WO2019196386A1 - 一种高效分散碳纳米管的方法 - Google Patents

一种高效分散碳纳米管的方法 Download PDF

Info

Publication number
WO2019196386A1
WO2019196386A1 PCT/CN2018/111934 CN2018111934W WO2019196386A1 WO 2019196386 A1 WO2019196386 A1 WO 2019196386A1 CN 2018111934 W CN2018111934 W CN 2018111934W WO 2019196386 A1 WO2019196386 A1 WO 2019196386A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
carbon nanotube
dispersion
efficiently dispersing
parts
Prior art date
Application number
PCT/CN2018/111934
Other languages
English (en)
French (fr)
Inventor
张心亚
黄浩炜
杜芷晴
余晓景
李文愿
黄晓凤
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/046,419 priority Critical patent/US20210163294A1/en
Priority to SG11202009748SA priority patent/SG11202009748SA/en
Publication of WO2019196386A1 publication Critical patent/WO2019196386A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Definitions

  • the invention relates to a method for preparing a carbon nanotube dispersion, in particular to a method for dispersing carbon nanotubes by a Pickering emulsion.
  • the axial dimension of carbon nanotubes is generally on the order of micrometers, while the radial dimension can reach the nanometer scale. With its large aspect ratio, carbon fiber and anisotropic heat conduction materials with excellent toughness can be produced; The hollow structure makes it an ideal catalyst carrier material and hydrogen storage material. Therefore, carbon nanotube reinforced composite materials have become an important field in material research.
  • the chemical dispersion method mainly includes activation of strong acid and alkali, addition of surfactant, covalently grafting small molecular groups on the surface, etc.
  • Chinese invention patent application CN201410338909.8 discloses a method of carbon nanotubes into a strong oxidizing solution to obtain carboxylation. The carbon nanotubes are then subjected to amination to obtain a method for preparing a high concentration carbon nanodispersion.
  • this method uses a strong acid strong oxidant and a toxic and harmful amine compound, which will form a secondary pollution discharge during the separation and purification process.
  • excessively strong oxidation of carbon nanotubes results in excessive surface defects of the carbon nanotubes which reduce or even lose their excellent electrical conductivity.
  • Chinese invention patent application CN201710457271.3 discloses a dispersion of carbon nanotubes/nitrogen-doped with small molecule surfactants polyvinylpyrrolidone, sodium dodecylsulfonate, methylcellulose and Tween-80, siloxane, etc.
  • small molecule surfactants polyvinylpyrrolidone, sodium dodecylsulfonate, methylcellulose and Tween-80, siloxane, etc.
  • the method of carbon nanotube-nano-graphite sheet because the carbon nanotube is not modified, and the surface morphology is not damaged, the conductive paste prepared has good conductivity, but the amount of small-molecule surfactant used is large.
  • Surfactants are often biologically toxic and have potential environmental pollution, which is not conducive to applications in the biomedical field.
  • Pickering emulsion refers to the use of solid particles instead of traditional surfactant-stabilized emulsions. Compared with emulsions traditionally formed with surfactants, Pickering has the advantages of less dosage, less toxic effects on the human body, and no pollution to the environment. Therefore, Pickering emulsion has great hidden value in the fields of chemical industry, cosmetics and biomedicine. Nanoparticles that can be used to stabilize the Pickering emulsion include nano-ferric oxide, graphene oxide, halloysite nanotubes, nano-silica, nano-silver, cellulose, lignin, and the like.
  • Chinese invention patent application CN201710439614 discloses a preparation method of a highly dispersible carbon nanotube/polystyrene nano composite material, which is characterized by diazotization modification of carbon nanotube surface to make it amphiphilic and the function to be obtained Carbon nanotubes are used as solid particle stabilizers in the preparation and polymerization of styrene Pickering emulsions. The method can achieve a uniform dispersion of carbon nanotubes/polystyrene, but the process of diazotization of carbon nanotubes is dangerous and the conductivity of carbon nanotubes is reduced due to diazotization.
  • Chinese invention patent application CN201410647405.4 discloses a method for dispersing and acidifying carbon nanotubes by using magnetic nanometer ferroferric oxide as a solid dispersant, but the method oxidizes carbon nanotubes, causing the carbon nanotubes to rupture and causing them to grow. The reduction in the aspect ratio reduces the mechanical strength of the carbon nanotubes.
  • Chinese invention patent application CN201610570920.6 discloses a method for assembling hydrophilic graphene oxide and carbon nanotubes into an amphiphilic controllable Pickering system, but graphene oxide is a kind of oxidation due to its high degree of oxidation.
  • Insulators, and graphene oxide has a large specific surface area and high shielding performance, and its surface will adsorb a lot of carbon nanotubes, thereby reducing the density of the conductive crosslinked network of carbon nanotubes and hindering the contact of carbon nanotubes with other substances, Conducive to its dispersion in the polymer molding process.
  • the invention mainly solves the problems that the carbon nanotubes in the existing carbon nanotube dispersion liquid are easy to agglomerate, the dispersion concentration is small, the stability is poor, and the mechanical properties of the conduction and thermal conduction are not good, and the method is not required to eliminate the carbon nanotubes.
  • Conductive heat conduction and mechanical properties a method for efficiently dispersing carbon nanotubes.
  • a method for efficiently dispersing carbon nanotubes wherein, in mass fraction, 1 to 30 parts of carbon nanotubes, 0.2 to 10 parts of functionalized carbon nanotubes, and 400 to 1200 parts of a solvent are mixed in a grinding stage to adjust a pH of 5 ⁇ 9; ultrasonic dispersion to obtain a stably dispersed carbon nanotube dispersion; the functionalized carbon nanotubes are carboxylated carbon nanotubes, hydroxylated carbon nanotubes, aminated carbon nanotubes, acid chloride carbon nanotubes, and One or more of the sulfonated carbon nanotubes.
  • the carbon nanotubes are one of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, nitrogen-doped carbon nanotubes, and fluorine-doped carbon nanotubes.
  • the carbon nanotubes have a length of 0.5 to 2 microns and a diameter of 30 to 50 nanometers.
