WO2022014122A1 - セリウム化合物を有効成分として含む、医薬組成物 - Google Patents

セリウム化合物を有効成分として含む、医薬組成物 Download PDF

Info

Publication number
WO2022014122A1
WO2022014122A1 PCT/JP2021/017295 JP2021017295W WO2022014122A1 WO 2022014122 A1 WO2022014122 A1 WO 2022014122A1 JP 2021017295 W JP2021017295 W JP 2021017295W WO 2022014122 A1 WO2022014122 A1 WO 2022014122A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
cerium
cerium compound
composition according
solution
Prior art date
Application number
PCT/JP2021/017295
Other languages
English (en)
French (fr)
Inventor
恒隆 川口
雅治 中津
幸大 小川
亜紀子 橋本
Original Assignee
恒隆 川口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒隆 川口 filed Critical 恒隆 川口
Priority to EP21842561.9A priority Critical patent/EP4180048A4/en
Priority to CA3189026A priority patent/CA3189026A1/en
Priority to AU2021309295A priority patent/AU2021309295A1/en
Priority to CN202180061366.8A priority patent/CN116456993A/zh
Priority to JP2022536143A priority patent/JPWO2022014122A1/ja
Publication of WO2022014122A1 publication Critical patent/WO2022014122A1/ja
Priority to US18/153,124 priority patent/US20230233603A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/244Lanthanides; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles

Definitions

  • the present invention relates to a pharmaceutical composition containing a cerium compound as an active ingredient.
  • the present invention also reduces or increases levels of one or more selected from therapeutic agents for renal disease, particularly serum creatinine (CRE), blood urea nitrogen (BUN), serum phosphorus (IP). Regarding a drug for treating renal disease for suppression.
  • the present invention also relates to a phosphorus adsorbent.
  • kidney disease Treatment of kidney disease focuses on slowing the progression and preventing complications caused by decreased kidney function by supplementing kidney function with drugs, which worsens kidney disease and kidneys. In the event of failure, there is no silver bullet to cure the renal failure. Drug therapy and diet therapy are used to slow the progression of kidney disease. In addition, if kidney disease progresses, dialysis therapy is required.
  • Non-Patent Document 1 In chronic kidney disease, for example, there is a concern that substances (uremia) that cause uremia that should be excreted outside the body increase and accumulate in the body as renal function declines, leading to a condition called uremia.
  • uremic toxins such as indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N-oxide (TMAO) are metabolites produced via intestinal bacterial metabolism.
  • TMAO trimethylamine-N-oxide
  • tryptophan, tyrosine, choline, L-carnitine, etc. ingested as dietary components reach the large intestine without being absorbed up to the small intestine, they undergo intestinal bacterial metabolism and undergo indole, p-cresol, phenol, trimethylamine (TMA), respectively.
  • TMA trimethylamine
  • uremic precursors When these uremic precursors are absorbed in the body, they migrate from the systemic circulation and are metabolized in the liver to uremic toxins such as indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, and TMAO, respectively.
  • uremic toxins such as indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, and TMAO, respectively.
  • uremic toxins are excreted from the body together with urine when renal function is functioning normally, but when excretion is delayed and accumulated in the blood, it is said to promote the progression of renal failure.
  • Indoxyl sulfate and p-cresyl sulfate are uremic toxins whose toxicity has been widely studied.
  • TMAO is a urinary toxin that is attracting attention as a substance involved in cardiovascular disease, and is thought to contribute to the promotion of arteriosclerosis and thrombus formation, and the relationship between blood concentration and the onset of cardiovascular disease has been reported. Furthermore, it has been shown that renal disorders and promotion of renal fibrosis are promoted.
  • Accumulation of urinary toxins in the body includes various renal failures such as sleeplessness, headache, loss of appetite, dysesthesia, hypertension, anemia, neuropathy, cardiovascular disease, osteoarthritis, bone mineral metabolism disorder, infection, and malignant tumor.
  • various renal failures such as sleeplessness, headache, loss of appetite, dysesthesia, hypertension, anemia, neuropathy, cardiovascular disease, osteoarthritis, bone mineral metabolism disorder, infection, and malignant tumor.
  • the adsorbed charcoal preparation suppresses the absorption of uremic toxin or its precursor from the intestinal tract by adsorbing uremic toxin or its precursor in the gastrointestinal tract and excreting it together with stool. It is an oral adsorbent that has the effect of improving the symptoms of uremia and delaying the introduction of dialysis by reducing the burden on the kidney (for example, Patent Document 1).
  • the above-mentioned adsorbed charcoal preparation suppresses the amount of tryptophan, indole, etc. absorbed in the body by adsorbing tryptophan, indole, etc. in the intestinal tract, and as a result, assists renal function by reducing indoxyl sulfate, etc. It is supposed to be done.
  • a phosphorus binder may be used as a combination of dietary restrictions.
  • Phosphate binder suppresses the increase in blood phosphorus concentration due to intestinal absorption by binding and excreting phosphorus from the diet in the digestive tract.
  • organic and inorganic oral phosphorus binders have been used as therapeutic agents for hyperphosphatemia.
  • an organic oral phosphorus binder a sevelamer hydrochloride preparation and the like are known.
  • an inorganic oral phosphorus binder an aluminum hydroxide preparation, a calcium carbonate preparation, a ferric citrate preparation and the like are known.
  • the sevelamer hydrochloride preparation is known to have side effects such as constipation, abdominal pain, abdominal swelling, and induction of highly chlorinated metabolic acidose, and its dose is limited.
  • aluminum hydroxide preparations are known to cause brain disorders such as aluminum encephalopathy and osteomalacia due to aluminum deposition, and their use is prohibited in Japan.
  • Calcium carbonate preparations have high phosphorus adsorption capacity and are inexpensive, but cause problems such as calcification in soft tissues and blood vessels due to hypercalcemia.
  • ferric citrate preparations increase the risk of various chronic diseases such as diarrhea and constipation, increased serum ferritin, and iron accumulation in tissues.
  • Lanthanum carbonate hydrate preparations have been widely used as phosphorus binders.
  • Lanthanum carbonate has excellent phosphorus adsorbing ability, has a low risk of causing hypercalcemia, is hardly absorbed in the body, and is widely used as a phosphorus adsorbent with relatively few side effects.
  • Patent Document 2 describes a pharmaceutical composition for the treatment of hyperphosphatemia, which comprises lanthanum carbonate mixed with or associated with a diluent or carrier.
  • Non-Patent Document 2 Whether or not lanthanum deposition has pathological significance is not clear at this time, but this lanthanum deposition is a major concern for long-term administration of carbonated lanthanum preparations.
  • Non-Patent Document 3 it has been reported that lanthanum carbonate forms a complex with casein phospeptide in casein, and the lanthanum becomes solubilized, which may promote the absorption of lanthanum in the body.
  • the first object of the present invention is to provide a novel pharmaceutical composition containing a cerium compound as an active ingredient.
  • the present invention also provides a therapeutic agent for renal disease, particularly to reduce the level of one or more selected from serum creatinine (CRE), blood urea nitrogen (BUN), and serum phosphorus (IP).
  • CRE serum creatinine
  • BUN blood urea nitrogen
  • IP serum phosphorus
  • the third object of the present invention is to provide a phosphorus adsorbent that is comparable to or has a better phosphorus adsorbing ability than a conventional phosphorus adsorbent.
  • the present invention that solves the above-mentioned problems is a pharmaceutical composition containing a cerium compound as an active ingredient.
  • the pharmaceutical composition is a therapeutic agent for renal disease.
  • the pharmaceutical composition is a phosphorus adsorbent.
  • the pharmaceutical composition is an adsorbent for a uremic toxin precursor.
  • the pharmaceutical composition is used for reducing or suppressing an increase in serum creatinine (CRE) level.
  • CRE serum creatinine
  • the pharmaceutical composition is used for reducing or suppressing an increase in blood urea nitrogen (BUN) level.
  • BUN blood urea nitrogen
  • the cerium compound is coated with a dispersant.
  • a dispersant By forming the cerium compound particles in the presence of the dispersant, it is possible to suppress the coalescence or coalescence of the cerium compound nuclei generated in the early stage of the particle formation process. As a result, the particle size of the final cerium compound can be reduced, and the pharmaceutical composition reacts with a substance to be acted upon (hereinafter, also referred to as a substance to be acted upon) such as phosphorus (phosphoric acid) and a uretoxin precursor. It is possible to secure the reaction boundary area. Further, by appropriately setting the manufacturing conditions, it is possible to manufacture with high productivity.
  • the cerium compound particles are coated with the dispersant, the complex formation reaction between the cerium compound and the component forming the complex is suppressed, so that the absorption of the cerium compound or the cerium component in the digestive tract can be suppressed. can. Furthermore, since the cerium compound particles are coated with the dispersant, the redispersibility in the aqueous solution is improved even when the cerium compound is in a dry state, so that it can be applied to all dosage forms. Become.
  • the dispersant is a dispersant having a carboxy group and / or a carboxylate group.
  • a dispersant having a carboxy group and / or a carboxylate group is excellent in coating property to a cerium compound.
  • the dispersant is one or more selected from the group consisting of fatty acids, polycarboxylic acids, amino acids and pharmaceutically acceptable salts or derivatives thereof.
  • the fatty acid has 8 or less carbon atoms.
  • a fatty acid having a relatively small carbon number, that is, a low molecular weight as a dispersant in this way, a wider reaction boundary area with the substance to be acted upon can be expected and other effects can be expected.
  • the polycarboxylic acid is polyacrylic acid.
  • the amino acid has 8 or less carbon atoms.
  • the cerium compound is cerium compound fine particles, and the average primary particle size of the cerium compound fine particles is 100 nm or less.
  • the primary particle diameter of the cerium compound fine particles is 100 nm or less, the adsorption ability to the object to be adsorbed and the action to other substances to be acted upon can be further enhanced.
  • the cerium compound is water insoluble.
  • a water-insoluble cerium compound By using a water-insoluble cerium compound, absorption of the cerium compound or the cerium component in the gastrointestinal tract and deposition on the mucous membrane of the gastrointestinal tract can be suppressed.
  • the cerium compound is one or more selected from the group consisting of cerium oxides, hydroxides, acid hydroxides, sucrose oxides and fluorides.
  • the pharmaceutical composition is for oral use.
  • the pharmaceutical composition is a composition for hemodialysis.
  • the present invention that solves the above-mentioned problems is a method for producing cerium oxide fine particles, which comprises the following steps.
  • Step A A cerium salt of 0.2 mol / L or more, a dispersant, and water are put in a reaction vessel, and the solution is stirred while maintaining the temperature of the solution at 5 to 35 ° C. to prepare a solution.
  • Step B A cerium salt of 0.2 mol / L or more, a dispersant, and water are put in a reaction vessel, and the solution is stirred while maintaining the temperature of the solution at 5 to 35 ° C. to prepare a solution.
  • Step B a required amount of hydrogen peroxide solution is added to the solution.
  • Processcess C a hydroxide ion source of 1 mol / L or more is added to the solution.
  • Step D While maintaining stirring, the temperature of this solution is raised, maintained for a predetermined time, and then lowered to room temperature.
  • Step E Then, the solution is adjusted to a predetermined concentration to obtain a cerium oxide aqueous dispersion.
  • cerium oxide fine particles which conventionally had to be prepared under a dilute solution, can be produced at a high concentration, and the yield of cerium oxide fine particles is high.
  • the present invention for solving the above-mentioned problems is the use of a cerium compound in the production of a therapeutic agent for renal diseases.
  • the preferred form of the cerium compound and the preferred form of use are as described above.
  • the present invention for solving the above-mentioned problems is the use of a cerium compound as an active ingredient for the treatment of renal diseases.
  • the preferred form of the cerium compound and the preferred form of use are as described above.
  • the present invention for solving the above-mentioned problems is a cerium compound for use in the treatment of renal diseases.
  • the preferred form of the cerium compound and the preferred form of use are as described above.
  • the present invention which solves the above-mentioned problems, is a method for treating renal disease, which comprises administering a cerium compound to a subject in need of treatment for renal disease.
  • a cerium compound to a subject in need of treatment for renal disease.
  • the preferred form of the cerium compound and the preferred form of use are as described above.
  • a novel pharmaceutical composition containing a cerium compound can be obtained.
  • the pharmaceutical composition according to one aspect of the present invention has excellent gastrointestinal absorption or gastrointestinal deposition of the cerium compound or its metal component, and is excellent in suitability as an oral preparation.
  • the pharmaceutical composition of the present invention has a phosphorus adsorbing ability comparable to or better than that of a conventional phosphorus adsorbent, and is excellent in suitability as an oral preparation. Further, in a preferred embodiment of the present invention, the pharmaceutical composition of the present invention has an ability to adsorb uremic toxin precursors and is excellent in suitability as an oral preparation.
  • the serum creatinine (CRE), blood urea nitrogen (BUN) and / or serum phosphorus (IP) concentration can be reduced or the increase in the concentration can be suppressed. ..
  • TEM transmission electron microscope
  • Cerium compound is a pharmaceutical composition containing a cerium compound as an active ingredient.
  • the pharmaceutical composition of the present invention contains a cerium compound as an active ingredient having a phosphorus adsorbing ability.
  • the pharmaceutical composition of the present invention contains a cerium compound as an active ingredient having an ability to adsorb urinary toxin precursors such as indole.
  • the cerium compound may be any of a compound having a cerium valence of trivalent and a tetravalent compound, and may be a mixed system of these compounds.
  • These cerium compounds may be anhydrous or hydrated.
  • a pharmaceutically acceptable metal other than cerium may be solid-dissolved in these cerium compounds, but the molar ratio to cerium is less than 0.5.
  • These cerium compounds may be used alone or in combination of two or more.
  • a cerium compound having low water solubility is preferable.
  • the solubility of the cerium compounds, with respect to 20 ° C. Water 100g (g / 100g H 2 O ), is preferably 0.1 or less, more preferably 1 ⁇ 10 -4 or less, more preferably 1 ⁇ 10 It is -7 or less, particularly preferably 2 ⁇ 10 -9 or less, and most preferably 1 ⁇ 10 -9 or less.
  • the cerium compound it is preferable to use a water-insoluble cerium compound.
  • the cerium compound having low water solubility or water insoluble include cerium oxide, cerium hydroxide, and cerium acid hydroxide. Of these, cerium oxide is particularly preferable. These cerium compounds may be anhydrous or hydrated. In the present invention, cerium compounds having low water solubility or being water-insoluble are collectively referred to as water-insoluble cerium compounds.
  • cerium compound having low water solubility or water insoluble as the cerium compound, it is possible to suppress the intestinal absorption of the cerium compound or the cerium component derived from the cerium compound or the deposition on the gastrointestinal mucosa.
  • the cerium compound is preferably in the form of particles, more preferably in the form of fine particles.
  • the average primary particle size of the cerium compound fine particles is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less, particularly preferably 20 nm or less, and most preferably 10 nm or less.
  • the average primary particle diameter can be obtained as an average value of the diameters measured for any 10 or more particles from the captured image by taking an image of the particles using an electron microscope. It can also be performed by analyzing the scattering spectrum by a dynamic light scattering method, but in this case, correction by electron microscope observation is required.
  • the cerium compound used in the present invention is preferably in a state of being dispersed in an aqueous solution.
  • the cerium compound is more preferably in a state of being dispersed in the aqueous solution, and is also in a state of being dispersed in the aqueous solution without going through a dry state in the formulation process. It is more preferable, and most preferably, it is in a state of being dispersed in an aqueous solution until its use.
  • the crystal phase of the cerium compound is not particularly limited, but when the cerium compound is cerium oxide, the crystal surface may mainly consist of at least one of the ⁇ 100 ⁇ plane, the ⁇ 111 ⁇ plane, or the ⁇ 110 ⁇ plane. It is more preferable that it is composed of at least one of ⁇ 100 ⁇ planes or ⁇ 111 ⁇ planes, and most preferably it is composed of ⁇ 100 ⁇ planes.
  • the content of the cerium compound with respect to the total amount of the pharmaceutical composition of the present invention is not particularly limited, but is preferably 0.001 to 99.9% by mass, more preferably 0.01 to 98.5% by mass.
  • the cerium compound contained in the pharmaceutical composition of the present invention is preferably coated with a dispersant.
  • a dispersant By forming the cerium compound particles in the presence of the dispersant, it is possible to suppress the coalescence or coalescence of the cerium compound nuclei generated in the early stage of the particle formation process. As a result, the particle size of the final cerium compound can be reduced, and a large reaction boundary area, which is the surface of the particles that react with the substance to be acted on, such as an adsorbed substance, can be secured. Further, by appropriately setting the manufacturing conditions, it is possible to manufacture with high productivity. Furthermore, since the cerium compound particles are coated with the dispersant, the redispersibility in the aqueous solution is improved even when the cerium compound is in a dry state, so that it can be applied to all dosage forms. Will be.
  • the molecular weight of a compound that can be absorbed in the small intestine and the large intestine is 600 or less in the small intestine and 300 or less in the large intestine.
  • the dispersant by coating the dispersant with the cerium compound, the complex formation reaction between the cerium compound and a component having a complex-forming ability such as caseinphospeptide can be inhibited, and the intestinal absorption of the cerium compound or the cerium component thereof can be suppressed. can.
  • a dispersant having at least one of a carboxy group or a carboxylate group as a functional group is preferable. That is, as the dispersant, a carboxylic acid, a pharmaceutically acceptable salt and a derivative thereof are preferable.
  • a dispersant having at least one of a carboxy group or a carboxylate group as a functional group is excellent in coating ability to a cerium compound, particularly cerium oxide.
  • dispersant examples include hydroxy acids, fatty acids, aromatic carboxylic acids, polycarboxylic acids, oxocarboxylic acids, and amino acids, as well as pharmaceutically acceptable salts or derivatives thereof, and fatty acids, polycarboxylic acids, and the like. And amino acids, and one or more selected from the group consisting of pharmaceutically acceptable salts or derivatives thereof.
  • the preferred dispersant will be described in detail.
  • the fatty acid used as the dispersant in the present invention may be either a saturated fatty acid or an unsaturated fatty acid, and a saturated fatty acid is preferable.
  • the fatty acid used as the dispersant may be a linear fatty acid, a branched fatty acid, or a cyclic fatty acid, and a linear fatty acid is preferable.
  • the number of carbon atoms of the fatty acid is preferably less than 10, more preferably 8 or less, and further preferably 6 or less. Further, the number of carbon atoms of the fatty acid is preferably 2 or more.
  • a fatty acid having a small number of carbon atoms has a low molecular weight and has an appropriate degree of hydrophobicity.
  • Fatty acids include saturated fatty acids such as ethanoic acid (acetic acid), propanoic acid (propionic acid), butyric acid (butyric acid), pentanoic acid (valeric acid), hexanoic acid (caproic acid), and octanoic acid (capric acid).
  • ethanoic acid acetic acid
  • propanoic acid propionic acid
  • butyric acid butyric acid
  • pentanoic acid valeric acid
  • hexanoic acid caproic acid
  • octanoic acid capric acid
  • the pharmaceutically acceptable salt of the fatty acid and its derivative an alkali metal salt such as a sodium salt and a potassium salt, or an ammonium salt is preferable.
  • the fatty acid salt include sodium acetate, sodium propionate, sodium butyrate, sodium octanate and the like.
  • polyacrylic acid is preferable.
  • an alkali metal salt such as a sodium salt and a potassium salt, or an ammonium salt is preferable.
  • a polycarboxylic acid When a polycarboxylic acid is used as the dispersant, its molecular weight is preferably 10,000 or less, more preferably 8,000 or less, still more preferably 5,000 or less, and particularly preferably 3,000 or less. Is less than 1,500.
  • Polycarboxylic acids having a low molecular weight have moderate hydrophobicity.
  • By using an appropriate production condition using a polycarboxylic acid having a low molecular weight as a dispersant it is possible to suppress coalescence between the nuclei produced and strong adhesion such as coalescence during the production of cerium compound particles. Flocculations with relatively weak interactions can be formed. Therefore, it is possible to produce cerium compound particles with high productivity while securing the reaction boundary area which is the surface of the particles that react with the substance to be acted on, such as the substance to be adsorbed.
  • amino acid used as the dispersant in the present invention a pharmaceutically acceptable salt thereof, and a derivative (hereinafter, simply referred to as an amino acid unless otherwise specified), it is preferable to use an amino acid having less than 10 carbon atoms. ..
  • the number of carbon atoms of the amino acid is more preferably 8 or less, still more preferably 6 or less. Further, the number of carbon atoms of the amino acid is preferably 2 or more.
  • Amino acids with a small number of carbon atoms have a low molecular weight and have appropriate homophobicity.
  • this amino acid having a small number of carbon atoms as a dispersant and using appropriate production conditions, it is possible to suppress the coagulation between the nuclei produced and the strong adhesion such as coalescence during the production of cerium compound particles. Flocculation with relatively weak interaction can be formed. Therefore, it is possible to produce cerium compound particles with high productivity while securing the reaction boundary area which is the surface of the particles that react with the substance to be acted on, such as the substance to be adsorbed.
  • amino acid one kind selected from glycine, ⁇ -aminobutyric acid, and 6-aminocaproic acid, or two or more kinds are preferable.
  • the content ratio of the dispersant component to the cerium compound is preferably 1: 0.001 to 1: 1.2, more preferably 1: 0.003 to 1: 0.3. In another preferred embodiment, the content ratio of the dispersant component to the cerium compound is preferably 1: 0.001 to 1:10, more preferably 1: 0.003 to 1: 3. When two or more kinds of dispersants are used, the content ratio of the total amount of the dispersants to the cerium compound is preferably within the above range.
  • the content of the dispersant component with respect to the total amount of the pharmaceutical composition of the present invention is not particularly limited, but is preferably 0.01 to 4% by mass, more preferably 0.05 to 2% by mass. In another preferred embodiment, the content of the dispersant component with respect to the total amount of the pharmaceutical composition of the present invention is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass. be.
  • Step A First, water such as a dispersant, a cerium salt, and another metal salt if necessary is put into a reaction vessel equipped with a stirrer, and the temperature of the solution is maintained at a predetermined temperature while stirring.
  • Step B Subsequently, a predetermined amount of hydrogen peroxide solution is added to this solution while maintaining stirring.
  • Step C Subsequently, a predetermined amount of hydroxide ion source is added to this solution while maintaining stirring.
  • Step D the temperature of this solution is raised to a predetermined temperature, maintained for a predetermined time, and then lowered to about room temperature.
  • Step E the solution is adjusted to a predetermined concentration to obtain a cerium oxide aqueous dispersion (cerium compound aqueous dispersion).
  • the method for producing cerium oxide fine particles includes the following steps A to E.
  • ⁇ Procedure 2> First, a dispersant, a cerium salt, and water are placed in a reaction vessel equipped with a stirrer, and the solution is stirred while maintaining the temperature of the solution at a predetermined temperature to prepare a solution.
  • Step B Then, while maintaining stirring, a required amount of hydrogen peroxide solution is added to this solution.
  • Step C A hydroxide ion source is then added to this solution while maintaining agitation.
  • Step D While maintaining stirring, the temperature of this solution is raised, maintained for a predetermined time, and then lowered to room temperature.
  • Step E the solution is filtered and the required amount of water is added to the filtrate to obtain a dispersion liquid or a paste of cerium oxide fine particles. Alternatively, the filtrate can be dried as it is.
  • the concentration of the cerium salt in the step A is preferably set to a high concentration from the viewpoint of productivity.
  • the concentration of the cerium salt is preferably 0.2 mol / L or more.
  • the concentration of the cerium salt is preferably 0.2 to 4.0 mol / L, more preferably 0.4 to 3.5 mol / L, and further preferably 0.5 to 3.0 mol / L. Particularly preferably, it is 0.6 to 2.5 mol / L.
  • the metal other than cerium to be dissolved in the cerium compound is not particularly limited as long as it is pharmaceutically acceptable, but the molar ratio to cerium is less than 0.5.
  • the dispersant in step A needs to be dissolved and coexist with the cerium salt in advance. Further, the concentration of the dispersant can be appropriately set according to the concentration of the cerium salt so as to be included in the preferable range of the content ratio with the cerium salt described above.
  • the content of the dispersant with respect to the mass of the cerium salt is preferably 0.01 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 0.1 to 10% by mass.
  • the concentration of the dispersant in the reaction solution is preferably 0.1 to 20 g / L, more preferably 0.5 to 15 g / L.
  • the temperature of the solution in step A is 5 to 35 ° C, preferably 5 to 30 ° C, more preferably 5 to 25 ° C, still more preferably 5 to 20 ° C.
  • the hydrogen peroxide solution in step B has an action of promoting the formation of fine particles.
  • the amount of the hydrogen peroxide solution added can be appropriately changed depending on the concentration of the cerium salt, and is, for example, 0 to 4.0 mol / L.
