CN106589715B - 一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用 - Google Patents

一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用 Download PDF

Info

Publication number
CN106589715B
CN106589715B CN201610800796.8A CN201610800796A CN106589715B CN 106589715 B CN106589715 B CN 106589715B CN 201610800796 A CN201610800796 A CN 201610800796A CN 106589715 B CN106589715 B CN 106589715B
Authority
CN
China
Prior art keywords
tio
pvdf
nano
dispersion
master batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610800796.8A
Other languages
English (en)
Other versions
CN106589715A (zh
Inventor
罗道友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing new Mstar Technology Ltd. Turner
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN106589715A publication Critical patent/CN106589715A/zh
Application granted granted Critical
Publication of CN106589715B publication Critical patent/CN106589715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种负载功能TiO2纳米材料的PVDF母料的制备方法与应用。该方法的具体步骤为:首先采用超临界CO2流体方法制备功能化TiO2微纳分散体,即将纳米TiO2粉体、无水乙醇、表面活性剂如乙酰丙酮和曲拉通、酞菁铜光敏化剂等加入到反应釜中,通过加温搅拌溶解、CO2流体超临界混合反应、降温降压、排气减压与降温等过程,得到浓度可调的功能化TiO2微纳分散体;然后将该分散体与PVDF树脂按质量比1∶8‑100在高速混合机中混合均匀,得到负载功能TiO2纳米材料的PVDF母料,其中高速混合机配有抽气排气装置,便于乙醇的回收。该纳米功能母料在PVDF专用树脂、PVDF水处理膜用铸膜液和其它含PVDF制品等领域具有广泛的用途。

Description

一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用
技术领域
本发明涉及一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用,属于纳米功能材料领域。
背景技术
聚偏氟乙烯(PVDF)是一种结晶性聚合物,机械强度高,具有优异的抗射线、紫外线辐射、耐冲击性、耐热和耐老化性能、极强的疏水性,在耐酸、碱、有机溶剂等苛刻环境条件和化学稳定性好,在污水处理、石油化工、电子电气和氟碳涂料等领域得到了广泛应用,在当今水污染严重及水资源缺乏的背景下,PVDF水处理膜的应用尤其显示了巨大的应用前景。
以纳米TiO2为代表的纳米光催化材料是近年来人们研究的重点方向之一,在治理大气污染、污水处理等领域已显示了广阔的应用前景。纳米TiO2不仅具有光催化作用,能将水中的有机物污染物氧化降解为无害的和H2O,而且具有良好的亲水性和抑菌杀菌性,还可以吸附高氧化态的汞、银、铂等贵重金属离子,降低毒性。但单纯TiO2作为光催化剂时,由于量子效率较低,其光催化活性有限,将纳米TiO2进行掺杂与改性制备功能化纳米TiO2是目前人们普遍采用的提高TiO2的光催化效率的方法,包括金属离子(贵金属、过渡金属、稀土)掺杂、碳纳米管/石墨烯掺杂、复合半导体、表面沉积纳米金属或金属氧化物,以及对TiO2进行有机染料敏化等。。
针对PVDF水处理膜,近年来越来越多的科学工作者把研究兴趣转向到PVDF膜的改性研究,其中包括对在PVDF铸膜液制备中对PVDF进行物理共混改性,膜的化学接枝改性以及膜的表面改性,期待进一步提高PVDF微滤、超滤和纳滤膜的特性和性能,特别是提高PVDF膜的水通量和抗污染性。其中,将纳米 TiO2或功能化纳米TiO2分散在PVDF铸膜液中进行物理共混改性,制备高水通量与抗污染PVDF中空纤维膜,已有相关研究报道和专利,也有将其它纳米金属或金属氧化物、碳纳米管/石墨烯等纳米材料等单独或复合使用,分散在PVDF铸膜液中制备高性能PVDF中空纤维膜的方法。如梁炜等纳米γ-Al2O3/PVDF中空纤维膜的的结构研究(水处理技术,vol.30/no.4/2004)、吕慧等纳米颗粒对PVDF超滤膜性能影响的研究(哈尔滨商业大学学报,vol.24/no.1/2008),发明专利:用于污水处理的平板膜制备方法(专利号 201110256214.1)、专利:一种利用纳米TiO2溶胶亲水化改性PVDF超滤膜的方法(专利申请号: 201110068729.9)、专利:一种Ag/TiO2改性PVDF超滤膜及其制备方法与应用(专利申请号: 201210541062.4)、专利:离子液体修饰的TiO2纳米粒子/PVDF复合微孔膜及其制备方法(专利申请号: 201210221533.1)、专利:一种亲水接枝多壁碳纳米管改性聚偏氟乙烯膜及其制备方法(专利申请号: 201410025347.1)和专利:一种掺杂纳米氧化锆粒子和纳米氧化钛粒子的偏氟乙烯杂化膜的制备方法(专利申请号:201510150362.3)。这些已公开的研究、发明及方法均对提高PVDF膜的水通量与抗污染性有一定的效果。
利用溶剂相转移法制备PVDF微滤、超滤和纳滤中空纤维膜是PVDF水处理膜最普遍采用的方法,该方法中的第一个步骤是热溶解法制备浓度为15-30%的PVDF铸膜液,采用的溶剂一般以N、N-二甲基乙酰胺(DMAC)为主,除了不同纳米材料本身的功能特点外,纳米TiO2或功能化纳米TiO2材料等在PVDF/DMAC 铸膜液体系中能否实现有效纳米分散,从而减少纳米颗粒的团聚,是功能化纳米材料发挥作用的关键。纵观已有的研究和专利报道,对于建立在PVDF/DMAC铸膜液体系中易于分散的纳米功能修饰材料体系的制备未见报道。本发明从这一思路出发,利用特定的超临界CO2流体方法和装置(见发明人的相关专利)预先制备功能纳米TiO2微纳分散液,然后将该分散液经超声波处理并与一定比例的PVDF树脂高速混合分散,制备功能纳米TiO2/PVDF母料,该母料以一定比例加入到PVDF/DMAC铸膜液中,使功能纳米TiO2保持原始制备的低团聚分散状态,从而有效地发挥功能纳米TiO2的亲水与抗污染作用。该方法对于制备高水通量与抗污染PVDF膜具有实际意义。
发明内容
本发明涉及一种负载功能TiO2纳米材料的PVDF母料的制备方法,其特征在于该方法的第一步骤为使用下述超临界CO2流体法制备功能化TiO2微纳分散体:
将纳米TiO2粉体、无水乙醇、表面活性剂如乙酰丙酮和曲拉通X-100、光敏化剂酞菁铜按1∶ 100~1∶0.03~0.1∶0.03~0.1∶0.003~0.01的质量比加入到超临界反应釜中,其中酞菁铜与N、N-二甲基乙酰胺(DMAC)按一定比例在常温常压下预先搅拌混合处理,将反应釜加热到30-100℃,搅拌溶解15-60min,转速150-350rpm;将制冷到5-8℃的CO2流体经增压泵增压后通入到反应釜中,在31-100℃温度和 7.14-10.0MPa压力、搅拌转速为100-350rpm下,超临界时间不低于5min;然后向反应釜内U型盘管中通入20-25℃循环冷却水进行降温降压,水流速度为100-120ml/min,当釜内压力和温度分别降至5.2-4.8MPa 和36-32℃时,进行排气减压,排气速度为30-120ml/min,至釜内压力1.0-0MPa时,打开放液阀,得到浓度可调的功能化TiO2微纳分散体。
所述的负载功能TiO2纳米材料为上述特定的超临界流体方法制得的功能化TiO2微纳分散体。
所述的功能化TiO2微纳分散体包含纳米TiO2粉体、无水乙醇、表面活性剂如乙酰丙酮和曲拉通 X-100、光敏化剂酞菁铜等原材料、配比和工艺。
所述的功能化TiO2微纳分散体中所含的纳米TiO2粉体物质,粒度在100纳米以下,不限于何种方法制备,也不限于其它纳米粉体材料,如纳米Al2O3、纳米CaCO3、纳米ZnO、纳米SiO2、纳米炭黑、纳米碳管、纳米石墨烯、纳米金属粉末等,或其它未知的纳米粉体材料,以及上述材料的混合物。
所述的功能化TiO2微纳分散体中的所含的无水乙醇为液体溶剂介质,其它溶剂如N、N-二甲基乙酰胺等胺类、丙烯酸和丙烯酸酯类、芳烃、卤代烃、其它醇类和水等及其混合物也包含在内。
所述的功能化TiO2微纳分散体中所含的表面活性剂包括但不限于乙酰丙酮和曲拉通X-100,也包含其它阳离子表面活性剂、阴离子活性剂、非离子活性剂和两性活性剂等及其混合物。
所述的功能化TiO2微纳分散体中所含的功能修饰或掺杂助剂包括但不限于光敏化剂酞菁铜,如酞菁铁等其它金属酞菁类化合物和含取代基的金属酞菁类化合物、稀土化合物、金属或非金属微粒、纳米炭黑、纳米碳管、纳米石墨烯等及其混合物。
所述的功能化TiO2微纳分散体中所含的功能修饰或掺杂助剂酞菁铜所使用的预处理助剂用量比不受限制,混合时间不低于5min,也不限于N、N-二甲基乙酰胺(DMAC),包括N-乙烯基吡咯烷酮(N-NVP)、聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、二氯甲烷、N、N-二甲基甲酰胺(DMF)、丙烯酸、甲基丙烯酸甲酯、丙烯酰胺等及其混合物。
本发明涉及一种负载功能TiO2纳米材料的PVDF母料的制备方法,其特征在于该方法的第二步骤为使用上述的功能化TiO2微纳分散体,将该功能化TiO2微纳分散体与PVDF树脂按质量比1∶8~100在变频高速混合机中混合,搅拌转速800-1000rpm,混合温度40-50℃,分散混合时间10-15min,得到负载功能 TiO2纳米材料的PVDF母料,其中,高速混合机配有抽气排气装置,便于乙醇的回收。
所述的功能化TiO2微纳分散体与PVDF树脂混合前,优选但不限于进行超声波预分散处理。
所述的负载功能TiO2纳米材料的PVDF母料制备的混合配比与工艺,包含使用其它方法如使用双螺杆挤出或单螺杆技术或密炼挤出造粒的PVDF母料,以及喷雾干燥制备的PVDF母料。
所述的负载功能TiO2纳米材料的PVDF母料中PVDF树脂的粘度或分子量不受限制。
通过采用上述步骤一所使用的方法,超临界CO2流体的超溶解与渗透能力,能够使凝胶化溶剂与表面活性剂更好的与纳米TiO2发生作用,促使团聚的纳米TiO2分离,并使光敏剂酞菁铜等能够有效的负载到纳米TiO2表面微孔中;该步骤脱离超临界状态实施的降温降压过程是关键创新点之一,所采用竖直的内盘管式冷却方式以及三层搅拌,能够有效控制功能化纳米TiO2在分散液中的粒度。
上述步骤二所述的制备PVDF母料的创新目的和意义在于:(1)文献与其它专利中报导采用的方法通常采用干燥法得到功能化纳米TiO2材料,存在二次团聚及使用过程中分散性不好的缺陷;(2)功能化纳米TiO2分散液在放置过程中也不可避免会发生沉降与再团聚现象,直接使用影响质量的稳定与效能的发挥,通过本步骤实施的优选进行超声波处理后,直接与PVDF树脂分散混合,功能化纳米TiO2材料可得到稳定的分散控制;(3)超临界CO2流体制备技术是一种有效的清洁化生产工艺,分散液中的乙醇溶剂对保持纳米材料的团聚有较好作用,但在应用过程中有可能与应用体系相冲突,去除时也有可能增加难度或对环境造成一定的影响,通过该步骤的实施使之得到有效去除与回收利用。
所述的负载功能TiO2纳米材料的PVDF母料通过与PVDF树脂均匀混合,可以得到功能TiO2纳米材料得到均匀分散的PVDF专用树脂,用于具有抗污性能的涂料等产品。
所述的负载功能TiO2纳米材料的PVDF母料可以按一定比例加入到PVDF水处理膜制备过程中的铸膜液中,使功能TiO2纳米材料分散更加均匀,制备的PVDF膜表面更加光滑,具有抑菌性,有利于水处理膜水通量与抗污染性的提高。
附图说明
图1为本发明使用的相关的装置结构示意图.
图2为本发明实施例1所制得的功能化纳米TiO2微纳分散体的纳米粒径分布图(型号:马尔文 ZS-90),功能化纳米TiO2分散体数均粒度的大小为142.0nm。
图3为本发明实施例2所制得的功能化纳米TiO2微纳分散体的纳米粒径分布图(型号:马尔文 ZS-90),功能化纳米TiO2分散体数均粒度的大小为117.2nm。
图4a与图4b为将普通PVDF膜与本发明制备的负载酞菁铜/纳米TiO2材料的PVDF母料按10%比例与PVDF树脂混合制备的膜丝进行的抑菌实验效果。
图5a与图5b分别为普通PVDF膜与本发明制备的负载酞菁铜/纳米TiO2材料的PVDF母料按10%比例与PVDF树脂混合制备的膜的外表面,通过扫描电镜(SEM)观察到的形貌。
图6为本发明制备的负载酞菁铜/纳米TiO2材料的PVDF母料按10%比例与PVDF树脂混合制备的膜的外表面,通过场发射电镜观察到的纳米TiO2分散状态。
具体实施方式
实施例1:(1)称取纳米TiO2的粉体(P25)30g、无水乙醇390g、乙酰丙酮2.1g、曲拉通X-100 1.5g、酞菁铜/DMAC混合液0.45g(酞菁铜/DMAC质量比为1∶2,预先在常温常压下搅拌混合1小时),依次放入反应釜中;将反应釜加热到45℃,搅拌转速300rpm,溶解30min;然后将制冷到5-6℃的CO2流体经增压泵增压后通入到反应釜中,超临界时的温度保持在45C,反应釜压力为8.5MPa、在搅拌转速为150rpm 下,超临界30min;向反应釜内U型盘管中通入20-25℃循环冷却水,水流速度为100-120ml/min,降温降压,当釜内压力和温度分别降至5.0MPa和32-33℃时,进行排气减压,减压排气速度为先慢后快,排气速度为30-120ml/min,至釜内压力0时,打开放液阀,得到纳米TiO2浓度为7.14%的负载酞菁铜的功能化TiO2微纳分散体,用纳米粒度仪测定分散液中纳米TiO2的粒径大小及分布,功能纳米TiO2团聚体平均粒度为142.0nm。
(2)称取1800gPVDF树脂放入到变频高速混合机中,将温度升温到45℃,然后称取200g功能化TiO2微纳分散体,用超声波清洗机超声处理5min,将混合机搅拌转速设定为300rpm,将经过超声处理的功能化TiO2微纳分散体从加料口匀速加入到混合机中,加料时间为2min,打开排气泵,将乙醇抽出到冷却罐中,同时将搅拌转速设定为900rpm,高速混合分散10min,得到负载酞菁铜的功能TiO2纳米材料的PVDF粉体母料。
实施例2:将酞菁铜变为酞菁铁,按照实施例1的步骤,得到负载酞菁铁的功能TiO2纳米材料的 PVDF母料。用纳米粒度仪测定的该分散液中纳米TiO2团聚体平均粒度为117.2nm。
将实施例1和实施例2中制备的PVDF粉体母料按粉体母料:复合抗氧剂B215为100∶0.25混合,在170-200℃温度下用双螺杆挤出机挤出,可以得到负载有酞菁铜和酞菁铁的功能TiO2纳米材料的PVDF 粒状母料。
使用马尔文纳米粒度分析仪(ZS-90)进行分散液中纳米TiO2的粒径大小及分布的检测,能够客观表征纳米TiO2凝胶体和功能化TiO2微纳分散体中纳米分散状态。其检测条件为20℃恒温状态下,以功能TiO2微纳分散体:无水乙醇为1∶1000ml取样混合,经过超声波处理5min中后自动检测。
本发明制备的负载酞菁铜和酞菁铁的纳米TiO2材料的PVDF母料可按一定比例加入到PVDF树脂中混合使用。将PVDF母料/PVDF树脂加入到铸膜液中进行溶解及相转移纺丝制备的PVI)F中空纤维膜表明,纳米TiO2在膜中分布均匀,TiO2粒子尺寸与分散体中大小基本一致,膜的表面光滑致密,孔径小而且均匀,抗菌性得到明显改善。说明该本发明方法对纳米TiO2的分散具有优越性,该功能母料在PVDF水处理膜、 PVDF专用树脂及其它PVDF制品中具有较好的应用前景。

Claims (5)

1.一种负载功能TiO2纳米材料的PVDF母料的制备方法,其特征在于,
第一步骤为使用超临界CO2流体法制备功能化TiO2微纳分散体,具体为:
将纳米TiO2粉体、液体溶剂介质、乙酰丙酮、曲拉通X-100、光敏化剂按1∶100~1∶0.03~0.1∶0.03~0.1∶0.003~0.01的质量比加入到超临界反应釜中,其中光敏化剂与预处理助剂按一定比例在常温常压下预先搅拌混合处理,将反应釜加热到30-100℃,搅拌溶解15-60min,转速150-350rpm;将制冷到5-8℃的CO2流体经增压泵增压后通入到反应釜中,在31-100℃温度和7.14-10.0MPa压力、搅拌转速为100-350rpm下,超临界时间不低于5min;然后向反应釜内U型盘管中通入20-25℃循环冷却水进行降温降压,水流速度为100-120ml/min,当釜内压力和温度分别降至5.2-4.8MPa和36-32℃时,进行排气减压,排气速度为30-120ml/min,至釜内压力1.0-0MPa时,打开放液阀,得到浓度可调的功能化TiO2微纳分散体,
第二步骤为使用所述的功能化TiO2微纳分散体,将该功能化TiO2微纳分散体与PVDF树脂按质量比1∶8~100在变频高速混合机中混合,搅拌转速800-1000rpm,混合温度40-50℃,分散混合时间10-15min,得到负载功能TiO2纳米材料的PVDF母料,其中,高速混合机配有抽气排气装置;
所述的液体溶剂介质为无水乙醇,
所述的光敏化剂为酞菁铜和酞菁铁中的一种,
所述的预处理助剂为N、N-二甲基乙酰胺。
2.如权利要求1中所述的方法,其特征在于,
所述第二步骤中,功能化TiO2微纳分散体与PVDF树脂混合前,所述功能化TiO2微纳分散体进行超声波预分散处理。
3.如权利要求1中所述的方法,其特征在于,
所述的酞菁铜与所使用的预处理助剂的混合时间不低于5min。
4.如权利要求1所述的方法制备得到的负载功能TiO2纳米材料的PVDF母料在制备树脂中的应用,其特征在于,
所述的树脂包含负载功能TiO2纳米材料的PVDF母料。
5.如权利要求1所述的方法制备得到的负载功能TiO2纳米材料的PVDF母料在制备PVDF水处理膜中的应用,其特征在于,
所述PVDF水处理膜的铸膜液包含负载功能TiO2纳米材料的PVDF母料。
CN201610800796.8A 2015-12-31 2016-09-01 一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用 Active CN106589715B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511016039 2015-12-31
CN2015110160393 2015-12-31

Publications (2)

Publication Number Publication Date
CN106589715A CN106589715A (zh) 2017-04-26
CN106589715B true CN106589715B (zh) 2022-10-25

Family

ID=58555797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610800796.8A Active CN106589715B (zh) 2015-12-31 2016-09-01 一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN106589715B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636526B (zh) * 2018-04-24 2020-09-25 北京协同创新食品科技有限公司 一种在超临界状态或以液态气体为分散介质的研磨设备及其产品
CN110124688B (zh) * 2019-05-17 2022-02-25 厦门英仕卫浴有限公司 一种用于杀菌除余氯的电触媒材料的合成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140142567A (ko) * 2013-06-04 2014-12-12 주식회사 에코니티 비대칭성 폴리비닐리덴플루오라이드 중공사막의 제조방법 및 이로부터 제조된 중공사막

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311900C (zh) * 2005-01-27 2007-04-25 浙江大学 酞菁敏化二氧化钛纳米粉体的水热在位制备方法
CN102166482A (zh) * 2011-03-07 2011-08-31 厦门绿邦膜技术有限公司 纳米功能化高分子超滤膜的制备方法
CN102688705A (zh) * 2011-03-22 2012-09-26 中国科学院生态环境研究中心 一种利用纳米TiO2溶胶亲水化改性PVDF超滤膜的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140142567A (ko) * 2013-06-04 2014-12-12 주식회사 에코니티 비대칭성 폴리비닐리덴플루오라이드 중공사막의 제조방법 및 이로부터 제조된 중공사막

Also Published As

Publication number Publication date
CN106589715A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Zeng et al. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites
Ammar et al. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes
Yao et al. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals
CN1899678B (zh) 中空纤维膜制法
Ayyaru et al. Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation
WO2019196386A1 (zh) 一种高效分散碳纳米管的方法
CN104607056B (zh) 一种中空纤维复合纳滤膜及其制备方法
CN111760461B (zh) 一种聚偏氟乙烯混合基质膜的制备方法
CN105233706A (zh) 一种氧化石墨烯金属/金属氧化物纳米粒子改性的中空纤维超滤膜及其制备方法
CN106192081B (zh) 一种石墨烯骨架多孔纳米纤维的制备方法
CN107383405B (zh) 一种复合质子交换膜及其制备方法
WO2016115908A1 (zh) 原位成孔剂的聚偏氟乙烯中空纤维膜及其制备方法
CN102728240A (zh) 一种新型聚偏氟乙烯膜及其制备方法和应用
CN102784567B (zh) 单壁碳纳米管涂覆改性聚偏氟乙烯膜及其制备方法
CN102166482A (zh) 纳米功能化高分子超滤膜的制备方法
CN103785304A (zh) 一种亲水接枝多壁碳纳米管改性聚偏氟乙烯膜及其制备方法
CN104558664A (zh) 利用氧化石墨烯和纳米二氧化硅制备强亲水pet膜的方法
CN106589715B (zh) 一种负载功能TiO2纳米材料的PVDF母料的制备方法和应用
Liu et al. Facile preparation of cross-linked porous poly (vinyl alcohol) nanofibers by electrospinning
Ma et al. Hydrophilic PAA-g-MWCNT/TiO2@ PES nano-matrix composite membranes: Anti-fouling, antibacterial and photocatalytic
KR20160064103A (ko) 높은 탄소 나노튜브 함량 유체
CN113584723A (zh) 一种液态金属纳米颗粒复合纳米纤维膜及其制备方法和应用
CN110871068B (zh) 一种TiO2多孔框架/Pd纳米粒子复合催化剂的合成方法、复合催化剂及其应用
Ouyang et al. Synthesis of PVDF‐B4C mixed matrix membrane for ultrafiltration of protein and photocatalytic dye removal
CN113041847B (zh) 一种氧化二硫化钼复合膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231228

Address after: 102611 North side of Huangwei Road, Weishanzhuang Town, Daxing District, Beijing

Patentee after: Beijing new Mstar Technology Ltd. Turner

Address before: 1802, Floor 1, No. 3, Huayuan Road, Haidian District, Beijing 100084

Patentee before: Luo Daoyou

TR01 Transfer of patent right