  • the functionalized carbon nanotubes are used in an amount of 0.01 to 5% by mass of the carbon nanotubes.
  • the solvent is one of water, acetone, ethanol, butyl acetate, toluene, N-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide.
  • the pH adjusting reagent is one of sulfuric acid, phosphoric acid, nitric acid, acetic acid, phosphoric acid, aqueous ammonia, sodium hydroxide, sodium hydroxide and sodium hydrogencarbonate.
  • the ultrasonic power is 70-120W.
  • the ultrasonic dispersion is carried out for a period of 0.15 to 3 hours.
  • the functionalized carbon nanotubes of the present invention are sidewall functionalization or end group functionalization of carbon nanotubes.
  • the mechanism of the present invention is that the functionalized carbon nanotubes undergo a functionalized treatment to produce a plurality of small molecule hydrophilic functional groups such as a hydroxyl group, a carboxyl group, a sulfonic acid group, an epoxy group, a carbonyl group and an aldehyde group on the surface or the terminal group thereof. , amide group, amine group, etc., these groups have sp 3 hybridized carbon atoms and oxygen atoms, so they are very hydrophilic, can be mixed with various solvents to form a stable colloidal solution, and are not oxidized or functionalized.
  • a functionalized treatment to produce a plurality of small molecule hydrophilic functional groups such as a hydroxyl group, a carboxyl group, a sulfonic acid group, an epoxy group, a carbonyl group and an aldehyde group on the surface or the terminal group thereof.
  • amide group, amine group, etc. these groups have sp 3 hybridized carbon atom
  • the region still maintains a hydrophobic sp 2 hybridized carbon atom structure, and thus can be assembled into a nanocarbon hybrid structure by non-covalent ⁇ - ⁇ interaction with the original, untreated carbon nanotubes, and the introduction of hydrophobic carbon nanotubes is reduced.
  • the proportion of polar groups in the nanocarbon hybrid structure is such that the nanocarbon hybrid structure has controllable amphiphilicity and a certain three-dimensional structure.
  • the self-assembly behavior of this three-dimensional structure is entropy-increasing, and it is a pure adsorption behavior model without chemical reaction.
  • the three-dimensional structure of the carbon nanotube has structural stability and dispersion stability, and overcomes the anisotropy of the one-dimensional carbon nanotube in structure and function while retaining the low-dimensional structure and high specific surface area of the carbon nanotube.
  • the problem of aggregation and stacking of nano-carbon materials during use is solved, especially the diversity and controllability of functionalized carbon nanotubes in carbon nanotube-functional carbon nanotube hybrid materials, which make the structure and properties of composite materials Has a lot of room for regulation.
  • the addition of such a carbon nanotube three-dimensional structure to the resin matrix can thereby improve the mechanical, electrical and thermal conductivity of the resin matrix.
  • the invention overcomes the problem that carbon nanotubes are easily agglomerated and difficult to disperse in a solvent, and has high stability (no stratification or precipitation phenomenon for 6 months) and high concentration (up to 5 g/L) Aqueous dispersion of carbon nanotubes.
  • the invention utilizes the amphiphilicity of the functionalized carbon nanotubes, and the self-assembly of the carbon nanotubes and the functionalized carbon nanotubes by the ⁇ - ⁇ interaction and the free energy reduction process of the oil-water interface becomes a Pickering with controllable amphiphilicity.
  • System stabilizers to build multi-layer, multi-scale nano-carbon hybrid reinforced polymer matrix composites.
  • the functionalized carbon nanotube-dispersed carbon nanotube prepared by the invention greatly enhances the performance of the polymer composite, not only achieves uniform dispersion of the carbon nanotube in the polymer, but also preserves the structure and structure of the carbon nanotube. High aspect ratio, thus high electrical and thermal conductivity.
  • the functionalized carbon nanotubes used in the present invention are commercial products, the preparation process is mature, and the batch is controllable, and thus the present invention has high reproducibility and high reproducibility.
  • the preparation process of the invention is carried out under normal pressure, the process steps are few, the preparation cycle is short, the equipment is simple, the performance and price ratio are excellent, and the industrial production value is obtained.
  • Example 1 is a high-power SEM image of a dispersion of functional carbon nanotube-dispersed carbon nanotubes obtained in Example 1.
  • Example 2 is a digital photograph of the dispersed state of the functional carbon nanotube-dispersed carbon nanotubes and the original carbon nanotubes obtained in Example 1.
  • Example 3 is a digital photograph of a carbon nanotube resin obtained in Example 1.
  • the zeta potential of the carbon nanotube dispersion was tested using a Malvern particle size analyzer (Malvern, ZS Nano S), and the dispersion stability of the carbon nanotubes was analyzed.
  • the hydrated particle size of the carbon nanotube dispersion was tested using a Malvern particle size analyzer (Malvern, ZS Nano S), and the dispersion stability of the carbon nanotubes was analyzed.
  • the stability of the carbon nanotube dispersion was determined by a centrifugal sedimentation method using the method described in GB/T6753.3-1986.
  • the microscopic dispersion of carbon nanotubes in the carbon nanotube dispersion was characterized using a scanning electron microscope (FE-SEM, SU-8200, Japan).
  • the E44 epoxy resin is used to compound the obtained carbon nanotube dispersion
  • the paint film is prepared according to the coating method of the film by GB/T1727-1992, and the characteristics of the paint film are observed to judge the carbon nanotube aqueous dispersion. Compatibility with resin, conductivity test according to GB1410-78, tensile properties according to GB/T1040-1992, thermal conductivity according to ASTM E153.
  • Example 1 is a graph showing the microscopic dispersion state of a dispersion of a functional carbon nanotube-dispersed carbon nanotube (stabilized dispersed carbon nanotube dispersion) obtained in Example 1 using a scanning electron microscope (FE-SEM, SU-8200, Japan). High magnification SEM image. It can be seen from the figure that the carbon nanotubes can basically form a single-layer dispersed state, but there is a node junction with each other, and the dispersed state is better.
  • FE-SEM scanning electron microscope
  • Example 2 is a digital photograph of the dispersed state of the functional carbon nanotube-dispersed carbon nanotube obtained in Example 1 after standing still for 3 weeks using the digital camera (Olympus E-M10II). It can be seen from the figure that the carbon nanotubes dispersed by the method of the present embodiment have high stability and no precipitation or delamination for a long time.
  • the apparent carbon color of the obtained carbon nanotube dispersion was dark black at a concentration of 3 g/L.
  • the zeta potential of the aqueous dispersion was -56.8 mV, and the hydrated particle size was 523.2 nm.
  • No precipitation was observed by centrifugation at 5000 r/min for 15 min using a centrifuge, which proved that the stability of the carbon nanotube aqueous dispersion was good.
  • the larger the absolute value of the zeta potential no precipitation was observed in the centrifugal sedimentation experiment, and the dispersion stability was confirmed to be more than 3 months.
  • Chinese invention patent application CN201410338909.8 discloses a preparation method of a high concentration carbon nanotube dispersion liquid, which can achieve a maximum concentration of carbon nanotubes of 30 mg/mL, good dispersion performance, and no segregation for three months, but The method uses a strong acid strong oxidant and a toxic and harmful amine compound, which will form a secondary pollution discharge during the separation and purification process.
  • excessively strong oxidation of carbon nanotubes results in excessive surface defects of the carbon nanotubes which reduce or even lose their excellent electrical conductivity.
  • the method of the present embodiment contains the original unmodified carbon nanotubes, the dispersion of the carbon nanotubes can be ensured without lowering the electrical conductivity.
  • the invention uses E44 epoxy resin and the obtained carbon nanotube dispersion in a ratio of 100:1 by mass, directly added to the epoxy resin by solution blending, and uniformly stirred and used BGD 206/4 of the standard company.
  • a four-sided wiper film was used to prepare a paint film having a thickness of 120 ⁇ m on a glass sheet.
  • the appearance of the paint film is a black high-gloss continuous paint film.
  • the carbon nanotubes are uniformly dispersed in the resin without agglomeration, and the conductivity is good (about 10 3 ⁇ m). High mechanical strength (elongation at break of 6.27%) and good thermal conductivity (thermal conductivity 1.25W/mK).
  • Example 3 is a digital photograph of the carbon nanotube resin obtained in Example 1 using a digital camera (Olympus E-M10II). It can be seen from the figure that the modified carbon nanotubes have excellent dispersing properties in the epoxy resin, uniform color and no agglomeration.
  • the conductivity of the carbon nanotube-modified epoxy resin obtained by the Chinese invention patent application CN201610570920.6 is 10 -4 S/cm, and the carbon nanotube resin obtained by the method of the present embodiment not only has better thermal conductivity but also higher mechanical properties.
  • the apparent carbon color of the obtained carbon nanotube dispersion was dark black at a concentration of 5 g/L.
  • the zeta potential of the dispersion was -60.8 mV, and the hydrated particle size was 583.2 nm. No sediment was found by centrifugation at 5000 r/min for 15 min using a centrifuge, which proved that the carbon nanotube aqueous dispersion had good stability.
  • the invention uses E44 epoxy resin and the obtained carbon nanotube dispersion in a ratio of 100:1 by mass, directly added to the epoxy resin by solution blending, and uniformly stirred and used BGD 206/4 of the standard company.
  • a four-sided wiper film was used to prepare a paint film having a thickness of 120 ⁇ m on a glass sheet. The appearance of the paint film is black high-gloss continuous paint film.
  • the carbon nanotubes are uniformly dispersed in the resin without agglomeration, good electrical conductivity (about 10 3 ⁇ m), high mechanical strength (elongation at break is 6.23%), and good thermal conductivity ( The thermal conductivity is 1.30 W/mK).
  • the apparent color of the obtained carbon nanotube dispersion was dark black and the concentration was 0.24 g/L.
  • the zeta potential of the dispersion was -48.8 mV, and the hydrated particle size was 600.2 nm. No sediment was found by centrifugation at 5000 r/min for 15 min using a centrifuge, which proved that the stability of the carbon nanotube aqueous dispersion was good.
  • the invention uses E44 epoxy resin and the obtained carbon nanotube dispersion in a ratio of 100:1 by mass, directly added to the epoxy resin by solution blending, and uniformly stirred and used BGD 206/4 of the standard company.
  • a four-sided wiper film was used to prepare a paint film having a thickness of 120 ⁇ m on a glass sheet.
  • the appearance of the paint film is black high-gloss continuous paint film, the carbon nanotubes are uniformly dispersed in the resin without agglomeration, the conductivity is good (about 10 3 ⁇ m), the mechanical strength is high (the elongation at break is 6.19%), and the thermal conductivity is good ( The thermal conductivity is 1.35 W/mK).
  • the apparent carbon color of the obtained carbon nanotube dispersion was dark black at a concentration of 0.0011 g/L.
  • the zeta potential of the dispersion was -43.8 mV, and the hydrated particle size was 610.2 nm. No sediment was found by centrifugation at 5000 r/min for 15 min using a centrifuge, which proved that the stability of the carbon nanotube aqueous dispersion was good.
  • the invention uses E44 epoxy resin and the obtained carbon nanotube dispersion in a ratio of 100:1 by mass, directly added to the epoxy resin by solution blending, and uniformly stirred and used BGD 206/4 of the standard company.
  • a four-sided wiper film was used to prepare a paint film having a thickness of 120 ⁇ m on a glass sheet. The appearance of the paint film is black high-gloss continuous paint film.
  • the carbon nanotubes are uniformly dispersed in the resin without agglomeration, good electrical conductivity (about 10 2 ⁇ m), high mechanical strength (breaking elongation is 6.10%), and good thermal conductivity ( The thermal conductivity is 1.38 W/mK).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种高效分散碳纳米管的方法;以质量份数计,该方法是将碳纳米管1~30份、功能化碳纳米管0.2~10份和溶剂400~1200份混合,调节pH为5~9;超声分散,得到稳定分散的碳纳米管分散体;所述的功能化碳纳米管为的羧基化碳纳米管、羟基化碳纳米管、氨基化碳纳米管、酰氯化碳纳米管和磺化碳纳米管的一种或多种。

