CN110033952B - 一种导电聚合物碳材料复合薄膜的制备方法 - Google Patents

一种导电聚合物碳材料复合薄膜的制备方法 Download PDF

Info

Publication number
CN110033952B
CN110033952B CN201910324748.XA CN201910324748A CN110033952B CN 110033952 B CN110033952 B CN 110033952B CN 201910324748 A CN201910324748 A CN 201910324748A CN 110033952 B CN110033952 B CN 110033952B
Authority
CN
China
Prior art keywords
conductive polymer
composite film
carbon material
material composite
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910324748.XA
Other languages
English (en)
Other versions
CN110033952A (zh
Inventor
李闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Business University
Original Assignee
Wuhan Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Business University filed Critical Wuhan Business University
Priority to CN201910324748.XA priority Critical patent/CN110033952B/zh
Publication of CN110033952A publication Critical patent/CN110033952A/zh
Application granted granted Critical
Publication of CN110033952B publication Critical patent/CN110033952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种导电聚合物碳材料复合薄膜的制备方法,包括以下步骤:步骤1)、羟基化多壁碳纳米管的胶体水溶液的制备;步骤2)、碳纳米管油/水界面组装;步骤3)、导电聚合物碳材料复合薄膜的电化学合成;本发明的PPY/FCNTs复合膜实现了PPY与CNTs性能互补,提高复合膜整体导电性,电荷迁移速率及稳定性,同时复合膜特殊的三维网状结构,有助于充放电过程中电子离子的迁移,使得储能性能明显增强。

