WO2015192605A1 - 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法 - Google Patents

载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法 Download PDF

Info

Publication number
WO2015192605A1
WO2015192605A1 PCT/CN2014/092556 CN2014092556W WO2015192605A1 WO 2015192605 A1 WO2015192605 A1 WO 2015192605A1 CN 2014092556 W CN2014092556 W CN 2014092556W WO 2015192605 A1 WO2015192605 A1 WO 2015192605A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
carrier
antibacterial material
nano
antibacterial
Prior art date
Application number
PCT/CN2014/092556
Other languages
English (en)
French (fr)
Inventor
杜一挺
Original Assignee
杜一挺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杜一挺 filed Critical 杜一挺
Publication of WO2015192605A1 publication Critical patent/WO2015192605A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds

Definitions

  • the invention relates to a carrier nano silver antibacterial material and a preparation method thereof, and to an antibacterial product prepared by using the carrier nano silver antibacterial material and a preparation method thereof.
  • silver powder In the case of water or organic detergents, silver powder is easily lost due to lack of binding force. Although the silver ion is stronger than the silver powder in use, the organic solvent which reacts with it also desorbs, and the silver ion has strong oxidizing property due to the loss of one or more electrons. Limitations of contact with human cells.
  • the present invention provides a carrier nano silver antibacterial material and a preparation method thereof. Meanwhile, an antibacterial product prepared by using the carrier nano silver antibacterial material and a preparation method thereof are provided.
  • the carrier nanosilver antibacterial material has a killing rate of more than 99.99% against Escherichia coli or Staphylococcus aureus.
  • An antibacterial product containing the carrier nanosilver antibacterial material which has a weight ratio of 0.3% to 5% and a particle diameter of 1-50 Micron carrier nano silver antibacterial material.
  • the antibacterial product is a ceramic glaze, a coating, a film, a plastic, a dye or a fiber; or a ceramic article made of the ceramic glaze, an electronic device housing; or a tableware made of the plastic, PP material cutting board, ABS material bus handrails and seats, PE material phone film, electronic device housing, medical equipment or medical supplies; or textiles and woven fabrics made of the fibers.
  • a method for supporting a nano silver antibacterial material comprising the steps of: mixing kaolin with a dimethyl sulfoxide solution to obtain kaolin/ a dimethyl sulfoxide complex; the kaolin/dimethyl sulfoxide complex and the surfactant are 200:1-2:1
  • the mass is more than the mixing and stirring, and the silver ammonia solution is added to stir again to obtain a silver ammonia mixture; the silver ammonia solution molecule in the silver ammonia mixture is reduced to nano silver by a photocatalytic reduction method to obtain a carrier nano silver antibacterial material.
  • the content of nano silver in the carrier nano silver antibacterial material is 0.01-10 mol/kg.
  • the photocatalytic reduction method is specifically achieved by: placing a silver ammonia mixture at 250 nm to 420 nm Between the UV light, photocatalysis 6-72h, obtain nano silver / Kaolin intercalation compound.
  • the photocatalytic reduction method further comprises adding a protective agent to the silver ammonia mixture before the ultraviolet photocatalytic treatment, the protective agent being selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol, sorbitol, sodium citrate, Polyvinylpyrrolidone( One or two of PVP), carboxymethylcellulose, and sodium hexametaphosphate.
  • the protective agent is added in a molar ratio of silver ammonia solution to protective agent 1:10-10:1.
  • the hydrothermal reduction method is used instead of the photocatalytic reduction method, specifically by adding a reducing agent to the silver ammonia mixture according to a molar ratio of the silver ammonia solution to the reducing agent of 0.3-10, and then adding the reducing agent. ,in The reduction reaction is carried out at 50-100 °C.
  • the invention adopts the photocatalytic reduction method or the hydrothermal reduction method to reduce the silver ions embedded in the kaolin crystal layer and the edge supported on the kaolin crystal to nano silver, which greatly improves the conversion rate of silver ions into nano silver, thereby improving the conversion rate of silver ions into nano silver.
  • the concentration of nano-silver in the carrier nano-silver antibacterial material is the nano-silver in the hydrothermal method without the addition of a reducing agent) 9-20 times
  • antibacterial effect reduce the amount of carrier nano silver antibacterial material when producing antibacterial products.
  • 1 shows an XRD diffraction pattern of a carrier nanosilver antibacterial material according to an embodiment of the present invention; wherein 1 is a kaolin XRD diffraction pattern and 2 is an XRD diffraction pattern of a carrier nanosilver antibacterial material.
  • the invention provides a carrier nano silver antibacterial material which is a nano silver/kaolin intercalation composite.
  • the carrier nano silver antibacterial material contains kaolin, nano silver and silver ions.
  • the nano silver and silver ions are supported on kaolin.
  • the kaolin is a 1:1 type dioctahedral layered silicate structure, part of the nano silver and silver ions are embedded between the kaolin layer, and the edge of the kaolin crystal is also loaded with nano silver and silver ions, the kaolin II
  • the spacing between adjacent crystal layers is 1-5 nm, the content of the nano silver is 0.01-10 mol/kg, and the particle size of the nano silver is 1-100 nm.
  • the invention also provides a preparation method of the carrier nano silver antibacterial material, comprising the following steps:
  • the surfactant may be cationic, anionic and nonionic surfactant. Any one, two or more kinds of agents; afterwards, a certain amount is added in a ratio of 10-1000 ml of a silver ammonia solution having a concentration of 0.001-1 mol/L per 1-100 g of kaolin/dimethyl sulfoxide complex. The silver ammonia solution was stirred again for 24-48 hours.
  • the surfactant mainly serves the following two aspects: on the one hand, improving the dispersibility of the silver ammonia solution, preventing agglomeration when the nano silver is reduced to form a precipitate; on the other hand, the kaolin can be improved by dispersing the kaolin.
  • the specific surface area thereby increasing the probability of silver ammonia molecules entering the layer.
  • the surfactant is selected from the group consisting of sodium hexametaphosphate, cetyltrimethylammonium bromide, polyvinyl alcohol, sodium lauryl sulfate, sodium tripolyphosphate, polyvinylpyrrolidone, lignin sulfonate. Any one, two or more of sodium and sodium silicate.
  • the use method is one of hydrothermal reduction method and photocatalytic reduction method.
