WO2017018569A1 - 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극 - Google Patents

고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극 Download PDF

Info

Publication number
WO2017018569A1
WO2017018569A1 PCT/KR2015/008476 KR2015008476W WO2017018569A1 WO 2017018569 A1 WO2017018569 A1 WO 2017018569A1 KR 2015008476 W KR2015008476 W KR 2015008476W WO 2017018569 A1 WO2017018569 A1 WO 2017018569A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
carbon particles
coated
carbon
carbon electrode
Prior art date
Application number
PCT/KR2015/008476
Other languages
English (en)
French (fr)
Inventor
정연길
김은희
이재현
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2017018569A1 publication Critical patent/WO2017018569A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • C25B11/044Impregnation of carbon

Definitions

  • the present invention relates to a method for producing a polymer-coated fluidized carbon electrode and to a fluidized carbon electrode according to the present invention. More particularly, the polymer-modified fluidized carbon electrode is prepared by acid treatment of carbon particles and mixing with a water-soluble polymer. It relates to a method for producing a polymer-coated carbon electrode to be produced, and thereby a carbon electrode.
  • Capacitive desalination technology currently used for seawater desalination is a technology that removes salt components from water by using an electric field, and energy consumption is 1/3 of reverse osmosis.
  • salt ions such as NaCl move to the opposite pole to be adsorbed to the electrode. Repeat the process to prepare fresh water.
  • this fixed-bed carbon electrode has a disadvantage in that the absorption of the salt is mainly made in the surface area where it is easily in contact with the solution, the inner carbon does not participate in the adsorption process, the efficiency is reduced.
  • the fluidized bed electrode adsorbs salt ions in the flow path inside the cell and is accompanied by the movement of the passing material, the saturation adsorption of the electrode does not occur, and there is no need for a regeneration process to remove the adsorbed ions, Since the carbon particles are not a layered structure, the relative area of the electrode is rapidly increased compared to the fixed layer, and the properties of the electrode material are fully utilized.
  • the polymer compound is coated on the surface of the carbon to make full use of the pore structure of the electrode, and to selectively desorb and desorb ions to increase the desalination efficiency of the electrode. do.
  • the present inventors have found that the polymer coated carbon particles can be prepared by uniformly coating the surface of the carbon particles with a polymer to increase the desalination efficiency of the carbon electrode.
  • Patent Document 1 Republic of Korea Registered Patent No. 0461735
  • Patent Document 2 Republic of Korea Registered Patent No. 1045563
  • An object of the present invention is to provide a method for producing a polymer-coated carbon electrode that can remove the adsorption ions at low cost in order to improve the efficiency of the carbon electrode particles, excellent coating efficiency.
  • Another object of the present invention is to provide a polymer coated carbon particles and a carbon electrode that can increase the relative area can effectively utilize the properties of the carbon electrode material, and can increase the desalination adsorption efficiency.
  • Acid treatment to modify the carbon particles to achieve the above object Mixing the modified carbon particles with a polymer solution to prepare a polymer-modified carbon particle mixed solution; And drying the polymer-modified carbon particle mixed solution.
  • the carbon particles are mixed with a strong acid to prepare a suspension, and the suspension is preferably mixed ultrasonically.
  • the strong acid is preferably mixed with sulfuric acid and nitric acid 2 to 4: 1 composition ratio.
  • Mixing with the ultrasonic wave is preferably mixed while applying ultrasonic waves for 1 to 3 hours.
  • the acid treatment may be further performed by filtering, washing, and drying the suspension mixed with ultrasonic waves.
  • the polymer solution is preferably an aqueous solution in which a water-soluble polymer is dissolved.
  • the water-soluble polymer may be Nafion, but is not limited thereto.
  • the polymer-coated carbon electrode is prepared in accordance with the method for producing a polymer coated carbon particles, characterized in that the polymer is coated on the carbon particles.
  • the coated polymer has a thickness of 50 to 200 nm.
  • the present invention also provides a polymer coated carbon electrode including the polymer coated carbon particles.
  • the manufacturing method of the polymer-coated carbon particles according to the present invention by adsorbing the carbon particles and mixed with a water-soluble polymer to prepare a polymer-modified carbon particles, it is possible to remove the adsorption ions at low cost, It can be used for various coating processes.
  • the polymer-coated carbon particles and the carbon electrode according to the present invention can increase the relative area to effectively utilize the properties of the carbon electrode material, it is possible to increase the desalination adsorption efficiency.
  • FIG. 1 is a flow chart showing a polymer-coated carbon particles manufacturing process according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the surface-treated carbon particles prepared according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a polymer-coated carbon particles manufacturing process according to an embodiment of the present invention.
  • Figure 4 shows the analysis results by infrared spectroscopy of the carbon particles coated with the polymer on the carbon particles and the modified carbon particles before and after the modification according to an embodiment of the present invention ((a) carbon particles not treated with acid, ( b) acid treated carbon particles, (c) polymer coated carbon particles).
  • Figure 5 shows a scanning electron micrograph and the results of atomic analysis showing the shape of the polymer-coated carbon particles according to an embodiment of the present invention.
  • Figure 6 shows a transmission electron micrograph and atomic analysis results showing the microstructure of the polymer-coated carbon particles according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a flow chart showing a polymer coated carbon particle manufacturing process according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the surface-treated carbon particles prepared according to an embodiment of the present invention
  • Figure 3 is It is a schematic diagram of a method for producing a polymer coated carbon particles according to one embodiment.
  • the method for producing a polymer coated carbon electrode of the present invention comprises the steps of modifying the carbon particles (S10); Preparing a polymer-modified carbon particle mixed solution (S20); And drying the polymer-modified carbon particle mixed solution (S30).
  • the step of modifying the carbon particles (S10) is to modify the carbon particles by acid treatment.
  • the carbon particles may be mixed with the acid solution to prepare a suspension.
  • the acid treatment of the carbon particles is performed by modifying the surface of the carbon particles with an acid.
  • the hydrophilic functional group of the carboxyl group can be introduced to suppress the aggregation of carbon in the aqueous solution.
  • carbon is industrially made of various carbon products, and as a raw material, coal, petroleum, natural gas, natural graphite, etc. are usually used, and synthetic polymers are also used depending on the purpose.
  • the carbon particles may be used as the carbon particles, more preferably powdered carbon powder having a uniform particle size.
  • carbon black, acetylene black, denka black, super-P, or ketjen black may be used.
  • the specific carbon particles are not limited, the specific surface area is 50-2,000 m 2 / g, preferably 1,000 Carbon particles of 2,000 m 2 / g (eg KetjenBlack) can be used.
  • As amorphous carbon carbon black and activated carbon are most frequently made.
  • Carbon black is used as a filler for various rubbers, including automobile tires, and as a printing ink, mainly made from incomplete combustion of natural gas or oil.
  • Activated carbon is widely used as an adsorbent for decolorization in water purification, food industry, etc. in drinking water, etc.Blocking air to various woods, coconut shells, coal, etc. It is made by activation.
  • the carbon particles may be used alone or mixed with carbon particles having different particle sizes and shapes.
  • the carbon particles may be 10 ⁇ m uniform carbon powder, but are not limited thereto.
  • Acid treatment in the present invention refers to a process of treating a metal or particle surface with a strong acid.
  • the acid treatment may be carried out by immersion in an acid solution or an acid mixed solution of a strong acid according to a conventional method, followed by stirring or acid treatment while applying ultrasonic waves.
  • Hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), etc. may be used as the strong acid.
  • the strong acid is preferably a mixture of sulfuric acid and nitric acid in a composition ratio of 2 to 4: 1.
  • the acid solution is used as a material for modifying the carbon particles.
  • the acid treatment can be modified using one or more selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, or phosphoric acid.
  • the mixing composition ratio and mixing time of the acid solution mixed during the acid treatment may vary depending on the type and particle size of the carbon particles.
  • a strong acid may be used alone or a mixture of strong acids in a predetermined composition ratio may be used.
  • sulfuric acid can be used alone or nitric acid can be used alone.
  • the strong acid is preferably sulfuric acid and nitric acid are mixed in a composition ratio of 2 to 4: 1.
  • the mixed composition ratio of sulfuric acid and nitric acid may be 3: 1, but is not limited thereto. Optimum amount was confirmed as shown in the following examples.
  • 'Modification' or 'surface modification' herein may be carried out through various surface treatments such as immersion in acid or alkaline solutions, UV treatment, or plasma treatment.
  • Such surface modification treatment may include performing a catalyst and activation process after performing a primary surface treatment.
  • the surface may be modified to provide a specific functional group capable of reacting with a specific functional group (functional group, functional group), to increase hydrophilicity or hydrophobicity, to remove contaminants, and to increase the electrical conductivity of the surface.
  • carbon particles may be immersed in an acid solution to be modified, but is not limited thereto.
  • the surface of the carbon particles is acid-treated to improve the desalination efficiency of the carbon electrode by uniformly modifying the surface of the carbon particles with a polymer.
  • acid treatment of the surface of the carbon particles it is possible to reduce the cohesion of the carbon particles, it is possible to produce a polymer coated carbon particles having a high coating efficiency through the coating process in the aqueous polymer solution.
  • the step of modifying the carbon particles it is preferable to prepare a suspension by mixing the carbon particles with a strong acid, and to mix the suspension by ultrasonic waves (see (1) of FIG. 3).
  • the suspension can increase mixing by adding ultrasonic waves.
  • hydrophilic functional groups such as carboxyl groups can be introduced and modified on the surface of the carbon particles.
  • the acid treatment (1) of the carbon particles allows the surface of the carbon particles to be modified with a carboxyl group, thereby suppressing agglomeration between the carbon particles, thereby producing carbon particles 2 capable of increasing dispersibility (FIG. 2). And (2) in FIG. 3).
  • the mixing with the ultrasonic wave is preferably mixed while applying the ultrasonic wave for 1 to 3 hours.
  • the suspension in which the acid solution and the carbon particles are mixed is mixed while applying ultrasonic waves for 1 to 60 minutes.
  • the modifying the carbon particles (S10) may further include filtering, washing, and drying the suspension mixed with ultrasonic waves.
  • the ultrasonically mixed suspension is filtered and washed with distilled water.
  • the acid-treated carbon particle suspension may be neutralized by filtering and washing with distilled water.
  • carbon particles modified with a carboxyl group can be obtained.
  • to dry the ultrasonically mixed suspension is preferably dried within 24 hours at 80 to 200 °C.
  • the preparing of the polymer-modified carbon particle mixed solution (S20) is a step of preparing a polymer-modified carbon particle mixed solution coated with a polymer on the carbon particles by mixing the modified carbon particles with an aqueous polymer solution. .
  • the carboxyl-modified carbon particles 2 and the polymer solution 3 may be mixed to obtain a polymer-modified carbon particle mixed solution.
  • the carboxyl group-modified carbon particles 2 and the polymer solution 3 may be mixed by applying ultrasonic waves to maximize mixing (4).
  • the polymer solution is an aqueous solution in which a water-soluble polymer is dissolved.
  • the modified carbon particles are mixed with an aqueous solution in which the water-soluble polymer is dissolved in water. That is, when the modified carbon particles and a polymer having a functional group present as ions in an aqueous solution are mixed, entanglement between chains is reduced, thereby increasing coating efficiency and forming a uniform polymer coating film.
  • the water-soluble polymers can be broadly classified into natural polymers, semi-synthetic polymers, and synthetic polymers, which represent resins or polymer materials that can be dissolved in water, dispersed, or dispersed into small particles.
  • Water-soluble polymers are additives to paints, adhesives, detergents, food, cosmetics, and pharmaceuticals. They are used in a wide range of areas such as paper industry, textile industry, and oil extraction, and they have various properties such as dispersion, absorption, adhesion, coagulation, and thickening of water-soluble polymers. It is used medicine.
  • the water-soluble polymer is affected by the functional group, the molecular weight, the charge density, the degree of branching of the polymer, and the concentration of the ionic substance in the solution.
  • the functional groups contained in the water-soluble polymers are largely divided into nonionic, cationic, and anionic, and these functional groups impart water solubility.
  • Nonionic functional groups listed in the order of high hydrophilicity are the same as -OH> -CONH 2 >COC> COO.
  • Mainly amines are used for cationic functional groups.
  • Carboxyl groups are mainly used for anionic functional groups. In the non-neutralized state, since the solubility in water is very low by hydrogen bonding between carboxyl groups, the solubility is increased by neutralizing with Na + , K + , NH 4 + and the like.
  • Hydrophilic polymers are polar in their functional groups, typically polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylacetate (PVAc), etc., and the polymers are polar, so they are soluble in water, which is a polar solvent.
  • PEG polyethylene glycol
  • PVA polyvinyl alcohol
  • PVAc polyvinylacetate
  • the water-soluble polymer is preferably selected from hydrophilic polymers soluble in the aqueous solution in order to increase the coating efficiency of the surface of the carbon particles.
  • the polymer is a water-soluble polymer, the concentration of the polymer may vary depending on the solubility of the polymer.
  • the structure of the polymer may have a functional group ionized in the molecular structure.
  • the water-soluble polymer may be Nafion.
  • Drying the polymer-modified carbon particle mixed solution (S30) includes filtering the polymer-modified carbon particle mixed solution and drying the filtered carbon particles.
  • coreshell particles which are polymer-modified carbon particles may be obtained through a filtering, washing, and drying process (5).
  • the polymer-modified carbon particle mixed solution prepared by mixing the surface-modified carbon particles by acid treatment with an aqueous polymer solution may be filtered. Then, drying the filtered carbon particles can be dried for 24 hours at a temperature of 80 to 200 °C. More preferably, the filtered carbon particles are dried at a temperature of 80 to 150 ° C. for 24 hours.
  • the present invention is a polymer-coated carbon particles, characterized in that the polymer is coated according to the manufacturing method described above, the carbon particles.
  • the coated polymer preferably has a thickness of 50 to 200 nm. This is because when the coated polymer is 50 nm or less, ions may enter the carbon particles due to the too thin coating film.
  • the coated polymer preferably has a thickness of 50 to 200 nm to increase the relative area of the electrode and to fully utilize the pore structure of the electrode.
  • the coated polymer according to one embodiment of the present invention may have a thickness of 50 to 100 nm, 50 to 150 nm, 100 to 200 nm, or 150 nm to 200 nm.
  • the polymer-coated carbon particles according to the present invention can fully utilize the pore structure in the fluidized bed carbon electrode and can selectively desorb and desorb ions to increase the desalination efficiency of the electrode.
  • a uniform and continuous coating film is formed on the surface of the carbon particles, thereby manufacturing a carbon electrode including the carbon particles having increased coating efficiency.
  • the carbon particles are agglomerated with each other due to van der Waals bonds between the particles in an aqueous solution, which makes it difficult to coat each independent carbon particle.
  • the production method according to the present invention by increasing the dispersibility in the aqueous solution by acid-treating the carbon particles and coating with a water-soluble polymer, it is possible to produce a uniform coating film and increase the efficiency.
  • Fluidized bed electrode' refers to an electrode that stores electrical energy while simultaneously flowing slurry-like electrode materials and electrolytes in a microchannel structure formed in the electrode. Since the fluidized bed electrode adsorbs salt ions in the flow path inside the cell and is accompanied by the movement of the passing material, the saturation adsorption of the electrode does not occur, and there is no need for a regeneration process to remove the adsorbed ions, Since the carbon particles are not a layer structure, the relative area of the electrode is rapidly increased compared to the fixed layer, and the characteristics of the electrode material are effectively utilized.
  • Activated carbon particles were used as the carbon particle powder. Suspension was prepared by adding about 10 ⁇ m of activated carbon particles to a mixed solution of sulfuric acid and nitric acid. The suspension was mixed for 3 hours by ultrasonic to increase the mixing. The acid treated carbon particles were dried at 80 ° C. for 24 hours to prepare modified carbon particles (FIGS. 2 and 3).
  • the modified carbon particles were mixed in an aqueous solution in which Nafion, a water-soluble polymer, was dissolved in water. Then, the mixed solution mixed with the modified carbon particles in the aqueous polymer solution was filtered and dried at 80 ° C. for 24 hours to prepare polymer modified (coated) activated carbon particles (see FIGS. 1 to 3).
  • Test Example 1 Infrared spectroscopy (IR) results of the prepared carbon particles
  • Figure 4 is an analysis result of the infrared spectroscopy of the carbon particles coated with the polymer on the carbon particles and the modified carbon particles before and after the modification according to an embodiment of the present invention ((a) acid untreated carbon particles, (b) acid Treated carbon particles, (c) polymer coated carbon particles).
  • FIG. 4 only CH stretching vibration peaks of 2,800 to 3,000 cm ⁇ 1 were observed in the unmodified carbon particles not treated with acid.
  • an OH stretching peak of 3,500 cm ⁇ 1 and a C ⁇ O stretching peak at 1,600 cm ⁇ 1 by a carboxylic acid group appeared.
  • the polymer coated carbon particles are coated on the surface of the carbon particles. Strong CF peaks were observed at 1,200 and 1,050 cm ⁇ 1 by the polymer.
  • FIG. 5 shows scanning electron micrographs and atomic analysis results showing the shapes of surface-modified carbon particles and coated carbon particles according to an embodiment of the present invention.
  • the size of the modified carbon particles was significantly reduced compared to the unmodified carbon particles. This is because agglomeration of the carbon particles decreased due to the repulsive force between the hydrophilic functional groups formed on the carbon surface by the acid.
  • the surface of the carbon particles became very smooth due to the coating film formation, and no pores existed on the carbon surface.
  • Figure 5 it can be seen that a uniform polymer film is coated on the surface of the carbon particles.
  • the modified carbon was identified as elements of C and O from the carbon particles and the resulting carboxyl group (Fig. 5 (b)), but only C was found in the unmodified carbon (Fig. 5 (a)).
  • C and O and F by the coating film was confirmed, respectively (FIG. 5 (c)).
  • FIG. 6 is a transmission electron microscope photograph and elemental analysis result showing the microstructure of the polymer-coated carbon particles according to an embodiment of the present invention.
  • solid and dashed arrows indicate polymers formed of a continuous coating film on the surfaces of polygonal carbon particles and carbon particles, respectively.
  • a coating film made of a thin film was observed only around the carbon particles.
  • the above result means that the polymer is uniformly well coated on the surface of the carbon particles in the aqueous solution.
  • the coating thickness of the polymer was formed to about 100 nm.
  • the inner carbon can not overcome the disadvantage that efficiency is reduced because it does not participate in the adsorption process.
  • the carbon particles made of a polymer and activated carbon in an aqueous solution can be applied as a fluidized bed electrode of seawater desalination technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

본 발명은 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 카본 전극에 관한 것으로, 더욱 상세하게는 카본 입자를 산처리하고 수용성 고분자와 혼합하여 개질시킴으로써 고분자-개질된 카본 입자를 제조하는 고분자 코팅된 카본 전극의 제조방법, 그에 따른 카본 입자 및 카본 전극에 관한 것이다.

Description

고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극
본 발명은 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극에 관한 것으로, 더욱 상세하게는 카본 입자를 산처리하고 수용성 고분자와 혼합하여 개질시킴으로써 고분자-개질된 유동상 카본 전극을 제조하는 고분자 코팅된 카본 전극의 제조방법, 그에 따른 카본 전극에 관한 것이다.
현재 해수 담수화에 이용되는 축전식 탈염기술은 전기장을 이용하여 물 속에 염 성분을 제거하는 기술이며, 에너지소비량이 역삼투법의 1/3 수준으로 에너지효율이 높은 이점을 지닌다.
구체적으로, 양 전극사이에 1V 내외의 전기장을 가하면 NaCl과 같은 염 이온이 상대 극으로 이동해 전극에 흡착되게 되며, 전극의 흡착이 포화되면 외부 전기장을 바꿔 흡착된 염 이온을 방출함으로써 전극을 재생시키는 과정을 반복하여 담수를 제조한다. 하지만, 이런 고정층 카본 전극은 염의 흡착이 용액과 쉽게 접촉하고 있는 표면 영역에서 주로 이루어지므로 안쪽의 카본은 흡착 과정에 참여하지 못해 효율이 감소하는 단점을 가지고 있다.
그러므로, 축전식 탈염에 사용되는 전극을 고정층으로 사용하지 않고 물의 흐름과 함께 흐르는 유동상태로 제공함으로써 전극 고유의 흡착 성능한계를 극복하고 재생공정이 필요하지 않은 유동상 전극이 대두되었다.
유동상 전극은 셀 내부의 유로에서 염 이온을 흡착하고 지나가는 물질의 이동을 수반하기 때문에 전극의 포화흡착이 발생하지 않으며, 흡착된 이온을 제거하는 재생공정이 필요하지 않고, 전극을 일정두께를 갖는 층 구조가 아닌 카본 입자이므로 전극의 상대 면적이 고정층에 비해 급격하게 증가하게 되며 전극 물질의 특성을 온전하게 활용하게 된다.
따라서, 본 발명에서는 유동상 카본 전극의 효율을 높이고자 고분자 화합물을 카본 표면에 코팅한 입자를 만들어 전극의 기공구조를 충분히 활용할 수 있고 이온을 선택적으로 흡착, 탈착하여 전극의 탈염효율을 증가시키고자 한다.
이에, 본 발명자들은 카본 입자 표면을 고분자로 균일하게 코팅하여 카본 전극의 탈염효율을 높일 수 있는 고분자 코팅된 카본 입자를 제조할 수 있음을 알게 되어 본 발명을 완성하였다.
[선행기술문헌]
(특허문헌 1) 대한민국 등록특허 제0461735호
(특허문헌 2) 대한민국 등록특허 제1045563호
본 발명의 목적은 카본 전극 입자의 효율 향상을 위해 저비용으로 흡착이온을 제거할 수 있고, 코팅효율이 우수한 고분자 코팅된 카본 전극의 제조 방법을 제공하는 데 있다.
본 발명의 다른 목적은 상대면적이 증가하여 카본 전극 물질의 특성을 효과적으로 활용할 수 있고, 탈염 흡착 효율을 높일 수 있는 고분자 코팅된 카본 입자 및 카본 전극을 제공하는 데 있다.
상기한 목적을 달성하기 위해 카본 입자를 산 처리하여 개질시키는 단계; 상기 개질된 카본 입자를 고분자 용액과 혼합하여 고분자-개질된 카본 입자 혼합 용액을 제조하는 단계; 및 상기 고분자-개질된 카본 입자 혼합 용액을 건조하는 단계;를 포함하는 고분자 코팅된 카본 전극의 제조방법을 포함하는 것이 특징이다.
상기 산 처리하여 개질시키는 단계는, 카본 입자를 강산과 혼합하여 현탁액을 제조하고, 상기 현탁액을 초음파로 혼합하는 것이 바람직하다.
상기 강산은 황산과 질산 2 내지 4 : 1의 조성비로 혼합되는 것이 바람직하다.
상기 초음파로 혼합하는 것은 1 내지 3 시간 동안 초음파를 가하면서 혼합하는 것이 바람직하다.
상기 산 처리하여 개질시키는 단계는, 상기 초음파로 혼합한 현탁액을 필터링하고, 세척한 후, 건조하는 단계를 더 포함하는 것이 바람직하다.
또한, 상기 고분자 용액은 수용성 고분자가 용해된 수용액인 것이 바람직하다.
상기 수용성 고분자는 나피온(Nafion)일 수 있으나 이에 한정되지 않는다.
상기 건조하는 것은 80 내지 200℃에서 24 시간 이내로 건조하는 것이 바람직하다.
또한, 상기 고분자 코팅된 카본 전극의 제조방법에 따라 제조되어, 카본 입자에 고분자가 코팅된 것을 특징으로 하는 고분자 코팅된 카본 입자를 제공한다.
상기 코팅된 고분자는 50 내지 200 nm의 두께를 갖는 것이 가능하다.
또한, 상기 고분자 코팅된 카본 입자를 포함하는 고분자 코팅된 카본 전극을 제공한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따른 고분자 코팅된 카본 입자의 제조 방법에 따르면, 카본 입자를 산처리하고 수용성 고분자와 혼합하여 고분자-개질된 카본 입자를 제조함으로써, 저비용으로 흡착이온을 제거할 수 있고, 이러한 제조방법은 다양한 코팅 공정에 활용할 수 있다.
또한, 본 발명에 따른 고분자 코팅된 카본 입자 및 카본 전극은 상대면적이 증가하여 카본 전극 물질의 특성을 효과적으로 활용할 수 있고, 탈염 흡착 효율을 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 고분자 코팅 카본 입자 제조 공정을 나타내는 순서도이다.
도 2는 본 발명의 일 실시예에 따라 제조된 표면 처리된 카본 입자의 모식도이다.
도 3는 본 발명의 일 실시예에 따른 고분자 코팅 카본 입자 제조 공정 모식도이다.
도 4는 본 발명의 일 실시예에 따른 개질 전 후 카본 입자와 개질된 카본 입자에 고분자를 코팅한 카본 입자의 적외선 분광기에 의한 분석결과를 나타낸 것이다((a) 산 처리 되지 않은 카본 입자, (b) 산 처리된 카본 입자, (c) 고분자 코팅된 카본 입자).
도 5는 본 발명의 일 실시예에 따른 고분자 코팅된 카본 입자의 형상을 나타내는 주사 전자현미경 사진과 원자 분석 결과를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 고분자 코팅된 카본 입자의 미세구조를 나타내는 투과 전자현미경 사진과 원자 분석 결과를 나타낸 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하, 도면을 참조하여 본 발명에 따른 카본 입자의 제조방법에 대하여 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 고분자 코팅 카본 입자 제조과정을 나타내는 순서도이고, 도 2는 본 발명의 일 실시예에 따라 제조된 표면 처리된 카본 입자의 모식도이고, 도 3은 본 발명의 일 실시예에 따른 고분자 코팅 카본 입자 제조방법의 모식도이다.
본 발명의 목적을 달성하기 위하여, 도 1에서 보는 바와 같이, 본 발명의 고분자 코팅된 카본 전극의 제조방법은 카본 입자를 개질시키는 단계(S10); 고분자-개질된 카본 입자 혼합 용액을 제조하는 단계(S20); 및 상기 고분자-개질된 카본 입자 혼합 용액을 건조하는 단계(S30);를 포함한다.
먼저, 상기 카본 입자를 개질시키는 단계(S10)는, 카본 입자를 산 처리하여 개질시키는 것이다. 카본 입자를 산 용액과 혼합하여 현탁액으로 제조할 수 있다.
카본 입자를 산 처리하여 개질시키는 것은 카본 입자의 표면을 산으로 개질시키는 것으로서, 카르복실기의 친수성 관능기를 도입하여 수용액에서 카본의 응집현상을 억제시킬 수 있다.
본 발명에서 카본은 공업적으로 각종 탄소제품이 만들어지고 있는데 원료로서는 보통 석탄·석유·천연가스·천연흑연 등이 쓰이고 목적에 따라 합성고분자 등도 쓰인다. 카본 입자는 탄소 입자로서, 보다 바람직하게는 균일한 입도로 분말화된 탄소 분말이 사용될 수 있다. 카본 입자로는 카본블랙, 아세틸렌 블랙, 덴카 블랙, 수퍼-P 또는 케첸블랙 등을 이용할 수 있으며, 특정 카본 입자에 제약을 두지는 않으나, 비표면적이 50 - 2,000 m2/g, 바람직하게는 1,000 - 2,000 m2/g인 카본 입자(예를 들어, 케첸블랙)를 이용할 수 있다. 비결정성 탄소로서는 카본블랙과 활성탄이 가장 많이 만들어진다. 카본블랙은 자동차 타이어를 비롯하여 각종 고무의 충전제로 쓰이고 인쇄 잉크로도 쓰이는데, 주로 천연가스나 석유의 불완전연소로 만들어진다. 활성탄은 음료수 등의 정수, 식품공업 등에서 탈색 등의 흡착제로서 널리 쓰이는데, 각종 목재, 야자껍데기, 석탄 등에 공기를 차단하고 600 내지 900℃로 가열하여 탄화시킨 다음, 염화아연 등의 금속염화물을 작용시켜서 활성화(賦活)하여 만든다. 본 발명의 일 실시예에 따르면, 상기 카본 입자는 입자의 크기 및 형상이 다른 카본 입자를 단독으로 또는 혼합하여 사용할 수 있다. 예를 들면, 카본 입자는 10 ㎛의 균일한 카본 분말일 수 있으나, 이에 제한되지 않는다.
본 발명에서 산 처리는 금속 또는 입자 표면을 강산을 이용하여 처리하는 과정을 말한다. 산 처리는 통상적인 방법에 따라 강산의 산 용액 또는 산 혼합 용액에 침지한 후 교반하거나, 초음파를 가하면서 산 처리할 수 있다. 강산으로는 염산(HCl), 황산(H2SO4), 질산(HNO3) 등을 사용할 수 있다. 상기 강산은 황산과 질산이 2 내지 4 : 1의 조성비로 혼합된 것이 바람직하다. 상기 산 처리 시 산 용액은 카본 입자의 개질을 위한 물질로서 사용한다. 본 발명의 일 실시예에 따르면, 상기 산 처리는 황산, 질산, 염산, 또는 인산으로 이루어진 군에서 선택된 1 종 이상을 사용하여 개질시킬 수 있다. 상기 산 처리 시 혼합되는 산 용액의 혼합 조성비 및 혼합 시간은 상기 카본 입자의 종류 및 입자 크기에 따라 달리할 수 있다. 상기 산 처리 시 강산을 단독으로 사용하거나 또는 강산을 일정 조성비로 혼합한 혼합물을 이용할 수 있다. 예를 들어, 강산을 사용할 경우, 황산을 단독으로 사용하거나 질산을 단독으로 사용할 수 있다. 본 발명의 일 실시예에 따르면, 상기 강산은 황산과 질산이 2 내지 4 : 1의 조성비로 혼합하는 것이 바람직하다. 예를 들면, 황산과 질산의 혼합 조성비는 3 : 1 일 수 있으나, 이에 제한되지 않는다. 후술하는 실시예에 나타난 바와 같이 최적양을 확인하였다.
본 명세서에서 '개질(modification)' 또는 '표면 개질(surface modification)'은, 산 또는 알칼리 용액에의 침지, UV 처리, 또는 플라즈마 처리와 같은 다양한 표면 처리를 통해서 수행될 수 있다. 이러한 표면 개질 처리는 1차적인 표면 처리를 수행한 후 촉매와 활성화 공정을 수행하는 것을 포함할 수 있다. 또한, 특정 관능기(기능기, 작용기)와 반응할 수 있는 특정 관능기를 표면에 만들어 주거나, 친수성 또는 소수성을 증가, 오염물질의 제거, 표면의 전기 전도도를 증가시키기 위해 표면을 개질시킬 수 있다. 본 발명의 일 실시예에 따르면, 산 용액에 카본 입자를 침지하여 개질시킬 수 있으나, 이에 제한되지 않는다.
이러한 본 발명에 따른 고분자 코팅된 카본 입자 제조방법은, 카본 입자 표면을 고분자로 균일하게 개질시켜 카본 전극의 탈염효율을 높이고자 카본 입자 표면을 산 처리한 것이다. 상기 카본 입자 표면을 산 처리함으로써, 카본 입자들의 응집력을 감소시키고, 고분자 수용액에서의 코팅 공정을 통하여 높은 코팅 효율을 가지는 고분자 코팅된 카본 입자를 제조할 수 있다.
나아가, 상기 카본 입자를 개질시키는 단계(S10)는, 카본 입자를 강산과 혼합하여 현탁액을 제조하고, 상기 현탁액을 초음파로 혼합하는 것이 바람직하다(도 3의 (1) 참조). 상기 현탁액은 초음파를 가하여 혼합함으로써 혼합성을 증대시킬 수 있다. 또한, 상기 산 용액과 카본 입자를 함께 혼합함으로써, 상기 카본 입자 표면에 카르복실기 등의 친수성 관능기가 도입되어 개질시킬 수 있다. 도 3에서 보는 바와 같이, 카본 입자를 산처리(1)함으로써, 카본 입자 표면이 카르복실기로 개질되어 카본 입자 간의 응집이 억제되어 분산력을 높일 수 있는 카본 입자(2)를 제조할 수 있다(도 2 및 도 3의 (2) 참조).
또한, 상기 초음파로 혼합하는 것은 1 내지 3 시간 동안 초음파를 가하면서 혼합하는 것이 바람직하다. 본 발명의 일 실시예에 따르면, 상기 산 용액과 카본 입자가 혼합된 현탁액은 1 내지 60 분 동안 초음파를 가하면서 혼합한다.
상기 카본 입자를 개질시키는 단계(S10)는, 상기 초음파로 혼합한 현탁액을 필터링하고, 세척한 후, 건조하는 단계를 더 포함할 수 있다. 구체적으로, 상기 초음파로 혼합한 현탁액을 필터링하고, 증류수로 세척한다. 이 때, 상기 산 처리된 카본 입자 현탁액은 필터링하고 증류수로 세척하는 공정을 거쳐 카본 입자 표면의 산을 중화시킬수 있다. 상기 증류수로 세척한 현탁액을 건조함으로써, 카르복실기로 개질된 카본 입자를 수득할 수 있다. 다음으로, 상기 초음파로 혼합한 현탁액을 건조하는 것은 80 내지 200℃에서 24 시간 이내로 건조하는 것이 바람직하다.
상기 고분자-개질된 카본 입자 혼합 용액을 제조하는 단계(S20)는, 상기 개질된 카본 입자를 고분자 수용액과 혼합함으로써 상기 카본 입자에 고분자가 코팅된 고분자-개질된 카본 입자 혼합 용액을 제조하는 단계이다.
도 3을 참조하면, 상기 카르복실기로 개질된 카본 입자(2)와 고분자 용액(3)을 혼합하여 고분자-개질된 카본 입자 혼합 용액을 수득할 수 있다. 상기 카르복실기로 개질된 카본 입자(2)와 고분자 용액(3)은 혼합성을 최대화시키기 위해 초음파를 가함으로써 혼합할 수 있다(4).
상기 고분자 용액은 수용성 고분자가 용해된 수용액이다. 상기 개질된 카본 입자를 수용성 고분자가 물에 용해된 수용액과 혼합하는 것이다. 즉, 상기 개질된 카본 입자와 수용액 상에서 이온으로 존재하는 관능기를 가진 고분자를 혼합하면, 사슬 간 엉킴 현상이 감소되어 코팅 효율을 증가시키고 균일한 고분자 코팅막을 형성할 수 있다.
상기 수용성 고분자는 크게 천연 고분자, 반 합성 고분자, 합성 고분자로 대별할 수 있는데 물에 용해되거나 팽윤 또는 작은 입자로 분산될 수 있는 수지 또는 고분자 물질을 나타낸다. 수용성 고분자는 도료, 접착제, 세제, 식품, 화장품, 의약품의 첨가 재료인데 제지공업, 섬유공업, 석유발굴 등 광범위한 부분에 쓰이고 있으며 이들은 수용성 고분자의 분산, 흡수, 접착, 응집, 증점 등과 같은 다양한 특성을 이용한 약제이다. 수용성 고분자는 작용기, 분자량, 전하밀도, 고분자의 가지도, 용액 속의 이온성 물질 농도 등에 의해서 영향을 받게 된다. 수용성 고분자 내에 포함된 작용기는 크게 비이온성, 양이온성, 음이온성으로 나누어지고 이 작용기가 수용해성을 부여한다. 비이온성 작용기를 친수성이 높은 순서로 열거하면 -OH > -CONH2 > COC > COO와 같다. 양이온성 작용기에 주로 아민을 사용한다. 음이온성 작용기에 주로 카르복실기가 이용된다. 중화시키지 않은 상태에서는 카르복실기 상호간의 수소 결합에 의해서 물에 대한 용해도가 매우 낮기 때문에 Na+, K+, NH4 + 등으로 중화하여 용해도를 높여준다. 친수성 고분자는 관능기가 극성인데 대표적으로 폴리에틸렌글리콜(PEG), 폴리바이닐알콜(PVA), 폴리바이닐아세테이트(PVAc) 등이 있고 이 폴리머의 관능기가 극성이기에 극성 용매인 물에 녹는다.
그 중에서도, 상기 수용성 고분자는 카본 입자 표면의 코팅 효율을 증대시키기 위해, 수용액에 가용성인 친수성 고분자를 선택하는 것이 바람직하다. 상기 고분자는 수용성 고분자를 사용하며, 고분자의 농도는 고분자의 용해도에 따라 달리할 수 있다. 상기 고분자의 구조는 분자 구조 내에 이온화되는 관능기를 가질 수도 있다. 그러한 점에서, 상기 수용성 고분자는 나피온(Nafion)이 가능하다.
상기 고분자-개질된 카본 입자 혼합 용액을 건조하는 단계(S30)는, 상기 고분자-개질된 카본 입자 혼합 용액을 필터링하고, 상기 필터링된 카본 입자를 건조시키는 것을 포함한다.
도 3을 참조하면, 고분자-개질된 카본 입자 혼합 용액을 수득한 후, 필터링, 세척, 건조 공정(5)을 거쳐 고분자-개질된 카본 입자인 코어쉘 입자를 수득할 수 있다.
구체적으로, 산 처리하여 표면 개질된 카본 입자를 고분자 수용액과 혼합하여 제조된 고분자-개질된 카본 입자 혼합 용액을 필터링할 수 있다. 그리고 나서, 상기 필터링된 카본 입자를 건조하는 것은 80 내지 200℃의 온도에서 24 시간 건조시키는 것이 가능하다. 상기 필터링된 카본 입자를 건조하는 것은 80 내지 150℃의 온도에서 24 시간 건조시키는 것이 더 바람직하다.
한편, 본 발명은 상기한 제조방법에 따라 제조되어, 카본입자에 고분자가 코팅된 것을 특징으로 하는 고분자 코팅된 카본 입자이다.
그 중에서도, 상기 코팅된 고분자는 50 내지 200 nm의 두께를 갖는 것이 바람직하다. 상기 코팅된 고분자가 50 nm 이하이면 지나치게 얇은 코팅막으로 인해 카본 입자 내로 이온들이 들어올 수 있기 때문이다. 또한, 상기 코팅된 고분자는 전극의 상대면적을 증가시키고 전극의 기공구조를 충분히 활용하기에 50 내지 200 nm의 두께를 갖는 것이 바람직하다. 본 발명의 일 실시예에 따른 코팅된 고분자는 50 내지 100 nm, 50 내지 150 nm, 100 내지 200 nm, 또는 150 nm 내지 200 nm의 두께를 갖는 것일 수 있다.
또한, 본 발명에 따른 고분자 코팅된 카본 입자를 포함하는 것을 특징으로 하는 카본 전극을 제공할 수 있다.
그 중에서도, 본 발명에 따른 고분자 코팅된 카본 입자는 유동상(fludized bed) 카본 전극에서 기공 구조를 충분히 활용할 수 있고 이온을 선택적으로 흡착, 탈착하여 전극의 탈염효율을 증가시킬 수 있다. 본 발명에 따른 유동상(fludized bed) 카본 입자는 카본 입자 표면에 균일하고 연속적인 코팅막이 형성되어 코팅 효율을 증대시킨 카본 입자를 포함하는 카본 전극을 제조할 수 있다. 일반적으로 카본 입자들은 수용액에서 입자 간의 반데르발스 결합으로 인해 서로 응집됨으로써 각각의 독립적인 카본 입자에 코팅하기에 어려움을 갖는다. 그러나, 본 발명에 따른 제조방법에 따르면, 카본 입자를 산 표면 처리하여 수용액에서의 분산력을 증대시키고 수용성 고분자로 코팅함으로써 균일한 코팅막을 제조하고 효율을 높일 수 있다.
'유동상(fluidized bed) 전극'은 전극에 형성된 미세 유로 구조 내에 슬러리상 전극물질(Electrode Materials) 및 전해질(Electrolyte)이 동시에 연속적으로 유동하면서 전기에너지를 저장하는 전극을 말한다. 유동상 전극은 셀 내부의 유로에서 염 이온을 흡착하고 지나가는 물질의 이동을 수반하기 때문에 전극의 포화흡착이 발생하지 않으며, 흡착된 이온을 제거하는 재생공정이 필요하지 않고, 전극을 일정두께를 갖는 층 구조가 아닌 카본 입자이므로 전극의 상대 면적이 고정층에 비해 급격하게 증가하게 되며 전극 물질의 특성을 효율적으로 활용하게 된다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 : 고분자 코팅된 카본 입자의 제조
카본 입자 분말로 활성탄 입자를 사용하였다. 약 10 ㎛의 활성탄 입자를 황산과 질산의 혼합 용액에 첨가하여 현탁(suspension)액을 제조하였다. 상기 현탁액을 초음파로 3 시간 동안 혼합하여 혼합성을 증대시켰다. 상기 산 처리된 카본 입자를 80℃에서 24 시간 동안 건조하여 개질된 카본 입자를 제조하였다(도 2 및 도 3).
그리고 나서, 수용성 고분자인 나피온(Nafion)을 물에 용해시킨 수용액에 상기 개질된 카본 입자를 혼합하였다. 그 다음, 상기 고분자 수용액에 개질된 카본 입자를 혼합한 혼합 용액을 필터링시키고 80℃에서 24 시간 동안 건조하여 고분자 개질된(코팅된) 활성탄 입자를 제조하였다(도 1 내지 도 3 참조).
표 1 실시예의 고분자 코팅 카본 입자 제조를 위한 출발 물질
카본 입자 산 용액 (vol%) 수용성 고분자
활성탄 황산/질산 = 3/1 나피온 (Nafion)
시험예 1 : 제조된 카본 입자들의 적외선 분광기 (IR) 결과
도 4는 본 발명의 일 실시예에 따른 개질 전 후 카본 입자와 개질된 카본 입자에 고분자를 코팅한 카본 입자의 적외선 분광기에 의한 분석결과((a) 산 처리되지 않은 카본 입자, (b) 산 처리된 카본 입자, (c) 고분자 코팅된 카본 입자)이다. 도 4에서 보는 바와 같이, 산 처리되지 않은 비개질 카본 입자에서는 2,800 내지 3,000 cm-1의 C-H 신축 운동 피크(stretching vibration peak)만이 확인되었다. 반면에, 산 처리 후, 3,500 cm-1의 O-H 신축 피크(stretching peak)와 카르복실기(carboxylic acid group)에 의한 1,600 cm-1에서의 C=O 신축 피크(stretching peak)가 나타났다. 또한, 고분자 코팅된 카본 입자에서는 카본 입자 표면에 코팅된 임. 고분자에 의해 1,200 및 1,050 cm-1에서 강한 C-F 피크가 확인되었다.
시험예 2 : 고분자 코팅된 카본 입자의 형상 및 원소 분석
도 5는 본 발명의 일 실시예에 따른 표면 개질된 카본 입자와 코팅된 카본 입자의 형상을 나타내는 주사 전자현미경 사진과 원자 분석 결과를 나타낸 것이다. 도 5에서 보는 바와 같이, 개질된 카본 입자의 크기는 개질되지 않은 카본 입자에 비해 현저히 감소하였다. 이는 산에 의해 카본 표면에 형성된 친수성의 관능기 사이의 척력으로 인해 카본 입자의 응집이 감소하였기 때문이다. 고분자 코팅 후, 카본 입자의 표면은 코팅막 형성으로 인해 매우 부드러워졌으며 카본 표면에 존재했던 기공도 관찰되지 않았다. 또한, 도 5에서 보는 바와 같이, 카본 입자 표면에 균일한 고분자 막이 코팅되었음을 알 수 있다. 원소 분석 결과에서 개질된 카본은 카본 입자와 생성된 카르복실기로부터 C와 O의 원소가 확인되었지만(도 5(b)), 개질되지 않은 카본에서는 C 만이 확인되었다(도 5(a)). 또한, 고분자 코팅된 코어셀 입자에서는 개질된 카본에 의한 C 와 O 및 임. 코팅막에 의한 F가 각각 확인되었다(도 5(c)).
도 6는 본 발명의 일 실시예에 따른 고분자 코팅된 카본 입자의 미세구조를 나타내는 투과 전자현미경 사진과 원소 분석 결과이다.  도 6의 (b)에서, 실선 화살표와 점선 화살표는 각각 다각형의 카본 입자와 카본 입자 표면에 연속적인 코팅막으로 형성된 고분자를 나타낸 것이다. 특히 박막형태로 이루어진 코팅막은 카본 입자의 주위에서만 관측되었다. 상기와 같은 결과는 고분자가 수용액 상에서 카본 입자 표면에 균일하게 잘 코팅되었다는 것을 의미한다. 또한, 고분자의 코팅 두께는 약 100 nm로 형성되었다.
따라서, 본 발명에 의한 제조방법에 따르면, 고정층 카본 전극에서 염의 흡착이 용액과 쉽게 접촉하고 있는 표면 영역에서 주로 이루어지므로 안쪽의 카본은 흡착 과정에 참여하지 못해 효율이 감소하는 단점을 극복할 수 있다. 또한, 수용액 상에서 고분자와 활성탄으로 제조된 카본 입자는 해수담수화 기술의 유동상 전극으로 응용할 수 있다.
상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다.

Claims (11)

  1. 카본 입자를 산 처리하여 개질시키는 단계;
    상기 개질된 카본 입자를 고분자 용액과 혼합하여 고분자-개질된 카본 입자혼합 용액을 제조하는 단계; 및
    상기 고분자-개질된 카본 입자 혼합 용액을 건조하는 단계;
    를 포함하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  2. 제 1 항에 있어서,
    상기 산 처리하여 개질시키는 단계는, 카본 입자를 강산과 혼합하여 현탁액을 제조하고, 상기 현탁액을 초음파로 혼합하는 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  3. 제 2 항에 있어서,
    상기 강산은 황산과 질산이 2 내지 4 : 1의 조성비로 혼합된 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  4. 제 2 항에 있어서,
    상기 초음파로 혼합하는 것은 1 내지 3 시간 동안 초음파를 가하면서 혼합하는 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  5. 제 2 항에 있어서,
    상기 산 처리하여 개질시키는 단계는, 상기 초음파로 혼합한 현탁액을 필터링하고, 세척한 후, 건조하는 단계를 더 포함하는 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  6. 제 1 항에 있어서,
    상기 고분자 용액은 수용성 고분자가 용해된 수용액인 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  7. 제 6 항에 있어서,
    상기 수용성 고분자는 나피온(Nafion)인 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  8. 제 1 항에 있어서,
    상기 건조하는 것은 80 내지 200℃에서 24 시간 이내로 건조하는 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극의 제조방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 의한 제조방법에 따라 제조되어, 카본 입자에 고분자가 코팅된 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극.
  10. 제 9 항에 있어서,
    상기 코팅된 고분자는 50 내지 200 nm의 두께를 갖는 것을 특징으로 하는 고분자 코팅된 유동상 카본 전극.
  11. 제 9 항에 따른 고분자 코팅된 카본 입자를 포함하는 것을 특징으로 하는고분자 코팅된 유동상 카본 전극.
PCT/KR2015/008476 2015-07-29 2015-08-13 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극 WO2017018569A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0107347 2015-07-29
KR1020150107347A KR101690543B1 (ko) 2015-07-29 2015-07-29 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극

Publications (1)

Publication Number Publication Date
WO2017018569A1 true WO2017018569A1 (ko) 2017-02-02

Family

ID=57724020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008476 WO2017018569A1 (ko) 2015-07-29 2015-08-13 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극

Country Status (2)

Country Link
KR (1) KR101690543B1 (ko)
WO (1) WO2017018569A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185845B1 (en) * 2017-12-07 2021-11-30 U.S. Government As Represented By The Secretary Of The Army Water extractable microcapsules of activated carbon, super activated carbon, and other adsorptive and reactive materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101907969B1 (ko) * 2017-02-14 2018-10-15 공주대학교 산학협력단 탈염 탄소전극용 이온 선택성 탄소복합체, 이의 제조 방법 및 이를 통해 제조된 탈염 탄소전극

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051155A (ko) * 2002-12-12 2004-06-18 한국정수공업 주식회사 탈염용 카본전극의 제조 방법
US20080233466A1 (en) * 2005-02-03 2008-09-25 Toyota Jidosha Kabushiki Kaisha Catalyst Material and Process For Preparing the Same
KR20130134959A (ko) * 2012-05-31 2013-12-10 에스케이이노베이션 주식회사 유동성 전극 및 유동성 전극 구조체
CN103601273A (zh) * 2013-11-13 2014-02-26 清华大学 一种电吸附除盐炭电极的纳米二氧化钛修饰方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089300B1 (ko) * 2008-11-20 2011-12-02 광 석 서 탄소나노튜브-폴리(엑스-4-스티렌술포네이트) 복합체 및 이를 이용하여 제조되는 탄소나노튜브-전도성 고분자 복합체
KR101207463B1 (ko) * 2012-08-16 2012-12-03 (주) 시온텍 이온선택성 축전식 탈염 전극의 제조방법
KR101221562B1 (ko) * 2012-09-03 2013-01-14 한국에너지기술연구원 흐름전극장치를 이용한 수처리장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051155A (ko) * 2002-12-12 2004-06-18 한국정수공업 주식회사 탈염용 카본전극의 제조 방법
US20080233466A1 (en) * 2005-02-03 2008-09-25 Toyota Jidosha Kabushiki Kaisha Catalyst Material and Process For Preparing the Same
KR20130134959A (ko) * 2012-05-31 2013-12-10 에스케이이노베이션 주식회사 유동성 전극 및 유동성 전극 구조체
CN103601273A (zh) * 2013-11-13 2014-02-26 清华大学 一种电吸附除盐炭电极的纳米二氧化钛修饰方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ABJAMEH, REZA ET AL.: "The Study of Synthesis and Functionalized Single-walled Carbon Nanotubes with Amide Group", INTERNATIONAL NANO LETTERS, vol. 4, 19 June 2014 (2014-06-19), pages 97, XP055351327 *
CUI, HAO ET AL.: "Electrochemical Removal of Fluoride from Water by PAOA-modified Carbon Felt Electrodes in a Continuous Flow Reactor", WATER RESEARCH, vol. 46, no. 12, 2 May 2012 (2012-05-02), pages 3943 - 3950, XP028514819 *
GOH, P. S. ET AL.: "Carbon Nanotubes for Desalination: Performance Evaluation and Current Hurdles", DESALINATION, vol. 308, 28 August 2012 (2012-08-28), pages 2 - 14, XP055351329 *
KIM, EUN - HEE ET AL.: "Fabrication of Core-shell Particles for a Fluidized Bed Electrode in Seawater Desalination", SURFACE & COATINGS TECHNOLOGY, vol. 260, 21 November 2014 (2014-11-21), pages 424 - 428, XP055351325 *
MISHRA, ASHISH KUMAR ET AL.: "Removal of Metals from Aqueous Solution and Sea Water by Functionalized Graphite Nanoplatelets based Electrodes", JOURNAL OF HAZARDOUS MATERIALS, vol. 185, 17 September 2010 (2010-09-17), pages 322 - 328, XP027506931 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185845B1 (en) * 2017-12-07 2021-11-30 U.S. Government As Represented By The Secretary Of The Army Water extractable microcapsules of activated carbon, super activated carbon, and other adsorptive and reactive materials

Also Published As

Publication number Publication date
KR101690543B1 (ko) 2016-12-28

Similar Documents

Publication Publication Date Title
Gong et al. Bacteria cell templated porous polyaniline facilitated detoxification and recovery of hexavalent chromium
Wang et al. Environmentally friendly nanocomposites based on cellulose nanocrystals and polydopamine for rapid removal of organic dyes in aqueous solution
Hayyan et al. Functionalization of graphene using deep eutectic solvents
WO2016153272A1 (ko) 환원된 그래핀 옥사이드를 포함하는 수화젤의 제조방법
WO2012026755A9 (ko) 산화철 나노 입자를 포함하는 메조포러스 카본의 제조방법
US8669316B2 (en) Magnetic ion-exchange resin and method for the preparation thereof
WO2010147087A1 (ja) 多孔質炭素及びその製造方法
Yu et al. Adsorptive removal of ciprofloxacin by ethylene diaminetetraacetic acid/β-cyclodextrin composite from aqueous solution
Zhang et al. Selective removal of cationic dyes from aqueous solutions by an activated carbon-based multicarboxyl adsorbent
CN107376888B (zh) 一种柔性氧化钛/氧化硅/碳复合纳米纤维膜及其制备方法
Peng et al. Modified nanoporous magnetic cellulose–chitosan microspheres for efficient removal of Pb (II) and methylene blue from aqueous solution
WO2017018569A1 (ko) 고분자 코팅된 유동상 카본 전극의 제조방법, 그에 따른 유동상 카본 전극
US20180169755A1 (en) Surface-coated copper filler, method for producing same and conductive composition
CN105949555A (zh) 密炼生产过程中氧化石墨烯预分散混炼工艺
Liu et al. Preparation and characterization of sulfated cellulose nanocrystalline and its composite membrane for removal of tetracycline hydrochloride in water
Liu et al. A general and programmable preparation of α-MnO2/GO/CS aerogels used for efficient degradation of MB in wastewater
Morshed et al. Development of a multifunctional graphene/Fe-loaded polyester textile: robust electrical and catalytic properties
Kim et al. Polydopamine-and polyDOPA-coated electrospun poly (vinyl alcohol) nanofibrous membranes for cationic dye removal
Yang et al. Mussel-inspired MgAl-LDH/carbon fiber film modified by polydopamine for highly efficient removal of Pb2+
KR20100002429A (ko) 탄소재와 이산화티탄을 이용한 축전 탈이온화용 복합전극의제조방법
CN112105447A (zh) 气体分离膜的制造方法
KR101688543B1 (ko) 나노시트형 그래핀 산화물 코팅 여과매질 및 이의 제조방법
KR101908457B1 (ko) 탄소기반 소재를 계면활성제로 표면개질하는 방법 및 계면활성제로 표면개질된 탄소기반 소재
CN114634229B (zh) 具有多孔微球形貌的吸附电极材料及其制备方法和应用
KR20210003469A (ko) 알루미늄-그래핀 복합소재 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899715

Country of ref document: EP

Kind code of ref document: A1