Description

一种高效分散碳纳米管的方法 技术领域
本发明涉及一种碳纳米管分散液的制备方法,尤其涉及一种Pickering乳液分散碳纳米管的方法。
背景技术
碳纳米管的轴向尺寸一般为微米级,而径向的尺寸可达到纳米级,利用其较大的长径比,可以制作成韧性极好的碳纤维以及各向异性热传导材料;碳纳米管独特的中空结构使其成为理想的催化剂载体材料和储氢材料,因此,碳纳米管增强复合材料已经成为材料研究中的一种重要的领域。
但是,由于碳纳米管之间存在较强的范德华力,导致其容易缠绕在一起或者团聚成束,从而制约碳纳米管的应用。为使碳纳米管更好地分散,常使用一些物理和化学的方法进行处理。常用的物理方法主要用高能球磨、机械搅拌、超声波震动等。中国发明专利申请CN201610044412.4公布了一种以笼形倍半硅氧烷衍生物与多壁碳纳米管混合进行湿法球磨的方法;但该方法耗时长,步骤复杂,而且高强度的机械作用会导致碳纳米管碎裂,大大降低了其长径比,削弱了碳纳米管的机械强度、杨氏模量的优势,而且物理法得到的分散体稳定性较差,只能持续很短时间。化学分散法主要有强酸强碱活化、添加表面活性剂、表面共价接枝小分子基团等,中国发明专利申请CN201410338909.8公布了一种将碳纳米管放入强氧化溶液中得到羧基化碳纳米管,然后再进行氨基化得到高浓度碳纳米分散液的制备的方法。但该方法使用了强酸强氧化剂以及有毒有害的胺类化合物,在分离提纯过程中会形成二次污染的排放。特别是过度的强氧化处理碳纳米管会导致碳纳米管表面缺陷过多而降低甚至丧失其优良的导电性。
中国发明专利申请CN201710457271.3公开了一种以小分子表面活性剂聚乙烯吡咯烷酮、十二烷基磺酸钠、甲基纤维素和吐温-80、硅氧烷等分散碳纳米管/掺氮碳纳米管-纳米石墨片的方法,因未对碳纳米管进行改性,无破坏其表面形貌,所制得的导电浆导电性能好,但是所使用的小分子表面活性剂的量较多,而表面活性剂往往具有生物毒性,具有潜在的环境污染,因而不利于在生物医药领域中应用。
Pickering乳液是指使用固体颗粒代替传统表面活性剂稳定的乳液。与传统地使用表面活性 剂形成的乳液相比,Pickering具有用量少、对人体的毒性作用小、对环境无污染等优点。因此,Pickering乳液在化工、化妆品、生物医药等领域具有巨大的潜藏价值。可以用于稳定Pickering乳液的纳米粒子包括纳米四氧化三铁、氧化石墨烯、埃洛石纳米管、纳米二氧化硅、纳米银、纤维素、木质素等。中国发明专利申请CN201710439614公开了一种高分散性碳纳米管/聚苯乙烯纳米复合材料的制备方法,该方法对碳纳米管表面进行重氮化改性,使之具有双亲性,将得到的功能化碳纳米管作为固体粒子稳定剂,应用于苯乙烯的Pickering乳液制备和聚合反应。该方法能达到碳纳米管/聚苯乙烯的均匀分散体,但对碳纳米管的重氮化反应过程危险而且碳纳米管由于重氮化作用其导电性能降低。
中国发明专利申请CN201410647405.4公布了一种以磁性纳米四氧化三铁作为固体分散剂分散酸化碳纳米管的方法,但该方法对碳纳米管进行氧化处理,使得碳纳米管破裂,造成其长径比减少,降低了碳纳米管的机械强度。中国发明专利申请CN201610570920.6公布了一种将亲水性氧化石墨烯和碳纳米管组装为两亲性可控的Pickering体系的方法,但是氧化石墨烯由于其氧化程度极高,所以是一种绝缘体,而且氧化石墨烯的比表面积极大以及屏蔽性能高,其表面会吸附很多的碳纳米管,从而降低碳纳米管的导电交联网络的密度以及阻碍碳纳米管与其他物质的接触,不利于其在聚合物成型过程中的分散。
因此,开发出一种不需要表面活性剂而能够分散碳纳米管于各种溶剂中而又不降低碳纳米管的导电导热及机械性能的简单易行的工艺方法,对推动碳纳米管在导热涂料、导电聚合物、超级电容器等有机-无机纳米复合材料方面的实际工业化应用极为重要。
发明内容
本发明主要解决现有的碳纳米管分散液中的碳纳米管易团聚、分散浓度小和稳定性差以及导电导热机械性能不佳的问题,提供一种不需要表面活性剂,不降低碳纳米管的导电导热及机械性能,能够高效分散碳纳米管的方法。
本发明目的通过以下技术方案实现:
一种高效分散碳纳米管的方法,以质量份数计,在研磨阶段中将碳纳米管1~30份、功能化碳纳米管0.2~10份和溶剂400~1200份混合,调节pH为5~9;超声分散,得到稳定分散的碳纳米管分散体;所述的功能化碳纳米管为的羧基化碳纳米管、羟基化碳纳米管、氨基化碳纳米管、酰氯化碳纳米管和磺化碳纳米管的一种或多种。
为进一步实现本发明目的,优选地,所述的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、掺氮碳纳米管和掺氟碳纳米管中的一种。
优选地,所述的碳纳米管的长度为0.5-2微米,直径为30-50纳米。
优选地,所述的功能化碳纳米管用量为碳纳米管的质量分0.01~5%。
优选地,所述的溶剂为水、丙酮、乙醇、醋酸丁酯、甲苯、N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺和二甲基亚砜中一种。
优选地,所述的调节pH的试剂为硫酸、磷酸、硝酸、乙酸、磷酸、氨水、氢氧化钠、氢氧化钠和碳酸氢钠一种。
优选地,所述的超声的功率为70~120W。
优选地,所述的超声分散的时间为0.15~3h。
本发明功能化碳纳米管为对碳纳米管进行侧壁功能化或端基功能化。
本发明的机理为:功能化碳纳米管在经过功能化处理后在其表面或者端基会产生许多的小分子亲水官能团如羟基、羧基、磺酸基、环氧基团、羰基、醛基、酰胺基、胺基等,这些基团有sp 3杂化碳原子及氧原子,因此其亲水性很好,能与多种溶剂混溶形成稳定胶体溶液,而未被氧化或功能化的区域仍然保持疏水的sp 2杂化碳原子结构,因此能和原始的、未经处理的碳纳米管通过非共价π-π作用组装成为纳米碳混杂结构,疏水性碳纳米管的引入降低了纳米碳混杂结构中极性基团所占比例,因此纳米碳混杂结构具有可控两亲性并具有一定的三维空间结构。这种三维结构的自组装行为是熵增的,是一种无化学反应的纯吸附行为模型。该碳纳米管三维结构具有的结构稳定性和分散稳定性,在保留碳纳米管低维结构和高比表面积的同时,克服了一维碳纳米管在结构和功能方面的各向异性,从根本上解决了纳米碳材料在使用过程中的聚集和堆砌问题,特别是碳纳米管-功能碳纳米管混杂材料中的功能化碳纳米管的多样性和可控性的特点使得复合材料结构和性能具有很大的调控空间。在树脂基体中加入这种碳纳米管三维结构体,可以借此提高树脂基体的力学、导电和导热性能。
相对于现有技术,本发明的有益效果是:
1、本发明利用克服了碳纳米管在溶剂中极易团聚、难分散的问题,得到了稳定性高(6个月无分层或沉淀现象)、浓度高(最高浓度可达5g/L)的碳纳米管水分散体。
2、本发明利用了功能化碳纳米管的两亲性,由π-π相互作用和油水界面自由能降低过程驱动碳纳米管和功能化碳纳米管自组装成为具有可控两亲性的Pickering体系稳定剂,构建多层次、多尺度的纳米碳混杂增强聚合物基复合材料。
3、本发明制备的功能化碳纳米管分散碳纳米管很好地增强了聚合物复合材料的性能,不但达到了碳纳米管在聚合物中的均匀分散,同时保留了碳纳米管的结构和高长径比,因而具有高导 电、导热能力。
4、本发明使用的功能化碳纳米管为商品化产品,其制备过程成熟,批次可控,因而本发明的重复性高,再现性强。
5、本发明制备过程在常压下进行,工艺过程步骤少,制备周期短,设备简单,性能价格比优良,有工业化生产价值。
附图说明
图1为实施例1获得功能碳纳米管分散碳纳米管的分散体的高倍扫描电镜图片。
图2为实施例1获得的功能碳纳米管分散碳纳米管与原始碳纳米管的分散状态的数码照片。
图3为实施例1获得的碳纳米管树脂的数码照片。
具体实施方式
为更好地理解本发明,下面结合具体实施例进一步阐述本发明,但实施例不构成对本发明权利要求保护范围的限定,基于实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的其它实施例,都属于本发明的保护范围。
本发明实施例使用马尔文粒径分析仪(Malvern,ZS Nano S)测试碳纳米管分散体的Zeta电位,分析碳纳米管的分散稳定性。
本发明实施例使用马尔文粒径分析仪(Malvern,ZS Nano S)测试碳纳米管分散体的水合粒径大小,分析碳纳米管的分散稳定性。
本发明实施例使用GB/T6753.3-1986所述的方法,通过离心沉降法测定碳纳米管分散体稳定性。
本发明实施例使用扫描电镜(FE-SEM,SU-8200,Japan)表征碳纳米管分散体中碳纳米管的微观分散情况。
本发明实施例使用E44环氧树脂与所得到的碳纳米管分散体进行复配,根据GB/T1727-1992中漆膜刮涂法制备漆膜,观察漆膜的特征判断碳纳米管水分散液与树脂的相容性,根据GB1410-78测试导电性能,根据GB/T1040-1992测定拉伸性能,根据ASTME153测试导热性能。
实施例1
以质量分数计,将1份多壁碳纳米管(CNT-E3010,中山卡耐特塑料有限公司)、0.5份羧基化碳纳米管(羧基摩尔含量为1%,XF022,南京先丰纳米材料科技有限公司)、120份水混合均匀,使用碳酸氢钠水溶液调节pH为8,在功率为100W的超声波清洗机中超声分散1h后得到稳定分散的碳纳米管分散体。
图1为使用扫描电镜(FE-SEM,SU-8200,Japan)对实施例1获得功能碳纳米管分散碳纳米管的分散体(稳定分散的碳纳米管分散体)的微观分散状态进行表征的高倍扫描电镜图片。从图中看出碳纳米管基本能形成单层分散状态,但是彼此会有节点交接,分散状态较佳。
图2为使用数码相机(奥林巴斯E-M10II)对实施例1获得的功能碳纳米管分散碳纳米管与原始碳纳米管静置3个星期后的分散状态的数码照片。从图中看出,使用本实施例方法分散的碳纳米管的稳定性高,久置无沉淀与分层现象。
得到的碳纳米管分散体表观颜色为深黑色,浓度为3g/L。经过测定,水分散液的Zeta电位为-56.8mV,水合粒径大小为523.2nm,使用离心机以5000r/min离心沉降15min未发现任何沉淀,证明碳纳米管水分散液稳定性好。一般来说,Zeta电位的绝对值越大,离心沉降实验无发现沉淀,证明分散稳定性可以达到3个月以上。中国发明专利申请CN201410338909.8公布了一种高浓度碳纳米管分散液的制备方法,该方法能达到碳纳米管的最大浓度为30mg/mL,分散性能良好,三个月不聚沉,但是该方法使用了强酸强氧化剂以及有毒有害的胺类化合物,在分离提纯过程中会形成二次污染的排放。特别是过度的强氧化处理碳纳米管会导致碳纳米管表面缺陷过多而降低甚至丧失其优良的导电性。而本实施例方法由于含有原始未经改性的碳纳米管,因此能保证碳纳米管的分散良好而不降低其导电性能。
本发明使用E44环氧树脂与所得到的碳纳米管分散体以质量份数100:1比例,通过溶液共混的方式直接加入环氧树脂中搅拌均匀并使用标格达公司的BGD 206/4的四面刮膜器在玻璃片上制备厚度为120微米的漆膜。漆膜外观为黑色高光连续漆膜,碳纳米管在树脂中分散均匀无团聚,导电性好(约10 3Ω·m)。机械强度高(断裂伸长率为6.27%),导热性能好(导热系数为1.25W/mK)。
图3为使用数码相机(奥林巴斯E-M10II)对实施例1获得的碳纳米管树脂的数码照片。从图中看出,改性后的碳纳米管在环氧树脂中分散性能优异,色泽均匀而无团聚现象。
中国发明专利申请CN201610570920.6得到的碳纳米管改性环氧树脂电导率为10 -4S/cm,本实施例方法得到的碳纳米管树脂不但导热性能更好,而且机械性能更高。
实施例2
以质量分数计,将2份多壁碳纳米管(CNT-E3010,中山卡耐特塑料有限公司)、2份羟基化碳纳米管(羟基摩尔含量为1.5%)(XF021,南京先丰纳米材料科技有限公司)、800份丙酮混合均匀,使用碳酸氢钠水溶液调节pH为8,在功率为100W的超声波清洗机中超声分散1h后得到稳定分散的碳纳米管分散体。
得到的碳纳米管分散体表观颜色为深黑色,浓度为5g/L。经过测定,分散液的Zeta电位为-60.8mV,水合粒径大小为583.2nm,使用离心机以5000r/min离心沉降15min未发现任何沉淀,证明碳纳米管水分散液稳定性好。
本发明使用E44环氧树脂与所得到的碳纳米管分散体以质量份数100:1比例,通过溶液共混的方式直接加入环氧树脂中搅拌均匀并使用标格达公司的BGD 206/4的四面刮膜器在玻璃片上制备厚度为120微米的漆膜。漆膜外观为黑色高光连续漆膜,碳纳米管在树脂中分散均匀无团聚,导电性好(约10 3Ω·m),机械强度高(断裂伸长率为6.23%),导热性能好(导热系数为1.30W/mK)。
实施例3
以质量分数计,将1份单壁碳纳米管(CNT-E3010,中山卡耐特塑料有限公司)、0.2份羟基化碳纳米管(羟基摩尔含量为1.5%)(XF021,南京先丰纳米材料科技有限公司)、500份乙醇混合均匀,使用氢氧化钠水溶液调节pH为9,在功率为100W的超声波清洗机中超声分散3h后得到稳定分散的碳纳米管分散体。
得到的碳纳米管分散体表观颜色为深黑色,浓度为0.24g/L。经过测定,分散液的Zeta电位为-48.8mV,水合粒径大小为600.2nm,使用离心机以5000r/min离心沉降15min未发现任何沉淀,证明碳纳米管水分散液稳定性好。
本发明使用E44环氧树脂与所得到的碳纳米管分散体以质量份数100:1比例,通过溶液共混的方式直接加入环氧树脂中搅拌均匀并使用标格达公司的BGD 206/4的四面刮膜器在玻璃片上制备厚度为120微米的漆膜。漆膜外观为黑色高光连续漆膜,碳纳米管在树脂中分散均匀无团聚,导电性好(约10 3Ω·m),机械强度高(断裂伸长率为6.19%),导热性能好(导热系数为1.35W/mK)。
实施例4
以质量分数计,将1份单壁碳纳米管(CNT-E3010,中山卡耐特塑料有限公司)、0.5份羟基化碳纳米管(羟基摩尔含量为1.2%)(XF021,南京先丰纳米材料科技有限公司)、1000份N-甲基吡咯烷酮混合均匀,使用氢氧化钠水溶液调节pH为9,在功率为100W的超声波清洗机中超声分散0.5h后得到稳定分散的碳纳米管分散体。
得到的碳纳米管分散体表观颜色为深黑色,浓度为0.0011g/L。经过测定,分散液的Zeta电位为-43.8mV,水合粒径大小为610.2nm,使用离心机以5000r/min离心沉降15min未发现任何沉淀,证明碳纳米管水分散液稳定性好。
本发明使用E44环氧树脂与所得到的碳纳米管分散体以质量份数100:1比例,通过溶液共混的方式直接加入环氧树脂中搅拌均匀并使用标格达公司的BGD 206/4的四面刮膜器在玻璃片上制备厚度为120微米的漆膜。漆膜外观为黑色高光连续漆膜,碳纳米管在树脂中分散均匀无团聚,导电性好(约10 2Ω·m),机械强度高(断裂伸长率为6.10%),导热性能好(导热系数为1.38W/mK)。
需要说明的是,本发明实施方式不受上述实施例的限制,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明保护范围内;本发明要求保护范围由权利要求书界定。

Claims (8)

  1. 一种高效分散碳纳米管的方法,其特征在于,以质量份数计,将碳纳米管1~30份、功能化碳纳米管0.2~10份和溶剂400~1200份混合,调节pH为5~9;超声分散,得到稳定分散的碳纳米管分散体;
    所述的功能化碳纳米管为的羧基化碳纳米管、羟基化碳纳米管、氨基化碳纳米管、酰氯化碳纳米管和磺化碳纳米管的一种或多种。
  2. 根据权利要求1所述的高效分散碳纳米管的方法,其特征在于,所述的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、掺氮碳纳米管和掺氟碳纳米管中的一种。
  3. 根据权利要求1或2所述的高效分散碳纳米管的方法,其特征在于,所述的碳纳米管的长度为0.5-2微米,直径为30-50纳米。
  4. 根据权利要求1所述的高效分散碳纳米管的方法,其特征在于,所述的功能化碳纳米管用量为碳纳米管的质量分0.01~5%。
  5. 根据权利要求1所述的高效分散碳纳米管的方法,其特征在于,所述的溶剂为水、丙酮、乙醇、醋酸丁酯、甲苯、N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺和二甲基亚砜中一种。
  6. 根据权利要求1所述的高效分散碳纳米管的方法,其特征在于,所述的调节pH的试剂为硫酸、磷酸、硝酸、乙酸、磷酸、氨水、氢氧化钠、氢氧化钠和碳酸氢钠一种。
  7. 根据权利要求1所述的高效分散碳纳米管的方法,其特征在于,所述的超声的功率为70~120W。
  8. 根据权利要求1所述的高效分散碳纳米管的方法,其特征在于,所述的超声分散的时间为0.15~3h。
PCT/CN2018/111934 2018-04-12 2018-10-25 一种高效分散碳纳米管的方法 WO2019196386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/046,419 US20210163294A1 (en) 2018-04-12 2018-10-25 Method for efficiently dispersing carbon nanotube
SG11202009748SA SG11202009748SA (en) 2018-04-12 2018-10-25 Method for efficiently dispersing carbon nanotube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810324628.5 2018-04-12
CN201810324628.5A CN108584918B (zh) 2018-04-12 2018-04-12 一种高效分散碳纳米管的方法

Publications (1)

Publication Number Publication Date
WO2019196386A1 true WO2019196386A1 (zh) 2019-10-17

Family

ID=63622123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111934 WO2019196386A1 (zh) 2018-04-12 2018-10-25 一种高效分散碳纳米管的方法

Country Status (4)

Country Link
US (1) US20210163294A1 (zh)
CN (1) CN108584918B (zh)
SG (1) SG11202009748SA (zh)
WO (1) WO2019196386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518453A (zh) * 2022-01-26 2022-05-20 东北农业大学 一种多壁碳纳米管复合物及其制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031115A (zh) * 2018-01-11 2019-07-19 清华大学 面源黑体
CN108584918B (zh) * 2018-04-12 2020-05-22 华南理工大学 一种高效分散碳纳米管的方法
CN109647001A (zh) * 2018-11-30 2019-04-19 中国刑事警察学院 一种呋喃丹碳纳米管表面分子印迹固相萃取柱
CN111747399B (zh) * 2019-03-26 2021-11-23 中国科学院物理研究所 一种碳纳米管的分离方法
CN110033952B (zh) * 2019-04-22 2020-12-15 武汉商学院 一种导电聚合物碳材料复合薄膜的制备方法
CN110591437B (zh) * 2019-08-19 2021-06-15 苏州市创怡盛实业有限公司 导电涂料及其制备方法和应用
CN111135788A (zh) * 2019-09-18 2020-05-12 青岛农业大学 一种磁性掺氮碳纳米管水处理吸附剂及其制备方法
CN110927218A (zh) * 2019-12-10 2020-03-27 苏州慧闻纳米科技有限公司 用于检测二氧化氮的气敏材料的制备方法及气体传感器
CN112538193A (zh) * 2020-12-16 2021-03-23 上海中镭新材料科技有限公司 一种双模碳纤维及其制备方法和在pc/abs合金材料中的应用
CN112919450A (zh) * 2021-03-03 2021-06-08 上海交通大学 均匀稳定分散碳纳米管与石墨烯的分子体系以及分散工艺
CN113201301B (zh) * 2021-04-09 2022-04-08 北京科技大学 一种覆铜板用碳纳米管的改性方法
CN114231132A (zh) * 2021-12-14 2022-03-25 上海港奇建材有限公司 一种抗静电乙烯基防腐地坪面漆及其制备方法
CN115254089A (zh) * 2022-07-21 2022-11-01 湖北展鹏电子材料有限公司 一种碳纳米管基-TiO2复合纳米材料及其制备方法和应用
CN115784210B (zh) * 2022-09-06 2023-07-07 徐州工程学院 一种碳纳米管复合材料及其制备方法和应用
CN116435513A (zh) * 2023-04-11 2023-07-14 深圳市金百纳纳米科技有限公司 一种水性单壁碳纳米管导电浆料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159612A1 (en) * 2004-11-23 2006-07-20 William Marsh Rice University Ozonation of carbon nanotubes in fluorocarbons
US20070292622A1 (en) * 2005-08-04 2007-12-20 Rowley Lawrence A Solvent containing carbon nanotube aqueous dispersions
CN104085879A (zh) * 2014-07-16 2014-10-08 哈尔滨工业大学 一种高浓度碳纳米管分散液的制备方法
CN106117400A (zh) * 2016-07-19 2016-11-16 沈阳航空航天大学 碳纳米管‑氧化石墨烯增强聚合物基复合材料的制备方法
CN106495131A (zh) * 2016-10-31 2017-03-15 天津农学院 一种在类离子液体中分散碳纳米管的制备方法及应用
CN106957540A (zh) * 2017-03-05 2017-07-18 北京工业大学 一种有效分散碳纳米管的方法
CN108584918A (zh) * 2018-04-12 2018-09-28 华南理工大学 一种高效分散碳纳米管的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786728A1 (en) * 2004-07-29 2007-05-23 William Marsh Rice University Bulk separation of carbon nanotubes by bandgap
KR101121203B1 (ko) * 2005-07-27 2012-03-23 삼성전자주식회사 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물
CN101139089B (zh) * 2007-08-09 2010-07-14 同济大学 一种两亲性嵌段共聚物修饰的碳纳米管的制备方法
JP4635103B2 (ja) * 2008-02-08 2011-02-16 株式会社名城ナノカーボン カーボンナノチューブ分散液、及びその利用
CN104485225B (zh) * 2014-11-14 2016-08-17 哈尔滨工业大学宜兴环保研究院 一种可稳定Pickering乳液的内壁固载贵金属的磁性碳纳米管二维膜片的制备方法
CN107033266B (zh) * 2017-06-12 2019-04-30 蚌埠学院 一种高分散性碳纳米管/聚苯乙烯纳米复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159612A1 (en) * 2004-11-23 2006-07-20 William Marsh Rice University Ozonation of carbon nanotubes in fluorocarbons
US20070292622A1 (en) * 2005-08-04 2007-12-20 Rowley Lawrence A Solvent containing carbon nanotube aqueous dispersions
CN104085879A (zh) * 2014-07-16 2014-10-08 哈尔滨工业大学 一种高浓度碳纳米管分散液的制备方法
CN106117400A (zh) * 2016-07-19 2016-11-16 沈阳航空航天大学 碳纳米管‑氧化石墨烯增强聚合物基复合材料的制备方法
CN106495131A (zh) * 2016-10-31 2017-03-15 天津农学院 一种在类离子液体中分散碳纳米管的制备方法及应用
CN106957540A (zh) * 2017-03-05 2017-07-18 北京工业大学 一种有效分散碳纳米管的方法
CN108584918A (zh) * 2018-04-12 2018-09-28 华南理工大学 一种高效分散碳纳米管的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518453A (zh) * 2022-01-26 2022-05-20 东北农业大学 一种多壁碳纳米管复合物及其制备方法和应用

Also Published As

Publication number Publication date
US20210163294A1 (en) 2021-06-03
CN108584918A (zh) 2018-09-28
CN108584918B (zh) 2020-05-22
SG11202009748SA (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019196386A1 (zh) 一种高效分散碳纳米管的方法
US7943065B2 (en) Conductive carbon nanotube-polymer composite
JP5301793B2 (ja) 再分散用微細炭素繊維集合塊およびその製造方法
Ma et al. Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes
Ghozatloo et al. Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids
US9162896B2 (en) Method for making polymer composites containing graphene sheets
CN108543505B (zh) 一种具有多重核壳结构的复合粒子及其制备方法
CN108609611B (zh) 高稳定性的环保型碳纳米管的水分散液及其制备方法
US10000653B2 (en) Printing ink dispersions comprising discrete carbon nanotubes
US10934447B2 (en) Epoxy resin dispersions comprising discrete carbon nanotubes
Li et al. A bio-surfactant for defect control: Multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites
CN103785304A (zh) 一种亲水接枝多壁碳纳米管改性聚偏氟乙烯膜及其制备方法
Wu et al. Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly (amic acid) as impurity-free dispersant
Poochai et al. Enhancing dispersion of carbon nanotube in polyacrylonitrile matrix using admicellar polymerization
CA2924489A1 (en) High carbon nanotube content fluids
Zhang et al. Facile fabrication of polystyrene/carbon nanotube composite nanospheres with core-shell structure via self-assembly
Shi et al. Enhancement of the mechanical performance of poly (vinyl chloride) using poly (n-butyl methacrylate)-grafted multi-walled carbon nanotubes
JP2010013312A (ja) カーボンナノチューブ分散剤、カーボンナノチューブ分散液およびその製造方法
CN108584934B (zh) 一种磺酸基功能化石墨烯分散体系及其制备方法
Salimbeygi et al. Fabrication of homogeneous multi-walled carbon nanotube/poly (vinyl alcohol) composite films using for microwave absorption application
CN101423208B (zh) 一种亲有机溶剂的碳纳米管微胶囊的制备方法
Sayeed et al. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications
Xue et al. Preparation of water-soluble multi-walled carbon nanotubes by polymer dispersant assisted exfoliation
CN111187449A (zh) 一种适用于复合橡胶体系的碳纳米管功能化修饰方法
Li et al. Green modification of single-walled carbon nanotubes dispersion with good dispersibility and long storage stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC DATED 29.01.2021 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 18914562

Country of ref document: EP

Kind code of ref document: A1