Description

一种导电聚合物碳材料复合薄膜的制备方法
技术领域
本发明涉及导电薄膜制备领域。更具体地说,本发明涉及一种导电聚合物碳材料复合薄膜的制备方法。
背景技术
导电聚合物,如聚苯胺(PANI)、聚吡咯(PPY),聚3,4-乙撑二氧噻吩(PEDOT)等,在掺杂态下具有良好的导电性、高电荷储存能力、环境友好稳定性以及优良的可逆性[1-3]等特点,被广泛用于能量存储等领域,如超级电容器、太阳能电池等。然而导电聚合物电极材料在充放电过程中容易发生溶胀和收缩的现象,使得导电聚合物基电极在循环使用过程中,力学性能变差,电容性能衰减。目前将具有大比表面积、高导电性及良好循环稳定性的纳米材料引入导电聚合物,合成导电聚合物复合材料是提高导电聚合物循环性能及比电容的有效途径之一。碳纳米管(CNTs)为多层碳原子套构而成的同轴空心管体,导电和力学性能优异,同时具有大比表面积与良好的双电层电容,与导电聚合物复合可有效提高导电聚合物的比电容、快速充放电性能与循环稳定性。
目前导电聚合物与CNTs复合材料的合成常以羧基化CNTs为模板,通过化学或电化学方法将聚合物单体在CNTs表面聚合。化学法合成的产物为粉末状,需要经过抽滤、分离等繁琐过程,在电极制作过程中还需加入粘接剂,导致材料导电性降低。而电化学法制备导电聚合物/CNTs复合物的方法主要分为两种:一是将导电聚合物直接电沉积在CNTs修饰的电极表面或阵列上;二是将CNTs进行化学修饰或改性,使聚合物单体分散在CNTs的水溶液中,电化学原位共沉积复合材料。但是用这两种方法合成复合物很难精确控制其中CNTs的含量与分散性,同时合成产物大小会受到电极大小的限制。
发明内容
为了实现以上目的,本发明提供一种导电聚合物碳材料复合薄膜的制备方法,包括以下步骤:
步骤1)、羟基化多壁碳纳米管的胶体水溶液的制备
将多壁碳纳米管与酸混合,并加热回流,冷却后抽滤,并用去离子水洗涤至中性,干燥,得到羟基化多壁碳纳米管,并将之超声分散在纯水中,得到既定浓度的羟基化多壁碳纳米管的胶体水溶液;
步骤2)、碳纳米管油/水界面组装
依次加入有机溶液和酸的水溶液,形成油/水界面,再向其中加入羟基化多壁碳纳米管的胶体水溶液,机械振荡,羟基化多壁碳纳米管从水相转移到油/水界面,起初在油/水界面形成乳泡,静置等待乳泡破裂融合,在油/水界面上形成一层柔性的羟基化多壁碳纳米管薄膜;
步骤3)、导电聚合物碳材料复合薄膜的电化学合成
将吡咯投入步骤2)的有机溶液中,静置,直至形成平整稳定的油/水界面,将将直径0.5mm的Pt工作电极缓慢垂直插入油/水界面,使Pt工作电极在两相中浸入的长度相等;以铂环电极为对电极,硫酸亚汞电极为参比电极,将对电极与参比电极分别插入上层水溶液中,调整Pt工作电极使其位于铂环电极中心,参比电极靠近Pt工作电极;采用恒电位法电化学合成目标产物导电聚合物碳材料复合薄膜。
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,步骤1)中,多壁碳纳米管与酸的比例为2g多壁碳纳米管配比100ml酸;
其中,酸为体积1:3的浓硫酸与浓硝酸。
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,步骤1)中加热温度130-150℃。
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,所述有机溶液为CHCl3,CH2Cl2或C7H8中的任意一种。
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,所述酸的水溶液为HClO4,HBF4,C7H10O4S中的任意一种。
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,所述酸的水溶液的浓度为0.1-1mol·L-1
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,步骤3)中,将吡咯投入步骤2)的有机溶液中,形成吡咯的水有机溶液,其浓度为0.1-1mol·L-1
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,步骤2)中,羟基化多壁碳纳米管在油水界面的分散浓度不超过0.2μg·mm-2
优选的是,所述的导电聚合物碳材料复合薄膜的制备方法,相对于硫酸亚汞电极为参比电极,步骤3)中的聚合电位为0.6V-0.8V。
其中,多壁碳纳米——MWCNTs;羟基化多壁碳纳米管——FCNTs;羟基化多壁碳纳米管的胶体水溶液——FCNTs水溶液;
本发明至少包括以下有益效果:本发明方法制备的PPY/FCNTs复合膜产量不受电极大小的限制,聚合效率高,同时产物实现了聚吡咯——PPY与碳纳米管——CNTs之间性能互补,提高复合膜整体导电性,电荷迁移速率及稳定性,同时复合膜特殊的三维网状结构,有助于充放电过程中电子离子的迁移,使得储能性能明显增强。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明中界面电化学聚合PPY/FCNTs复合膜过程示意图;
图2为恒电位(0.6V vs.Hg/Hg2SO4)聚合PPY/FCNTs复合膜生长过程;
图3为PPY/FCNTs复合膜电极循环伏安特性;
图4为PPY/FCNTs复合膜电极恒流充放电曲线;
图5为PPY/FCNTs复合膜的循环寿命曲线(a)及电化学阻抗图(b)。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
一、实验部分
实施例1
1.1原材料
吡咯(Pyrrole,Py);多壁碳纳米管(MWCNTs,直径10-20nm,长度10-30μm,纯度>95%);高氯酸(HClO4);三氯甲烷(CHCl3);浓硫酸(H2SO4)。
1.2羟基化MWCNTs的制备及碳纳米管油/水界面组装(多壁碳纳米——MWCNTs)
1.2.1羟基化MWCNTs的制备
取一定量MWCNT置于250mL圆底烧瓶中,加入100mL体积比为1:3浓硫酸与浓硝酸,轻轻摇匀,加热至140℃,回流约3小时,冷却后抽滤,滤饼用去离子水洗涤至中性,并在50℃下真空干燥24h,得到羟基化MWCNTs,记为FCNTs。酸化后的FCNTs超声分散在二次水中,得到FCNTs胶体水溶液。取10mL FCNTs水溶液置于烧杯中,通过称量法测得FCNTs水溶液的浓度为1850mg·L-1
1.2.2FCNTs碳纳米管油/水界面组装
配制0.2mol·L-1HClO4溶液。在反应容器中依次加入10mL的CHCl3溶液与10mL配制好的HClO4水溶液,形成油/水界面,再加入50μL的FCNTs水溶液,机械振荡5-10min,FCNTs从水相转移到油/水界面,起初在油/水界面形成乳泡,静置10min后,乳泡破裂融合,在油/水界面上形成一层柔性的FCNTs薄膜,此时FCNTs在油水界面的分散浓度为0.082μg·mm-2
1.3PPY/FCNTs复合膜电化学合成
取一定量Py单体加入上述反应容器内的CHCl3溶液中,Py单体浓度为0.1mol·L-1,静置10min,形成平整稳定的油/水界面。将直径0.5mm的Pt工作电极(Pt)工作电极缓慢垂直插入油/水界面,使Pt工作电极在每一相中浸入的长度相等。以铂环电极为对电极,硫酸亚汞电极(Hg/Hg2SO4(固),SO4 2-(a=1))为参比电极,将对电极与参比电极分别插入上层水溶液中,调整工作电极使其位于铂环电极中心,参比电极靠近Pt工作电极。实验过程如图1所示。
采用恒电位法(potentiostatic method)电化学合成PPY/FCNTs复合膜。聚合电位为0.6V(vs.Hg/Hg2SO4)。电化学聚合反应均采用电化学工作站。
1.4形貌表征及性能测试
PPY/FCNTs复合膜微观形貌表征:采用场发射扫描电子显微镜(SEM)观察复合膜正反两面微观形貌;
PPY/FCNTs复合膜电容性能测试:将PPY/FCNTs复合膜(直径约为1cm)反复清洗后直接压于钛网或泡沫镍网(直径约为1cm)上作为工作电极。采用石墨棒和硫酸亚汞(Hg/Hg2SO4)电极分别作为对电极与参比电极,采用循环伏安法(cyclic voltammetry,CV)和计时电位法(Galvanostatic charge-discharge,GCD)和电化学阻抗法测试PPY/FCNTs复合膜电极在1mol·L-1硫酸电解液中的电容性能和电化学阻抗。
实施例2
步骤同上,只是在步骤3)中加入适当含量的FCNTs水溶液,使其在油水界面的分散浓度为0.033μg·mm-2,静置待用。
实施例3
步骤同上,只是在步骤3)中加入适当含量的FCNTs水溶液,使其在油水界面的分散浓度为0.132μg·mm-2,静置待用。
实施例4
步骤同上,只是在步骤3)中加入适当含量的FCNTs水溶液,使其在油水界面的分散浓度为0.182μg·mm-2,静置待用。
二、结果分析
2.1界面电化学聚合PPY/FCNTs复合膜
PPY/FCNTs复合膜的生长过程如图2所示。反应开始前,可以清楚地看到在油水界面上组装的一层FCNTs薄膜。反应开始后,明显观察到在FCNTs薄膜上靠近Pt丝电极表面有黑色圆形产物生成,而这个黑色物质正是PPY,说明随着反应进行,PPY包覆着油水界面上分散的FCNTs生长,形成PPY/FCNTs复合膜。复合膜以Pt工作电极为中心,沿油水界面向四周辐射生长,聚合时间越长,复合膜表观面积也越大,800s时能长满整个油水界面,生成独立自支撑复合膜。因此,不同于传统电化学法,界面电化学法能合成任意大小的复合膜,不会受到电极大小限制,只要反应容器足够大,便可在其中组装更大的FCNTs薄膜网络,将其与Pt丝接触,形成新的工作电极,合成尺寸,FCNTs含量可控的复合膜。
2.2PPY/FCNTs复合膜电容性能
图3为PPY/FCNTs复合膜在1mol·L-1H2SO4水溶液中不同扫速下的CV曲线及比电容值。可以看出,PPY/FCNTs复合膜表现出良好的电容性能。在5mV·s-1和200mV·s-1扫速下,CV曲线都近似矩形,特别是在较大极化电阻的高扫速下,CV曲线的变化也没有那么陡峭,说明PPY/FCNTs复合膜具有良好的快速充放电性能。在50mV·s-1扫速下,纯PPY表现出理想的超级电容器特性,而相比PPY,PPY/FCNTs复合膜表现出更小的电阻,说明FCNTs提高了复合膜的导电性与双电层电容,又由于复合膜较薄,缩短离子扩散距离,加快复合膜电荷传输速率。通过理论估算,复合膜中FCNTs只占总质量的0.65%,但相比纯PPY比电容却有显著提高,在不添加粘接剂与导电剂的条件下,5mV·s-1和200mV·s-1扫速下复合膜比电容可达到180和260F·g-1。PPY/FCNTs复合膜的GCD曲线也说明复合膜具有典型超级电容器赝电容特性,如图4,可以看到,不同电流密度下,电位随时间几乎呈线性变化,GCD曲线呈近似等腰三角形,说明复合膜具有优异的充放电效率与可逆性。相比PPY,PPY/FCNTs复合膜比电容有明显增大,同时表现出更小的IR降,说明复合膜具有更小的等效串联电阻。在0.5A·g-1下复合膜比电容能达到350F·g-1,而在20A·g-1的高电流密度下,复合膜比电容还能达到200F·g-1,表现出快速充放电性能。
图5给出PPY与PPY/FCNTs复合膜充放电循环寿命曲线与交流阻抗图谱。可以看到相比PPY,复合膜循环寿命有所提高。在2A·g-1的大电流密度下充放电循环1000次后,PPY/FCNTs复合膜比电容保持率为71%。循环500次后复合膜比电容不再发生衰减,基本保持稳定,而PPY比电容仍发生衰减。从阻抗图谱可看出电解液及电极与电解液的接触电阻为0.57Ω,电荷的传递电阻为0.6Ω;在中频区有一小段斜率为45°的直线,对应warberg阻抗扩散,在低频区为一斜率接近90°的直线,表明复合膜电极具备良好的电容性。
三、结论
(1)在不添加导电剂与粘接剂条件下,PPY/FCNTs复合膜表现出高的比电容,快的充放电性能及良好的循环稳定性。0.5A·g-1低电流密度下,比电容达到350F·g-1,20A·g-1高电流密度下,比电容可达到200F·g-1。相比纯PPY,比电容显著增长,循环寿命也明显改善;
(2)PPY/FCNTs复合膜实现了PPY与CNTs性能互补,提高复合膜整体导电性,电荷迁移速率及稳定性,同时复合膜特殊的三维网状结构,有助于充放电过程中电子离子的迁移,使得储能性能明显增强。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (9)

1.一种导电聚合物碳材料复合薄膜的制备方法,其特征在于,包括以下步骤:
步骤1)、羟基化多壁碳纳米管的胶体水溶液的制备
将多壁碳纳米管与酸混合,并加热回流,冷却后抽滤,并用去离子水洗涤至中性,干燥,得到羟基化多壁碳纳米管,并将之超声分散在纯水中,得到既定浓度的羟基化多壁碳纳米管的胶体水溶液;
步骤2)、碳纳米管油/水界面组装
依次加入有机溶液和酸的水溶液,形成油/水界面,再向其中加入羟基化多壁碳纳米管的胶体水溶液,机械振荡,羟基化多壁碳纳米管从水相转移到油/水界面,起初在油/水界面形成乳泡,静置等待乳泡破裂融合,在油/水界面上形成一层柔性的羟基化多壁碳纳米管薄膜;
步骤3)、导电聚合物碳材料复合薄膜的电化学合成
将吡咯投入步骤2)的有机溶液中,静置,直至形成平整稳定的油/水界面,将Pt工作电极缓慢垂直插入油/水界面,使Pt工作电极在两相中浸入的长度相等;以铂环电极为对电极,硫酸亚汞电极为参比电极,将对电极与参比电极分别插入上层水溶液中,调整Pt工作电极使其位于铂环电极中心,参比电极靠近Pt工作电极;采用恒电位法电化学合成目标产物导电聚合物碳材料复合薄膜。
2.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,步骤1)中,多壁碳纳米管与酸的比例为2g多壁碳纳米管配比100ml酸;
其中,酸为体积1:3的浓硫酸与浓硝酸。
3.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,步骤1)中加热温度130-150℃。
4.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,所述有机溶液为CHCl3,CH2Cl2或C7H8中的任意一种。
5.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,所述酸的水溶液为HClO4,HBF4,C7H10O4S中的任意一种。
6.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,所述酸的水溶液的浓度为0.1-1mol·L-1
7.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,步骤3)中,将吡咯投入步骤2)的有机溶液中,形成吡咯的水有机溶液,其浓度为0.1-1mol·L-1
8.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,步骤2)中,羟基化多壁碳纳米管在油水界面的分散浓度不超过0.2μg·mm-2
9.如权利要求1所述的导电聚合物碳材料复合薄膜的制备方法,其特征在于,相对于硫酸亚汞电极为参比电极,步骤3)中的聚合电位为0.6V-0.8V。
CN201910324748.XA 2019-04-22 2019-04-22 一种导电聚合物碳材料复合薄膜的制备方法 Active CN110033952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910324748.XA CN110033952B (zh) 2019-04-22 2019-04-22 一种导电聚合物碳材料复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910324748.XA CN110033952B (zh) 2019-04-22 2019-04-22 一种导电聚合物碳材料复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN110033952A CN110033952A (zh) 2019-07-19
CN110033952B true CN110033952B (zh) 2020-12-15

Family

ID=67239615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910324748.XA Active CN110033952B (zh) 2019-04-22 2019-04-22 一种导电聚合物碳材料复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110033952B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366972B (zh) * 2013-07-10 2016-01-20 合肥工业大学 一种多壁碳纳米管/聚苯胺纳米纤维复合材料超级电容器电极的制备方法
CN104392844B (zh) * 2014-11-06 2017-12-26 东华大学 一种纤维基导电聚吡咯/碳纳米管复合电极材料的原位界面聚合方法
CN106783206B (zh) * 2014-11-28 2018-04-03 天津大学 三维结构的氧化石墨烯‑聚苯胺复合电极材料的制备方法
CN108584918B (zh) * 2018-04-12 2020-05-22 华南理工大学 一种高效分散碳纳米管的方法

Also Published As

Publication number Publication date
CN110033952A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
Ni et al. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
Liu et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid-and all-solid-state supercapacitors
Tong et al. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors
Zhong et al. Nickel cobalt manganese ternary carbonate hydroxide nanoflakes branched on cobalt carbonate hydroxide nanowire arrays as novel electrode material for supercapacitors with outstanding performance
Kai et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance
Bai et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications
Wang et al. An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage
Liu et al. Poly (3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor
Zhou et al. Highly stable multi-wall carbon nanotubes@ poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors
Wang et al. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors
Liu et al. A NiAl layered double hydroxide@ carbon nanoparticles hybrid electrode for high-performance asymmetric supercapacitors
CN105489814B (zh) 一种锂硫电池用改性隔膜的制备方法、改性隔膜以及具有多层该改性隔膜的锂硫电池
CN108364797B (zh) 一种碳纳米管织物电极及纱线电极的制备方法及电极的应用
JP2017504952A (ja) 金属酸化物固定グラフェンおよび炭素ナノチューブハイブリッド発泡体
CN103854878A (zh) 一种基于聚吡咯/二氧化锰/碳布的超级电容器及其制备方法
KR101140367B1 (ko) 이산화망간/탄소나노튜브/종이를 기반으로 하는 수퍼캐패시터 전극 및 그 제조 방법
CN110164704B (zh) 一种光增强型柔性超级电容器及其制备方法
Zhou et al. Sandwich-structured transition metal oxide/graphene/carbon nanotube composite yarn electrodes for flexible two-ply yarn supercapacitors
Wu et al. A high-performance asymmetric supercapacitors based on hydrogen bonding nanoflower-like polypyrrole and NiCo (OH) 2 electrode materials
CN108447696A (zh) 一种聚吡咯/导电碳布复合电极的制备方法及其应用
Sheng et al. Boosting PEDOT energy storage with redox dopant and electrolyte additive
CN111029164B (zh) 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用
CN105524336A (zh) 一种共聚物复合材料和复合电极材料及其制备方法
CN110790277A (zh) 一种HHK-CC@MXenes复合柔性电极材料的制备方法及其应用
Shen et al. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant