (1), and the preferred range is also the same.
  • the substituent T includes an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms), an alkynyl group (preferably an alkynyl group having 2 to 30 carbon atoms).
  • an aryl group preferably an aryl group having 6 to 30 carbon atoms
  • an amino group preferably an amino group having 0 to 30 carbon atoms
  • an alkoxy group preferably an alkoxy group having 1 to 30 carbon atoms
  • an aryloxy group preferably having 6 to 30 carbon atoms
  • heteroaryloxy group preferably heteroaryloxy group having 1 to 30 carbon atoms
  • acyl group preferably acyl group having 2 to 30 carbon atoms
  • alkoxycarbonyl group preferably alkoxycarbonyl group having 2 to 30 carbon atoms
  • aryloxycarbonyl group preferably aryloxycarbonyl group having 7 to 30 carbon atoms
  • acyloxy group preferably acyloxy group having 2 to 30 carbon atoms
  • acylamino group preferably acylamino group having 2 to 30 carbon atoms
  • alkoxycarbonylamino group preferably alkoxycarbonylamino group having 2 to 30 carbon atoms
  • the weight average molecular weight of the specific resin is preferably 500 or more and less than 10,000.
  • the lower limit is preferably 800 or more, more preferably 1000 or more.
  • the upper limit is preferably 8000 or less, more preferably 6000 or less.
  • the ethylenically unsaturated bond group value of the specific resin is preferably 0.1 to 2.0 mmol/g, and 0.2 to 1.5 mmol/g. more preferably 0.3 to 1.0 mmol/g.
  • the epoxy group value of the specific resin is preferably 0.1 to 2.0 mmol/g, more preferably 0.2 to 1.5 mmol/g, More preferably 0.3 to 1.0 mmol/g.
  • the oxetanyl group value of the specific resin is preferably 0.1 to 2.0 mmol/g, more preferably 0.2 to 1.5 mmol/g, More preferably 0.3 to 1.0 mmol/g.
  • a specific resin can be synthesized, for example, by the following method.
  • a macromonomer obtained by ring-opening polymerization of a lactone using a compound having a hydroxy group and a mercapto group e.g., mercaptoethanol, mercaptopropanol, mercaptohexanol, mercaptoglycerol, etc.
  • an acid anhydride or Synthesis method by reacting with acid anhydride chloride e.g., 2-ethylhexanol
  • some specific resins may react with other materials in the resin composition.
  • the resin composition of the present invention may contain other resins than the specific resins described above.
  • Other resins include (meth)acrylic resins, epoxy resins, (meth)acrylamide resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, polyarylene resins.
  • resins include resins described in Examples of International Publication No. 2016/088645, resins described in JP-A-2017-057265, resins described in JP-A-2017-032685, Resins described in JP-A-2017-075248, resins described in JP-A-2017-066240, resins described in JP-A-2017-167513, JP-A-2017-173787 Resins, resins described in paragraph numbers 0041 to 0060 of JP 2017-206689, resins described in paragraphs 0022 to 0071 of JP 2018-010856, described in JP 2016-222891 Block polyisocyanate resin, resin described in JP-A-2020-122052, resin described in JP-A-2020-111656, resin described in JP-A-2020-139021, JP-A-2017-138503 A resin containing a structural unit having a cyclic structure in the main chain and a structural unit having a biphenyl group in the side chain described in JP-A
  • the weight average molecular weight (Mw) of other resins is preferably 3,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, more preferably 500,000 or less.
  • the lower limit is preferably 4000 or more, more preferably 5000 or more.
  • the other resin it is preferable to use a resin with alkali developability or a resin as a dispersant.
  • the weight average molecular weight (Mw) of the resin having alkali developability is preferably 3,000 to 2,000,000.
  • the upper limit is more preferably 1,000,000 or less, and even more preferably 500,000 or less.
  • the lower limit is more preferably 4000 or more, and even more preferably 5000 or more.
  • resins having alkali developability examples include (meth)acrylic resins, polyimine resins, polyether resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, polyimide resins, etc. (meth)acrylic resins and polyimine resins. is preferred, and (meth)acrylic resin is more preferred.
  • the resin having alkali developability it is preferable to use a resin having an acid group.
  • the acid group include phenolic hydroxy group, carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, active imide group, sulfonamide group and the like, and carboxy group is preferred.
  • the resin having an acid group a resin obtained by introducing an acid group by reacting an acid anhydride with a hydroxy group generated by epoxy ring opening may be used. Examples of such resins include those described in Japanese Patent No. 6349629.
  • a resin having an acid group can be used, for example, as an alkali-soluble resin.
  • the alkali-soluble resin may be a cardo resin having a cardo skeleton. Cardo resins include, for example, V-259ME (manufactured by Nippon Steel & Sumikin Co., Ltd.).
  • the alkali-developable resin preferably contains a repeating unit having an acid group, and more preferably contains 1 to 70 mol % of the repeating unit having an acid group in the total repeating units of the resin.
  • the upper limit of the content of repeating units having an acid group is preferably 50 mol % or less, more preferably 40 mol % or less.
  • the lower limit of the content of repeating units having an acid group is preferably 2 mol % or more, more preferably 5 mol % or more.
  • the acid value of the resin having alkali developability is preferably 200 mgKOH/g or less, more preferably 150 mgKOH/g or less, even more preferably 120 mgKOH/g or less, and particularly preferably 100 mgKOH/g or less.
  • the acid value of the resin having alkali developability is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, and even more preferably 20 mgKOH/g or more.
  • the resin having alkali developability further have an ethylenically unsaturated bond-containing group.
  • the ethylenically unsaturated bond-containing group includes a vinyl group, an allyl group, a (meth)acryloyl group and the like, preferably an allyl group and a (meth)acryloyl group, and more preferably a (meth)acryloyl group.
  • the resin having alkali developability includes a compound represented by the following formula (ED1) and/or a compound represented by the following formula (ED2) (hereinafter, these compounds are sometimes referred to as "ether dimer”). It is also preferred that repeating units derived from monomer components are included.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the alkali-developable resin preferably contains a repeating unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 represents a hydrogen atom or 1 to 20 carbon atoms which may contain a benzene ring.
  • represents an alkyl group of n represents an integer from 1 to 15;
  • resins having alkali developability examples include resins having the following structures.
  • Me represents a methyl group.
  • the resin composition of the present invention can also contain a resin as a dispersant.
  • Dispersants include acidic dispersants (acidic resins) and basic dispersants (basic resins).
  • the acidic dispersant (acidic resin) represents a resin in which the amount of acid groups is greater than the amount of basic groups.
  • the acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups is 70 mol % or more when the total amount of acid groups and basic groups is 100 mol %. A resin consisting only of groups is more preferred.
  • the acid group possessed by the acidic dispersant (acidic resin) is preferably a carboxy group.
  • the acid value of the acidic dispersant is preferably from 40 to 105 mgKOH/g, more preferably from 50 to 105 mgKOH/g, even more preferably from 60 to 105 mgKOH/g.
  • a basic dispersant represents a resin in which the amount of basic groups is greater than the amount of acid groups.
  • the basic dispersant is preferably a resin in which the amount of basic groups exceeds 50 mol % when the total amount of acid groups and basic groups is 100 mol %.
  • the basic group possessed by the basic dispersant is preferably an amino group.
  • the resin used as the dispersant preferably contains a repeating unit having an acid group.
  • the resin used as the dispersant is also preferably a graft polymer.
  • Graft polymers include resins described in paragraphs 0025 to 0094 of JP-A-2012-255128, the contents of which are incorporated herein.
  • the resin used as the dispersant is also preferably a polyimine-based dispersant (polyimine resin) containing nitrogen atoms in at least one of the main chain and the side chain.
  • the polyimine-based dispersant has a main chain having a partial structure having a functional group with a pKa of 14 or less and a side chain having 40 to 10,000 atoms, and at least one of the main chain and the side chain has a basic nitrogen atom.
  • a resin having The basic nitrogen atom is not particularly limited as long as it is a nitrogen atom exhibiting basicity.
  • Polyimine-based dispersants include resins described in paragraphs 0102 to 0166 of JP-A-2012-255128, the contents of which are incorporated herein.
  • the resin used as the dispersant is also preferably a resin having a structure in which a plurality of polymer chains are bonded to the core.
  • resins include, for example, dendrimers (including star polymers). Further, specific examples of dendrimers include polymer compounds C-1 to C-31 described in paragraphs 0196 to 0209 of JP-A-2013-043962.
  • the dispersant includes block copolymers (EB-1) to (EB-9) described in paragraphs 0219 to 0221 of Japanese Patent No. 6432077, and resins described in Japanese Patent Application Laid-Open No. 2018-087939.
  • Polyethyleneimine having a polyester side chain described in WO 2016/104803, a block copolymer described in WO 2019/125940, a block having an acrylamide structural unit described in JP 2020-066687 Polymers, block polymers having acrylamide structural units described in JP-A-2020-066688, dispersants described in WO 2016/104803, resins described in JP-A-2019-095548, etc. can also be used. .
  • Dispersants are also available as commercial products, and specific examples thereof include BYK Chemie's DISPERBYK series (e.g., DISPERBYK-111, 161, etc.), Lubrizol's Solsperse series (e.g., Solsperse 36000, etc.). etc. Also, the pigment dispersants described in paragraphs 0041 to 0130 of JP-A-2014-130338 can be used, the contents of which are incorporated herein.
  • the resin described as the dispersant can also be used for applications other than the dispersant.
  • it can also be used as a binder.
  • the resin content in the total solid content of the resin composition is preferably 5 to 60% by mass.
  • the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the content of the above-mentioned specific resin in the total solid content of the resin composition is preferably 0.1 to 60% by mass.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the content of the specific resin described above is preferably 10 to 80 parts by mass with respect to 100 parts by mass of the pigment.
  • the lower limit is preferably 20 parts by mass or more, more preferably 30 parts by mass or more.
  • the upper limit is preferably 70 parts by mass or less, more preferably 50 parts by mass or less.
  • the total content of the colorant and the above-mentioned specific resin in the total solid content of the resin composition is preferably 30 to 100% by mass.
  • the lower limit is more preferably 35% by mass or more, and even more preferably 40% by mass or more.
  • the upper limit is more preferably 90% by mass or less, and even more preferably 80% by mass or less.
  • the content of the other resin described above is preferably 230 parts by mass or less, more preferably 200 parts by mass or less, and 150 parts by mass with respect to 100 parts by mass of the specific resin described above. More preferably: The lower limit may be 0 parts by mass, 5 parts by mass or more, or 10 parts by mass or more. It is also preferred that the resin composition does not substantially contain the other resins described above. According to this aspect, better dispersibility can be obtained. When substantially free of other resins, it means that the content of other resins in the total solid content of the resin composition is 0.1% by mass or less, and is 0.05% by mass or less. is preferred, and not containing is more preferred.
  • the resin composition of the present invention contains solvent C (hereinafter referred to as solvent).
  • solvent is basically not particularly limited as long as it satisfies the solubility of each component and the coatability of the resin composition.
  • the solvent is an organic solvent.
  • solvents include ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, ether-based solvents, and hydrocarbon-based solvents. It is preferable that at least one solvent selected from an ester solvent, an ether solvent, an alcohol solvent and a ketone solvent is included because it is possible.
  • Ester-based solvents substituted with cyclic alkyl groups and ketone-based solvents substituted with cyclic alkyl groups can also be used.
  • organic solvents include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2 -heptanone, 4-heptanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, cyclooctanone, cyclohexyl acetate, cyclopentanone, ethyl carbitol acetate, butyl carbitol acetate, propylene Glycol Monomethyl Ether, Propylene Glycol Monomethyl Ether Acetate, 3-Methoxy-N,N-Dimethylpropanamide, 3-Butoxy-N,N-Dimethylpropanamide,
  • aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as organic solvents may be better reduced for environmental reasons (e.g., 50 mass ppm (parts per million), 10 ppm by mass or less, or 1 ppm by mass or less).
  • an organic solvent with a low metal content it is preferable to use an organic solvent with a low metal content, and the metal content of the organic solvent is preferably, for example, 10 mass ppb (parts per billion) or less. If necessary, an organic solvent with a ppt (parts per trillion) mass level may be used, and such an organic solvent is provided by, for example, Toyo Gosei Co., Ltd. (Chemical Daily, November 13, 2015).
  • Methods for removing impurities such as metals from organic solvents include, for example, distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
  • the filter pore size of the filter used for filtration is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the organic solvent may contain isomers (compounds with the same number of atoms but different structures). Moreover, only one isomer may be contained, or a plurality of isomers may be contained.
  • the content of peroxide in the organic solvent is preferably 0.8 mmol/L or less, and more preferably substantially free of peroxide.
  • the content of the solvent in the resin composition is preferably 10-95% by mass, more preferably 20-90% by mass, and even more preferably 30-90% by mass.
  • the resin composition of the present invention may contain a pigment derivative.
  • Pigment derivatives include compounds having a structure in which a portion of the chromophore is substituted with an acid group, a basic group, or a phthalimidomethyl group.
  • Chromophores constituting pigment derivatives include quinoline skeleton, benzimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, phthalocyanine skeleton, anthraquinone skeleton, quinacridone skeleton, dioxazine skeleton, perinone skeleton, perylene skeleton, thioindigo skeleton, iso Examples thereof include indoline skeleton, isoindolinone skeleton, quinophthalone skeleton, threne skeleton, metal complex skeleton, and the like, and quinoline skeleton, benzimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, quinophthalone skeleton, isoindoline skeleton and phthalocyanine skeleton.
  • the azo skeleton and the benzimidazolone skeleton are preferred.
  • the acid group possessed by the pigment derivative a sulfo group and a carboxy group are preferable, and a sulfo group is more preferable.
  • the basic group possessed by the pigment derivative is preferably an amino group, more preferably a tertiary amino group.
  • a pigment derivative excellent in visible light transparency (hereinafter also referred to as a transparent pigment derivative) can be used.
  • the maximum value ( ⁇ max) of the molar extinction coefficient of the transparent pigment derivative in the wavelength region of 400 to 700 nm is preferably 3000 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or less, and 1000 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or less. is more preferable, and 100 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or less is even more preferable.
  • the lower limit of ⁇ max is, for example, 1 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or more, and may be 10 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 or more.
  • the crystallite size of the pigment derivative is preferably 0.1 to 50 nm, more preferably 0.5 to 30 nm, even more preferably 1 to 15 nm.
  • the crystallite size can be obtained from the half width of the diffraction angle peak using an X-ray diffractometer, and is calculated using Scherrer's formula.
  • the crystallite size of the pigment derivative can be adjusted by known methods such as adjustment of production conditions and pulverization after production. As a pulverization method, any method may be used as long as the crystallite size can be adjusted, and examples include dry pulverization and wet pulverization. Dry milling is preferred because it does not require solvent removal and is less likely to re-agglomerate.
  • pigment derivatives include compounds described in JP-A-56-118462, compounds described in JP-A-63-264674, compounds described in JP-A-01-217077, JP-A-03- 009961, compounds described in JP-A-03-026767, compounds described in JP-A-03-153780, compounds described in JP-A-03-045662, JP-A-04-285669 Compounds described in publications, compounds described in JP-A-06-145546, compounds described in JP-A-06-212088, compounds described in JP-A-06-240158, JP-A-10-030063 Compounds described, compounds described in JP-A-10-195326, compounds described in paragraphs 0086 to 0098 of WO 2011/024896, WO 2012/102399 described in paragraphs 0063 to 0094 Compounds, compounds described in paragraph number 0082 of WO 2017/038252, compounds described in paragraph number 0171 of JP 2015-151530, JP 2011-25
  • the content of the pigment derivative is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass, based on 100 parts by mass of the pigment. Only one pigment derivative may be used, or two or more pigment derivatives may be used in combination.
  • the resin composition of the present invention preferably contains a polymerizable monomer.
  • a known compound that can be crosslinked by radicals, acids, or heat can be used as the polymerizable monomer.
  • the polymerizable monomer include compounds having an ethylenically unsaturated bond-containing group, compounds having a cyclic ether group, and the like, and compounds having an ethylenically unsaturated bond-containing group are preferred.
  • Examples of ethylenically unsaturated bond-containing groups include vinyl groups, (meth)allyl groups, and (meth)acryloyl groups.
  • Cyclic ether groups include epoxy groups and oxetane groups.
  • a compound having an ethylenically unsaturated bond-containing group can be preferably used as a radically polymerizable monomer.
  • a compound having a cyclic ether group can also be preferably used as a cationically polymerizable monomer.
  • the polymerizable monomer is preferably a polyfunctional polymerizable monomer. That is, the polymerizable monomer is preferably a monomer having two or more polymerizable groups such as ethylenically unsaturated bond-containing groups and cyclic ether groups.
  • the molecular weight of the polymerizable monomer is preferably 100-3000.
  • the upper limit is more preferably 2000 or less, and even more preferably 1500 or less.
  • the lower limit is more preferably 150 or more, even more preferably 250 or more.
  • the compound having an ethylenically unsaturated bond-containing group that is used as a polymerizable monomer is preferably a polyfunctional compound. That is, it is preferably a compound containing two or more ethylenically unsaturated bond-containing groups, more preferably a compound containing three or more ethylenically unsaturated bond-containing groups, and three ethylenically unsaturated bond-containing groups. A compound containing up to 15 groups is more preferable, and a compound containing 3 to 6 ethylenically unsaturated bond-containing groups is even more preferable.
  • the compound having an ethylenically unsaturated bond-containing group is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound.
  • Specific examples of the compound having an ethylenically unsaturated bond-containing group paragraph numbers 0095 to 0108 of JP-A-2009-288705, paragraph 0227 of JP-A-2013-029760, paragraph of JP-A-2008-292970 Numbers 0254 to 0257, paragraph numbers 0034 to 0038 of JP 2013-253224, paragraph number 0477 of JP 2012-208494, JP 2017-048367, JP 6057891, JP 6031807 , and compounds described in JP-A-2017-194662, the contents of which are incorporated herein.
  • Examples of compounds having an ethylenically unsaturated bond-containing group include dipentaerythritol triacrylate (commercially available as KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (commercially available as KAYARAD D- 320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa(meth)acrylate (as a commercial product) KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., NK Ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and their (meth)acryloyl groups via ethylene glycol and/or propylene glycol residues
  • Examples of compounds having an ethylenically unsaturated bond-containing group include diglycerin EO (ethylene oxide)-modified (meth)acrylate (commercially available as M-460; manufactured by Toagosei), pentaerythritol tetraacrylate (Shin-Nakamura Chemical Industry ( Ltd., NK Ester A-TMMT), 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA), RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), Aronix TO-2349 (manufactured by Nippon Kayaku Co., Ltd.) Toagosei Co., Ltd.), NK Oligo UA-7200 (Shin-Nakamura Chemical Co., Ltd.), 8UH-1006, 8UH-1012 (Taisei Fine Chemical Co., Ltd.), Light acrylate POB-A0 (Kyoeish
  • trifunctional (meth)acrylate compounds such as oxy-modified tri(meth)acrylate and pentaerythritol tri(meth)acrylate.
  • Commercial products of trifunctional (meth)acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306 and M-305.
  • M-303, M-452, M-450 manufactured by Toagosei Co., Ltd.
  • a compound having an acid group can also be used as the compound having an ethylenically unsaturated bond-containing group. Generation of development residue can be suppressed by using a compound having an acid group.
  • the acid group includes a carboxy group, a sulfo group, a phosphoric acid group and the like, and a carboxy group is preferred.
  • Commercially available polymerizable monomers having an acid group include Aronix M-305, M-510, M-520 and Aronix TO-2349 (manufactured by Toagosei Co., Ltd.).
  • the acid value of the polymerizable monomer having an acid group is preferably 0.1-40 mgKOH/g, more preferably 5-30 mgKOH/g. When the acid value of the polymerizable compound is 0.1 mgKOH/g or more, the solubility in the developer is good, and when it is 40 mgKOH/g or less, it is advantageous in terms of production and handling.
  • the compound having an ethylenically unsaturated bond-containing group is a compound having a caprolactone structure.
  • Compounds having a caprolactone structure are commercially available from Nippon Kayaku Co., Ltd. under the KAYARAD DPCA series, including DPCA-20, DPCA-30, DPCA-60, DPCA-120, and the like.
  • a compound having an alkyleneoxy group can also be used as the compound having an ethylenically unsaturated bond-containing group.
  • the compound having an alkyleneoxy group is preferably a compound having an ethyleneoxy group and/or a propyleneoxy group, more preferably a compound having an ethyleneoxy group, and a tri- to hexa-functional (meth)acrylate having 4 to 20 ethyleneoxy groups.
  • Compounds are more preferred.
  • Examples of commercially available compounds having an alkyleneoxy group include SR-494, a tetrafunctional (meth)acrylate having 4 ethyleneoxy groups and a trifunctional (meth)acrylate having 3 isobutyleneoxy groups, manufactured by Sartomer. KAYARAD TPA-330, etc.
  • a compound having a fluorene skeleton can also be used as the compound having an ethylenically unsaturated bond-containing group.
  • Commercially available compounds having a fluorene skeleton include Ogsol EA-0200 and EA-0300 (manufactured by Osaka Gas Chemicals Co., Ltd., (meth)acrylate monomers having a fluorene skeleton).
  • the compound having an ethylenically unsaturated bond-containing group it is also preferable to use a compound such as toluene that does not substantially contain environmentally regulated substances.
  • Commercially available products of such compounds include KAYARAD DPHA LT and KAYARAD DPEA-12 LT (manufactured by Nippon Kayaku Co., Ltd.).
  • the polymerizable compound includes UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, Commercial products such as T-600, AI-600, and LINC-202UA (manufactured by Kyoeisha Chemical Co., Ltd.) can also be used.
  • Compounds having a cyclic ether group that are also used as polymerizable monomers include compounds having an epoxy group (hereinafter also referred to as epoxy compounds) and compounds having an oxetane group (hereinafter also referred to as oxetane compounds).
  • the epoxy compound is preferably a polyfunctional epoxy compound. That is, the epoxy compound is preferably a compound having two or more epoxy groups. The upper limit of the number of epoxy groups is preferably 20 or less, more preferably 10 or less.
  • the oxetane compound is preferably a polyfunctional oxetane compound. That is, the oxetane compound is preferably a compound having two or more oxetane groups. The upper limit of the number of oxetane groups is preferably 20 or less, more preferably 10 or less.
  • ADEKA Resin EP-4000S, EP-4003S, EP-4010S, EP-4011S manufactured by ADEKA Corporation
  • NC-2000, NC-3000, NC-7300, XD-1000, EPPN -501, EPPN-502 manufactured by ADEKA Co., Ltd.
  • oxetane compounds include OXT-201, OXT-211, OXT-212, OXT-213, OXT-121, OXT-221, OX-SQ TX-100 (manufactured by Toagosei Co., Ltd.), etc. can be used.
  • the content of the polymerizable monomer in the total solid content of the resin composition is preferably 0.1 to 40% by mass.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the content of the compound having an ethylenically unsaturated bond-containing group as the polymerizable monomer is 1 per 100 parts by mass of the specific resin described above. It is preferably up to 50 parts by mass.
  • the lower limit is preferably 3 parts by mass or more, more preferably 5 parts by mass or more.
  • the upper limit is preferably 40 parts by mass or less, more preferably 30 parts by mass or less.
  • the content of the compound having a cyclic ether group as the polymerizable monomer is 1 to 50 parts by mass with respect to 100 parts by mass of the specific resin described above.
  • the lower limit is preferably 3 parts by mass or more, more preferably 5 parts by mass or more.
  • the upper limit is preferably 40 parts by mass or less, more preferably 30 parts by mass or less.
  • the resin composition contains a cyclic ether with respect to 100 parts by mass of the compound having an ethylenically unsaturated bond-containing group. It is preferable to contain 10 to 500 parts by mass of the compound having a group.
  • the lower limit is preferably 20 parts by mass or more, more preferably 30 parts by mass or more.
  • the upper limit is preferably 400 parts by mass or less, more preferably 300 parts by mass or less. If the ratio of both is within the above range, a film having excellent heat resistance (inhibition of cracks and film shrinkage) can be formed.
  • the resin composition of the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, compounds having photosensitivity to light in the ultraviolet region to the visible light region are preferred.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • photopolymerization initiators include halogenated hydrocarbon derivatives (e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds and the like.
  • halogenated hydrocarbon derivatives e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.
  • acylphosphine compounds e.g., acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds and the like.
  • photopolymerization initiators include trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, hexaarylbi imidazole compounds, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, halomethyloxadiazole compounds and 3-aryl-substituted coumarin compounds, oxime compounds, ⁇ -hydroxyketones compounds, ⁇ -aminoketone compounds, and acylphosphine compounds, more preferably oxime compounds.
  • Aminoacetophenone-based initiators with aromatic ring-fused groups that may contain atoms and the like are included, the contents of which are incorporated herein.
  • Hexaarylbiimidazole compounds include 2,2-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole and 2,2'-bis(o-chlorophenyl)-4,4' ,5,5-tetrakis(3,4,5-trimethoxyphenyl)-1,2'-biimidazole, 2,2'-bis(2,3-dichlorophenyl)-4,4',5,5'- tetraphenylbiimidazole, 2,2'-bis(o-chlorophenyl)-4,4,5,5'-tetraphenyl-1,2'-biimidazole, and the like.
  • ⁇ -hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), Irgacure 184, Irgacure 1173, Irgacure 2959, Irgacure 127 (above company) and the like.
  • ⁇ -aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), Irgacure 907, Irgacure 369, Irgacure 369E, Irgacure 379EG (manufactured by Irgacure 369E, Irgacure 379EG). ), Api307 (1-(biphenyl-4-yl)-2-methyl-2-morpholinopropan-1-one) (manufactured by MFCI), and the like.
  • acylphosphine compounds include Omnirad 819, Omnirad TPO (manufactured by IGM Resins B.V.), Irgacure 819 and Irgacure TPO (manufactured by BASF).
  • Examples of oxime compounds include compounds described in JP-A-2001-233842, compounds described in JP-A-2000-080068, compounds described in JP-A-2006-342166, J. Am. C. S. Compounds described in Perkin II (1979, pp.1653-1660); C. S. Compounds described in Perkin II (1979, pp.156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp.202-232), compounds described in JP-A-2000-066385, Compounds described in JP-A-2004-534797, compounds described in JP-A-2017-019766, compounds described in Patent No.
  • oxime compounds include 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxyiminopentane-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, and 2-ethoxycarbonyloxy and imino-1-phenylpropan-1-one.
  • An oxime compound having a fluorene ring can also be used as a photopolymerization initiator.
  • Specific examples of oxime compounds having a fluorene ring include compounds described in JP-A-2014-137466.
  • an oxime compound having a skeleton in which at least one benzene ring of a carbazole ring is a naphthalene ring can be used.
  • Specific examples of such oxime compounds include compounds described in WO2013/083505.
  • An oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP-A-2010-262028, compounds 24, 36 to 40 described in JP-A-2014-500852, and JP-A-2013-164471. and the compound (C-3) of.
  • an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
  • Examples of such a photopolymerization initiator include the compounds described in International Publication No. 2019/088055.
  • An oxime compound having a nitro group can be used as a photopolymerization initiator.
  • the oxime compound having a nitro group is also preferably a dimer.
  • Specific examples of the oxime compound having a nitro group include the compounds described in paragraph numbers 0031 to 0047 of JP-A-2013-114249 and paragraph numbers 0008-0012 and 0070-0079 of JP-A-2014-137466; Compounds described in paragraphs 0007 to 0025 of Japanese Patent No. 4223071 and ADEKA Arkles NCI-831 (manufactured by ADEKA Corporation) can be mentioned.
  • An oxime compound having a benzofuran skeleton can also be used as a photopolymerization initiator.
  • Specific examples include OE-01 to OE-75 described in WO 2015/036910.
  • an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
  • Examples of such a photopolymerization initiator include the compounds described in International Publication No. 2019/088055.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in the wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in the wavelength range of 360 to 480 nm.
  • the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or a wavelength of 405 nm is preferably high from the viewpoint of sensitivity, more preferably 1000 to 300000, further preferably 2000 to 300000, even more preferably 5000 to 200000. It is particularly preferred to have The molar extinction coefficient of a compound can be measured using known methods. For example, it is preferable to measure with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using ethyl acetate at a concentration of 0.01 g/L.
  • a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used as the photopolymerization initiator.
  • a radical photopolymerization initiator two or more radicals are generated from one molecule of the radical photopolymerization initiator, so good sensitivity can be obtained.
  • the crystallinity is lowered, the solubility in a solvent or the like is improved, and precipitation becomes difficult over time, and the stability over time of the resin composition can be improved.
  • Specific examples of bifunctional or trifunctional or higher photoradical polymerization initiators include Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
  • the content of the photopolymerization initiator in the total solid content of the resin composition is preferably 0.1 to 30% by mass.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less.
  • a photoinitiator may use only 1 type and may use 2 or more types.
  • the resin composition of the present invention can contain a silane coupling agent.
  • a silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • the hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and capable of forming a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction.
  • Hydrolyzable groups include, for example, halogen atoms, alkoxy groups, acyloxy groups and the like, with alkoxy groups being preferred. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • Examples of functional groups other than hydrolyzable groups include vinyl group, (meth)allyl group, (meth)acryloyl group, mercapto group, epoxy group, amino group, ureido group, sulfide group, isocyanate group, and phenyl group. etc., and amino group, (meth)acryloyl group and epoxy group are preferred.
  • Specific examples of the silane coupling agent include compounds described in paragraph numbers 0018 to 0036 of JP-A-2009-288703 and compounds described in paragraph numbers 0056-0066 of JP-A-2009-242604. the contents of which are incorporated herein.
  • the content of the silane coupling agent in the total solid content of the resin composition is preferably 0.1 to 5% by mass.
  • the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the number of silane coupling agents may be one, or two or more.
  • the resin composition of the present invention can further contain a curing accelerator for the purpose of accelerating the reaction of the resin or polymerizable compound and lowering the curing temperature.
  • Curing accelerators include methylol compounds (for example, compounds exemplified as cross-linking agents in paragraph number 0246 of JP-A-2015-034963), amines, phosphonium salts, amidine salts, amide compounds (above, for example, JP-A Curing agent described in paragraph number 0186 of 2013-041165), a base generator (e.g., an ionic compound described in JP-A-2014-055114), a cyanate compound (e.g., JP-A-2012-150180 Compounds described in paragraph number 0071), alkoxysilane compounds (e.g., alkoxysilane compounds having an epoxy group described in JP-A-2011-253054), onium salt compounds (e.g., paragraph numbers of JP-A-2015-034963 0216
  • the content of the curing accelerator is preferably 0.3 to 8.9 mass% of the total solid content of the resin composition, and 0.8 to 6.4 % by mass is more preferred.
  • the resin composition of the present invention can contain a polymerization inhibitor.
  • Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis(3-methyl-6-tert-butylphenol), 2,2′-methylenebis(4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.). Among them, p-methoxyphenol is preferred.
  • the content of the polymerization inhibitor in the total solid content of the resin composition is preferably 0.0001 to 5% by mass.
  • the resin composition of the present invention can contain a surfactant.
  • a surfactant various surfactants such as fluorine-based surfactants, nonionic surfactants, cationic surfactants, anionic surfactants and silicone surfactants can be used.
  • the surfactant is preferably a fluorosurfactant or a silicone surfactant.
  • Surfactants include those described in paragraphs 0238-0245 of WO2015/166779, the contents of which are incorporated herein.
  • the fluorine content in the fluorine-based surfactant is preferably 3-40% by mass, more preferably 5-30% by mass, and particularly preferably 7-25% by mass.
  • a fluorosurfactant having a fluorine content within this range is effective in uniformity of the thickness of the coating film and liquid saving, and has good solubility in the resin composition.
  • JP 2014-041318 Paragraph Nos. 0060 to 0064 As the fluorine-based surfactant, JP 2014-041318 Paragraph Nos. 0060 to 0064 (corresponding International Publication No. 2014/017669 Paragraph Nos. 0060 to 0064) surfactants described in, JP 2011- 132503, paragraphs 0117-0132, the contents of which are incorporated herein.
  • Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143 and F-144.
  • fluorosurfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound as the fluorosurfactant.
  • fluorine-based surfactants the description in JP-A-2016-216602 can be referred to, the content of which is incorporated herein.
  • a block polymer can also be used as the fluorosurfactant.
  • the fluorosurfactant has 2 or more (preferably 5 or more) repeating units derived from a (meth)acrylate compound having a fluorine atom and an alkyleneoxy group (preferably an ethyleneoxy group or a propyleneoxy group) (meta).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
  • the following compounds are also exemplified as fluorosurfactants used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3000-50000, for example 14000. In the above compounds, % indicating the ratio of repeating units is mol %.
  • a fluoropolymer having an ethylenically unsaturated bond-containing group in a side chain can also be used as the fluorosurfactant.
  • Specific examples include compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP-A-2010-164965, MEGAFACE RS-101, RS-102 and RS-718K manufactured by DIC Corporation, and RS-72-K.
  • compounds described in paragraphs 0015 to 0158 of JP-A-2015-117327 can also be used.
  • a fluorine-containing imide salt compound represented by formula (fi-1) is also preferable to use as a surfactant.
  • m represents 1 or 2
  • n represents an integer of 1 to 4
  • a represents 1 or 2
  • X a+ is an a-valent metal ion, primary ammonium ion, Represents secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion or NH 4 + .
  • Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2 , 25R2 (manufactured by BASF), Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Nippon Lubrizol Co., Ltd.), NCW-101, NC
  • Cationic surfactants include tetraalkylammonium salts, alkylamine salts, benzalkonium salts, alkylpyridium salts, imidazolium salts, and the like. Specific examples include dihydroxyethylstearylamine, 2-heptadecenyl-hydroxyethylimidazoline, lauryldimethylbenzylammonium chloride, cetylpyridinium chloride, stearamidomethylpyridinium chloride and the like.
  • Anionic surfactants include dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium alkyldiphenyletherdisulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, sodium stearate, potassium oleate, sodium dioctyl Sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, sodium dialkyl sulfosuccinate, sodium stearate, sodium oleate, t-octylphenoxyethoxypolyethoxyethyl sodium sulfate and the like.
  • silicone-based surfactants include DC3PA, SH7PA, DC11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF8419 OIL (Dow Toray Co., Ltd.), TSF-4300, TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), KP-341, KF-6000, KF-6001, KF-6002, KF-6003 (manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-3760 BYK-UV3510 (manufactured by BYK-Chemie Co., Ltd.), etc. be done.
  • a compound having the following structure can also be used as the silicone-based surfactant.
  • the content of the surfactant in the total solid content of the resin composition is preferably 0.001% by mass to 5.0% by mass, more preferably 0.005% by mass to 3.0% by mass. Only one type of surfactant may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition of the present invention can contain an ultraviolet absorber.
  • a conjugated diene compound, an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a hydroxyphenyltriazine compound, an indole compound, a triazine compound, or the like can be used as the ultraviolet absorber.
  • paragraph numbers 0052 to 0072 of JP-A-2012-208374, paragraph numbers 0317-0334 of JP-A-2013-068814, and paragraph numbers 0061-0080 of JP-A-2016-162946 are described.
  • UV absorbers examples include UV-503 (manufactured by Daito Chemical Co., Ltd.), Tinuvin series and Uvinul series manufactured by BASF, and Sumisorb series manufactured by Sumika Chemtex Co., Ltd. .
  • UV-503 manufactured by Daito Chemical Co., Ltd.
  • Tinuvin series and Uvinul series manufactured by BASF and Sumisorb series manufactured by Sumika Chemtex Co., Ltd.
  • MYUA series made from Miyoshi oil and fats (Chemical Daily, February 1, 2016) is mentioned.
  • the ultraviolet absorber is a compound described in paragraph numbers 0049 to 0059 of Japanese Patent No. 6268967, a compound described in paragraph numbers 0059 to 0076 of WO 2016/181987, and WO 2020/137819.
  • a thioaryl group-substituted benzotriazole-type ultraviolet absorber described in can also be used.
  • the content of the ultraviolet absorber in the total solid content of the resin composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass. Only one type of ultraviolet absorber may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition of the present invention can contain an antioxidant.
  • Antioxidants include phenol compounds, phosphite ester compounds, thioether compounds and the like. Any phenolic compound known as a phenolic antioxidant can be used as the phenolic compound. Preferred phenolic compounds include hindered phenolic compounds. A compound having a substituent at a site adjacent to the phenolic hydroxy group (ortho position) is preferred. As the aforementioned substituent, a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferred.
  • the antioxidant is also preferably a compound having a phenol group and a phosphite ester group in the same molecule.
  • Phosphorus-based antioxidants can also be suitably used as antioxidants.
  • antioxidants may be compounds described in Korean Patent Publication No. 10-2019-0059371.
  • the content of the antioxidant in the total solid content of the resin composition is preferably 0.01 to 20% by mass, more preferably 0.3 to 15% by mass. Only one kind of antioxidant may be used, or two or more kinds thereof may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition of the present invention may optionally contain sensitizers, fillers, thermosetting accelerators, plasticizers and other auxiliaries (e.g., conductive particles, antifoaming agents, flame retardants, leveling agents, peeling agents, etc.). accelerators, fragrances, surface tension modifiers, chain transfer agents, etc.). Properties such as film physical properties can be adjusted by appropriately containing these components. These components are, for example, described in JP 2012-003225, paragraph number 0183 and later (corresponding US Patent Application Publication No. 2013/0034812, paragraph number 0237), JP 2008-250074 paragraph The descriptions of numbers 0101 to 0104, 0107 to 0109, etc. can be referred to, and the contents thereof are incorporated herein.
  • the resin composition may contain a latent antioxidant as needed.
  • the latent antioxidant is a compound in which the site functioning as an antioxidant is protected with a protective group, and is heated at 100 to 250°C, or heated at 80 to 200°C in the presence of an acid/base catalyst.
  • a compound that functions as an antioxidant by removing the protective group by the reaction is exemplified.