  • the hydroxide ion source in step C is preferably one or more selected from the group consisting of aqueous ammonia, sodium hydroxide, and hexamethylenetetramine. It is more preferably one or more selected from aqueous ammonia or sodium hydroxide.
  • the concentration of the hydroxide ion source in the step C can be appropriately changed depending on the concentration of the cerium salt, but the concentration in the reaction vessel can be 1 mol / L or more.
  • the concentration of the hydroxide ion source is preferably 1 to 10 mol / L, more preferably 2 to 8 mol / L, and further preferably 3 to 5 mol / L.
  • the concentration of the hydroxide ion source is preferably 1 to 25 mol / L, more preferably 2 to 20 mol / L, still more preferably 3 to 16 mol / L.
  • the concentration of the hydroxide ion source can be 1 to 5 times, preferably 1 to 4 times, more preferably 1.2 to 3.6 times the molar concentration of the cerium salt. It is preferably 1.4 to 3.4 times, more preferably 1.6 to 3.2 times, and most preferably 1.8 to 3.0 times.
  • the holding temperature after raising the temperature in step D is preferably 40 to 200 ° C, more preferably 40 to 150 ° C, still more preferably 40 to 120 ° C, particularly preferably 45 to 95 ° C, and most preferably 50 to 65 ° C. be.
  • the holding temperature after raising the temperature in step D is preferably 25 to 200 ° C, more preferably 30 to 150 ° C, still more preferably 35 to 120 ° C, and particularly preferably 40 to 95 ° C. Most preferably, it is 45 to 65 ° C.
  • the holding time after raising the temperature in step D can be appropriately changed depending on the holding temperature, but is, for example, 0 to 300 minutes, preferably 5 to 240 minutes, more preferably 10 to 180 minutes, and 20 to 180 minutes. It is more preferably 150 minutes, further preferably 30 to 150 minutes, and most preferably 40 to 150 minutes.
  • the concentration of cerium salt before concentration of the solution is 0.2 mol / L or more from the viewpoint of productivity. It is preferably 0.2 to 4.0 mol / L, more preferably 0.3 to 3.5 mol / L, further preferably 0.4 to 3.0 mol / L, and 0.5. Most preferably, it is ⁇ 2.5 mol / L.
  • cerium oxide fine particles can be concentrated by a known method to obtain a cerium oxide aqueous dispersion (cerium compound aqueous dispersion) having an arbitrary concentration.
  • a cerium oxide aqueous dispersion (cerium compound aqueous dispersion) having an arbitrary concentration.
  • desalting, adjusting the concentration of the cerium oxide aqueous dispersion by adding water, adjusting the pH by adding an acid or an alkali, and the like can be appropriately performed.
  • the cerium oxide fine particles can be made into a dried product as well as an aqueous dispersion or a paste by adjusting the water content.
  • the concentration in the step E can be performed by filtering the cerium compound aqueous dispersion by an existing method (procedure 2).
  • a filtration method a known method can be used, and for example, natural filtration, vacuum filtration, pressurized filtration, centrifugal filtration, ultrafiltration, dialysis filtration and the like can be appropriately selected.
  • the final concentration of the cerium salt in the aqueous dispersion of cerium oxide is preferably 0.3 to 40 mol / L, more preferably 0.5 to 35 mol / L, still more preferably 1 to 30 mol / L. It is preferably concentrated to L, particularly preferably 2 to 25 mol / L.
  • Each component can be mixed by a conventional method, for example, using a stirring device such as a homogenizer.
  • the filtered or dried product of cerium oxide fine particles obtained in step E or the cerium oxide aqueous dispersion may be used as it is as the pharmaceutical composition of the present invention, or may be used as it is by the method described later.
  • a formulated product may be used.
  • Cerium oxide fine particles usually need to be prepared under a dilute solution in order to suppress particle aggregation, and therefore the yield productivity is low.
  • cerium oxide fine particles can be prepared at a high concentration, and cerium oxide fine particles can be produced at a high yield.
  • cerium oxide fine particles are contained as the active ingredient of the pharmaceutical composition of the present invention, it is sufficient that cerium oxide is contained as the composition of the fine particles, and the composition is indefinite as a mixture of other cerium compounds such as cerium hydroxide. May be.
  • the pharmaceutical composition of the present invention is preferably an oral preparation.
  • the pharmaceutical composition of the present invention adopts various dosage forms such as solid preparations such as tablets, powders, granules, chewable tablets and capsules, liquid preparations and liquid preparations such as syrups, regardless of the dosage form. can do.
  • OD tablets orally disintegrating tablets
  • chewable tablets orally disintegrating tablets
  • effervescent tablets immediate-release tablets
  • sugar-coated tablets and other tablets hard capsules, soft capsules and other capsules, pills, and troches and other solid formulations.
  • Semi-solid preparations such as jelly and whipped agents, capsules, and liquid preparations such as emulsions can also be adopted.
  • the pharmaceutical composition containing the cerium compound coated with the above-mentioned dispersant has excellent redispersability while ensuring the reaction boundary area of the cerium compound by the dispersant, and is highly versatile.
  • a semi-solid or liquid preparation such as a jelly agent, a whipping agent, a syrup agent, a suspension agent, or an emulsion can be preferably adopted.
  • the pharmaceutical composition of the present invention is preferably in the form of containing a base containing water.
  • the content of water with respect to the total amount of the pharmaceutical composition of the present invention is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more.
  • the pharmaceutical composition of the present invention has a property of being easy to swallow even when orally ingested without water.
  • the content of water with respect to the total amount of the pharmaceutical composition of the present invention is preferably 99% by mass or less, more preferably 95% by mass or less, still more preferably 90% by mass or less.
  • the base can contain a thickener, a gelling agent, fats and oils, sugar and the like in addition to water.
  • the content of the cerium compound with respect to the total amount of the pharmaceutical composition of the present invention is preferably 0.001 to 95% by mass, more preferably 0.01 to 90% by mass. More preferably, it is 0.02 to 85% by mass.
  • the physical properties such as viscosity, breaking stress, and breaking strain rate of the pharmaceutical composition of the present invention are preferably in the range shown below.
  • the viscosity of the pharmaceutical composition of the present invention is preferably 100 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, still more preferably 1 Pa ⁇ s or less.
  • the viscosity indicates the viscosity at a measurement temperature of 25 ° C., and can be measured using a rotary B-type viscometer (for example, LVDV-E of AMETEK Brookfield).
  • a rotary B-type viscometer for example, LVDV-E of AMETEK Brookfield
  • the breaking stress of the pharmaceutical composition of the present invention is preferably 1 ⁇ 10 6 Pa or less, more preferably 5 ⁇ 10 5 Pa or less, still more preferably 2 ⁇ 10 5 Pa or less.
  • the breaking strain rate of the pharmaceutical composition of the present invention is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less.
  • the rupture stress and the rupture strain rate can be measured at a measurement temperature of 25 ° C. using a creep meter (for example, RE2-3305C of Yamaden Co., Ltd.).
  • Semi-solid preparations or liquid preparations are easier to take than solid preparations, and in particular, they can be taken without water, which can greatly contribute to the maintenance and improvement of medication adherence.
  • the entire process from particle formation to formulation of the cerium compound, which is the active ingredient is carried out in a wet system without going through a dry state like powder, which may cause particle aggregation. Since the concern about aggregation of the cerium compound particles in the pharmaceutical process can be eliminated, the reaction boundary area on the surface of the cerium compound particles can be secured. As a result, the ability of the cerium compound to adsorb to phosphorus and uremic precursors and the action on other substances to be acted upon can be sufficiently exerted.
  • the pharmaceutical composition of the present invention is a semi-solid or liquid preparation, which provides medication adherence, adsorption performance of phosphorus and urinary toxin precursors, action performance on other substances to be acted upon, and viewpoint of preparation production. Will have great features.
  • the pharmaceutical composition of the present invention may be coated with a sugar coating, an enteric coating or the like by a conventional method, if necessary.
  • the pharmaceutical composition is in the form of a pharmaceutical composition containing an enteric substance.
  • the pharmaceutical composition of the present invention may contain an additive that can be blended in a pharmaceutical product, if necessary, as long as the object of the present invention can be achieved.
  • sugars monosaccharides, disaccharides, oligosaccharides, or polysaccharides
  • the monosaccharide is glucose, fructose or galactose, sugar alcohol, mannitol, xylitol, inositol or sorbitol
  • the disaccharide is sucrose, lactose, maltose or trehalose, etc.
  • the oligosaccharide is the weight of the above monosaccharide.
  • the coalesced and polysaccharides include dextrin and hydroxyethyl starch. These may be used alone or in combination of two or more, and among them, dextrin or trehalose, or a mixture thereof can be preferably used.
  • Electrolytes examples thereof include sodium, potassium, calcium, magnesium, zinc, iron, copper, manganese, iodine and the like for maintaining the function of a living body and the electrolyte balance of body fluids. These may be contained as an inorganic electrolyte component or may be contained as an organic electrolyte component. Examples of the inorganic electrolyte component include alkali metals such as chlorides, sulfates and carbon oxides, and salts of alkaline earth metals.
  • Organic electrolyte components include salts of organic acids such as citric acid, lactic acid, amino acids (eg glutamic acid, aspartic acid, etc.), alginic acid, malic acid or gluconic acid and inorganic bases such as alkali metal or alkaline earth metal. Can be mentioned.
  • organic acids such as citric acid, lactic acid, amino acids (eg glutamic acid, aspartic acid, etc.), alginic acid, malic acid or gluconic acid and inorganic bases such as alkali metal or alkaline earth metal. Can be mentioned.
  • Vitamin B1s In order to facilitate sugar metabolism, so-called active vitamins (for example, vitamin B1 nitrate or fursultiamine) may be used as vitamin B1s.
  • active vitamins for example, vitamin B1 nitrate or fursultiamine
  • Dietary fiber For improving the intestinal flora, suppressing intestinal mucosal atrophy, and improving stool properties, for example, water-soluble dietary fiber such as indigestible dextrin and polydextrose can be mentioned.
  • the pharmaceutical composition of the present invention contains various nutrients, vitamins, fragrances, colorants, sweeteners, and antioxidants in addition to the above-mentioned components, if necessary, to the extent that the object of the present invention can be achieved.
  • Excipients, lubricants, fluidizers, binders, disintegrants and the like can be added and blended alone or in combination of any two or more.
  • the pharmaceutical composition of the present invention can be taken between meals, before meals, during meals or after meals.
  • a cerium oxide system unlike lanthanum carbonate, for example, it does not indispensably act to dissolve gastric acid at a low pH, so that it can be taken between meals or during meals.
  • gastric acid there is no concern about the generation of carbon dioxide gas or the increase in pH due to the reaction with gastric acid.
  • the dosage there is no limitation on the dosage in consideration of the solubility due to pH, and it can be effectively acted without limitation even at the timing of administration.
  • the pharmaceutical composition of the present invention containing the above-mentioned cerium compound has an effect of reducing the measured value of serum creatinine (CRE) and / or blood urea nitrogen (BUN), or an effect of suppressing an increase in the measured value. That is, the pharmaceutical composition of the present invention can be used as a therapeutic agent for renal diseases. In addition, the pharmaceutical composition of the present invention can be used for reducing or suppressing an increase in serum creatinine (CRE) level and / or blood urea nitrogen (BUN) level.
  • renal disease refers to a state in which renal function is reduced due to chronic kidney disease, acute renal disorder, chronic renal failure, or the like.
  • the renal disease in the present invention does not merely indicate a disease related to renal dysfunction, but also includes diseases of other organs secondary to the renal dysfunction. Examples of diseases of other organs include various diseases caused by uremic toxins, such as diseases of the heart and vascular system.
  • the treatment of renal disease in the present invention includes suppressing and / or preventing a decrease in renal function, maintaining renal function, recovering or improving renal function, and preventing a disease associated with a decrease in renal function. Includes treatment for any disorder caused by renal disease, such as suppression, amelioration or treatment.
  • the above-mentioned cerium compound has an action of reducing substances accumulated in the body in renal diseases. That is, the pharmaceutical composition of the present invention is a reducing agent for uremic toxins or precursors thereof. As the mechanism, the above-mentioned cerium compound is known to have an adsorptive ability to substances accumulated in the body in renal diseases.
  • the substance that accumulates in the body in renal disease refers to a substance that causes uremic symptoms (uremic toxin) and / or a uremic precursor.
  • the substances on which the cerium compound exerts its adsorptive capacity include tryptophan, kynurenine, serotonin, tryptophan, indole (indole acetic acid, indole propionic acid, indole lactic acid, indole, etc.), tyrosine, p-cresol, phenol, phosphatidylcholine, carnitine, and trimethylamine.
  • Precursors of urinary toxins such as (TMA) are preferred.
  • the pharmaceutical composition of the present invention can reduce the residual amount of uremic toxins in the body by excreting the uremic precursors in the body to the outside of the body. can. That is, the pharmaceutical composition of the present invention can be used as an adsorbent for a uremic toxin precursor.
  • the mechanism of action by which the pharmaceutical composition of the present invention reduces uremic toxins or precursors thereof is not limited to the above. That is, the cerium compound may be involved in suppressing the production of uremic toxins or precursors thereof.
  • Examples of such an action mechanism include a form in which a cerium compound acts on the decomposition and detoxification of urinary toxins or precursors thereof.
  • the target urinary toxins or precursors thereof include tryptophan, quinurenin, serotonin, tryptophan, indole (indole acetic acid, indole propionic acid, indole lactic acid, indole, etc.), tyrosine, p-cresol, phenol, phosphatidylcholine, carnitine, etc.
  • Examples thereof include trimethylamine (TMA), indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, trimethylamine-N-oxide (TMAO) and the like.
  • the cerium compound may act on the activity reduction (enzyme inhibition) of the enzyme that metabolizes the food-derived component to the uremic precursor or the uremic toxin.
  • the target enzymes include tryptophan 2,3-dioxygenase (TDO), tryptophan hydroxylase (TPH), aromatic L-amino acid decarboxylase (AADC), tryptophanase, and tyrosine phenol lyase ( ⁇ -tyrosinase). ), And trimethylamine lyase and the like.
  • the pharmaceutical composition of the present invention has a phosphorus adsorbing ability and has an effect of reducing the measured value of serum phosphorus (IP) or an effect of suppressing an increase in the measured value. That is, the pharmaceutical composition of the present invention can be used as an inhibitor for reducing or increasing the serum phosphorus (IP) level, and can also be used as a phosphorus adsorbent.
  • the pharmaceutical composition of the present invention having the above-mentioned effect prevents or treats various diseases caused by excessive absorption of various components by feeding, excessive intake of phosphorus, etc., such as hyperphosphatemia, renal failure, and osteoporosis. Can be used for use.
  • the pharmaceutical composition of the present invention has an effect that the level of alanine aminotransferase (ALT) in blood is not increased by administration. That is, unlike the conventional adsorbent containing lanthanum carbonate, the pharmaceutical composition of the present invention has a feature that it does not induce a decrease in liver function by taking the drug.
  • ALT alanine aminotransferase
  • cerium compound in the production of a therapeutic agent for renal disease can be mentioned.
  • cerium compounds in the production of phosphorus adsorbents the use of cerium compounds in the production of pharmaceutical compositions to suppress the reduction or increase of serum creatinine (CRE) and / or blood urea nitrogen (BUN) levels.
  • CRE serum creatinine
  • BUN blood urea nitrogen
  • a cerium compound as an active ingredient for the treatment of renal disease can be mentioned. Furthermore, the use of a cerium compound as an active ingredient for phosphorus adsorption, and the use of a cerium compound as an active ingredient for suppressing the reduction or increase of serum creatinine (CRE) level and / or blood urea nitrogen (BUN) level. It can be in the form of use.
  • CRE serum creatinine
  • BUN blood urea nitrogen
  • a cerium compound for use in the treatment of renal disease can be mentioned. Further, it can be in the form of a cerium compound for use in phosphorus adsorption, a cerium compound for suppressing a decrease or increase in a serum creatinine (CRE) level and / or a blood urea nitrogen (BUN) level.
  • CRE serum creatinine
  • BUN blood urea nitrogen
  • a method for treating renal disease which comprises administering a cerium compound to a subject in need of treatment for renal disease.
  • a method for treating renal diseases including administration of a cerium compound to a subject in need of treatment for reducing or suppressing an increase in serum phosphorus (IP) level, a cerium compound having a serum creatinine (CRE) level, and / or blood. It can be in the form of a method of treating renal disease, comprising administering to a subject in need of treatment to reduce or suppress the increase in medium urea nitrogen (BUN) levels.
  • IP serum phosphorus
  • CRE serum creatinine
  • composition of the present invention can also be used in the form of a composition for hemodialysis.
  • examples of the composition for hemodialysis include a dialysate and a filler to be filled in a column.
  • dialysate a form in which the above-mentioned cerium compound is blended with a general dialysate containing sodium, potassium, calcium, magnesium, chlor, hydrogen carbonate, glucose and the like can be exemplified.
  • Carriers include polysaccharides such as cellulose, gellan gum, sulfated gellan, dextran, chitosan, and cellulose acetate, proteins such as gelatin, collagen, and elastin, polystyrene, polyacrylic acid, polyacrylamide, polyvinyl alcohol, polyethylene, and the like. Examples include resins.
  • the pharmaceutical composition of the present invention is preferably in the form of formulating an aqueous dispersion of a cerium compound into an arbitrary dosage form in a state where the cerium compound is dispersed in an aqueous solution.
  • the entire process from particle formation to formulation of the cerium compound, which is the active ingredient, is carried out in a wet system without going through a dry state such as powder, which may cause particle aggregation in the formulation process. Therefore, it is possible to eliminate the concern about aggregation of cerium compound particles in the pharmaceutical process.
  • the suppression of particle aggregation leads to the securing of the reaction boundary area on the particle surface, and the ability to adsorb to phosphorus and urinary toxin precursors and the performance of action on other substances to be acted upon can be most effectively exhibited. ..
  • Jelly agent> a method for producing a jelly agent containing cerium oxide particles as an active ingredient, which is one aspect of the pharmaceutical composition of the present invention, will be described.
  • a gelling agent is usually used to form a jelly-like form (jelly agent).
  • the gelling agent in particular, as long as it is pharmaceutically acceptable and can gel the above-mentioned aqueous dispersion of the cerium compound to a necessary degree to form a semi-solid state, as long as it does not interfere with the effect of the present invention. Not limited.
  • gelatin for example, gelatin, caraginan, pectin, arabic gum, xanthan gum, gellan gum, agar, tragant gum, tamarind seed gum, guar gum, locust bean gum, starch, purulan, chitosan, tara gum, alginic acid or its salts, glucomannan, sodium alginate, potassium alginate. , Sodium polyacrylate and the like.
  • any one or more of these can be used.
  • high molecular weight polysaccharides have an appropriate pH for forming a gel state, for example, in order to maintain a stable gel state at pH 5 to 8, locust bean gum and xanthan gum are used in combination, and locust bean gum and carrageenan are used. It is also preferable to use them in combination with each other, or to use agar in addition to them.
  • the method for preparing the jelly agent is not particularly limited, and all the components may be mixed at the same time, or a mixture prepared by separately mixing any of the components may be mixed with other components or other components.
  • the mixture may be added and mixed to prepare. Further, the mixing operation of each component can be carried out at room temperature or under heating.
  • the gelling agent can be used at any time from the formation of particles of the cerium compound to the formulation. When it has a protective colloidal ability, it can also be used as a dispersant in the particle formation of a cerium compound by adjusting the production conditions.
  • the content of the gelling agent varies depending on the gelling agent used, the pH of the cerium compound aqueous dispersion, etc., but is usually in the range of 0.01 to 10% by mass and in the range of 0.02 to 8% by mass. Is preferable, and the range of 0.03 to 6% by mass is more preferable. If the content of the gelling agent is less than 0.01% by mass, there is a concern that gelation will be insufficient, and if it is more than 10% by mass, there is a concern that it will become too hard and difficult to take.
  • the jelly agent has a low viscosity, a smooth mouthfeel, and a viscosity that is easy to ingest.
  • the viscosity of the jelly agent is preferably 100 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, still more preferably 1 Pa ⁇ s or less.
  • Enteric-coated pharmaceutical composition a pharmaceutical composition containing an enteric-soluble substance (hereinafter, also referred to as an enteric-soluble pharmaceutical composition).
  • the type of enteric substance used in the present invention is not particularly limited as long as it has the desired effect as long as it does not interfere with the effect of the present invention.
  • HPC Hydroxypropyl Methyl Cellulose
  • HPMC Hydroxypropyl Methyl Cellulose
  • CAP Cellulose Acetate Ftalate
  • CAS Cellulose Acetate Succinate
  • CAT Cellulose Acetate Trimeritate
  • HPMCAS Hydroxypropyl Methyl Cellulose Acetate Ftalate
  • HPMCAS Hydroxypropyl Methyl Cellulose Acetate Succinate
  • HPMCAS Hydroxypropyl Methyl Cellulose Acetate Succinate
  • HPMCAS Hydroxypropylmethylcellulose acetate trimellitate
  • CMEC carboxymethylethylcellulose
  • ethylcellulose polyvinylacetate phthalate
  • vinyl acetate-maleic anhydride copolymer polyacrylate, polymethacrylate, copolymer of polyacrylate and
  • the enteric pharmaceutical composition either coats or encloses the cerium compound with an enteric substance or encloses the enteric substance around the cerium compound so as to suppress the action of the cerium compound as an active ingredient on substances other than the substance to be acted upon. It can be obtained by dispersing.
  • Specific production methods include a method of coating or encapsulating a cerium compound with an enteric substance, and a method of coating or encapsulating a solid preparation with an enteric substance.
  • the method of coating or encapsulating is not particularly limited, and a known technique can be used.
  • the coating indicates a state in which the cerium compound is covered with an enteric substance
  • the internal capsule indicates a state in which the cerium compound is included in the enteric substance.
  • the cerium compound is coated or encapsulated with an enteric substance, it is preferable that the cerium compound is coated or encapsulated in the enteric substance in the state of an aqueous dispersion of the cerium compound.
  • the cerium compound coated or encapsulated with the enteric substance is also hereinafter referred to as an enteric cerium compound.
  • the coated or encapsulated cerium compound can be formulated into various solid preparations, semi-solid preparations, liquid preparations and the like by existing methods. In the present invention, it is particularly preferable to prepare a semi-solid or liquid preparation containing an enteric-soluble cerium compound.
  • the properties (dosage form) of the semi-solid or liquid preparation are not particularly limited, but the semi-solid preparation such as a jelly agent and a whipped agent, a syrup agent, a suspension agent, an emulsion and the like are preferable. Examples thereof include liquid preparations of.
  • an enteric-soluble pharmaceutical composition in the case of a semi-solid or liquid preparation, can be obtained by mixing an enteric-soluble cerium compound and a solution to which various additives are added as needed. Specifically, enteric cerium compounds are added and mixed in a solution containing various additives, and conversely, various additives are added and mixed in a solution of enteric cerium compounds, or each is added at the same time. By mixing, an enteric-soluble pharmaceutical composition can be obtained.
  • the mixture of enteric substances can be used at any time from the formation of particles of the cerium compound to the formulation.
  • an enteric substance having a protective colloidal ability it can also be used as a dispersant in the particle formation of a cerium compound by adjusting the production conditions.
  • Stirring can be performed by a conventional method, and it is preferable to use a stirring device such as a homogenizer, for example.
  • the enteric-soluble pharmaceutical composition in the form of a semi-solid or liquid preparation can be used as it is as a semi-solid or liquid preparation, and the obtained semi-solid or liquid enteric-soluble pharmaceutical composition is further encapsulated in a capsule or the like. It can also be used after being processed into a new formulation.
  • the properties (dosage form) of the solid preparation coated or encapsulated are not particularly limited, and tablets (OD tablets (orally disintegrating tablets), chewable tablets, foaming tablets) are not particularly limited. Examples thereof include tablets, immediate release tablets, sugar-coated tablets, etc.), powders, granules, capsules (including hard capsules, soft capsules, etc.), pills, troches, and the like.
  • Coating or encapsulation of the solid preparation with an enteric substance can be performed using an existing coating device.
  • the coating apparatus include a pan coating apparatus, a drum type coating apparatus, a fluidized bed coating apparatus, a stirring fluidized coating apparatus, a rolling fluidized coating apparatus, and the like.
  • the spray device an air spray, an airless spray, a three-fluid spray, or the like can be used.
  • the temperature at which the enteric substance is sent to the coating apparatus can be arbitrarily set, but is preferably 0 to 50 ° C, more preferably 2 to 40 ° C, and 5 to 30 ° C. It is more preferably ° C.
  • the treatment method is not particularly limited as long as it can be dried and water can be removed.
  • heating or air-drying can be performed in the coating device or after taking it out of the coating device.
  • the drying temperature can be 15 to 95 ° C.
  • the content of the enteric substance varies depending on the coating, the dosage form, the size and amount of the contained composition, and the type and amount of the additive, and can be appropriately adjusted.
  • the content of the enteric substance with respect to the total amount of the enteric-soluble pharmaceutical composition (finished preparation) is preferably 0.001 to 99%, more preferably 0.005 to 95%, and 0. It is more preferably 0.01 to 90%.
  • the mass ratio of the content of the enteric substance to the cerium compound is preferably 1: 0.001 to 1: 1000, more preferably 1: 0.002 to 1: 100, still more preferably 1: 0.003 to 1: 1. It is 10. By setting the mass ratio as described above, the rate of dissolution and desorption of the enteric substance from the cerium compound can be preferably adjusted.
  • the enteric substance has the property of dissolving when the pH reaches a predetermined value, and can desorb the active ingredient coated or contained in a pH-dependent manner.
  • the enteric pharmaceutical composition containing an enteric substance is insoluble in the stomach, which maintains a low pH value, without being decomposed and inactivated.
  • enteric substances dissolve at a pH of about 5.0 to 6.5 or higher. That is, the enteric pharmaceutical composition of the present invention can release the cerium compound particularly in the large intestine, and there is no concern that phosphorus is excessively adsorbed in the gastrointestinal tract, particularly in the small intestine, and hypophosphatemia. Can be used without causing.
  • the enteric pharmaceutical composition having the above characteristics can also be applied to patients who do not need to suppress serum phosphorus concentration, for example, patients with stage 1 or 2 of chronic kidney disease.
  • the enteric-soluble pharmaceutical composition having the above-mentioned characteristics exerts its effect mainly in the large intestine, it is possible to use an excess uremic toxin present in the intestine or a precursor thereof as a substance to be acted upon, such as an adsorbed substance. can.
  • Example 1 ⁇ Preparation of Particle 1 (Invention)> In a reaction vessel equipped with a stirrer, 134.69 g of water, 65.66 g of cerium chloride heptahydrate (Nikki Co., Ltd.), and 1.22 g of sodium acetate (Fujifilm Wako Junyaku Co., Ltd.) as a dispersant are placed and cerium is placed. The solution temperature at a solution concentration of 1.1 mol / L was maintained at 20 ° C. with stirring. To this solution was added 4.19 g of hydrogen peroxide solution (Kanto Chemical Co., Inc.) in an amount of 35.4% by mass, and the mixture was stirred and held for 5 minutes.
  • Kanto Chemical Co., Inc. hydrogen peroxide solution
  • particles 2 to 6 were prepared by changing 1.22 g of sodium acetate to the dispersants shown in Table 1. Further, the particles 7 were prepared with reference to Example 1 of JP-A-61-4259. Specifically, 150.00 g of water and 6.00 g of cerium chloride heptahydrate were placed in a reaction vessel equipped with a stirrer, and the temperature of the solution was kept at 20 ° C. with stirring. To this solution was added hydrogen peroxide solution in which 48.45 g of water and 1.55 g of 35.0 mass% hydrogen peroxide solution were mixed in advance, and the mixture was stirred and held for 30 minutes.
  • the particle size could be reduced by forming the cerium compound particles in the presence of the dispersant.
  • Example 2 ⁇ Phosphorus adsorption experiment> [Example 2-1] A 3 mmol / L phosphoric acid aqueous solution having a pH of 1.0 and a pH of 7.0 was prepared. Hydrochloric acid was used to adjust the pH. A commercially available cerium oxide particle (Solvay Special Chem Japan Co., Ltd.) having a particle size of 43 nm was added to these aqueous solutions in an arbitrary amount. Each of these dispersions was kept warm and stirred at 38 ° C. for 1 hour in a constant temperature bath.
  • cerium oxide particles having particle sizes of 79 nm, 144 nm, and 209 nm were also added in an arbitrary amount, and each of these dispersions was kept warm and stirred at 38 ° C. for 1 hour in a constant temperature bath. Then, each solution was subjected to solid-liquid separation by centrifugation (10,000 ⁇ g, 5 minutes), and the supernatant was recovered.
  • a ratio using a commercially available phosphoric acid detection reagent (trade name: PiBlue Phosphate Assay Kit; POPB-500, Bioassay Systems) containing molybdenum blue and macalite green. Color quantification was performed. The results are shown in FIGS. 2-4.
  • Example 2-2 A 3 mmol / L phosphoric acid aqueous solution having a pH of 7.0 was prepared.
  • Bis-Tris / hydrochloric acid buffer was used for pH adjustment. (Phosphoric acid, sodium chloride; Fujifilm Wako Pure Chemical Industries, Ltd., Bis-Tris; Dojin Chemical Research Institute) Particle 1 was added to these aqueous solutions in an arbitrary amount. Each of these dispersions was kept warm and stirred at 38 ° C. for 1 hour in a constant temperature bath. Similarly, an arbitrary amount was added to the particles 7, and each of these dispersions was kept warm and stirred at 38 ° C. for 1 hour in a constant temperature bath.
  • each solution was subjected to solid-liquid separation by centrifugation (10,000 ⁇ g, 5 minutes), and the supernatant was recovered.
  • a commercially available phosphoric acid detection reagent containing molybdenum blue and macalite green (trade name: PiBlue Phosphate Assay Kit; POPB-500, Bioassay Systems) was used. Colorimetric quantification was performed. The results are shown in FIG.
  • the amount of cerium oxide required to adsorb all 3 mmol of phosphoric acid was 1.9 g for particle 1 and 28.5 g for particle 7 (FIG. 5). It was found that the phosphorus adsorption capacity of the particles 1 using the dispersant was clearly higher than that of the particles 7 not using the dispersant.
  • Example 2-3 A 3 mmol / L phosphoric acid aqueous solution having a pH of 2.5 and a pH of 7.0 was prepared.
  • Bis-Tris / hydrochloric acid buffer and glycine-hydrogenated buffer were used for pH adjustment (phosphate, sodium chloride, glycine; Fujifilm Wako Junyaku Co., Ltd., Bis-Tris; Dojin Chemical Research Institute).
  • Particle 1 was added to these aqueous solutions in an arbitrary amount. Each of these dispersions was kept warm and stirred at 38 ° C. for 1 hour in a constant temperature bath.
  • colorimetric quantification was performed using a commercially available phosphoric acid detection reagent (trade name: PiBlue Phosphate Assay Kit; POPB-500) containing molybdenum blue and macalite green.
  • the mass of the particles required to adsorb all 3 mmol of phosphoric acid is 1.45 g at pH 2.5 for particle 1, 1.87 g at pH 7.0, and pH 2.5 for lanthanum carbonate. It was 1.15 g and 5.95 g when the pH was 7.0.
  • FIG. 6 shows the reciprocal of the particle mass required for adsorbing all 3 mmol of phosphoric acid, which is expressed as the phosphorus adsorbing ability.
  • the phosphorus adsorption capacity of the particles 1 which are the cerium oxide fine particles according to the present invention is 79% of that of lanthanum carbonate, conversely, by increasing the mass by 21%, the phosphorus adsorption amount can be made equivalent to that of lanthanum carbonate. Means.
  • the phosphorus adsorbing ability of the particle 1 was 318% of that of lanthanum carbonate, which was extremely excellent. From these results, it can be seen that the phosphorus adsorbent (pharmaceutical composition) containing the cerium compound of the present invention has an overall excellent phosphorus adsorbing ability because it has a small pH dependence.
  • the phosphorus adsorbent (pharmaceutical composition) of the present invention has a large phosphorus adsorbing ability particularly in the neutral pH range, it is not affected by the pH environment in the digestive tract, and it is necessary to measure the timing of administration, for example. It shows that it has no advantage.
  • Example 3 0.067 g of cerium chloride heptahydrate (Nikki Co., Ltd.) and 1.000 g of casein phosphopeptide (Fujifilm Wako Pure Chemical Industries, Ltd.) were added to 8.933 g of water, and the temperature of the aqueous solution was maintained at 25 ° C. for 1 hour with stirring. (Aqueous solution A). 0.032 g of the particles 1 of Example 1 in solid content and 1.000 g of casein phosphopeptide were added to 8.969 g of water, and the temperature of the aqueous solution was maintained at 25 ° C. for 1 hour with stirring (aqueous solution B).
  • a cerium compound aqueous dispersion was prepared by the following procedure. (1) In a reaction vessel equipped with a stirrer, 134.69 g of water, 65.66 g of cerium chloride heptahydrate (Nikki Co., Ltd.), and 1.22 g of sodium acetate (Fujifilm Wako Junyaku Co., Ltd.) as a dispersant. The solution was added and the solution temperature of the cerium solution concentration of 1.15 mol / L was kept at 20 ° C. with stirring.
  • each of these prepared mixtures was kept warm in a constant temperature bath set at 38 ° C. After 1 hour, each sample was taken out from the constant temperature bath, centrifuged (10,000 ⁇ g, 5 minutes), and each supernatant sample was collected.
  • each additive aqueous solution of L-tryptophan, indoleacetic acid, indolelactic acid, and indole has an absorption peak derived from its structure at around 280 nm.
  • the cerium oxide aqueous dispersion also has absorption in the vicinity of this, in order to exclude the influence, the correction was performed with the correction sample of only the cerium oxide aqueous dispersion.
  • a sample containing only the aqueous solution of each additive was used as a reference before adsorption (not adsorbed).
  • the absorbance of the reference sample before adsorption was set to 100%, and the difference in absorbance of the supernatant sample to which cerium oxide was added and mixed was defined as the adsorption rate at which each additive was adsorbed on cerium oxide. The results are shown in FIG.
  • the pharmaceutical composition containing the cerium compound of the present invention as an active ingredient adsorbs indole or the like, which is a precursor of uremic toxin, which is said to be one of the causes of renal function deterioration, and is shown to have renal function. It has been shown to be effective in assisting, maintaining or improving.
  • Example 5 ⁇ Animal experiment> The materials, feeds, equipment, etc. for animal experiments used in Example 5 are described below. ⁇ Rat (Nippon SLC Co., Ltd.) Slc: Wistar rat kidney 5/6 excised animal (1) Moved from the production plant to the Biotechnical Center of Japan SLC Co., Ltd.
  • a cerium compound aqueous dispersion was prepared in the same procedure as in Example 4.
  • the bait of the present invention was prepared by the following procedure. (1) 250 g of powdered feed was weighed and stirred with a kitchen machine. (2) Add 32.7 g of the prepared cerium oxide aqueous dispersion (solid content concentration: 10% by mass) little by little to the powdered feed being stirred, stir with a kitchen machine for 3 minutes, and then once feed the wall surface. After scraping off, the mixture was stirred again for 3 minutes. Subsequently, about 110 mL of hot water was added. (3) After putting them together by hand, they were kneaded with a kitchen machine until they became even more uniform. (4) The kneaded bait was formed into a cylindrical shape having a diameter of about 1 cm and a length of about 2.5 cm.
  • the molded bait was dried at room temperature under a fan or in a 38 ° C. incubator for 2 days. (6) After drying, the weight was measured and the ratio of residual water was calculated. (7) The prepared bait was placed in a bag with a zipper and stored in a refrigerator. The food was prepared by repeating the above steps (1) to (7) in the required amount.
  • Rats were bred according to the following procedure. (1) 5/6 Renal resection model rats were weighed and divided into 3 groups. (2) Each group was free-fed and free-fed, and the food was acclimatized with the breeding MR stock. The conditions of the breeding room were room temperature 22 ⁇ 2 ° C., and the lighting was set to light for 12 hours a day. (3) After that, they were bred as free feeding and free water feeding with the prepared special diet. The conditions of the breeding room were the same as at the time of habituation, the room temperature was 22 ⁇ 2 ° C., and the lighting was set to light for 12 hours a day.
  • Comparative Example 1 In Comparative Example 1 in the same manner as in (2) of the preparation of the bait of the present invention, except that the cerium oxide aqueous dispersion was not added, that is, nothing was added, and the amount of hot water was changed from about 110 mL to about 140 mL. Food was prepared.
  • Comparative Example 2 In the feed preparation (2) of the present invention, instead of adding the cerium oxide aqueous dispersion, 3.09 g of lanthanum carbonate powder was added, and the amount of hot water was changed from about 110 mL to about 140 mL in the same manner. , The bait of Comparative Example 2 was prepared.
  • IP Serum phosphorus
  • ALT Alanine aminotransferase
  • the measured values of the group to which cerium oxide was added were lower than those of the group of Comparative Example 1 to which no cerium oxide was added. That is, by feeding a feed containing cerium oxide, the serum creatinine (CRE) and blood urea nitrogen (BUN) indicating renal function, and the serum ALT (GPT) indicating liver function are kept low. It turns out.
  • the measured values of the group to which cerium oxide was added were similar to those of the group of Comparative Example 2 to which lanthanum carbonate was added (FIG. 8). From this, it was clarified that the pharmaceutical composition of the present invention containing cerium oxide exerts the same effect as lanthanum carbonate as a phosphorus adsorbent.
  • the serum creatinine (CRE) and blood urea nitrogen (BUN) values in the group to which cerium oxide was added maintained constant values without increasing, but the serum creatinine (CRE) in the group to which lanthanum carbonate was added. ),
  • the blood urea nitrogen (BUN) value tended to increase slightly as compared with the group to which cerium oxide was added (FIGS. 9 and 10).
  • the group to which cerium oxide was added had the same serum ALT (GPT) value as the group to which no serum ALT (GPT) was added, whereas the group to which lanthanum carbonate was added had no serum ALT (GPT) value. It increased significantly compared to the group (Fig. 11).
  • the pharmaceutical composition of the present invention containing a cerium compound as an active ingredient is not only effective for assisting, maintaining or improving renal function, but also when lanthanum carbonate, which is a conventional phosphorus adsorbent, is taken. It can be seen that it does not cause the deterioration of liver function seen.
  • Example 6 Two kinds of jelly agents containing the cerium compound of the present invention were prepared by the following procedure.
  • the cerium oxide concentration is 18.0 mass by changing the amount of supernatant removed described in (5).
  • % Water dispersion was prepared.
  • 2.0 g of gelatin (Fuji Film Wako Pure Chemical Industries, Ltd.) was added little by little to 100.0 g of the cerium oxide aqueous dispersion to be stirred, and the mixture was sufficiently mixed to obtain a jelly agent A.
  • the prepared jelly agent A and jelly agent B were included in the mouth and the feeling of ingestion was evaluated.
  • the single dose was assumed to be 0.66 g of cerium oxide, and the jelly agent A was set to 3.7 g and the jelly agent B was set to 5.5 g.
  • both the jelly agents A and B were tasteless and odorless, had no bitterness, irritation, or roughness, and the saliva in the mouth was not rapidly absorbed. .. Including the feeling of mouth residue after spitting, I got the feeling that it was easy to swallow without water without the need to chew.
  • the jelly agent which is one aspect of the present invention, is clearly easier to take than the OD tablet of the lanthanum carbonate preparation of the comparative example.
  • the present invention can be used for the treatment, prevention, and / or suppression of exacerbation of renal diseases and associated secondary diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、新規な医薬組成物を提供することを第1の課題とする。本発明は、セリウム化合物を有効成分として含む、医薬組成物に関する。

Description

セリウム化合物を有効成分として含む、医薬組成物
 本発明は、セリウム化合物を有効成分として含む、医薬組成物に関する。また、本発明は、腎疾患治療薬、特に血清クレアチニン(CRE)、血中尿素窒素(BUN)、血清リン(IP)から選ばれる1種又は2種以上のレベルを低減するため、又は上昇を抑制するための腎疾患治療薬に関する。また、本発明は、リン吸着剤に関する。
 腎臓病の治療は、薬を使って腎臓の機能を補うことで、進行を遅らせることと、腎臓の機能が低下することで起こる合併症を予防することを主眼としており、腎臓病が悪化し腎不全に至った場合、該腎不全を治す特効薬はない。腎臓病の進行を遅らせるためには、薬物療法や食事療法が取られる。また、腎臓病が進行した場合には、透析療法が必要となる。
 慢性腎臓病では、例えば、腎機能の低下に伴って、本来は体外に排泄されるべき尿毒症状をきたす物質(尿毒素)が体内に増加・蓄積することで、尿毒症と呼ばれる病態に陥る懸念がある(非特許文献1)。
 尿毒素の内、インドキシル硫酸、p-クレジル硫酸、トリメチルアミン-N-オキシド(TMAO)といった代表的な尿毒素は腸内細菌代謝を経て産生される代謝物である。
 食事の成分として摂取したトリプトファン、チロシン、コリンとL-カルニチン等は小腸までで吸収されずに大腸に到達した場合、腸内細菌代謝を受けて、それぞれインドール、p-クレゾール、フェノール、トリメチルアミン(TMA)等の尿毒素前駆体へと変化する。
 これらの尿毒素前駆体は体内吸収されると、全身循環から移行して肝臓で代謝され、それぞれインドキシル硫酸、p-クレジル硫酸、フェニル硫酸、及びTMAO等の尿毒素へと変化する。
 これらの尿毒素は、腎機能が正常に機能しているときは尿とともに体外へ排出されるが、排出が滞り、血中に蓄積されると腎不全の進行を促進するとされている。
 インドキシル硫酸やp-クレジル硫酸はその毒性が広く研究されている尿毒素である。TMAOは心血管疾患への関与物質として注目されている尿毒素で、動脈硬化の促進や血栓形成にも寄与するとされ、血中濃度と心血管疾患発症との関連性について報告されている。さらに、腎障害と腎臓線維化の促進等も示されている。
 尿毒素の体内蓄積は、不眠、頭痛、食欲低下、知覚異常、高血圧、貧血、神経障害、更には心血管疾患、骨関節疾患、骨ミネラル代謝異常、感染症、悪性腫瘍等、種々の腎不全関連症状のリスク要因となる他、腎臓機能障害、慢性腎臓病を進展させる懸念がある。そのため、透析療法導入前の保存期慢性腎臓病においても尿毒素を除去することが非常に重要となる。
 尿毒素を除去する方法としては、従来、人工透析や吸着炭製剤投与による治療が採用されている。
 吸着炭製剤(例えば、経口吸着剤AST-120)は、消化管内において尿毒素あるいはその前駆体を吸着させ、便とともに排泄させることにより、腸管からの尿毒素あるいはその前駆体の体内吸収を抑制し、腎臓の負担を軽減することで、尿毒症症状の改善や透析導入を遅らせる効果をもたらす経口吸着剤である(例えば、特許文献1)。
 上述の吸着炭製剤は、腸管内でトリプトファンやインドール等を吸着することで体内に吸収されるそれらの量を抑制することで、結果として、インドキシル硫酸等を減少させることにより腎機能の補助を行うとされる。
 さらに、腎機能が低下すると、リンの体外への排泄量が低下し、血中のリン濃度が上昇するため、高頻度で高リン血症も発症する。
 高リン血症となると、低カルシウム血症、副甲状腺機能亢進症、リン酸カルシウムが血管壁に沈着することによる動脈硬化等も連鎖的に発症し、患者の生命予後やQOL(Quality Of Life)に著しい影響を与える。そこで、食事制限の組み合わせとして、リン吸着薬が使用される場合がある。
 リン吸着薬は、食事からのリンを消化管内において結合させて排泄することにより、腸管吸収による血中リン濃度の上昇を抑制するものである。
 従来、高リン血症治療薬として、有機系及び無機系の経口リン吸着薬が使用されてきた。有機系の経口リン吸着薬としては、塩酸セベラマー製剤等が知られている。無機系の経口リン吸着薬としては、水酸化アルミニウム製剤、炭酸カルシウム製剤、及びクエン酸第二鉄製剤等が知られている。
 しかし、塩酸セベラマー製剤には、便秘、腹痛、腹部膨張感、及び高クロール性代謝性アシドースの惹起等の副作用があることが知られており、その投与量が制限される。また、水酸化アルミニウム製剤は、アルミニウム脳症等の脳障害やアルミニウム沈着による骨軟化症を惹起することが知られており、日本では使用が禁止されている。炭酸カルシウム製剤は、リン吸着能が高く、安価であるが、高カルシウム血症による軟部組織及び血管内の石灰化等の問題が生じる。さらに、クエン酸第二鉄製剤には、下痢や便秘の他、血清フェリチン増加、組織への鉄蓄積等、様々な慢性疾患のリスクを高めることが指摘されている。
 このような事情の中、近年では、リン吸着薬として炭酸ランタンの水和物製剤が多く使用されている。炭酸ランタンは、リン吸着能に優れ、高カルシウム血症を起こす危険性も少なく、体内にはほとんど吸収されないとされ、比較的副作用の少ないリン吸着薬として広まっている。
 特許文献2には、高リン酸塩症の治療のための医薬組成物であって、炭酸ランタンと、希釈剤又は担体と混合されて又は会合されて含む組成物が記載されている。
 しかし、近年、慢性腎不全のため血液透析中であり、炭酸ランタン製剤を服用している患者の胃・十二指腸粘膜の消化管粘膜を観察すると、ランタンの沈着が認められるとの報告が次々となされている(例えば、非特許文献2)。ランタン沈着が病的意義を有するか否かについては、現時点では明確になっていないが、炭酸ランタン製剤の長期の服用にはこのランタン沈着が大きな懸念事項となる。
 また、炭酸ランタンは、カゼイン中のカゼインホスペプチドと錯体を形成し、ランタンが可溶化状態となることで、ランタンの体内吸収が促進される懸念があることが報告されている(非特許文献3)。
 その他、膨潤の程度が大きな薬剤や、炭酸ランタンを始めとする炭酸塩等には、溶解による炭酸ガスの発生による膨満感が生じる懸念がある。
特公昭62-11611号公報 特表平11-503119号公報
丹羽利充,宮崎高志,尿毒症物質研究の現況‘98-第43回日本透析医学会カレントコンセプトより-,透析会誌,[31],(12),1423-1429(1998) 岩室雅也,神崎洋光,川野誠司,河原祥朗,田中健大,岡田裕之,胃・十二指腸粘膜へのランタン沈着症における内視鏡像の検討,日本消化器内視鏡学会雑誌,[59],(6),1428-1434(2017) 吉田宗弘,西崎一誠,古村絵理,細見亮太,福永健治,食餌タンパク質の違いが炭酸ランタン投与ラットの血清リン濃度と臓器中ランタン濃度に及ぼす影響,Trace Nutrients Research,[36],29-34(2019)
 上記のように、腎機能の低下に伴い増加するリン、尿毒素の蓄積による疾患を効果的に抑制又は予防する治療薬の開発が望まれていた。
 そこで、本発明は、セリウム化合物を有効成分として含む、新規な医薬組成物を提供することを第1の課題とする。
 また、本発明は、腎疾患治療薬を提供すること、特に血清クレアチニン(CRE)、血中尿素窒素(BUN)、血清リン(IP)から選ばれる1種又は2種以上のレベルを低減するため、又は上昇を抑制するための医薬組成物を提供することを第2の課題とする。
 さらに、本発明は、従来のリン吸着剤と遜色ない、又はより優れたリン吸着能を有するリン吸着剤を提供することを第3の課題とする。
 すなわち、前記課題を解決する本発明は、セリウム化合物を有効成分として含む、医薬組成物である。
 本発明の好ましい形態では、前記医薬組成物は、腎疾患治療薬である。
 本発明の好ましい形態では、前記医薬組成物は、リン吸着剤である。
 本発明の好ましい形態では、前記医薬組成物は、尿毒素前駆体の吸着剤である。
 本発明の好ましい形態では、前記医薬組成物は、血清クレアチニン(CRE)値の低減、又は上昇の抑制のために用いる。
 本発明の好ましい形態では、前記医薬組成物は、血中尿素窒素(BUN)値の低減、又は上昇の抑制のために用いる。
 本発明の好ましい形態では、前記セリウム化合物が、分散剤に被覆されてなる。
 分散剤の存在下でセリウム化合物粒子を形成することで、粒子形成過程の初期に生成するセリウム化合物核同士のコアレッセンス、又は合一を抑制することができる。これにより、最終的なセリウム化合物の粒子サイズを小さくすることができ、医薬組成物がリン(リン酸)や尿毒素前駆体等の作用対象となる物質(以下、作用対象物質ともいう)と反応する反応界面積を確保することができる。また、製造条件を適切に設定することにより、生産性高く製造することができる。
 また、セリウム化合物粒子が分散剤に被覆されていることで、セリウム化合物と、錯体を形成する成分との錯体形成反応を抑制するため、セリウム化合物又はそのセリウム成分の消化管内吸収を抑制することができる。
 さらに、セリウム化合物粒子が分散剤に被覆されていることで、セリウム化合物を乾固状態とした場合においても水溶液中への再分散性が良好になるため、あらゆる剤形に応用することが可能となる。
 本発明の好ましい形態では、前記分散剤が、カルボキシ基、及び/又はカルボキシレート基を有する分散剤である。
 分散剤として、カルボキシ基、及び/又はカルボキシレート基を有する分散剤は、セリウム化合物への被覆性に優れる。
 本発明の好ましい形態では、前記分散剤が、脂肪酸、ポリカルボン酸、アミノ酸及びこれらの薬学上許容される塩、又は誘導体からなる群から選択される1種又は2種以上である。
 本発明の好ましい形態では、前記脂肪酸の炭素数が、8個以下である。
 このように炭素数が比較的小さい、すなわち、分子量が低い脂肪酸を分散剤として用いることで、作用対象物質との反応界面積をより広く確保することやその他の効果が期待できる。
 本発明の好ましい形態では、前記ポリカルボン酸が、ポリアクリル酸である。
 本発明の好ましい形態では、前記アミノ酸の炭素数が、8個以下である。
 本発明の好ましい形態では、前記セリウム化合物が、セリウム化合物微粒子であって、前記セリウム化合物微粒子の平均一次粒子径が、100nm以下である。
 セリウム化合物微粒子の一次粒子径を100nm以下とすることで、被吸着物に対する吸着能、その他作用対象物質に対する作用をより高めることができる。
 本発明の好ましい形態では、前記セリウム化合物が、水不溶性である。
 水不溶性のセリウム化合物を用いることで、セリウム化合物又はセリウム成分の消化管吸収、及び消化管粘膜への沈着を抑制することができる。
 本発明の好ましい形態では、前記セリウム化合物が、セリウムの酸化物、水酸化物、酸水酸化物、シュウ酸化物、フッ化物からなる群から選択される1種又は2種以上である。
 本発明の好ましい形態では、前記医薬組成物は、経口用である。
 本発明の好ましい形態では、前記医薬組成物は、血液透析用組成物である。
 また、前記課題を解決する本発明は、以下の工程を含む、酸化セリウム微粒子の製造方法である。
(工程A)
 反応容器に、0.2mol/L以上のセリウム塩、分散剤、水を入れ、溶液の温度を5~35℃に維持しながら、撹拌し、溶液を調製する。
(工程B)
 次いで、撹拌を保持しながら、前記溶液に過酸化水素水を必要量添加する。
(工程C)
 次いで、撹拌を保持しながら、前記溶液に1mol/L以上の水酸化物イオン源を添加する。
(工程D)
 撹拌を保持しながら、この溶液を昇温して、所定時間維持した後、室温まで降温させる。
(工程E)
 その後、溶液を所定の濃度に調整し、酸化セリウム水分散液を得る。
 本発明の製造方法によれば、従来、希薄溶液下で調製が必要であった酸化セリウム微粒子を高濃度で製造することができ、酸化セリウムの微粒子の収量が多い。
 また、前記課題を解決する本発明は、腎疾患治療薬の製造における、セリウム化合物の使用である。
 前記セリウム化合物の好ましい形態、用途の好ましい形態は前述した通りである。
 また、前記課題を解決する本発明は、腎疾患治療のための有効成分としてのセリウム化合物の使用である。
 前記セリウム化合物の好ましい形態、用途の好ましい形態は前述した通りである。
 また、前記課題を解決する本発明は、腎疾患治療に用いるための、セリウム化合物である。
 前記セリウム化合物の好ましい形態、用途の好ましい形態は前述した通りである。
 また、前記課題を解決する本発明は、セリウム化合物を、腎疾患の治療が必要な対象に投与することを含む、腎疾患の治療方法である。
 前記セリウム化合物の好ましい形態、用途の好ましい形態は前述した通りである。
 本発明によれば、セリウム化合物を含む、新規の医薬組成物を得ることができる。
 また、本発明の一態様における医薬組成物は、セリウム化合物又はその金属成分の消化管吸収、又は消化管沈着が抑制され、経口剤としての適性に優れる。
 また、本発明の好ましい形態では、本発明の医薬組成物は、従来のリン吸着剤と遜色ない、又はより優れたリン吸着能を有し、経口剤としての適性に優れる。
 また、本発明の好ましい形態では、本発明の医薬組成物は、尿毒素前駆体の吸着能を有し、経口剤としての適性に優れる。
 また、本発明の医薬組成物の好ましい形態では、血清クレアチニン(CRE)、血中尿素窒素(BUN)及び/又は血清リン(IP)濃度を低減し、又は該濃度の増加を抑制することができる。
本発明に係るセリウム化合物(粒子1)の透過電子顕微鏡(TEM)写真である。 pH1.0における酸化セリウム粒子サイズと残留リン酸検出率との関係を示す図である。 pH7.0における酸化セリウム粒子サイズと残留リン酸検出率との関係を示す図である。 pH1.0とpH7.0におけるリン吸着能の差異と酸化セリウム粒子サイズの関係を示す図である。 本発明に係るセリウム化合物(粒子1)と比較例の粒子7のリン吸着能の比較を示す図である。 pH2.5及びpH7.0における本発明に係るセリウム化合物(粒子1)と比較例の炭酸ランタンのリン吸着能の比較を示す図である。 インドール等の尿毒素前駆体の、本発明に係る酸化セリウムへの吸着率を示す図である。 本発明の医薬組成物を添加した場合と、比較例(酸化セリウム未添加、又は炭酸ランタン添加)の血清リン(IP)濃度の比較を示す図である。 本発明の医薬組成物を添加した場合と、比較例(酸化セリウム未添加、又は炭酸ランタン添加)の血清クレアチニン(CRE)濃度の比較を示す図である。 本発明の医薬組成物を添加した場合と、比較例(酸化セリウム未添加、又は炭酸ランタン添加)の血中尿素窒素(BUN)濃度の比較を示す図である。 本発明の医薬組成物を添加した場合と、比較例(酸化セリウム未添加、又は炭酸ランタン添加)の血清ALT(GPT)濃度の比較を示す図である。
 次に、本発明の好ましい実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されず、本発明の範囲内で自由に変更することができる。
(1)セリウム化合物
 本発明は、有効成分としてセリウム化合物を含む、医薬組成物である。
 本発明の好ましい形態では、本発明の医薬組成物は、リン吸着能を有する有効成分として、セリウム化合物を含む。また、本発明の好ましい形態では、本発明の医薬組成物は、インドール等の尿毒素前駆体の吸着能を有する有効成分として、セリウム化合物を含む。
 セリウム化合物としては、セリウムの価数が3価の化合物、及び4価の化合物の何れであってもよく、これらの化合物の混合系であっても良い。セリウム化合物としては、酸化セリウム、水酸化セリウム、酸水酸化セリウム(アニオンとして酸化物(O )と水酸化物(OH)が共存する)、炭酸セリウム、シュウ酸セリウム、酢酸セリウム、硝酸セリウム、硝酸アンモニウムセリウム(IV)、硫酸セリウム、硫酸アンモニウムセリウム(IV)、フッ化セリウム、塩化セリウム等が挙げられる。これらのセリウム化合物は、無水物であってもよく、水和物であってもよい。また、これらのセリウム化合物には、セリウム以外の薬学上許容できる金属が固溶していてもよいが、セリウムに対するモル比としては0.5未満である。
 これらのセリウム化合物は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 セリウム化合物としては、水溶解性が低いセリウム化合物が好ましい。セリウム化合物の溶解度は、20℃の水100gに対して(g/100g HO)、好ましくは0.1以下であり、より好ましくは1×10-4以下であり、さらに好ましくは1×10-7以下であり、特に好ましくは2×10-9以下であり、最も好ましくは1×10-9以下である。また、セリウム化合物としては、水不溶性のセリウム化合物を用いることが好ましい。水溶解性が低い、又は水不溶性セリウム化合物としては、酸化セリウム、水酸化セリウム、及び酸水酸化セリウムが挙げられる。中でも、酸化セリウムが特に好ましい。なお、これらのセリウム化合物は、無水物であってもよく、水和物であってもよい。
 なお、本発明において、水溶解性が低い、又は水不溶性のセリウム化合物は、まとめて水不溶性のセリウム化合物と表現するものとする。
 セリウム化合物として、水溶解性が低い、又は水不溶性のセリウム化合物を用いることで、セリウム化合物又はセリウム化合物由来のセリウム成分の腸管吸収、又は消化管粘膜への沈積を抑制することができる。
 セリウム化合物は、粒子形態であることが好ましく、微粒子形態であることがより好ましい。セリウム化合物微粒子の平均一次粒子径は、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下であり、特に好ましくは20nm以下であり、最も好ましくは10nm以下である。セリウム化合物として、粒子径が小さいものを用いることで、粒子の総表面積、つまりは被吸着物等の作用対象物質との反応界面積を大きく確保することができ、より優れた吸着能及び/又は作用を有する医薬組成物を得ることができる。
 ここで、平均一次粒子径は、電子顕微鏡を用いて、粒子の画像を撮影し、撮影された画像から任意の10個以上の粒子について測定した直径の平均値として求めることができる。また、動的光散乱法による散乱スペクトルの解析等により行うこともできるが、この場合、電子顕微鏡観察による補正が必要である。
 微粒子は粒子凝集を起こしやすく、一旦凝集が生じると、再分散することが非常に困難となる。この傾向は粒子サイズが小さくなるほど顕著となる。よって、本発明で使用するセリウム化合物は、水溶液中に分散された状態であることが好ましい。その粒子形成が水溶液中で行われて以降、セリウム化合物は、水溶液中に分散された状態であることがより好ましく、製剤化プロセスにおいても乾式状態を経ないで水溶液中に分散された状態であることがさらに好ましく、その使用に至るまで水溶液中に分散された状態であることが最も好ましい。
 セリウム化合物を水溶液中に分散させた状態とすることで、粒径の小さいセリウム化合物であっても、凝集の発生が抑制される。
 セリウム化合物の晶相は、特に限定されないが、セリウム化合物が酸化セリウムの場合、結晶表面が主に、{100}面、{111}面、又は{110}面の少なくとも何れかひとつからなることが好ましく、{100}面又は{111}面の少なくともひとつからなることがより好ましく、{100}面からなることが最も好ましい。
 本発明の医薬組成物全量に対するセリウム化合物の含有量は、特に限定されないが、好ましくは0.001~99.9質量%、より好ましくは0.01~98.5質量%である。
(2)分散剤
 本発明の医薬組成物に含まれるセリウム化合物は、分散剤により被覆されていることが好ましい。分散剤の存在下でセリウム化合物粒子を形成することで、粒子形成過程の初期に生成するセリウム化合物核同士のコアレッセンス、又は合一を抑制することができる。これにより、最終的なセリウム化合物の粒子サイズを小さくすることができ、被吸着物等の作用対象物質と反応する粒子表面である反応界面積を大きく確保することができる。また、製造条件を適切に設定することにより、生産性高く製造することができる。さらに、セリウム化合物粒子が分散剤に被覆されていることで、セリウム化合物を乾固状態とした場合においても、水溶液中への再分散性が良好になるため、あらゆる剤形に応用することが可能となる。
