CN115569638B - 一种Zr-MOF复合膜防护材料及其制备方法 - Google Patents

一种Zr-MOF复合膜防护材料及其制备方法 Download PDF

Info

Publication number
CN115569638B
CN115569638B CN202211239111.9A CN202211239111A CN115569638B CN 115569638 B CN115569638 B CN 115569638B CN 202211239111 A CN202211239111 A CN 202211239111A CN 115569638 B CN115569638 B CN 115569638B
Authority
CN
China
Prior art keywords
mof
membrane
ion exchange
protective material
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211239111.9A
Other languages
English (en)
Other versions
CN115569638A (zh
Inventor
钟近艺
刘婧
赵越
郭旋
李和国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Chemical Defense Chinese Academy Of Military Sciences
Original Assignee
Institute Of Chemical Defense Chinese Academy Of Military Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Chemical Defense Chinese Academy Of Military Sciences filed Critical Institute Of Chemical Defense Chinese Academy Of Military Sciences
Priority to CN202211239111.9A priority Critical patent/CN115569638B/zh
Publication of CN115569638A publication Critical patent/CN115569638A/zh
Application granted granted Critical
Publication of CN115569638B publication Critical patent/CN115569638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种Zr‑MOF复合膜防护材料及其制备方法,属于化学防护领域。所述复合膜组分包括离子交换膜、生物纳米纤维和Zr‑MOF,其通过生物纳米纤维的调控作用和水热法反应,在离子交换膜表面原位生长Zr‑MOF得到。该方法所得的Zr‑MOF复合膜表面Zr‑MOF覆盖率高达100%,制备工艺简单,绿色环保,在保证了材料良好防护性能的同时兼顾了透湿性能和消毒性能,为提高化学防护材料的综合性能提供新思路,具有广阔的应用前景。

Description

一种Zr-MOF复合膜防护材料及其制备方法
技术领域
本发明公开了一种Zr-MOF复合膜防护材料及其制备方法,属于化学防护领域,用于有害化学物质的防护。
背景技术
化学防护材料的研发对于抵抗有害化学物质威胁、保证人员安全至关重要。理想的防护材料除了能够有效抵御化学物质的渗透,还应具备良好的透湿性和消毒性。这三者性能相辅相成,良好的消毒性能可以为防护争取更多时间,延缓毒剂向材料内部的扩散,材料的防护性能增强可以降低材料厚度,使材料更轻柔,提高穿着者的舒适性。
传统防护材料分为隔绝式和透气式两种。隔绝式防护材料为致密的聚合物材料,如丁基橡胶、卤化丁基橡胶等,它可以完全阻隔所有蒸气和液体的透过,缺点是不透气,容易造成穿着者热应激反应。与之相反,透气式防护材料采用柔性吸附材料(如活性炭)进行防护,生理舒适性好,但受限于吸附材料的吸附容量,防护时间通常较短,且易脱附引发二次污染。