  • Examples of latent antioxidants include compounds described in International Publication No. 2014/021023, International Publication No. 2017/030005, and JP-A-2017-008219.
  • Commercially available products include ADEKA Arkles GPA-5001 (manufactured by ADEKA Co., Ltd.).
  • the resin composition of the present invention may contain a light resistance improver.
  • a light resistance improver compounds described in paragraph numbers 0036 to 0037 of JP-A-2017-198787, compounds described in paragraph numbers 0029-0034 of JP-A-2017-146350, JP-A-2017-129774 Compounds described in paragraph numbers 0036 to 0037, 0049 to 0052 of JP 2017-129674 JP 2017-129674 paragraph numbers 0031 to 0034, 0058 to 0059 compounds described in JP 2017-122803 paragraph numbers 0036 to 0037 , compounds described in 0051 to 0054, compounds described in paragraph numbers 0025 to 0039 of WO 2017/164127, compounds described in paragraph numbers 0034 to 0047 of JP 2017-186546, JP 2015-025116 Compounds described in paragraph numbers 0019 to 0041 of JP-A-2012-145604, compounds described in paragraph numbers 0101-0125 of JP-A-2012-103475, compounds
  • perfluoroalkylsulfonic acid and its salts may be regulated.
  • perfluoroalkylsulfonic acid especially perfluoroalkylsulfonic acid having 6 to 8 carbon atoms in the perfluoroalkyl group
  • perfluoroalkylsulfonic acid especially perfluoroalkylsulfonic acid having 6 to 8 carbon atoms in the perfluoroalkyl group
  • the content of fluoroalkylcarboxylic acid (especially perfluoroalkylcarboxylic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salt is 0.01ppb to 1,000ppb with respect to the total solid content of the resin composition.
  • the resin composition of the present invention may be substantially free of perfluoroalkylsulfonic acid and its salts and perfluoroalkylcarboxylic acid and its salts.
  • a compound that can substitute for perfluoroalkylsulfonic acid and its salt and a compound that can substitute for perfluoroalkylcarboxylic acid and its salt, perfluoroalkylsulfonic acid and its salt, and perfluoroalkylcarboxylic acid and salts thereof may be selected.
  • Examples of compounds that can substitute for regulated compounds include compounds that are excluded from the scope of regulation due to differences in the number of carbon atoms in perfluoroalkyl groups. However, the above content does not prevent the use of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts.
  • the resin composition of the present invention may contain perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts within the maximum permissible range.
  • the resin composition of the present invention preferably does not substantially contain terephthalic acid ester.
  • substantially free means that the content of the terephthalic acid ester is 1000 mass ppb or less, more preferably 100 mass ppb or less, in the total amount of the resin composition. Zero is particularly preferred.
  • the storage container for the resin composition is not particularly limited, and known storage containers can be used.
  • a storage container a multi-layer bottle whose inner wall is composed of 6 types and 6 layers of resins and a bottle with a 7-layer structure of 6 types of resins are used for the purpose of suppressing contamination of raw materials and resin compositions. It is also preferred to use Examples of such a container include the container described in JP-A-2015-123351.
  • the inner wall of the container is preferably made of glass or stainless steel for the purpose of preventing metal elution from the inner wall of the container, enhancing the storage stability of the resin composition, and suppressing deterioration of components.
  • the resin composition of the present invention can be prepared by mixing the aforementioned components. In preparing the resin composition, all components may be dissolved and/or dispersed in an organic solvent at the same time to prepare the resin composition. , and these may be mixed at the time of use (at the time of application) to prepare a resin composition.
  • a process of dispersing the pigment when preparing the resin composition.
  • mechanical forces used for dispersing pigments include compression, squeezing, impact, shearing, cavitation, and the like.
  • Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion, and the like.
  • 2015-157893 can be suitably used. Further, in the process of dispersing the pigment, the particles may be made finer in the salt milling process. Materials, equipment, processing conditions, etc. used in the salt milling process can be referred to, for example, Japanese Patent Application Laid-Open Nos. 2015-194521 and 2012-046629.
  • any filter that has been conventionally used for filtration or the like can be used without particular limitation.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • polyamide resins such as nylon (eg nylon-6, nylon-6,6), polyethylene
  • polyolefin resins such as polypropylene (PP) (including high-density, ultra-high-molecular-weight polyolefin resin).
  • PP polypropylene
  • polypropylene including high density polypropylene
  • nylon are preferred.
  • the pore size of the filter is preferably 0.01-7.0 ⁇ m, more preferably 0.01-3.0 ⁇ m, and even more preferably 0.05-0.5 ⁇ m. If the pore diameter of the filter is within the above range, fine foreign matter can be removed more reliably.
  • the pore size value of the filter reference can be made to the filter manufacturer's nominal value.
  • filters provided by Nippon Pall Co., Ltd. (DFA4201NIEY, DFA4201NAEY, DFA4201J006P, etc.), Advantech Toyo Co., Ltd., Nihon Entegris Co., Ltd. (former Japan Microlith Co., Ltd.), Kitz Micro Filter Co., Ltd., etc. can be used as filters. .
  • fibrous filter media include polypropylene fibers, nylon fibers, and glass fibers.
  • Commercially available products include SBP type series (SBP008, etc.), TPR type series (TPR002, TPR005, etc.), and SHPX type series (SHPX003, etc.) manufactured by Roki Techno.
  • filters When using filters, different filters (eg, a first filter and a second filter, etc.) may be combined. At that time, filtration with each filter may be performed only once, or may be performed twice or more. Also, filters with different pore sizes within the range described above may be combined. Further, the filtration with the first filter may be performed only on the dispersion liquid, and after mixing other components, the filtration with the second filter may be performed. In addition, the filter can be appropriately selected according to the hydrophilicity/hydrophobicity of the resin composition.
  • the film of the present invention is a film obtained from the resin composition of the present invention described above.
  • the film of the present invention can be used for optical filters such as color filters, near-infrared transmission filters, and near-infrared cut filters.
  • the film of the present invention can also be used as a light shielding film. In addition to sensors, it can also be used for optical communication filters and the like.
  • the film thickness of the film of the present invention can be appropriately adjusted according to the purpose.
  • the film thickness is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.3 ⁇ m or more.
  • the film of the present invention When using the film of the present invention as a color filter, the film of the present invention preferably has a hue of green, red, blue, cyan, magenta or yellow. Moreover, the film of the present invention can be preferably used as a colored pixel of a color filter. Examples of colored pixels include red pixels, green pixels, blue pixels, magenta pixels, cyan pixels, and yellow pixels.
  • the maximum absorption wavelength of the film of the present invention preferably exists in the wavelength range of 700 to 1800 nm, more preferably in the wavelength range of 700 to 1300 nm. More preferably, it exists in the wavelength range of 700 to 1100 nm.
  • the transmittance of the film over the entire wavelength range of 400 to 650 nm is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. Further, it is preferable that the transmittance of the film at least at one point in the wavelength range of 700 to 1800 nm is 20% or less.
  • the absorbance Amax/absorbance A550 which is the ratio of the absorbance Amax at the maximum absorption wavelength and the absorbance A550 at a wavelength of 550 nm, is preferably 20 to 500, more preferably 50 to 500, and 70 to 450. more preferably 100 to 400.
  • the film of the present invention preferably has, for example, any one of the following spectral characteristics (i1) to (i5).
  • a film having such spectral characteristics can block light in the wavelength range of 400 to 640 nm and transmit light in the wavelength range of 750 nm or more.
  • the maximum transmittance in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 900 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • a film having such spectral characteristics can block light in the wavelength range of 400 to 750 nm and transmit light in the wavelength range of 850 nm or more.
  • the maximum transmittance in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 1000 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • a film having such spectral characteristics can block light in the wavelength range of 400 to 830 nm and transmit light in the wavelength range of 950 nm or more.
  • the maximum transmittance in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 1100 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • a film having such spectral characteristics can block light in the wavelength range of 400 to 950 nm and transmit light in the wavelength range of 1050 nm or more.
  • the maximum transmittance in the wavelength range of 400 to 1050 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum transmittance in the wavelength range of 1200 to 1500 nm is A filter that is 70% or more (preferably 75% or more, more preferably 80% or more).
  • a film having such spectral characteristics can block light in the wavelength range of 400 to 1050 nm and transmit light in the wavelength range of 1150 nm or more.
  • the optical density (OD) per 1.5 ⁇ m film thickness in the wavelength range of 400 to 1100 nm of the film is preferably 2.5 or more, and preferably 3.0. It is more preferable to be above.
  • the upper limit is not particularly limited, it is generally preferably 10 or less.
  • the reflectance of the film is preferably less than 8%, more preferably less than 6%, and even more preferably less than 4%.
  • the lower limit is preferably 0% or more.
  • the light-shielding film is used in portable devices such as personal computers, tablets, mobile phones, smartphones, and digital cameras; OA (Office Automation) devices such as multi-function printers and scanners; industrial equipment such as automated teller machines), high-speed cameras, and equipment with personal authentication functions using face image authentication or biometric authentication; vehicle-mounted camera equipment; medical cameras such as endoscopes, capsule endoscopes, and catheters equipment; and space equipment such as biosensors, biosensors, military reconnaissance cameras, stereo map cameras, weather and ocean observation cameras, land resource exploration cameras and exploration cameras for space astronomy and deep space targets; It can be used for optical filters and modules used.
  • OA Office Automation
  • industrial equipment such as automated teller machines
  • high-speed cameras and equipment with personal authentication functions using face image authentication or biometric authentication
  • vehicle-mounted camera equipment medical cameras such as endoscopes, capsule endoscopes, and catheters equipment
  • space equipment such as biosensors, biosensors, military reconnaissance cameras, stereo map cameras, weather and ocean observation cameras, land resource exploration cameras and exploration cameras
  • the light-shielding film can also be used for applications such as micro LEDs (Light Emitting Diodes) and micro OLEDs (Organic Light Emitting Diodes).
  • Micro LEDs and micro OLEDs include, for example, examples described in Japanese Patent Publication No. 2015-500562 and Japanese Patent Publication No. 2014-533890.
  • the light-shielding film is also suitable as an optical filter and an optical film used in quantum dot sensors and quantum dot solid-state imaging devices. Examples of quantum dot sensors and quantum dot solid-state imaging devices include those described in US Patent Application Publication No. 2012/37789 and International Publication No. 2008/131313.
  • the light shielding film can be used in headlight units for vehicles such as automobiles.
  • the light shielding film used in the headlight unit is preferably formed in a pattern so as to shield at least part of the light emitted from the light source.
  • the membrane of the present invention can be produced through the step of applying the above resin composition of the present invention onto a support. It is preferable that the method for producing a film of the present invention further includes a step of forming a pattern (pixels).
  • a method for forming the pattern (pixels) includes a photolithography method and a dry etching method, and the photolithography method is preferable.
  • Pattern formation by photolithography includes the steps of forming a resin composition layer on a support using the resin composition of the present invention, exposing the resin composition layer in a pattern, and exposing the resin composition layer to light. and forming a pattern (pixels) by developing and removing the exposed portion. If necessary, a step of baking the resin composition layer (pre-baking step) and a step of baking the developed pattern (pixels) (post-baking step) may be provided.
  • the resin composition of the present invention is used to form a resin composition layer on a support.
  • the support is not particularly limited and can be appropriately selected depending on the application. Examples thereof include glass substrates and silicon substrates, and silicon substrates are preferred. Also, a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, or the like may be formed on the silicon substrate.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the silicon substrate is formed with a light-shielding film such as a black matrix that isolates each pixel.
  • the silicon substrate may be provided with an underlying layer for improving adhesion with the upper layer, preventing diffusion of substances, or flattening the substrate surface.
  • the surface contact angle of the underlayer is preferably 20 to 70° when measured with diiodomethane. Further, it is preferably 30 to 80° when measured with water.
  • the surface contact angle of the underlayer can be adjusted, for example, by adding a surfactant.
  • a known method can be used as a method for applying the resin composition.
  • drop method drop cast
  • slit coating method spray method
  • roll coating method spin coating
  • methods described in publications inkjet (e.g., on-demand method, piezo method, thermal method), discharge system printing such as nozzle jet, flexo printing, screen printing, gravure printing, reverse offset printing, metal mask printing method, etc.
  • inkjet e.g., on-demand method, piezo method, thermal method
  • discharge system printing such as nozzle jet, flexo printing, screen printing, gravure printing, reverse offset printing, metal mask printing method, etc.
  • Examples include various printing methods; transfer methods using molds and the like; nanoimprinting methods and the like.
  • the application method for inkjet is not particularly limited.
  • the resin composition layer formed on the support may be dried (pre-baked). Pre-baking may not be performed when the film is manufactured by a low-temperature process.
  • the pre-baking temperature is preferably 150° C. or lower, more preferably 120° C. or lower, and even more preferably 110° C. or lower.
  • the lower limit can be, for example, 50° C. or higher, and can also be 80° C. or higher.
  • the pre-bake time is preferably 10 to 300 seconds, more preferably 40 to 250 seconds, even more preferably 80 to 220 seconds. Pre-baking can be performed using a hot plate, an oven, or the like.
  • the resin composition layer is exposed in a pattern (exposure step).
  • the resin composition layer can be exposed in a pattern by exposing through a mask having a predetermined mask pattern using a stepper exposure machine, a scanner exposure machine, or the like. Thereby, the exposed portion can be cured.
  • Radiation (light) that can be used for exposure includes g-line, i-line, and the like.
  • Light with a wavelength of 300 nm or less (preferably light with a wavelength of 180 to 300 nm) can also be used.
  • Light having a wavelength of 300 nm or less includes KrF rays (wavelength: 248 nm), ArF rays (wavelength: 193 nm), etc., and KrF rays (wavelength: 248 nm) are preferable.
  • a long-wave light source of 300 nm or more can also be used.
  • the exposure may be performed by continuously irradiating the light, or by pulsing the light (pulse exposure).
  • pulse exposure is an exposure method in which exposure is performed by repeating light irradiation and rest in short-time (for example, millisecond level or less) cycles.
  • the pulse width is preferably 100 nanoseconds (ns) or less, more preferably 50 nanoseconds or less, and even more preferably 30 nanoseconds or less.
  • the lower limit of the pulse width is not particularly limited, but may be 1 femtosecond (fs) or more, and may be 10 femtoseconds or more.
  • the frequency is preferably 1 kHz or higher, more preferably 2 kHz or higher, and even more preferably 4 kHz or higher.
  • the upper limit of the frequency is preferably 50 kHz or less, more preferably 20 kHz or less, and even more preferably 10 kHz or less.
  • the maximum instantaneous illuminance is preferably 50000000 W/ m2 or more, more preferably 100000000 W/ m2 or more, and even more preferably 200000000 W/ m2 or more.
  • the upper limit of the maximum instantaneous illuminance is preferably 1000000000 W/m 2 or less, more preferably 800000000 W/m 2 or less, and even more preferably 500000000 W/m 2 or less.
  • the pulse width is the time during which the light is applied in the pulse cycle.
  • the frequency is the number of pulse cycles per second.
  • the maximum instantaneous illuminance is the average illuminance within the time during which the light is irradiated in the pulse cycle.
  • the pulse cycle is a cycle in which light irradiation and rest in pulse exposure are set as one cycle.
  • the irradiation amount is, for example, preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2 .
  • the oxygen concentration at the time of exposure can be selected as appropriate, and in addition to exposure in the atmosphere, for example, in a low oxygen atmosphere with an oxygen concentration of 19% by volume or less (e.g., 15% by volume, 5% by volume, or substantially oxygen-free) or in a high-oxygen atmosphere with an oxygen concentration exceeding 21% by volume (for example, 22% by volume, 30% by volume, or 50% by volume).
  • the exposure illuminance can be set as appropriate, and is usually selected from the range of 1000 W/m 2 to 100000 W/m 2 (eg, 5000 W/m 2 , 15000 W/m 2 or 35000 W/m 2 ). can be done. Oxygen concentration and exposure illuminance may be appropriately combined. For example, illuminance of 10000 W/m 2 at oxygen concentration of 10% by volume and illuminance of 20000 W/m 2 at oxygen concentration of 35% by volume.
  • the unexposed portions of the resin composition layer are removed by development to form a pattern (pixels).
  • the development and removal of the unexposed portion of the resin composition layer can be performed using a developer.
  • the unexposed portion of the resin composition layer in the exposure step is eluted into the developer, leaving only the photocured portion.
  • the temperature of the developer is preferably 20 to 30° C., for example.
  • the development time is preferably 20 to 180 seconds. Further, in order to improve the residue removability, the step of shaking off the developer every 60 seconds and then supplying new developer may be repeated several times.
  • the developer includes an organic solvent, an alkaline developer, etc., and an alkaline developer is preferably used.
  • an alkaline developer an alkaline aqueous solution (alkali developer) obtained by diluting an alkaline agent with pure water is preferable.
  • alkaline agents include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxylamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate and sodium metasilicate.
  • concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.
  • the developer may further contain a surfactant.
  • the surfactant include the surfactants described above, and nonionic surfactants are preferred.
  • the developer may be produced once as a concentrated solution and then diluted to the required concentration when used.
  • the dilution ratio is not particularly limited, it can be set, for example, in the range of 1.5 to 100 times.
  • wash (rinse) with pure water after development. Rinsing is preferably carried out by supplying a rinse liquid to the resin composition layer after development while rotating the support on which the resin composition layer after development is formed. It is also preferable to move the nozzle for discharging the rinsing liquid from the central portion of the support to the peripheral portion of the support.
  • the moving speed of the nozzle may be gradually decreased.
  • in-plane variations in rinsing can be suppressed.
  • a similar effect can be obtained by gradually decreasing the rotation speed of the support while moving the nozzle from the center of the support to the periphery.
  • Additional exposure processing and post-baking are post-development curing treatments for complete curing.
  • the heating temperature in post-baking is, for example, preferably 100 to 240.degree. C., more preferably 200 to 240.degree.
  • Post-baking can be performed continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulating dryer), or a high-frequency heater so that the developed film satisfies the above conditions. .
  • the light used for exposure preferably has a wavelength of 400 nm or less.
  • the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
  • Pattern formation by a dry etching method includes a step of forming a resin composition layer on a support using the resin composition of the present invention, and curing the entire resin composition layer to form a cured product layer; A step of forming a photoresist layer on the cured layer, a step of exposing the photoresist layer in a pattern and then developing it to form a resist pattern, and etching the cured layer using the resist pattern as a mask. and dry etching using a gas. In forming the photoresist layer, it is preferable to further perform a pre-baking process.
  • the optical filter of the present invention has the film of the present invention as described above.
  • the optical filter includes a color filter, a near-infrared transmission filter, a near-infrared cut filter, and the like, and is preferably a color filter.
  • a color filter it is preferable to have the film of the present invention as a colored pixel of the color filter.
  • the optical filter may have a light shielding film.
  • a color filter, a near-infrared transmission filter, a near-infrared cut filter, or the like may be formed in the openings of the light-shielding film formed on the support.
  • the optical filter of the present invention can be used for solid-state imaging devices such as CCDs (charge-coupled devices) and CMOSs (complementary metal oxide semiconductors), image display devices, and the like.
  • the film thickness of the film of the present invention can be appropriately adjusted according to the purpose.
  • the film thickness of the pixels included in the optical filter is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.6 ⁇ m or less.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.3 ⁇ m or more.
  • the width of pixels included in the optical filter is preferably 0.4 to 10.0 ⁇ m.
  • the lower limit is preferably 0.4 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.6 ⁇ m or more.
  • the upper limit is preferably 5.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, even more preferably 1.0 ⁇ m or less, and even more preferably 0.8 ⁇ m or less.
  • the Young's modulus of the pixel is preferably 0.5 to 20 GPa, more preferably 2.5 to 15 GPa.
  • Each pixel included in the optical filter preferably has high flatness.
  • the pixel surface roughness Ra is preferably 100 nm or less, more preferably 40 nm or less, and even more preferably 15 nm or less. Although the lower limit is not specified, it is preferably 0.1 nm or more, for example.
  • the surface roughness of a pixel can be measured using, for example, AFM (Atomic Force Microscope) Dimension 3100 manufactured by Veeco.
  • the contact angle of water on the pixel can be appropriately set to a preferable value, but is typically in the range of 50 to 110°. The contact angle can be measured using, for example, a contact angle meter CV-DT-A type (manufactured by Kyowa Interface Science Co., Ltd.).
  • the volume resistance value of the pixel is high.
  • the volume resistance value of the pixel is preferably 10 9 ⁇ cm or more, more preferably 10 11 ⁇ cm or more.
  • the upper limit is not specified, it is preferably 10 14 ⁇ cm or less, for example.
  • the volume resistance value of the pixel can be measured using an ultra-high resistance meter 5410 (manufactured by Advantest).
  • the film thickness of the light shielding film is preferably 5 ⁇ m or less, more preferably 2.5 ⁇ m or less.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • a protective layer may be provided on the surface of the film of the present invention.
  • the protective layer By providing the protective layer, it is possible to impart various functions such as blocking oxygen, reducing reflection, making the film hydrophilic and hydrophobic, and blocking light of a specific wavelength (ultraviolet rays, near-infrared rays, etc.).
  • the thickness of the protective layer is preferably 0.01-10 ⁇ m, more preferably 0.1-5 ⁇ m.
  • Examples of the method for forming the protective layer include a method of applying a protective layer-forming resin composition dissolved in an organic solvent, a chemical vapor deposition method, and a method of adhering a molded resin with an adhesive.
  • Components constituting the protective layer include (meth)acrylic resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, polyarylene ether phosphine oxide resins, and polyimides.
  • the protective layer preferably contains a polyol resin, SiO 2 and Si 2 N 4 .
  • the protective layer preferably contains a (meth)acrylic resin and a fluororesin.
  • the protective layer-forming resin composition When the protective layer-forming resin composition is applied to form the protective layer, known methods such as a spin coating method, a casting method, a screen printing method, an inkjet method, and the like can be used as a method for applying the protective layer-forming resin composition. can be used.
  • known methods such as a spin coating method, a casting method, a screen printing method, an inkjet method, and the like can be used as a method for applying the protective layer-forming resin composition. can be used.
  • the organic solvent contained in the protective layer-forming resin composition known organic solvents (eg, propylene glycol 1-monomethyl ether 2-acetate, cyclopentanone, ethyl lactate, etc.) can be used.
  • the protective layer is formed by a chemical vapor deposition method
  • the chemical vapor deposition method includes known chemical vapor deposition methods (thermal chemical vapor deposition method, plasma chemical vapor deposition method, photochemical vapor deposition method). can be used.
  • the protective layer contains organic/inorganic fine particles, absorbers for light of specific wavelengths (e.g., ultraviolet rays, near-infrared rays, etc.), refractive index modifiers, antioxidants, adhesion agents, additives such as surfactants. may contain.
  • organic/inorganic fine particles include polymeric fine particles (eg, silicone resin fine particles, polystyrene fine particles, melamine resin fine particles), titanium oxide, zinc oxide, zirconium oxide, indium oxide, aluminum oxide, titanium nitride, and titanium oxynitride. , magnesium fluoride, hollow silica, silica, calcium carbonate, barium sulfate, and the like.
  • a known absorber can be used as the absorber for light of a specific wavelength.
  • the content of these additives can be appropriately adjusted, but is preferably 0.1 to 70% by mass, more preferably 1 to 60% by mass, based on the total mass of the protective layer.
  • the protective layer the protective layers described in paragraphs 0073 to 0092 of JP-A-2017-151176 can also be used.
  • the optical filter may have a structure in which each pixel is embedded in a space partitioned by partition walls, for example, in a grid pattern.
  • the resin composition of the present invention can also be suitably used for the pixel configuration described in International Publication No. 2019/102887.
  • the solid-state imaging device of the present invention has the film of the present invention described above.
  • the configuration of the solid-state imaging device of the present invention is not particularly limited as long as it has the film of the present invention and functions as a solid-state imaging device.
  • a plurality of photodiodes forming a light receiving area of a solid-state imaging device CCD (charge-coupled device) image sensor, CMOS (complementary metal oxide semiconductor) image sensor, etc.) and transfer electrodes made of polysilicon or the like are provided on the substrate. and a device protective film made of silicon nitride or the like formed on the light shielding film so as to cover the entire surface of the light shielding film and the photodiode light receiving portion. and a color filter on the device protective film.
  • the color filter may have a structure in which each color pixel is embedded in a space partitioned by partition walls, for example, in a grid pattern.
  • the partition wall preferably has a lower refractive index than each color pixel. Examples of imaging devices having such a structure are described in JP-A-2012-227478, JP-A-2014-179577, International Publication No. 2018/043654, and US Patent Application Publication No.
  • an ultraviolet absorption layer may be provided in the structure of the solid-state imaging device to improve light resistance.
  • An imaging device equipped with the solid-state imaging device of the present invention can be used not only for digital cameras and electronic devices having an imaging function (mobile phones, etc.), but also for vehicle-mounted cameras and monitoring cameras.
  • the solid-state imaging device incorporating the color filter of the present invention may further incorporate another color filter, a near-infrared cut filter, an organic photoelectric conversion film, etc., in addition to the color filter of the present invention.
  • the image display device of the present invention has the film of the present invention described above.
  • image display devices include liquid crystal display devices and organic electroluminescence display devices.
  • electroluminescence display devices For a definition of an image display device and details of each image display device, see, for example, “Electronic Display Device (by Akio Sasaki, Industrial Research Institute, 1990)", “Display Device (by Junsho Ibuki, Sangyo Tosho ( Co., Ltd.), issued in 1989), etc.
  • Liquid crystal display devices are described, for example, in “Next Generation Liquid Crystal Display Technology (edited by Tatsuo Uchida, published by Kogyo Choukai Co., Ltd., 1994)". There is no particular limitation on the liquid crystal display device to which the present invention can be applied.
  • the acid number of a sample represents the mass of potassium hydroxide required to neutralize acidic components per gram of solid content in the sample.
  • A 56.11 x Vs x 0.5 x f/w
  • f titer of 0.1 mol/L potassium hydroxide aqueous solution
  • w mass of sample (g) (in terms of solid content)
  • the resulting terminal mercapto group polymer solution was heated to 60° C., 10.9 g of maleic anhydride was added, and a thermal radical generator (V-65, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added. 0.32 g of the solution was added and stirred under heating at 60° C. for 8 hours in a nitrogen atmosphere to obtain a solution of resin B-1 having the following structure.
  • the weight average molecular weight of the resulting resin B-1 was 1,150.
  • Resins B-2 to B-4 were synthesized in the same manner as resin B-1.
  • resins B-6 to B-41 were synthesized in the same manner as resin B-5.
  • AH-1 to AH-7 groups of the following structures (wherein * is a linking hand)
  • Z1-1, Z1-2, Z1-12, Z1-13, Z1-14 groups of the following structures (wherein * is a linker)
  • P1-1 to P1-16, P1-18 to P1-22 groups of the following structures (wherein * is a linking hand)
  • a mixed liquid obtained by mixing the raw materials shown in the table below was mixed and dispersed for 3 hours using a bead mill (using zirconia beads with a diameter of 0.3 mm), and then a high-pressure disperser NANO-3000-10 with a pressure reduction mechanism (Nippon BEE (manufactured by Co., Ltd.) under a pressure of 2000 MPa and a flow rate of 500 g/min. This dispersion treatment was repeated 10 times to obtain each dispersion.
  • the unit of the numerical value indicating the compounding amount of each raw material described in the above table is parts by mass.
  • the details of raw materials indicated by abbreviations are as follows.
  • PR122 C.I. I. Pigment Red 122 (red pigment, quinacridone pigment)
  • PR179 C.I. I. Pigment Red 179 (red pigment, perylene pigment)
  • PR254 C.I. I. Pigment Red 254 (red pigment, diketopyrrolopyrrole pigment)
  • PR264 C.I. I. Pigment Red 264 (red pigment, diketopyrrolopyrrole pigment)
  • PR291 C.I. I.
  • Pigment Red 291 red pigment, diketopyrrolopyrrole pigment
  • PO71 C.I. I. Pigment Orange 71 (orange pigment, diketopyrrolopyrrole pigment)
  • PB15:6 C.I. I. Pigment Blue 15:6 (blue pigment, phthalocyanine pigment)
  • PB16 C.I. I. Pigment Blue 16 (blue pigment, phthalocyanine pigment)
  • PG7 C.I. I. Pigment Green 7 (green pigment, phthalocyanine pigment)
  • PG36 C.I. I. Pigment Green 36 (green pigment, phthalocyanine pigment)
  • PG58 C.I. I. Pigment Green 58 (green pigment, phthalocyanine pigment)
  • PY185 C.I.
  • I. Pigment Yellow 185 (yellow pigment, isoindoline pigment)
  • PY215 C.I. I. Pigment Yellow 215 (yellow pigment, pteridine pigment)
  • PV23 C.I. I. Pigment Violet 23 (purple pigment, dioxazine pigment)
  • IR dye a compound having the following structure (near-infrared absorbing pigment, in the structural formula, Me represents a methyl group and Ph represents a phenyl group)
  • Black color material 1 Titanium black (a-1) produced by the following method 100 g of titanium oxide MT-150A (manufactured by Tayca) having an average particle diameter of 15 nm, 25 g of silica particles AEROGIL 300/30 (manufactured by Evonik) having a BET surface area of 300 m 2 /g, and 100 g of a dispersant Disperbyk 190 (manufactured by BYK-Chemie) were weighed.
  • a-1 Titanium black (a-1) produced by the following method 100 g of titanium oxide MT-150A (manufactured by Tayca) having an average particle diameter of 15 nm, 25 g of silica particles AEROGIL 300/30 (manufactured by Evonik) having a BET surface area of 300 m 2 /g, and 100 g of a dispersant Disperbyk 190 (manufactured by BYK-Chemie) were weighed.
  • ion-exchanged water was added, and treated with MAZERSTAR KK-400W manufactured by KURABO for 20 minutes at a revolution speed of 1,360 rpm and a rotation speed of 1,047 rpm to obtain a homogeneous mixture aqueous solution.
  • This aqueous solution is filled in a quartz container, heated to 920° C. in an oxygen atmosphere using a small rotary kiln (manufactured by Motoyama Co., Ltd.), then the atmosphere is replaced with nitrogen, and ammonia gas is flowed at 100 mL/min for 5 hours at the same temperature. Nitriding reduction treatment was carried out.
  • the recovered powder was pulverized in a mortar to obtain a powdery titanium black (a-1) containing Si atoms and having a specific surface area of 73 m 2 /g [titanium black particles and a substance to be dispersed containing Si atoms]. Obtained.
  • Black color material 2 Coated carbon black produced by the following method Carbon black was produced by a conventional oil furnace method. However, ethylene bottom oil with low Na content, Ca content and S content was used as raw material oil, and gas fuel was used for combustion. Furthermore, pure water treated with an ion exchange resin was used as the water for stopping the reaction. Using a homomixer, 540 g of the obtained carbon black was stirred with 14500 g of pure water at 5000 to 6000 rpm for 30 minutes to obtain a slurry.
  • This slurry was transferred to a container equipped with a screw type stirrer, and 600 g of toluene containing 60 g of an epoxy resin (Epikote 828, manufactured by Mitsubishi Chemical Corporation) dissolved therein was added little by little while mixing at about 1000 rpm. In about 15 minutes, all of the carbon black dispersed in water migrated to the toluene side and formed particles of about 1 mm. Next, after draining with a 60-mesh wire mesh, the separated grains were placed in a vacuum dryer and dried at 70° C. for 7 hours to remove toluene and water to obtain coated carbon black. The resin coating amount of the obtained coated carbon black was 10% by mass with respect to the total amount of carbon black and resin.
  • Black color material 3 Irgaphor Black S 0100 CF (manufactured by BASF, compound having the following structure, lactam pigment)
  • Black color material 4 zirconium oxynitride (powder specific surface area 65 m 2 /g)
  • Derivative 1 a compound having the following structure
  • Derivative 2 a compound having the following structure
  • Derivative 3 a compound having the following structure
  • Derivative 4 S12000 (manufactured by Lubrizol)
  • cB-1 Resin having the following structure (weight average molecular weight: 2500, description of "Poly” means that the polymer chain having a structure in which the repeating units of the structure indicated by “Poly” are bonded by the number of subscripts is a sulfur atom (S) ).
  • cB-2 Resin with the following structure (weight average molecular weight: 2800, description of "Poly” means that a polymer chain having a structure in which repeating units of the structure indicated by “Poly” are bonded with the number of subscripts is a sulfur atom (S) ).
  • ⁇ resin ⁇ Ba-1 resin having the following structure (numerical values attached to the main chain are molar ratios; weight average molecular weight: 11,000)
  • Ba-2 resin having the following structure (numerical values attached to the main chain are molar ratios; weight average molecular weight: 15,000)
  • Ba-3 resin having the following structure (numerical values attached to the main chain are molar ratios. The total value of x, y and z is 50.
  • Ba-4 cardo resin V-259ME (manufactured by Nippon Steel & Sumikin Co., Ltd.)
  • Bb-1 Resin having the following structure (numerical values attached to the main chain are molar ratios; weight average molecular weight: 13,000)
  • Bb-2 resin cB-1 described above
  • B-11, B-12 Resins B-11, B-12 having the structures described above
  • D-1 Acrylate compound (KAYARAD DPHA, manufactured by Nippon Kayaku Co., Ltd., a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate)
  • D-2 Epoxy compound (TETRAD-X, manufactured by Mitsubishi Gas Chemical Company, Inc., N,N,N',N'-tetraglycidyl-m-xylylenediamine)
  • D-3 Oxetane compound (OXT-221, manufactured by Toagosei Co., Ltd., 3-ethyl-3 ⁇ [(3-ethyloxetan-3-yl)methoxy]methyl ⁇ oxetane)
  • D-4 Oxetane compound (OX-SQ TX-100, manufactured by Toagosei Co., Ltd.)
  • E-1 Omnirad 379EG (manufactured by IGM Resins B.V., 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butane-1- on)
  • E-2 Irgacure OXE01 (manufactured by BASF, oxime compound)
  • E-3 A compound having the following structure
  • ⁇ Vis was 0.5 mPa ⁇ s or less.
  • B ⁇ Vis exceeded 0.5 mPa ⁇ s and was 1.0 mPa ⁇ s or less.
  • D ⁇ Vis exceeded 2.0 mPa ⁇ s and was 2.5 mPa ⁇ s or less.
  • E ⁇ Vis exceeded 2.5 mPa ⁇ s.
  • A The number average particle size of the pigment was 0.05 ⁇ m or less.
  • B The number average particle size of the pigment was more than 0.05 ⁇ m and 0.10 ⁇ m or less.
  • C The number average particle size of the pigment exceeded 0.10 ⁇ m and was 0.20 ⁇ m or less.
  • D The number average particle size of the pigment was more than 0.20 ⁇ m and 0.50 ⁇ m or less.
  • E The number average particle size of the pigment exceeded 0.50 ⁇ m.
  • the glass substrate on which the coating film after exposure is formed is placed on a horizontal rotating table of a spin shower developing machine (DW-30 type, manufactured by Chemitronics Co., Ltd.), and a developing solution (CD-2000 , manufactured by FUJIFILM Electronic Materials Co., Ltd.), puddle development was performed at 23° C. for 60 seconds.
  • a spin shower developing machine DW-30 type, manufactured by Chemitronics Co., Ltd.
  • a developing solution CD-2000 , manufactured by FUJIFILM Electronic Materials Co., Ltd.
  • pure water was supplied from above the center of rotation in the form of a shower from an ejection nozzle to perform a rinse treatment, followed by spray drying.
  • the rinsed coating film was post-baked at 220° C. for 300 seconds to form a patterned substrate.
  • Proximity exposure was performed at a lamp power of 50 mW/cm 2 and an exposure amount of 500 mJ/cm 2 .
  • the above-mentioned coating film after exposure is paddle-developed at 23° C. for 15 seconds with a developer (CD-1040, manufactured by Fuji Film Electronic Materials Co., Ltd.) using AD-1200 (manufactured by Mikasa), followed by showering. It was rinsed with pure water using a nozzle for 30 seconds. The rinsed coating film was post-baked at 220° C. for 300 seconds to form a patterned substrate.
  • the space part (non-exposed part) where the pattern is not formed on the substrate is observed using a transmission microscope, and evaluated from the following viewpoints. did.
  • Adhesion (peeling) Each resin composition was used to form a patterned substrate in the same manner as described above, except that the opening line width of the mask used in the exposure was changed to 10 ⁇ m and the exposure was performed while varying the exposure amount. made. With respect to the resulting patterned substrate, a line pattern with a width of 10 ⁇ m was observed using an optical microscope, and the presence or absence of pattern peeling was evaluated from the following viewpoints. It is preferable that the amount of exposure is as small as possible to form a pattern (image portion) that adheres to the substrate and does not peel off. A: A pattern free from peeling can be formed at an exposure amount of 1000 mJ or less.
  • a pattern free from peeling can be formed at an exposure amount of more than 1000 mJ and 1400 mJ or less.
  • C A pattern free from peeling can be formed at an exposure amount of more than 1400 mJ and 1700 mJ or less.
  • D A pattern free from peeling can be formed at an exposure amount of more than 1700 mJ.
  • a patterned substrate was produced using each resin composition in the same manner as described above, except that the opening line width of the mask used during exposure was changed to 300 ⁇ m.
  • a scanning electron microscope S-4800 manufactured by Hitachi High-Technologies Co., Ltd. was used to observe a cross-sectional scanning electron microscope image of a pattern with a width of 300 ⁇ m, and the undercut width was actually measured. It was evaluated from the viewpoint of The undercut width is defined as "[(line width at the widest part of the pattern cross section)-(line width at the part where the line pattern touches the substrate on the pattern cross section)]/2".
  • the line width at the portion where the line width is the widest in the pattern cross section is 300 ⁇ m.
  • Dispersions R2-1 to R2-24 were prepared in the same manner as Dispersion R2, except that Derivative 2, which was also used as a pigment derivative, was changed to Derivatives 10 to 33 in Dispersion R2. Resin compositions were produced in the same manner as in Example 3, except that dispersion R2 in Example 3 was changed to dispersions R2-1 to R2-24. When the obtained resin composition was evaluated in the same manner as described above, the same evaluation results as in Example 3 were obtained.
  • Derivatives 10-33 compounds having the following structures. The crystallite size of each derivative was adjusted by grinding.
  • the crystallite size and crystallinity of derivatives 10-33 are as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)

Abstract

顔料の分散性に優れた樹脂組成物を提供する。また、樹脂組成物を用いた膜、光学フィルタおよび固体撮像素子を提供する。樹脂組成物は、顔料を含む色材Aと、樹脂Bと、溶剤Cと、を含み、樹脂Bは酸無水物基と、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖とを含む樹脂B1を含む。

Description

樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置
 本発明は、樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置に関する。
 近年、デジタルカメラ、カメラ付き携帯電話等の普及から、電荷結合素子(CCD)イメージセンサなどの固体撮像素子の需要が大きく伸びている。固体撮像素子には、カラーフィルタなどの顔料を含む膜が用いられている。カラーフィルタなどの色材を含む膜は、顔料と樹脂と溶剤とを含む樹脂組成物などを用いて製造されている。
 特許文献1には、分子内に2つのカルボキシ基と1つ以上のチオール基とを有する化合物の存在下にエチレン性不飽和単量体を重合してなる、片末端領域に2つのカルボキシ基を有する(メタ)アクリル系重合体(A1)が有する2つのカルボキシ基を、酸無水物基に変性してなる、片末端領域に無水物基を有する(メタ)アクリル系重合体(A2)を、顔料分散剤として用いることが記載されている。
特開2018-090788号公報
 顔料と樹脂と溶剤とを含む樹脂組成物においては、顔料の分散性が良好であることが好ましい。顔料の分散性が不十分であると、樹脂組成物中で顔料が凝集して粗大化したり、樹脂組成物の粘度が高くなり易い。また、製造直後の樹脂組成物の粘度は低くても、粘度が経時で増加することもある。
 本発明者の検討によれば、特許文献1に記載された顔料分散剤では、顔料の分散性は十分ではなく、更なる改善の余地があることが分かった。
 よって、本発明の目的は、顔料の分散性に優れた樹脂組成物を提供することにある。また、本発明の目的は、樹脂組成物を用いた膜、光学フィルタ、固体撮像素子および画像表示装置を提供することにある。
 本発明の代表的な実施態様の例を以下に示す。
 <1> 顔料を含む色材Aと、
 樹脂Bと、
 溶剤Cと、を含み、
 上記樹脂Bは、酸無水物基と、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖とを含む樹脂B1を含む、樹脂組成物。
 <2> 上記酸無水物基は、環状酸無水物基である、<1>に記載の樹脂組成物。
 <3> 上記樹脂B1は、式(1)で表される樹脂である、<1>または<2>に記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Rは、酸無水物基を表し、
 XおよびXはそれぞれ独立して、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表し、Rx1は水素原子または置換基を表し、
 Lは、単結合またはm+n価の連結基を表し、
 Pは、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
 mおよびnはそれぞれ独立して1以上の整数を表す。
 <4> 上記Pが表すポリマー鎖は、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基から選ばれる少なくとも1種を含む、<3>に記載の樹脂組成物。
 <5> 上記Rが表す酸無水物基は、式(RAH-1)~式(RAH-7)のいずれかで表される基である、<3>または<4>に記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000005
 式(RAH-1)~(RAH-7)中、*は連結手を表し、
 RAH1、RAH7、RAH8、RAH10およびRAH11はそれぞれ独立して水素原子または置換基を表し、
 RAH2、RAH3、RAH4、RAH5、RAH6およびRAH9は置換基を表し、
 r2、r3、r4、r6およびr7は、それぞれ独立して0~3の整数を表し、
 r5は0~2の整数を表す。
 <6> 上記樹脂B1は、式(2)で表される樹脂である、<1>~<5>のいずれか1つに記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Xは、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表し、Rx1は水素原子または置換基を表し、
 Lは、単結合またはm+n価の連結基を表し、
 Pは、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
 mおよびnはそれぞれ独立して1以上の整数を表す。
 <7> 上記樹脂B1の重量平均分子量が500以上10000未満である、<1>~<6>のいずれか1つに記載の樹脂組成物。
 <8> 上記溶剤Cは、エーテル系溶剤、エステル系溶剤およびケトン系溶剤から選ばれる少なくとも1種の溶剤を含む、<1>~<7>のいずれか1つに記載の樹脂組成物。
 <9> 上記色材Aは、黒色顔料を含み、
 上記樹脂組成物の全固形分中における黒色顔料の含有量が65質量%以上である、<1>~<8>のいずれか1つに記載の樹脂組成物。
 <10> 更に、重合性モノマーを含む、<1>~<9>のいずれか1つに記載の樹脂組成物。
 <11> 更に、光重合開始剤を含む、<1>~<10>のいずれか1つに記載の樹脂組成物。
 <12> <1>~<11>のいずれか1つに記載の樹脂組成物を用いて得られる膜。
 <13> <12>に記載の膜を有する光学フィルタ。
 <14> <12>に記載の膜を有する固体撮像素子。
 <15> <12>に記載の膜を有する画像表示装置。
 本発明によれば、顔料の分散性に優れた樹脂組成物を提供することができる。また、樹脂組成物を用いた膜、光学フィルタ、固体撮像素子および画像表示装置を提供することができる。
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、(メタ)アリル基は、アリル及びメタリルの双方、又は、いずれかを表し、「(メタ)アクリレート」は、アクリレート及びメタクリレートの双方、又は、いずれかを表し、「(メタ)アクリル」は、アクリル及びメタクリルの双方、又は、いずれかを表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの双方、又は、いずれかを表す。
 本明細書において、重量平均分子量及び数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 本明細書において、近赤外線とは、波長700~2500nmの光をいう。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において「工程」との語は独立した工程だけを指すのではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、顔料とは、溶剤に対して溶解しにくい化合物を意味する。
 本明細書において、名称の前、又は名称の後に付記される記号(例えば、Aなど)は、構成要素を区別するために使用する用語であり、構成要素の種類、構成要素の数、及び構成要素の優劣を制限するものではない。
<樹脂組成物>
 本発明の樹脂組成物は、
 顔料を含む色材Aと、
 樹脂Bと、
 溶剤Cと、を含み、
 上記樹脂Bは、酸無水物基と、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖とを含む樹脂B1を含むことを特徴とする。
 本発明の樹脂組成物は、顔料の分散性に優れている。このような効果が得られる詳細な理由は不明であるが、次によるものであると推測される。樹脂組成物中において、上記樹脂B1の酸無水物基が顔料の表面に吸着し、上記樹脂B1の上記ポリマー鎖が立体反発基として作用すると推測される。また、上記ポリマー鎖は、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖であるため、上記樹脂B1は樹脂組成物中の溶剤との親和性に優れると推測される。このため、本発明の樹脂組成物は、上記樹脂B1を含むことにより、顔料の分散性に優れた樹脂組成物とすることができたと推測される。
 本発明の樹脂組成物は、光学フィルタ用の樹脂組成物として好ましく用いられる。光学フィルタとしては、カラーフィルタ、近赤外線透過フィルタ、近赤外線カットフィルタなどが挙げられ、カラーフィルタであることが好ましい。また、本発明の樹脂組成物は、固体撮像素子用の樹脂組成物として好ましく用いることができ、固体撮像素子に用いられる光学フィルタの画素形成用の樹脂組成物としてより好ましく用いることができる。
 カラーフィルタとしては、特定の波長の光を透過させる着色画素を有するフィルタが挙げられ、赤色画素、青色画素、緑色画素、黄色画素、シアン色画素及びマゼンタ色画素から選ばれる少なくとも1種の着色画素を有するフィルタであることが好ましい。カラーフィルタは、有彩色色材を含む樹脂組成物を用いて形成することができる。
 近赤外線カットフィルタとしては、極大吸収波長が波長700~1800nmの範囲に存在するフィルタが挙げられる。近赤外線カットフィルタの極大吸収波長は、波長700~1300nmの範囲に存在することが好ましく、波長700~1100nmの範囲に存在することがより好ましい。また、近赤外線カットフィルタの波長400~650nmの全範囲での透過率は70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。また、波長700~1800nmの範囲の少なくとも1点での透過率は20%以下であることが好ましい。また、近赤外線カットフィルタの極大吸収波長における吸光度Amaxと、波長550nmにおける吸光度A550との比である吸光度Amax/吸光度A550は、20~500であることが好ましく、50~500であることがより好ましく、70~450であることが更に好ましく、100~400であることが特に好ましい。近赤外線カットフィルタは、近赤外線吸収色材を含む樹脂組成物を用いて形成することができる。
 近赤外線透過フィルタは、近赤外線の少なくとも一部を透過させるフィルタである。近赤外線透過フィルタは、可視光の少なくとも一部を遮光し、近赤外線の少なくとも一部を透過させるフィルタであることが好ましい。近赤外線透過フィルタとしては、波長400~640nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1100~1300nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である分光特性を満たしているフィルタなどが好ましく挙げられる。近赤外線透過フィルタは、以下の(1)~(5)のいずれかの分光特性を満たしているフィルタであることが好ましい。
 (1):波長400~640nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長800~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。
 (2):波長400~750nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長900~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。
 (3):波長400~830nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1000~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。
 (4):波長400~950nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1100~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。
 (5):波長400~1050nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1200~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。
 本発明の樹脂組成物が備える分光特性の好ましい一態様としては、樹脂組成物を用いて厚さ5μmの膜を形成した際に、上記膜の厚み方向における光の透過率の波長360~700nmの範囲における最大値が50%以上である分光特性を満たしている態様が挙げられる。このような分光特性を満たしている樹脂組成物は、カラーフィルタの画素形成用の樹脂組成物として好ましく用いることができる。具体的には、赤色画素、青色画素、緑色画素、黄色画素、シアン色画素及びマゼンタ色から選ばれる着色画素形成用の樹脂組成物として好ましく用いることができる。
 上記の分光特性を備える樹脂組成物は、有彩色色材を含むことが好ましい。例えば、赤色色材と黄色色材を含む樹脂組成物は、赤色画素形成用の樹脂組成物として好ましく用いることができる。また、青色色材と紫色色材を含む樹脂組成物は、青色画素形成用の樹脂組成物として好ましく用いることができる。また、緑色色材を含む樹脂組成物は、緑色またはシアン色画素形成用の樹脂組成物として好ましく用いることができる。樹脂組成物を緑色画素形成用の樹脂組成物として用いる場合には、緑色色材のほかに更に黄色色材を含むことも好ましい。
 本発明の樹脂組成物が備える分光特性の別の好ましい一態様としては、波長400~640nmの範囲における吸光度の最小値Aminと、波長1500nmにおける吸光度Bとの比であるAmin/Bが5以上である分光特性を満たしている態様が挙げられる。このような分光特性を満たす樹脂組成物は、近赤外線透過フィルタ形成用の樹脂組成物として好ましく用いることができる。上記の吸光度の比であるAmin/Bの値は、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。
 ここで、波長λにおける吸光度Aλは、以下の式(λ1)により定義される。
 Aλ=-log(Tλ/100)   ・・・(λ1)
 Aλは、波長λにおける吸光度であり、Tλは、波長λにおける透過率(%)である。
 本発明において、吸光度の値は、溶液の状態で測定した値であってもよく、組成物を用いて製膜した膜の値であってもよい。膜の状態で吸光度を測定する場合は、ガラス基板上にスピンコート等の方法によって組成物を塗布し、ホットプレート等を用いて100℃、120秒間乾燥して得られた膜を用いて測定することが好ましい。
 本発明の樹脂組成物は、以下の(Ir1)~(Ir5)のいずれかの分光特性を満たしていることが好ましい。
 (Ir1):波長400~640nmの範囲における吸光度の最小値A1と、波長800~1500nmの範囲における吸光度の最大値B1との比であるA1/B1の値は4.5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、波長400~640nmの範囲の光を遮光して、波長750nmを超える光を透過させることができる膜を形成することができる。
 (Ir2):波長400~750nmの範囲における吸光度の最小値A2と、波長900~1500nmの範囲における吸光度の最大値B2との比であるA2/B2の値は4.5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、波長400~750nmの範囲の光を遮光して、波長850nmを超える光を透過させることができる膜を形成することができる。
 (Ir3):波長400~830nmの範囲における吸光度の最小値A3と、波長1000~1500nmの範囲における吸光度の最大値B3との比であるA3/B3の値は4.5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、波長400~830nmの範囲の光を遮光して、波長950nmを超える光を透過させることができる膜を形成することができる。
 (Ir4):波長400~950nmの範囲における吸光度の最小値A4と、波長1100~1500nmの範囲における吸光度の最大値B4との比であるA4/B4の値は4.5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、波長400~950nmの範囲の光を遮光して、波長1050nmを超える光を透過させることができる膜を形成することができる。
 (Ir5):波長400~1050nmの範囲における吸光度の最小値A5と、波長1200~1500nmの範囲における吸光度の最大値B5との比であるA5/B5の値は4.5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、波長400~1050nmの範囲の光を遮光して、波長1150nmを超える光を透過させることができる膜を形成することができる。
 本発明の樹脂組成物は、遮光膜形成用の樹脂組成物として用いることもできる。本発明の樹脂組成物を、遮光膜形成用の樹脂組成物として用いる場合には、本発明の樹脂組成物は、色材として黒色色材を含むことが好ましく、黒色顔料を含むことがより好ましい。また、樹脂組成物の全固形分中における黒色顔料の含有量は65質量%以上であることが好ましく、70質量%以上であることがより好ましく、75質量%以上であることが更に好ましい。
 本発明の樹脂組成物を、遮光膜形成用の樹脂組成物として用いる場合、樹脂組成物を用いて形成される膜は、400~1100nmの波長領域における膜厚1.5μmあたりの光学濃度(OD:Optical Density)が、2.5以上であることが好ましく、3.0以上であることがより好ましい。なお、上限値は特に制限されないが、一般に10以下が好ましい。なお、本明細書において、400~1100nmの波長領域における膜厚1.5μmあたりの光学濃度が2.5以上であるとは、波長400~1100nmの全域において、膜厚1.5μmあたりの光学濃度が2.5以上であることを意味する。
 また、上記膜の反射率は、8%未満が好ましく、6%未満がより好ましく、4%未満が更に好ましい。下限は、0%以上が好ましい。反射率とは、日本分光株式会社製分光器V7200(商品名)VARユニットを用いて角度5°の入射角で波長400~1100nmの光を入射し、得られた反射率スペクトルより求められる。具体的には、波長400~1100nmの範囲で最大反射率を示した波長の光の反射率を、膜の反射率とする。
 本発明の樹脂組成物は、フォトリソグラフィ法でのパターン形成用の樹脂組成物であることも好ましい。この態様によれば、微細なサイズの画素を容易に形成することができる。このため、固体撮像素子に用いられる光学フィルタの画素形成用の樹脂組成物として特に好ましく用いることができる。例えば、エチレン性不飽和結合含有基を有する成分(例えば、エチレン性不飽和結合含有基を有する樹脂やエチレン性不飽和結合含有基を有するモノマー)と、光重合開始剤とを含有する樹脂組成物は、フォトリソグラフィ法でのパターン形成用の樹脂組成物として好ましく用いることができる。フォトリソグラフィ法でのパターン形成用の樹脂組成物は、更にアルカリ可溶性樹脂を含むことも好ましい。
 以下、本発明の樹脂組成物に用いられる各成分について説明する。
<色材A>
 本発明の樹脂組成物は、色材A(以下、色材と記す)を含有する。色材としては白色色材、黒色色材、有彩色色材、近赤外線吸収色材が挙げられる。なお、本発明において、白色色材には純白色のみならず、白に近い明るい灰色(例えば灰白色、薄灰色など)の色材も含まれる。
 色材は、有彩色色材、黒色色材、及び近赤外線吸収色材よりなる群から選ばれる少なくとも1種を含むことが好ましく、有彩色色材及び黒色色材よりなる群から選ばれる少なくとも1種を含むことがより好ましく、黒色色材を含むことが更に好ましい。
 また、色材は、2種以上の有彩色色材と近赤外線吸収色材とを含むことも好ましい。また、2種以上の有彩色色材の組み合わせで黒色を形成していてもよい。また、色材は、黒色色材と近赤外線吸収色材とを含むことも好ましい。これらの態様によれば、本発明の樹脂組成物を、近赤外線透過フィルタ形成用の樹脂組成物として好ましく用いることができる。2種以上の有彩色色材の組み合わせで黒色を形成する色材の組み合わせについては、特開2013-077009号公報、特開2014-130338号公報、国際公開第2015/166779号等を参照できる。
 本発明の着色組成物に含まれる色材は、顔料を含むものが用いられる。顔料は、無機顔料、有機顔料のいずれでもよい。
 有機顔料の結晶子サイズは、0.1~50nmであることが好ましく、0.5~30nmであることがより好ましく、1~15nmであることが更に好ましい。結晶子サイズはX線回折装置を用いて回折角のピークの半値幅より求めることができ、シェラーの式を用いて算出される。有機顔料の結晶子サイズは、製造条件の調整、製造後に粉砕するなどの公知の方法で調整することができる。粉砕方法としては結晶子サイズを調整できればどのような方法でも構わないが、乾式粉砕や湿式粉砕が挙げられる。溶媒の除去が必要なく、再凝集の懸念が低いことから乾式粉砕が好ましい。乾式粉砕の方法としては、ハンマークラッシャー等の衝撃破砕、ジェットミル等のジェット粉砕、ボールミルやロッドミル等が挙げられる。乾式粉砕装置としては公知の乾式粉砕装置が使用でき、日本コークス工業製、栗本鐵工所製、アシザワファインテック製、スギノマシン製の装置を使用できる。
(有彩色色材)
 有彩色色材としては、波長400~700nmの範囲に極大吸収波長を有する色材が挙げられる。例えば、黄色色材、オレンジ色色材、赤色色材、緑色色材、紫色色材、青色色材などが挙げられる。耐熱性の観点から有彩色色材は、顔料(有彩色顔料)であることが好ましく、赤色顔料、黄色顔料、及び青色顔料がより好ましく、赤色顔料及び青色顔料が更に好ましい。
 有彩色顔料の平均一次粒子径は、1~200nmが好ましい。下限は5nm以上が好ましく、10nm以上がより好ましい。上限は、180nm以下が好ましく、150nm以下がより好ましく、100nm以下が更に好ましい。有彩色顔料の平均一次粒子径が上記範囲であれば、樹脂組成物中における有彩色顔料の分散安定性が良好である。なお、本明細書において、顔料の平均一次粒子径は、JIS8826:2005に準じた動的光散乱法で測定した個数基準の粒径を算術平均して算出した数平均粒子径での値である。測定装置としては、動的光散乱式粒径分布測定装置(堀場製作所社製、LB-500)などが挙げられる。
 有彩色顔料の具体例としては、例えば、以下に示すものが挙げられる。
 C.I.ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214,215,228,231,232(メチン系),233(キノリン系),234(アミノケトン系),235(アミノケトン系),236(アミノケトン系)等(以上、黄色顔料)、
 C.I.ピグメントオレンジ2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等(以上、オレンジ色顔料)、
 C.I.ピグメントレッド1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,269,270,272,279,291,294(キサンテン系、Organo Ultramarine、Bluish Red),295(モノアゾ系),296(ジアゾ系),297(アミノケトン系)等(以上、赤色顔料)、
 C.I.ピグメントグリーン7,10,36,37,58,59,62,63,64(フタロシアニン系),65(フタロシアニン系),66(フタロシアニン系)等(以上、緑色顔料)、
 C.I.ピグメントバイオレット1,19,23,27,32,37,42,60(トリアリールメタン系),61(キサンテン系)等(以上、紫色顔料)、
 C.I.ピグメントブルー1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87(モノアゾ系),88(メチン系)等(以上、青色顔料)。
 これらの有彩色顔料のうち、高温(例えば300℃以上)に加熱した後も分光特性が変動しにくい膜を形成しやすいという理由から赤色顔料としては、C.I.ピグメントレッド254、C.I.ピグメントレッド264、C.I.ピグメントレッド272、C.I.ピグメントレッド122、C.I.ピグメントレッド177が好ましい。また、青色顔料としては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントブルー16が好ましい。
 また、緑色顔料として、1分子中のハロゲン原子数が平均10~14個であり、臭素原子数が平均8~12個であり、塩素原子数が平均2~5個であるハロゲン化亜鉛フタロシアニン顔料を用いることもできる。具体例としては、国際公開第2015/118720号に記載の化合物が挙げられる。また、緑色顔料として中国特許出願第106909027号明細書に記載の化合物、国際公開第2012/102395号に記載のリン酸エステルを配位子として有するフタロシアニン化合物、特開2019-008014号公報に記載のフタロシアニン化合物、特開2018-180023号公報に記載のフタロシアニン化合物、特開2019-038958号公報に記載の化合物などを用いることもできる。
 また、青色顔料として、リン原子を有するアルミニウムフタロシアニン化合物を用いることもできる。具体例としては、特開2012-247591号公報の段落番号0022~0030、特開2011-157478号公報の段落番号0047に記載の化合物が挙げられる。
 また、黄色顔料として、特開2017-201003号公報に記載の化合物、特開2017-197719号公報に記載の化合物、特開2017-171912号公報の段落番号0011~0062、0137~0276に記載の化合物、特開2017-171913号公報の段落番号0010~0062、0138~0295に記載の化合物、特開2017-171914号公報の段落番号0011~0062、0139~0190に記載の化合物、特開2017-171915号公報の段落番号0010~0065、0142~0222に記載の化合物、特開2013-054339号公報の段落番号0011~0034に記載のキノフタロン化合物、特開2014-026228号公報の段落番号0013~0058に記載のキノフタロン化合物、特開2018-062644号公報に記載のイソインドリン化合物、特開2018-203798号公報に記載のキノフタロン化合物、特開2018-062578号公報に記載のキノフタロン化合物、特許第6432076号公報に記載のキノフタロン化合物、特開2018-155881号公報に記載のキノフタロン化合物、特開2018-111757号公報に記載のキノフタロン化合物、特開2018-040835号公報に記載のキノフタロン化合物、特開2017-197640号公報に記載のキノフタロン化合物、特開2016-145282号公報に記載のキノフタロン化合物、特開2014-085565号公報に記載のキノフタロン化合物、特開2014-021139号公報に記載のキノフタロン化合物、特開2013-209614号公報に記載のキノフタロン化合物、特開2013-209435号公報に記載のキノフタロン化合物、特開2013-181015号公報に記載のキノフタロン化合物、特開2013-061622号公報に記載のキノフタロン化合物、特開2013-032486号公報に記載のキノフタロン化合物、特開2012-226110号公報に記載のキノフタロン化合物、特開2008-074987号公報に記載のキノフタロン化合物、特開2008-081565号公報に記載のキノフタロン化合物、特開2008-074986号公報に記載のキノフタロン化合物、特開2008-074985号公報に記載のキノフタロン化合物、特開2008-050420号公報に記載のキノフタロン化合物、特開2008-031281号公報に記載のキノフタロン化合物、特公昭48-032765号公報に記載のキノフタロン化合物、特開2019-008014号公報に記載のキノフタロン化合物、特許第6607427号公報に記載のキノフタロン化合物、韓国公開特許第10-2014-0034963号公報に記載の化合物、特開2017-095706号公報に記載の化合物、台湾特許出願公開第201920495号公報に記載の化合物、特許第6607427号公報に記載の化合物、特開2020-033521号公報に記載のキノフタロン二量体、下記式(QP1)で表される化合物、下記式(QP2)で表される化合物を用いることもできる。また、これらの化合物を多量体化したものも、色価向上の観点から好ましく用いられる。
Figure JPOXMLDOC01-appb-C000007
 式(QP1)中、X~X16は各々独立に水素原子又はハロゲン原子を表し、Zは炭素数1~3のアルキレン基を表す。式(QP1)で表される化合物の具体例としては、特許第6443711号公報の段落番号0016に記載されている化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(QP2)中、Y~Yは、それぞれ独立にハロゲン原子を示す。n、mは0~6の整数、pは0~5の整数を表す。(n+m)は1以上である。式(QP2)で表される化合物の具体例としては、特許6432077号公報の段落番号0047~0048に記載されている化合物が挙げられる。
 赤色顔料として、特開2017-201384号公報に記載の構造中に少なくとも1つの臭素原子が置換したジケトピロロピロール化合物、特許第6248838号の段落番号0016~0022に記載のジケトピロロピロール化合物、国際公開第2012/102399号に記載のジケトピロロピロール化合物、国際公開第2012/117965号に記載のジケトピロロピロール化合物、特開2012-229344号公報に記載のナフトールアゾ化合物、特許第6516119号に記載の化合物、特許第6525101号に記載の化合物などを用いることもできる。また、赤色顔料として、芳香族炭化水素環に対して、酸素原子、硫黄原子又は窒素原子が結合した基が導入された芳香族炭化水素基がジケトピロロピロール骨格に結合した構造を有する化合物を用いることもできる。このような化合物としては、式(DPP1)で表される化合物であることが好ましく、式(DPP2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式中、R11及びR13はそれぞれ独立して置換基を表し、R12及びR14はそれぞれ独立して水素原子、アルキル基、アリール基又はヘテロアリール基を表し、n11及びn13はそれぞれ独立して0~4の整数を表し、X12及びX14はそれぞれ独立して酸素原子、硫黄原子又は窒素原子を表し、X12が酸素原子又は硫黄原子の場合は、m12は1を表し、X12が窒素原子の場合は、m12は2を表し、X14が酸素原子又は硫黄原子の場合は、m14は1を表し、X14が窒素原子の場合は、m14は2を表す。R11及びR13が表す置換基としては、アルキル基、アリール基、ハロゲン原子、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アミド基、シアノ基、ニトロ基、トリフルオロメチル基、スルホキシド基、スルホ基などが好ましい具体例として挙げられる。
 各種顔料が有していることが好ましい回折角については、特許第6561862号公報、特許第6413872号公報、特許第6281345号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 有彩色染料としては、ピラゾールアゾ化合物、アニリノアゾ化合物、トリアリールメタン化合物、アントラキノン化合物、アントラピリドン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、ピロロピラゾールアゾメチン化合物、キサンテン化合物、フタロシアニン化合物、ベンゾピラン化合物、インジゴ化合物、ピロメテン化合物が挙げられる。
 また、有彩色色材には、特開2012-158649号公報に記載のチアゾール化合物、特開2011-184493号公報に記載のアゾ化合物、特開2011-145540号公報に記載のアゾ化合物、韓国公開特許第10-2020-0028160号公報に記載されたトリアリールメタン染料ポリマー、特開2020-117638号公報に記載のキサンテン化合物、国際公開第2020/174991号に記載のフタロシアニン化合物、特開2020-160279号公報に記載のイソインドリン化合物又はそれらの塩、韓国公開特許第10-2020-0069442号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069730号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069070号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069067号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069062号公報に記載の式1で表される化合物、特許第6809649号に記載のハロゲン化亜鉛フタロシアニン顔料、特開2020-180176号公報に記載のイソインドリン化合物を用いることができる。また、有彩色色材は、ロタキサンであってもよく、色素骨格はロタキサンの環状構造に使用されていてもよく、棒状構造に使用されていてもよく、両方の構造に使用されていてもよい。
 有彩色色材は、2種以上組み合わせて用いてもよい。また、有彩色色材は、2種以上組み合わせて用いる場合、2種以上の有彩色色材の組み合わせで黒色を形成していてもよい。そのような組み合わせとしては、例えば以下の(1)~(7)の態様が挙げられる。樹脂組成物中に有彩色色材を2種以上含み、かつ、2種以上の有彩色色材の組み合わせで黒色を呈している場合においては、本発明の樹脂組成物は、近赤外線透過フィルタ形成用の樹脂組成物として好ましく用いることができる。
(1)赤色色材と青色色材とを含有する態様。
(2)赤色色材と青色色材と黄色色材とを含有する態様。
(3)赤色色材と青色色材と黄色色材と紫色色材とを含有する態様。
(4)赤色色材と青色色材と黄色色材と紫色色材と緑色色材とを含有する態様。
(5)赤色色材と青色色材と黄色色材と緑色色材とを含有する態様。
(6)赤色色材と青色色材と緑色色材とを含有する態様。
(7)黄色色材と紫色色材とを含有する態様。
(白色色材)
 白色色材としては、酸化チタン、チタン酸ストロンチウム、チタン酸バリウム、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、硫酸バリウム、シリカ、タルク、マイカ、水酸化アルミニウム、ケイ酸カルシウム、ケイ酸アルミニウム、中空樹脂粒子、硫化亜鉛などの無機顔料(白色顔料)が挙げられる。白色顔料は、チタン原子を有する粒子が好ましく、酸化チタンがより好ましい。また、白色顔料は、波長589nmの光に対する屈折率が2.10以上の粒子であることが好ましい。前述の屈折率は、2.10~3.00であることが好ましく、2.50~2.75であることがより好ましい。
 また、白色顔料は「酸化チタン 物性と応用技術 清野学著 13~45ページ 1991年6月25日発行、技報堂出版発行」に記載の酸化チタンを用いることもできる。
 白色顔料は、単一の無機物からなるものだけでなく、他の素材と複合させた粒子を用いてもよい。例えば、内部に空孔や他の素材を有する粒子、コア粒子に無機粒子を多数付着させた粒子、ポリマー粒子からなるコア粒子と無機ナノ微粒子からなるシェル層とからなるコア及びシェル複合粒子を用いることが好ましい。上記ポリマー粒子からなるコア粒子と無機ナノ微粒子からなるシェル層とからなるコア及びシェル複合粒子としては、例えば、特開2015-047520号公報の段落番号0012~0042の記載を参酌することができ、この内容は本明細書に組み込まれる。
 白色顔料は、中空無機粒子を用いることもできる。中空無機粒子とは、内部に空洞を有する構造の無機粒子であり、外殻に包囲された空洞を有する無機粒子のことを言う。中空無機粒子としては、特開2011-075786号公報、国際公開第2013/061621号、特開2015-164881号公報などに記載された中空無機粒子が挙げられ、これらの内容は本明細書に組み込まれる。
(黒色色材)
 黒色色材としては特に限定されず、公知のものを用いることができる。なお、本明細書において、黒色色材は、波長400~700nmの全ての範囲にわたって吸収を示す色材を意味する。黒色色材は、黒色顔料であることが好ましい。なかでも、黒色顔料は、以下に説明する評価基準Zに適合する黒色顔料が好ましい。
 まず、黒色顔料と、透明な樹脂マトリックス(アクリル樹脂等)と、溶剤とを含有し、全固形分に対する黒色顔料の含有量が60質量%である組成物を調製する。得られた組成物を、ガラス基板上に、乾燥後の硬化膜の膜厚が1μmになるように塗布し、硬化膜を形成する。乾燥後の硬化膜の遮光性を、分光光度計(日立株式会社製UV-3600等)を用いて評価する。乾燥後の硬化膜の波長400~700nmにおける透過率の最大値が10%未満であれば、上記黒色顔料は評価基準Zに適合する黒色顔料であると判断できる。
黒色顔料は、評価基準Zにおいて、乾燥後の硬化膜の波長400~700nmにおける透過率の最大値が8%未満であることがより好ましく、5%未満であることが更に好ましい。
 黒色顔料の平均一次粒子径は、250nm以下であることが好ましく、200nm以下であることがより好ましく、150nm以下であることが更に好ましい。上記平均一次粒子径は、ハンドリング性がより優れる点から、1nm以上であることが好ましく、5nm以上であることがより好ましく、20nm以上であることが更に好ましい。
 黒色顔料は、無機顔料(無機黒色顔料)であってもよく、有機顔料(有機黒色顔料)であってもよい。黒色顔料は、得られる膜の耐光性がより優れる点から、無機黒色顔料であることが好ましい。
 一般的に、黒色顔料は他の顔料よりも樹脂組成物中での分散性が低い傾向にある。特に、無機黒色顔料は樹脂組成物中での分散性が低い傾向にある。本発明の樹脂組成物によれば、黒色顔料を含むものであっても、顔料の分散性に優れた樹脂組成物とすることができるので、黒色顔料(特に無機黒色顔料)を用いた場合において、本発明の効果が顕著に奏される。
 無機黒色顔料としては、遮光性を有し、無機化合物を含有する粒子であれば、特に制限されないが、公知の無機顔料が使用できる。
 無機黒色顔料としては、チタン(Ti)及びジルコニウム(Zr)等の第4族の金属元素、バナジウム(V)及びニオブ(Nb)等の第5族の金属元素、イットリウム(Y)、アルミニウム(Al)、コバルト(Co)、クロム(Cr)、銅(Cu)、マンガン(Mn)、ルテニウム(Ru)、鉄(Fe)、ニッケル(Ni)、錫(Sn)、並びに、銀(Ag)からなる群から選択される1種又は2種以上の金属元素を含有する、金属酸化物、金属窒化物及び金属酸窒化物が挙げられる。なかでも、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、イットリウム(Y)、アルミニウム(Al)及び鉄(Fe)からなる群から選択される1種又は2種以上の金属元素を含有する、金属酸化物、金属窒化物又は金属酸窒化物が好ましい。つまり、無機黒色顔料は、2種以上の金属原子を含有してもよい。
 上記金属酸化物、金属窒化物及び金属酸窒化物としては、更に他の金属原子が混在した粒子を使用してもよい。上記としては、例えば、更に周期表13~17族元素から選択される原子(好ましくは酸素原子及び/又は硫黄原子)を含有する金属窒化物含有粒子が使用できる。
 また、上記金属酸化物、金属窒化物及び金属酸窒化物は、無機物及び/又は有機物で被覆されていてもよい。
 上記無機物としては、上記無機黒色顔料に含まれる金属原子が挙げられる。
 上記有機物としては、疎水性基を有する有機物が挙げられ、シラン化合物が好ましい。
 上記の金属窒化物、金属酸化物又は金属酸窒化物の製造方法としては、所望とする物性を有する黒色顔料が得られるものであれば、特に制限されないが、気相反応法等の公知の製造方法を使用できる。気相反応法としては、電気炉法及び熱プラズマ法等が挙げられるが、不純物の混入が少なく、粒子径が揃いやすく、また、生産性が高い点から、熱プラズマ法が好ましい。
 上記の金属窒化物、金属酸化物又は金属酸窒化物には、表面修飾処理が施されていてもよい。例えば、シリコーン基とアルキル基とを併せ持つ表面処理剤で表面修飾処理が施されていてもよい。そのような無機粒子としては、「KTP-09」シリーズ(信越化学工業社製)が挙げられる。
 無機黒色顔料としては、例えば、イットリウムを含有する窒化ジルコニウムも挙げられる。イットリウムを含有する窒化ジルコニウムの粒子径(平均一次粒子径)は、波長550nm(可視光)における遮光性の低下を抑制できる点から、10~100nmが好ましい。イットリウム含有の窒化ジルコニウム粉末の平均一次粒子径は、比表面積の測定値からの球形換算により測定できる。なお、イットリウムは、窒化ジルコニウム粉末に対して、固溶した状態で含有される。
 イットリウムを含有する窒化ジルコニウム粉末を濃度が50ppmの分散液としたときの分光透過スペクトルにおいて、波長550nmの光透過率をX1とし、波長365nmの光透過率をX2とするとき、X1は、7.5%以下が好ましく、6.5%以下がより好ましい。X2は、25%以上が好ましく、26%以上がより好ましい。
 X1に対するX2の比(X2/X1)は、3.5以上が好ましく、4.0以上がより好ましい。
 イットリウムの含有量は、窒化ジルコニウム及びイットリウムの合計質量に対して、波長550nm(可視光)における遮光性の低下を抑制できる点から、1.0~12.0質量%が好ましく、2.0~11.0質量%がより好ましい。上記含有量は、ICP(高周波誘導結合プラズマ)発光分光分析法により測定できる。
 イットリウムを含有する窒化ジルコニウム及びその製造方法としては、例えば、特開2020-180036号公報に記載のものが挙げられ、これらの内容は本明細書に組み込まれる。
 無機黒色顔料としては、例えば、アルミニウムを含有する窒化ジルコニウムも挙げられる。アルミニウムを含有する窒化ジルコニウムとしては、アルミナで被覆された窒化ジルコニウムが好ましい。窒化ジルコニウムがアルミナで被覆されることで、耐湿性が向上する。
 アルミナで被覆された窒化ジルコニウムの体積抵抗率は、1×10Ω・cm以上が好ましく、1×10Ω・cm以上がより好ましい。
 アルミナで被覆された窒化ジルコニウムの体積抵抗率は、次のようにして求められる。
 アルミナで被覆された窒化ジルコニウムを圧力容器に入れて5~10MPaで圧縮して圧粉体とし、この圧粉体の抵抗値をデジタルマルチメーターで測定する。そして、得られた抵抗値に対し、圧粉体の厚み及び装置形状と圧粉体の厚みを元に参照される抵抗率補正係数(RCF)とを乗ずることで、粉体の体積抵抗率(Ω・cm)が得られる。
 アルミナの被覆量は、窒化ジルコニウム100質量%に対して、1.5~9質量%が好ましく、3~7質量%がより好ましい。
 アルミナで被覆された窒化ジルコニウムの等電点は、5.7以上が好ましく、5.8以上がより好ましい。
 「アルミナで被覆された窒化ジルコニウムの等電点」とは、アルミナで被覆された窒化ジルコニウムが分散した分散液のpHを変化させたとき、粒子1個あたりの電荷が全体としてゼロになり、分散液に電圧を印加しても粉末が移動しないpHを意味する。
 換言すれば、窒化ジルコニウム粉末のような無機窒化物粉末は、pHが変わるとゼータ電位が大きく変化し、ある特定のpHで表面電位(ゼータ電位)がゼロとなり、電気泳動を全く示さない等電点を有する。なお、「ゼータ電位」とは、分散液中で、ある極性の電荷を持つ粉末の周りに、反対極性の電荷を持つイオンが引き寄せられて形成された電気的二重構造である電気二重層に、液体流動が起こり始めるスベリ面の電位を意味する。このゼータ電位は、例えば、DispersionTechnorogy社製のゼータ電位計(型式:DT1202)を用いて次のように測定される。本装置は、コロイド振動電流法を用いて測定される。上記分散液を容器に入れて一対の電極で挟み、これらの電極に所定の電圧を印加して分散液中の粉末が移動する。その結果、荷電粒子とその周囲のカウンターイオンの分極を生じコロイド振動電位と呼ばれる電場が発生し電流として検出できる。
この電流がコロイド振動電流となる。測定されたコロイド振動電流からSmoluchowskiの式と連結総理論とを用いてゼータ電位が求められる。そして、ゼータ電位がゼロになったときのpHが上記粉末の等電点である。
 アルミナで被覆された窒化ジルコニウムのL値は、13以下が好ましい。「アルミナで被覆された窒化ジルコニウムのL値」とは、CIE1976L色空間(測定用光源C:色温度6774K)における明度指数である。上記CIE1976L色空間は、国際照明委員会(CIE)が1976年にCIEXYZ表色系を変換し、
表色系内の一定距離がどの色の領域でもほぼ知覚的に等歩度の差をもつように定めた色空間である。また、明度指数L値、a値及びb値は、CIE1976L色空間内の直交座標系で定められる量であり、式(1)~(3)で表される。
 L=116(Y/Y1/3-16         (1)
 a=500[(X/X1/3-(Y/Y1/3]  (2)
 b=200[(Y/Y1/3-(Z/Z1/3]  (3)
 ただし、X/X、Y/Y、Z/Z>0.008856であり、X、Y、Zは、物体色の三刺激値である。また、X、Y0、は物体色を照明する光源の三刺激値であり、Y=100に基準化されている。また、アルミナで被覆された窒化ジルコニウムの明度指数L値は、例えば、日本電色工業社製の分光色差計(型式:SE7700)を用いて求める。L値が13以下である場合、黒色度が充足して黒色顔料として所定の色調が得られる。
 アルミナで被覆された窒化ジルコニウムのBET比表面積としては、20m/g以上が好ましい。上限は、1000m/g以下が好ましい。BET比表面積は、例えば、柴田科学社製の比表面積測定装置(型式:SA1100)を用いて、上記粉末(黒色顔料)の表面に、吸着占有面積の分かったガス分子(例えば、窒素ガス等)を吸着させ、その吸着量から求められる。ただし、アルミナで被覆された窒化ジルコニウムの表面に吸着したガス分子が1層目の吸着から多層吸着に移行する過程の情報に対して、BETの式(一定温度で吸着平衡状態であるとき、吸着平衡圧とこの圧力での吸着量との関係を示す式)を適用することにより、1層だけのガス分子の量が測定され、正確な比表面積を測定できるようになっている。BET比表面積が20m/g以上である場合、着色力(発色力)の低下を抑制できる。
 アルミナで被覆された窒化ジルコニウム及びその製造方法としては、例えば、特開2020-158377号公報に記載の物が挙げられ、これらの内容は本明細書に組み込まれる。
 中でも、遮光膜を形成する際のアンダーカットの発生を抑制できる点から、チタン、バナジウム、ジルコニウム、ニオブ及び鉄からなる群から選択される1種以上の金属の窒化物又は酸窒化物がより好ましく、ジルコニウムの窒化物若しくは酸窒化物又はチタンの窒化物若しくは酸窒化物(チタンブラック)が更に好ましい。
 チタンブラックは、酸窒化チタンを含有する黒色粒子である。チタンブラックは、分散性向上、凝集性抑制等の目的で必要に応じ、表面を修飾することが可能である。チタンブラックは、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化マグネシウム又は酸化ジルコニウムで被覆することが可能であり、また、特開2007-302836号公報に表されるような撥水性物質での処理も可能である。
 チタンブラックの製造方法としては、二酸化チタンと金属チタンの混合体を還元雰囲気で加熱し還元する方法(特開昭49-005432号公報)、四塩化チタンの高温加水分解で得られた超微細二酸化チタンを、水素を含有する還元雰囲気中で還元する方法(特開昭57-205322号公報)、二酸化チタン又は水酸化チタンをアンモニア存在下で高温還元する方法(特開昭60-065069号公報、特開昭61-201610号公報)及び二酸化チタン又は水酸化チタンにバナジウム化合物を付着させ、アンモニア存在下で高温還元する方法(特開昭61-201610号公報)が挙げられる。
 チタンブラックの粒子径は、特に制限されないが、10~45nmが好ましく、12~20nmがより好ましい。チタンブラックの比表面積は、特に制限されないが、撥水化剤で表面処理した後の撥水性が所定の性能となるために、BET(Brunauer,Emmett,Teller)法にて測定した値が5~150m/gであることが好ましく、20~100m/gであることがより好ましい。
 チタンブラックとしては、例えば、チタンブラック10S、12S、13R、13M、13M-C、13R、13R-N、13M-T(商品名、三菱マテリアル株式会社製)、ティラック(Tilack)D(商品名、赤穂化成株式会社製)及びMT-150A(商品名、テイカ株式会社製)が挙げられる。
 本発明の樹脂組成物は、チタンブラックを、チタンブラック及びSi原子を含有する被分散体として含有することも好ましい。この形態において、チタンブラックは、樹脂組成物中において被分散体として含有される。被分散体中のSi原子とTi原子との含有比(Si/Ti)が質量換算で0.05~0.5であることが好ましく、0.07~0.4であることがより好ましい。ここで、上記被分散体は、チタンブラックが一次粒子の状態であるもの、凝集体(二次粒子)の状態であるものの双方を包含する。
 また、被分散体のSi/Tiが所定値以上であれば、被分散体を使用した組成物層を光リソグラフィー等によりパターニングした際に、除去部に残渣が残りにくくなり、被分散体のSi/Tiは所定値以下であれば遮光能が良好になりやすい。
 被分散体のSi/Tiを変更する(例えば0.05以上とする)ためには、以下のような手段を用いることができる。まず、酸化チタンとシリカ粒子とを分散機を用いて分散することにより分散物を得て、この混合物を高温(例えば、850~1000℃)にて還元処理することにより、チタンブラック粒子を主成分とし、SiとTiとを含有する被分散体を得ることができる。Si/Tiが調整されたチタンブラックは、例えば、特開2008-266045号公報の段落0005及び0016~0021に記載の方法により作製できる。
 なお、被分散体中のSi原子とTi原子との含有比(Si/Ti)は、例えば、国際公開第2011/049090号の段落0054~0056に記載の方法(2-1)又は方法(2-3)を用いて測定できる。
 チタンブラック及びSi原子を含有する被分散体において、チタンブラックは、上記したものを使用できる。また、この被分散体においては、チタンブラックと共に、分散性、着色性等を調整する目的で、Cu、Fe、Mn、V及びNi等から選択される複数の金属の複合酸化物、酸化コバルト、酸化鉄、カーボンブラック、並びに、アニリンブラック等からなる黒色顔料を、1種又は2種以上を組み合わせて、被分散体として併用してもよい。この場合、全被分散体中の50質量%以上をチタンブラックからなる被分散体が占めることが好ましい。
 無機黒色顔料としては、カーボンブラックも挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック及びランプブラックが挙げられる。カーボンブラックとしては、オイルファーネス法等の公知の方法で製造されたカーボンブラックを使用してもよく、市販品を使用してもよい。カーボンブラックの市販品の具体例としては、C.I.ピグメントブラック7等の無機黒色顔料が挙げられる。
 カーボンブラックとしては、表面処理がされたカーボンブラックが好ましい。表面処理により、カーボンブラックの粒子表面状態を改質でき、組成物中での分散安定性を向上させることができる。表面処理としては、樹脂による被覆処理、酸性基を導入する表面処理及びシランカップリング剤による表面処理が挙げられる。
 カーボンブラックとしては、樹脂による被覆処理がされたカーボンブラックが好ましい。カーボンブラックの粒子表面を絶縁性の樹脂で被覆することにより、膜の遮光性及び絶縁性を向上させることができる。また、リーク電流の低減等により、画像表示装置の信頼性等を向上させることができる。このため、膜を絶縁性が要求される用途に用いる場合等に好適である。
 被覆樹脂としては、エポキシ樹脂、ポリアミド、ポリアミドイミド、ノボラック樹脂、フェノール樹脂、ウレア樹脂、メラミン樹脂、ポリウレタン、ジアリルフタレート樹脂、アルキルベンゼン樹脂、ポリスチレン、ポリカーボネート、ポリブチレンテレフタレート及び変性ポリフェニレンオキサイドが挙げられる。
 被覆樹脂の含有量は、遮光性及び絶縁性がより優れる点から、カーボンブラック及び被覆樹脂の合計に対して、0.1~40質量%が好ましく、0.5~30質量%がより好ましい。
 無機黒色顔料の結晶子サイズは、10nm以上が好ましく、20nm以上がより好ましい。上限は、60nm以下が好ましく、50nm以下がより好ましく、40nm以下が更に好ましい。
 無機黒色顔料の結晶子サイズを上記範囲とすることにより、膜の透過光はそのピーク波長が400nm以下であるような青紫色を呈し、紫外領域における光透過性を向上させることができる。従来の遮光材よりも紫外領域(特にi線(365nm))における透過性に優れるため、膜底部まで光硬化又は光溶解が十分進み、感度を向上させることができる。
 結晶子サイズが10nm以上である場合、粒子表面が酸化されにくくなり、遮光性の低下が抑制される。結晶子サイズが60nm以下である場合、着色膜とした際の透過ピークが長波長へシフトすることが抑制され、紫外領域における光透過性が低下するのが抑制されるとともに、可視光領域における遮光性の低下が抑制される。
 結晶子サイズは、例えば、次の方法で求められる。
 CuKα線をX線源としたときのX線回折スペクトルにおける(111)面に由来するX線回折ピークの半値幅から計算できる。
 例えば、窒化ジルコニウム、酸化ジルコニウム及び/又は酸窒化ジルコニウムを含有するジルコニア化合物粒子の、CuKα線をX線源としたときのX線回折スペクトルは、窒化ジルコニウムの場合、(111)面に由来するピークが回折角2θ=33.5~34.0°近傍に観測される。酸化ジルコニウムの場合、(011)面に由来するピークが回折角2θ=30.3°近傍に、(-111)面に由来するピークが回折角2θ=28.2°近傍に観測される。酸窒化ジルコニウムの場合、(211)面に由来するピークが2θ=33.4°近傍に観測される。そして、これらのX線回折ピークの半値幅から、下記式(4)に示すシェラーの式により、結晶子サイズを算出することができる。
 結晶子サイズ(nm) = Kλ/βcosθ   (4)
          β = √(β -β )   (5)
 式(4)中、Kは定数0.9を表す。λは0.15406(nm)を表す。βは上記式(5)で表される値である。θは上記のとおりである。式(5)中、βは、回折ピークの半値幅を表す。βは半値幅の補正値(0.12°)を表す。ただし、β、β及びβはラジアンで計算される。
 X線回折スペクトルは、X線源をCuKα線として、広角X線回折法により測定する。
 X線回折装置としては、例えば、理学社製RU-200Rを用いることができる。測定条件は、出力は50kV/200mA、スリット系は1°-1°-0.15mm-0.45mm、測定ステップ(2θ)は0.02°、スキャン速度は2°/分とする。
 また、上記回析ピークの値としては、例えば、特開2009-091205号公報の段落0027~0028にしめされたものが挙げられ、これらの内容は本明細書に組み込まれる。
 結晶子サイズを上記範囲とする方法としては、例えば、気相反応による粒子合成の際に、結晶成長条件を調整する方法が挙げられる。例えば、熱プラズマ法においては、粒子を気化した後の冷却時間及び冷却速度を調整することにより、結晶子サイズを上述の範囲に容易に調整することができる。
 無機黒色顔料としては、例えば、特開2017-222559号公報、国際公開第2019/130772号、国際公開第2019/059359号及び特開2009-091205号公報のジルコニウムが挙げられ、これらの内容は本明細書に組み込まれる。
 黒色顔料として使用される有機黒色顔料としては、遮光性を有し、有機化合物を含有する粒子であれば、特に制限されないが、公知の有機黒色顔料が使用できる。
 有機黒色顔料としては、例えば、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物及びアゾ系化合物が挙げられ、ビスベンゾフラノン化合物又はペリレン化合物が好ましい。
 ビスベンゾフラノン化合物としては、特表2010-534726号公報、特表2012-515233号公報及び特表2012-515234号公報に記載された化合物が挙げられる。ビスベンゾフラノン化合物は、BASF社製の「Irgaphor Black」(商品名)として入手可能である。
 ペリレン化合物としては、特開昭62-001753号公報及び特公昭63-026784号公報に記載された化合物が挙げられる。ペリレン化合物は、C.I.Pigment Black 21、30、31、32、33及び34として入手可能である。
本発明の樹脂組成物に用いられる色材は、上述した黒色色材のみであってもよく、有彩色色材を更に含むものであってもよい。この態様によれば、可視光領域での遮光性に優れた膜を形成できる樹脂組成物が得られやすい。色材として黒色色材と有彩色色材とを併用する場合、両者の質量比は、黒色色材:有彩色色材=100:10~300であることが好ましく、100:20~200であることがより好ましい。また、上記黒色色材としては黒色顔料を用いることが好ましく、上記有彩色色材としては有彩色顔料を用いることが好ましい。
 黒色色材と有彩色色材の好ましい組み合わせとしては、例えば以下が挙げられる。
 (A-1)有機黒色色材と青色色材とを含有する態様。
 (A-2)有機黒色色材と青色色材と黄色色材とを含有する態様。
 (A-3)有機黒色色材と青色色材と黄色色材と赤色色材とを含有する態様。
 (A-4)有機黒色色材と青色色材と黄色色材と紫色色材とを含有する態様。
 上記(A-1)の態様において、有機黒色色材と青色色材との質量比は、有機黒色色材:青色色材=100:1~70であることが好ましく、100:5~60であることがより好ましく、100:10~50であることが更に好ましい。
 上記(A-2)の態様において、有機黒色色材と青色色材と黄色色材の質量比は、有機黒色色材:青色色材:黄色色材=100:10~90:10~90であることが好ましく、100:15~85:15~80であることがより好ましく、100:20~80:20~70であることが更に好ましい。
 上記(A-3)の態様において、有機黒色色材と青色色材と黄色色材と赤色色材との質量比は、有機黒色色材:青色色材:黄色色材:赤色色材=100:20~150:1~60:10~100であることが好ましく、100:30~130:5~50:20~90であることがより好ましく、100:40~120:10~40:30~80であることが更に好ましい。
 上記(A-4)の態様において、有機黒色色材と青色色材と黄色色材と紫色色材との質量比は、有機黒色色材:青色色材:黄色色材:紫色色材=100:20~150:1~60:10~100であることが好ましく、100:30~130:5~50:20~90であることがより好ましく、100:40~120:10~40:30~80であることが更に好ましい。
(近赤外線吸収色材)
 近赤外線吸収色材は、顔料であることが好ましく、有機顔料であることがより好ましい。また、近赤外線吸収色材は、波長700nmを超え1400nm以下の範囲に極大吸収波長を有することが好ましい。また、近赤外線吸収色材の極大吸収波長は、1200nm以下であることが好ましく、1000nm以下であることがより好ましく、950nm以下であることが更に好ましい。また、近赤外線吸収色材は、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1以下であることが好ましく、0.05以下であることがより好ましく、0.03以下であることが更に好ましく、0.02以下であることが特に好ましい。下限は、特に限定はないが、例えば、0.0001以上とすることができ、0.0005以上とすることもできる。上述の吸光度の比が上記範囲であれば、可視光透明性及び近赤外線遮蔽性に優れた近赤外線吸収色材とすることができる。なお、本発明において、近赤外線吸収色材の極大吸収波長及び各波長における吸光度の値は、近赤外線吸収色材を含む樹脂組成物を用いて形成した膜の吸収スペクトルから求めた値である。
 近赤外線吸収色材としては、特に限定はないが、ピロロピロール化合物、シアニン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、メロシアニン化合物、クロコニウム化合物、オキソノール化合物、イミニウム化合物、ジチオール化合物、トリアリールメタン化合物、ピロメテン化合物、アゾメチン化合物、アントラキノン化合物、ジベンゾフラノン化合物、ジチオレン金属錯体等が挙げられる。ピロロピロール化合物としては、特開2009-263614号公報の段落番号0016~0058に記載の化合物、特開2011-068731号公報の段落番号0037~0052に記載の化合物、国際公開第2015/166873号の段落番号0010~0033に記載の化合物などが挙げられる。スクアリリウム化合物としては、特開2011-208101号公報の段落番号0044~0049に記載の化合物、特許第6065169号公報の段落番号0060~0061に記載の化合物、国際公開第2016/181987号の段落番号0040に記載の化合物、特開2015-176046号公報に記載の化合物、国際公開第2016/190162号の段落番号0072に記載の化合物、特開2016-074649号公報の段落番号0196~0228に記載の化合物、特開2017-067963号公報の段落番号0124に記載の化合物、国際公開第2017/135359号に記載の化合物、特開2017-114956号公報に記載の化合物、特許6197940号公報に記載の化合物、国際公開第2016/120166号に記載の化合物などが挙げられる。シアニン化合物としては、特開2009-108267号公報の段落番号0044~0045に記載の化合物、特開2002-194040号公報の段落番号0026~0030に記載の化合物、特開2015-172004号公報に記載の化合物、特開2015-172102号公報に記載の化合物、特開2008-088426号公報に記載の化合物、国際公開第2016/190162号の段落番号0090に記載の化合物、特開2017-031394号公報に記載の化合物などが挙げられる。クロコニウム化合物としては、特開2017-082029号公報に記載の化合物が挙げられる。イミニウム化合物としては、例えば、特表2008-528706号公報に記載の化合物、特開2012-012399号公報に記載の化合物、特開2007-092060号公報に記載の化合物、国際公開第2018/043564号の段落番号0048~0063に記載の化合物が挙げられる。フタロシアニン化合物としては、特開2012-077153号公報の段落番号0093に記載の化合物、特開2006-343631号公報に記載のオキシチタニウムフタロシアニン、特開2013-195480号公報の段落番号0013~0029に記載の化合物、特許第6081771号公報に記載のバナジウムフタロシアニン化合物、国際公開第2020/071470号に記載の化合物が挙げられる。ナフタロシアニン化合物としては、特開2012-077153号公報の段落番号0093に記載の化合物が挙げられる。ジチオレン金属錯体としては、特許第5733804号公報に記載の化合物が挙げられる。
 また、近赤外線吸収色材としては、特開2017-197437号公報に記載のスクアリリウム化合物、特開2017-025311号公報に記載のスクアリリウム化合物、国際公開第2016/154782号に記載のスクアリリウム化合物、特許第5884953号公報に記載のスクアリリウム化合物、特許第6036689号公報に記載のスクアリリウム化合物、特許第5810604号公報に記載のスクアリリウム化合物、国際公開第2017/213047号の段落番号0090~0107に記載のスクアリリウム化合物、特開2018-054760号公報の段落番号0019~0075に記載のピロール環含有化合物、特開2018-040955号公報の段落番号0078~0082に記載のピロール環含有化合物、特開2018-002773号公報の段落番号0043~0069に記載のピロール環含有化合物、特開2018-041047号公報の段落番号0024~0086に記載のアミドα位に芳香環を有するスクアリリウム化合物、特開2017-179131号公報に記載のアミド連結型スクアリリウム化合物、特開2017-141215号公報に記載のピロールビス型スクアリリウム骨格又はクロコニウム骨格を有する化合物、特開2017-082029号公報に記載されたジヒドロカルバゾールビス型のスクアリリウム化合物、特開2017-068120号公報の段落番号0027~0114に記載の非対称型の化合物、特開2017-067963号公報に記載されたピロール環含有化合物(カルバゾール型)、特許第6251530号公報に記載されたフタロシアニン化合物、特開2020-075959号公報に記載されたスクアリリウム化合物、 韓国公開特許第10-2019-0135217号公報に記載の銅錯体などを用いることもできる。
 樹脂組成物の全固形分中における色材の含有量は20~90質量%であることが好ましい。下限は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。上限は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 また、樹脂組成物の全固形分中における顔料の含有量は20~90質量%であることが好ましい。下限は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。上限は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 また、色材中における染料の含有量は50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 本発明の樹脂組成物の好ましい一態様として、樹脂組成物に含まれる色材が黒色顔料を含むものであり、かつ、樹脂組成物の全固形分中における黒色顔料の含有量が65質量%以上である態様が挙げられる。この態様によれば、遮光性に優れた膜を形成することができる。この態様において、樹脂組成物の全固形分中における黒色顔料の含有量は、70質量%以上であることが好ましく、75質量%以上であることがより好ましい。上限は、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。また、色材中における黒色顔料の含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、100質量%であることが特に好ましい。
<樹脂B>
(特定樹脂)
 本発明の樹脂組成物は樹脂B(以下、樹脂ともいう)を含む。樹脂組成物に含まれる樹脂は、酸無水物基と、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖とを含む樹脂B1(以下、特定樹脂ともいう)を含む。
 特定樹脂は、特定樹脂の末端に酸無水物基を有することが好ましい。特定樹脂が有する酸無水物基の数は、1~5個であることが好ましく、1~3個であることがより好ましく、顔料の分散性をより向上できるという理由から1個であることが特に好ましい。
 特定樹脂が有する酸無水物基は、顔料の分散性をより向上できるという理由から環状酸無水物基であることが好ましい。
 特定樹脂が有する酸無水物基は、式(RAH-1)~式(RAH-7)のいずれかで表される基であることが好ましく、式(RAH-4)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(RAH-1)~(RAH-7)中、*は連結手を表し、
 RAH1、RAH7、RAH8、RAH10およびRAH11はそれぞれ独立して水素原子または置換基を表し、
 RAH2、RAH3、RAH4、RAH5、RAH6およびRAH9は置換基を表し、
 r2、r3、r4、r6およびr7は、それぞれ独立して0~3の整数を表し、
 r5は0~2の整数を表す。
 r2、r3、r4、r6およびr7は、それぞれ独立して0~2の整数であることが好ましく、0または1であることがより好ましく、0であることが更に好ましい。
 r5は0または1であることが好ましく、0であることが更に好ましい。
 RAH1~RAH11が表す置換基としては、後述する置換基Tが挙げられ、ハロゲン原子、カルボキシ基、アルキル基またはヒドロキシ基であることが好ましく、カルボキシ基であることがより好ましい。
 特定樹脂が有するポリマー鎖は、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基から選ばれる少なくとも1種を含んでいてもよい。これらの基は、ポリマー鎖の末端に含まれていることが好ましい。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。
 特定樹脂が有するポリマー鎖は、式(P-1)~式(P-4)のいずれかで表される繰り返し単位を含むポリマー鎖であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式中、RG1~RG4は、それぞれ独立してアルキレン基を表す。RG1~RG4が表すアルキレン基としては、炭素数1~20の直鎖状又は分岐状のアルキレン基であることが好ましく、炭素数2~16の直鎖状又は分岐状のアルキレン基であることがより好ましく、炭素数3~12の直鎖状又は分岐状のアルキレン基であることが更に好ましい。
 特定樹脂が有するポリマー鎖は、2種以上の繰り返し単位を含んでいてもよい。例えば、式(P1-1)~式(P1-3)のいずれかで表される繰り返し単位と、式(P1-4)で表される繰り返し単位とをそれぞれ含んでいてもよい。
 ポリマー鎖の末端構造としては、特に限定されない。水素原子であってもよく、置換基であってもよい。置換基としては、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基などが挙げられる。
 特定樹脂は、式(1)で表される樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(1)中、Rは、酸無水物基を表し、
 XおよびXはそれぞれ独立して、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表し、Rx1は水素原子または置換基を表し、
 Lは、単結合またはm+n価の連結基を表し、
 Pは、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
 mおよびnはそれぞれ独立して1以上の整数を表す。
 式(1)のRが表す酸無水物基は、顔料の分散性をより向上できるという理由から環状酸無水物基であることが好ましい。
 式(1)のRが表す酸無水物基は、上述した式(RAH-1)~式(RAH-7)のいずれかで表される基であることが好ましく、式(RAH-4)で表される基であることがより好ましい。
 式(1)のPが表すポリマー鎖は、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基から選ばれる少なくとも1種を含んでいてもよい。これらの基は、ポリマー鎖の末端に含まれていることが好ましい。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。
 式(1)のPが表すポリマー鎖は、上述した式(P-1)~式(P-4)のいずれかで表される繰り返し単位を含むポリマー鎖であることが好ましい。
 式(1)のPが表すポリマー鎖の末端構造としては、特に限定されない。水素原子であってもよく、置換基であってもよい。置換基としては、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基などが挙げられる。
 Pが表すポリマー鎖は、式(P100)で表されるポリマー鎖であることが好ましい。
 *-P10-Lp10-(Rp10   ・・・(P100)
 式(P100)中、*は連結手を表し、
 P10は、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
 Lp10は単結合またはq+1価の基を表し、
 Rp10は、水素原子または置換基を表し、
 qは、1または2を表す。
 式(P100)のP10における、ポリエーテル構造の繰り返し単位は、上述した式(P-4)で表される繰り返し単位であることが好ましい。式(P100)のP10における、ポリエステル構造の繰り返し単位としては、上述した式(P-1)~(P-3)のいずれかで表される繰り返し単位であることが好ましい。
 式(P100)のLp10が表すq+1価の基としては、炭化水素基、複素環基、-NRpL1-、-N<、-SO-、-SO-、-CO-、-O-、-COO-、-OCO-、-S-、-NRpL1CO-および-CONRpL1-およびこれらの2以上を組み合わせてなる基が挙げられる。RpL1は水素原子、アルキル基、アリール基または複素環基を表し、水素原子であることが好ましい。
 炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基が挙げられる。脂肪族炭化水素基の炭素数は、1~30が好ましく、1~20がより好ましく、1~15が更に好ましい。脂肪族炭化水素基は、直鎖、分岐、環状のいずれでもよい。また、環状の脂肪族炭化水素基は、単環であってもよく、縮合環であってもよい。また、環状の脂肪族炭化水素基は架橋構造を有していてもよい。芳香族炭化水素基の炭素数は、6~30が好ましく、6~20がより好ましく、6~10が更に好ましい。炭化水素基は置換基を有していてもよい。置換基としては、後述する置換基Tが挙げられる。
 複素環基は、非芳香族の複素環基であってもよく、芳香族複素環基であってもよい。複素環基は、5員環または6員環が好ましい。複素環基の環を構成するヘテロ原子の種類は窒素原子、酸素原子、硫黄原子などが挙げられる。複素環基の環を構成するヘテロ原子の数は1~3が好ましい。複素環基は、単環であってもよく、縮合環であってもよい。複素環基は置換基を有していてもよい。置換基としては、後述する置換基Tが挙げられる。
 式(P100)のRp10が表す置換基としては、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基などが挙げられ、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基であることが好ましい。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。
 式(P100)のqは、1または2を表し、1であることが好ましい。
 Pが表すポリマー鎖の具体例としては、以下に示すP1-1~P1-22が挙げられる。以下の式中、*は連結手である。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(1)のLは、単結合またはm+n価の連結基を表す。Lが表すm+n価の連結基としては、炭化水素基、複素環基、-NRL1-、-N<、-SO-、-SO-、-CO-、-O-、-COO-、-OCO-、-S-、-NRL1CO-および-CONRL1-およびこれらの2以上を組み合わせてなる基が挙げられる。RL1は水素原子、アルキル基、アリール基または複素環基を表し、水素原子であることが好ましい。
 炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基が挙げられる。脂肪族炭化水素基の炭素数は、1~30が好ましく、1~20がより好ましく、1~15が更に好ましい。脂肪族炭化水素基は、直鎖、分岐、環状のいずれでもよい。また、環状の脂肪族炭化水素基は、単環であってもよく、縮合環であってもよい。また、環状の脂肪族炭化水素基は架橋構造を有していてもよい。芳香族炭化水素基の炭素数は、6~30が好ましく、6~20がより好ましく、6~10が更に好ましい。炭化水素基は置換基を有していてもよい。置換基としては、後述する置換基Tが挙げられる。
 複素環基は、非芳香族の複素環基であってもよく、芳香族複素環基であってもよい。複素環基は、5員環または6員環が好ましい。複素環基の環を構成するヘテロ原子の種類は窒素原子、酸素原子、硫黄原子などが挙げられる。複素環基の環を構成するヘテロ原子の数は1~3が好ましい。複素環基は、単環であってもよく、縮合環であってもよい。複素環基は置換基を有していてもよい。置換基としては、後述する置換基Tが挙げられる。
 m+n価の連結基は、
 炭化水素基;
 複素環基;
 炭化水素基と、複素環基、-NRL1-、-N<、-SO-、-SO-、-CO-、-O-、-COO-、-OCO-、-S-、-NRL1CO-および-CONRL1から選ばれる少なくとも1種の基とを組み合わせた構造の基;または、
 複素環基と、炭化水素基、-NRL1-、-N<、-SO-、-SO-、-CO-、-O-、-COO-、-OCO-、-S-、-NRL1CO-および-CONRL1から選ばれる少なくとも1種の基とを組み合わせた構造の基であることが好ましい。
 Lが表すm+n価の連結基の具体例としては、-(CH-、-(CH-、-(CH-、-(CH-、-(CH-、および、以下に示す(Z1-1)~(Z1-23)などが挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式(1)のXおよびXはそれぞれ独立して、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表す。Rx1は水素原子または置換基を表す。Rx1が表す置換基としては、後述する置換基Tが挙げられ、アルキル基であることが好ましい。Rx1は水素原子またはアルキル基であることが好ましく、水素原子であることがより好ましい。
 式(1)のXは、-S-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-または-NRx1CO-であることが好ましく、-CO-、-COO-または-OCO-であることがより好ましく、-COO-であることが更に好ましい。
 式(1)のXは、単結合、-O-または-NRx1-であることが好ましい。
 式(1)のLが単結合で、Xが-COO-の場合、Xは単結合であることが好ましい。
 式(1)のmおよびnはそれぞれ独立して1以上の整数を表す。mは1~5の整数であることが好ましく、1~3の整数であることがより好ましく、1または2であることが更に好ましく、顔料の分散性をより向上できるという理由から1であることが特に好ましい。nは1~5の整数であることが好ましく、1~4の整数であることがより好ましく、1~3の整数であることが更に好ましく、1または2であることがより一層好ましく、現像残渣の発生をより抑制できるという理由から1であることが特に好ましい。
 特定樹脂は、式(2)で表される樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(2)中、Xは、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表し、Rx1は水素原子または置換基を表し、
 Lは、単結合またはm+n価の連結基を表し、
 Pは、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
 mおよびnはそれぞれ独立して1以上の整数を表す。
 式(2)のXは、式(1)のXと同義であり、好ましい範囲も同様である。
 式(2)のLは、式(1)のLと同義であり、好ましい範囲も同様である。
 式(2)のPは、式(1)のPと同義であり、好ましい範囲も同様である。
 式(2)のmは、式(1)のmと同義であり、好ましい範囲も同様である。
 式(2)のnは、式(1)のnと同義であり、好ましい範囲も同様である。
 (置換基T)
 置換基Tとしては、アルキル基(好ましくは炭素数1~30のアルキル基)、アルケニル基(好ましくは炭素数2~30のアルケニル基)、アルキニル基(好ましくは炭素数2~30のアルキニル基)、アリール基(好ましくは炭素数6~30のアリール基)、アミノ基(好ましくは炭素数0~30のアミノ基)、アルコキシ基(好ましくは炭素数1~30のアルコキシ基)、アリールオキシ基(好ましくは炭素数6~30のアリールオキシ基)、ヘテロアリールオキシ基(好ましくは炭素数1~30のヘテロアリールオキシ基)、アシル基(好ましくは炭素数2~30のアシル基)、アルコキシカルボニル基(好ましくは炭素数2~30のアルコキシカルボニル基)、アリールオキシカルボニル基(好ましくは炭素数7~30のアリールオキシカルボニル基)、アシルオキシ基(好ましくは炭素数2~30のアシルオキシ基)、アシルアミノ基(好ましくは炭素数2~30のアシルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30のアルコキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30のアリールオキシカルボニルアミノ基)、スルファモイル基(好ましくは炭素数0~30のスルファモイル基)、カルバモイル基(好ましくは炭素数1~30のカルバモイル基)、アルキルチオ基(好ましくは炭素数1~30のアルキルチオ基)、アリールチオ基(好ましくは炭素数6~30のアリールチオ基)、ヘテロアリールチオ基(好ましくは炭素数1~30のヘテロアリールチオ基)、アルキルスルホニル基(好ましくは炭素数1~30のアルキルスルホニル基)、アリールスルホニル基(好ましくは炭素数6~30のアリールスルホニル基)、ヘテロアリールスルホニル基(好ましくは炭素数1~30のヘテロアリールスルホニル基)、アルキルスルフィニル基(好ましくは炭素数1~30のアルキルスルフィニル基)、アリールスルフィニル基(好ましくは炭素数6~30のアリールスルフィニル基)、ヘテロアリールスルフィニル基(好ましくは炭素数1~30のヘテロアリールスルフィニル基)、ウレイド基(好ましくは炭素数1~30のウレイド基)、リン酸アミド基(好ましくは炭素数1~30のリン酸アミド基)、ヒドロキシ基、メルカプト基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、複素環基が挙げられる。これらの基は、さらに置換可能な基である場合、さらに置換基を有してもよい。さらなる置換基としては、上述した置換基Tで説明した基が挙げられる。
 特定樹脂の重量平均分子量は500以上10000未満であることが好ましい。下限は800以上であることが好ましく、1000以上であることがより好ましい。上限は8000以下であることが好ましく、6000以下であることがより好ましい。
 特定樹脂がエチレン性不飽和結合基を有する場合、特定樹脂のエチレン性不飽和結合基価は、0.1~2.0mmol/gであることが好ましく、0.2~1.5mmol/gであることがより好ましく、0.3~1.0mmol/gであることが更に好ましい。
 また、特定樹脂がエポキシ基を有する場合、特定樹脂のエポキシ基価は、0.1~2.0mmol/gであることが好ましく、0.2~1.5mmol/gであることがより好ましく、0.3~1.0mmol/gであることが更に好ましい。
 また、特定樹脂がオキセタニル基を有する場合、特定樹脂のオキセタニル基価は、0.1~2.0mmol/gであることが好ましく、0.2~1.5mmol/gであることがより好ましく、0.3~1.0mmol/gであることが更に好ましい。
 特定樹脂は、例えば、以下の方法で合成することができる。
 (1)ヒドロキシ基と、メルカプト基とを有する化合物(たとえば、メルカプトエタノール、メルカプトプロパノール、メルカプトヘキサノール、メルカプトグリセロール等)を用いてラクトンを開環重合させて得られたマクロモノマーを、酸無水物または酸無水物クロリドと反応させて合成する方法。
 (2)ヒドロキシ基を有する化合物(例えば、2-エチルヘキサノールなど)を用いてラクトンを開環重合させて得られたマクロモノマーを、酸無水物または酸無水物クロリドと反応させて合成する方法。
 樹脂組成物中において、一部の特定樹脂は、樹脂組成物中の他の素材と反応していてもよい。
(他の樹脂)
 本発明の樹脂組成物は、樹脂として上述した特定樹脂以外の他の樹脂を含んでもよい。他の樹脂としては、(メタ)アクリル樹脂、エポキシ樹脂、(メタ)アクリルアミド樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、シロキサン樹脂、カルド樹脂などが挙げられる。また、他の樹脂としては、国際公開第2016/088645号の実施例に記載された樹脂、特開2017-057265号公報に記載された樹脂、特開2017-032685号公報に記載された樹脂、特開2017-075248号公報に記載された樹脂、特開2017-066240号公報に記載された樹脂、特開2017-167513号公報に記載された樹脂、特開2017-173787号公報に記載された樹脂、特開2017-206689号公報の段落番号0041~0060に記載された樹脂、特開2018-010856号公報の段落番号0022~0071に記載された樹脂、特開2016-222891号公報に記載されたブロックポリイソシアネート樹脂、特開2020-122052号公報に記載された樹脂、特開2020-111656号公報に記載された樹脂、特開2020-139021号公報に記載された樹脂、特開2017-138503号公報に記載の主鎖に環構造を有する構成単位と側鎖にビフェニル基を有する構成単位とを含む樹脂、特開2020-186373号公報の段落0199~0233に記載の樹脂、特開2020-186325号公報に記載のアルカリ可溶性樹脂、韓国公開特許第10-2020-0078339号公報に記載の式1で表される樹脂を用いることもできる。また、他の樹脂として、特定樹脂を合成した時の副生成物や、特定樹脂の変性物などを含んでいてもよい。
 他の樹脂の重量平均分子量(Mw)は、3000~2000000が好ましい。上限は、1000000以下が好ましく、500000以下がより好ましい。下限は、4000以上が好ましく、5000以上がより好ましい。
 他の樹脂には、アルカリ現像性を有する樹脂や、分散剤としての樹脂を用いることが好ましい。
〔アルカリ現像性を有する樹脂〕
 アルカリ現像性を有する樹脂の重量平均分子量(Mw)は、3000~2000000が好ましい。上限は、1000000以下がより好ましく、500000以下がさらに好ましい。下限は、4000以上がより好ましく、5000以上がさらに好ましい。
 アルカリ現像性を有する樹脂としては、(メタ)アクリル樹脂、ポリイミン樹脂、ポリエーテル樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、ポリイミド樹脂などが挙げられ、(メタ)アクリル樹脂及びポリイミン樹脂が好ましく、(メタ)アクリル樹脂がより好ましい。
 アルカリ現像性を有する樹脂としては、酸基を有する樹脂を用いることが好ましい。酸基としては、フェノール性ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、スルホンアミド基などが挙げられ、カルボキシ基が好ましい。また、酸基を有する樹脂としては、エポキシ開環で生じたヒドロキシ基に酸無水物を反応させて酸基を導入した樹脂を用いてもよい。このような樹脂としては、特許6349629号公報に記載された樹脂が挙げられる。酸基を有する樹脂は、例えば、アルカリ可溶性樹脂として用いることができる。アルカリ可溶性樹脂は、カルド骨格を有する、カルド樹脂であってもよい。カルド樹脂としては、例えば、V-259ME(新日鉄住金社製)が挙げられる。
 アルカリ現像性を有する樹脂は、酸基を有する繰り返し単位を含むことが好ましく、酸基を有する繰り返し単位を樹脂の全繰り返し単位中1~70モル%含むことがより好ましい。酸基を有する繰り返し単位の含有量の上限は、50モル%以下であることが好ましく、40モル%以下であることがより好ましい。酸基を有する繰り返し単位の含有量の下限は、2モル%以上であることが好ましく、5モル%以上であることがより好ましい。
 アルカリ現像性を有する樹脂の酸価は、200mgKOH/g以下が好ましく、150mgKOH/g以下がより好ましく、120mgKOH/g以下が更に好ましく、100mgKOH/g以下が特に好ましい。また、アルカリ現像性を有する樹脂の酸価は、5mgKOH/g以上が好ましく、10mgKOH/g以上がより好ましく、20mgKOH/g以上が更に好ましい。
 アルカリ現像性を有する樹脂は、更にエチレン性不飽和結合含有基を有することも好ましい。エチレン性不飽和結合含有基としては、ビニル基、アリル基、(メタ)アクリロイル基などが挙げられ、アリル基及び(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。
 アルカリ現像性を有する樹脂は、下記式(ED1)で示される化合物及び/又は下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分に由来する繰り返し単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(ED1)中、RおよびRは、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000018
 式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。式(ED2)の詳細については、特開2010-168539号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 エーテルダイマーの具体例としては、例えば、特開2013-029760号公報の段落番号0317の記載を参酌することができ、この内容は本明細書に組み込まれる。
 アルカリ現像性を有する樹脂は、下記式(X)で示される化合物に由来する繰り返し単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(X)中、Rは、水素原子又はメチル基を表し、Rは炭素数2~10のアルキレン基を表し、Rは、水素原子又はベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
 アルカリ現像性を有する樹脂としては、例えば下記構造の樹脂などが挙げられる。以下の構造式中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000020
〔分散剤〕
 本発明の樹脂組成物は、分散剤としての樹脂を含むこともできる。分散剤は、酸性分散剤(酸性樹脂)、塩基性分散剤(塩基性樹脂)が挙げられる。ここで、酸性分散剤(酸性樹脂)とは、酸基の量が塩基性基の量よりも多い樹脂を表す。酸性分散剤(酸性樹脂)は、酸基の量と塩基性基の量の合計量を100モル%としたときに、酸基の量が70モル%以上を占める樹脂が好ましく、実質的に酸基のみからなる樹脂がより好ましい。酸性分散剤(酸性樹脂)が有する酸基は、カルボキシ基が好ましい。酸性分散剤(酸性樹脂)の酸価は、40~105mgKOH/gが好ましく、50~105mgKOH/gがより好ましく、60~105mgKOH/gがさらに好ましい。また、塩基性分散剤(塩基性樹脂)とは、塩基性基の量が酸基の量よりも多い樹脂を表す。塩基性分散剤(塩基性樹脂)は、酸基の量と塩基性基の量の合計量を100モル%としたときに、塩基性基の量が50モル%を超える樹脂が好ましい。塩基性分散剤が有する塩基性基は、アミノ基であることが好ましい。
 分散剤として用いる樹脂は、酸基を有する繰り返し単位を含むことが好ましい。
 分散剤として用いる樹脂は、グラフトポリマーであることも好ましい。グラフトポリマーとしては、特開2012-255128号公報の段落番号0025~0094に記載された樹脂が挙げられ、この内容は本明細書に組み込まれる。
 分散剤として用いる樹脂は、主鎖及び側鎖の少なくとも一方に窒素原子を含むポリイミン系分散剤(ポリイミン樹脂)であることも好ましい。ポリイミン系分散剤としては、pKa14以下の官能基を有する部分構造を有する主鎖と、原子数40~10000の側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。塩基性窒素原子とは、塩基性を呈する窒素原子であれば特に制限はない。ポリイミン系分散剤としては、特開2012-255128号公報の段落番号0102~0166に記載された樹脂が挙げられ、この内容は本明細書に組み込まれる。
 分散剤として用いる樹脂は、コア部に複数個のポリマー鎖が結合した構造の樹脂であることも好ましい。このような樹脂としては、例えばデンドリマー(星型ポリマーを含む)が挙げられる。また、デンドリマーの具体例としては、特開2013-043962号公報の段落番号0196~0209に記載された高分子化合物C-1~C-31などが挙げられる。
 また、分散剤には、特許第6432077号公報の段落番号0219~0221に記載されたブロック共重合体(EB-1)~(EB-9)、特開2018-087939号公報に記載された樹脂、国際公開第2016/104803号に記載のポリエステル側鎖を有するポリエチレンイミン、国際公開第2019/125940号に記載のブロック共重合体、特開2020-066687号公報に記載のアクリルアミド構造単位を有するブロックポリマー、特開2020-066688号公報に記載のアクリルアミド構造単位を有するブロックポリマー、国際公開第2016/104803号に記載の分散剤、特開2019-095548号公報に記載の樹脂などを用いることもできる。
 分散剤は、市販品としても入手可能であり、そのような具体例としては、BYKChemie社製のDISPERBYKシリーズ(例えば、DISPERBYK-111、161など)、Lubrizol製のSolsperseシリーズ(例えば、Solsperse 36000など)などが挙げられる。また、特開2014-130338号公報の段落番号0041~0130に記載された顔料分散剤を用いることもでき、この内容は本明細書に組み込まれる。
 なお、上記分散剤として説明した樹脂は、分散剤以外の用途で使用することもできる。例えば、バインダーとして用いることもできる。
 樹脂組成物の全固形分中における樹脂の含有量は、5~60質量%が好ましい。下限は、10質量%以上が好ましく、15質量%以上がより好ましい。上限は、50質量%以下が好ましく、40質量%以下がより好ましい。
 樹脂組成物の全固形分中における上述した特定樹脂の含有量は、0.1~60質量%が好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、50質量%以下が好ましく、40質量%以下がより好ましい。
 上述した特定樹脂の含有量は、顔料100質量部に対して10~80質量部が好ましい。下限は、20質量部以上が好ましく、30質量部以上がより好ましい。上限は、70質量部以下が好ましく、50質量部以下がより好ましい。
 樹脂組成物の全固形分中における色材と上述した特定樹脂の合計の含有量は、30~100質量%が好ましい。下限は、35質量%以上がより好ましく、40質量%以上がさらに好ましい。上限は、90質量%以下がより好ましく、80質量%以下がさらに好ましい。
 樹脂組成物において、上述した他の樹脂の含有量は、上述した特定樹脂の100質量部に対して230質量部以下であることが好ましく、200質量部以下であることがより好ましく、150質量部以下であることが更に好ましい。下限は0質量部であってもよく、5質量部以上とすることもでき、10質量部以上とすることもできる。また、樹脂組成物は上述した他の樹脂を実質的に含まないことも好ましい。この態様によれば、より優れた分散性が得られる。他の樹脂を実質的に含まない場合とは、樹脂組成物の全固形分中における他の樹脂の含有量が0.1質量%以下であることを意味し、0.05質量%以下であることが好ましく、含有しないことがより好ましい。
<溶剤C>
 本発明の樹脂組成物は、溶剤C(以下、溶剤という)を含有する。溶剤としては、各成分の溶解性や樹脂組成物の塗布性を満足すれば基本的には特に制限はない。溶剤は有機溶剤であることが好ましい。溶剤としては、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤などが挙げられ、特定樹脂との親和性が良好で、顔料の分散性をより向上できるという理由からエステル系溶剤、エーテル系溶剤、アルコール系溶剤およびケトン系溶剤から選ばれる少なくとも1種を含むことが好ましい。これらの詳細については、国際公開第2015/166779号の段落番号0223を参酌でき、この内容は本明細書に組み込まれる。また、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤を用いることもできる。
 有機溶剤の具体例としては、ポリエチレングリコールモノメチルエーテル、ジクロロメタン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、4-ヘプタノン、シクロヘキサノン、2-メチルシクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、シクロヘプタノン、シクロオクタノン、酢酸シクロヘキシル、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、プロピレングリコールジアセテート、3-メトキシブタノール、メチルエチルケトン、ガンマブチロラクトン、スルホラン、アニソールなどが挙げられる。ただし有機溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm(parts per million)以下とすることもでき、10質量ppm以下とすることもでき、1質量ppm以下とすることもできる)。
 本発明においては、金属含有量の少ない有機溶剤を用いることが好ましく、有機溶剤の金属含有量は、例えば10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの有機溶剤を用いてもよく、そのような有機溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。有機溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフルオロエチレン、ポリエチレン又はナイロンが好ましい。
 有機溶剤は、異性体(原子数が同じであるが構造が異なる化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。
 有機溶剤中の過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。
 樹脂組成物中における溶剤の含有量は、10~95質量%であることが好ましく、20~90質量%であることがより好ましく、30~90質量%であることが更に好ましい。
<顔料誘導体>
 本発明の樹脂組成物は顔料誘導体を含有してもよい。顔料誘導体としては、発色団の一部分を、酸基、塩基性基又はフタルイミドメチル基で置換した構造を有する化合物が挙げられる。顔料誘導体を構成する発色団としては、キノリン骨格、ベンゾイミダゾロン骨格、ジケトピロロピロール骨格、アゾ骨格、フタロシアニン骨格、アンスラキノン骨格、キナクリドン骨格、ジオキサジン骨格、ペリノン骨格、ペリレン骨格、チオインジゴ骨格、イソインドリン骨格、イソインドリノン骨格、キノフタロン骨格、スレン骨格、金属錯体系骨格等が挙げられ、キノリン骨格、ベンゾイミダゾロン骨格、ジケトピロロピロール骨格、アゾ骨格、キノフタロン骨格、イソインドリン骨格及びフタロシアニン骨格が好ましく、アゾ骨格及びベンゾイミダゾロン骨格がより好ましい。顔料誘導体が有する酸基としては、スルホ基、カルボキシ基が好ましく、スルホ基がより好ましい。顔料誘導体が有する塩基性基としては、アミノ基が好ましく、三級アミノ基がより好ましい。
 顔料誘導体としては、可視光透明性に優れた顔料誘導体(以下、透明顔料誘導体ともいう)を用いることもできる。透明顔料誘導体の400~700nmの波長領域におけるモル吸光係数の最大値(εmax)は3000L・mol-1・cm-1以下であることが好ましく、1000L・mol-1・cm-1以下であることがより好ましく、100L・mol-1・cm-1以下であることがさらに好ましい。εmaxの下限は、例えば1L・mol-1・cm-1以上であり、10L・mol-1・cm-1以上でもよい。
 顔料誘導体の結晶子サイズは、0.1~50nmであることが好ましく、0.5~30nmであることがより好ましく、1~15nmであることが更に好ましい。結晶子サイズはX線回折装置を用いて回折角のピークの半値幅より求めることができ、シェラーの式を用いて算出される。顔料誘導体の結晶子サイズは、製造条件の調整、製造後に粉砕するなどの公知の方法で調整することができる。粉砕方法としては結晶子サイズを調整できればどのような方法でも構わないが、乾式粉砕や湿式粉砕が挙げられる。溶媒の除去が必要なく、再凝集の懸念が低いことから乾式粉砕が好ましい。
 顔料誘導体の具体例としては、特開昭56-118462号公報に記載の化合物、特開昭63-264674号公報に記載の化合物、特開平01-217077号公報に記載の化合物、特開平03-009961号公報に記載の化合物、特開平03-026767号公報に記載の化合物、特開平03-153780号公報に記載の化合物、特開平03-045662号公報に記載の化合物、特開平04-285669号公報に記載の化合物、特開平06-145546号公報に記載の化合物、特開平06-212088号公報に記載の化合物、特開平06-240158号公報に記載の化合物、特開平10-030063号公報に記載の化合物、特開平10-195326号公報に記載の化合物、国際公開第2011/024896号の段落番号0086~0098に記載の化合物、国際公開第2012/102399号の段落番号0063~0094に記載の化合物、国際公開第2017/038252号の段落番号0082に記載の化合物、特開2015-151530号公報の段落番号0171に記載の化合物、特開2011-252065号公報の段落番号0162~0183に記載の化合物、特開2003-081972号公報に記載の化合物、特許第5299151号公報に記載の化合物、特開2015-172732号公報に記載の化合物、特開2014-199308号公報に記載の化合物、特開2014-085562号公報に記載の化合物、特開2014-035351号公報に記載の化合物、特開2008-081565号公報に記載の化合物、特開2019-109512号公報に記載の化合物、特開2019-133154号公報に記載の化合物、国際公開第2020/002106号に記載のチオール連結基を有するジケトピロロピロール化合物、特開2018-168244号公報に記載のベンゾイミダゾロン化合物又はそれらの塩が挙げられる。
 顔料誘導体の含有量は、顔料100質量部に対して1~30質量部が好ましく、3~20質量部が更に好ましい。顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
<重合性モノマー>
 本発明の樹脂組成物は、重合性モノマーを含有することが好ましい。重合性モノマーは、例えば、ラジカル、酸または熱により架橋可能な公知の化合物を用いることができる。
重合性モノマーとしては、エチレン性不飽和結合含有基を有する化合物、環状エーテル基を有する化合物などが挙げられ、エチレン性不飽和結合含有基を有する化合物であることが好ましい。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。環状エーテル基としては、エポキシ基、オキセタン基などが挙げられる。エチレン性不飽和結合含有基を有する化合物はラジカル重合性モノマーとして好ましく用いることができる。また、環状エーテル基を有する化合物はカチオン重合性モノマーとして好ましく用いることができる。重合性モノマーは、多官能の重合性モノマーであることが好ましい。すなわち、重合性モノマーは、エチレン性不飽和結合含有基や環状エーテル基などの重合性基を2個以上有するモノマーであることが好ましい。
 重合性モノマーの分子量は、100~3000が好ましい。上限は、2000以下がより好ましく、1500以下が更に好ましい。下限は、150以上がより好ましく、250以上が更に好ましい。
(エチレン性不飽和結合含有基を有する化合物)
 重合性モノマーとして用いられるエチレン性不飽和結合含有基を有する化合物としては、多官能の化合物であることが好ましい。すなわち、エチレン性不飽和結合含有基を2個以上含む化合物であることが好ましく、エチレン性不飽和結合含有基を3個以上含む化合物であることがより好ましく、エチレン性不飽和結合含有基を3~15個含む化合物であることが更に好ましく、エチレン性不飽和結合含有基を3~6個含む化合物であることがより一層好ましい。また、エチレン性不飽和結合含有基を有する化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。エチレン性不飽和結合含有基を有する化合物の具体例としては、特開2009-288705号公報の段落番号0095~0108、特開2013-029760号公報の段落0227、特開2008-292970号公報の段落番号0254~0257、特開2013-253224号公報の段落番号0034~0038、特開2012-208494号公報の段落番号0477、特開2017-048367号公報、特許第6057891号公報、特許第6031807号公報、特開2017-194662号公報に記載されている化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 エチレン性不飽和結合含有基を有する化合物としては、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、NKエステルA-DPH-12E;新中村化学工業(株)製)、及びこれらの(メタ)アクリロイル基がエチレングリコール及び/又はプロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。また、エチレン性不飽和結合含有基を有する化合物としては、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としてはM-460;東亞合成製)、ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製、NKエステルA-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬(株)製、KAYARAD HDDA)、RP-1040(日本化薬(株)製)、アロニックスTO-2349(東亞合成(株)製)、NKオリゴUA-7200(新中村化学工業(株)製)、8UH-1006、8UH-1012(大成ファインケミカル(株)製)、ライトアクリレートPOB-A0(共栄社化学(株)製)などを用いることもできる。
 また、エチレン性不飽和結合含有基を有する化合物として、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシ変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシ変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキシ変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能の(メタ)アクリレート化合物を用いることも好ましい。3官能の(メタ)アクリレート化合物の市販品としては、アロニックスM-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450(東亞合成(株)製)、NKエステル A9300、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、TMPT(新中村化学工業(株)製)、KAYARAD GPO-303、TMPTA、THE-330、TPA-330、PET-30(日本化薬(株)製)などが挙げられる。
 エチレン性不飽和結合含有基を有する化合物は、酸基を有する化合物を用いることもできる。酸基を有する化合物を用いることで、現像残渣の発生を抑制できる。酸基としては、カルボキシ基、スルホ基、リン酸基等が挙げられ、カルボキシ基が好ましい。酸基を有する重合性モノマーの市販品としては、アロニックスM-305、M-510、M-520、アロニックスTO-2349(東亞合成(株)製)等が挙げられる。酸基を有する重合性モノマーの好ましい酸価としては、0.1~40mgKOH/gであり、より好ましくは5~30mgKOH/gである。重合性化合物の酸価が0.1mgKOH/g以上であれば、現像液に対する溶解性が良好であり、40mgKOH/g以下であれば、製造や取扱い上、有利である。
 エチレン性不飽和結合含有基を有する化合物は、カプロラクトン構造を有する化合物であることも好ましい態様である。カプロラクトン構造を有する化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20、DPCA-30、DPCA-60、DPCA-120等が挙げられる。
 エチレン性不飽和結合含有基を有する化合物は、アルキレンオキシ基を有する化合物を用いることもできる。アルキレンオキシ基を有する化合物は、エチレンオキシ基及び/又はプロピレンオキシ基を有する化合物が好ましく、エチレンオキシ基を有する化合物がより好ましく、エチレンオキシ基を4~20個有する3~6官能(メタ)アクリレート化合物がさらに好ましい。アルキレンオキシ基を有する化合物の市販品としては、例えばサートマー社製のエチレンオキシ基を4個有する4官能(メタ)アクリレートであるSR-494、イソブチレンオキシ基を3個有する3官能(メタ)アクリレートであるKAYARAD TPA-330などが挙げられる。
 エチレン性不飽和結合含有基を有する化合物は、フルオレン骨格を有する化合物を用いることもできる。フルオレン骨格を有する化合物の市販品としては、オグソールEA-0200、EA-0300(大阪ガスケミカル(株)製、フルオレン骨格を有する(メタ)アクリレートモノマー)などが挙げられる。
 エチレン性不飽和結合含有基を有する化合物としては、トルエンなどの環境規制物質を実質的に含まない化合物を用いることも好ましい。このような化合物の市販品としては、KAYARAD DPHA LT、KAYARAD DPEA-12 LT(日本化薬(株)製)などが挙げられる。
 エチレン性不飽和結合含有基を有する化合物としては、特公昭48-041708号公報、特開昭51-037193号公報、特公平02-032293号公報、特公平02-016765号公報に記載されているようなウレタンアクリレート類や、特公昭58-049860号公報、特公昭56-017654号公報、特公昭62-039417号公報、特公昭62-039418号公報に記載されたエチレンオキサイド系骨格を有するウレタン化合物も好適である。また、特開昭63-277653号公報、特開昭63-260909号公報、特開平01-105238号公報に記載された分子内にアミノ構造やスルフィド構造を有する重合性化合物を用いることも好ましい。また、重合性化合物は、UA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600、LINC-202UA(共栄社化学(株)製)などの市販品を用いることもできる。
(環状エーテル基を有する化合物)
 重合性モノマーとしても用いられる環状エーテル基を有する化合物としては、エポキシ基を有する化合物(以下、エポキシ化合物ともいう)、オキセタン基を有する化合物(以下、オキセタン化合物ともいう)が挙げられる。エポキシ化合物は、多官能のエポキシ化合物であることが好ましい。すなわち、エポキシ化合物は、エポキシ基を2個以上有する化合物であることが好ましい。エポキシ基の数の上限は、20個以下が好ましく、10個以下がより好ましい。また、オキセタン化合物は、多官能のオキセタン化合物であることが好ましい。すなわち、オキセタン化合物は、オキセタン基を2個以上有する化合物であることが好ましい。オキセタン基の数の上限は、20個以下が好ましく、10個以下がより好ましい。
 エポキシ化合物の市販品としては、JER828、JER1007、JER157S70(三菱ケミカル(株)製)、JER157S65((株)三菱ケミカルホールディングス製)など、特開2011-221494号公報の段落0189に記載の市販品などが挙げられる。その他の市販品として、ADEKA RESIN EP-4000S、EP-4003S、EP-4010S、EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402、EX-111,EX-121、EX-141、EX-145、EX-146、EX-147、EX-171、EX-192(以上ナガセケムテック製)、YH-300、YH-301、YH-302、YH-315、YH-324、YH-325(以上、新日鐵住金化学(株)製)、セロキサイド2021P、2081、2000、3000、EHPE3150、エポリードGT400、セルビナースB0134、B0177((株)ダイセル製)、TETRAD-X(三菱ガス化学(株)製)などが挙げられる。
 オキセタン化合物の市販品としては、OXT-201、OXT-211、OXT-212、OXT-213、OXT-121、OXT-221、OX-SQ TX-100、(以上、東亞合成(株)製)などを用いることができる。
 樹脂組成物の全固形分中における重合性モノマーの含有量は0.1~40質量%であることが好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、30質量%以下が好ましく、20質量%以下がより好ましい。
 重合性モノマーとしてエチレン性不飽和結合含有基を有する化合物を用いる場合、重合性モノマーとしてのエチレン性不飽和結合含有基を有する化合物の含有量は、上述した特定樹脂100質量部に対して、1~50質量部であることが好ましい。下限は、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。上限は、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。
 重合性モノマーとして環状エーテル基を有する化合物を用いる場合、重合性モノマーとしての環状エーテル基を有する化合物の含有量は、上述した特定樹脂100質量部に対して、1~50質量部であることが好ましい。下限は、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。上限は、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。
 重合性モノマーとしてエチレン性不飽和結合含有基を有する化合物と環状エーテル基を有する化合物とを用いる場合、樹脂組成物は、エチレン性不飽和結合含有基を有する化合物の100質量部に対して環状エーテル基を有する化合物を10~500質量部含有することが好ましい。下限は、20質量部以上であることが好ましく、30質量部以上であることがより好ましい。上限は、400質量部以下であることが好ましく、300質量部以下であることがより好ましい。両者の割合が上記範囲であれば、耐熱性(クラック抑制と膜収縮抑制)に優れた膜を形成できる。
<光重合開始剤>
 本発明の樹脂組成物は光重合開始剤を含むことが好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外領域から可視光領域の光線に対して感光性を有する化合物が好ましい。光重合開始剤は光ラジカル重合開始剤であることが好ましい。
 光重合開始剤としては、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物など)、アシルホスフィン化合物、ヘキサアリールビイミダゾール化合物、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、α-アミノケトン化合物などが挙げられる。光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物および3-アリール置換クマリン化合物であることが好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、および、アシルホスフィン化合物から選ばれる化合物であることがより好ましく、オキシム化合物であることが更に好ましい。また、光重合開始剤としては、特開2014-130173号公報の段落0065~0111に記載された化合物、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤、特開2020-055992号公報に記載のオキサゾリジン基を有するアミノアセトフェノン系開始剤、特開2013-190459号公報に記載のオキシム系光重合開始剤、特開2020-172619号公報に記載の重合体、国際公開第2020/152120号に記載の式1で表される化合物、特開2007-163542号公報に記載のヘテロ原子を含んでも良い芳香族環縮合基を有するアミノアセトフェノン系開始剤、特開2008-031280号公報に記載のヘテロ原子を含んでも良い芳香族環縮合基を有するアミノアセトフェノン系開始剤などが挙げられ、これらの内容は本明細書に組み込まれる。
 ヘキサアリールビイミダゾール化合物としては、2,2-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,4’,5,5-テトラキス(3,4,5-トリメトキシフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,3-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、及び2,2’-ビス(o-クロロフェニル)-4,4,5,5’-テトラフェニル-1,2’-ビイミダゾールなどが挙げられる。α-ヒドロキシケトン化合物の市販品としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、Irgacure 184、Irgacure 1173、Irgacure 2959、Irgacure 127(以上、BASF社製)などが挙げられる。α-アミノケトン化合物の市販品としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、Irgacure 907、Irgacure 369、Irgacure 369E、Irgacure 379EG(以上、BASF社製)、Api307(1-(ビフェニル-4-イル)-2-メチル-2-モルホリノプロパン-1-オン)(MFCI社製)などが挙げられる。アシルホスフィン化合物の市販品としては、Omnirad 819、Omnirad TPO(以上、IGM Resins B.V.社製)、Irgacure 819、Irgacure TPO(以上、BASF社製)などが挙げられる。
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号に記載の化合物などが挙げられる。オキシム化合物の具体例としては、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。市販品としては、Irgacure OXE01、Irgacure OXE02、Irgacure OXE03、Irgacure OXE04(以上、BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光重合開始剤2)が挙げられる。また、オキシム化合物としては、着色性が無い化合物や、透明性が高く変色し難い化合物を用いることも好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、NCI-930(以上、(株)ADEKA製)などが挙げられる。
 光重合開始剤として、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。
 また、光重合開始剤として、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物を用いることもできる。そのようなオキシム化合物の具体例としては、国際公開第2013/083505号に記載の化合物が挙げられる。
 光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。
 光重合開始剤として、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。このような光重合開始剤としては国際公開第2019/088055号に記載された化合物などが挙げられる。
 光重合開始剤として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落番号0007~0025に記載されている化合物、アデカアークルズNCI-831((株)ADEKA製)が挙げられる。
 光重合開始剤として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開第2015/036910号に記載されるOE-01~OE-75が挙げられる。
 光重合開始剤として、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。このような光重合開始剤としては国際公開第2019/088055号に記載された化合物などが挙げられる。
 オキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 オキシム化合物は、波長350~500nmの範囲に極大吸収波長を有する化合物が好ましく、波長360~480nmの範囲に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物の波長365nm又は波長405nmにおけるモル吸光係数は、感度の観点から、高いことが好ましく、1000~300000であることがより好ましく、2000~300000であることが更に好ましく、5000~200000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、樹脂組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)及び化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル類光開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号に記載されているオキシム化合物などが挙げられる。
 樹脂組成物の全固形分中の光重合開始剤の含有量は0.1~30質量%が好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。光重合開始剤は1種のみを用いてもよく、2種以上を用いてもよい。
<シランカップリング剤>
 本発明の樹脂組成物は、シランカップリング剤を含有することができる。本明細書において、シランカップリング剤は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応及び縮合反応の少なくともいずれかによってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基としては、例えば、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、メルカプト基、エポキシ基、アミノ基、ウレイド基、スルフィド基、イソシアネート基、フェニル基などが挙げられ、アミノ基、(メタ)アクリロイル基及びエポキシ基が好ましい。シランカップリング剤の具体例としては、特開2009-288703号公報の段落番号0018~0036に記載の化合物、特開2009-242604号公報の段落番号0056~0066に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 樹脂組成物の全固形分中におけるシランカップリング剤の含有量は、0.1~5質量%が好ましい。上限は、3質量%以下が好ましく、2質量%以下がより好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。シランカップリング剤は、1種のみでもよく、2種以上でもよい。
<硬化促進剤>
 本発明の樹脂組成物は、樹脂や重合性化合物の反応を促進させたり、硬化温度を下げる目的で、硬化促進剤をさらに含有することができる。硬化促進剤は、メチロール系化合物(例えば特開2015-034963号公報の段落番号0246において、架橋剤として例示されている化合物)、アミン類、ホスホニウム塩、アミジン塩、アミド化合物(以上、例えば特開2013-041165号公報の段落番号0186に記載の硬化剤)、塩基発生剤(例えば、特開2014-055114号公報に記載のイオン性化合物)、シアネート化合物(例えば、特開2012-150180号公報の段落番号0071に記載の化合物)、アルコキシシラン化合物(例えば、特開2011-253054号公報に記載のエポキシ基を有するアルコキシシラン化合物)、オニウム塩化合物(例えば、特開2015-034963号公報の段落番号0216に酸発生剤として例示されている化合物、特開2009-180949号公報に記載の化合物)などを用いることもできる。
 本発明の樹脂組成物が硬化促進剤を含有する場合、硬化促進剤の含有量は、樹脂組成物の全固形分中0.3~8.9質量%が好ましく、0.8~6.4質量%がより好ましい。
<重合禁止剤>
 本発明の樹脂組成物は、重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)が挙げられる。中でも、p-メトキシフェノールが好ましい。樹脂組成物の全固形分中における重合禁止剤の含有量は、0.0001~5質量%が好ましい。
<<界面活性剤>>
 本発明の樹脂組成物は、界面活性剤を含有することができる。界面活性剤としては、フッ素系界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用することができる。界面活性剤はフッ素系界面活性剤またはシリコーン系界面活性剤であることが好ましい。界面活性剤については、国際公開第2015/166779号の段落番号0238~0245に記載された界面活性剤が挙げられ、この内容は本明細書に組み込まれる。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、樹脂組成物中における溶解性も良好である。
 フッ素系界面活性剤としては、特開2014-041318号公報の段落番号0060~0064(対応する国際公開第2014/017669号の段落番号0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、R-30、F-437、F-475、F-477、F-479、F-482、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP、MFS-330、R-01、R-40、R-40-LM、R-41、R-41-LM、RS-43、R-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント208G、215M、245F、601AD、601ADH2、602A、610FM、710FL、710FM、710FS、FTX-218(以上、(株)NEOS製)等が挙げられる。
 フッ素系界面活性剤は、フッ素化アルキル基又はフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。このようなフッ素系界面活性剤は、特開2016-216602号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 フッ素系界面活性剤は、ブロックポリマーを用いることもできる。例えば特開2011-089090号公報に記載された化合物が挙げられる。フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000024
 上記の化合物の重量平均分子量は、好ましくは3000~50000であり、例えば、14000である。上記の化合物中、繰り返し単位の割合を示す%はモル%である。
 また、フッ素系界面活性剤は、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および段落番号0289~0295に記載された化合物、DIC(株)製のメガファックRS-101、RS-102、RS-718K、RS-72-K等が挙げられる。また、フッ素系界面活性剤は、特開2015-117327号公報の段落番号0015~0158に記載の化合物を用いることもできる。
 また、国際公開第2020/084854号に記載の界面活性剤を、炭素数6以上のパーフルオロアルキル基を有する界面活性剤の代替として用いることも、環境規制の観点から好ましい。
 また、式(fi-1)で表される含フッ素イミド塩化合物を界面活性剤として用いることも好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(fi-1)中、mは1または2を表し、nは1~4の整数を表し、aは1または2を表し、Xa+はa価の金属イオン、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオンまたはNH を表す。
 ノニオン性界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニック(登録商標)L10、L31、L61、L62、10R5、17R2、25R2(BASF社製)、テトロニック304、701、704、901、904、150R1(BASF社製)、ソルスパース20000(日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(富士フイルム和光純薬(株)製)、パイオニンD-6112、D-6112-W、D-6315(竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(日信化学工業(株)製)などが挙げられる。
 カチオン性界面活性剤としては、テトラアルキルアンモニウム塩、アルキルアミン塩、ベンザルコニウム塩、アルキルピリジウム塩、イミダゾリウム塩等が挙げられる。具体例としては、ジヒドロキシエチルステアリルアミン、2-ヘプタデセニル-ヒドロキシエチルイミダゾリン、ラウリルジメチルベンジルアンモニウムクロライド、セチルピリジニウムクロライド、ステアラミドメチルピリジウムクロライド等が挙げられる。
 アニオン性界面活性剤としては、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステアリン酸ナトリウム、オレイン酸カリウム、ナトリウムジオクチルスルホサクシネート、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテ硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム、t-オクチルフェノキシエトキシポリエトキシエチル硫酸ナトリウム塩等が挙げられる。
 シリコーン系界面活性剤としては、DC3PA、SH7PA、DC11PA、SH21PA、SH28PA、SH29PA、SH30PA、SH8400、SH 8400 FLUID、FZ-2122、67 Additive、74 Additive、M Additive、SF 8419 OIL(以上、ダウ・東レ(株)製)、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP-341、KF-6000、KF-6001、KF-6002、KF-6003(以上、信越化学工業(株)製)、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-3760BYK-UV3510(以上、ビックケミー社製)等が挙げられる。
 また、シリコーン系界面活性剤には下記構造の化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000026
 樹脂組成物の全固形分中における界面活性剤の含有量は、0.001質量%~5.0質量%が好ましく、0.005~3.0質量%がより好ましい。界面活性剤は、1種のみでもよく、2種以上でもよい。2種以上の場合は、合計量が上記範囲となることが好ましい。
<<紫外線吸収剤>>
 本発明の樹脂組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤は、共役ジエン化合物、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物、インドール化合物、トリアジン化合物などを用いることができる。これらの詳細については、特開2012-208374号公報の段落番号0052~0072、特開2013-068814号公報の段落番号0317~0334、特開2016-162946号公報の段落番号0061~0080の記載を参酌でき、これらの内容は本明細書に組み込まれる。紫外線吸収剤の市販品としては、例えば、UV-503(大東化学(株)製)、BASF社製のTinuvinシリーズ、Uvinul(ユビナール)シリーズ、住化ケムテックス(株)製のSumisorbシリーズなどが挙げられる。また、ベンゾトリアゾール化合物としては、ミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)が挙げられる。また、紫外線吸収剤は、特許第6268967号公報の段落番号0049~0059に記載された化合物、国際公開第2016/181987号の段落番号0059~0076に記載された化合物、国際公開第2020/137819号に記載されたチオアリール基置換ベンゾトリアゾール型紫外線吸収剤を用いることもできる。樹脂組成物の全固形分中における紫外線吸収剤の含有量は、0.01~10質量%が好ましく、0.01~5質量%がより好ましい。紫外線吸収剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<酸化防止剤>
 本発明の樹脂組成物は、酸化防止剤を含有することができる。酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。フェノール性ヒドロキシ基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましい。また、酸化防止剤は、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。また、酸化防止剤は、韓国公開特許第10-2019-0059371号公報に記載の化合物を用いることもできる。樹脂組成物の全固形分中における酸化防止剤の含有量は、0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。酸化防止剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<その他成分>
 本発明の樹脂組成物は、必要に応じて、増感剤、フィラー、熱硬化促進剤、可塑剤及びその他の助剤類(例えば、導電性粒子、消泡剤、難燃剤、レベリング剤、剥離促進剤、香料、表面張力調整剤、連鎖移動剤など)を含有してもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、樹脂組成物は、必要に応じて、潜在酸化防止剤を含有してもよい。潜在酸化防止剤としては、酸化防止剤として機能する部位が保護基で保護された化合物であって、100~250℃で加熱するか、又は酸/塩基触媒存在下で80~200℃で加熱することにより保護基が脱離して酸化防止剤として機能する化合物が挙げられる。潜在酸化防止剤としては、国際公開第2014/021023号、国際公開第2017/030005号、特開2017-008219号公報に記載された化合物が挙げられる。市販品としては、アデカアークルズGPA-5001((株)ADEKA製)等が挙げられる。
 本発明の樹脂組成物は、耐光性改良剤を含んでもよい。耐光性改良剤としては、特開2017-198787号公報の段落番号0036~0037に記載の化合物、特開2017-146350号公報の段落番号0029~0034に記載の化合物、特開2017-129774号公報の段落番号0036~0037、0049~0052に記載の化合物、特開2017-129674号公報の段落番号0031~0034、0058~0059に記載の化合物、特開2017-122803号公報の段落番号0036~0037、0051~0054に記載の化合物、国際公開第2017/164127号の段落番号0025~0039に記載の化合物、特開2017-186546号公報の段落番号0034~0047に記載の化合物、特開2015-025116号公報の段落番号0019~0041に記載の化合物、特開2012-145604号公報の段落番号0101~0125に記載の化合物、特開2012-103475号公報の段落番号0018~0021に記載の化合物、特開2011-257591号公報の段落番号0015~0018に記載の化合物、特開2011-191483号公報の段落番号0017~0021に記載の化合物、特開2011-145668号公報の段落番号0108~0116に記載の化合物、特開2011-253174号公報の段落番号0103~0153に記載の化合物などが挙げられる。
 環境規制の観点から、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩の使用が規制されることがある。本発明の樹脂組成物において、上記した化合物の含有率を小さくする場合、パーフルオロアルキルスルホン酸(特にパーフルオロアルキル基の炭素数が6~8のパーフルオロアルキルスルホン酸)及びその塩、並びにパーフルオロアルキルカルボン酸(特にパーフルオロアルキル基の炭素数が6~8のパーフルオロアルキルカルボン酸)及びその塩の含有率は、樹脂組成物の全固形分に対して、0.01ppb~1,000ppbの範囲であることが好ましく、0.05ppb~500ppbの範囲であることがより好ましく、0.1ppb~300ppbの範囲であることが更に好ましい。本発明の樹脂組成物は、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を実質的に含まなくてもよい。例えば、パーフルオロアルキルスルホン酸及びその塩の代替となりうる化合物、並びにパーフルオロアルキルカルボン酸及びその塩の代替となりうる化合物を用いることで、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を実質的に含まない樹脂組成物を選択してもよい。規制化合物の代替となりうる化合物としては、例えば、パーフルオロアルキル基の炭素数の違いによって規制対象から除外された化合物が挙げられる。ただし、上記した内容は、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩の使用を妨げるものではない。本発明の樹脂組成物は、許容される最大の範囲内で、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を含んでもよい。
 本発明の樹脂組成物は、テレフタル酸エステルを実質的に含まないことも好ましい。ここで、「実質的に含まない」とは、テレフタル酸エステルの含有量が、樹脂組成物の全量中、1000質量ppb以下であることを意味し、100質量ppb以下であることがより好ましく、ゼロであることが特に好ましい。
<収容容器>
 樹脂組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。また、収容容器として、原材料や樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成する多層ボトルや6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。また、容器内壁は、容器内壁からの金属溶出を防ぎ、樹脂組成物の保存安定性を高めたり、成分変質を抑制するなど目的で、ガラス製やステンレス製などにすることも好ましい。
<樹脂組成物の調製方法>
 本発明の樹脂組成物は、前述の成分を混合して調製できる。樹脂組成物の調製に際しては、全成分を同時に有機溶剤に溶解及び/又は分散して樹脂組成物を調製してもよいし、必要に応じて、各成分を適宜2つ以上の溶液又は分散液としておいて、使用時(塗布時)にこれらを混合して樹脂組成物を調製してもよい。
 また、樹脂組成物の調製に際して、顔料を分散させるプロセスを含むことが好ましい。顔料を分散させるプロセスにおいて、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。またサンドミル(ビーズミル)における顔料の粉砕においては、径の小さいビーズを使用する、ビーズの充填率を大きくする事等により粉砕効率を高めた条件で処理することが好ましい。また、粉砕処理後にろ過、遠心分離などで粗粒子を除去することが好ましい。また、顔料を分散させるプロセス及び分散機は、「分散技術大全集、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。また、顔料を分散させるプロセスにおいては、ソルトミリング工程にて粒子の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は、例えば特開2015-194521号公報、特開2012-046629号公報の記載を参酌できる。
 樹脂組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、樹脂組成物をフィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているフィルタであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)及びナイロンが好ましい。
 フィルタの孔径は、0.01~7.0μmが好ましく、0.01~3.0μmがより好ましく、0.05~0.5μmが更に好ましい。フィルタの孔径が上記範囲であれば、微細な異物をより確実に除去できる。フィルタの孔径値については、フィルタメーカーの公称値を参照することができる。フィルタは、日本ポール株式会社(DFA4201NIEY、DFA4201NAEY、DFA4201J006Pなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)及び株式会社キッツマイクロフィルタ等が提供する各種フィルタを用いることができる。
 また、フィルタとしてファイバ状のろ材を用いることも好ましい。ファイバ状のろ材としては、例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられる。市販品としては、ロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)が挙げられる。
 フィルタを使用する際、異なるフィルタ(例えば、第1のフィルタと第2のフィルタなど)を組み合わせてもよい。その際、各フィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。また、上述した範囲内で異なる孔径のフィルタを組み合わせてもよい。また、第1のフィルタでのろ過は、分散液のみに対して行い、他の成分を混合した後で、第2のフィルタでろ過を行ってもよい。また樹脂組成物の親疎水性に合わせて、適宜フィルタを選択することができる。
(膜)
 本発明の膜は、上述した本発明の樹脂組成物から得られる膜である。本発明の膜は、カラーフィルタ、近赤外線透過フィルタ、近赤外線カットフィルタなどの光学フィルタに用いることができる。また、本発明の膜は遮光膜などに用いることもできる。また、センサ以外にも、光通信用フィルタなどにも用いることもできる。
 本発明の膜の膜厚は、目的に応じて適宜調整できる。例えば、膜厚は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。膜厚の下限は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。
 本発明の膜をカラーフィルタとして用いる場合、本発明の膜は、緑色、赤色、青色、シアン色、マゼンタ色または黄色の色相を有することが好ましい。また、本発明の膜は、カラーフィルタの着色画素として好ましく用いることができる。着色画素としては、赤色画素、緑色画素、青色画素、マゼンタ色画素、シアン色画素、黄色画素などが挙げられる。
 本発明の膜を近赤外線カットフィルタとして用いる場合、本発明の膜の極大吸収波長は、波長700~1800nmの範囲に存在することが好ましく、波長700~1300nmの範囲に存在することがより好ましく、波長700~1100nmの範囲に存在することが更に好ましい。また、膜の波長400~650nmの全範囲での透過率は70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。また、膜の波長700~1800nmの範囲の少なくとも1点での透過率は20%以下であることが好ましい。また、極大吸収波長における吸光度Amaxと、波長550nmにおける吸光度A550との比である吸光度Amax/吸光度A550は、20~500であることが好ましく、50~500であることがより好ましく、70~450であることが更に好ましく、100~400であることが特に好ましい。
 本発明の膜を近赤外線透過フィルタとして用いる場合、本発明の膜は、例えば、以下の(i1)~(i5)のいずれかの分光特性を有することが好ましい。
 (i1):波長400~640nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長800~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~640nmの範囲の光を遮光して、波長750nmを超える光を透過させることができる。
 (i2):波長400~750nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長900~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~750nmの範囲の光を遮光して、波長850nmを超える光を透過させることができる。
 (i3):波長400~830nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1000~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~830nmの範囲の光を遮光して、波長950nmを超える光を透過させることができる。
 (i4):波長400~950nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1100~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~950nmの範囲の光を遮光して、波長1050nmを超える光を透過させることができる。
 (i5):波長400~1050nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1200~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~1050nmの範囲の光を遮光して、波長1150nmを超える光を透過させることができる。
 本発明の膜を遮光膜として用いる場合、膜の400~1100nmの波長領域における膜厚1.5μmあたりの光学濃度(OD:Optical Density)は、2.5以上であることが好ましく、3.0以上であることがより好ましい。上限値は特に制限されないが、一般に10以下であることが好ましい。
 また、上記膜の反射率は、8%未満であることが好ましく、6%未満であることがより好ましく、4%未満であることが更に好ましい。下限は、0%以上であることが好ましい。
 遮光膜は、パーソナルコンピュータ、タブレット、携帯電話、スマートフォン及びデジタルカメラ等のポータブル機器;プリンタ複合機及びスキャナ等のOA(Office Automation)機器;監視カメラ、バーコードリーダ、現金自動預け払い機(ATM:automated teller machine)、ハイスピードカメラ及び顔画像認証又は生体認証を使用した本人認証機能を有する機器等の産業用機器;車載用カメラ機器;内視鏡、カプセル内視鏡及びカテーテル等の医療用カメラ機器;並びに、生体センサ、バイオセンサ、軍事偵察用カメラ、立体地図用カメラ、気象及び海洋観測カメラ、陸地資源探査カメラ及び宇宙の天文及び深宇宙ターゲット用の探査カメラ等の宇宙用機器;等に使用される光学フィルタ及びモジュールに用いることができる。また、遮光膜は、マイクロLED(Light Emitting Diode)及びマイクロOLED(Organic Light Emitting Diode)等の用途にも使用できる。マイクロLED及びマイクロOLEDとしては、例えば、特表2015-500562号公報及び特表2014-533890号公報に記載された例が挙げられる。また、遮光膜は、量子ドットセンサー及び量子ドット固体撮像素子に使用される光学フィルタ及び光学フィルムとしても好適である。量子ドットセンサー及び量子ドット固体撮像素子としては、例えば、米国特許出願公開第2012/37789号明細書及び国際公開第2008/131313号に記載された例が挙げられる。また、遮光膜は、自動車等の車両用のヘッドライトユニットに用いることができる。ヘッドライトユニットに用いる遮光膜は、光源から出射される光の少なくとも一部を遮光するように、パターン状に形成されることが好ましい。
<膜の製造方法>
 本発明の膜は、上述した本発明の樹脂組成物を支持体上に塗布する工程を経て製造できる。本発明の膜の製造方法においては、更にパターン(画素)を形成する工程を含むことが好ましい。パターン(画素)の形成方法としては、フォトリソグラフィ法及びドライエッチング法が挙げられ、フォトリソグラフィ法が好ましい。
(フォトリソグラフィ法)
 まず、フォトリソグラフィ法によりパターンを形成して膜を製造する場合について説明する。フォトリソグラフィ法によるパターン形成は、本発明の樹脂組成物を用いて支持体上に樹脂組成物層を形成する工程と、樹脂組成物層をパターン状に露光する工程と、樹脂組成物層の未露光部を現像除去してパターン(画素)を形成する工程と、を含むことが好ましい。必要に応じて、樹脂組成物層をベークする工程(プリベーク工程)、及び、現像されたパターン(画素)をベークする工程(ポストベーク工程)を設けてもよい。
 樹脂組成物層を形成する工程では、本発明の樹脂組成物を用いて、支持体上に樹脂組成物層を形成する。支持体としては、特に限定は無く、用途に応じて適宜選択できる。例えば、ガラス基板、シリコン基板などが挙げられ、シリコン基板であることが好ましい。また、シリコン基板には、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)、透明導電膜などが形成されていてもよい。また、シリコン基板には、各画素を隔離するブラックマトリクスなどの遮光膜が形成されている場合もある。また、シリコン基板には、上部の層との密着性改良、物質の拡散防止或いは基板表面の平坦化のために下地層が設けられていてもよい。下地層の表面接触角は、ジヨードメタンで測定した際に20~70°であることが好ましい。また、水で測定した際に30~80°であることが好ましい。下地層の表面接触角の調整は、たとえば、界面活性剤の添加などの方法で行うことができる。
 樹脂組成物の塗布方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットでの適用方法としては、特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住ベテクノリサーチ」に示された方法(特に115ページ~133ページ)や、特開2003-262716号公報、特開2003-185831号公報、特開2003-261827号公報、特開2012-126830号公報、特開2006-169325号公報などに記載の方法が挙げられる。また、樹脂組成物の塗布方法は、国際公開第2017/030174号、国際公開第2017/018419号に記載された方法を用いることもでき、これらの内容は本明細書に組み込まれる。
 支持体上に形成した樹脂組成物層は、乾燥(プリベーク)してもよい。低温プロセスにより膜を製造する場合は、プリベークを行わなくてもよい。プリベークを行う場合、プリベーク温度は、150℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。下限は、例えば、50℃以上とすることができ、80℃以上とすることもできる。プリベーク時間は、10~300秒が好ましく、40~250秒がより好ましく、80~220秒がさらに好ましい。プリベークは、ホットプレート、オーブン等で行うことができる。
 次に、樹脂組成物層をパターン状に露光する(露光工程)。例えば、樹脂組成物層に対し、ステッパー露光機やスキャナ露光機などを用いて、所定のマスクパターンを有するマスクを介して露光することで、パターン状に露光することができる。これにより、露光部分を硬化することができる。
 露光に際して用いることができる放射線(光)としては、g線、i線等が挙げられる。また、波長300nm以下の光(好ましくは波長180~300nmの光)を用いることもできる。波長300nm以下の光としては、KrF線(波長248nm)、ArF線(波長193nm)などが挙げられ、KrF線(波長248nm)が好ましい。また、300nm以上の長波な光源も利用できる。
 また、露光に際して、光を連続的に照射して露光してもよく、パルス的に照射して露光(パルス露光)してもよい。なお、パルス露光とは、短時間(例えば、ミリ秒レベル以下)のサイクルで光の照射と休止を繰り返して露光する方式の露光方法のことである。パルス露光の場合、パルス幅は、100ナノ秒(ns)以下であることが好ましく、50ナノ秒以下であることがより好ましく、30ナノ秒以下であることが更に好ましい。パルス幅の下限は、特に限定はないが、1フェムト秒(fs)以上とすることができ、10フェムト秒以上とすることもできる。周波数は、1kHz以上であることが好ましく、2kHz以上であることがより好ましく、4kHz以上であることが更に好ましい。周波数の上限は50kHz以下であることが好ましく、20kHz以下であることがより好ましく、10kHz以下であることが更に好ましい。最大瞬間照度は、50000000W/m以上であることが好ましく、100000000W/m以上であることがより好ましく、200000000W/m以上であることが更に好ましい。また、最大瞬間照度の上限は、1000000000W/m以下であることが好ましく、800000000W/m以下であることがより好ましく、500000000W/m以下であることが更に好ましい。なお、パルス幅とは、パルス周期における光が照射されている時間のことである。また、周波数とは、1秒あたりのパルス周期の回数のことである。また、最大瞬間照度とは、パルス周期における光が照射されている時間内での平均照度のことである。また、パルス周期とは、パルス露光における光の照射と休止を1サイクルとする周期のことである。
 照射量(露光量)は、例えば、0.03~2.5J/cmが好ましく、0.05~1.0J/cmがより好ましい。露光時における酸素濃度については適宜選択することができ、大気下で行う他に、例えば酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%、5体積%、又は、実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%、30体積%、又は、50体積%)で露光してもよい。また、露光照度は適宜設定することが可能であり、通常1000W/m~100000W/m(例えば、5000W/m、15000W/m、又は、35000W/m)の範囲から選択することができる。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10000W/m、酸素濃度35体積%で照度20000W/mなどとすることができる。
 次に、樹脂組成物層の未露光部を現像除去してパターン(画素)を形成する。樹脂組成物層の未露光部の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の樹脂組成物層が現像液に溶出し、光硬化した部分だけが残る。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上するため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返してもよい。
 現像液は、有機溶剤、アルカリ現像液などが挙げられ、アルカリ現像液が好ましく用いられる。アルカリ現像液としては、アルカリ剤を純水で希釈したアルカリ性水溶液(アルカリ現像液)が好ましい。アルカリ剤としては、例えば、アンモニア、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジグリコールアミン、ジエタノールアミン、ヒドロキシアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどの無機アルカリ性化合物が挙げられる。アルカリ剤は、分子量が大きい化合物の方が環境面及び安全面で好ましい。アルカリ性水溶液のアルカリ剤の濃度は、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。また、現像液は、さらに界面活性剤を含有していてもよい。界面活性剤としては、上述した界面活性剤が挙げられ、ノニオン性界面活性剤が好ましい。現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な濃度に希釈してもよい。希釈倍率は特に限定されないが、例えば1.5~100倍の範囲に設定することができる。また、現像後純水で洗浄(リンス)することも好ましい。また、リンスは、現像後の樹脂組成物層が形成された支持体を回転させつつ、現像後の樹脂組成物層へリンス液を供給して行うことが好ましい。また、リンス液を吐出させるノズルを支持体の中心部から支持体の周縁部に移動させて行うことも好ましい。この際、ノズルの支持体中心部から周縁部へ移動させるにあたり、ノズルの移動速度を徐々に低下させながら移動させてもよい。このようにしてリンスを行うことで、リンスの面内ばらつきを抑制できる。また、ノズルを支持体中心部から周縁部へ移動させつつ、支持体の回転速度を徐々に低下させても同様の効果が得られる。
 現像後、乾燥を施した後に追加露光処理や加熱処理(ポストベーク)を行うことが好ましい。追加露光処理やポストベークは、硬化を完全なものとするための現像後の硬化処理である。ポストベークにおける加熱温度は、例えば100~240℃が好ましく、200~240℃がより好ましい。ポストベークは、現像後の膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。追加露光処理を行う場合、露光に用いられる光は、波長400nm以下の光であることが好ましい。また、追加露光処理は、韓国公開特許第10-2017-0122130号公報に記載された方法で行ってもよい。
(ドライエッチング法)
 ドライエッチング法でのパターン形成は、本発明の樹脂組成物を用いて支持体上に樹脂組成物層を形成し、この樹脂組成物層の全体を硬化させて硬化物層を形成する工程と、この硬化物層上にフォトレジスト層を形成する工程と、フォトレジスト層をパターン状に露光したのち、現像してレジストパターンを形成する工程と、このレジストパターンをマスクとして硬化物層に対してエッチングガスを用いてドライエッチングする工程と、を含むことが好ましい。フォトレジスト層の形成においては、更にプリベーク処理を施すことが好ましい。特に、フォトレジスト層の形成プロセスとしては、露光後の加熱処理、現像後の加熱処理(ポストベーク処理)を実施する形態が望ましい。ドライエッチング法でのパターン形成については、特開2013-064993号公報の段落番号0010~0067の記載を参酌でき、この内容は本明細書に組み込まれる。
<光学フィルタ>
 本発明の光学フィルタは、上述した本発明の膜を有する。光学フィルタの種類としては、光学フィルタとしては、カラーフィルタ、近赤外線透過フィルタ、近赤外線カットフィルタなどが挙げられ、カラーフィルタであることが好ましい。カラーフィルタとしては、カラーフィルタの着色画素として本発明の膜を有することが好ましい。また、光学フィルタは、遮光膜を有していてもよい。たとえば、支持体上に形成された遮光膜の開口部に、カラーフィルタ、近赤外線透過フィルタ、近赤外線カットフィルタなどが形成されていてもよい。本発明の光学フィルタは、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)などの固体撮像素子や画像表示装置などに用いることができる。
 光学フィルタにおいて本発明の膜の膜厚は、目的に応じて適宜調整できる。光学フィルタに含まれる画素の膜厚は、5μm以下が好ましく、1μm以下がより好ましく、0.6μm以下がさらに好ましい。膜厚の下限は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。
 光学フィルタに含まれる画素の幅は0.4~10.0μmであることが好ましい。下限は、0.4μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.6μm以上であることが更に好ましい。上限は、5.0μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.0μm以下であることが更に好ましく、0.8μm以下であることがより一層好ましい。また、画素のヤング率は0.5~20GPaであることが好ましく、2.5~15GPaがより好ましい。
 光学フィルタに含まれる各画素は高い平坦性を有することが好ましい。具体的には、画素の表面粗さRaは、100nm以下であることが好ましく、40nm以下であることがより好ましく、15nm以下であることが更に好ましい。下限は規定されないが、例えば0.1nm以上であることが好ましい。画素の表面粗さは、例えばVeeco社製のAFM(原子間力顕微鏡) Dimension3100を用いて測定することができる。また、画素上の水の接触角は適宜好ましい値に設定することができるが、典型的には、50~110°の範囲である。接触角は、例えば接触角計CV-DT・A型(協和界面科学(株)製)を用いて測定できる。また、画素の体積抵抗値は高いことが好ましい。具体的には、画素の体積抵抗値は10Ω・cm以上であることが好ましく、1011Ω・cm以上であることがより好ましい。上限は規定されないが、例えば1014Ω・cm以下であることが好ましい。画素の体積抵抗値は、超高抵抗計5410(アドバンテスト社製)を用いて測定することができる。
 また、光学フィルタが遮光膜を含む場合、遮光膜の膜厚は、5μm以下が好ましく、2.5μm以下がより好ましい。膜厚の下限は、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。
 光学フィルタにおいては、本発明の膜の表面に保護層が設けられていてもよい。保護層を設けることで、酸素遮断化、低反射化、親疎水化、特定波長の光(紫外線、近赤外線等)の遮蔽等の種々の機能を付与することができる。保護層の厚さとしては、0.01~10μmが好ましく、0.1~5μmがより好ましい。保護層の形成方法としては、有機溶剤に溶解した保護層形成用樹脂組成物を塗布して形成する方法、化学気相蒸着法、成型した樹脂を接着材で貼りつける方法等が挙げられる。保護層を構成する成分としては、(メタ)アクリル樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、ポリオール樹脂、ポリ塩化ビニリデン樹脂、メラミン樹脂、ウレタン樹脂、アラミド樹脂、ポリアミド樹脂、アルキド樹脂、エポキシ樹脂、変性シリコーン樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、セルロース樹脂、Si、C、W、Al、Mo、SiO、Siなどが挙げられ、これらの成分を二種以上含有しても良い。例えば、酸素遮断化を目的とした保護層の場合、保護層はポリオール樹脂と、SiOと、Siを含むことが好ましい。また、低反射化を目的とした保護層の場合、保護層は(メタ)アクリル樹脂とフッ素樹脂を含むことが好ましい。
 保護層形成用樹脂組成物を塗布して保護層を形成する場合、保護層形成用樹脂組成物の塗布方法としては、スピンコート法、キャスト法、スクリーン印刷法、インクジェット法等の公知の方法を用いることができる。保護層形成用樹脂組成物に含まれる有機溶剤は、公知の有機溶剤(例えば、プロピレングリコール1-モノメチルエーテル2-アセテート、シクロペンタノン、乳酸エチル等)を用いることが出来る。保護層を化学気相蒸着法にて形成する場合、化学気相蒸着法としては、公知の化学気相蒸着法(熱化学気相蒸着法、プラズマ化学気相蒸着法、光化学気相蒸着法)を用いることができる。
 保護層は、必要に応じて、有機・無機微粒子、特定波長の光(例えば、紫外線、近赤外線等)の吸収剤、屈折率調整剤、酸化防止剤、密着剤、界面活性剤等の添加剤を含有しても良い。有機・無機微粒子の例としては、例えば、高分子微粒子(例えば、シリコーン樹脂微粒子、ポリスチレン微粒子、メラミン樹脂微粒子)、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化インジウム、酸化アルミニウム、窒化チタン、酸窒化チタン、フッ化マグネシウム、中空シリカ、シリカ、炭酸カルシウム、硫酸バリウム等が挙げられる。特定波長の光の吸収剤は公知の吸収剤を用いることができる。これらの添加剤の含有量は適宜調整できるが、保護層の全質量に対して0.1~70質量%が好ましく、1~60質量%がさらに好ましい。また、保護層としては、特開2017-151176号公報の段落番号0073~0092に記載の保護層を用いることもできる。
 光学フィルタは、隔壁により例えば格子状に仕切られた空間に、各画素が埋め込まれた構造を有していてもよい。また、本発明の樹脂組成物は国際公開第2019/102887号に記載された画素構成にも好適に使用することができる。
<固体撮像素子>
 本発明の固体撮像素子は、上述した本発明の膜を有する。本発明の固体撮像素子の構成としては、本発明の膜を備え、固体撮像素子として機能する構成であれば特に限定はないが、例えば、以下のような構成が挙げられる。
 基板上に、固体撮像素子(CCD(電荷結合素子)イメージセンサ、CMOS(相補型金属酸化膜半導体)イメージセンサ等)の受光エリアを構成する複数のフォトダイオード及びポリシリコン等からなる転送電極を有し、フォトダイオード及び転送電極上にフォトダイオードの受光部のみ開口した遮光膜を有し、遮光膜上に遮光膜全面及びフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、カラーフィルタを有する構成である。更に、デバイス保護膜上であってカラーフィルタの下(基板に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、カラーフィルタ上に集光手段を有する構成等であってもよい。また、カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各着色画素が埋め込まれた構造を有していてもよい。この場合の隔壁は各着色画素よりも低屈折率であることが好ましい。このような構造を有する撮像装置の例としては、特開2012-227478号公報、特開2014-179577号公報、国際公開第2018/043654号、米国特許出願公開第2018/0040656号明細書に記載の装置が挙げられる。また、特開2019-211559号公報のように固体撮像素子の構造内に紫外線吸収層を設けて耐光性を改良してもよい。本発明の固体撮像素子を備えた撮像装置は、デジタルカメラや、撮像機能を有する電子機器(携帯電話等)の他、車載カメラや監視カメラ用としても用いることができる。さらに、本発明のカラーフィルタを組み込んだ固体撮像素子は、本発明のカラーフィルタに加え、更に別のカラーフィルタ、近赤外線カットフィルタ、有機光電変換膜などを組み込んでもよい。
<画像表示装置>
 本発明の画像表示装置は、上述した本発明の膜を有する。画像表示装置としては、液晶表示装置や有機エレクトロルミネッセンス表示装置などが挙げられる。画像表示装置の定義や各画像表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木昭夫著、(株)工業調査会、1990年発行)」、「ディスプレイデバイス(伊吹順章著、産業図書(株)平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田龍男編集、(株)工業調査会、1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<試料の重量平均分子量(Mw)の測定>
 試料の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、以下の条件で測定した。
カラムの種類:TOSOH TSKgel Super HZM-Hと、TOSOH TSKgel Super HZ4000と、TOSOH TSKgel Super HZ2000とを連結した
カラム展開溶媒:テトラヒドロフラン
カラム温度:40℃
流量(サンプル注入量):1.0μL(サンプル濃度:0.1質量%)
装置名:東ソー社製 HLC-8220GPC
検出器:RI(屈折率)検出器
検量線ベース樹脂:ポリスチレン樹脂
<試料の酸価の測定>
 試料の酸価は、試料中の固形分1gあたりの酸性成分を中和するのに要する水酸化カリウムの質量を表したものである。試料の酸価は次のようにして測定した。すなわち、測定試料をテトラヒドロフラン/水=9/1(質量比)混合溶媒に溶解し、得られた溶液を、電位差滴定装置(商品名:AT-510、京都電子工業製)を用いて、25℃にて、0.1mol/L水酸化カリウム水溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として、次式により酸価を算出した。
 A=56.11×Vs×0.5×f/w
 A:酸価(mgKOH/g)
 Vs:滴定に要した0.1mol/L水酸化カリウム水溶液の使用量(mL)
 f:0.1mol/L水酸化カリウム水溶液の力価
 w:試料の質量(g)(固形分換算)
<樹脂の合成例>
(合成例1)
 窒素置換した3つ口フラスコにε-カプロラクトンの114.1gと、6-メルカプトヘキサノールの14.9gを加え90℃で加温した。次にモノブチルスズオキシド(MBTO:三菱ケミカル(株)製)0.1gを加え窒素雰囲気下90℃で4時間加熱攪拌し、110℃に昇温してさらに4時間加熱攪拌した。最後にプロピレングリコールモノメチルエーテルアセテート128.6gを加えて下記構造の末端メルカプト基ポリマーの溶液を得た。得られた末端メルカプト基ポリマーの重量平均分子量は980であった。
Figure JPOXMLDOC01-appb-C000027
 次に、得られた末端メルカプト基ポリマーの溶液を60℃に加温し、無水マレイン酸の10.9gを加え、熱ラジカル発生剤(V-65、富士フイルム和光純薬(株)製)の0.32gを加え窒素雰囲気下60℃で8時間加熱攪拌して下記構造の樹脂B-1の溶液を得た。得られた樹脂B-1の重量平均分子量は1150であった。
Figure JPOXMLDOC01-appb-C000028
 また、樹脂B-2~B-4については、樹脂B-1と同様の方法で合成した。
(合成例2)
 窒素置換した3つ口フラスコにε-カプロラクトンの114.1gと2-エチルヘキサノールの14.5gを加え90℃で加温した。次にモノブチルスズオキシド(MBTO:三菱ケミカル(株)製)0.1gを加え窒素雰囲気下90℃で4時間加熱攪拌し、110℃に昇温してさらに4時間加熱攪拌した。最後にプロピレングリコールモノメチルエーテルアセテート128.6gを加えて下記構造の末端ヒドロキシ基ポリマーの溶液を得た。得られた末端ヒドロキシ基ポリマーの重量平均分子量は1300であった。
Figure JPOXMLDOC01-appb-C000029
 次に、得られた末端ヒドロキシ基ポリマーの溶液を5℃に冷却し、無水トリメリット酸クロリドの32.1gを加え、N-メチルイミダゾールの15.3gを6時間かけて滴下した。さらに室温で24時間攪拌し、不溶物をろ過して除去して下記構造の樹脂B-5の溶液を得た。得られた樹脂B-5の重量平均分子量は1440であった。
Figure JPOXMLDOC01-appb-C000030
 また、樹脂B-6~B-41については、樹脂B-5と同様の方法で合成した。
 樹脂B-1~B-41の構造および重量平均分子量を以下に示す。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-T000032
 AH-1~AH-7:下記構造の基(式中、*は連結手である)
Figure JPOXMLDOC01-appb-C000033
 Z1-1、Z1-2、Z1-12、Z1-13、Z1-14:下記構造の基(式中、*は連結手である)
Figure JPOXMLDOC01-appb-C000034
 P1-1~P1-16、P1-18~P1-22:下記構造の基(式中、*は連結手である)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
<分散液の製造>
 下記表に記載の原料を混合した混合液を、ビーズミル(0.3mm径のジルコニアビーズを使用)を用いて3時間混合及び分散した後さらに減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製)を用いて、2000MPaの圧力下で流量500g/minとして分散処理を行った。この分散処理を10回繰り返して各分散液を得た。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 上記表に記載の各原料の配合量を示す数値の単位は質量部である。上記表に示した原料のうち、略語で示した原料の詳細は以下の通りである。
〔色材〕
 PR122 : C.I.ピグメントレッド122(赤色顔料、キナクリドン顔料)
 PR179 : C.I.ピグメントレッド179(赤色顔料、ペリレン顔料)
 PR254 : C.I.ピグメントレッド254(赤色顔料、ジケトピロロピロール顔料)
 PR264 : C.I.ピグメントレッド264(赤色顔料、ジケトピロロピロール顔料)
 PR291 : C.I.ピグメントレッド291(赤色顔料、ジケトピロロピロール顔料)
 PO71 : C.I.ピグメントオレンジ71(オレンジ色顔料、ジケトピロロピロール顔料)
 PB15:6 : C.I.ピグメントブルー15:6(青色顔料、フタロシアニン顔料)
 PB16 : C.I.ピグメントブルー16(青色顔料、フタロシアニン顔料)
 PG7 : C.I.ピグメントグリーン7(緑色顔料、フタロシアニン顔料)
 PG36 : C.I.ピグメントグリーン36(緑色顔料、フタロシアニン顔料)
 PG58 : C.I.ピグメントグリーン58(緑色顔料、フタロシアニン顔料)
 PY185 : C.I.ピグメントイエロー185(黄色顔料、イソインドリン顔料)
 PY215 : C.I.ピグメントイエロー215(黄色顔料、プテリジン顔料)
 PV23 : C.I.ピグメントバイオレット23(紫色顔料、ジオキサジン顔料)
 IR色素:下記構造の化合物(近赤外線吸収顔料、構造式中、Meはメチル基を表し、Phはフェニル基を表す)
Figure JPOXMLDOC01-appb-C000043
 黒色色材1:以下の方法で製造したチタンブラック(a-1)
 平均粒子径15nmの酸化チタンMT-150A(テイカ社製)を100g、BET表面積300m/gのシリカ粒子AEROGIL300/30(エボニック社製)を25g及び分散剤Disperbyk190(ビックケミー社製)を100g秤量し、イオン交換水71gを加えてKURABO社製MAZERSTAR KK-400Wを使用して、公転回転数1360rpm、自転回転数1047rpmにて20分間処理することにより均一な混合物水溶液を得た。この水溶液を石英容器に充填し、小型ロータリーキルン(モトヤマ社製)を用いて酸素雰囲気中で920℃に加熱した後、窒素で雰囲気を置換し、同温度でアンモニアガスを100mL/minで5時間流すことにより窒化還元処理を実施した。終了後、回収した粉末を乳鉢で粉砕し、Si原子を含有し、粉末状の比表面積73m/gのチタンブラック(a-1)〔チタンブラック粒子及びSi原子を含有する被分散体〕を得た。
 黒色色材2:以下の方法で製造した被覆カーボンブラック
 通常のオイルファーネス法で、カーボンブラックを製造した。但し、原料油としては、Na分量、Ca分量及びS分量の少ないエチレンボトム油を用い、ガス燃料を用いて燃焼を行った。更に、反応停止水としては、イオン交換樹脂で処理した純水を用いた。ホモミキサーを用いて、得られたカーボンブラック540gを純水14500gと共に5000~6000rpmで30分撹拌し、スラリーを得た。このスラリーをスクリュー型撹拌機付容器に移して、約1000rpmで混合しながらエポキシ樹脂(エピコート828、三菱ケミカル(株)製)の60gを溶解したトルエン600gを少量ずつ添加した。約15分で、水に分散していたカーボンブラックは全量トルエン側に移行し、約1mmの粒となった。次に、60メッシュ金網で水切りを行った後、分離された粒を真空乾燥機に入れ、70℃で7時間乾燥し、トルエン及び水を除去して、被覆カーボンブラックを得た。得られた被覆カーボンブラックの樹脂被覆量は、カーボンブラックと樹脂の合計量に対して10質量%であった。
 黒色色材3:Irgaphor Black S 0100 CF(BASF社製、下記構造の化合物、ラクタム顔料)
Figure JPOXMLDOC01-appb-C000044
 黒色色材4:酸窒化ジルコニウム(粉末状の比表面積65m/g)
〔顔料誘導体〕
 誘導体1:下記構造の化合物
Figure JPOXMLDOC01-appb-C000045
 誘導体2:下記構造の化合物
Figure JPOXMLDOC01-appb-C000046
 誘導体3:下記構造の化合物
Figure JPOXMLDOC01-appb-C000047
 誘導体4:S12000(ルーブリゾール社製)
〔樹脂(分散剤)〕
 B-1~B-38:上述した樹脂
(比較樹脂)
 cB-1:下記構造の樹脂(重量平均分子量2500、「Poly」の記載は、「Poly」で示す構造の繰り返し単位が添え字の数値の数で結合した構造のポリマー鎖が硫黄原子(S)に結合していることを示している。)
 cB-2:下記構造の樹脂(重量平均分子量2800、「Poly」の記載は、「Poly」で示す構造の繰り返し単位が添え字の数値の数で結合した構造のポリマー鎖が硫黄原子(S)に結合していることを示している。)
Figure JPOXMLDOC01-appb-C000048
〔溶剤〕
 S-1:プロピレングリコールモノメチルエーテルアセテート
 S-2:プロピレングリコールモノメチルエーテル
 S-3:シクロヘキサノン
 S-4:シクロペンタノン
<樹脂組成物の製造>
 下記表に記載の原料を混合して実施例および比較例の樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 上記表に記載の原料のうち、略語で示した原料の詳細は以下の通りである。
〔分散液〕
 分散液R1~R15、B1~B14、G1~G14、I1~I7、Bk1~Bk17、TBk1~TBk17、CR1、CR2、CB1、CB2、CG1、CG2、CI1、CI2、CBk1、CBk2、CTBk1、CTBk2:上述した分散液
〔樹脂〕
 Ba-1:下記構造の樹脂(主鎖に付記した数値はモル比である。重量平均分子量11000)
Figure JPOXMLDOC01-appb-C000052
 Ba-2:下記構造の樹脂(主鎖に付記した数値はモル比である。重量平均分子量15000)
Figure JPOXMLDOC01-appb-C000053
 Ba-3:下記構造の樹脂(主鎖に付記した数値はモル比である。xとyとzの合計値は50である。Mw=15000)
Figure JPOXMLDOC01-appb-C000054
 Ba-4:カルド樹脂V-259ME (新日鉄住金社製)
 Bb-1:下記構造の樹脂(主鎖に付記した数値はモル比である。重量平均分子量13000)
Figure JPOXMLDOC01-appb-C000055
 Bb-2:上述した樹脂cB-1
 B-11、B-12:上述した構造の樹脂B-11、B-12
〔重合性モノマー〕
 D-1:アクリレート化合物(KAYARAD DPHA、日本化薬(株)製、ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物)
 D-2:エポキシ化合物(TETRAD-X、三菱ガス化学(株)製、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン)
 D-3:オキセタン化合物(OXT-221、東亞合成(株)製、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン)
 D-4:オキセタン化合物(OX-SQ TX-100、東亞合成(株)製)
〔光重合開始剤〕
 E-1:Omnirad 379EG(IGM Resins B.V.社製、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン)
 E-2:Irgacure OXE01(BASF社製、オキシム化合物)
 E-3:下記構造の化合物
Figure JPOXMLDOC01-appb-C000056
〔溶剤〕
 S-1:プロピレングリコールモノメチルエーテルアセテート
 S-2:プロピレングリコールモノメチルエーテル
 S-3:シクロヘキサノン
<評価>
[分散性の評価]
(保存安定性)
 各実施例及び比較例の樹脂組成物の粘度(mPa・s)を、東機産業(株)製「RE-85L」にて測定した。上記測定後、樹脂組成物を45℃、遮光、3日間の条件にて静置し、再度粘度(mPa・s)を測定した。上記静置前後での粘度差(ΔVis)から下記評価基準に従って保存安定性を評価した。粘度差(ΔVis)の数値が小さいほど、樹脂組成物の保存安定性が良好であり、顔料の分散性が良好であるといえる。上記粘度測定は、いずれも、温湿度を22±5℃、60±20%に管理した実験室で、樹脂組成物の温度を25℃に調整した状態で行った。
-評価基準-
 A:ΔVisが0.5mPa・s以下であった。
 B:ΔVisが0.5mPa・sを超え、1.0mPa・s以下であった。
 C:ΔVisが1.0mPa・sを超え、2.0mPa・s以下であった。
 D:ΔVisが2.0mPa・sを超え、2.5mPa・s以下であった。
 E:ΔVisが2.5mPa・sを超えた。
(粒子径)
 JIS8826:2005に準じた動的光散乱式粒径分布測定装置(堀場製作所社製、LB-500)を用いて、上記で得られた樹脂組成物を20mlサンプル瓶に分取し、プロピレングリコールモノメチルエーテルアセテートにより固形分濃度が0.2質量%になるように希釈調整した。温度25℃で2mlの測定用石英セルを使用して、上記希釈液のデータ取り込みを50回行い、得られた個数基準の算術平均の顔料の粒子径(数平均粒子径)を求めた。顔料の数平均粒子径の値が小さいほど顔料の分散性が良好であるといえる。
-評価基準-
 A:顔料の数平均粒子径が0.05μm以下であった。
 B:顔料の数平均粒子径が0.05μmを超え、0.10μm以下であった。
 C:顔料の数平均粒子径が0.10μmを超え、0.20μm以下であった。
 D:顔料の数平均粒子径が0.20μmを超え、0.50μm以下であった。
 E:顔料の数平均粒子径が0.50μmを超えた。
[パターン形成性の評価]
(製造例1) 実施例1~77、比較例1~10の樹脂組成物を用いたパターンの形成方法
 実施例1~77、比較例1~10の樹脂組成物を、ガラス基板上にスピンコート法により塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)して厚さ0.6μmの塗膜を作製した。この塗膜に対して、一辺1.1μmの正方形状の非マスク部が4mm×3mmの領域に配列されたマスクパターンを介して、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して波長365nmの光を500mJ/cmの露光量で照射して露光した。次いで、露光後の塗膜が形成されているガラス基板を、スピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、現像液(CD-2000、富士フイルムエレクトロニクスマテリアルズ(株)製)を用い、23℃で60秒間パドル現像した。次いで、ガラス基板を回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行ない、その後スプレー乾燥した。リンス後の塗膜を、220℃で300秒間ポストベークし、パターン付き基板を形成した。
(製造例2) 実施例78~94、比較例11、12の樹脂組成物を用いたパターンの形成方法
 実施例78~94、比較例11、12の樹脂組成物を、ガラス基板上にスピンコート法により塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)して厚さ1.5μmの塗膜を作製した。この塗膜に対して、開口線幅50μmのL/Sパターン(ライン幅:スペース幅=1:1)のマスクを介して、UX-1000SM-EH04(ウシオ電機社製)を用いて高圧水銀ランプ(ランプパワー50mW/cm)にて500mJ/cmの露光量でプロキシミティ方式による露光を行った。次に、露光後の上記塗膜を、AD-1200(ミカサ社製)を使用して現像液(CD-1040、富士フイルムエレクトロニクスマテリアルズ社製)で、23℃で15秒間パドル現像し、シャワーノズルを用いて純水で30秒リンスした。リンス後の塗膜を、220℃で300秒間ポストベークし、パターン付き基板を形成した。
〔残渣〕
 各樹脂組成物を用いて上述の方法で作製したパターン付き基板について、透過型顕微鏡を用いて基板上のパターンが形成されていないスペース部(非露光部)を観察し、以下の観点により、評価した。
 A:スペース部に残渣が存在していない。
 B:スペース部の33.3%未満の領域に残渣が確認される。
 C:スペース部の33.3%以上66.7%未満の領域に残渣が確認される。
 D:スペース部の66.7%以上の領域に残渣が確認される。
〔密着性(剥がれ)〕
 露光の際に使用したマスクの開口線幅を10μmに変更したことと、露光量をそれぞれ変化させながら露光したこと以外は上述の方法と同様にして、各樹脂組成物を用いてパターン付き基板を作製した。
 得られたパターン付き基板について、光学顕微鏡を用いて10μm幅のラインパターンを観察し、パターン剥がれの有無に関して以下の観点により、評価した。基板に密着していて剥がれがないパターン(画像部)を形成できるようになる露光量が小さいほど、好ましい。
 A:1000mJ以下の露光量にて、剥がれがないパターンを形成できる。
 B:1000mJ超1400mJ以下の露光量にて、剥がれがないパターンを形成できる。
 C:1400mJ超1700mJ以下の露光量にて、剥がれがないパターンを形成できる。
 D:1700mJ超の露光量にて、剥がれがないパターンを形成できる。
〔アンダーカット幅〕
 露光の際に使用したマスクの開口線幅を300μmに変更したこと以外は上述した手順と同様にして、各樹脂組成物を用いてパターン付き基板を作製した。
 得られたパターン付き基板について、走査型電子顕微鏡S-4800((株)日立ハイテクノロジーズ社製)を用いて300μm幅のパターンの断面走査電子顕微鏡像を観察し、アンダーカット幅を実測し、以下の観点により、評価した。
 なお、アンダーカット幅は、「〔(パターン断面においてライン幅が最も広い箇所の上記ライン幅)-(パターン断面におけるラインパターンが基板と触れる部分でのライン幅)〕÷2」と定義される。
 なお、上記「パターン断面においてライン幅が最も広い箇所の上記ライン幅」とは300μmである。
 A:アンダーカット幅が1.0μm未満
 B:アンダーカット幅が1.0μm以上1.5μm未満
 C:アンダーカット幅が1.5μm以上2.0未満
 D:アンダーカット幅が2.0μm以上
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
 実施例の樹脂組成物を用いた場合、比較例の樹脂組成物を用いた場合と比較して、いずれも保存安定性および粒子径の評価が優れており、顔料の分散性に優れていた。更には、実施例の樹脂組成物を用いた場合、比較例の樹脂組成物を用いた場合と比較して、いずれも残渣、密着性およびアンダーカットの評価が優れていた。
 分散液R2において、顔料誘導体としても用いた誘導体2を、誘導体10~33にかえた以外は分散液R2と同様にして、分散液R2-1~分散液R2-24を製造した。
 実施例3の分散液R2を、分散液R2-1~R2-24にかえた以外は実施例3と同様にして樹脂組成物を製造した。得られた樹脂組成物を用いて上記と同様評価を行ったところ、実施例3と同様の評価結果であった。
 誘導体10~33:下記構造の化合物。各誘導体の結晶子サイズは粉砕して調整した。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 誘導体10~33の結晶子サイズおよび結晶化度は以下の通りである。結晶化度はアモルファス部に由来する回折ピークが明瞭である場合において、アモルファス部に由来する最大回折強度Icと、結晶に由来する最大回折強度Iaを用いて、以下の計算式で求めた。
 〔結晶化度〕=Ic/(Ia+Ic)
Figure JPOXMLDOC01-appb-T000064

