WO2010147087A1 - 多孔質炭素及びその製造方法 - Google Patents

多孔質炭素及びその製造方法 Download PDF

Info

Publication number
WO2010147087A1
WO2010147087A1 PCT/JP2010/060046 JP2010060046W WO2010147087A1 WO 2010147087 A1 WO2010147087 A1 WO 2010147087A1 JP 2010060046 W JP2010060046 W JP 2010060046W WO 2010147087 A1 WO2010147087 A1 WO 2010147087A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
particles
metal
metal particles
carbon
Prior art date
Application number
PCT/JP2010/060046
Other languages
English (en)
French (fr)
Inventor
隆広 森下
陽子 西
友行 大國
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to EP10789462.8A priority Critical patent/EP2444369A4/en
Priority to CN201080018535.1A priority patent/CN102414122B/zh
Priority to KR1020117026652A priority patent/KR101714096B1/ko
Priority to US13/376,048 priority patent/US9248442B2/en
Publication of WO2010147087A1 publication Critical patent/WO2010147087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to porous carbon and a method for producing the same, and more particularly to porous carbon containing metal particles therein and a method for producing the same.
  • Porous carbon containing metal particles is a catalyst with high industrial value.
  • Platinum, silver, copper, and the like are known as the metal particles, and their uses include high active electrodes for fuel cells, NOx, SOx decomposition filters, electrode materials for lithium ion secondary batteries, and the like.
  • the porous carbon material containing the metal particles a material in which the metal particles are finely dispersed at the nanometer level on the surface of the carbon support and inside the pores has been proposed.
  • a method is proposed in which metal particles, a surfactant, a thermosetting resin, and the like are mixed with a solvent, and the mixture is heated and cured, and then baked and carbonized. (See Patent Document 1 below).
  • the present invention provides a porous carbon capable of suppressing the oxidation of metal particles and maintaining the effect of adding metal particles over a long period of time by sufficiently dispersing the metal particles, and a method for producing the same. It is intended to provide.
  • the carbonaceous wall constituting the outline of the mesopores has a three-dimensional network structure, and is a porous carbon in which micropores are formed at positions facing the mesopores in the carbonaceous wall,
  • the metal particles are dispersed, and at least some of the metal particles are arranged such that a part of the particle surface is exposed in the micropores. If the metal particles are dispersed in the carbonaceous wall as in the above configuration, at least a part of the surface of the metal particles is covered with the carbonaceous material, so that the oxidation of the metal particles can be suppressed compared to the exposed state. Therefore, the effect of adding metal particles can be maintained over a long period of time. On the other hand, since at least some of the metal particles are arranged such that part of the particle surface is exposed in the micropores, the metal particles can fully function as a catalyst or the like.
  • the carbonaceous wall constituting the outline of the mesopores has a three-dimensional network structure and micropores are formed at the positions facing the mesopores in the carbonaceous wall, the effective adsorption area per unit amount is reduced. It can be increased or the amount of capillary aggregation in the pores can be increased.
  • the carbonaceous wall that forms the outline of the mesopores has a three-dimensional network structure, it can be applied even when its use requires elasticity.
  • micropores those having a pore diameter of less than 2 nm are referred to as micropores
  • mesopores those having a pore diameter of 2 to 50 nm are referred to as mesopores
  • macropores those having a pore diameter exceeding 50 nm are referred to as macropores, and these pores are collectively referred to. May be referred to as pores.
  • porous carbon is converted into a highly active electrode for fuel cells, NO x , SO x decomposition filter.
  • porous carbon can be used as an adsorbent or gas such as NO x and SO x in automobile exhaust gas, sterilizing filter in liquid, etc.
  • tin the porous carbon can be used as a low melting solder powder, for lithium ion secondary batteries. It can be used as an electrode material or the like, and when iron is used, porous carbon can be used as an organic synthesis catalyst, a brush material filler or the like.
  • the mesopores have substantially the same size. If the size of the mesopores is configured to be substantially the same, the purpose can be sufficiently achieved when used for the purpose of purification or catalyst.
  • the average particle size of the metal particles is desirably 4 to 500 nm.
  • the average particle size of the metal particles is less than 4 nm, the metal particles are easily embedded in the carbon wall, and the crystal structure cannot be maintained and becomes amorphous.
  • the average particle size of the metal particles exceeds 500 nm, the metal properties may not be exhibited, so that the metal particles are separated from the carbonaceous matter, so that the carbon particles cannot enter the carbon wall, and the ratio of the metal particles Since the surface area decreases, the catalyst capacity may decrease.
  • the average particle diameter of the metal particles is a value measured by a dynamic light scattering method.
  • the ratio of the metal particles to the total amount of carbon and the metal particles constituting the carbonaceous wall is preferably 0.5 to 90% by weight.
  • the proportion of the metal particles is less than 0.5% by mass, the effect of adding the metal particles may not be sufficiently exhibited, but it is difficult to produce porous carbon in which the proportion of the metal particles exceeds 90% by mass. That's why.
  • the pore diameter in the pores including the mesopores and micropores is preferably 0.3 to 100 nm. While it is difficult to produce a material having a pore diameter of less than 0.3 nm, when the pore diameter exceeds 100 nm, the amount of carbonaceous wall per unit volume is reduced, and there is a possibility that the three-dimensional network structure cannot be maintained. .
  • the specific surface area is desirably 100 to 1000 m 2 / g. If the specific surface area is less than 100 m 2 / g, there is a problem that the formation amount of pores is insufficient and a three-dimensional network structure is not formed. On the other hand, if the specific surface area exceeds 1000 m 2 / g, the shape of the carbon wall cannot be maintained. There is a problem that it will collapse.
  • the mesopores are preferably open pores and have a structure in which the pore portions are continuous. If it is the structure which a pore part continues, since the flow of gas becomes smooth, it will become easy to supplement gas.
  • the porous carbon mentioned above can be manufactured.
  • the template particles are present in the portions that will later become mesopores, so that the metal particles are dispersed in the portions. There is no.
  • the metal particle Even if a metal having a low melting point (a metal having a melting point lower than the temperature at the time of heating and firing) is used as the metal particle, if the template particle is present as described above, the metal particle is placed between the mold particles together with the flowable material. Therefore, even if the metal particles are dissolved during heating and firing, the metal particles can be prevented from being eluted from the carbonaceous wall. Furthermore, if the template particles are present, the thickness of the carbonaceous wall is reduced during heating and firing, so that the aggregation of the metal particles within the carbonaceous wall can be suppressed, and the metal particles can be nano-dispersed within the carbonaceous wall. .