在已有技术中,离子交换膜因可以形成亲水疏水相分离结构,即能够保证水分子传输又能阻隔有机小分子,具有较好的选择透过性,但是不具备消毒能力。锆基金属有机框架Zr-MOF是高效的吸附催化材料,应用于多种有害化学物质的降解,但通常以粉末形式存在,需将其复合到柔性基材上,才能实现在化学防护领域的应用。
文献J.Am.Chem.Soc.,137(2015)13756-13759利用原子层沉积法在聚合物纤维上涂覆金属氧化物,作为在纤维表面原位生长Zr-MOF的成核位点,制备得到的复合材料对二甲基对氧磷有降解效果,缺点是制备高成本,工艺复杂。
文献ACS Appl.Mater.Inter.,9(2017)13632-13636利用静电纺丝法制备出具有高Zr-MOF负载量的聚合物纤维垫,该复合材料对Cl2等毒气气溶胶具有良好的过滤效果,但是Zr-MOF通道和活性表面会被高分子堵塞。
文献Chem.Sci.,9,(2018),5672-5678利用生物纳米纤维作为成核位点,调控ZIF-8在多种聚合物表面的原位生长,这种方法保证了MOF的结构完整性,且成本低廉,但制备得到的ZIF-8复合材料没有化学防护和消毒作用。
在上述工艺中,溶剂热反应是合成Zr-MOF最常见的方法,即采用极性有机溶剂作为反应介质,如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基甲酰胺等,能够溶解多种试剂且沸点高(>150℃),制备得到的Zr-MOF质量高。但是这些溶剂有毒、易燃,在溶剂热反应过程中易分解,并增加了溶剂回收和处理的成本,限制了Zr-MOF的扩大生产和应用。因此,开发一种在不使用有机溶剂的情况下制备高质量Zr-MOF的合成方法是实现Zr-MOF复合材料实际应用的重要步骤。
发明内容
本发明的目的是解决现有化学防护材料无法兼顾防护、透湿、消毒的问题,提供一种Zr-MOF复合膜防护材料及其制备方法,具体是通过生物纳米纤维的调控作用和水热法反应,在离子交换膜表面原位生长Zr-MOF,增强离子交换膜的选择透过性,同时赋予复合材料消毒能力。
本发明解决上述问题采用的技术方案:Zr-MOF复合膜防护材料由离子交换膜、生物纳米纤维、Zr-MOF复合构成,通过在涂覆了生物纳米纤维的离子交换膜表面原位生长Zr-MOF而形成;
所述离子交换膜由PVDF基体树脂和季铵化氯甲基苯乙烯接枝聚合而成,季铵化氯甲基苯乙烯的剂量为PVDF基体树脂的5wt%~200wt%;
所述的生物纳米纤维为大肠杆菌淀粉蛋白CsgA通过自组装形成的生物纳米纤维,淀粉蛋白CsgA的氨基酸序列为:
所述的离子交换膜的制备步骤如下:
步骤一、将PVDF基体树脂溶解在N,N-二甲基甲酰胺中,20~60℃搅拌均匀,在保护气中加入氢氧化四甲铵甲醇溶液,搅拌反应1~2小时完成PVDF基体树脂的改性;继续通保护气,加入季铵化氯甲基苯乙烯,搅拌溶解,加入二乙烯基苯和偶氮二异丁腈,60~80℃反应8~24小时,得到离子交换膜膜液;
步骤二、将膜液均匀涂布在干净玻璃板上,置于平板加热器上,30~70℃下干燥2~12小时,得到离子交换膜。
所述离子交换膜的制备步骤中,PVDF基体树脂溶解在N,N-二甲基甲酰胺中的浓度为40~80g/L;氢氧化四甲铵甲醇溶液浓度为10~25wt%,使用剂量为PVDF基体树脂的1-20wt%;交联剂二乙烯基苯和引发剂偶氮二异丁腈的剂量分别为季铵化氯甲基苯乙烯的10wt%和1wt%。
所述保护气为氮气或惰性气体。
所述Zr-MOF复合膜防护材料的制备步骤如下:
步骤一、将离子交换膜浸入浓度为0.1~1.0mg/mL CsgA蛋白的KPI缓冲溶液中,25℃静置过夜,得到膜样品;然后将膜样品从溶液中取出,用30mL/次去离子水洗涤样品3次,氮气干燥5~10min,得到生物纳米纤维复合膜;
步骤二、将5~50mmol四氯化锆、20~270mL去离子水、10~200mL调节酸、5~50mmol有机配体依次加入反应容器中,充分混合后,将生物纳米纤维复合膜浸入混合物中,置于60~100℃的烘箱中,反应6~24小时,反应结束后,取出样品,用30mL/次去离子水、30mL/次乙醇分别洗涤样品3次,将样品置于25~60℃真空下干燥6~24小时,真空度为0.08~0.1MPa,得到Zr-MOF复合膜。
所述KPI缓冲溶液为K2HPO4/KH2PO4溶液,pH为6~8。
所述调节酸为甲酸、乙酸或三氟乙酸。
所述有机配体为均苯三酸、对苯二甲酸、2-氨基对苯二甲酸、联苯二甲酸、2-氨基联苯二甲酸或1,3,6,8-四(4-羧基苯)芘。
所述Zr-MOF为MOF-808、UiO-66、UiO-66-NH2、UiO-67、UiO-67-NH2或NU-1000,均通过水热反应合成。
Zr-MOF复合膜的制备机理为:CsgA蛋白在疏水力、静电吸引、范德华力等作用下能够吸附到离子交换膜的表面,并通过自组装形成网状结构的生物纳米纤维;生物纳米纤维中含有大量氨基酸,可为Zr-MOF的成核结晶提供充足的活性位点,引导Zr-MOF在膜表面的原位生长
本发明的有益效果:
1、Zr-MOF复合膜防护材料,能够有效阻挡有害化学物质的渗透,相比原离子交换膜,防护能力提高了一倍多。
2、Zr-MOF复合膜防护材料在阻止有害化学物质渗透的同时能保证水蒸气的通过,具有良好的透湿性能和优异的选择透过性,WVTR均大于2000g·m-2·day-1,符合防护材料的透湿要求,对水/DMMP的选择性高达~500,是商业膜Nafion117选择性的14倍。
3、Zr-MOF复合膜防护材料因为表面复合的Zr-MOF具有吸附作用和消毒功能,可以将有害化学物质锁定在膜表面,阻碍其渗透进入膜内部,且复合膜表面的Zr-MOF采用水热法合成,解决了离子交换膜不耐极性溶剂的问题,绿色环保,易于放大生产。
附图说明
图1 Zr-MOF复合膜的结构示意图
图2 Zr-MOF复合膜的SEM图像
图3 Zr-MOF复合膜及原离子交换膜的DMNP降解转化率曲线图
图中:(a)为实施例1的MOF-808复合膜的DMNP降解转化率曲线图;
(b)为实施例2的MOF-808复合膜的DMNP降解转化率曲线图;
(c)为实施例3的MOF-808复合膜的DMNP降解转化率曲线图;
(d)为实施例4的UiO-66-NH2复合膜的DMNP降解转化率曲线图;
(e)为原离子交换膜PVDF-g-QVBC的DMNP降解转化率曲线图;
纵坐标为时间,单位分钟;横坐标为DMNP转化率,单位%。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1
Zr-MOF复合膜防护材料的制备步骤如下:
(1)离子交换膜的制备步骤;
将20g PVDF溶解在360mL DMF中,50℃搅拌均匀,氮气气氛下加入TMAH甲醇溶液(1mL,10wt%),50℃搅拌1小时,加入16g QVBC,氮气气氛下继续搅拌至溶解,加入1.6g DVB和0.16g AIBN,80℃反应8小时,得到膜液;将膜液均匀涂布在干净玻璃板上,置于平板加热器上,70℃下干燥4小时,得到离子交换膜PVDF-g-QVBC。
(2)生物纳米纤维复合膜的制备;
将PVDF-g-QVBC浸没于CsgA蛋白的KPI缓冲溶液(0.1mg/mL,pH=7.0),25℃静置24小时,取出膜样品,用30mL/次去离子水洗涤样品3次,氮气干燥样品5min,得到生物纳米纤维复合膜CNF-PQ。
(3)Zr-MOF复合膜的制备;
将四氯化锆(1.17g,5.0mmol)、去离子水(30mL)、甲酸(20mL,530mmol)、均苯三酸(1.05g,5.0mmol)依次加入耐压瓶中,超声5min使之充分混合;将1×1cm的CNF-PQ膜完全浸入混合物中,置于100℃烘箱中反应24小时;反应结束后,取出膜样品,用30mL/次去离子水和30mL/次乙醇分别洗涤样品3次,60℃真空中干燥样品24小时,得到Zr-MOF复合膜(图1)。Zr-MOF复合膜的表面微观形貌如图2所示。从图2可知,复合膜表面的MOF颗粒覆盖率约100%。
实施例2
Zr-MOF复合膜防护材料的制备步骤如下:
(1)离子交换膜的制备步骤;
将20g PVDF溶解在360mL DMF中,50℃搅拌均匀,氮气气氛下加入TMAH甲醇溶液(1mL,10wt%),50℃搅拌1小时,加入16g QVBC,氮气气氛下继续搅拌至溶解,加入1.6g DVB和0.16g AIBN,80℃反应8小时,得到膜液;将膜液均匀涂布在干净玻璃板上,置于平板加热器上,70℃下干燥4小时,得到离子交换膜PVDF-g-QVBC。
(2)生物纳米纤维复合膜的制备;
将PVDF-g-QVBC浸没于CsgA蛋白的KPI缓冲溶液(0.1mg/mL,pH=7.0),25℃静置24小时,取出膜样品,用30mL/次去离子水洗涤样品3次,氮气干燥样品5min,得到生物纳米纤维复合膜CNF-PQ。
(3)Zr-MOF复合膜的制备;
将四氯化锆(5.83,25mmol)、去离子水(150mL)、甲酸(100mL,2650mmol)、均苯三酸(5.25g,25mmol)依次加入耐压瓶中,超声10min使之充分混合;将6.5×6.5cm CNF-PQ膜完全浸入混合物中,置于100℃烘箱中反应24小时;反应结束后,取出膜样品,用30mL/次去离子水和30mL/次乙醇分别洗涤样品3次,60℃真空中干燥样品24小时,得到Zr-MOF复合膜。
实施例3
Zr-MOF复合膜防护材料的制备步骤如下:
(1)离子交换膜的制备步骤;
将20g PVDF溶解在360mL DMF中,50℃搅拌均匀,氮气气氛下加入TMAH甲醇溶液(1mL,10wt%),50℃搅拌1小时,加入16g QVBC,氮气气氛下继续搅拌至溶解,加入1.6g DVB和0.16g AIBN,80℃反应8小时,得到膜液;将膜液均匀涂布在干净玻璃板上,置于平板加热器上,70℃下干燥4小时,得到离子交换膜PVDF-g-QVBC。
(2)生物纳米纤维复合膜的制备;
将PVDF-g-QVBC浸没于CsgA蛋白的KPI缓冲溶液(1.0mg/mL,pH=7.0),25℃静置24小时,取出膜样品,用30mL/次去离子水洗涤样品3次,氮气干燥样品5min,得到生物纳米纤维复合膜CNF-PQ。
(3)Zr-MOF复合膜的制备;
将四氯化锆(1.17g,5.0mmol)、去离子水(30mL)、甲酸(20mL,530mmol)、均苯三酸(1.05g,5.0mmol)依次加入耐压瓶中,超声5min使之充分混合;将CNF-PQ膜完全浸入混合物中,置于100℃烘箱中反应24小时;反应结束后,取出膜样品,用30mL/次去离子水和30mL/次乙醇分别洗涤样品3次,60℃真空中干燥样品24小时,得到Zr-MOF复合膜。
实施例4
Zr-MOF复合膜防护材料的制备步骤如下:
(1)离子交换膜的制备步骤;
将20g PVDF溶解在360mL DMF中,50℃搅拌均匀,氮气气氛下加入TMAH甲醇溶液(1mL,10wt%),50℃搅拌1小时,加入16g QVBC,氮气气氛下继续搅拌至溶解,加入1.6g DVB和0.16g AIBN,80℃反应8小时,得到膜液;将膜液均匀涂布在干净玻璃板上,置于平板加热器上,70℃下干燥4小时,得到离子交换膜PVDF-g-QVBC。
(2)生物纳米纤维复合膜的制备;
将PVDF-g-QVBC浸没于CsgA蛋白的KPI缓冲溶液(0.1mg/mL,pH=7.0),25℃静置24小时,取出膜样品,用30mL/次去离子水洗涤样品3次,氮气干燥样品5min,得到生物纳米纤维复合膜CNF-PQ。
(3)Zr-MOF复合膜的制备;
将四氯化锆(1.17g,5.0mmol)、去离子水(30mL)、甲酸(20mL,530mmol)、2-氨基对苯二甲酸(0.91g,5.0mmol)依次加入耐压瓶中,超声5min使之充分混合;将1×1cm CNF-PQ膜完全浸入混合物中,置于100℃烘箱中反应24小时;反应结束后,取出膜样品,用30mL/次去离子水和30mL/次乙醇分别洗涤样品3次,60℃真空中干燥样品24小时,得到Zr-MOF复合膜。
测试例
1、渗透性能测试:
将膜样品固定于装有渗透剂(水或DMMP)的渗透池上方,放置于35℃和10%RH的试验箱中,定期称量渗透池的重量,计算出渗透剂的水蒸气传输速率(WVTR)、蒸气渗透率(VP)及水/DMMP选择性。原离子交换膜PVDF-g-QVBC、及Zr-MOF复合膜的测试结果如表1所示。
其中,实施例1为MOF-808复合膜;
实施例2为MOF-808复合膜,相比实施例1制备体量扩大了5倍;
实施例3为MOF-808复合膜,相比实施例1提高了CsgA蛋白的KPI缓冲溶液的浓度;
实施例4为UiO-66-NH2复合膜,相比实施例1改变了Zr-MOF种类。
由表1可知,原离子交换膜PVDF-g-QVBC及Zr-MOF复合膜的WVTR值均大于2000g·m-2·day-1,符合化学防护服的透湿要求。相比原离子交换膜PVDF-g-QVBC,实施例1、实施例2、实施例3和实施例4的水VP值分别增加了45%、39%、52%和9%,相应的DMMP VP值分别下降了53%、42%、45%和35%,表明Zr-MOF复合膜透湿性能增强的同时防DMMP渗透能力也明显增强。综合可得,Zr-MOF复合膜的选择性均有所提高,其中实施例1选择性最大,相比原离子交换膜提高了3倍,是商业膜Nafion117选择性(34.5)的14倍。通过对比发现,Zr-MOF种类的改变对于Zr-MOF复合膜的渗透性和选择性影响较大,而制备体量及CsgA蛋白溶液浓度的影响相对较小。
表1 膜材料的渗透性及选择性
2、消毒性能测试:
将10mg膜样品浸没入(1mL,0.45M)氮乙基吗啉(NEM)缓冲溶液中,加入4μL二甲基对氧磷(DMNP),开始计时;于不同时间取20μL试样,立即用(10mL,0.15M)NEM缓冲液稀释,用紫外分光光度计检测试样中降解产物对硝基苯酚的吸收峰强度,监测DMNP的降解反应进程。Zr-MOF复合膜及原离子交换膜PVDF-g-QVBC的DMNP转化率曲线如图3所示。从图3可知,PVDF-g-QVBC几乎没有降解活性,24小时后DMNP转化率不到17%,相比之下,Zr-MOF复合膜能更快降解DMNP,实施例1、实施例2、实施例3和实施例4的降解半衰期分别为35分钟、50分钟、112分钟和407分钟,其中实施例1、实施例2和实施例3分别在340分钟、878分钟和1380分钟DMNP转化率达到100%,表明Zr-MOF复合膜材料具备自消毒功能。对比发现,制备体量对消毒性能影响不大,而CsgA蛋白溶液浓度和Zr-MOF种类对消毒性能影响较大。

Claims (7)

1.一种Zr-MOF复合膜防护材料,其特征在于,该防护材料由离子交换膜、生物纳米纤维、Zr-MOF复合构成,通过在涂覆了生物纳米纤维的离子交换膜表面原位生长Zr-MOF而形成;
所述离子交换膜由PVDF基体树脂和季铵化氯甲基苯乙烯接枝聚合而成,季铵化氯甲基苯乙烯的剂量为PVDF基体树脂的5wt%~200wt%;
所述的生物纳米纤维为淀粉蛋白CsgA通过自组装形成的生物纳米纤维,淀粉蛋白CsgA的氨基酸序列为:
所述Zr-MOF为MOF-808、UiO-66、UiO-66-NH2、UiO-67、UiO-67-NH2或NU-1000。
2.根据权利要求1所述的一种Zr-MOF复合膜防护材料,其特征在于,所述的离子交换膜的制备步骤如下:
步骤一、将PVDF基体树脂溶解在N,N-二甲基甲酰胺中,20~60℃搅拌均匀,在保护气中加入氢氧化四甲铵甲醇溶液,搅拌反应1~2小时完成PVDF基体树脂的改性;继续通保护气,加入季铵化氯甲基苯乙烯,搅拌溶解,加入二乙烯基苯和偶氮二异丁腈,60~80℃反应8~24小时,得到离子交换膜膜液;
步骤二、将膜液均匀涂布在干净玻璃板上,置于平板加热器上,30~70℃下干燥2~12小时,得到离子交换膜。
3.根据权利要求2所述的Zr-MOF复合膜防护材料,其特征在于,所述离子交换膜的制备步骤中,PVDF基体树脂溶解在N,N-二甲基甲酰胺中的浓度为40~80g/L;氢氧化四甲铵甲醇溶液浓度为10~25wt%,使用剂量为PVDF基体树脂的1-20wt%;交联剂二乙烯基苯和引发剂偶氮二异丁腈的剂量分别为季铵化氯甲基苯乙烯的10wt%和1wt%。
4.根据权利要求2所述的Zr-MOF复合膜防护材料,其特征在于,所述的保护气为氮气或惰性气体。
5.根据权利要求1所述的一种Zr-MOF复合膜防护材料,其特征在于,所述的Zr-MOF复合膜防护材料的制备步骤如下:
步骤一、将离子交换膜浸入浓度为0.1~1.0mg/mL CsgA蛋白的KPI缓冲溶液中,25℃静置过夜,得到膜样品;然后将膜样品从溶液中取出,用30mL/次去离子水洗涤样品3次,氮气干燥5~10min,得到生物纳米纤维复合膜;
步骤二、将5~50mmol四氯化锆、20~270mL去离子水、10~200mL调节酸、5~50mmol有机配体依次加入反应容器中,充分混合后,将生物纳米纤维复合膜浸入混合物中,置于60~100℃的烘箱中,反应6~24小时,反应结束后,取出样品,用30mL/次去离子水、30mL/次乙醇分别洗涤样品3次,将样品置于25~60℃真空下干燥6~24小时,真空度为0.08~0.1MPa,得到Zr-MOF复合膜;
所述的KPI缓冲溶液为K2HPO4/KH2PO4溶液,pH为6~8。
6.根据权利要求5所述的Zr-MOF复合膜防护材料,其特征在于,所述的调节酸为甲酸、乙酸或三氟乙酸。
7.根据权利要求5所述的Zr-MOF复合膜防护材料,其特征在于,所述的有机配体为均苯三酸、对苯二甲酸、2-氨基对苯二甲酸、联苯二甲酸、2-氨基联苯二甲酸或1,3,6,8-四(4-羧基苯)芘。
CN202211239111.9A 2022-10-11 2022-10-11 一种Zr-MOF复合膜防护材料及其制备方法 Active CN115569638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211239111.9A CN115569638B (zh) 2022-10-11 2022-10-11 一种Zr-MOF复合膜防护材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211239111.9A CN115569638B (zh) 2022-10-11 2022-10-11 一种Zr-MOF复合膜防护材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115569638A CN115569638A (zh) 2023-01-06
CN115569638B true CN115569638B (zh) 2024-04-19

Family

ID=84585223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211239111.9A Active CN115569638B (zh) 2022-10-11 2022-10-11 一种Zr-MOF复合膜防护材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115569638B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172792A (zh) * 2011-12-22 2013-06-26 中国科学院大连化学物理研究所 一种碱性离子聚合物及其制备和应用
CN104592705A (zh) * 2014-11-21 2015-05-06 沈阳工业大学 一种pvdf阴离子交换膜的溶液接枝制备法
CN108310982A (zh) * 2018-03-09 2018-07-24 山东大学 一种化学战剂自消毒金属-有机骨架纤维滤膜及其制备方法
CN111690583A (zh) * 2020-05-20 2020-09-22 江苏大学 表达功能化淀粉样纤维的希瓦氏菌及其构建方法与应用
CN113368824A (zh) * 2021-03-08 2021-09-10 中国人民解放军军事科学院防化研究院 一种改性锆基金属-有机骨架材料mof-808的制备方法
WO2022121594A1 (zh) * 2020-12-09 2022-06-16 青岛科技大学 一种纳米纤维/MOFs基优先透醇型渗透汽化膜及其制备方法
CN115106132A (zh) * 2022-06-23 2022-09-27 浙江浙能技术研究院有限公司 一种类三明治结构的选择性阴离子交换膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172792A (zh) * 2011-12-22 2013-06-26 中国科学院大连化学物理研究所 一种碱性离子聚合物及其制备和应用
CN104592705A (zh) * 2014-11-21 2015-05-06 沈阳工业大学 一种pvdf阴离子交换膜的溶液接枝制备法
CN108310982A (zh) * 2018-03-09 2018-07-24 山东大学 一种化学战剂自消毒金属-有机骨架纤维滤膜及其制备方法
CN111690583A (zh) * 2020-05-20 2020-09-22 江苏大学 表达功能化淀粉样纤维的希瓦氏菌及其构建方法与应用
WO2022121594A1 (zh) * 2020-12-09 2022-06-16 青岛科技大学 一种纳米纤维/MOFs基优先透醇型渗透汽化膜及其制备方法
CN113368824A (zh) * 2021-03-08 2021-09-10 中国人民解放军军事科学院防化研究院 一种改性锆基金属-有机骨架材料mof-808的制备方法
CN115106132A (zh) * 2022-06-23 2022-09-27 浙江浙能技术研究院有限公司 一种类三明治结构的选择性阴离子交换膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Adhesive bacterial amyloid nanofiber-mediated growth of metal–organic frameworks on divers polymeric substrates;Cuizheng Zhang等;《Chemical Science》;第9卷;第5672–5678页 *
MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性;陈芬等;《复合材料学报》;第40卷(第4期);第2075-2084页 *

Also Published As

Publication number Publication date
CN115569638A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN107051398B (zh) 一种制备丝蛋白纳米纤维-金属有机框架复合薄膜的方法
CN106492646B (zh) 一种用于优先透醇渗透汽化的介孔二氧化硅杂化膜的制备方法
CN109763333B (zh) 一种通过改性载体制备金属有机骨架的方法
Yu et al. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC
WO2022088517A1 (zh) 一种双功能型金属有机骨架膜材料及其制备方法与应用
CN105860117B (zh) 一种自组装石墨烯复合材料及其制备方法和应用
CN111286010B (zh) 一种亲油超疏水多孔芳香骨架材料及其制备方法和应用
CN110170309B (zh) 一种二维金属有机骨架复合膜材料、制备方法及应用
EP4230284A1 (en) Metal-organic framework material separation membrane, preparation method therefor, and use thereof
CN110075814A (zh) 一种二维氮掺杂磁性离子液体类沸石咪唑酯纳米材料及其制备方法、用途
CN110652877A (zh) 一种共价有机骨架杂化膜的制备方法及其应用
CN113522244A (zh) 一种共价有机框架复合材料及其制备方法与应用
CN114797799A (zh) 一种基于MOFs的锂离子印迹复合纳米纤维膜的制备方法
Zhang et al. Biomineralization-mimetic growth of ultrahigh-load metal-organic frameworks on inert glass fibers to prepare hybrid membranes for collecting organic hazards in unconventional environment
CN112705167A (zh) Mof改性活性炭砖的制备方法及其在大风量空气过滤中的应用
Qu et al. High-hydrophobic ZIF-67@ PLA honeycomb aerogel for efficient oil–water separation
CN108816057A (zh) 一种聚多巴胺-离子液复合膜及其制备方法
Cui et al. Nature-mimicking fabrication of antifouling photocatalytic membrane based on Ti/BiOI and polydopamine for synergistically enhanced photocatalytic degradation of tetracycline
CN116764606B (zh) Bpa分子印迹pan/mof纳米纤维聚合物膜及其制备方法和应用
CN115569638B (zh) 一种Zr-MOF复合膜防护材料及其制备方法
CN112029104A (zh) 一种蒸气辅助外延生长法制备金属有机骨架膜及其应用
CN113144914A (zh) 一种抗菌高强度超薄复合膜材料及其制备和在含铀废水或海水中铀富集方面的应用
CN112156660A (zh) 一种金属有机骨架M-gallate混合基质膜及其制备和应用
Zhu et al. Electrostatic spray deposition of boronate affinity imprinted membrane to be used as adsorption separation material
CN113044952B (zh) 一种金属有机骨架纳米纤维膜的制备方法及其活化单过氧硫酸氢盐处理有机废水的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant