WO2022014901A1 - 항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄 - Google Patents

항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄 Download PDF

Info

Publication number
WO2022014901A1
WO2022014901A1 PCT/KR2021/008250 KR2021008250W WO2022014901A1 WO 2022014901 A1 WO2022014901 A1 WO 2022014901A1 KR 2021008250 W KR2021008250 W KR 2021008250W WO 2022014901 A1 WO2022014901 A1 WO 2022014901A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
antibacterial
hyperbranched polymer
spherical activated
present
Prior art date
Application number
PCT/KR2021/008250
Other languages
English (en)
French (fr)
Inventor
서정권
홍지숙
이상곤
이재훈
Original Assignee
한국화학연구원
주식회사 엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 주식회사 엔에프 filed Critical 한국화학연구원
Priority to US18/012,772 priority Critical patent/US20230312352A1/en
Publication of WO2022014901A1 publication Critical patent/WO2022014901A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a hyperbranched polymer and activated carbon using the same, and more particularly, to a hyperbranched polymer having an antibacterial effect and spherical activated carbon using the same.
  • the antibacterial component In order to use the antibacterial component, it can be largely divided into a slurry type reaction in which nano-sized antibacterial components are dispersed and used and an immobilized type reaction in which the antibacterial component is used by being fixed to a carrier.
  • the antibacterial performance is good due to the large surface area of the fine particles, but it is necessary to supplement the system to prevent the separation of the dispersed nanoparticles and a complicated follow-up process for the separation of the nano-sized antibacterial components after use. It has drawbacks.
  • various methods such as mechanical coating, CVD, impregnation, impregnation, plasma coating, chemical coating, and sol-gel coating are applied to various carriers such as honeycomb, silica ball, glass, and polymer fiber.
  • CVD chemical vapor deposition
  • impregnation impregnation
  • plasma coating chemical coating
  • sol-gel coating sol-gel coating
  • a technique for immobilizing a catalyst on a thin substrate as in Korean Patent Application Laid-Open No. 2000-0058790 has a limitation in that the reactor must be operated in a fixed bed type. As described above, when the reaction tank is operated in a fixed type, treatment efficiency is significantly lower than that of a dispersed type reaction tank. However, since the antibacterial spherical activated carbon with a size of about 300 to 450 ⁇ m and a specific gravity of 1 to 2 produced by the present invention is used, the reactor can be operated in a fluidized bed type, and it has the advantage that it can be immobilized on a thin plate. have.
  • the immobilized support is in the form of metal or silica, and has no special function other than the role of the immobilized support.
  • silica balls or glass most of the light reaction tanks are used in the form of a fixed bed in which the carrier does not flow. This is because it is difficult to disperse the support in the light reaction tank due to the high density of the carrier. There is an increasing problem.
  • Patent Publication No. 10-2004-0091385 discloses a magnetic anion exchange resin in which magnetite (Fe 3 O 4 ) is coated with a crosslinked polymer resin and an anion exchange functional group is introduced on the surface thereof. This can be easily recovered and regenerated, but the particle size of the ion exchange resin is as small as 60-150 ⁇ m, and the particle size of magnetite is large, so it does not have a sufficient specific surface area for adsorption.
  • Patent Document 1 Patent Publication No. 2000-0058790
  • Patent Document 2 Patent Publication No. 10-2003-0032775
  • Patent Document 3 Patent Publication No. 10-2004-0091385
  • the present invention mixes an antibacterial component during the manufacturing process of a hyper-branched polymer, which is a carrier precursor, and maintains it in a spherical shape, as well as a spherical shape and It is intended to provide an antibacterial spherical activated carbon that can be applied as a material for treatment of harmful substances in the atmosphere and water treatment because its strength is supplemented and maintained, and has antibacterial properties.
  • binder active ingredient content
  • problems with the existing mechanical coating method, CVD method, impregnation method, deposition method, plasma coating method, chemical coating method, etc. and the difficulty of controlling the loading strength, the non-uniform distribution of the active ingredient in the carrier, and the phenomenon in which the fixed component is separated from the carrier again.
  • the present invention provides a hyperbranched polymer having antibacterial activity and activated carbon using the same.
  • the hyperbranched polymer can stably immobilize the active ingredient by inducing chemical bonding of the active ingredient to the carrier without the use of a separate binder, and the amount of the active ingredient supported and the specific surface area of the carrier can be adjusted through a simple operation. . Moreover, it is possible to produce high-strength antibacterial spherical activated carbon without dissolution or loss of active ingredients even if it is used for atmospheric conditions for handling high-concentration large flow rates as well as uniformly distributing the active ingredients to the carrier at the atomic level. Not only does it have an advantage, but it can also be expected to increase the antibacterial efficiency through the adsorption of viruses, etc. through the pores of the developed activated carbon.
  • the antibacterial spherical activated carbon produced by the present invention can be prepared in the form of a hyperbranched polymer by mixing the antibacterial components together in the manufacturing step of the precursor hyperbranched polymer, thereby making it easy to maintain a uniform loading state and loading amount.
  • the hyperbranched polymer is then heat treated through stabilization, carbonization, and activation processes to convert it into an antibacterial spherical activated carbon that maintains shape and strength.
  • activated carbon after preparing a hyperbranched polymer carrying an antibacterial component, activated carbon can be manufactured using this.
  • the shape of the activated carbon is not limited, but may preferably be prepared in a spherical shape.
  • a hyperbranched polymer it can be prepared by using a styrene monomer or polystyrene and divinylbenzene as a matrix.
  • the mixing ratio of the styrene monomer and divinylbenzene is not limited, but preferably, the styrene monomer: divinylbenzene may be included in a weight ratio of 7 to 9.5:0.5 to 3, more preferably, in a weight ratio of 9:1. If the mixing ratio is out of the above, the suspension polymerization reaction may not occur.
  • Ammonium coordination compounds such as Ag, Cu, Fe, Zn, Ni may be added to the hyperbranched polymer as an antibacterial component, respectively, or a mixture thereof, and the antibacterial component is not limited thereto.
  • the antibacterial component may be mixed in an amount of 0.001 to 3 wt%, preferably 0.01 to 2 wt%, based on the weight of the hyperbranched polymer. When the content is less than the above content, the antibacterial effect does not appear, and when the content is higher than the content, there is no significant difference in the antibacterial efficacy, but the polymer may not be well manufactured.
  • formic acid when preparing the hyperbranched polymer, in addition to the antibacterial component, formic acid may be added.
  • the formic acid is not limited, but preferably has a concentration of 20 to 40% (v / v).
  • the mixed antibacterial metal can facilitate chemical bonding with the matrix of hyperbranched polymer production and induce a uniform distribution.
  • ultrasonic treatment is additionally performed for 5 to 60 minutes to form a hyperbranched polymer having an antibacterial component supported thereon by chemical bonding of these mixtures with each other.
  • the antibacterial component may not be supported, and when treated for more than the time, polymer formation may be difficult.
  • ultrasound is not limited, but may be in the range of 20 kHz to 25 MHz commonly known in the art.
  • the hyperbranched polymer can be prepared as activated carbon through heat treatment.
  • the heat treatment includes stabilization treatment, carbonization treatment, and activation treatment.
  • the hyperbranched polymer can be stabilized for 2 to 5 hours in a temperature range of 250 to 350 ° C by raising the temperature at 1 to 5 ° C/min in an atmospheric atmosphere. If the temperature and time are out of the above, oxygen insertion may be insufficient and the spherical shape may be deformed.
  • the stabilized hyperbranched is to be carbonized for 0.5 to 2.0 hours in a temperature range at 500 to 900 ° C, preferably 700 to 900 ° C, more preferably 700 ° C, by raising the temperature at 1 to 3 ° C / min in a nitrogen atmosphere. can If the temperature and time are out of the above, fixed carbonization of the carbon component may be insufficient.
  • micropores in the formed spherical carbide In order to form and activate micropores in the formed spherical carbide, it may be activated at 850 to 1,100° C., preferably at 900° C. for 0.2 to 3 hours in a nitrogen and water vapor atmosphere. If the temperature and time are out of the above, it may be difficult to optimize the pore distribution and the yield may be lowered.
  • the antimicrobial component content in the spherical activated carbon may be adjusted to 0.01 to 20 wt%, preferably 0.01 to 15 wt%, more preferably 0.1 to 12 wt% by weight.
  • the shape When stabilized, carbonized, and activated using the hyperbranched polymer to prepare antibacterial spherical activated carbon, the shape showed a perfect spherical shape with an even surface, and the average particle diameter was 100 to 1,000 ⁇ m, preferably 200 to 700 ⁇ m, more preferably 300 to 500 ⁇ m.
  • the strength is the weight that one manufactured antibacterial spherical activated carbon particle (a unit) can withstand, and all are applicable to commercial processes, and the strength of the activated carbon according to the present invention is 1 to 20 kg/a unit, preferably 3 to It may have a strength of 15 kg/a unit, more preferably 4 to 10 kg/a unit.
  • the hyperbranched polymer that has undergone the carbonization process according to the present invention has a specific surface area of 200 to 550 m 2 /g.
  • the activated carbon using the hyperbranched polymer may have a specific surface area of 800 to 2000 m 2 /g, preferably 1,000 to 1,800 m 2 /g.
  • the specific gravity of the activated carbon according to the present invention is 1 to 3, preferably 1.3 to 2.5, more preferably 1.4 to 2 has a specific gravity.
  • the present invention can provide a method for producing activated carbon comprising a hyperbrand value polymer comprising the following steps:
  • step (b) The hyperbranched polymer stabilized in step (a) is heated in a nitrogen atmosphere and carbonized at 500 to 900° C., preferably 700 to 900° C. for 0.5 to 2 hours, preferably 0.5 to 1 hour. making;
  • step (c) activating the hyperbranched polymer carbonized in step (b) by heating it together with nitrogen and water vapor to 850 to 1,100° C., preferably to about 900° C. for 0.2 to 3 hours.
  • the antibacterial activity of the activated carbon according to the present invention is very excellent and has an antibacterial activity of up to 99.99% based on E. coli.
  • the antibacterial activity preferably provides sterilization effects such as antifungal and cleaning functions (deodorization) as well as antibacterial activity against the living environment bacteria O-157 E. coli, Staphylococcus aureus, Pseudomonas bacteria, and the like.
  • the antibacterial spherical activated carbon prepared according to the present invention is recognized for its excellent antibacterial activity as well as its role as an adsorbent.
  • it can be used as a semi-permanent antibacterial material without separation and elution by enabling chemical bonding of the antibacterial component when synthesizing the hyperbranched polymer, a precursor of activated carbon, as well as exhibiting excellent organic matter removal efficiency and strength. It can be applied to any process such as, etc., and since it shows excellent sterilization and/or antibacterial activity of more than 99%, it can be applied to a wide range of fields.
  • the antibacterial spherical activated carbon according to the present invention has the advantage of increasing the removal efficiency of harmful substances through adsorption of organic matter with developed pores, and excellent antibacterial and sterilizing properties that are continuously maintained, and easy recovery after use. It has the effect that it can be applied to various commercial processes such as water treatment.
  • a precursor of activated carbon first, styrene (Stylene) and divinylbenzene (Divinylbenzene) as a parent are mixed in a weight ratio of 9:1, and then ammonium silver ([Ag(NH 3 ) 2 ] + complex) was added in a weight ratio of 0.013 wt%. After that, a 30% (v/v) aqueous solution of formic acid was added while slowly stirring until the volume of the mixed solution was doubled, and after treatment with ultrasonic waves in the range of 20 kHz to 25 MHz for 5 minutes or more and within 60 minutes, 2 hours Further stirring was carried out during the suspension polymerization reaction.
  • the hyperbranched polymer containing the antibacterial component (Ag) was converted into activated carbon as a precursor. The process proceeded as follows.
  • the synthesized hyperbranched polymer was dried at 110° C. for 12 hours, and then stabilized at 300° C. for 5 hours in an atmospheric atmosphere. At this time, a stabilization sample in which burn-off % progressed to about 20% was obtained.
  • the sample subjected to the stabilization treatment was carbonized by raising the temperature to 700 °C in a nitrogen atmosphere at 1 °C/min to convert it into activated carbon, and after 700 °C, it was activated with water vapor in a nitrogen atmosphere for 0.5 hours to activate the pores of the activated carbon. .
  • the total amount of the antibacterial spherical activated carbon thus obtained was 62% of the total burn off% generated by the heat treatment.
  • a precursor of activated carbon first, a styrene monomer and divinylbenzene as a parent were mixed in a weight ratio of 9:1, and then the amount of ammonium silver was added to the mixed solution so as to have a weight ratio of 0.047 wt%. After that, it was added while slowly stirring a 30% formic acid aqueous solution until the volume of the mixed solution was doubled, and then treated with ultrasonic waves in the range of 20 kHz to 25 MHz for 5 minutes or more and within 60 minutes, followed by further stirring for 2 hours to allow the suspension polymerization reaction to proceed.
  • the hyperbranched polymer containing the antibacterial component (Ag) was converted into activated carbon as a precursor. The process proceeded as follows.
  • the synthesized hyperbranched polymer was dried at 110° C. for 12 hours, and then stabilized at 300° C. for 5 hours in an atmospheric atmosphere.
  • the sample subjected to the stabilization treatment was carbonized by raising the temperature to 700°C in a nitrogen atmosphere at 1°C/min to convert it into activated carbon. .
  • a hyperbranched polymer which is a precursor of activated carbon
  • a styrene monomer and divinylbenzene are mixed in a weight ratio of 9:1, and then an amount of ammonium silver is added to the mixed solution so as to have a weight ratio of 0.12 wt%. Subsequent steps were the same as in Example 2 to prepare activated carbon.
  • a hyperbranched polymer which is a precursor of activated carbon
  • a styrene monomer and divinylbenzene were mixed in a weight ratio of 9:1, and then the amount of ammonium silver was added to the mixed solution so as to have a weight ratio of 0.62 wt%. Subsequent steps were the same as in Example 2 to prepare activated carbon.
  • a hyperbranched polymer that is a precursor of activated carbon a styrene monomer and divinylbenzene are mixed in a weight ratio of 9:1, and then the amount of ammonium silver is added to the mixed solution so as to be 1.23 wt% by weight. Subsequent steps were the same as in Example 2 to prepare activated carbon.
  • styrene monomer and divinylbenzene were mixed in a weight ratio of 9:1, and then the amount of ammonium silver was added to the mixed solution so as to be 0.047 wt% by weight. Afterwards, a 30% formic acid aqueous solution was added while slowly stirring until the volume of the mixed solution was doubled, and then stirred for 2 hours so that the suspension polymerization reaction proceeded. After the suspension polymerization reaction was completed, the filtration/washing process was performed 3 times or more, and the mixture was converted to activated carbon.
  • the process is the same as that of Examples 1 to 5, and in order to examine the necessity and effect of the ultrasonic treatment process, the same method as in Example 2 was performed, but only the ultrasonic treatment process was omitted.
  • the average particle diameter, specific gravity, strength, specific surface area and silver content were evaluated using Examples 1 to 5 and Comparative Example 1, and the results are shown in Table 1 it was EDS analysis was used for the silver content, and the activated carbon was oxidized at 900° C. for 2 hours in an atmospheric atmosphere and then dissolved in a nitric acid solution to quantify the Ag amount through AA analysis.
  • Example 1 Physical properties of the antibacterial spherical activated carbon of Examples 1 to 5 and Comparative Example 1 division Silver content (wt%) specific surface area (m 2 /g) robbery (kg/a unit) importance average particle diameter ( ⁇ m)
  • Example 1 0.11 1,750 9.2 1.43 350
  • Example 2 0.43 1,530 7.9 1.57 367
  • Example 3 1.12 1,415 5.8 1.64 386
  • Example 4 5.34 1,251 5.1 1.75 403
  • Example 5 10.76 1,123 4.7 1.92 415 Comparative Example 1 N.D. - - - 100
  • the amount of silver (Ag) supported on the activated carbon of Example 1 was 0.11 wt%, the average particle diameter of the spherical activated carbon was 350 ⁇ m, and the shape was a spherical shape that is easy to apply to a fluidized bed process, and the surface is also uniform. Therefore, it had the conditions for easy adsorption of organic matter.
  • the strength and specific gravity were found to be 9.2 kg/a unit and 1.43, applicable not only for atmospheric treatment but also for water treatment.
  • the specific surface area was 1,750 m 2 /g, which had a large specific surface area capable of sufficiently inducing adsorption of organic matter.
  • the amount of silver supported on the activated carbon of Example 2 was 0.43 wt%, the average particle diameter of the activated carbon was 367 ⁇ m, and the shape was spherical.
  • the strength and specific gravity were 7.9 kg/a unit and 1.57, respectively, and the specific surface area was 1,530 m 2 /g.
  • the amount of silver supported on the activated carbon of Example 3 was 1.12 wt%, the average particle diameter of the activated carbon was 386 ⁇ m, and the shape was spherical.
  • the strength and specific gravity were 5.8 kg/a unit and 1.64, respectively, and the specific surface area was 1,415 m 2 /g.
  • the amount of silver supported on the activated carbon of Example 4 was 5.34 wt%, and the average particle diameter of the spherical activated carbon was 403 ⁇ m and the shape was spherical.
  • the strength and specific gravity were 5.1 kg/a unit and 1.75, respectively, and the specific surface area was 1,251 m 2 /g.
  • the amount of silver supported on the activated carbon of Example 5 was 10.76 wt%, and the activated carbon had an average particle diameter of 415 ⁇ m and a spherical shape.
  • the strength and specific gravity were 4.7 kg/a unit and 1.92, respectively, and the specific surface area was 1,123 m 2 /g.
  • Comparative Example 1 silver was not detected at all, and the average particle diameter was 100 ⁇ m or less, indicating that it was difficult to form a hyperbranched polymer.
  • the antibacterial component is not eluted or separated even in the aqueous solution irradiated with ultrasonic waves.
  • Example 2 In order to compare the antibacterial activity of antibacterial spherical activated carbon, it was prepared without carrying an antibacterial component. In the same manner as in Example 2, the antibacterial component addition process was omitted. To prepare a hyperbranched polymer, styrene monomer and divinylbenzene were mixed at a wt% weight ratio of 9:1, and then a 30% formic acid aqueous solution was added while slowly stirring until the volume of the mixed solution was doubled, and then was treated with ultrasonic waves for 5 minutes and then stirred for 2 hours to proceed with suspension polymerization. After the suspension polymerization reaction was completed, the filtration/washing process was performed 3 times or more, and the mixture was converted to activated carbon. The process is the same as in Examples 1 to 5.
  • Example 3 In order to examine the effect of using formic acid, it was prepared in the same manner as in Example 3, but after mixing styrene monomer and divinylbenzene in a wt% weight ratio of 9:1 to prepare a hyperbranched polymer, the weight ratio of the mixed solution The amount of ammonium silver was added in a weight ratio of 0.12 wt%. Afterwards, distilled water was slowly added so that the volume of the mixed solution was doubled, treated with ultrasonic waves for 20 minutes, and then stirred for 2 hours to proceed with suspension polymerization. Thereafter, the procedure was performed in the same manner as in Examples 1 to 5.
  • the spherical activated carbon thus obtained was subjected to a comparative test for antibacterial activity by the method presented in Experimental Example 1. The results are shown in Table 4.
  • the antimicrobial component (Ag) content of Example 3 and Comparative Example 3 was evaluated in order to evaluate the effect of the addition of formic acid on the formation of the hyperbranched polymer.
  • the evaluation method was carried out in the same manner as in Experimental Example 1.
  • the antibacterial component was detected in Example 3, whereas in Comparative Example 3 in which formic acid was not added during the preparation of the hyperbranched polymer, the antibacterial component was not detected at all. Therefore, it was found that when formic acid was added during polymer formation, it was found that the antibacterial component and the hyperbranched polymer were formed to play a cross-linking role that could lead to smoother chemical bonding.
  • Example 3 and Comparative Example 3 Comparison of Ag content of samples Ag content (%) Sample according to Example 3 1.12 Sample according to Comparative Example 3 N.D.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 대기 중 유해물질 처리에 적용이 가능하며 항균능까지 갖고 있는 3차원 구조의 하이퍼브랜치 고분자 및 그의 제조방법에 관한 것이다. 더 나아가서는 상기 하이퍼브랜치 고분자를 전구체로 하여 최종적으로 얻어지는 항균 구형 활성탄에 관한 것이다. 본 발명에 의한 최종 제품인 항균 구형 활성탄은 별도의 바인더사용 없이 항균성분을 담체에 이온결합의 화학적 결합을 유도하여 안정적으로 고정화 시킬 수 있으며, 또한 항균성분의 담지량과 담체의 비표면적을 간단한 작업을 통하여 조절할 수 있게 된다. 더욱이 원자 수준으로 항균성분을 구형활성탄 담체에 균일하게 분포 시킬 수 있을 뿐만 아니라 수처리용으로 사용하여도 항균성분의 용출과 손실이 없는 고강도 항균 구형 활성탄을 제조할 수 있다는 장점을 가지고 있다. 또한, 불융화·탄화·활성화 과정을 거쳐 발달된 활성탄의 기공을 통한 유기물의 흡착을 통하여 항균 성능을 상승시킬 수 있는 효과도 기대할 수 있다. 이에 본 발명에 의해 제조된 항균 구형 활성탄은 대기 중의 SOx, NOx, VOC와 같은 유해물질 제거는 물론 항균소재 자체의 항균능을 이용하여 공기정화기에의 적용이 가능하다. 특히 본 소재는 항균성분이 구형 활성탄에 균일하게 많은 양을 담지할 수 있고, 최종적으로 소재의 형태가 표면이 균일한 완전 구형이며 높은 강도를 갖고 있어 높은 유기물 제거효율을 얻을 수 있기 때문에 항균성능이 요구되는 모든 공기 청정 시스템으로의 적용이 가능하게 된다.