  • Hydrothermal reduction method adding a reducing agent to the solution treated in the step (2) in a ratio of a molar ratio of the silver ammonia solution to the reducing agent of 0.3 to 10, and continuing to stir, the reducing agent being selected from the group consisting of hydrazine hydrate, glucose, and vitamins One, two or more kinds of C, an aldehyde compound, triethanolamine and sodium borohydride; after that, the reduction reaction is carried out at 50 to 100 ° C, and the reduction reaction time is controlled to be 18 to 48 hours.
  • the UV spectrophotometer showed that the nano-silver concentration in the nano-silver/kaolin intercalation compound prepared by hydrothermal reduction method was 15-20 times of the concentration of nano-silver obtained by direct hydrothermal method without reducing agent.
  • the addition of a reducing agent can increase the conversion rate of nano silver.
  • the above-mentioned direct hydrothermal method without reducing agent that is, without adding the above-mentioned reducing agent, and other parameters are the same as the hydrothermal reduction method, the silver ions in the silver ammonia solution are directly hydrothermally reduced to nano silver.
  • Photocatalytic reduction method a silver-ammonia solution and a protective agent are added in a molar ratio of 1:10-10:1 to protect the photo-electron reduction silver ammonia solution by ultraviolet light, and the ultraviolet light wavelength is between 250 nm and 400 nm, and the catalytic time is 6-72h, nano-silver/kaolin intercalation compound can be obtained; after dilution, it can be detected by ultraviolet spectrophotometer that the concentration of nano-silver in the nano-silver/kaolin intercalation compound obtained by photocatalytic reduction method is directly added without reducing agent.
  • the nano-silver in the thermal method is 9-20 times, and the concentration of nano-silver is no longer increased after ultraviolet light catalysis for a sufficient time, indicating that the ultimate reduction state has been reached.
  • the protective agent may be one or both of polyethylene glycol, polypropylene glycol, ethylene glycol, sorbitol, sodium citrate, polyvinylpyrrolidone (PVP), carboxymethylcellulose, sodium hexametaphosphate.
  • PVP polyvinylpyrrolidone
  • carboxymethylcellulose sodium hexametaphosphate.
  • the role of the above protective agent a. can prevent agglomeration during the reduction process of nano silver, increase the reaction area, and promote the reaction thoroughly; b. disperse kaolin. In the photocatalytic reduction process, the extension of the ultraviolet light time can increase the conversion rate of the nano silver.
  • the kaolin still maintains the 1:1 type dioctahedral layered silicate structure. Because of the entry of silver ions and nano silver, the crystal layers are expanded from 0.716 nm to more than 3 nm. Referring to Figure 1, it is proved by XRD diffraction that the original kaolin remains crystalline and the chemical composition remains unchanged.
  • the antibacterial test of the carrier nano silver antibacterial material by using the national standard GBT21510-2008 mainly includes the following steps:
  • the antibacterial results showed that the killing rate against Escherichia coli and Staphylococcus aureus was more than 99.99%, far higher than the national standard of 90%.
  • the carrier nanosilver antibacterial material of the invention can be used for preparing or coating antibacterial products for medical, industrial and domestic use, and the antibacterial product has corresponding properties by relying on the carrier nano silver antibacterial material.
  • the antibacterial product contains 0.3% to 5% by weight of a carrier nanosilver antibacterial material having a particle diameter of 1 to 50 ⁇ m.
  • the antibacterial product is a ceramic glaze, a coating, a film, a plastic, a dye, a fiber, or the like having the carrier nanosilver antibacterial material.
  • the ceramic glaze can be fabricated into a ceramic article, an electronic device housing, or the like.
  • the plastic can be manufactured into tableware, PP material cutting board, ABS material bus handrail and seat, PE material mobile phone film, electronic device housing, medical equipment and medical supplies.
  • the fibers can be made into textiles, woven fabrics, such as socks, and the like.
  • the antibacterial product can be obtained by grinding the prepared carrier nanosilver antibacterial material to a particle size of 1-50 micrometers and adding it to the application according to a weight ratio of 0.3% to 5%, and the application material can be ceramic glaze. Materials, coatings, plastics, dyes, etc.
  • the application may be applied to the surface of the product or added to the product component.
  • the method may be that the carrier nano silver antibacterial material is uniformly mixed into the application, and then applied to the surface of the product by spraying, showering, immersing, etc., if it is a plastic product,
  • the ground carrier nanosilver antibacterial material is uniformly mixed into the product by blending or co-extruding with the masterbatch.
  • kaolin 50 g of kaolin was added to 500 ml of DOSO solution with 60% by mass, stirred for 24 h, taken out, and then washed twice with pure water, once with methanol, and dried at 70 ° C to obtain kaolin/dimethyl sulfoxide.
  • Complex dissolve 1 g of sodium tripolyphosphate in 80 ml of aqueous solution, pour the dried kaolin/dimethyl sulfoxide complex powder into the aqueous solution and mix well; then slowly pour 500 ml into the aqueous solution.
  • kaolin 100 g of kaolin was added to 1000 ml of DOSO solution with 100% by mass, stirred for 72 h, taken out, and then washed twice with pure water, once with ethanol, and dried at 90 ° C to obtain kaolin/dimethyl sulfoxide compound.
  • the carrier nano silver antibacterial material is processed to a particle size of 50 ⁇ m or less, added to the sock dye in a 5% by weight ratio, stirred for 20 minutes, and then dyed; the national standard FZ/T73023-2006 test shows that after 50 washings The antibacterial rate of the dyed socks is still above 99%.
  • the carrier nanosilver antibacterial material is processed to a particle size of 50 micrometers or less, and a weight ratio of 0.5% is added to the glaze powder, and the bone china bowl blank is glazed and fired at 1200 °C.
  • the test using the national standard JC/T897-2002 showed that the antibacterial rate of the bone china bowl was 91%.
  • the implementation can be injection molding and extrusion; afterwards, the test with the national standard QB/T2591-2003 shows that the plastic has an antibacterial rate of 93%.
  • kaolin 100 g of kaolin was added to 1000 ml of a 90% by weight DOSO solution, stirred for 72 h, taken out, and then subjected to two pure waters, one methanol washing, and then dried at 90 ° C to obtain kaolin/dimethyl sulfoxide.
  • Complex dissolve 50g of sodium hexametaphosphate in 200ml of water solution, pour the dried kaolin/dimethyl sulfoxide complex powder and mix well; then slowly pour into 1000ml 0.01 mol/L of silver ammonia solution and stirring for 48 h; adding 10 times molar amount of sodium citrate to the above mixed solution, stirring it evenly, and irradiating it with a 365 nm wavelength UV lamp for 71 h.
  • the carrier nano silver antibacterial material is obtained and dried for use.

Abstract

本发明提供了一种载体纳米银抗菌材料,其含有高岭土和纳米银,部分纳米银嵌置在高岭土晶层之间,所述纳米银的含量为0.01-10mol/kg。本发明还提供了所述载体纳米银抗菌材料的制备方法、采用该载体纳米银抗菌材料制备的抗菌产品及其制备方法。所述载体纳米银抗菌材料中纳米银的浓度是不加还原剂直接水热法中的纳米银的9-20倍,具有较佳的抗菌效果。

Description

载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法 技术领域
本发明涉及一种载体纳米银抗菌材料及其制备方法,还涉及一种采用该载体纳米银抗菌材料制备的抗菌产品及其制备方法。
背景技术
自古以来,银就被用于加速伤口愈合、治疗感染、净化水和保存饮料。现有的纳米银抗菌产品往往直接使用银粉或银离子络合物作为抗菌主体添加到产品中。
技术问题
在遇水或有机洗涤剂时,银粉由于缺乏结合力而容易流失。银离子虽在使用中与产品的结合力较银粉强,但遇到可与其反应的有机溶剂也会产生脱附,并且银离子由于失去一个或多个电子,有很强的氧化性,因而存在与人体细胞接触的限制。
技术解决方案
为了克服上述技术问题,本发明提供一种载体纳米银抗菌材料及其制备方法;同时,还提供了一种采用该载体纳米银抗菌材料制备的抗菌产品及其制备方法。
有益效果
一种载体纳米银抗菌材料,其含有高岭土和纳米银,部分纳米银嵌置在高岭土晶层之间,所述纳米银的含量为 0.01-10mol/kg 。
优选地,所述载体纳米银抗菌材料的分子式为 Al2AgX(Si2O5)(OH) 4 ,其中 x=0.001-2.62 。
优选地,所述载体纳米银抗菌材料对大肠杆菌或金黄色葡萄球菌的杀灭率大于 99.99% 。
一种含有所述的载体纳米银抗菌材料的抗菌产品,其含有 0.3%-5% 重量比、粒径为 1-50 微米的载体纳米银抗菌材料。
优选地,所述抗菌产品为陶瓷釉料、涂料、薄膜、塑料、染料或纤维;或为所述陶瓷釉料制成的陶瓷制品、电子装置壳体;或为所述塑料制成的餐具、 PP 材料切菜板、 ABS 材质公交车扶手和座椅、 PE 材质手机贴膜、电子装置壳体、医疗设备或医疗用品;或为所述纤维制成的纺织品、编织品。
一种载体纳米银抗菌材料的方法,包括如下步骤:将高岭土与二甲基亚砜溶液混合,获得高岭土 / 二甲基亚砜复合物;将所述高岭土 / 二甲基亚砜复合物与表面活性剂以 200:1-2:1 的质量比混合搅拌,并加入银氨溶液再次搅拌,获得银氨混合液;采用光催化还原法将银氨混合液中的银氨溶液分子还原为纳米银,制得载体纳米银抗菌材料,所述载体纳米银抗菌材料中纳米银的含量为 0.01-10mol/kg 。
优选地,所述光催化还原法具体通过如下方法实现:将银氨混合液置于在 250nm-420nm 之间的紫外光下,光催化 6-72h ,获得纳米银 / 高岭土插层化合物。所述光催化还原法还包括在紫外光催化处理之前,向银氨混合液中添加保护剂,所述保护剂选自聚乙二醇、聚丙二醇、乙二醇、山梨醇、柠檬酸钠、聚乙烯吡咯烷酮( PVP )、羧甲基纤维素、六偏磷酸钠中的一种或两种。
优选地,所述保护剂按照银氨溶液与保护剂 1:10-10:1 的摩尔比添加。
优选地,采用水热还原法替代所述采用光催化还原法,具体通过如下方式实现:向银氨混合液中按照银氨溶液与还原剂的摩尔比为 0.3-10 的比例加入还原剂,之后,在 50-100℃ 下进行还原反应。
本发明采用光催化还原法或水热还原法,将嵌置在高岭土晶层和负载在高岭土晶体边缘的银离子还原为纳米银,大大地提高了银离子转化为纳米银的转化率,进而提高了所述载体纳米银抗菌材料中纳米银的浓度(是不加还原剂直接水热法中的纳米银的 9-20 倍)与抗菌效果,降低生产抗菌产品时载体纳米银抗菌材料的用量。
附图说明
附图构成本说明书的一部分,用于帮助进一步理解本发明。这些附图图解了本发明的一些实施例,并与说明书一起用来说明本发明的原理。附图中:
图1出示了根据本发明的一个实施方式的载体纳米银抗菌材料的XRD衍射图;其中,1为高岭土XRD衍射图谱,2为载体纳米银抗菌材料的XRD衍射图谱。
本发明的实施方式
下面将结合具体实施例病参照附图来说明本发明的具体实施方式。
本发明提供一种载体纳米银抗菌材料,其为纳米银/高岭土插层复合物。该载体纳米银抗菌材料含有高岭土、纳米银及银离子。所述纳米银、银离子负载在高岭土上。所述高岭土为1:1型二八面体层状硅酸盐结构,部分纳米银、银离子嵌置在高岭土晶层之间,且高岭土晶体边缘也负载有纳米银和银离子,所述高岭土二相邻晶层之间的间距为1-5nm,所述纳米银的含量为0.01-10mol/kg,所述纳米银的粒径为1-100nm。所述载体纳米银抗菌材料的分子式为Al2AgX(Si2O5)(OH)4,其中x=0.001-2.62。
本发明还提供了所述载体纳米银抗菌材料的制备方法,包括如下步骤:
(1)将1-100g高岭土和10-1000ml质量百分含量为1%-100%的二甲基亚砜(DOSO)溶液混合并搅拌24-72小时,形成高岭土/二甲基亚砜复合物;之后,采用纯水洗涤两次、有机溶剂洗涤一次,以去除杂质和多余二甲亚砜,所述有机溶剂可以是甲醇、乙醇中的一种;将洗涤后的高岭土/二甲基亚砜复合物至于烘箱中烘干,烘箱内的温度为40-90℃。本实施例中,烘烤时间为10小时。
(2)将烘干后的高岭土/二甲基亚砜复合物与表面活性剂以200:1-2:1的质量比混合并搅拌均匀,表面活性剂可以是阳离子、阴离子和非离子表面活性剂中的任意一种、两种或两种以上;之后,按每1-100g高岭土/二甲基亚砜复合物添加10-1000ml浓度为0.001-1mol/L的银氨溶液的比例添加一定量的银氨溶液,再次搅拌24-48小时。所述表面活性剂主要起到如下两方面的作用:一方面,提高银氨溶液的分散性,防止还原纳米银时发生团聚从而形成沉淀;另一方面,对高岭土的起分散作用,可以提高高岭土的比表面积,从而增大银氨分子进入晶层间的可能性。本实施例中,表面活性剂为选自六偏磷酸钠、十六烷基三甲基溴化铵、聚乙烯醇、十二烷基硫酸钠、三聚磷酸钠、聚乙烯吡咯烷酮、木质素磺酸钠及硅酸钠中的任意一种、两种或两种以上。
(3)将银氨溶液分子在高岭土晶层间或边缘原位还原为纳米银:使用方法为水热还原法、光催化还原法中的一种。
水热还原法:向步骤(2)处理后的溶液中按照银氨溶液与还原剂的摩尔比为0.3-10的比例加入还原剂并继续搅拌,所述还原剂选自水合肼、葡萄糖、维生素C、醛基化合物、三乙醇胺及硼氢化钠中的一种、两种或两种以上;之后,在50-100℃下进行还原反应,还原反应时间控制在18-48小时。稀释后经紫外分光光度计检测表明,水热还原法制得的纳米银/高岭土插层化合物中纳米银浓度是不加还原剂直接水热法获得的纳米银浓度的15-20倍。水热还原过程中,还原剂的添加可以提高纳米银的转化率。
上述不加还原剂直接水热法,即不添加上述还原剂、且其他参数都与水热还原法相同的情况下,直接将银氨溶液中的银离子水热还原为纳米银。
光催化还原法:按照银氨溶液与保护剂以1:10-10:1的摩尔比添加保护剂,以紫外光激发光电子还原银氨溶液,紫外光波长在250nm-400nm之间,催化时间为6-72h,即可得到纳米银/高岭土插层化合物;稀释后通过紫外分光光度计检测表明,通过光催化还原法获得的纳米银/高岭土插层化合物中纳米银浓度是不加还原剂直接水热法中的纳米银的9-20倍,并且紫外光催化足够时间后纳米银浓度不再增加,表明已经达到极限还原状态。所述保护剂可以是聚乙二醇、聚丙二醇、乙二醇、山梨醇、柠檬酸钠、聚乙烯吡咯烷酮(PVP)、羧甲基纤维素、六偏磷酸钠中的一种或两种。上述保护剂的作用:a.可防止纳米银还原过程中产生团聚,同时增大反应面积,促进反应进行彻底;b.分散高岭土。光催化还原过程中,紫外光照时间的延长可以提高纳米银的转化率。
经还原反应后高岭土仍保持1:1型二八面体层状硅酸盐结构,因为银离子与纳米银的进入,晶层间由0.716nm撑开到3nm以上。请参见图1所示,经XRD衍射证明,原有高岭土仍保持晶型,化学成分不变。
采用国标GBT21510-2008对所述载体纳米银抗菌材料的进行抗菌测试,主要包括如下步骤:
(1)选取大肠杆菌和金黄色葡萄球菌作为检测菌种,取所述载体纳米银抗菌材料0.45-0.55g,加入95ml0.1%的吐温-80溶液,混匀后加入5ml菌悬液,吸取1ml接种于灭菌平皿中,倾注45℃-55℃营养琼基培养基,待琼基凝固后将其置于37℃下恒温箱中,做菌落计数。对照样本使用白炭黑也依次办理。
(2)将器皿放在摇床上,在37℃、150r/min的转速下振荡1-4h;然后抽取1ml接种于灭菌平皿中,倾注45℃-55℃营养琼基培养基,待琼基凝固后将其置于37℃下恒温箱中,46-48h后,做菌落计数。
(3)依照国标规定抗菌率公式计算抗菌率R。
抗菌结果显示,对大肠杆菌、金黄色葡萄球菌的杀灭率均大于99.99%,远远高于国标规定的90%。
本发明所述载体纳米银抗菌材料可以用于制备或涂覆医用、工业用和生活用抗菌产品,所述抗菌产品依靠载体纳米银抗菌材料而具有相应性能。所述抗菌产品中含有0.3%-5%重量比、粒径为1-50微米的载体纳米银抗菌材料。
所述抗菌产品为具有该载体纳米银抗菌材料的陶瓷釉料、涂料、薄膜、塑料、染料及纤维等。所述陶瓷釉料可制造成陶瓷制品、电子装置壳体等。所述塑料可制造成餐具、PP材料切菜板、ABS材质公交车扶手和座椅、PE材质手机贴膜、电子装置壳体、医疗设备及医疗用品等。所述纤维可制造成为纺织品、编织品,如袜子等。
所述抗菌产品可通过如下方法制得:将制好的载体纳米银抗菌材料研磨至粒径为1-50微米,按照0.3%-5%重量比添加到施用物中,施用物可以是陶瓷釉料、涂料、塑料、染料等。
将施用物覆盖于产品表面或添加于产品成分中,方法可以为将载体纳米银抗菌材料均匀混合到施用物中,然后采用喷涂、淋、浸泡等方式施于产品表面,若是塑料制品还可采用共混或与母粒共挤出的方式将研磨后的载体纳米银抗菌材料均匀混入产品中。
实施例1
将50g高岭土添加至500ml质量百分含量为60%的DOSO溶液中,搅拌24h,取出后对其进行两次纯水、一次甲醇洗涤后在70℃下烘干,获得高岭土/二甲基亚砜复合物;将1g三聚磷酸钠溶于80ml水溶液中,向水溶液中倒入烘干后的高岭土/二甲基亚砜复合物粉末并搅拌均匀;再向水溶液中缓缓倒入500ml 0.1mol/L银氨溶液并搅拌24h;在上述水溶液中加入硼氢化钠5ml,使其在70℃下水热还原2h,制得载体纳米银抗菌材料,并烘干备用。
将1g油性漆放入80℃的烘箱内烘烤2h,取出后算出干湿重比例,按照2.5%的重量比将载体纳米银抗菌材料添加到油性涂料中,搅拌均匀,施工前按照施工比例分别添加稀释剂和固化剂搅拌均匀后即可;之后,采用国标HG/T3950-2007《抗菌涂料》)检测,测得上述添加有载体纳米银抗菌材料的涂料的抗菌率达到99%。
实施例2
将100g高岭土添加质量百分含量为100%的DOSO溶液1000ml中,搅拌72h,取出后对其进行两次纯水、一次乙醇洗涤后在90℃下烘干,获得高岭土/二甲基亚砜复合物;将50g三聚磷酸钠倒入烘干后的高岭土/二甲基亚砜复合物粉末并搅拌均匀;再缓缓倒入1000ml 1mol/L银氨溶液并搅拌48h;按照银氨与葡萄糖为1:10的摩尔比添加葡萄糖至上述混合溶液中,使其在100℃下水热还原48h,制得载体纳米银抗菌材料,并烘干备用。
将载体纳米银抗菌材料加工到粒径为50微米以下,以5%重量比加入袜子染料中,搅拌20分钟,然后对袜子进行染色;采用国标FZ/T73023-2006检测表明,经过50次洗涤后,上述染色处理后的袜子的抗菌率仍在99%以上。
实施例3
将1g高岭土添加至10ml质量百分含量为3%的DOSO溶液中,搅拌24h,取出后对其进行两次纯水、一次甲醇洗涤后在50℃下烘干,获得高岭土/二甲基亚砜复合物;将0.1gPVP倒入烘干后的高岭土/二甲基亚砜复合物粉末并搅拌均匀;再缓缓倒入15ml 0.005mol/L银氨溶液并搅拌24h;在上述混合溶液中以银氨与水合肼为1:0.5的摩尔比添加水合肼,使其在50℃下水热还原20h,制得载体纳米银抗菌材料,并烘干备用。
将载体纳米银抗菌材料加工到粒径在50微米以下,0.5%的重量比加入到釉粉中,对骨瓷碗素坯施釉,并在1200℃下烧成。采用国标JC/T897-2002检测表明,所述骨瓷碗素的抗菌率达到91%。
实施例4
将3g高岭土添加至25ml质量百分含量为1%的DOSO溶液中,搅拌24h,取出后对其进行两次纯水、一次甲醇洗涤后在45℃下烘干,获得高岭土/二甲基亚砜复合物;将0.015g六偏磷酸钠倒入烘干后的高岭土/二甲基亚砜复合物粉末并搅拌均匀;再缓缓倒入12ml 0.01mol/L的银氨溶液并搅拌24h;在上述混合溶液中添加银氨溶液摩尔量1/5摩尔量的羧甲基纤维素待其搅拌均匀后,使用256nm波长的紫外灯对其照射6h后,制得载体纳米银抗菌材料,并烘干备用。
按照0.3%的重量比添加到塑料里,实现方式可以是注塑和挤出;之后,采用国标QB/T2591-2003检测表明,所述塑料抗菌率达到93%。
实施例5
将100g高岭土添加至1000ml质量百分含量为90%的DOSO溶液中,搅拌72h,取出后对其进行两次纯水、一次甲醇洗涤后在90℃下烘干,获得高岭土/二甲基亚砜复合物;将50g六偏磷酸钠溶于200ml水溶液中,并倒入烘干后的高岭土/二甲基亚砜复合物粉末并搅拌均匀;再缓缓倒入1000ml 0.01mol/L的银氨溶液并搅拌48h;在上述混合溶液中添加银氨溶液摩尔量10倍摩尔量的柠檬酸钠待其搅拌均匀后,使用365nm波长的紫外灯对其照射71h后,制得载体纳米银抗菌材料,并烘干备用。
按照5%的重量比添加到釉粉中,对高白瓷碗素坯施釉,并在1250℃下烧成。之后,采用国标JC/T897-2002检测表明,所述高白瓷碗素的抗菌率达到99%以上。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种载体纳米银抗菌材料,其特征在于:该载体纳米银抗菌材料含有高岭土和纳米银,部分纳米银嵌置在高岭土晶层之间,所述纳米银的含量为 0.01-10mol/kg 。
  2. 如权利要求 1 所述的载体纳米银抗菌材料 , 其特征在于:所述载体纳米银抗菌材料的分子式为 Al2AgX(Si2O5)(OH) 4 ,其中 x=0.001-2.62 。
  3. 如权利要求 1 所述的载体纳米银抗菌材料,其特征在于:所述载体纳米银抗菌材料对大肠杆菌或金黄色葡萄球菌的杀灭率大于 99.99% 。
  4. 一种含有如权利要求 1-3 中任一项所述的载体纳米银抗菌材料的抗菌产品,其特征在于:所述抗菌产品中含有 0.3%-5% 重量比、粒径为 1-50 微米的载体纳米银抗菌材料。
  5. 如权利要求 4 所述的抗菌产品,其特征在于:所述抗菌产品为陶瓷釉料、涂料、薄膜、塑料、染料或纤维;或为所述陶瓷釉料制成的陶瓷制品、电子装置壳体;或为所述塑料制成的餐具、 PP 材料切菜板、 ABS 材质公交车扶手和座椅、 PE 材质手机贴膜、电子装置壳体、医疗设备或医疗用品;或为所述纤维制成的纺织品、编织品。
  6. 一种载体纳米银抗菌材料的方法,包括如下步骤:
    将高岭土与二甲基亚砜溶液混合,获得高岭土 / 二甲基亚砜复合物;
    将所述高岭土 / 二甲基亚砜复合物与表面活性剂以 200:1-2:1 的质量比混合搅拌,并加入银氨溶液,获得银氨混合液;
    采用光催化还原法将银氨混合液中的银氨溶液分子还原为纳米银,制得载体纳米银抗菌材料,所述载体纳米银抗菌材料中纳米银的含量为 0.01-10mol/kg 。
  7. 如权利要求 6 所述载体纳米银抗菌材料的制备方法,其特征在于:光催化还原法具体通过如下方法实现:将银氨混合液置于在 250-420nm 之间的紫外光下,光催化 6-72h ,获得纳米银 / 高岭土插层化合物。
  8. 如权利要求 7 所述载体纳米银抗菌材料的制备方法,其特征在于:所述光催化还原法还包括在紫外光催化处理之前,向银氨混合液中添加保护剂,所述保护剂选自聚乙二醇、聚丙二醇、乙二醇、山梨醇、柠檬酸钠、聚乙烯吡咯烷酮( PVP )、羧甲基纤维素、六偏磷酸钠中的一种或两种。
  9. 如权利要求 8 所述载体纳米银抗菌材料的制备方法,其特征在于:所述保护剂按照银氨溶液与保护剂 1:10-10:1 的摩尔比添加。
  10. 如权利要求 9 所述载体纳米银抗菌材料的制备方法,其特征在于:采用水热还原法替代所述采用光催化还原法,具体通过如下方式实现:向银氨混合液中按照银氨溶液与还原剂的摩尔比为 0.3-10 的比例加入还原剂,之后,在 50-100℃ 下进行还原反应。
PCT/CN2014/092556 2014-06-18 2014-11-28 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法 WO2015192605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410274036.9 2014-06-18
CN201410274036.9A CN104012574A (zh) 2014-06-18 2014-06-18 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法

Publications (1)

Publication Number Publication Date
WO2015192605A1 true WO2015192605A1 (zh) 2015-12-23

Family

ID=51429805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092556 WO2015192605A1 (zh) 2014-06-18 2014-11-28 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法

Country Status (2)

Country Link
CN (1) CN104012574A (zh)
WO (1) WO2015192605A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688954A (zh) * 2015-12-31 2016-06-22 柳州若思纳米材料科技有限公司 一种羟基磷灰石披覆Ag/AgBr/TiO2催化剂的制备方法
CN107485732A (zh) * 2016-06-11 2017-12-19 桂林紫竹乳胶制品有限公司 抗菌硅胶管、复合抗菌材料及该材料在硅胶管表面覆层的制备方法
CN110976904A (zh) * 2019-11-21 2020-04-10 延安大学 一种利用芦苇提取液制备纳米银的方法及在含银水凝胶纤维布制备中的应用
CN113563714A (zh) * 2021-07-24 2021-10-29 浙江天源网业有限公司 一种纳米银碳抗菌防螨蜂巢网材及其制备方法
CN114524624A (zh) * 2020-11-23 2022-05-24 广东腾玻玻璃科技有限公司 一种纳米银抗菌玻璃制备方法
CN114713814A (zh) * 2022-05-27 2022-07-08 苏州工业园区安泽汶环保技术有限公司 一种核壳结构炭包覆银锌纳米微球抗菌材料的制备方法
CN115319090A (zh) * 2022-08-26 2022-11-11 苏州工业园区安泽汶环保技术有限公司 一种高效微粒度炭覆银锌纳米微球抗菌材料的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017409B (zh) * 2014-06-18 2017-02-15 杜一挺 抗菌涂料及其制备方法
CN104530676B (zh) * 2014-12-11 2016-08-31 张运泉 抗菌塑料的制备方法、抗菌塑料及其的应用
CN104857551B (zh) * 2015-06-18 2018-04-27 中国医学科学院生物医学工程研究所 一种含银抗菌敷料及制备方法
CN108160991B (zh) * 2018-01-11 2019-08-23 中国矿业大学 抗菌复合粉体、抗菌功能化复合材料及制备方法
CN110526255A (zh) * 2019-09-29 2019-12-03 福州大学 一种利用插层制备地开石/纳米银复合物的方法
CN111086208A (zh) * 2019-12-23 2020-05-01 齐鲁理工学院 高分子抑菌材料的制造方法
CN111559926B (zh) * 2020-07-15 2020-10-27 广东蒲公英新型材料有限公司 一种基于硅酸盐基体表面的抗菌材料及其制备方法
CN114264805A (zh) * 2021-12-06 2022-04-01 上海纳米技术及应用国家工程研究中心有限公司 一种基于sers增强的探针的制备方法及其产品和应用
CN115366512A (zh) * 2022-08-08 2022-11-22 浙江亚厦装饰股份有限公司 一种高硬度抗菌木塑的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723392A (zh) * 2008-10-25 2010-06-09 杜一挺 一种纳米银/粘土插层复合物的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526939A (ja) * 2008-06-25 2011-10-20 ナノバイオマターズ,エス.エル. 活性ナノ複合材料、及び活性ナノ複合材料を得るためのプロセス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723392A (zh) * 2008-10-25 2010-06-09 杜一挺 一种纳米银/粘土插层复合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHU, GUANG ET AL.: "Developments on Preparation and Application of Nanometer Silver Powders", PRECIOUS METALS, vol. 27, no. 01, 31 March 2006 (2006-03-31) *
XU , GUANNIAN ET AL.: "New Method about the Preparation of Single Dispersion Spheric Silver Nanoparticles and Its Antibacterial Property", RARE METAL MATERIALS AND ENGINEERING, vol. 37, no. 09, 30 September 2008 (2008-09-30) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688954A (zh) * 2015-12-31 2016-06-22 柳州若思纳米材料科技有限公司 一种羟基磷灰石披覆Ag/AgBr/TiO2催化剂的制备方法
CN107485732A (zh) * 2016-06-11 2017-12-19 桂林紫竹乳胶制品有限公司 抗菌硅胶管、复合抗菌材料及该材料在硅胶管表面覆层的制备方法
CN107485732B (zh) * 2016-06-11 2023-03-10 稳健(桂林)乳胶用品有限公司 抗菌硅胶管、复合抗菌材料及该材料在硅胶管表面覆层的制备方法
CN110976904A (zh) * 2019-11-21 2020-04-10 延安大学 一种利用芦苇提取液制备纳米银的方法及在含银水凝胶纤维布制备中的应用
CN110976904B (zh) * 2019-11-21 2022-09-06 延安大学 一种利用芦苇提取液制备纳米银的方法及在含银水凝胶纤维布制备中的应用
CN114524624A (zh) * 2020-11-23 2022-05-24 广东腾玻玻璃科技有限公司 一种纳米银抗菌玻璃制备方法
CN113563714A (zh) * 2021-07-24 2021-10-29 浙江天源网业有限公司 一种纳米银碳抗菌防螨蜂巢网材及其制备方法
CN113563714B (zh) * 2021-07-24 2023-05-26 浙江天源网业有限公司 一种纳米银碳抗菌防螨蜂巢网材及其制备方法
CN114713814A (zh) * 2022-05-27 2022-07-08 苏州工业园区安泽汶环保技术有限公司 一种核壳结构炭包覆银锌纳米微球抗菌材料的制备方法
CN114713814B (zh) * 2022-05-27 2023-12-26 苏州工业园区安泽汶环保技术有限公司 一种核壳结构炭包覆银锌纳米微球抗菌材料的制备方法
CN115319090A (zh) * 2022-08-26 2022-11-11 苏州工业园区安泽汶环保技术有限公司 一种高效微粒度炭覆银锌纳米微球抗菌材料的制备方法
CN115319090B (zh) * 2022-08-26 2023-12-26 苏州工业园区安泽汶环保技术有限公司 一种高效微粒度炭覆银锌纳米微球抗菌材料的制备方法

Also Published As

Publication number Publication date
CN104012574A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2015192605A1 (zh) 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法
WO2015192676A1 (zh) 抗菌涂料及其制备方法
Gao et al. A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination
US20140212467A1 (en) Antimicrobial Composite Material
CN1331400C (zh) 复合光触媒抗菌剂的制备方法
CN102763678B (zh) 立方体磷酸锆载银抗菌粉的制备方法
KR101218508B1 (ko) 세라믹-탄소 복합체 및 그 제조방법
CN108588883B (zh) 石墨烯纤维及制备方法和制品
CN101720785A (zh) 一种复合抗菌剂及其制备方法
CN104012573A (zh) 膨润土载纳米银抗菌剂及其制备工艺
CN101720787A (zh) 一种载银磷酸锆/纳米二氧化钛复合抗菌剂及其制备方法
Li et al. Fabrication of regenerated cellulose membranes with high tensile strength and antibacterial property via surface amination
WO2019160367A1 (ko) 분자체 결정 입자-코팅된 비드 복합체 및 상기 비드 복합체를 함유하는 물품
CN106810212A (zh) 一种高效平板陶瓷膜的制作工艺
CN107174980A (zh) 一种纤维素叠层抗菌超滤膜的制备方法
Lin et al. PHB/PCL fibrous membranes modified with SiO 2@ TiO 2-based core@ shell composite nanoparticles for hydrophobic and antibacterial applications
CN104650432B (zh) 一种用做橡胶助剂的纳米白炭黑的改性方法
Hosseini-Hosseinabad et al. Development of g-C3N4/ZnO nanocomposite as a novel, highly effective and durable photocatalytic antibacterial coating for cotton fabric
CN112175371B (zh) 一种抗菌型阻燃炭塑复合材料的制造工艺
CN106346017B (zh) 一种银/二氧化硅纳米线复合材料的制备方法
CN110922661A (zh) 一种无机纳米抗菌塑料及其制备方法和在供水管中的应用
WO2017086722A1 (ko) 고효율 가시광촉매 활성을 갖는 결정상 폴리[3-헥실티오펜]/금속 산화물 복합 가시광촉매 및 그 제조방법
CN106589715B (zh) 一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用
CN106689201B (zh) 纳米银抗菌剂及其制备方法
Martynov et al. New hybrid materials based on nanostructured aluminum oxyhydroxide and terbium (III) bis (tetra-15-crown-5-phthalocyaninate)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19-05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14894841

Country of ref document: EP

Kind code of ref document: A1