  • a metal having a low melting point a metal having a melting point lower than the temperature at the time of heating and firing
  • the ratio of the template particles to the total amount of the fluid material, the metal particles, and the template particles is preferably 30 to 80 wt%. This is because if the proportion of the template particles is too small, the effect of adding the template particles may not be sufficiently exerted, while if the proportion of the template particles is too large, there arises a problem that the thickness of the carbonaceous wall becomes too small.
  • the method includes the steps of producing a fired product by heating and firing in an atmosphere, and removing the template particles in the fired product. If it is such a method, the porous carbon mentioned above can be manufactured. In this case, when only the metal particles are added as the metal component in the step of preparing the mixture, it is sufficient to heat and fire in a non-oxidizing atmosphere in the step of preparing the fired product. When added, it is necessary to heat and fire in a reducing atmosphere in the step of producing a fired product.
  • the metal component may contain metal particles in addition to the metal salt.
  • a resin varnish when used as a fluid material, as shown in the conceptual diagram of FIG. 11, it is a complex of a resin varnish and a metal salt.
  • a method for containing the metal as fine particles in addition to the method described above, a polymer material containing a metal atom in the structure can also be used.
  • the porous carbon described above can be obtained by using a polymer material containing platinum such as carboplatin (see the conceptual diagram of FIG. 10).
  • the fluid material it is desirable to use a resin that generates fluidity at a temperature of 200 ° C. or lower, or a varnish-like polymer resin. If a resin that generates fluidity at a temperature of 200 ° C. or less or a varnish-like polymer resin is used as the fluid material, the above-described porous carbon charcoal can be produced more smoothly.
  • the flowable material is not limited to a resin or the like that generates fluidity at a temperature of 200 ° C. or less. Even if fluidity does not occur at a temperature of 200 ° C. or less, it is highly soluble in water or an organic solvent. Any molecular material can be used in the present invention. Examples of such a material include PVA (polyvinyl alcohol), PET (polyethylene terephthalate) resin, imide resin, phenol resin, and the like.
  • the carbon yield of the fluid material is in the above range, the micropores are very developed, and the specific surface area is increased. However, even if the carbon yield of the flowable material is in the above range, micropores do not develop when template particles are not used.
  • the diameter of the template particles and the type of the organic resin By changing the diameter of the template particles and the type of the organic resin, the diameter of the pores, the pore distribution of the porous carbon, and the thickness of the carbonaceous wall can be adjusted. Accordingly, by appropriately selecting the diameter of the template particles and the type of the organic resin, it is possible to produce porous carbon having a more uniform pore diameter and a larger pore capacity. Furthermore, since the porous carbon can be produced without using the flowable material containing the organic resin as the carbon source and without undergoing the activation treatment step, the obtained porous carbon has a very high purity.
  • an alkaline earth metal compound as the template particle. Since the alkaline earth metal compound can be removed with a weak acid or hot water (that is, the template particles can be removed without using a strong acid), the properties of the porous carbon itself change in the step of removing the template particles. It is because it can suppress.
  • the use of a weak acid has the advantage that the removal speed is increased, while the use of hot water has the advantage that the disadvantage that the acid remains and becomes an impurity can be prevented.
  • the eluted oxide solution can be used again as a raw material, and the production cost of porous carbon can be reduced.
  • the step of removing the template particles it is desirable to regulate the residual rate of the template particles after the removal to 0.5% or less. This is because if the residual ratio of the template particles after removal exceeds 0.5%, the number of template particles remaining in the mesopores increases, and a portion where the role as pores cannot be exhibited is widely generated. Moreover, there is a possibility that it is difficult to apply to the use for avoiding metal impurities.
  • the present invention it is possible to suppress the oxidation of the metal particles, and there is an excellent effect that the effect of adding the metal particles can be maintained over a long period of time by sufficiently dispersing the metal particles.
  • the figure (a) is explanatory drawing which shows the state which mixed the polyamic acid resin varnish, magnesium oxide, and chloroplatinic acid
  • the figure (b) is heat processing a mixture.
  • the figure (c) is explanatory drawing which shows porous carbon.
  • the figure (a) is a photograph before removing magnesium oxide
  • the figure (b) is after removing magnesium oxide. It is a photograph of. Explanatory drawing which shows the state of this invention carbon.
  • FIG. 3 is a graph showing the relationship between the platinum content and the average particle diameter of platinum in inventive carbons A1 to A8 and comparative carbons Z1 to Z4.
  • the conceptual diagram which shows the state of the polymeric material which contains a metal atom in a structure.
  • the conceptual diagram which shows the state used as the complex of resin varnish and metal salt.
  • the carbonized product of the present invention is a polyimide containing at least one or more nitrogen or fluorine atoms in the unit structure, a resin or the like having a carbonization yield of more than 40 wt% (for example, a phenol resin or pitch), metal particles, and the like.
  • a resin or the like having a carbonization yield of more than 40 wt% (for example, a phenol resin or pitch), metal particles, and the like.
  • Wet or dry mixing with oxide particles or the like in a solution or powder state and the mixture is at a temperature of 500 ° C. or higher in a non-oxidizing atmosphere, under reduced pressure (133 Pa (1 torr) or less), or in a reducing atmosphere. It is obtained by subjecting the carbon and oxide obtained by carbonization to a cleaning treatment, and is a carbonized product in which metal particles are dispersed in the carbonaceous wall.
  • the polyimide containing at least one nitrogen or fluorine atom in the unit structure can be obtained by polycondensation of an acid component and a diamine component.
  • the acid component and the diamine component contain one or more nitrogen atoms or fluorine atoms.
  • a polyamic acid film which is a polyimide precursor is formed, and the solvent is removed by heating to obtain a polyamic acid film.
  • a polyimide can be manufactured by thermally imidating the obtained polyamic acid film at 200 ° C. or higher.
  • diamine examples include 2,2-bis (4-aminophenyl) hexafluoropropane [2,2-Bis (4-aminophenyl) hexafluoropropane], 2,2-bis (trifluoromethyl) -benzidine [2,2 ′.
  • the acid component includes 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) containing a fluorine atom and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride containing no fluorine atom.
  • 6FDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • BPDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • PMDA pyromellitic dianhydride
  • the organic solvent used as a solvent for the polyimide precursor include N-methyl-2-pyrrolidone and dimethylformamide.
  • the imidization method is shown in a known method (for example, see “New Polymer Experimental Science” edited by the Society of Polymer Science, Kyoritsu Shuppan, March 28, 1996, Volume 3, Synthesis and Reaction of Polymers (2), page 158). Thus, either heating or chemical imidization may be followed, and the present invention is not affected by this imidization method. Furthermore, as resins other than polyimide, those having a carbon yield of 40% or more, such as petroleum tar pitch and acrylic resin, can be used.
  • the raw material used as the oxide is not only an alkaline earth metal oxide (magnesium oxide, calcium oxide, etc.) but also a metal organic acid (magnesium citrate, Magnesium acid, calcium citrate, calcium oxalate, etc.), chlorides, nitrates, sulfates can also be used.
  • a metal organic acid magnesium citrate, Magnesium acid, calcium citrate, calcium oxalate, etc.
  • chlorides, nitrates, sulfates can also be used.
  • general inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, acetic acid, and formic acid are used, and it is preferably used as a dilute acid of 2 mol / l or less. It is also possible to use hot water of 80 ° C. or higher.
  • the porous carbon of the present invention it is preferable to carbonize at a temperature of 500 ° C. or higher and 1500 ° C. or lower in a non-oxidizing atmosphere. Since the resin with a high carbon yield is a polymer, the carbonization may be insufficient at less than 500 ° C. and the pores may not be sufficiently developed. This is because coarsening causes the pore size to be reduced and the specific surface area to be reduced.
  • a polyamic acid resin varnish (imide resin) 1 as a carbon precursor, magnesium oxide (MgO, average crystallite diameter is 100 nm) 2 as a template particle, and a metal salt And chloroplatinic acid 6 were mixed at a mass ratio of 10: 5: 1.
  • the polyamic acid resin varnish and chloroplatinic acid 6 were metal complexes.
  • this mixture is heat-treated in a nitrogen atmosphere at 1000 ° C. for 1 hour to reduce chloroplatinic acid 6 to platinum and to thermally decompose the polyamic acid resin varnish 1.
  • carbon 3 containing platinum particles 7 was produced.
  • the obtained carbon 3 is washed with a sulfuric acid solution added at a rate of 1 mol / l, and MgO is completely eluted to completely remove MgO.
  • Carbon 5 was obtained.
  • the ratio of the platinum particles 7 to the total amount of carbon and platinum particles 7 constituting the carbonaceous wall was 5% by mass.
  • the porous carbon thus produced is hereinafter referred to as the present invention carbon A1.
  • FIG. 3 A STEM (scanning transmission electron microscope) photograph of the carbon A1 of the present invention is shown in FIG. As is apparent from FIG. 2, it can be seen that platinum particles are dispersed in nano-order within the porous carbon. Further, SEM (scanning electron microscope) photographs of the carbon A1 of the present invention before and after removing magnesium oxide are shown in FIG. 3 (a) [before removing magnesium oxide] and FIG. 3 (b) [removing magnesium oxide, respectively]. After]. As is clear from both figures, the three-dimensional network structure is not formed before removing the magnesium oxide, but the three-dimensional network structure (sponge-like carbon shape) is formed after removing the magnesium oxide. Recognize. More specifically, as shown in FIG.
  • the structure of the carbon A1 of the present invention has a number of mesopores 10 having substantially the same size, and positions facing the mesopores 10 in the carbonaceous wall 12.
  • the micropores 11 are formed in the carbonaceous wall 12, and platinum particles 7 exist in the carbonaceous wall 12, and a part of the platinum particles 7 is exposed to the micropores 11.
  • the ratio of the volume of the carbon part to the volume of the entire carbon wall was 40%
  • the pore diameter of the micropores was 10 nm
  • the specific surface area was 700 m 2 / g.
  • the micropore diameter was calculated using the HK method, and the mesopore diameter was calculated using the BJH method.
  • Example 2 to 8 The ratio of the platinum particles 7 to the total amount of carbon and platinum particles 7 constituting the carbonaceous wall 12 is 10% by mass, 15% by mass, 20% by mass, 30% by mass, 35% by mass, 45% by mass, 65%, respectively.
  • Porous carbon was produced in the same manner as in Example 1 except that the mass% was used. The porous carbon thus produced is hereinafter referred to as carbons of the present invention A2 to A8.
  • Comparative Examples 1 to 4 Porous carbon was produced in the same manner as in Examples 1 to 4 except that magnesium oxide as template particles was not added.
  • the porous carbon thus produced is hereinafter referred to as comparative carbons Z1 to Z4.
  • the platinum particle diameter is as large as about 18 nm, and the comparative carbons Z2 to Z2 having a platinum content of 10% by mass or more. In Z4, it is recognized that the platinum particle diameter is as extremely large as about 23 nm or more.
  • the thickness of the carbon wall does not allow aggregation of platinum particles due to the MgO filler in the entire manufacturing process. This is presumably because the state in which the metal particles are nano-dispersed in the carbon wall of the porous carbon is maintained.
  • the comparative carbons Z1 to Z4 since no MgO filler is used, it is presumed that the platinum particles aggregated in the polyamic acid resin varnish during the heat treatment, and the average particle diameter of platinum was large.
  • the ratio of tin to the total amount of carbon and tin constituting the carbonaceous wall was 55 wt%.
  • the porous carbon thus produced is hereinafter referred to as the present invention carbon B.
  • An appearance photograph of the carbon B of the present invention is shown in FIG. As is apparent from FIG. 6, no metal deposition was observed, and it was estimated that tin particles were dispersed in nano-order within the porous carbon.
  • Comparative example Porous carbon was produced in the same manner as in the above example except that magnesium oxide as a template particle was not added.
  • the porous carbon thus produced is hereinafter referred to as comparative carbon Y.
  • An appearance photograph of the comparative carbon Y is shown in FIG.
  • the white particles in the photograph are the deposited metal, and it can be seen from FIG. 7 that the tin particles are aggregated and deposited outside the porous carbon.
  • the appearance described above is maintained because the state in which the metal particles are included in the carbon wall of the porous carbon is maintained even during the heating and firing. No metal is deposited outside the carbon. That is, the presence of the MgO filler can suppress the metal from eluting into the mesopores.
  • the comparative carbon Y does not use the MgO filler, it is considered that the molten metal is eluted into the mesopores at the time of heating and baking at a temperature higher than the melting point of the metal particles.
  • the heat treatment temperature is preferably 900 ° C. or higher in order to reliably perform the reduction treatment of tin oxide.
  • the present invention can be used as gas adsorption, decomposition material, high active electrode for fuel cell, sterilization filter brush material filler in gas and liquid, low melting point solder powder, electrode material for lithium ion secondary battery and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Nanotechnology (AREA)

Abstract

金属粒子が酸化するのを抑制すると共に、金属粒子を十分に分散させることにより、金属粒子の添加効果を長期間に亘って維持することができる多孔質炭素及びその製造方法を提供することを目的としている。 炭素前駆体としてのポリアミック酸樹脂ワニス1と、鋳型粒子としての酸化マグネシウム2と、金属塩としての塩化白金酸6とを混合するステップと、この混合物を窒素雰囲気中1000℃で1時間熱処理を行って、塩化白金酸を白金に還元し、且つ、ポリアミック酸樹脂を熱分解させることにより、白金粒子7を含む炭素3を作製するステップと、得られた炭素3を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを完全に溶出させるステップと、を有することを特徴とする。

Description

多孔質炭素及びその製造方法
 本発明は、多孔質炭素及びその製造方法に関し、特に、内部に金属粒子を含有する多孔質炭素及びその製造方法に関するものである。
 金属粒子を含有する多孔質炭素は工業的価値の高い触媒であって、例えば、活性炭の高い吸着能を利用して反応物質を吸着させ、触媒である金属粒子で反応させることが可能である。上記金属粒子としては、白金、銀、銅等が知られており、その用途としては、燃料電池用高活性電極、NOx,SOx分解フィルター、リチウムイオン二次電池用電極材料等がある。
 ここで、上記金属粒子を含有する多孔質炭素材料としては、炭素担体の表面、及び細孔内部に、金属粒子がナノメートルレベルで微細に分散したものが提案されており、その製造方法としては、金属粒子等と、界面活性剤と、熱硬化性樹脂等と、溶媒とを混合して混合体を加熱して硬化させた後、これを焼成して炭素化させるような方法が提案されている(下記特許文献1参照)。
特開2005-314223号公報
 しかしながら、上記従来の方法では、炭素担体の表面及び細孔内部に、金属粒子が存在しているので、金属粒子の表面が露出状態にある。したがって、長期間使用した場合等には、金属粒子が酸化して、触媒としての機能が低下する等の課題がある。また、界面活性剤の静電作用の働きによる金属粒子の分散では、金属粒子を十分に分散させることができない場合が生じるという課題もある。
 そこで本発明は、金属粒子が酸化するのを抑制すると共に、金属粒子を十分に分散させることにより、金属粒子の添加効果を長期間に亘って維持することができる多孔質炭素及びその製造方法を提供することを目的としている。
 メソ孔の外郭を構成する炭素質壁が3次元網目構造を成し、上記炭素質壁における上記メソ孔に臨む位置にミクロ孔が形成された多孔質炭素であって、上記炭素質壁内には金属粒子が分散され、且つ、上記金属粒子のうち少なくとも一部の金属粒子は、粒子表面の一部が上記ミクロ孔に露出状態で配置されていることを特徴とする。
 上記構成の如く、炭素質壁内に金属粒子が分散されていれば、金属粒子の表面の少なくとも一部分が炭素質により覆われるため、露出状態と較べ金属粒子が酸化するのを抑制できる。したがって、金属粒子の添加効果を長期間に亘って維持することができる。その一方、金属粒子のうち少なくとも一部の金属粒子は、粒子表面の一部がミクロ孔に露出状態で配置されているので、金属粒子の触媒等としての機能を十分に発揮させることができる。
 また、メソ孔の外郭を構成する炭素質壁が3次元網目構造を成し、且つ、炭素質壁におけるメソ孔に臨む位置にミクロ孔が形成されていれば、単位量あたりの吸着有効面積を大きくする、或いは、細孔における毛管凝集量を増大することができる。加えて、メソ孔の外郭を構成する炭素質壁が3次元網目構造を成していれば、その用途が弾力性を必要とする場合にも適応することができる。
 尚、本明細書では、細孔径が2nm未満のものをミクロ孔、細孔径が2~50nmのものをメソ孔、細孔径が50nmを超えるものをマクロ孔、と称し、またこれらの孔を総称して細孔と称する場合がある。
 また、上記金属粒子としては、白金、銀、銅、錫、鉄等を用いることができ、白金を用いた場合には、多孔質炭素を燃料電池用高活性電極やNO,SO分解フィルター等として用いることができ、銀を用いた場合には、多孔質炭素を自動車の排気ガス中のNO、SO等の吸着剤や気体、液体中の殺菌フィルター等として用いることができ、銅を用いた場合には、多孔質炭素をアンモニアガス吸着分解触媒、ブラシ材フィラー等として用いることができ、錫を用いた場合には、多孔質炭素を低融点ハンダ粉末、リチウムイオン二次電池用電極材等として用いることができ、鉄を用いた場合には、多孔質炭素を有機合成用触媒、ブラシ材フィラー等として用いることができる。
 上記メソ孔の大きさが略同等となるように構成されていることが望ましい。
 メソ孔の大きさが略同等となるように構成されていれば、精製や触媒等を目的として使用された場合に、その目的を十分に達成することができる。
 上記金属粒子の平均粒径が4~500nmであることが望ましい。
 金属粒子の平均粒径が4nm未満の場合には、金属粒子が炭素壁内に埋没し易くなるという不都合と、結晶構造が保てなくなってアモルファス化してしまうため、大きさのばらつき、触媒能力、金属としての特性が発揮できなくなることがある一方、金属粒子の平均粒径が500nmを超えると、炭素質と分離して析出するので、炭素壁に入りきらない状態となり、且つ、金属粒子の比表面積が低下するため、触媒能力が低下することがある。
 尚、上記金属粒子の平均粒径は、動的光散乱法により測定した場合の値である。
 上記炭素質壁を構成する炭素と上記金属粒子との総量に対する上記金属粒子の割合が、0.5~90重量%であることが望ましい。
 金属粒子の割合が0.5質量%未満の場合には、金属粒子の添加効果が十分に発揮されないことがある一方、金属粒子の割合が90質量%を超えるような多孔質炭素の作製は困難だからである。
 上記メソ孔及びミクロ孔を含む細孔における孔径が0.3~100nmであることが望ましい。
 細孔径が0.3nm未満のものは作製が困難である一方、細孔径が100nmを超えると、単位体積あたりの炭素質壁の量が少なくなって、3次元網目構造を保持できなくなる恐れがある。
 比表面積が100~1000m/gであることが望ましい。
 比表面積が100m/g未満では気孔の形成量が不十分であり三次元網目構造を形成しないという問題がある一方、比表面積が1000m/gを超えると炭素壁の形状が保てなくなり粒子として崩壊してしまうという問題がある。
 上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが望ましい。
 気孔部分が連続するような構成であれば、ガスの流れが円滑になるので、よりガスを補足し易くなる。
 有機質樹脂を含む流動性材料と、金属粒子と、鋳型粒子とを混合して混合物を作製するステップと、上記混合物を非酸化性雰囲気で加熱焼成して焼成物を作製するステップと、上記焼成物中の上記鋳型粒子を除去するステップと、を有することを特徴とする。
 このような方法であれば、上述した多孔質炭素を製造することができる。この場合、混合物を非酸化性雰囲気で加熱焼成して炭素質壁を作成する場合に、後にメソ孔となる部位には鋳型粒子が存在しているので、当該部位に金属粒子が分散されることはない。また、金属粒子として融点の低い金属(加熱焼成時の温度よりも融点の低い金属)を用いたとしても、上記の如く鋳型粒子が存在していれば、流動性材料と共に金属粒子が鋳型粒子間に閉じ込められるため、加熱焼成時に金属粒子が溶解しても、金属粒子が炭素質壁から溶出するのを抑制できる。更に、鋳型粒子が存在していれば、加熱焼成時に炭素質壁の厚みが小さくなるので、炭素質壁内で金属粒子が凝集するのを抑制でき、炭素質壁内に金属粒子をナノ分散できる。
 尚、上記作用効果を円滑に得るためには、流動性材料と、金属粒子と、鋳型粒子との総量に対する鋳型粒子の割合は、30~80wt%であることが望ましい。鋳型粒子の割合が余りに少ないと鋳型粒子の添加効果が十分に発揮されないことがある一方、鋳型粒子の割合が余りに多いと炭素質壁の厚みが小さくなり過ぎる等の問題を生じるからである。
 有機質樹脂を含む流動性材料と、還元性雰囲気で加熱焼成された場合に金属として析出する金属塩を含む金属成分と、鋳型粒子とを混合して混合物を作製するステップと、上記混合物を還元性雰囲気で加熱焼成して焼成物を作製するステップと、上記焼成物中の上記鋳型粒子を除去するステップと、を有することを特徴とする。
 このような方法であれば、上述した多孔質炭素を製造することができる。この場合、混合物を作製するステップ際に、金属成分として金属粒子のみを添加するときには、焼成物を作製するステップにおいて非酸化性雰囲気で加熱焼成すれば足るが、金属成分として金属塩を含むものを添加するときには、焼成物を作製するステップにおいて還元性雰囲気で加熱焼成する必要がある。尚、金属成分には、金属塩の他に金属粒子が含まれていても良い。
 尚、上記製造方法の場合において、流動性材料として樹脂ワニスを用いた場合には、図11の概念図に示すように、樹脂ワニスと金属塩との錯体となっている。
 金属原子を構造中に含む有機質樹脂を備えた含む流動性材料と、鋳型粒子とを混合して混合物を作製するステップと、上記混合物を非酸化性雰囲気で加熱焼成して焼成物を作製するステップと、上記焼成物中の上記鋳型粒子を除去するステップと、を有することを特徴とする。
 金属を微粒子として含有させる方法として、上述した方法の他に、金属原子を構造中に含む高分子材料を用いることも可能である。例えばカルボプラチン(図10の概念図参照)のように、高分子材料の構造中に白金を含むものを用いれば、上述した多孔質炭素を得ることができる。
 上記鋳型粒子には略同径のものを用いることが望ましい。
 鋳型粒子に略同径のものを用いると、上述したメソ孔の大きさが略同等となる。
 上記流動性材料として、200℃以下の温度で流動性を生じる樹脂、又は、ワニス状の高分子樹脂を用いることが望ましい。
 流動性材料として、200℃以下の温度で流動性を生じる樹脂、又は、ワニス状の高分子樹脂を用いれば、上述した多孔質炭素炭をより円滑に作製することができる。
 但し、流動性材料としては、200℃以下の温度で流動性を生じる樹脂等に限定するものではなく、200℃以下の温度で流動性が生じなくても、水或いは有機溶媒に可溶な高分子材料であれば本発明に使用できる。このような材料としては、PVA(ポリビニルアルコール)、PET(ポリエチレンテレフタレート)樹脂、イミド系樹脂、フェノール系樹脂等が例示される。
(その他の事項)
(1)流動性材料としては、炭素収率が40%以上85%以下のものを用いるのが好ましい。流動性材料の炭素収率が余り小さかったり大きかったりすると(具体的には、流動性材料の炭素収率が40%未満であったり、85%を超えていると)三次元網目構造が保持されない炭素粉末となることがあるが、炭素収率が40%以上85%以下の流動性材料を用いれば、鋳型粒子を除去した後には、鋳型粒子が存在した場所が連続孔となる三次元網目構造を有する多孔質炭素を確実に得ることができるからである。また、鋳型粒子として粒径が略同一のものを用いれば、同一サイズの連続孔が形成されるので、スポンジ状且つ略籠伏の多孔質炭素を作製することができる。
 また、流動性材料の炭素収率が上記範囲であれば、ミクロ孔が非常に発達するので、比表面積が大きくなる。但し、流動性材料の炭素収率が上記範囲であっても、鋳型粒子を用いない場合にはミクロ孔は発達しない。
(2)鋳型粒子の径や有機質樹脂の種類を変えることによって、細孔の径、多孔質炭素の細孔分布、及び、炭素質壁の厚みを調整することができる。したがって、鋳型粒子の径と有機質樹脂の種類とを適宜選択することによって、より均一な細孔径を有し、より大きな細孔容量を有する多孔質炭素を作製することも可能となる。更に、炭素源に有機質樹脂を含む流動性材料を用い、しかも、賦活処理工程を経ることなく多孔質炭素を作製できるので、得られた多孔質炭素は非常に高純度なものとなる。
(3)鋳型粒子としては、アルカリ土類金属化合物を用いることが望ましい。アルカリ土類金属化合物は弱酸或いはお湯により除去することができる(即ち、強酸を用いることなく鋳型粒子を取り除くことができる)ので、鋳型粒子を除去するステップにおいて、多孔質炭素自体の性状が変化するのを抑制することができるからである。尚、弱酸を用いた場合には、除去スピードが早くなるという利点がある一方、お湯を用いた場合には、酸が残留して不純物となるという不都合を防止できるという利点がある。また、鋳型粒子を除去するステップにおいて、溶出した酸化物溶液は再び原料として使用が可能であり、多孔質炭素の製造コストを低減できる。
(4)鋳型粒子を除去するステップにおいては、除去後の鋳型粒子の残留率が0.5%以下となるように規制することが望ましい。除去後の鋳型粒子の残留率が0.5%を超えると、メソ孔内に残る鋳型粒子が多くなって、細孔としての役割を発揮できない部位が広く生じるからである。また、金属不純物を忌避する用途への適用が行いにくくなる恐れもある。
 本発明によれば、金属粒子が酸化するのを抑制できると共に、金属粒子を十分に分散させることにより、金属粒子の添加効果を長期間に亘って維持することができるといった優れた効果を奏する。
本発明炭素の製造工程を示す図であって、同図(a)はポリアミック酸樹脂ワニスと酸化マグネシウムと、塩化白金酸とを混合した状態を示す説明図、同図(b)は混合物を熱処理した状態を示す説明図、同図(c)は多孔質炭素を示す説明図である。 本発明炭素A1のSTEM(走査透過電子顕微鏡)写真。 本発明炭素A1における酸化マグネシウムを除去する前後のSEM(走査電子顕微鏡)写真であって、同図(a)は酸化マグネシウムを除去する前の写真、同図(b)は酸化マグネシウムを除去した後の写真である。 本発明炭素の状態を示す説明図。 本発明炭素A1~A8及び比較炭素Z1~Z4における白金の含有量と白金の平均粒子径との関係を示すグラフ。 本発明炭素Bの外観写真。 比較炭素Yの外観写真。 塩酸溶液で洗浄する前の炭素のX線回折グラフ。 塩酸溶液で洗浄した後の炭素のX線回折グラフ。 金属原子を構造中に含む高分子材料の状態を示す概念図。 樹脂ワニスと金属塩との錯体となっている状態を示す概念図。
 以下、本発明の実施形態を以下に説明する。
 本発明の炭素化物は、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドもしくは炭素化収率が40wt%を越える樹脂等(例えば、フェノール樹脂やピッチ)と、金属粒子等と、酸化物粒子等と、溶液又は粉末状態において湿式もしくは乾式混合し、混合物を非酸化性雰囲気下、又は、減圧下〔133Pa(1torr)以下〕、或いは、還元性雰囲気下で、500℃以上の温度で炭化し、得られた炭素と酸化物を洗浄処理することで得られ、その炭素質壁内には金属粒子が分散された炭素化物である。
 ここで、上記単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
 具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
 前記ジアミンとしては、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン〔2,2-Bis(4-aminophenyl)hexafluoropropane〕、2,2-ビス(トリフルオロメチル)-ベンジジン〔2,2’-Bis(trifluoromethyl)-benzidine〕、4,4’-ジアミノオクタフルオロビフェニルや、3,3’-ジフルオロ-4,4’-ジアミノジフェニルメタン,3,3’-ジフルオロ-4,4’-ジアミノジフェニルエーテル、3,3’-ジ(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’-ジフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’-ジフルオロ-4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジフルオロ-4,4’-ジアミノベンゾフェノン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラフルオロ-4,4-ジアミノジフェニルヘキサフルオロプロパン、1,3-ジアミノ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフロオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ヘンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-ブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロノネニルオキシ)ペンセン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-プロモ-5-(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp-フェニレンジアミン(PPD)、ジオキシジアニリンなどの芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。
 一方、酸成分としては、フッ素原子を含む4,4-ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、及びフッ素原子を含まない3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
 また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N-メチル-2-ピロリドン、ジメチルホルムアミド等が挙げられる。
 イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
 更に、ポリイミド以外の樹脂としては、石油系タールピッチ、アクリル樹脂など40%以上の炭素収率を持つものが使用できる。
 一方、上記酸化物として用いる原料はアルカリ土類金属酸化物(酸化マグネシウム、酸化カルシウム等の他に、熱処理により熱分解過程で酸化マグネシウムへと状態が変化する、金属有機酸(クエン酸マグネシウム、シュウ酸マグネシウム、クエン酸カルシウム、シュウ酸カルシウム等)、塩化物、硝酸塩、硫酸塩を使用することもできる。
 また、酸化物を取り除く洗浄液としては、塩酸、硫酸、硝酸、クエン酸、酢酸、ギ酸など一般的な無機酸を使用し、2mol/l以下の希酸として用いるのが好ましい。また、80℃以上の熱水を使用することも可能である。
 更に、本発明の多孔質炭素を得るには、非酸化雰囲気下で、500℃以上、1500℃以下の温度で炭化することが好ましい。高炭素収率の樹脂は高分子であるため、500℃未満では炭素化が不十分で細孔の発達が十分ではない場合がある一方、1500℃以上では収縮が大きく、酸化物が焼結し粗大化するため、細孔サイズが小さくなって比表面積が小さくなるからである。
                 〔第1実施例〕
(実施例)
 先ず、図1(a)に示すように、炭素前駆体としてのポリアミック酸樹脂ワニス(イミド系樹脂)1と、鋳型粒子としての酸化マグネシウム(MgO、平均結晶子径は100nm)2と、金属塩としての塩化白金酸6とを、10:5:1の質量比で混合した。この際、ポリアミック酸樹脂ワニスと塩化白金酸6とは金属錯体となっていた。次に、図1(b)に示すように、この混合物を窒素雰囲気中1000℃で1時間熱処理を行って、塩化白金酸6を白金に還元させ、且つ、ポリアミック酸樹脂ワニス1を熱分解させることにより、白金粒子7を含む炭素3を作製した。最後に、図1(c)に示すように、得られた炭素3を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを完全に溶出させることにより多数の孔4を有する多孔質炭素5を得た。尚、多孔質炭素5において、炭素質壁を構成する炭素と白金粒子7との総量に対する上記白金粒子7の割合は、5質量%であった。
 このようにして作製した多孔質炭素を、以下、本発明炭素A1と称する。
 本発明炭素A1のSTEM(走査透過電子顕微鏡)写真を図2に示す。図2から明らかなように、多孔質炭素内で白金粒子がナノオーダーで分散されていることがわかる。また、本発明炭素A1につき、酸化マグネシウムを除去する前後のSEM(走査電子顕微鏡)写真を、各々、図3(a)〔酸化マグネシウムを除去する前〕及び図3(b)〔酸化マグネシウムを除去した後〕に示す。両図から明らかなように、酸化マグネシウムを除去する前には3次元網目構造となっていないが、酸化マグネシウムを除去した後には3次元網目構造(スポンジ状のカーボン形状)となっていることがわかる。より具体的には、図4に示すように、本発明炭素A1の構造は、大きさが略同等である多数のメソ孔10を有しており、炭素質壁12におけるメソ孔10に臨む位置にミクロ孔11が形成され、且つ、炭素質壁12内には白金粒子7が存在し、この白金粒子7の一部は上記ミクロ孔11に露出しているような構造となっている。
 また、本発明炭素A1においては、炭素壁全体の体積に対する炭素部分の体積の割合は40%、ミクロ孔の孔径は10nm、比表面積は700m/gであった。尚、ミクロ孔の孔径はHK法を用いて計算し、メソ孔の孔径はBJH法を用いて計算した。
(実施例2~8)
 炭素質壁12を構成する炭素と白金粒子7との総量に対する白金粒子7の割合を、各々、10質量%、15質量%、20質量%、30質量%、35質量%、45質量%、65質量%とした他は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下それぞれ、本発明炭素A2~A8と称する。
(比較例1~4)
 鋳型粒子としての酸化マグネシウムを添加しない他は、上記実施例1~実施例4と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下それぞれ、比較炭素Z1~Z4と称する。
(実験)
 上記本発明炭素A1~A8及び比較炭素Z1~Z4における白金の含有量(炭素質壁12を構成する炭素と白金粒子7との総量に対する白金粒子7の割合)と白金の平均粒子径との関係を調べたので、その結果を図5に示す。
 図5から明らかなように、白金含有量が5質量%~35質量%の本発明炭素A1~A6では白金粒子径は約5nmと極めて小さく、また、白金含有量が各45質量%、65重量%の本発明炭素A7、A8でも白金粒子径は約17nm以下と小さい。これに対して、比較炭素Z1~Z4においては、白金含有量が5質量%の比較炭素Z1であっても白金粒子径は約18nmと大きく、白金含有量が10質量%以上の比較炭素Z2~Z4では白金粒子径が約23nm以上と極めて大きくなっていることが認められる。
 この理由は完全には明確ではないが、本発明炭素A1~A8の如く、MgOフィラーを用いた場合には、製造工程の全体においてMgOフィラーにより炭素壁の厚みが白金粒子の凝集を許容しない程度に小さく保持されるため、多孔質炭素の炭素壁内に金属粒子がナノ分散された状態が維持されるためと推定される。これに対して、比較炭素Z1~Z4では、MgOフィラーを用いていないので、熱処理時にポリアミック酸樹脂ワニス中で白金粒子の凝集が起こり、白金の平均粒子径が大きいものとなったと推定される。
                 〔第2実施例〕
(実施例)
 先ず、炭素前駆体としてのポリビニルアルコールと、鋳型粒子としての酸化マグネシウム(MgO、平均結晶子径は100nm)と、金属塩としての酸化錫とを、10:10:5の質量比で混合した。次に、この混合物を窒素雰囲気中1000℃で1時間熱処理を行って、酸化錫を錫に還元し、且つ、ポリビニルアルコールを熱分解させることにより、錫を含む炭素を作製した。最後に、得られた炭素を1mol/lの割合で添加された塩酸溶液で洗浄して、MgOを完全に溶出させることにより多数の孔を有する多孔質炭素を得た。尚、多孔質炭素において、炭素質壁を構成する炭素と錫との総量に対する錫の割合は55wt%であった。
 このようにして作製した多孔質炭素を、以下、本発明炭素Bと称する。
 本発明炭素Bの外観写真を図6に示す。図6から明らかなように金属の析出が全く見られず、多孔質炭素内で錫粒子がナノオーダーで分散されていることが推測される。
(比較例)
 鋳型粒子としての酸化マグネシウムを添加しない他は、上記実施例と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下、比較炭素Yと称する。
 比較炭素Yの外観写真を図7に示す。写真中の白い粒子は析出した金属であり、図7から明らかなように、錫粒子が凝集して多孔質炭素外に析出してしまっていることがわかる。
 上述した外観となるのは、本発明炭素Bの如く、MgOフィラーを用いた場合には、多孔質炭素の炭素壁内に金属粒子が包含された状態が加熱焼成中でも維持されるため、多孔質炭素外に金属が析出することがない。即ち、MgOフィラーが存在することにより、メソ孔に金属が溶出するのを抑制できる。これに対して、比較炭素Yでは、MgOフィラーを用いていないので、金属粒子の融点より高温での加熱焼成時に、溶融された金属がメソ孔に溶出することに起因するものと考えられる。
(実験)
 上記実施例で用いた混合物と同一の混合物を、窒素雰囲気中で、各600℃、700℃、800℃、及び900℃で1時間熱処理を行った後、塩酸溶液で洗浄して、MgOを完全に溶出させた。そして、塩酸溶液で洗浄する前後の炭素のX線回折を行ったので、その結果をそれぞれ図8(塩酸溶液で洗浄する前)及び図9(塩酸溶液で洗浄した後)に示す。
 図8及び図9から明らかなように、700℃以下で熱処理を行った場合には、塩酸溶液で洗浄する前後を問わずSnOが存在していることが認められ、800℃で熱処理を行った場合には、塩酸溶液で洗浄する前にはSnOが存在していないが、塩酸溶液で洗浄した後にはSnOが存在していることが認められる。これに対して、900℃以下で熱処理を行った場合には、塩酸溶液で洗浄する前後を問わずSnOが存在していないことが認められる。したがって、金属塩として酸化錫を用いる場合において、酸化錫の還元処理を確実に行うには、熱処理温度は900℃以上が好ましいことがわかる。
 本発明はガス吸着、分解材料、燃料電池用高活性電極、気体、液体中の殺菌フィルターブラシ材フィラー、低融点ハンダ粉末、リチウムイオン二次電池用電極材等として用いることができる。
 1:ポリアミック酸樹脂ワニス(イミド系樹脂)
 2:酸化マグネシウム
 3:炭素
 4:孔
 5:多孔質炭素
 6:塩化白金酸
 7:白金粒子

Claims (12)

  1.  メソ孔の外郭を構成する炭素質壁が3次元網目構造を成し、上記炭素質壁における上記メソ孔に臨む位置にミクロ孔が形成された多孔質炭素であって、
     上記炭素質壁内には金属粒子が分散され、且つ、上記金属粒子のうち少なくとも一部の金属粒子は、粒子表面の一部が上記ミクロ孔に露出状態で配置されていることを特徴とする多孔質炭素。
  2.  上記メソ孔の大きさが略同等となるように構成されている、請求項1に記載の多孔質炭素。
  3.  上記金属粒子の平均粒径(動的光散乱法)が4~500nmである、請求項1又は2に記載の多孔質炭素。
  4.  上記炭素質壁を構成する炭素と上記金属粒子との総量に対する上記金属粒子の割合が、0.5~90wt%である、請求項1~3の何れか1項に記載の多孔質炭素。
  5.  上記メソ孔及びミクロ孔を含む細孔における孔径が0.3~100nmである、請求項1~4の何れか1項に記載の多孔質炭素。
  6.  比表面積が100~1000m/gである、請求項1~5の何れか1項に記載の多孔質炭素。
  7.  上記メソ孔は開気孔であって、気孔部分が連続するような構成となっている、請求項1~6の何れか1項に記載の多孔質炭素。
  8.  有機質樹脂を含む流動性材料と、金属粒子と、鋳型粒子とを混合して混合物を作製するステップと、
     上記混合物を非酸化性雰囲気で加熱焼成して焼成物を作製するステップと、
     上記焼成物中の上記鋳型粒子を除去するステップと、
     を有することを特徴とする多孔質炭素の製造方法。
  9.  有機質樹脂を含む流動性材料と、還元性雰囲気で加熱焼成された場合に金属として析出する金属塩を含む金属成分と、鋳型粒子とを混合して混合物を作製するステップと、
     上記混合物を還元性雰囲気で加熱焼成して焼成物を作製するステップと、
     上記焼成物中の上記鋳型粒子を除去するステップと、
     を有することを特徴とする多孔質炭素の製造方法。
  10.  金属原子を構造中に含む有機質樹脂を備えた含む流動性材料と、鋳型粒子とを混合して混合物を作製するステップと、
     上記混合物を非酸化性雰囲気で加熱焼成して焼成物を作製するステップと、
     上記焼成物中の上記鋳型粒子を除去するステップと、
     を有することを特徴とする多孔質炭素の製造方法。
  11.  上記鋳型粒子には略同径のものを用いる、請求項8~10の何れか1項に記載の多孔質炭素の製造方法。
  12.  上記流動性材料として、200℃以下の温度で流動性を生じる樹脂、又は、ワニス状の高分子樹脂を用いる、請求項8~11の何れか1項に記載の多孔質炭素の製造方法。
PCT/JP2010/060046 2009-06-19 2010-06-14 多孔質炭素及びその製造方法 WO2010147087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10789462.8A EP2444369A4 (en) 2009-06-19 2010-06-14 POROUS CARBON AND METHOD FOR THE PRODUCTION THEREOF
CN201080018535.1A CN102414122B (zh) 2009-06-19 2010-06-14 多孔碳及其制造方法
KR1020117026652A KR101714096B1 (ko) 2009-06-19 2010-06-14 다공질 탄소 및 그 제조 방법
US13/376,048 US9248442B2 (en) 2009-06-19 2010-06-14 Porous carbon and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009145953A JP5636171B2 (ja) 2009-06-19 2009-06-19 多孔質炭素及びその製造方法
JP2009-145953 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147087A1 true WO2010147087A1 (ja) 2010-12-23

Family

ID=43356405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060046 WO2010147087A1 (ja) 2009-06-19 2010-06-14 多孔質炭素及びその製造方法

Country Status (7)

Country Link
US (1) US9248442B2 (ja)
EP (1) EP2444369A4 (ja)
JP (1) JP5636171B2 (ja)
KR (1) KR101714096B1 (ja)
CN (1) CN102414122B (ja)
TW (1) TWI503273B (ja)
WO (1) WO2010147087A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142187A1 (ja) * 2013-03-13 2014-09-18 東洋炭素株式会社 吸着/脱離剤
JP2016041656A (ja) * 2015-10-29 2016-03-31 東洋炭素株式会社 多孔質炭素
CN111628170A (zh) * 2020-04-23 2020-09-04 湖南中科星城石墨有限公司 一种锂离子电池用多孔二次颗粒负极材料及其制备方法
US11584651B2 (en) 2011-03-09 2023-02-21 Toyo Tanso Co., Ltd. Porous carbon and method of manufacturing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688321B2 (ja) * 2011-04-13 2015-03-25 東洋炭素株式会社 多孔質炭素及びその製造方法
WO2012174344A2 (en) 2011-06-15 2012-12-20 Stc.Unm Non-pgm cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors
JP5852548B2 (ja) * 2012-06-12 2016-02-03 トヨタ自動車株式会社 多孔質炭素及び金属空気電池
JP5958132B2 (ja) * 2012-07-18 2016-07-27 Dic株式会社 炭素と金属スズ及び/又は酸化スズ複合ナノシートの製造方法
JP5958139B2 (ja) * 2012-07-20 2016-07-27 Dic株式会社 炭素−鉄系結晶体複合ナノシートの製造方法
DE102012213595A1 (de) 2012-08-01 2014-05-15 Technische Universität Dresden Verfahren zur Herstellung von porösem Kohlenstoff
US20140120339A1 (en) * 2012-10-31 2014-05-01 Cabot Corporation Porous carbon monoliths templated by pickering emulsions
JP6159585B2 (ja) * 2013-06-14 2017-07-05 日清紡ホールディングス株式会社 多孔質炭素触媒及びその製造方法並びに電極及び電池
JP6931971B2 (ja) 2014-09-16 2021-09-08 東レ株式会社 金属複合炭素材料、燃料電池用触媒、燃料電池、水素吸蔵材料、水素タンクおよび金属複合炭素材料の製造方法
JP6500578B2 (ja) * 2015-04-27 2019-04-17 株式会社デンソー 非水電解質二次電池用電極活物質及びその製造方法、並びに非水電解質二次電池
JP2017164667A (ja) * 2016-03-14 2017-09-21 三菱鉛筆株式会社 触媒用炭素担体
CA3105710A1 (en) 2018-06-29 2020-01-02 Toyo Tanso Co., Ltd. Method of producing porous carbon, and electrode and catalyst carrier containing porous carbon produced by the method
CN109289770B (zh) * 2018-10-24 2021-06-25 山西新华防化装备研究院有限公司 钇改性甲硫醇吸附材料的制备方法
CN111422864A (zh) * 2020-04-20 2020-07-17 东北大学 基于碳化-活化法将pet转化为多孔碳颗粒的方法及应用
KR20230079100A (ko) 2020-09-29 2023-06-05 엔.이. 켐캣 가부시키가이샤 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택
US20230335760A1 (en) 2020-09-29 2023-10-19 N.E. Chemcat Corporation Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
KR102574291B1 (ko) * 2021-03-30 2023-09-08 한국기계연구원 3차원 구조를 갖는 탄소-금속 나노 입자 복합 구조체의 제조방법, 3차원 구조를 갖는 탄소-금속 나노 입자 복합 구조체 및 이를 포함하는 촉매
CN113648987A (zh) * 2021-09-08 2021-11-16 东北大学 多孔碳及碳负载催化剂制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026313A (ja) * 1988-03-12 1990-01-10 Kao Corp 金属炭素複合材料及びその製造方法
JP2003104720A (ja) * 2001-09-28 2003-04-09 Kanebo Ltd 分子ふるい炭素およびそれを用いた圧力スイング吸着装置
JP2004026954A (ja) * 2002-06-24 2004-01-29 Mitsubishi Chemicals Corp 多孔質材料の製造方法及び多孔質材料
JP2005314223A (ja) * 2004-03-30 2005-11-10 Kobe Steel Ltd 多孔質炭素材料およびその製造方法
JP2006062954A (ja) * 2004-07-30 2006-03-09 Nard Inst Ltd 活性炭の製法
JP2008207072A (ja) * 2007-02-23 2008-09-11 Osaka Industrial Promotion Organization 多孔性炭素支持体に埋設させたナノ粒子系触媒及びその作製方法
JP2009514762A (ja) * 2005-10-06 2009-04-09 ヘッドウォーターズ テクノロジー イノベーション リミテッド ライアビリティ カンパニー 触媒作用のある鋳型ナノ粒子から製造される炭素ナノ構造体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986914A (ja) 1995-09-28 1997-03-31 Osaka Gas Co Ltd 活性炭およびその製造方法ならびに酸性成分の吸着除去方法
JPH09328308A (ja) 1996-04-10 1997-12-22 Mitsubishi Chem Corp 活性炭及びその製造方法、並びにこれを用いたキャパシタ
JP3614637B2 (ja) 1998-01-29 2005-01-26 本田技研工業株式会社 天然ガス吸蔵用粒状活性炭およびその製造方法
US6248691B1 (en) 1998-02-10 2001-06-19 Corning Incorporated Method of making mesoporous carbon
KR100708642B1 (ko) * 2003-11-21 2007-04-18 삼성에스디아이 주식회사 중형다공성 탄소 분자체 및 이를 사용한 담지촉매
US7605108B2 (en) * 2004-07-08 2009-10-20 Nissan Motor Co., Ltd. Catalyst, exhaust gas purification catalyst, and method for manufacturing same
US20070258879A1 (en) 2005-12-13 2007-11-08 Philip Morris Usa Inc. Carbon beads with multimodal pore size distribution
US7569510B2 (en) * 2006-02-27 2009-08-04 Philip Morris Usa Inc. Catalysts to reduce carbon monoxide such as in the mainstream smoke of a cigarette
JP2008013394A (ja) 2006-07-05 2008-01-24 Daido Metal Co Ltd 活性炭およびその製造方法
CN1931717A (zh) * 2006-09-29 2007-03-21 太原理工大学 粒径均匀的洋葱状富勒烯复合材料的制备方法
CN100469692C (zh) * 2006-12-29 2009-03-18 上海师范大学 含氮有序介孔碳及其合成方法
US20080280164A1 (en) * 2007-05-11 2008-11-13 3M Innovative Properties Company Microporous carbon catalyst support material
TW201119949A (en) * 2009-12-09 2011-06-16 Univ Hungkuang Composition as absorbent and catalyzer, processing method thereof, and method for treating waste water thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026313A (ja) * 1988-03-12 1990-01-10 Kao Corp 金属炭素複合材料及びその製造方法
JP2003104720A (ja) * 2001-09-28 2003-04-09 Kanebo Ltd 分子ふるい炭素およびそれを用いた圧力スイング吸着装置
JP2004026954A (ja) * 2002-06-24 2004-01-29 Mitsubishi Chemicals Corp 多孔質材料の製造方法及び多孔質材料
JP2005314223A (ja) * 2004-03-30 2005-11-10 Kobe Steel Ltd 多孔質炭素材料およびその製造方法
JP2006062954A (ja) * 2004-07-30 2006-03-09 Nard Inst Ltd 活性炭の製法
JP2009514762A (ja) * 2005-10-06 2009-04-09 ヘッドウォーターズ テクノロジー イノベーション リミテッド ライアビリティ カンパニー 触媒作用のある鋳型ナノ粒子から製造される炭素ナノ構造体
JP2008207072A (ja) * 2007-02-23 2008-09-11 Osaka Industrial Promotion Organization 多孔性炭素支持体に埋設させたナノ粒子系触媒及びその作製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYOO, R. ET AL.: "Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation", J. PHYS. CHEM. B, vol. 103, no. 37, 1999, pages 7743 - 7746, XP002988342 *
See also references of EP2444369A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584651B2 (en) 2011-03-09 2023-02-21 Toyo Tanso Co., Ltd. Porous carbon and method of manufacturing same
WO2014142187A1 (ja) * 2013-03-13 2014-09-18 東洋炭素株式会社 吸着/脱離剤
JPWO2014142187A1 (ja) * 2013-03-13 2017-02-16 東洋炭素株式会社 吸着/脱離剤
JP2016041656A (ja) * 2015-10-29 2016-03-31 東洋炭素株式会社 多孔質炭素
CN111628170A (zh) * 2020-04-23 2020-09-04 湖南中科星城石墨有限公司 一种锂离子电池用多孔二次颗粒负极材料及其制备方法
CN111628170B (zh) * 2020-04-23 2023-10-17 湖南中科星城石墨有限公司 一种锂离子电池用多孔二次颗粒负极材料及其制备方法

Also Published As

Publication number Publication date
JP2011001224A (ja) 2011-01-06
JP5636171B2 (ja) 2014-12-03
CN102414122A (zh) 2012-04-11
KR101714096B1 (ko) 2017-03-08
TW201119939A (en) 2011-06-16
US20120077670A1 (en) 2012-03-29
CN102414122B (zh) 2014-05-14
KR20120039517A (ko) 2012-04-25
TWI503273B (zh) 2015-10-11
EP2444369A1 (en) 2012-04-25
EP2444369A4 (en) 2016-07-13
US9248442B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
JP5636171B2 (ja) 多孔質炭素及びその製造方法
JP5860600B2 (ja) 多孔質炭素
WO2012121363A1 (ja) 多孔質炭素及びその製造方法
US9156694B2 (en) Porous carbon and method of manufacturing same
JP5860602B2 (ja) 多孔質炭素
JP2008050237A (ja) 球状多孔性炭素粒子粉末及びその製造法
JP5860601B2 (ja) 多孔質炭素
JP5688321B2 (ja) 多孔質炭素及びその製造方法
JP6426582B2 (ja) 多孔質炭素
JP2015057373A (ja) 多孔質炭素及びその製造方法
EP3130561A1 (en) Porous carbon, method for producing same, and adsorption/desorption device using porous carbon
EP2894128A1 (en) Porous carbon and method for producing same
WO2015137107A1 (ja) 多孔質炭素シート
TWI534080B (zh) Porous carbon and a method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018535.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026652

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13376048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010789462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010789462

Country of ref document: EP