Claims (15)

  1.  顔料を含む色材Aと、
     樹脂Bと、
     溶剤Cと、を含み、
     前記樹脂Bは、酸無水物基と、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖とを含む樹脂B1を含む、樹脂組成物。
  2.  前記酸無水物基は、環状酸無水物基である、請求項1に記載の樹脂組成物。
  3.  前記樹脂B1は、式(1)で表される樹脂である、請求項1または2に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは、酸無水物基を表し、
     XおよびXはそれぞれ独立して、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表し、Rx1は水素原子または置換基を表し、
     Lは、単結合またはm+n価の連結基を表し、
     Pは、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
     mおよびnはそれぞれ独立して1以上の整数を表す。
  4.  前記Pが表すポリマー鎖は、エチレン性不飽和結合含有基、エポキシ基およびオキセタニル基から選ばれる少なくとも1種を含む、請求項3に記載の樹脂組成物。
  5.  前記Rが表す酸無水物基は、式(RAH-1)~式(RAH-7)のいずれかで表される基である、請求項3または4に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000002
     式(RAH-1)~(RAH-7)中、*は連結手を表し、
     RAH1、RAH7、RAH8、RAH10およびRAH11はそれぞれ独立して水素原子または置換基を表し、
     RAH2、RAH3、RAH4、RAH5、RAH6およびRAH9は置換基を表し、
     r2、r3、r4、r6およびr7は、それぞれ独立して0~3の整数を表し、
     r5は0~2の整数を表す。
  6.  前記樹脂B1は、式(2)で表される樹脂である、請求項1~5のいずれか1項に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000003
     式(2)中、Xは、単結合、-O-、-CO-、-COO-、-OCO-、-NRx1-、-CONRx1-、-NRx1CO-または-S-を表し、Rx1は水素原子または置換基を表し、
     Lは、単結合またはm+n価の連結基を表し、
     Pは、ポリエーテル構造およびポリエステル構造から選ばれる少なくとも1種の構造の繰り返し単位を含むポリマー鎖を表し、
     mおよびnはそれぞれ独立して1以上の整数を表す。
  7.  前記樹脂B1の重量平均分子量が500以上10000未満である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記溶剤Cは、エーテル系溶剤、エステル系溶剤およびケトン系溶剤から選ばれる少なくとも1種の溶剤を含む、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記色材Aは、黒色顔料を含み、
     前記樹脂組成物の全固形分中における黒色顔料の含有量が65質量%以上である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  更に、重合性モノマーを含む、請求項1~9のいずれか1項に記載の樹脂組成物。
  11.  更に、光重合開始剤を含む、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  請求項1~11のいずれか1項に記載の樹脂組成物を用いて得られる膜。
  13.  請求項12に記載の膜を有する光学フィルタ。
  14.  請求項12に記載の膜を有する固体撮像素子。
  15.  請求項12に記載の膜を有する画像表示装置。
PCT/JP2022/021442 2021-06-23 2022-05-25 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置 WO2022270209A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529726A JPWO2022270209A1 (ja) 2021-06-23 2022-05-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-103710 2021-06-23
JP2021103710 2021-06-23
JP2021-198684 2021-12-07
JP2021198684 2021-12-07

Publications (1)

Publication Number Publication Date
WO2022270209A1 true WO2022270209A1 (ja) 2022-12-29

Family

ID=84544462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021442 WO2022270209A1 (ja) 2021-06-23 2022-05-25 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置

Country Status (3)

Country Link
JP (1) JPWO2022270209A1 (ja)
TW (1) TW202302703A (ja)
WO (1) WO2022270209A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024190470A1 (ja) * 2023-03-10 2024-09-19 株式会社レゾナック 感光性樹脂組成物、感光性エレメント、硬化物、レジストパターンの形成方法、及び、プリント配線板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089024A (ja) * 1998-09-14 2000-03-31 Fuji Photo Film Co Ltd カラーフィルター用感光性着色組成物
JP2008255297A (ja) * 2007-04-09 2008-10-23 Chisso Corp 熱硬化性樹脂組成物及び硬化膜
WO2010113944A1 (ja) * 2009-03-31 2010-10-07 日産化学工業株式会社 熱硬化膜形成用ポリエステル組成物
JP2019117300A (ja) * 2017-12-27 2019-07-18 東洋インキScホールディングス株式会社 液体現像剤、およびそれを用いた印刷物
JP2020026503A (ja) * 2018-08-16 2020-02-20 東洋インキScホールディングス株式会社 イソインドリン顔料、カラーフィルタ用着色組成物、カラーフィルタおよび印刷用インキ
JP2020181041A (ja) * 2019-04-24 2020-11-05 東洋インキScホールディングス株式会社 カラーフィルタ用着色組成物、およびカラーフィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089024A (ja) * 1998-09-14 2000-03-31 Fuji Photo Film Co Ltd カラーフィルター用感光性着色組成物
JP2008255297A (ja) * 2007-04-09 2008-10-23 Chisso Corp 熱硬化性樹脂組成物及び硬化膜
WO2010113944A1 (ja) * 2009-03-31 2010-10-07 日産化学工業株式会社 熱硬化膜形成用ポリエステル組成物
JP2019117300A (ja) * 2017-12-27 2019-07-18 東洋インキScホールディングス株式会社 液体現像剤、およびそれを用いた印刷物
JP2020026503A (ja) * 2018-08-16 2020-02-20 東洋インキScホールディングス株式会社 イソインドリン顔料、カラーフィルタ用着色組成物、カラーフィルタおよび印刷用インキ
JP2020181041A (ja) * 2019-04-24 2020-11-05 東洋インキScホールディングス株式会社 カラーフィルタ用着色組成物、およびカラーフィルタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024190470A1 (ja) * 2023-03-10 2024-09-19 株式会社レゾナック 感光性樹脂組成物、感光性エレメント、硬化物、レジストパターンの形成方法、及び、プリント配線板の製造方法
WO2024189679A1 (ja) * 2023-03-10 2024-09-19 株式会社レゾナック 感光性樹脂組成物、感光性エレメント、硬化物、レジストパターンの形成方法、及び、プリント配線板の製造方法

Also Published As

Publication number Publication date
TW202302703A (zh) 2023-01-16
JPWO2022270209A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
JP2024009929A (ja) 着色感光性組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置
JP2024124473A (ja) 化合物
WO2022168743A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置
WO2022168741A1 (ja) 着色組成物、膜、光学フィルタ、固体撮像素子、画像表示装置および化合物
WO2022019253A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および化合物
JP7080325B2 (ja) 硬化性組成物、膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子および画像表示装置
WO2022270209A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置
JP2022119701A (ja) 感光性組成物、感光性組成物の製造方法、膜、光学フィルタ、固体撮像素子および画像表示装置
KR20230121862A (ko) 착색 조성물, 막, 광학 필터, 고체 촬상 소자, 화상표시 장치 및 화합물
US20220057711A1 (en) Resin composition, film, color filter, solid-state imaging element, and image display device
KR102508636B1 (ko) 감광성 조성물, 막, 컬러 필터, 고체 촬상 소자 및 화상 표시 장치
JP7397201B2 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置及び樹脂
JP7385739B2 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、及び、画像表示装置
WO2023022120A1 (ja) 組成物、膜、光学フィルタ、光学センサ、画像表示装置および構造体
WO2022176787A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および樹脂の製造方法
WO2022176788A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、樹脂および樹脂の製造方法
WO2023022121A1 (ja) 組成物、膜、光学フィルタ、光学センサおよび画像表示装置
WO2022230625A1 (ja) 着色組成物、膜、光学フィルタ、固体撮像素子、画像表示装置および化合物
WO2023100585A1 (ja) 着色組成物、膜、カラーフィルタ、表示装置および構造体
WO2023204062A1 (ja) 樹脂組成物、樹脂組成物の製造方法、顔料誘導体、膜、光学フィルタ、固体撮像素子および画像表示装置
WO2023157740A1 (ja) 着色組成物、膜、光学フィルタ、固体撮像素子及び画像表示装置
WO2023120387A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置
WO2023120036A1 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子および画像表示装置
WO2022044650A1 (ja) 着色組成物、光学フィルタの製造方法および固体撮像素子の製造方法
WO2023037828A1 (ja) 着色組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、及び、化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828128

Country of ref document: EP

Kind code of ref document: A1