WO2022017286A1 - 乙二醇单丙基醚的制备方法及系统 - Google Patents

乙二醇单丙基醚的制备方法及系统 Download PDF

Info

Publication number
WO2022017286A1
WO2022017286A1 PCT/CN2021/106809 CN2021106809W WO2022017286A1 WO 2022017286 A1 WO2022017286 A1 WO 2022017286A1 CN 2021106809 W CN2021106809 W CN 2021106809W WO 2022017286 A1 WO2022017286 A1 WO 2022017286A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene glycol
monopropyl ether
glycol monopropyl
rectification
propanol
Prior art date
Application number
PCT/CN2021/106809
Other languages
English (en)
French (fr)
Inventor
马定连
金一丰
王新荣
余渊荣
王敏
Original Assignee
浙江皇马科技股份有限公司
浙江皇马尚宜新材料有限公司
浙江绿科安化学有限公司
浙江皇马特种表面活性剂研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江皇马科技股份有限公司, 浙江皇马尚宜新材料有限公司, 浙江绿科安化学有限公司, 浙江皇马特种表面活性剂研究院有限公司 filed Critical 浙江皇马科技股份有限公司
Publication of WO2022017286A1 publication Critical patent/WO2022017286A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of organic compound synthesis, and in particular relates to a preparation method and system of ethylene glycol monopropyl ether.
  • Ethylene glycol monopropyl ether also known as propoxyethanol, is a colorless and transparent liquid, soluble in organic solvents such as ethanol and acetone, and miscible with water.
  • Ethylene glycol monopropyl ether has a very strong dissolving ability, its kauri butanol value (KB value) is 5 times that of aromatic hydrocarbon solvents and 17 times that of aliphatic hydrocarbon solvents, so ethylene glycol monopropyl ether is Excellent solvent, widely used in nitrocellulose, industrial coatings and other fields.
  • ethylene glycol monopropyl ether Due to the slow evaporation rate of ethylene glycol monopropyl ether, it has obvious effects on improving the gloss of varnishes and preventing peeling, so it can be used as a thinner in quick-drying paints and enamels to increase the adhesion between paints and wood and metal. Attachment. At the same time, ethylene glycol monopropyl ether can also be used as the raw material for the synthesis of the pesticide herbicide pretilachlor.
  • the synthetic process route of ethylene glycol monopropyl ether is a polymerization method: n-propanol and ethylene oxide are reacted under the action of catalysts, and the catalysts mainly include Lewis acid catalysts and alkali metal catalysts.
  • the use of Lewis acid such as BF 3 catalysis has the characteristics of high catalytic activity and low catalytic temperature, but there are many side reactions, and the content of by-products such as dioxane and diethylene glycol is high, which is not easy to remove.
  • Alkali metal catalysts such as KOH catalysis are easy to produce by-products ethylene glycol, diethylene glycol, etc., and the reaction products are widely distributed, the conversion rate of ethylene glycol monopropyl ether target product is low, and diethylene glycol monopropyl ether , triethylene glycol monopropyl ether and other by-products are high. Therefore, it is necessary to optimize the existing synthetic process route of ethylene glycol monopropyl ether to solve the problems of low purity of synthetic crude product, many by-products, complicated procedures, and high production cost that exist in the current synthetic process route.
  • the present invention discloses an ethylene glycol with high catalytic selectivity, low production cost, few by-products, easy operation and high efficiency.
  • the preparation method of monopropyl ether is a simple compound, butanediol, butanediol, and a mixture thereof.
  • the invention provides a kind of high catalytic selectivity, low production cost, few by-products, An easy-to-operate and efficient preparation method and system for ethylene glycol monopropyl ether.
  • the technical scheme of the present invention is:
  • the present invention provides a preparation system for ethylene glycol monopropyl ether, including an integrated addition rectification reaction kettle, the addition rectification integrated reaction kettle includes a reactor main body, and the reaction kettle A rectification tower is connected above the main body; the main body of the reaction kettle includes a reaction feed inlet, a reaction outlet and a material steam outlet, and the material steam outlet is connected to the rectification inlet of the rectification tower; the rectification tower is provided with There are the rectification inlet and the rectification outlet, and the rectification tower is also connected with a vacuum device.
  • reaction discharge port is also connected to the reaction feed port through a return pipe, and the return pipe is provided with a filter and a material conveying pump.
  • a stirring device is also provided in the main body of the reaction kettle.
  • reaction kettle is provided with an interlayer, and the interlayer is used for introducing a temperature control medium.
  • the preparation system further includes a raw material storage tank and a product storage tank, and the raw material storage tank and the product storage tank are respectively connected with the addition and rectification integrated reaction kettle.
  • the present invention provides a kind of preparation method of ethylene glycol monopropyl ether, is to adopt above-mentioned system and following reaction equation:
  • the preparation method comprises: mixing n-propanol and a catalyst, adding ethylene oxide to react under the protection of N 2 ; separating the catalyst after the reaction to obtain a crude product of ethylene glycol monopropyl ether; The base ether crude product is subjected to vacuum distillation, and the free n-propanol, ethylene glycol monopropyl ether finished product and the bottom liquid are collected respectively, and the separated catalyst and free n-propanol can be recycled to the aforementioned reaction process. It can be directly used in the production of n-propanol polyether surfactant products.
  • the catalyst is one or a mixture of zinc methanesulfonate and zinc p-toluenesulfonate.
  • the mass ratio of the n-propanol and the ethylene oxide is: 60:(13.2-44), and the amount of the catalyst is 0.3-5 ⁇ of the total weight of the n-propanol and the ethylene oxide.
  • the reaction temperature of the n-propanol and the ethylene oxide under the catalysis of the catalyst is 110-180° C., and the reaction pressure is -0.05-0.60 MPa.
  • the specific process of the rectification under vacuum includes: pumping the vacuum of the addition rectification integrated reaction kettle to -0.05MPa, controlling the vacuum degree to remain unchanged, and removing the ethylene glycol monopropylene in the main body of the reaction kettle.
  • the base ether crude product is heated up, and the rectification and condensation are turned on.
  • the temperature of the material at the bottom of the kettle is controlled at 65-80 °C, and the temperature at the top of the tower is at 50-65 °C. After the total reflux is carried out for 30min, n-propanol is received.
  • n-propanol After the n-propanol is collected, When the temperature of the top of the kettle drops to normal temperature, vacuumize to increase the vacuum degree in the kettle to ⁇ -0.098MPa; heat up the materials in the kettle again, and control the temperature of the materials at the bottom of the kettle to be 80-100 °C and the temperature of the top of the tower to be 50-65 °C, first carry out the whole process. Reflux for 30min, then start to receive the mixture of ethylene glycol monopropyl ether and n-propanol, and control the reflux ratio to be 5:1. During the period, take the liquid to detect the content of ethylene glycol monopropyl ether in the mixture.
  • the finished product of ethylene glycol monopropyl ether starts to be received separately.
  • the receiving is stopped and the rectification is completed. Cool the bottom liquid to 40 ⁇ 2°C, fill with N 2 until the pressure of the reactor is 0.00-0.04MPa, put the bottom liquid into the packaging barrel for producing other n-propanol polyethers.
  • the preparation method of ethylene glycol monopropyl ether of the present invention uses zinc methanesulfonate or zinc p-toluenesulfonate weakly acidic solid catalyst as a catalyst, compared with strong basic catalysts such as KOH, NaOH, sodium methoxide and KF/AI2O3 , KF/ATP type catalyst, good reaction selectivity, high purity of ethylene glycol monopropyl ether, less by-products, mild and safe reaction, reusable catalyst, low cost, less three wastes.
  • strong basic catalysts such as KOH, NaOH, sodium methoxide and KF/AI2O3 , KF/ATP type catalyst
  • good reaction selectivity high purity of ethylene glycol monopropyl ether, less by-products, mild and safe reaction
  • reusable catalyst low cost, less three wastes.
  • zinc methanesulfonate or zinc p-toluenesulfonate is weaker in acidity than zinc methanedisulfonate
  • the ethylene glycol monopropyl ether prepared by the method of the present invention has high purity ( ⁇ 99.8%) and few by-products.
  • the preparation method of the present invention has the advantages of simple process, mild reaction conditions, good selectivity, short production cycle, low energy consumption, reusable catalyst and less three wastes.
  • the preparation system of the present invention integrates the addition reaction and the rectification process into one. After the addition reaction is completed, the rectification step is directly carried out in the same reactor, which reduces equipment requirements and costs, and does not require material transfer. The probability of material contamination is avoided, and product quality can be guaranteed.
  • FIG. 1 is a schematic structural diagram of the preparation system of the present invention.
  • Fig. 2 is the structural representation of the rectifying tower of the present invention.
  • reaction vessel prior embodiment Preparation of the reaction vessel prior embodiment: first with distilled water and the reactor body, rectification column, the raw material storage tank, sump product washed several times until it is clean, hot N 2 purged, dry reactor body, and the rectification column Storage tank, ready to use after cooling to room temperature.
  • the present embodiment provides a preparation system for ethylene glycol monopropyl ether, including an integrated addition rectification reaction kettle, and the addition rectification integrated reaction kettle includes a reactor main body 4 , the reactor main body 4 is connected to the rectification tower 5 above.
  • the main body 4 of the reaction kettle is provided with an interlayer 17 for introducing a temperature control medium, such as steam, cooling water (the inlet and outlet of steam and cooling water are just opposite), oil, etc.
  • the main body 4 of the reaction kettle includes a reaction feed port 10, a reaction discharge port 11, a protective gas port 13 and a material steam outlet.
  • the reaction feed port 10 and the reaction discharge port 11 are respectively arranged at the top and bottom of the reaction kettle main body 4, and the reaction inlet
  • the material port 10 and the reaction outlet 11 are provided with a control valve 18; the reaction outlet 11 is also connected to the reaction inlet 10 through a return pipe 23, and the return pipe 23 is provided with a catalyst filter 3 and a material delivery pump 2 and control valve 18.
  • the reactor main body 4 is provided with a stirring device 16 ; the reactor main body 4 is also provided with a pressure sensor and a temperature sensor, which are respectively used to monitor the pressure and temperature in the reactor main body 4 .
  • the rectification tower 5 is a tray type rectification tower, with a rectification inlet 14 at the bottom and a rectification outlet 15 at the top.
  • the rectification inlet 14 is connected to the material steam outlet of the reactor main body 4, and a control valve 18 is arranged between the two. .
  • the top of the rectification column 5 is connected to the condenser 25, the condenser 25 is connected to the vacuum device 28 through the vacuum pipeline 8, the rectification column 5 is directly connected to two branch pipelines 9, one branch pipeline 9 is connected to the n-propanol storage tank 6, and the other branch pipeline 9 is connected to the ethylene glycol monopropyl ether storage tank 7 for collecting n-propanol and ethylene glycol monopropyl ether from the rectification respectively, and the two branch pipes 9 are provided with a control valve 18 and a check valve 27;
  • the vacuum line 8 is also connected to the two branch lines 9 .
  • Both the n-propanol storage tank 6 and the ethylene glycol monopropyl ether storage tank 7 are provided with a vacuum port 19 and a protective gas port 20, and a material outlet 22 is also provided.
  • a number of control valves 18 are also provided on the vacuum line 8 .
  • the vacuum pipe 8 is also provided with a sampling port 21 for sampling and detecting the components of the rectified liquid, so as to control the purity of different distillates.
  • the preparation system also includes an ethylene oxide storage tank 1, which is connected to the reaction feed port 10 of the reactor main body 4, and the ethylene oxide storage tank 1 is also provided with a vacuum port 19 and a reaction feed port 10.
  • the protective gas port 20 is also provided with a material inlet 24 and a material outlet 22 .
  • the catalyst was recovered by filtration. After the catalyst is recovered, close the control valve of the reaction outlet and the reaction inlet, open the control valve between the main body of the reactor and the rectification tower, and the control valve between the rectification tower and the vacuum pump, and evacuate to -0.05MPa , while maintaining this vacuum degree, raise the temperature of the kettle material, open the condenser of the rectification tower; control the temperature of the bottom material of the kettle at 65-80 °C, the top temperature of the tower at 50-65 °C, carry out total reflux for 30min, when the total reflux time is up, turn on the n-propane
  • the control valve of the alcohol storage tank receives n-propanol; control the vacuum degree -0.05MPa, the bottom material of the kettle is 65-80 °C, when the temperature at the top of the tower drops to normal temperature,
  • the amount of n-propanol and ethylene oxide is certain, the amount of catalyst is consistent or similar, and under the condition that the reaction temperature is consistent, the catalyst of the present invention (zinc methanesulfonate, zinc p-toluenesulfonate) is adopted.
  • the synthetic crude product is 22% to 150% higher than the crude product ethylene glycol monopropyl ether synthesized by using strong basic catalysts such as KOH, NaOH, CH 3 ONa, and sodium n-propoxide in the prior art.
  • the catalyst selection of the present invention represents a significant substantial improvement over the prior art.
  • the content of ethylene glycol monopropyl ether of the product prepared by the rectification method of the present invention is more than 99.85%, n-propanol is less than 0.002%, and diethylene glycol monopropyl ether is less than 0.003% .
  • the synthesis reaction process conditions are the same as those of Example 3, except that the catalyst type and the number of times of applying the catalyst are changed only (the amount of the catalyst recovered is not enough and the new catalyst is supplemented in a small way). limited to this.
  • the specific indicators of crude products are shown in Table 3 and Table 4.
  • Table 4 applies parameters and crude product index of zinc p-toluenesulfonate catalyst
  • Synthesis reaction process condition is with embodiment 3, only changes the number of times of applying n-propanol (n-propanol recovery and applying amount is not enough, and is supplemented to the same amount with new n-propanol), which is not limited to this actually.
  • the specific indicators of crude products are shown in Table 5.
  • Table 5 shows that the recovered n-propanol of the present invention is repeatedly used 8 times, and the catalytic effect has no obvious change, indicating that the recovered n-propanol of the present invention can be reused. Because the present embodiment has only investigated the mechanical effect of n-propanol 8 times, but infers according to this result, n-propanol can be applied mechanically more than 8 times at least without affecting the experimental effect.
  • the bottoms of n-propanol was used for the production of synthesis polyether surfactant: the bottoms liquid condensed into a clean, dry vessel was added 0.8% by weight of the bottoms liquid catalyst KOH, using the air out of the autoclave replaced with N 2, warmed to 105 ° C, add different amounts of ethylene oxide to react (a total of 3 batches of reactions are carried out, see application example 1, application example 2 and application example 3), the reaction temperature is controlled at 100-120 ° C, and n-propanol polymer is obtained after the reaction is completed.
  • the crude ether product was cooled to 60-70°C, transferred to the post-treatment kettle, deionized water, 85% phosphoric acid of 2.1 times the weight of KOH was added for hydrolysis and neutralization, and then 0.5% of the crude n-propanol polyether was added for polyether adsorption. agent, and finally heated to 100-120 °C for dehydration. After the dehydration is completed, the temperature is lowered to 55-65°C and filtered to obtain the finished n-propanol polyether surfactant.
  • Example data are shown in Table 6.
  • the production data in Table 6 shows that the product n-propanol polyether produced by using the bottom liquid fully meets the relevant requirements of surfactants (color ⁇ 50Pt-Co), and can be used for the production of surface active n-propanol polyether.
  • the preparation method of ethylene glycol monopropyl ether of the present invention uses weakly acidic solid catalysts such as zinc methanesulfonate or zinc p-toluenesulfonate as catalysts, compared with KOH, NaOH, sodium methoxide, and sodium n-propoxide.
  • Iso-strong basic catalyst and BF 3 type Lewis acid catalyst have good reaction selectivity, high purity of ethylene glycol monopropyl ether, less by-products, mild and safe reaction, reusable catalyst, low cost and less three wastes.
  • the integrated reaction kettle of synthesis reaction and rectification operation of the present invention reduces one reaction kettle and reduces equipment investment compared to the two kettles of synthesis reaction kettle and rectification kettle required by the existing equipment of ethylene glycol monopropyl ether.
  • the equipment cost is reduced, and the use of production area is reduced; at the same time, the material does not need to be transferred to other kettles from the synthesis reaction to the rectification section, which reduces the pollution of the material during the transfer process and ensures the product quality.
  • the present invention adopts the rectification method of precise control under reduced pressure: the whole process adopts vacuum rectification, which reduces the separation temperature of materials, and only needs 65-80° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种乙二醇单丙基醚的制备方法及系统,采用正丙醇和环氧乙烷在催化剂作用下反应合成乙二醇单丙基醚粗品式(I);粗品再经减压精馏得到乙二醇单丙基醚成品。制备系统包括加成精馏一体化反应釜,加成精馏一体化反应釜包括反应釜主体,反应釜主体上方连接精馏塔;反应釜主体包括反应进料口、反应出料口和物料蒸汽出口,物料蒸汽出口连接精馏塔的精馏进口,精馏塔上设有精馏进口和精馏出口,精馏塔还连接真空装置。采用该方法制备的乙二醇单丙基醚,纯度高(≥99.8%),副产物少。

Description

[根据细则37.2由ISA制定的发明名称] 乙二醇单丙基醚的制备方法及系统 技术领域
本发明属于有机化合物合成技术领域,具体涉及一种乙二醇单丙基醚的制备方法及系统。
背景技术
乙二醇单丙基醚又名丙氧基乙醇,为无色透明液体,可溶于乙醇、丙酮等有机溶剂,与水混溶。乙二醇单丙基醚的溶解能力非常强,它的贝壳杉脂丁醇值(KB值)是芳香烃溶剂的5倍,是脂肪烃溶剂的17倍,所以乙二醇单丙基醚是优良的溶剂,广泛用于硝酸纤维、工业涂料等领域。由于乙二醇单丙基醚的蒸发速度较慢,对改进清漆的光泽、防止脱皮等有明显的效果,因而可用于快干漆和瓷漆中作稀释剂,增加油漆与木材、金属间的粘附性。同时乙二醇单丙基醚也可用于农药除草剂丙草胺合成的原料。
目前乙二醇单丙基醚合成工艺路线为聚合法:正丙醇与环氧乙烷在催化剂作用下反应而得,催化剂主要有路易斯酸催化剂和碱金属类催化剂。采用路易斯酸如BF 3催化,具有催化活性高,催化温度低特点,但是副反应多,副产物二恶烷、二乙二醇等含量高,不易去除。碱金属类催化剂如KOH催化,易产生副产物乙二醇、二乙二醇等,并且反应产物为宽分布,乙二醇单丙基醚目标产品转化率低,二乙二醇单丙基醚、三乙二醇单丙基醚等副产物含量高。因此,有必要对现有乙二醇单丙基醚合成工艺路线进行优化以解决目前合成工艺路线存在的合成粗品纯度低、副产物多、工序复杂、生产成本高等问题。
为解决目前合成工艺路线的合成粗品纯度低、副产物多、工序复杂、生产 成本高等问题,本专利发明一种催化选择性高,生产成本低、副产物少,易操作、高效的乙二醇单丙基醚的制备方法。
发明内容
为解决目前乙二醇单丙基醚合成工艺路线存在的合成粗品纯度低、副产物多、工序复杂、生产成本高等问题,本发明提供一种催化选择性高、生产成本低、副产物少、易操作、高效的乙二醇单丙基醚的制备方法及系统。本发明的技术方案为:
第一个方面,本发明提供一种乙二醇单丙基醚的制备系统,包括加成精馏一体化反应釜,所述加成精馏一体化反应釜包括反应釜主体,所述反应釜主体上方连接精馏塔;所述反应釜主体包括反应进料口、反应出料口和物料蒸汽出口,所述物料蒸汽出口连接所述精馏塔的精馏进口;所述精馏塔上设有所述精馏进口和精馏出口,所述精馏塔还连接真空装置。
进一步地,所述反应出料口还通过回料管道连接所述反应进料口,所述回料管道上设有过滤器和物料输送泵。
进一步地,所述反应釜主体内还设有搅拌装置。
进一步的,所述反应釜设有夹层,所述夹层用于通入控温介质。
进一步地,所述制备系统还包括原料储槽和产品储槽,所述原料储槽和所述产品储槽分别和所述加成精馏一体化反应釜相连。
第二个方面,本发明提供一种乙二醇单丙基醚的制备方法,是采用上述系统和以下反应方程式:
Figure PCTCN2021106809-appb-000001
包括:正丙醇和环氧乙烷在催化剂作用下反应合成乙二醇单丙基醚粗品; 粗品再经减压精馏得到乙二醇单丙基醚成品。
进一步地,所述制备方法包括:将正丙醇和催化剂混合,N 2保护下加入环氧乙烷反应;反应结束后分离出催化剂,得到乙二醇单丙基醚粗品;将乙二醇单丙基醚粗品进行减压精馏,分别收集游离正丙醇、乙二醇单丙基醚成品和釜底液,分离出的催化剂、游离正丙醇可循环套用至前述的反应过程,釜底液可直接用于生产正丙醇聚醚表面活性剂产品。
进一步地,所述催化剂为甲基磺酸锌、对甲苯磺酸锌中的一种或两种混合。
进一步地,所述正丙醇和所述环氧乙烷的质量比为:60:(13.2~44),所述催化剂的用量为正丙醇和环氧乙烷总重量的0.3~5‰。
优选地,所述正丙醇和所述环氧乙烷在所述催化剂催化下的反应温度为110~180℃,反应压力为-0.05~0.60MPa。
进一步地,所述减压精馏的具体过程包括:将所述加成精馏一体化反应釜的真空抽至-0.05MPa,控制真空度不变,将反应釜主体内的乙二醇单丙基醚粗品升温,并打开精馏冷凝,控制釜底物料温度在65-80℃,塔顶温度在50-65℃,先进行全回流30min后开始接收正丙醇,待正丙醇收集完,釜顶温度下降至常温时,抽真空提高釜内真空度至≥-0.098MPa;再次升温釜内物料,控制釜底物料温度在80-100℃,塔顶温度在50-65℃,先进行全回流30min,再开始接收乙二醇单丙基醚与正丙醇混合物,控制回流比为5:1,期间取液检测混合物中乙二醇单丙基醚含量,当接收液中乙二醇单丙基醚含量≥99.7%时,开始单独接收乙二醇单丙基醚成品,当馏分中乙二醇单丙基醚纯度≤99.7%时,停止接收,精馏完成。将釜底液降温至40±2℃,充N 2至反应釜压力为0.00-0.04MPa,把釜底液放入包装桶用于生产其它正丙醇聚醚。
本发明的乙二醇单丙基醚的制备方法,以甲基磺酸锌或对甲苯磺酸锌弱酸 性固体催化剂为催化剂,相对于KOH、NaOH、甲醇钠等强碱性催化剂及KF/AI2O3、KF/ATP类催化剂,反应选择性好,乙二醇单丙基醚纯度高,副产物少,反应温和安全,催化剂可重复利用,成本低,三废少。同时甲基磺酸锌或对甲苯磺酸锌相较甲基二磺酸锌酸性弱,选择性也较好,副产物少,反应温和。
与现有技术相比,具有以下突出优点和积极效果:
1、采用本发明方法制备的乙二醇单丙基醚,纯度高(≥99.8%),副产物少。
2、本发明的制备方法具有工艺简单、反应条件温和、选择性好、生产周期短、能耗低、催化剂能重复利用、三废少的优点。
3、本发明的制备系统将加成反应与精馏过程整合成一体化,加成反应完毕直接在同一反应釜中进行精馏步骤,减少了设备需求,降低了成本,且不需物料转移,避免了物料污染几率,能够保证产品质量。
附图说明
图1为本发明的制备系统的结构示意图。
图2为本发明的精馏塔的结构示意图。
图1和2中,1:环氧乙烷储槽,2:物料输送泵,3:催化剂过滤器,4:反应釜主体,5:精馏塔,6:正丙醇储槽,7:乙二醇单丙基醚储槽,8:真空管道,9、支管道,10、反应进料口,11、反应出料口,12、控温蒸汽出口/冷却水进口,13、保护气口,14、精馏进口,15、精馏出口,16、搅拌装置,17、夹层,18、控制阀门,19、储槽上的抽真空口,20、储槽上的保护气口,21、取样口,22、储槽物料出口,23、回料管道,24、储槽物料入口,25冷凝器,26、控温蒸汽 进口/冷却水出口,27、止回阀,28、真空装置。
具体实施方式
在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面结合附图和具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。
实施前反应釜的准备:先用蒸馏水把反应釜主体、精馏塔、原料储槽、产品储槽洗几次,直到干净为止,热N 2吹扫、烘干反应釜主体、精馏塔和储槽,冷却到常温后备用。
实施例1
如图1和2所示,本实施例提供一种乙二醇单丙基醚的制备系统,包括加成精馏一体化反应釜,所述加成精馏一体化反应釜包括反应釜主体4,反应釜主体4上方连接精馏塔5。反应釜主体4设有夹层17,用于通入控温介质,比如:蒸汽、冷却水(蒸汽和冷却水进出口刚好相反)、油等。反应釜主体4包括反应进料口10、反应出料口11、保护气口13和物料蒸汽出口,反应进料口10和反应出料口11分别设置在反应釜主体4的顶部和底部,反应进料口10和反应出料口11上设有控制阀门18;反应出料口11还通过回料管道23连接反应进料口10,回料管道23上设有催化剂过滤器3、物料输送泵2和控制阀门18。反应釜主体4内设有搅拌装置16;反应釜主体4内还设有压力传感器和温度传感器,分别用于监控反应釜主体4内的压力和温度。精馏塔5为塔板式精馏塔,底部设有精馏进口14,顶部设有精馏出口15,精馏进口14连接反应釜主体4的物 料蒸汽出口,两者之间设有控制阀门18。精馏塔5顶部连通冷凝器25,冷凝器25通过真空管道8连接真空装置28,精馏塔5直接连接两个支管道9,一个支管道9连接正丙醇储槽6,另一个支管道9连接乙二醇单丙基醚储槽7,分别用于收集精馏出来的正丙醇和乙二醇单丙基醚,两个支管道9上均设有控制阀门18和止回阀27;真空管道8也和这两个支管道9相连。正丙醇储槽6和乙二醇单丙基醚储槽7上均设有抽真空口19和保护气口20,还设有物料出口22。真空管道8上也设有多个控制阀门18。真空管道8上还设有取样口21,用于取样检测精馏液成分,以便控制不同馏出物的纯度。所述制备系统还包括环氧乙烷储槽1,环氧乙烷储槽1和反应釜主体4的反应进料口10相连,环氧乙烷储槽1上也设有抽真空口19和保护气口20,还设有物料入口24和物料出口22。
实施例2
往加成反应与精馏一体釜中加入正丙醇60kg和0.4‰(占正丙醇与环氧乙烷总物料的比例,下同)的甲基磺酸锌催化剂,用真空泵抽真空,采用N 2置换掉反应釜内的空气,置换三次后,抽空度≥-0.096MPa,升温至物料100℃后,边加环氧乙烷边升温。控制反应温度在165-180℃,控制环氧乙烷总加入量14kg。环氧乙烷加毕,保温继续反应直至压力不再下降为止。反应完毕降温至50℃,充N 2至0.02MPa,取样检测粗品成分,打开回料管道、反应出料口和反应进料口控制阀门,过滤回收催化剂。催化剂回收完毕后,关闭反应出料口和反应进料口控制阀门,打开反应釜主体与精馏塔之间的控制阀门,以及精馏塔与真空泵之间的控制阀门,抽真空至-0.05MPa,边保持此真空度边升温釜料,打开精馏塔冷凝器;控制釜底料温度在65-80℃,塔顶温度50-65℃,进行全回流30min,全回流时间到,打开正丙醇储槽的控制阀门进行接收正丙醇;控制真空度 -0.05MPa,釜底料65-80℃,当塔顶温度下降至常温时,关闭正丙醇储槽的控制阀门,抽真空至-0.098MPa以上,升温釜底料至80-100℃,塔顶温度在50-65℃进行全回流30min,全回流时间到,打开正丙醇储槽接收正丙醇与乙二醇单丙基醚混合物并不定时取样检测馏分成分,当馏分乙二醇单丙基醚≥99.7%时,关闭正丙醇储槽控制阀门,打开乙二醇单丙基醚储槽控制阀门,进行接收乙二醇单丙基醚,并不定时抽检馏分成分,当馏分乙二醇单丙基醚<99.7%时,关闭乙二醇单丙基醚储槽控制阀门停止接收。冷却釜底物料至40℃,充N 2至常压,放出釜底料包装好用于生产其它正丙醇聚醚。检测纯度的方法采用标准品标定的气相色谱法,下同。
对比例1
往加成反应与精馏一体釜中加入正丙醇60kg和0.4‰的KOH催化剂,用真空泵抽真空,采用N 2置换掉反应釜内的空气,置换三次后,抽空度≥-0.096MPa,升温至物料150℃后,边加环氧乙烷边升温。控制反应温度在165-180℃,控制环氧乙烷总加入量14kg。环氧乙烷加毕,保温继续反应直至压力不再下降为止。反应完毕降温至50℃充N 2至0.02MPa,取样检测粗品成分。
对比例2
往加成反应与精馏一体釜中加入正丙醇60kg和0.4‰的BF 3乙醚催化剂,用真空泵抽真空,采用N 2置换掉反应釜内的空气,置换三次后,抽空度≥-0.096MPa,升温至物料100℃后,开始加环氧乙烷反应。控制反应温度在100-120℃,控制环氧乙烷总加入量14kg。环氧乙烷加毕,保温继续反应直至压力不再下降为止。反应完毕降温至50℃充N 2至0.02MPa,取样检测粗品成分。
效果验证实验
一、不同工艺的优劣比较
实施例3~实施例7
调整原料正丙醇、环氧乙烷、催化剂种类和数量、反应温度,其它工艺条件与实施例1一致;对比例3至对比例8调整原料正丙醇、环氧乙烷、催化剂种类和数量、反应温度,其它工艺条件与实施例一致;粗品具体指标(采用标准品标定的气相色谱法,下同)情况见表1。
表1实施例与对比例粗品条件及指标
Figure PCTCN2021106809-appb-000002
Figure PCTCN2021106809-appb-000003
Figure PCTCN2021106809-appb-000004
注:催化剂量为占正丙醇与环氧乙烷总重量的比例;催化剂种类中的“甲基磺酸锌:对甲苯磺酸锌=1:1混合物”为混合物催化剂中甲基磺酸锌与对甲苯磺酸锌的重量比为1:1,实施例6与实施例7也同为重量比。
通过表1中数据可知,在正丙醇与环氧乙烷用量一定,催化剂用量一致或相近,反应温度一致的条件下,采用本发明的催化剂(甲基磺酸锌、对甲苯磺酸锌)合成的粗品比采用现有技术KOH、NaOH、CH 3ONa、正丙醇钠等强碱性催化剂合成的粗品乙二醇单丙基醚含量高出22%~150%,且在环氧乙烷与正丙醇重量比越高,差距越明显,最大乙二醇单丙基醚含量能高出接近149%(实施例6和对比例6比对),而残留未反应的正丙醇少;二乙二醇单丙基醚、三乙二醇单丙基醚等副产物比采用现有技术KOH、NaOH、CH 3ONa、正丙醇钠等强碱性催化剂合成的粗品显著低,是其1/3以下。本发明相比BF 3乙醚等路易斯酸催化的工艺,二乙二醇单丙基醚和三乙二醇单丙基醚等副产物在其15%以下,而目标产品乙二醇单丙基醚比其高出18%以上。相对于甲基二磺酸锌,可以看出本发明催化剂选择与现有技术相比具有显著的实质性进步。
二、产品精馏指标:实施例2至实施例7中精馏后的成品指标见表2。
表2实施例2~7成品指标
Figure PCTCN2021106809-appb-000005
通过表2数据得出,本发明的精馏方法制得的产品乙二醇单丙基醚含量在99.85%以上,正丙醇低于0.002%,二乙二醇单丙基醚低于0.003%。
三、催化剂套用
合成反应工艺条件同实施例3,只改变催化剂种类及催化剂套用次数(催化剂回收套用量不够再小微补充新催化剂),此以甲基磺酸锌和对甲苯磺酸锌为例套用,实际不仅限于此。粗品具体指标见表3和表4。
表3甲基磺酸锌催化剂套用参数及粗品指标
Figure PCTCN2021106809-appb-000006
Figure PCTCN2021106809-appb-000007
表4对甲苯磺酸锌催化剂套用参数及粗品指标
Figure PCTCN2021106809-appb-000008
表3和表4数据表明,本发明的催化剂能够重复套用8次以上,而催化效 果没有明显的降低,说明本发明的催化剂可回收重复利用。
四、回收正丙醇套用
合成反应工艺条件同实施例3,只改变正丙醇套用次数(正丙醇回收套用量不够,以新正丙醇补充到相同量),实际不仅限于此。粗品具体指标见表5。
表5正丙醇套用参数及粗品指标
Figure PCTCN2021106809-appb-000009
表5数据表明,本发明的回收正丙醇重复套用8次,而催化效果没有明显的变化,说明本发明的回收正丙醇可重复利用。由于本实施例只考察了正丙醇8次套用效果,但根据该结果推断,正丙醇至少可以套用8次以上而不影响实验 效果。
五、釜底液应用实施例
把釜底液用于合成生产正丙醇聚醚表面活性剂:把釜底液投入干净干燥的缩合釜,加入釜底液重量0.8%的催化剂KOH,采用N 2置换掉釜内空气,升温至105℃,加入不同量的环氧乙烷反应(共进行3批反应,见应用例1、应用例2和应用例3),反应温度控制在100-120℃,反应完毕后得正丙醇聚醚粗品,将粗品冷却至60-70℃,转入后处理釜,加入去离子水、2.1倍KOH重量的85%磷酸水解中和,再加入0.5%正丙醇聚醚粗品量的聚醚吸附剂,最后升温至100-120℃脱水。脱水毕,降温至55-65℃过滤得到正丙醇聚醚表面活性剂成品。实施例数据见表6。
表6釜底液生产正丙醇聚醚的成品指标
Figure PCTCN2021106809-appb-000010
表6生产数据表明,采用釜底液生产的产品正丙醇聚醚完全符合表面活性剂相关要求指标(色泽≤50Pt-Co),能够用于生产表活正丙醇聚醚。
综上,本发明的乙二醇单丙基醚的制备方法,以甲基磺酸锌或对甲苯磺酸锌等弱酸性固体催化剂为催化剂,相对于KOH、NaOH、甲醇钠、正丙醇钠等强碱性催化剂及BF 3类路易斯酸催化剂,反应选择性好,乙二醇单丙基醚纯度高,副产物少,反应温和安全,催化剂可重复利用,成本低,三废少。本发明 的合成反应与精馏操作的一体反应釜,相对于乙二醇单丙基醚现有设备所需合成反应釜和精馏釜两个釜,减少了一个反应釜,降低了设备投资,降低了设备成本,以及降低了生产产地面积的使用;同时物料从合成反应到精馏段不需要物料转移至其它釜,降低了物料在转移过程中的污染,保证了产品质量。本发明采用减压精确控制的精馏方法:全程采用减压精馏,降低了物料的分离温度,在分离正丙醇阶段温度仅需65-80℃,减少了精馏所需的物料热能需求;通过过程馏分组分监控,精准的把握所需乙二醇单丙基醚成品纯度≥99.8%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种乙二醇单丙基醚的制备系统,其特征在于:包括加成精馏一体化反应釜,所述加成精馏一体化反应釜包括反应釜主体,所述反应釜主体上方连接精馏塔;所述反应釜主体包括反应进料口、反应出料口和物料蒸汽出口,所述物料蒸汽出口连接所述精馏塔的精馏进口;所述精馏塔包括所述精馏进口和精馏出口,所述精馏塔还连接真空装置。
  2. 根据权利要求1所述的一种乙二醇单丙基醚的制备系统,其特征在于:所述反应出料口还通过回料管道连接所述反应进料口,所述回料管道上设有过滤器和物料输送泵。
  3. 根据权利要求1所述的一种乙二醇单丙基醚的制备系统,其特征在于:所述反应釜设有夹层,所述夹层用于通入控温介质。
  4. 根据权利要求1~3任意一项所述的一种乙二醇单丙基醚的制备系统,其特征在于:所述制备系统还包括原料储槽和产品储槽,所述原料储槽和所述产品储槽分别和所述加成精馏一体化反应釜相连。
  5. 一种乙二醇单丙基醚的制备方法,其特征在于:是采用权利要求1~4任意一项所述的制备系统和以下反应方程式:
    Figure PCTCN2021106809-appb-100001
    包括:正丙醇和环氧乙烷在催化剂作用下反应合成乙二醇单丙基醚粗品;粗品再经精馏得到乙二醇单丙基醚成品。
  6. 根据权利要求5所述的一种乙二醇单丙基醚的制备方法,其特征在于:所述制备方法包括:将正丙醇和催化剂混合,N 2保护下加入环氧乙烷反应;反应结束后分离出催化剂,得到乙二醇单丙基醚粗品;将乙二醇单丙基醚粗品进行减压精馏,分别收集游离正丙醇、乙二醇单丙基醚成品和釜底液,分离出的催化剂、游离正丙醇可循环套用至前述的反应过程,釜底液可直接用于生产正 丙醇聚醚表面活性剂产品。
  7. 根据权利要求5或6所述的一种乙二醇单丙基醚的制备方法,其特征在于:所述催化剂为甲基磺酸锌、对甲苯磺酸锌中的一种或两种混合。
  8. 根据权利要求5或6所述的一种乙二醇单丙基醚的制备方法,其特征在于:所述正丙醇和所述环氧乙烷的质量比为:60:(13.2~44),所述催化剂的用量为正丙醇和环氧乙烷总重量的0.3~5‰。
  9. 根据权利要求5或6所述的一种乙二醇单丙基醚的制备方法,其特征在于:所述正丙醇和所述环氧乙烷在所述催化剂催化下的反应温度为110~180℃,反应压力为-0.05~0.60MPa。
  10. 根据权利要求5或6所述的一种乙二醇单丙基醚的制备方法,其特征在于:所述减压精馏的具体过程包括:将所述加成精馏一体化反应釜的真空抽至-0.05MPa,控制真空度不变,将反应釜内的乙二醇单丙基醚粗品升温,并打开精馏冷凝,控制釜底物料温度在65-80℃,塔顶温度在50-65℃,先进行全回流30min后开始接收正丙醇,待正丙醇收集完,釜顶温度下降至常温时,抽真空提高釜内真空度至≥-0.098MPa;再次升温釜内物料,控制釜底物料温度在80-100℃,塔顶温度在50-65℃,先进行全回流30min,再开始接收乙二醇单丙基醚与正丙醇混合物,控制回流比为5:1,期间取液检测混合物中乙二醇单丙基醚含量,当接收液中乙二醇单丙基醚含量≥99.7%时,开始单独接收乙二醇单丙基醚成品,当馏分中乙二醇单丙基醚纯度≤99.7%时,停止接收,精馏完成。将釜底液降温至40±2℃,充N 2至反应釜压力为0.00-0.04MPa,把釜底液放入包装桶用于生产其它正丙醇聚醚。
PCT/CN2021/106809 2020-07-23 2021-07-16 乙二醇单丙基醚的制备方法及系统 WO2022017286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010718384.6 2020-07-23
CN202010718384.6A CN111747828B (zh) 2020-07-23 2020-07-23 一种乙二醇单丙基醚的制备方法及系统

Publications (1)

Publication Number Publication Date
WO2022017286A1 true WO2022017286A1 (zh) 2022-01-27

Family

ID=72710701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106809 WO2022017286A1 (zh) 2020-07-23 2021-07-16 乙二醇单丙基醚的制备方法及系统

Country Status (2)

Country Link
CN (1) CN111747828B (zh)
WO (1) WO2022017286A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950297A (zh) * 2022-03-30 2022-08-30 浙江诺亚氟化工有限公司 一种生产氢氟醚的装置及其工艺
CN115106365A (zh) * 2022-06-28 2022-09-27 四川国纳科技有限公司 一种可降解医疗用品的回收方法及其回收装置
CN115301173A (zh) * 2022-07-18 2022-11-08 临沂金朗化工有限公司 一种叔丁醇钠的制备装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747828B (zh) * 2020-07-23 2023-05-26 浙江皇马科技股份有限公司 一种乙二醇单丙基醚的制备方法及系统
CN114367259B (zh) * 2021-12-17 2023-05-23 江苏春江润田农化有限公司 一种具有配料自动调节投放功能的三氟炔酸甲酯生产装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400849A (en) * 1918-08-07 1921-12-20 Us Ind Alcohol Co Continuous process for the manufacture of esters
US4543430A (en) * 1982-11-17 1985-09-24 Bp Chimie Societe Anonyme Process for the preparation of addition products of epoxides and hydroxylated compounds
CN1129213A (zh) * 1995-02-17 1996-08-21 天津石油化工公司研究所 制备水溶性甲基二磺酸盐的工艺方法
CN101337864A (zh) * 2008-08-08 2009-01-07 德纳(南京)化工有限公司 一种连续化管道反应制备乙二醇单正丁醚的方法
CN102068945A (zh) * 2010-12-15 2011-05-25 天津大学 用于甲缩醛分离提纯的反应精馏装置和方法
CN103435455A (zh) * 2013-08-23 2013-12-11 扬州晨化新材料股份有限公司 一种乙二醇单烯丙基醚的制备方法
CN103641695A (zh) * 2013-12-18 2014-03-19 河南能源化工集团研究院有限公司 乙二醇为原料联产乙二醇乙醚及乙二醇二乙醚的方法
CN105669390A (zh) * 2016-03-07 2016-06-15 南京师范大学 一种丙二醇丁醚的连续化制备方法
CN208430060U (zh) * 2018-05-05 2019-01-25 宁夏荆洪生物科技有限公司 一种乙烯基甲醚合成精馏装置
CN111675605A (zh) * 2020-07-23 2020-09-18 浙江皇马科技股份有限公司 一种乙二醇单烯丙基醚的制备方法及系统
CN111747828A (zh) * 2020-07-23 2020-10-09 浙江皇马科技股份有限公司 一种乙二醇单丙基醚的制备方法及系统
CN212504660U (zh) * 2020-07-23 2021-02-09 浙江皇马科技股份有限公司 一种乙二醇单烯丙基醚的制备系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL34328C (zh) * 1932-02-23
CN104788294B (zh) * 2015-04-24 2016-07-13 天津普莱化工技术有限公司 一种反应精馏合成乙二醇单丁醚的装置和工艺方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400849A (en) * 1918-08-07 1921-12-20 Us Ind Alcohol Co Continuous process for the manufacture of esters
US4543430A (en) * 1982-11-17 1985-09-24 Bp Chimie Societe Anonyme Process for the preparation of addition products of epoxides and hydroxylated compounds
CN1129213A (zh) * 1995-02-17 1996-08-21 天津石油化工公司研究所 制备水溶性甲基二磺酸盐的工艺方法
CN101337864A (zh) * 2008-08-08 2009-01-07 德纳(南京)化工有限公司 一种连续化管道反应制备乙二醇单正丁醚的方法
CN102068945A (zh) * 2010-12-15 2011-05-25 天津大学 用于甲缩醛分离提纯的反应精馏装置和方法
CN103435455A (zh) * 2013-08-23 2013-12-11 扬州晨化新材料股份有限公司 一种乙二醇单烯丙基醚的制备方法
CN103641695A (zh) * 2013-12-18 2014-03-19 河南能源化工集团研究院有限公司 乙二醇为原料联产乙二醇乙醚及乙二醇二乙醚的方法
CN105669390A (zh) * 2016-03-07 2016-06-15 南京师范大学 一种丙二醇丁醚的连续化制备方法
CN208430060U (zh) * 2018-05-05 2019-01-25 宁夏荆洪生物科技有限公司 一种乙烯基甲醚合成精馏装置
CN111675605A (zh) * 2020-07-23 2020-09-18 浙江皇马科技股份有限公司 一种乙二醇单烯丙基醚的制备方法及系统
CN111747828A (zh) * 2020-07-23 2020-10-09 浙江皇马科技股份有限公司 一种乙二醇单丙基醚的制备方法及系统
CN212504660U (zh) * 2020-07-23 2021-02-09 浙江皇马科技股份有限公司 一种乙二醇单烯丙基醚的制备系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, GANGSEN: "The Key Technologies of Ethylene Glycol Ethyl Ether Synthesized by Ethylene Glycol with the Direct Method", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE, no. 8, 15 August 2017 (2017-08-15), pages 1 - 134, XP055889372 *
YU, FENGJUAN: "Dynamic Model and Simulation of Catalytic Distillation for the Synthesis of Ethylene Glycol Monobutyl Ether", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE, no. 3, 15 March 2012 (2012-03-15), pages 1 - 76, XP055889391 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950297A (zh) * 2022-03-30 2022-08-30 浙江诺亚氟化工有限公司 一种生产氢氟醚的装置及其工艺
CN114950297B (zh) * 2022-03-30 2024-02-23 浙江诺亚氟化工有限公司 一种生产氢氟醚的装置及其工艺
CN115106365A (zh) * 2022-06-28 2022-09-27 四川国纳科技有限公司 一种可降解医疗用品的回收方法及其回收装置
CN115106365B (zh) * 2022-06-28 2024-01-12 四川国纳科技有限公司 一种可降解医疗用品的回收方法及其回收装置
CN115301173A (zh) * 2022-07-18 2022-11-08 临沂金朗化工有限公司 一种叔丁醇钠的制备装置及方法
CN115301173B (zh) * 2022-07-18 2024-05-14 临沂金朗化工有限公司 一种叔丁醇钠的制备装置及方法

Also Published As

Publication number Publication date
CN111747828A (zh) 2020-10-09
CN111747828B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2022017286A1 (zh) 乙二醇单丙基醚的制备方法及系统
JP5339782B2 (ja) アルカリ金属アルコラートの製造方法
CN111675605A (zh) 一种乙二醇单烯丙基醚的制备方法及系统
CN109456204B (zh) γ-甲氧基丙胺的制备方法
CN109053355A (zh) 一种连续精馏提纯联苯的方法
CN212504660U (zh) 一种乙二醇单烯丙基醚的制备系统
CN110950754A (zh) 一种制备氯代丙酰氯的新工艺
CN112876371B (zh) 能同时生产双(二甲氨基乙基)醚和四甲基乙二胺的方法
CN101337890A (zh) 应用新型复合催化剂制备乙酰乙酸甲酯的方法
CN108863793B (zh) 一种乙酸异丙酯的制备方法
CN103102369B (zh) 一种乙基膦酸二乙酯的生产方法
CN109456207A (zh) 3-氨基丙醇的制备方法
CN106831360A (zh) 一种连续制备β‑萘甲醚的工艺方法
CN109651141A (zh) 一种防腐剂尼泊金十二酯的合成工艺
CN206986069U (zh) 一种乙酸乙酯和正己烷共沸体系的分离装置
CN109485629A (zh) 一种无水丙酮缩甘油的生产工艺
CN109776314B (zh) 一种肉桂酸酯的制备方法
CN1244538C (zh) 异丁醛缩合生产异丁酸异丁酯的方法
CN205361083U (zh) 实验室用聚乙烯醇杂化膜渗透蒸发装置
CN103333110B (zh) 一种药用月桂氮卓酮的生产方法
CN100548999C (zh) N-甲酰吗啉的制备方法
CN109574847A (zh) 一种防腐剂尼泊金十一酯的绿色合成工艺
CN101397249A (zh) 一种三氟乙酸乙酯的制备方法
CN105669408B (zh) 管式气相催化耦合侧线精馏连续化制备2,2-二羟甲基丙醛的方法
CN110964053A (zh) 一种提纯三氟甲磺酸三甲基硅酯的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845253

Country of ref document: EP

Kind code of ref document: A1