Description

항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄
본 발명은 하이퍼브랜치드 고분자 및 이를 이용한 활성탄에 관한 것으로, 구체적으로는 항균 효과가 인정되는 하이퍼브랜치드 고분자 및 이를 이용한 구형 활성탄에 관한 것이다.
현재 항균용으로 주로 사용되고 있는 유효물질들은 은, 구리, 철, 아연, 니켈 등 여러 종류가 있으며, 이와 같은 항균소재들은 대기 오염물질 정화 및 수처리 그리고 항균처리 시스템 등에 적용되고 있다. 구리 등은 오래 전부터 다양한 분야에서 항균 특성을 발현시키는 소재로 활용되어 왔다. 대표적으로 항균성이 입증된 은, 구리 등 항균 금속 등을 적용한 소재 및 제품들은 이미 오래전부터 알려져 왔다. 그러나 이러한 소재 및 제품들은 항균 성능을 발현시키기 위해 표면에 노출시키게 되면 일정시간이 경과하면서 표면에서 이탈하게 되어 곧바로 항균 특성이 사라지게 되는 단점이 있다. 반면에 담체 등에 바인더 등을 사용하여 단단히 고정시켜 놓으면 오히려 항균성분들이 바인더 등에 뒤덮이게 되어 항균특성을 발휘하지 못하게 되는 문제가 있다. 이러한 문제를 해결하기 위해서 여러 가지 기술 등이 제안되었다.
항균성분을 이용하기 위해서는 크게 나노 크기의 항균 성분을 분산시켜 사용하는 분산형태(slurry type) 반응과 담체에 고정시켜 사용하는 고정형태(immobilized type) 반응으로 나누어 질 수 있다. 분산형태의 반응의 경우 미세 입자의 큰 표면적에 의해 항균 성능이 좋은 반면, 분산된 나노입자의 이탈을 막기 위한 시스템의 보완과 사용 후 나노 크기인 항균성분등의 분리를 위한 복잡한 후속 공정이 필요하다는 단점을 가지고 있다.
이에 항균 성분을 고정화 담체에 담지하기 위하여 허니컴, 실리카 볼, 유리, 고분자 섬유와 같은 여러 가지 담체에 기계적 코팅, CVD, 함침, 첨착, 플라즈마 코팅, 화학적 코팅, 졸-겔 코팅 등 여러 가지 방법을 응용하여 고정화하는 방법과 항균 성분 자체 분말을 직접 이용하여 입자를 만드는 기술들이 존재한다.
이러한 선행 기술 중에 공개특허공보 제2000-0058790호와 같이 박판기판에 촉매 등을 고정화시키는 기술은 고정형태(fixed bed type)로 반응조를 운전해야 하는 제약을 가지고 있다. 이와 같이 고정형태로 반응조를 운전하였을 때는 처리 효율이 분산형태의 반응조보다 현격히 떨어진다는 단점을 가지고 있다. 그러나 본 발명에 의해 제조되는 크기가 약 300~450 ㎛이고 비중이 1~2인 항균 구형 활성탄을 사용하였기에 유동층 형태(fluidized bed type)로의 반응조 운전이 가능하며, 박판에 고정화도 가능하다는 장점을 가지고 있다.
또한, 일반 담체에 촉매를 고정화시키는 선행 기술인 공개특허공보 제10-2003-0032775호와 같이 고정화 지지체가 금속 또는 실리카 형태로 단순히 고정화 지지체로서의 역할이외에는 특별한 기능이 없다. 또한 실리카 볼이나 유리의 경우, 대부분 담체가 유동되지 않는 고정층 형태로 광반응조가 이용되고 있는데 이는 담체의 밀도가 높아 담지체를 광반응조 내에 분산시키기 어렵기 때문이며 이로 인하여 처리효율의 저해 및 반응조 운전비용이 증가되는 문제점이 있다.
공개특허공보 제10-2004-0091385호에서는 마그네타이트(Fe3O4)가 가교된 고분자 수지로 코팅되어 있고, 그 표면에 음이온 교환기능기가 도입되어 있는 자성 음이온 교환수지를 개시하였다. 이는 회수 및 재생이 용이할 수 있으나 이온 교환수지 입경이 60-150um 정도로 작고, 마그네타이트의 입경도 커서 흡착에 필요한 충분한 비표면적을 갖지 못하는 문제가 있다.
{선행기술문헌}
[특허문헌]
(특허문헌 1) 공개특허공보 제2000-0058790호
(특허문헌 2) 공개특허공보 제10-2003-0032775호
(특허문헌 3) 공개특허공보 제10-2004-0091385호
상기와 같은 문제점을 해결하기 위하여 본 발명은 담체 전구체인 하이퍼브랜치드(hyper-branched) 고분자 제조과정 중에 항균 성분을 혼합하고 이를 구형(毬形) 형상으로 유지하게 할 뿐만 아니라 처리과정 중에 구형 형상 및 강도가 보완, 유지되어 대기 중 유해물질 처리 및 수처리용 소재로 적용이 가능하고 항균능까지 갖고 있는 항균 구형 활성탄을 제공하고자 한다.
또한, 기존에 항균 성능 발현을 위해 추가하는 유효성분 고정화 기술인 기계적 코팅법, CVD법, 함침법, 첨착법, 플라즈마 코팅법, 화학적 코팅법 등이 가지고 있던 문제점인 바인더(binder) 사용, 유효성분 함량 및 담지 강도 조절의 어려움, 담체에 유효성분 등이 불균일하게 분포하는 것과 담체에서 고정된 성분이 다시 이탈되는 현상 등을 해결하기 위한 것이다.
상기와 같은 목적을 달성하기 위해 본 발명은 항균능이 인정되는 하이퍼브랜치드 고분자 및 이를 이용한 활성탄을 제공한다.
또한, 상기 하이퍼브랜치드 고분자의 제조 방법 및 상기 활성탄의 제조방법을 제공한다.
상기 하이퍼브랜치드 고분자는 별도의 바인더 사용 없이 유효성분을 담체에 화학적 결합을 유도하여 안정적으로 유효성분을 고정화시킬 수 있으며, 또한 유효성분에 대한 담지량과 담체의 비표면적을 간단한 작업을 통하여 조절할 수 있다. 더욱이 원자 수준으로 유효성분을 담체에 균일하게 분포시킬 수 있을 뿐만 아니라 최종적으로는 고농도 대유량을 처리하기 위한 대기용으로 사용하여도 유효성분의 용출과 손실이 없는 고강도 항균 구형 활성탄을 제조할 수 있다는 장점을 가지고 있을 뿐만 아니라 발달된 활성탄의 기공을 통한 바이러스 등의 흡착을 통하여 항균 효율을 상승시킬 수 있는 효과도 기대할 수 있다.
본 발명에 의해 제조되는 항균 구형 활성탄은 전구체인 하이퍼브랜치드 고분자의 제조단계에서 항균성분을 함께 혼합하여 하이퍼브랜치드 고분자 형태로 제조하여 균일한 담지상태 및 담지량 유지를 용이하게 할 수 있다.
또한, 이후 안정화·탄화·활성화 과정을 통하여 하이퍼브랜치드 고분자를 열처리함으로써 형상 및 강도를 유지하는 항균 구형 활성탄으로 전환하여 대기 중 유해물질 처리 및 수처리에 적용이 가능할 뿐만 아니라 항균능까지 겸비한 항균 구형 활성탄의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 항균성분을 담지한 하이퍼브랜치드 고분자를 제조한 후, 이를 이용하여 활성탄을 제조할 수 있다. 상기 활성탄의 형태는 제한되는 것은 아니지만 바람직하게는 구형으로 제조될 수 있다.
하이퍼브랜치드 고분자를 제조하기 위해서는 스티렌 단량체 또는 폴리스티렌과 디비닐벤젠을 모체로 사용하여 제조할 수 있다. 상기 스티렌 모노머와 디비닐벤젠의 배합비는 제한되는 것은 아니지만 바람직하게는 스티렌 모노머:디비닐벤젠을 7~9.5:0.5~3 중량비로, 더욱 바람직하게는 9:1의 중량비로 포함할 수 있다. 상기와 같은 배합비를 벗어나는 경우, 현탁중합반응이 일어나지 않을 수 있다.
상기의 하이퍼브랜치드 고분자에 항균 성분으로 Ag, Cu, Fe, Zn, Ni 등의 암모늄 배위화합물을 각각 또는 이들의 혼합물로 추가할 수 있으며, 항균 성분은 이들에 제한되는 것은 아니다. 상기 항균 성분은 하이퍼브랜치드 고분자의 중량 대비 0.001~3 wt%, 바람직하게는 0.01~2 wt%로 혼합될 수 있다. 상기 함량보다 적게 포함될 경우, 항균 효과가 나타나지 않으며, 상기 함량보다 높게 포함될 경우 항균 효능에 크게 차이가 없으나 고분자 제조가 잘 되지 않을 수 있다.
상기 하이퍼브랜치드 고분자를 제조할 때 항균 성분 외에 개미산(formic acid)을 추가할 수 있다. 상기 개미산은 제한되는 것은 아니지만 바람직하게는 20 내지 40%(v/v)의 농도를 갖는다. 상기 개미산을 추가함에 따라 혼합된 항균 금속 등이 하이퍼브랜치드 고분자 제조의 모체들과 화학적 결합을 용이하게 하고 균일한 분포를 유도할 수 있다.
이후 추가적으로 초음파 처리를 5 내지 60분간 진행하여 이들 혼합물이 서로 화학적 결합을 이루어 항균성분이 담지된 하이퍼브랜치드 고분자를 형성할 수 있다. 상기 시간보다 적은 시간동안 처리할 경우, 항균 성분이 담지되지 않을 수 있으며, 상기 시간보다 많은 시간동안 처리할 경우, 고분자 형성이 어려울 수 있다.
또한, 초음파는 제한되는 것은 아니지만 당 업계에서 통상적으로 알려진 20㎑~25㎒ 범위인 것일 수 있다.
상기의 하이퍼브랜치드 고분자는 열처리를 통해 활성탄으로 제조할 수 있다. 상기 열처리는 안정화처리, 탄화처리, 활성화 처리를 포함한다.
하이퍼브랜치드 고분자는 대기 분위기에서 1~5℃/min으로 승온하여 250~350℃ 온도 범위에서 2~5시간 동안 안정화 처리할 수 있다. 상기 온도 및 시간을 벗어나는 경우 산소 삽입이 불충분하여 구형 형상이 변형될 수 있다.
상기의 안정화된 하이퍼브랜치드는 질소 분위기에서 1~3℃/min으로 승온하여 500~900℃, 바람직하게는 700~900℃, 더욱 바람직하게는 700℃에서, 온도 범위에서 0.5~2.0시간 동안 탄화시킬 수 있다. 상기 온도 및 시간을 벗어나는 경우 탄소 성분의 고정탄소화가 불충분할 수 있다.
상기 형성된 구형 탄화물에 미세 기공을 형성시켜 활성화하기 위하여 질소와 수증기 분위기에서 850~1,100℃, 바람직하게는 900℃ 내외에서 0.2~3시간 동안 활성화시킬 수 있다. 상기 온도 및 시간을 벗어나는 경우 기공 분포가 최적화되기 어려워지고, 수율이 낮아질 수 있다.
본 발명에 따른 구형 활성탄은 구형 활성탄 내의 항균성분 함량은 무게 중량비로 0.01 내지 20 wt%, 바람직하게는 0.01 내지 15 wt%, 더욱 바람직하게는 0.1 내지 12 wt%로 조절될 수 있다.
상기의 하이퍼브랜치드 고분자를 이용하여 안정화·탄화·활성화시켜 항균 구형 활성탄으로 제조하였을 때, 그 형태는 고른 표면을 갖는 완전한 구형을 나타내고 있었으며, 평균입경은 100 내지 1,000㎛, 바람직하게는 200 내지 700㎛, 더욱 바람직하게는 300~500 ㎛일 수 있다.
강도는 제조된 항균 구형 활성탄 한개 입자(a unit)가 견딜 수 있는 무게로, 모두 상용 공정에 적용이 가능하며, 본 발명에 따른 활성탄의 강도는 1 내지 20 kg/a unit, 바람직하게는 3 내지 15 kg/a unit, 더욱 바람직하게는 4 내지 10 kg/a unit의 강도를 가질 수 있다.
본 발명에 따라 탄화과정을 거친 하이퍼브랜치드 고분자는 200~550 m2/g의 비표면적을 갖는다. 또한, 상기 하이퍼브랜치드 고분자를 이용한 활성탄은 800 내지 2000m2/g, 바람직하게는 1,000~1,800 m2/g의 비표면적을 가질 수 있다.
본 발명에 따른 활성탄의 비중은 1 내지 3, 바람직하게는 1.3 내지 2.5, 더욱 바람직하게는 1.4 내지 2의 비중을 갖는다.
또한, 본 발명은 하기의 단계를 포함하는 하이퍼브랜드치 고분자를 포함하는 활성탄의 제조방법을 제공할 수 있다:
(a) 하이퍼브랜치드 고분자를 대기 분위기 하 250~350℃에서 2~5시간 동안 안정화 처리하는 단계;
(b) 상기 (a) 단계에서 안정화 처리된 하이퍼브랜치드 고분자를 질소 분위기에서 승온하여 500~900℃, 바람직하게는 700~에서 900℃에서 0.5~2시간, 바람직하게는 0.5 내지 1시간 동안 탄화시키는 단계;
(c) 상기 (b) 단계에서 탄화된 하이퍼브랜치드 고분자를 질소와 수증기를 함께 850~1,100℃, 바람직하게는 900℃ 내외 까지 승온시켜 0.2~3시간 동안 활성화시키는 단계.
본 발명에 따른 활성탄의 항균능은 매우 우수하여 대장균 기준 99.99%에 이르는 항균능을 갖는다. 상기 항균능은 바람직하게는 생활 환경균인 O-157 대장균, 황색포도상구균, 녹동균 등에 대한 항균성 뿐만 아니라 항곰팡이, 청정기능(탈취)와 같은 살균 효과를 제공한다.
본 발명에 따라 제조된 항균 구형 활성탄은 흡착제로서의 역할뿐만 아니라 탁월한 항균능이 인정된다. 특히 항균 성분을 활성탄의 전구체인 하이퍼브랜치드 고분자 합성시 화학적 결합이 이루어질 수 있게 함으로써 이탈 및 용출 등이 없는 반영구적인 항균소재로 활용이 가능할 뿐만 아니라 탁월한 유기물 제거 효율과 강도를 보이고 있어 대기 또는 수처리 공정 등 어느 공정이든 적용할 수 있으며, 99% 이상의 탁월한 살균 및/또는 항균능을 보이고 있으므로 폭넓은 분야에 응용 적용이 가능하다.
또한, 본 발명에 따른 항균 구형 활성탄은 발달된 기공으로 유기물의 흡착을 통하여 유해물질 제거 효율 상승효과 및 지속적으로 유지되는 뛰어한 항균능, 살균능 그리고 사용 후 회수의 용이한 이점을 갖고 있어 대기 정화나 수처리 등 여러 가지 상업적 공정으로의 적용이 가능한 효과를 가지고 있다.
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
<실시예 1>
활성탄의 전구체인 하이퍼브랜치드 고분자를 제조하기 위해서 우선 모체로 스티렌(Stylene)과 디비닐벤젠(Divinylbenzene)을 중량비 9:1로 혼합한 후, 이 혼합용액에 암모늄은([Ag(NH3)2]+ complex)의 양을 0.013 wt% 중량비가 되도록 투입하였다. 이후 혼합 용액의 부피가 2배가 될 때까지 30%(v/v) 개미산 수용액을 천천히 교반해 주면서 가하여 주었고, 5분 이상 60분 이내에서 20㎑~25㎒ 범위의 초음파로 처리한 후, 2시간동안 더 교반을 하여 현탁중합반응이 진행하도록 하였다. 현탁중합반응이 완료된 후에는 여과/수세 과정을 3회 이상 진행하여 합성된 고분자 내에 잔류물이 없도록 하였다. 이렇게 항균성분(Ag)을 함유하고 있는 하이퍼브랜치드 고분자를 전구체로 사용하여 활성탄으로 전환하였다. 그 과정은 다음과 같이 진행되었다.
합성된 하이퍼브랜치드 고분자를 110℃에서 12시간 동안 건조 후, 대기 분위기에서 300℃ 온도로 5시간 동안 안정화시켰다. 이때 Burn off%가 약 20% 정도 진행된 안정화 시료를 얻었다. 안정화 처리를 거친 시료는 활성탄으로 변환시키기 위하여 질소 분위기에서 700℃까지 1℃/min로 승온하여 탄화시켰으며, 700℃ 이후에는 활성탄의 기공을 활성화시키기 위하여 질소 분위기에서 수증기와 함께 0.5시간 동안 활성화시켰다. 이와 같이 얻어진 항균 구형 활성탄의 총량은 열처리에 의해 발생한 총 burn off%는 62%였다.
<실시예 2>
활성탄의 전구체인 하이퍼브랜치드 고분자를 제조하기 위해서 우선 모체로스티렌 모노머와 디비닐벤젠을 중량비 9:1로 혼합한 후, 이 혼합용액에 암모늄은의 양을 0.047wt% 중량비가 되도록 투입하였다. 이후 혼합 용액의 부피가 2배가 될 때까지 30% 개미산 수용액을 천천히 교반해 주면서 가하여 주었고, 이후에는 5분 이상 60분 이내에서 20㎑~25㎒ 범위의 초음파로 처리한 후, 2시간동안 더 교반을 하여 현탁중합반응이 진행하도록 하였다.
현탁중합반응이 완료된 후에는 여과/수세 과정을 3회 이상 진행하여 합성된 고분자 내에 잔류물이 없도록 하였다. 이렇게 항균성분(Ag)을 함유하고 있는 하이퍼브랜치드 고분자를 전구체로 사용하여 활성탄으로 전환하였다. 그 과정은 다음과 같이 진행되었다.
합성된 하이퍼브랜치드 고분자를 110℃에서 12시간 동안 건조 후, 대기 분위기에서 300℃ 온도로 5시간 동안 안정화시켰다. 안정화 처리를 거친 시료는 활성탄으로 변환시키기 위하여 질소 분위기에서 700℃까지 1℃/min로 승온하여 탄화시켰으며, 700℃이후에는 활성탄의 기공을 활성화시키기 위하여 질소 분위기에서 수증기와 함께 0.5시간 동안 활성화시켰다.
<실시예 3>
활성탄의 전구체인 하이퍼브랜치드 고분자를 제조하기 위해서 스티렌 모노머와 디비닐벤젠을 중량비 9:1로 혼합한 후, 이 혼합용액에 암모늄은의 양을 0.12wt% 중량비가 되도록 투입한다. 이후의 단계는 실시예 2의 방법과 동일하게 하여 활성탄을 제조하였다.
<실시예 4>
활성탄의 전구체인 하이퍼브랜치드 고분자를 제조하기 위해서 스티렌 모노머와 디비닐벤젠을 중량비 9:1 로 혼합한 후, 이 혼합용액에 암모늄은의 양을 0.62wt% 중량비가 되도록 투입하였다. 이후의 단계는 실시예 2의 방법과 동일하게 하여 활성탄을 제조하였다.
<실시예 5>
활성탄의 전구체인 하이퍼브랜치드 고분자를 제조하기 위해서 스티렌 모노머와 디비닐벤젠을 중량비 9:1로 혼합한 후, 이 혼합용액에 암모늄은의 양을 1.23wt% 중량비가 되도록 투입한다. 이후의 단계는 실시예 2의 방법과 동일하게 하여 활성탄을 제조하였다.
<비교예 1>
활성탄의 전구체인 하이퍼브랜치드 고분자를 제조하기 위해서 스티렌 모노머와 디비닐벤젠을 중량비 9:1로 혼합한 후, 이 혼합용액에 암모늄은의 양을 0.047wt% 중량비가 되도록 투입하였다. 이후 나중 혼합 용액의 부피가 2배가 될 때까지 30% 개미산 수용액을 천천히 교반해 주면서 가하여 주었고, 이후에는 2시간동안 교반을 하여 현탁중합반응이 진행하도록 하였다. 현탁중합반응이 완료된 후에는 여과/수세 과정을 3회 이상 진행하고, 활성탄으로 전환하였다. 그 과정은 실시예 1 내지 5에서 진행된 바와 같고, 초음파 처리과정의 필요성과 효과를 살펴보기 위하여, 실시예 2와 같은 방법으로 하되, 초음파 처리 과정만을 생략하였다.
<실험예 1> 본 발명에 따른 활성탄의 물리적 특징 평가
본 발명에 따른 항균 구형 활성탄의 물리적 특징을 평가하기 위하여, 실시예 1 내지 5, 비교예 1을 이용하여 평균입경, 비중, 강도, 비표면적 및 은 함량을 평가하였고, 그 결과를 표 1에 나타내었다. 은의 함량은 EDS 분석을 이용하였고, 활성탄을 900℃, 2시간동안 대기 분위기에서 산화시킨 후 질산 용액에 용해 시켜 AA분석을 통하여 Ag의 양을 정량화하였다.
실시예 1 내지 5, 비교예 1의 항균 구형활성탄의 물리적 성질
구분 은 함량 (wt%) 비표면적
(m2/g)
강도
(kg/a unit)
비중 평균입경
(㎛)
실시예 1 0.11 1,750 9.2 1.43 350
실시예 2 0.43 1,530 7.9 1.57 367
실시예 3 1.12 1,415 5.8 1.64 386
실시예 4 5.34 1,251 5.1 1.75 403
실시예 5 10.76 1,123 4.7 1.92 415
비교예 1 N.D. - - - 100
평가 결과, 실시예 1의 활성탄에 담지된 은(Ag)의 양은 0.11wt%로 나타났고, 구형 활성탄의 평균입경이 350 ㎛, 그 형태는 유동층 공정에 적용이 용이한 구형 형태로서, 표면 역시 균일하여 유기물 흡착이 용이한 조건을 갖고 있었다. 강도와 비중은 대기처리용 뿐만 아니라 수처리에도 적용이 가능한 9.2 kg/a unit과 1.43 으로 나타났다. 또한 비표면적도 1,750 m2/g로 유기물 흡착을 충분히 유도할 수 있는 큰 비표면적을 갖고 있었다.
실시예 2의 활성탄에 담지된 은의 양은 0.43wt%로 나타났고, 활성탄의 평균입경이 367 ㎛, 형태는 구형이었다. 강도와 비중은 각각 7.9 kg/a unit과 1.57로 나타났으며 비표면적은 1,530 m2/g로 나타났다.
실시예 3의 활성탄에 담지된 은의 양은 1.12wt%로 나타났고, 활성탄의 평균입경이 386 ㎛, 형태는 구형이었다. 강도와 비중은 각각 5.8 kg/a unit과 1.64로 나타났으며 비표면적은 1,415 m2/g로 나타났다.
실시예 4의 활성탄에 담지된 은의 양은 5.34wt%로 나타났고, 구형 활성탄의 평균입경이 403 ㎛, 형태는 구형이었다. 강도와 비중은 각각 5.1 kg/a unit과 1.75로 나타났으며 비표면적은 1,251 m2/g로 나타났다.
실시예 5의 활성탄에 담지된 은의 양은 10.76wt%로 나타났고, 활성탄은 평균입경이 415 ㎛, 형태는 구형이었다. 강도와 비중은 각각 4.7 kg/a unit과 1.92로 나타났으며 비표면적은 1,123 m2/g로 나타났다.
이와 달리 비교예 1은 은이 전혀 검출되지 않았고, 평균 입경도 100㎛ 이하로 나타나 하이퍼브랜치드 고분자로의 형성이 어렵다는 것을 알 수 있었다.
<실험예 2>
본 발명에 의해 얻어지는 항균 구형활성탄의 항균능을 평가하고자 실시예 1 내지 5에서 제조된 구형활성탄에 대한 대장균에 대한 항균능 실험을 실시하였다.
항균능을 평가하기 위한 실험은 대장균(E.coli)균을 배양하여 실험을 실시하였다. 균주의 배양은 LB배지로 하였으며, 배양기간은 35℃에서 24시간으로 하였다. 이렇게 배양된 대장균류를 멸균 증류수에 100배 희석하여 100mL로 제조한 후 대장균수를 측정하였다. 이후 항균 구형 활성탄을 400mg 투여하여 35℃에서 1시간 배양 교반기에서 접촉시킨 후 대장균군수를 측정하여 항균 구형 활성탄의 항균능 평가를 하였다. 대장균군수에 측정은 환경정책 기본법 제10조 환경기준에 규정된 대장균군수 시험에 적용한 것으로 막여과 방법을 택하였고, 결과는 표 2에 나타내었다.
실험결과, 본 발명에 의해 제조된 항균 구형 활성탄을 투여한 경우 모두 대장균군수의 감소율을 보이고 있었으며, 특히, 실시예 2 내지 4에 의한 시료의 경우 95% 이상에 이르는 대장균군수 감소 효율을 보이고 있어 매우 우수한 항균성능을 갖고 있는 것으로 판명되었다.
실시예 1 내지 5에 의해 제조된 항균 구형활성탄의 항균능 평가
대장균수 감소율(%)
실시예 1에 의한 시료 67.73
실시예 2에 의한 시료 95.48
실시예 3에 의한 시료 99.99
실시예 4에 의한 시료 99.99
실시예 5에 의한 시료 99.99
<실험예 3>
실시예 1 내지 5에 의한 방법으로 얻어진 항균 구형 활성탄에서의 항균성분 이탈 등을 평가하기 위하여, 증류수에 실시예 1 내지 5의 시료를 10 wt% 중량비 용액으로 만든 후 각각의 용액에 초음파를 5분씩 조사하고 여과한 후 그 여과액을 원자흡광분석법(AA)을 이용하여 여과액에 Ag성분이 용출되었는지를 확인하였다. 결과는 표 3에 나타내었다.
실시예 1 내지 5에 의해 제조된 항균 구형활성탄의 항균성분 용출 실험결과
Ag Conc.(ppm)
실시예 1에 의한 시료 N.D.
실시예 2에 의한 시료 N.D.
실시예 3에 의한 시료 N.D.
실시예 4에 의한 시료 N.D.
실시예 5에 의한 시료 N.D.
실혐결과, 본 발명에 따른 활성탄은 초음파가 조사된 수용액상에서도, 항균 성분이 용출 및 이탈되지 않음을 알 수 있다.
<비교예 2>
항균 구형 활성탄의 항균능을 비교하기 위하여 항균 성분을 담지하지 않고 제조하였다. 실시예 2와 같은 방법으로 하여 항균성분 추가과정을 생략하였다. 하이퍼브랜치드 고분자를 제조하기 위해서 스티렌 모노머와 디비닐벤젠을 wt% 중량비 9:1로 혼합한 후, 이후 혼합 용액의 부피가 2배가 될 때까지 30% 개미산 수용액을 천천히 교반해 주면서 가하여 주었고, 이후에는 5분 동안 초음파로 처리한 후 2시간 동안 더 교반을 하여 현탁중합반응이 진행하도록 하였다. 현탁중합반응이 완료된 후에는 여과/수세 과정을 3회 이상 진행하고, 활성탄으로 전환하였다. 그 과정은 실시예 1 내지 5에서 진행된 바와 같다.
<비교예 3>
개미산 사용의 효과를 살펴보기 위하여, 실시예 3과 같은 방법으로 제조하되, 하이퍼브랜치드 고분자를 제조하기 위해서 스티렌 모노머와 디비닐벤젠을 wt% 중량비 9:1 로 혼합한 후, 이 혼합용액의 중량비 암모늄은의 양을 0.12 wt% 중량비가 되도록 투입하였다. 이후에는 나중 혼합용액의 부피가 2배가 되도록 증류수를 천천히 가하여 주었고 20분간 초음파로 처리한 후, 2시간동안 더 교반을 하여 현탁중합반응이 진행하도록 하였다. 이후 과정은 실시예 1 내지 5의 방법과 동일하게 진행하였다.
<실험예 4>
이와 같이 얻어진 구형 활성탄은 실험예 1에 제시된 방법으로 항균능 비교실험을 실시하였다. 그 결과는 표 4와 같다.
실시예 2와 비교예 2에 의해 제조된 시료의 항균능 비교 결과
대장균수 감소율 (%)
실시예 2에 의한 시료 95.48
비교예 2에 의한 시료 31.81
표 4에서 확인할 수 있듯이 항균성분이 담지되어 있지 않은 비교예 2에 의한 시료의 항균능은 담체로서의 역할을 하고 있는 구형 활성탄에 의한 제거로 보여질 뿐이고, 항균에 의한 효과는 없는 것으로 판단되었다.
<실험예 5>
본 발명에서 항균성분 투입 후, 개미산의 추가가 하이퍼브랜치드 고분자의 형성에 미치는 영향을 평가하기 위해 실시예 3과 비교예 3의 항균성분(Ag) 함량을 평가하였다. 평가 방법은 실험예 1의 방법과 동일하게 진행하였다. 실험결과, 실시예 3에서는 항균성분이 검출된 반면 하이퍼브랜치드 고분자 제조 시 개미산이 추가되지 않은 비교예 3은 항균성분이 전혀 검출되지 않았다. 따라서 고분자 형성시 개미산이 추가될 때, 항균 성분과 하이퍼브랜치드 고분자가 형성될 때 보다 원활한 화학적 결합이 이루어질 수 있는 가교 역할을 하고 있다는 것을 알 수 있었다.
실시예 3과 비교예 3 시료의 Ag 함량 비교
Ag 함량 (%)
실시예 3에 의한 시료 1.12
비교예 3에 의한 시료 N.D

Claims (17)

  1. 항균 성분이 포함된 하이퍼브랜치드 고분자를 전구체로 하여 제조되는 활성탄.
  2. 제1항에 있어서, 상기 활성탄은 구형인 것을 특징으로 하는 활성탄.
  3. 제1항에 있어서, 상기 활성탄은 평균 입경이 300~500 ㎛인 것을 특징으로 하는 활성탄.
  4. 제1항에 있어서, 상기 항균 성분은 은, 구리, 철, 아연, 니켈로 이루어진 군에서 선택되는 하나 이상의 배위화합물인 것을 특징으로 하는 활성탄.
  5. 제1항에 있어서, 상기 항균 성분은 활성탄 전체 중량 대비 0.01 ~ 15 wt%로 포함되는 것을 특징으로 하는 활성탄.
  6. 제1항에 있어서, 상기 하이퍼브랜치드 고분자는 스티렌:디비닐벤젠을 7~9.5:0.5~3 중량비로 포함하는 것을 특징으로 하는 활성탄.
  7. 제1항에 있어서, 상기 활성탄은 비표면적이 800 내지 2,000 m2/g인 것을 특징으로 하는 활성탄.
  8. 제1항에 있어서, 상기 활성탄의 강도는 4 내지 10 kg/unit인 것을 특징으로 하는 활성탄.
  9. 제1항에 있어서, 상기 활성탄의 비중은 1.4 내지 2인 것을 특징으로 하는 활성탄.
  10. 제1항에 있어서, 상기 하이퍼브랜치드 고분자는 초음파를 5분 내지 60분 처리하여 제조되는 것을 특징으로 하는 활성탄.
  11. 제1항에 있어서, 상기 하이퍼브랜치드 고분자는 20 내지 40%(v/v) 개미산을 이용하여 제조되는 것을 특징으로 하는 활성탄.
  12. 제1항에 있어서, 상기 활성탄은 항균용 또는 살균용인 것을 특징으로 하는 활성탄.
  13. (a) 하이퍼브랜치드 고분자를 대기 분위기 하 250~350℃에서 2~5시간 동안 안정화 처리하는 단계;
    (b) 상기 (a) 단계에서 안정화 처리된 하이퍼브랜치드 고분자를 질소 분위기에서 승온하여 500~900℃에서 0.5~2시간 동안 탄화시키는 단계;
    (c) 상기 (b) 단계에서 탄화된 하이퍼브랜치드 고분자를 질소와 수증기를 함께 850~1,100℃까지 승온시켜 0.2~3시간 동안 활성화시키는 단계;
    를 포함하는 활성탄의 제조방법.
  14. 제13항에 있어서, 상기 (a) 단계의 하이퍼브랜치드 고분자는 스티렌 모노머:디비닐벤젠이 7~9.5:0.5~3 중량비로 포함되어 제조되는 것을 특징으로 하는 활성탄의 제조방법.
  15. 제13항에 있어서, 상기 (a) 단계의 하이퍼브랜치드 고분자는 은, 구리, 철, 아연, 니켈로 이루어진 군에서 선택되는 하나 이상의 항균 성분이 활성탄 전체 중량 대비 0.01 ~ 15 wt% 포함되도록 제조되는 것을 특징으로 하는 활성탄의 제조방법.
  16. 제13항에 있어서, 상기 (a) 단계의 하이퍼브랜치드 고분자는 20 내지 40%(v/v) 개미산을 이용하여 제조되는 것을 특징으로 하는 활성탄의 제조방법.
  17. 제13항에 있어서, 상기 (a) 단계의 하이퍼브랜치드 고분자는 20㎑~25㎒ 범위의 초음파를 5 내지 60분간 처리하여 제조되는 것을 특징으로 하는 활성탄의 제조방법.
PCT/KR2021/008250 2020-07-16 2021-06-30 항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄 WO2022014901A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/012,772 US20230312352A1 (en) 2020-07-16 2021-06-30 Antibacterial hyper-branched polymer and antibacterial spherical activated carbon using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0087877 2020-07-16
KR1020200087877A KR102406946B1 (ko) 2020-07-16 2020-07-16 항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄

Publications (1)

Publication Number Publication Date
WO2022014901A1 true WO2022014901A1 (ko) 2022-01-20

Family

ID=79554413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008250 WO2022014901A1 (ko) 2020-07-16 2021-06-30 항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄

Country Status (3)

Country Link
US (1) US20230312352A1 (ko)
KR (1) KR102406946B1 (ko)
WO (1) WO2022014901A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022585A (ko) * 1997-08-05 2001-03-26 프랭크 제이.윌리엄 삼세, 조안 브랜디스 고분지형 중합체의 제조 방법
KR20060066481A (ko) * 2004-12-13 2006-06-16 한국과학기술연구원 전기영동성 유기 무기 복합입자 및 그 제조 방법
KR100672906B1 (ko) * 2005-09-07 2007-01-22 한국화학연구원 광활성 구형 활성탄의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058790A (ko) 2000-06-29 2000-10-05 김형호 이산화티타늄 광촉매를 박판기판에 고정하는 방법
KR100549163B1 (ko) 2001-10-20 2006-02-03 김호건 나노세공구조를 갖는 실리카-티타니아 생체촉매 담체용복합재료의 제법
KR20040091385A (ko) 2003-04-21 2004-10-28 한국과학기술연구원 자성 음이온 교환수지 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022585A (ko) * 1997-08-05 2001-03-26 프랭크 제이.윌리엄 삼세, 조안 브랜디스 고분지형 중합체의 제조 방법
KR20060066481A (ko) * 2004-12-13 2006-06-16 한국과학기술연구원 전기영동성 유기 무기 복합입자 및 그 제조 방법
KR100672906B1 (ko) * 2005-09-07 2007-01-22 한국화학연구원 광활성 구형 활성탄의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO CAI XU ; JIAN JUN SHI ; DE JI LI ; HONG LONG XING: "On Interaction between nano-Ag and P(AMPS-co-MMA) copolymer synthesized by ultrasonic", JOURNAL OF POLYMER RESEARCH, vol. 16, no. 3, 29 August 2008 (2008-08-29), NL , pages 295 - 299, XP019682741, ISSN: 1572-8935 *
SO JUNG-AH: "Evaluation of NOx adsorption performance using polystyrene - divinylbenzene (copolymer) based spherical activated carbon", THESIS, 1 February 2011 (2011-02-01), pages 1 - 106, XP055887034 *

Also Published As

Publication number Publication date
KR102406946B1 (ko) 2022-06-10
US20230312352A1 (en) 2023-10-05
KR20220009554A (ko) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2012026755A9 (ko) 산화철 나노 입자를 포함하는 메조포러스 카본의 제조방법
WO2015192605A1 (zh) 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法
WO2016140443A1 (ko) 수열합성 공침법을 이용하여 제조된 촉매 및 이를 이용하여 제조된 카본나노튜브
CN107983390B (zh) 一种表面印迹氮化碳/二氧化钛复合材料光催化膜及制备方法和用途
CN113368812A (zh) 一种Co3O4/埃洛石复合材料、制备方法及应用
CN114832784A (zh) 一种磷酸修饰的二氧化硅微球及其制备方法和应用
CN113578347B (zh) 一种多孔磁性炭基固体酸催化剂及其制备方法和应用
WO2016032031A1 (ko) 산화철 요크 쉘 나노구조체를 이용한 효소 고정화
WO2022014901A1 (ko) 항균 하이퍼브랜치드 고분자 및 이를 이용한 항균 구형 활성탄
CN113680313A (zh) 一种易再生的亚甲基蓝吸附剂的制备方法
CN114835477B (zh) 一种多功能净水陶瓷材料
JP2004351336A (ja) Dnaハイブリッド及びdnaハイブリッドを用いた環境浄化システム
CN108421527B (zh) 生物质碳材料及其制备方法和应用
CN113663724B (zh) 一种铂基水处理单原子催化剂及其制备方法
KR100672906B1 (ko) 광활성 구형 활성탄의 제조방법
TW202319075A (zh) 光觸媒抗菌脫臭材料、其製造方法、抗菌脫臭材及抗菌脫臭濾材
CN101716525B (zh) 一种阴离子树脂基负载CdS复合材料及其制备方法
CN113117730B (zh) 一种活性炭复合载体的制备方法
CN108892196B (zh) 一种净水材料的制备方法
CN109231340B (zh) 一种轻质硅藻土水处理材料的制备方法
WO2017018569A1 (ko) 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극
CN108404971B (zh) 用于处理含苯酚废水的复合光催化剂及其制备方法与应用
CN110668461A (zh) 一种以四丁基溴化铵为模板剂制备Silicalite-2分子筛的方法
CN108144587B (zh) 一种具有特异性吸附重金属功能的等级孔材料及其制备方法
CN115569638B (zh) 一种Zr-MOF复合膜防护材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841378

Country of ref document: EP

Kind code of ref document: A1