 小腸と大腸で吸収できる化合物の分子量は、小腸では分子量600以下、大腸では分子量300以下が目安であることが知られている。分散剤をセリウム化合物に被覆することで、セリウム化合物の分子量を実質的に増大させ、腸管吸収を抑制する効果を期待することができる。
 さらに、分散剤をセリウム化合物に被覆することで、セリウム化合物とカゼインホスペプチド等の錯体形成能を有する成分との錯体形成反応を阻害させ、セリウム化合物又はそのセリウム成分の腸管吸収を抑制することができる。
 分散剤としては、官能基としてカルボキシ基又はカルボキシレート基の少なくともひとつを有する分散剤が好ましい。すなわち、分散剤としては、カルボン酸、その薬学上許容できる塩及び誘導体が好ましい。官能基としてカルボキシ基又はカルボキシレート基の少なくともひとつを有する分散剤は、セリウム化合物、特に酸化セリウムに対する被覆能に優れる。
 分散剤としては、ヒドロキシ酸、脂肪酸、芳香族カルボン酸、ポリカルボン酸、オキソカルボン酸、及びアミノ酸、並びにこれらの薬学上許容できる塩、又は誘導体を例示することができ、脂肪酸、ポリカルボン酸、及びアミノ酸、並びにこれらの薬学上許容できる塩、又は誘導体からなる群から選択される1種又は2種以上が好ましい。
以下、好ましい分散剤について詳細に説明を加える。
(i)脂肪酸
 本発明における分散剤として用いる脂肪酸は、飽和脂肪酸、又は不飽和脂肪酸の何れであっても良く、飽和脂肪酸が好ましい。また、分散剤として用いる脂肪酸は直鎖脂肪酸、分岐脂肪酸、又は環状脂肪酸の何れであっても良く、直鎖脂肪酸が好ましい。
 脂肪酸の炭素数は、好ましくは10個未満であり、より好ましくは8個以下であり、さらに好ましくは6個以下である。また、脂肪酸の炭素数は、好ましくは2個以上である。炭素数が少ない脂肪酸は、分子量が低く適度な親疎水性を有している。炭素数が少ない脂肪酸を分散剤として適切な製造条件を用いることで、セリウム化合物粒子の製造時において、生成する核同士のコアレッセンス、又は合一等の強い接着を抑制することができ、かつ比較的相互作用の弱いフロキュレーションを形成することができる。したがって、被吸着物等の作用対象物質と反応する粒子表面である反応界面積を確保しながら、セリウム化合物粒子を生産性高く製造することが可能となる。
 脂肪酸としては、エタン酸(酢酸)、プロパン酸(プロピオン酸)、ブタン酸(酪酸)、ペンタン酸(吉草酸)、ヘキサン酸(カプロン酸)、及びオクタン酸(カプリル酸)等の飽和脂肪酸、並びにこれらの薬学上許容できる塩、又は誘導体からなる群から選択される1種又は2種以上が好ましい。脂肪酸の薬学上許容できる塩、及びその誘導体としては、ナトリウム塩、及びカリウム塩等のアルカリ金属塩、又はアンモニウム塩が好ましい。脂肪酸塩としては、酢酸ナトリウム、プロピオン酸ナトリウム、酪酸ナトリウム、及びオクタン酸ナトリウム等が例示できる。
(ii)ポリカルボン酸
 本発明における分散剤として用いるポリカルボン酸としては、ポリアクリル酸が好ましい。ポリカルボン酸の薬学上許容できる塩、及びその誘導体としては、ナトリウム塩、及びカリウム塩等のアルカリ金属塩、又はアンモニウム塩が好ましい。
 分散剤として、ポリカルボン酸を用いる場合、その分子量は、好ましくは10,000以下であり、より好ましくは8,000以下、さらに好ましくは5,000以下、特に好ましくは3,000以下、最も好ましくは1,500以下である。
 分子量が低いポリカルボン酸は、適度な親疎水性を有している。分子量が低いポリカルボン酸を分散剤として適切な製造条件を用いることで、セリウム化合物粒子の製造時において、生成する核同士のコアレッセンス、及び合一等の強い接着を抑制することができ、かつ比較的相互作用の弱いフロキュレーションを形成することができる。したがって、被吸着物等の作用対象物質と反応する粒子表面である反応界面積を確保しながら、セリウム化合物粒子を生産性高く製造することが可能となる。
(iii)アミノ酸
 本発明における分散剤として用いるアミノ酸、その薬学上許容できる塩、及び誘導体(以下、特に言及しない限り、単にアミノ酸という)としては、炭素数が10個未満のアミノ酸を用いることが好ましい。アミノ酸の炭素数は、より好ましくは8個以下であり、さらに好ましくは6個以下である。また、アミノ酸の炭素数は、好ましくは2個以上である。
 炭素数が少ないアミノ酸は、分子量が低く適度な親疎水性を有している。この炭素数が少ないアミノ酸を分散剤として適切な製造条件を用いることで、セリウム化合物粒子の製造時において、生成する核同士のコアレッセンス、及び合一等の強い接着を抑制することができ、かつ比較的相互作用の弱いフロキュレーションを形成することができる。したがって、被吸着物等の作用対象物質と反応する粒子表面である反応界面積を確保しながら、セリウム化合物粒子を生産性高く製造することが可能となる。
 アミノ酸としては、グリシン、γ-アミノ酪酸、及び6-アミノヘキサン酸から選択される1種、又は2種以上が好ましい。
 セリウム化合物に対する分散剤成分の含有比は、好ましくは1:0.001~1:1.2、より好ましくは1:0.003~1:0.3である。
 また、他の好ましい形態では、セリウム化合物に対する分散剤成分の含有量比は、好ましくは1:0.001~1:10、より好ましくは1:0.003~1:3である。
 2種以上の分散剤を用いる場合には、セリウム化合物に対する分散剤の合計量の含有量比が、上記範囲内であることが好ましい。
 本発明の医薬組成物全量に対する分散剤成分の含有量は、特に限定されないが、好ましくは0.01~4質量%、より好ましくは0.05~2質量%である。
 また、他の好ましい形態では、本発明の医薬組成物全量に対する分散剤成分の含有量は、特に限定されないが、好ましくは0.01~20質量%、より好ましくは0.05~10質量%である。
(3)セリウム化合物の製造方法
 以下、本発明の医薬組成物に含まれるセリウム化合物の一態様である、酸化セリウム微粒子の製造方法について説明を加える。
<手順1>
(工程A)
 まず、撹拌機を備えた反応容器に、分散剤、セリウム塩、必要に応じて他の金属塩等、水を入れ、溶液の温度を所定の温度で撹拌しながら維持する。
(工程B)
 続いて、撹拌を保持しながら、この溶液に過酸化水素水を所定量添加する。
(工程C)
 続いて、撹拌を保持しながら、この溶液に水酸化物イオン源を所定量添加する。
(工程D)
 そして、撹拌を保持しながら、この溶液を所定温度まで昇温して、所定時間維持した後、室温程度まで降温する。
(工程E)
 その後、溶液を所定の濃度に調整し、酸化セリウム水分散液(セリウム化合物水分散液)を得る。
 また、他の好ましい形態では、酸化セリウム微粒子の製造方法は、以下の工程A~Eを含む。
<手順2>
(工程A)
 まず、撹拌機を備えた反応容器に、分散剤、セリウム塩、水を入れ、溶液の温度を所定の温度に維持しながら、撹拌し、溶液を調製する。
(工程B)
 次いで、撹拌を保持しながら、この溶液に過酸化水素水を必要量添加する。
(工程C)
 次いで、撹拌を保持しながら、この溶液に水酸化物イオン源を添加する。
(工程D)
 撹拌を保持しながら、この溶液を昇温して、所定時間維持した後、室温まで降温させる。
(工程E)
 その後、溶液を濾過し、濾過物に必要量加水して酸化セリウム微粒子の分散液やペーストを得る。あるいは、濾過物をそのまま乾燥させることもできる。
 工程Aにおけるセリウム塩の濃度は、生産性の観点から高濃度に設定することが好ましい。セリウム塩の濃度は、好ましくは0.2mol/L以上である。またセリウム塩の濃度は、好ましくは0.2~4.0mol/Lであり、より好ましくは0.4~3.5mol/Lであり、さらに好ましくは0.5~3.0mol/Lであり、特に好ましくは0.6~2.5mol/Lである。
 セリウム化合物に固溶させるセリウム以外の金属は、薬学上許容できるものであれば特に制限されないが、セリウムに対するモル比としては0.5未満である。
 工程Aにおける分散剤は、予めセリウム塩と溶解共存させることが必要である。また、分散剤の濃度は、上述したセリウム塩との含有量比の好ましい範囲に含まれるように、セリウム塩の濃度に応じて適宜設定することができる。セリウム塩質量に対する分散剤の含有量は、好ましくは0.01~30質量%であり、より好ましくは0.1~20質量%であり、さらに好ましくは0.1~10質量%である。また、反応溶液中の分散剤の濃度は、好ましくは0.1~20g/Lであり、より好ましくは0.5~15g/Lである。
 工程Aにおける溶液の温度は、5~35℃であり、好ましくは5~30℃であり、より好ましくは5~25℃であり、さらに好ましくは5~20℃である。溶液の温度をなるべく低温に保つことで、酸化セリウム粒子の粒子径を小さく、かつ粒子径のバラツキを小さくすることができる。
 工程Bにおける過酸化水素水は、微粒子生成を促進する作用を有している。過酸化水素水の添加量は、セリウム塩の濃度により適宜変更できるが、例えば0~4.0mol/Lである。
 工程Cにおける水酸化物イオン源としては、アンモニア水、水酸化ナトリウム、及びヘキサメチレンテトラミンからなる群から選ばれる1種又は2種以上であることが好ましい。アンモニア水又は水酸化ナトリウムから選ばれる1種又は2種以上であることがさらに好ましい。
 工程Cにおける水酸化物イオン源の濃度は、セリウム塩の濃度により適宜変更できるが、反応容器中の濃度を1mol/L以上とすることができる。また、水酸化物イオン源の濃度は、好ましくは1~10mol/Lであり、より好ましくは2~8mol/Lであり、さらに好ましくは3~5mol/Lである。
 また、他の好ましい形態では、水酸化物イオン源の濃度は、好ましくは1~25mol/Lであり、より好ましくは2~20mol/Lであり、さらに好ましくは3~16mol/Lである。
 水酸化物イオン源の濃度は、セリウム塩のモル濃度に対して1~5倍とすることができ、1~4倍とすることが好ましく、1.2~3.6倍とすることがより好ましく、1.4~3.4倍とすることがさらに好ましく、1.6~3.2倍とすることが特に好ましく、1.8~3.0倍とすることが最も好ましい。
 工程Dにおける昇温後の保持温度は、好ましくは40~200℃、より好ましくは40~150℃、さらに好ましくは40~120℃、特に好ましくは45~95℃、最も好ましくは50~65℃である。
 また、他の好ましい形態では、工程Dにおける昇温後の保持温度は、好ましくは25~200℃、より好ましくは30~150℃、さらに好ましくは35~120℃、特に好ましくは40~95℃、最も好ましくは45~65℃である。
 工程Dにおける昇温後の保持時間は、保持温度により適宜変更できるが、例えば0~300分であり、5~240分とすることが好ましく、10~180分とすることがより好ましく、20~150分とすることがより好ましく、30~150分とすることがさらに好ましく、40~150分とすることが最も好ましい。
 溶液の濃縮前のセリウム塩の濃度は、生産性の観点から0.2mol/L以上である。0.2~4.0mol/Lとすることが好ましく、0.3~3.5mol/Lとすることがより好ましく、0.4~3.0mol/Lとすることがさらに好ましく、0.5~2.5mol/Lとすることが最も好ましい。
 工程Eにおいては、手順1に示すように、公知の方法を用いて酸化セリウム微粒子を濃縮し、任意の濃度の酸化セリウム水分散液(セリウム化合物水分散液)を得ることができる。
 その他、脱塩、加水による酸化セリウム水分散液の濃度調整、酸やアルカリ添加によるpH調整等を適宜行うことができる。
 また、酸化セリウム微粒子は、水分量を調整することにより、水分散物やペースト状物の他、乾燥物にすることもできる。
 また、工程Eにおける濃縮は、既存の方法によりセリウム化合物水分散液を濾過することで行うことができる(手順2)。
 濾過の方法としては、公知の方法を用いることができ、例えば、自然濾過、減圧濾過、加圧濾過、遠心濾過、限外濾過、及び透析濾過等を適宜選択することができる。
 手順1の工程Eにおいて、酸化セリウム水分散液は、最終的なセリウム塩の濃度が好ましくは0.3~40mol/L、より好ましくは0.5~35mol/L、さらに好ましくは1~30mol/L、特に好ましくは2~25mol/Lとなるように濃縮されることが好ましい。
 各成分の混合は、常法により行うことができ、例えば、ホモジナイザー等の撹拌装置を用いて行うことができる。
 工程Eにおいて得られた酸化セリウム微粒子の濾過物又は乾燥物や、酸化セリウム水分散液(セリウム化合物水分散液)は、そのまま本発明の医薬組成物として用いても良いし、後述する方法にて製剤化したものを用いても良い。
 酸化セリウム微粒子は、通常、粒子凝集を抑制させるために希薄溶液下で調製する必要があり、そのため収量生産性が低い。一方、本発明の製造方法によれば、高濃度で酸化セリウム微粒子を調製することができ、高収量で酸化セリウム微粒子を製造することができる。
 なお、酸化物系の粒子においては、酸素欠損、水和物、又は水酸化物等が混在することが多く、厳密には不定組成となることが一般的に起こり得る。本発明の医薬組成物の有効成分として、酸化セリウム微粒子を含む場合には、微粒子の組成として酸化セリウムが含まれていればよく、水酸化セリウム等の他のセリウム化合物が混合した不定組成であってもよい。
(4)医薬組成物の剤形
 本発明の医薬組成物は、経口剤であることが好ましい。
 また、本発明の医薬組成物は、剤形を問わず、錠剤、散剤、顆粒剤、チュアブル錠、カプセル剤等の固形製剤、液剤、及びシロップ剤等の液状製剤等の様々な剤形を採用することができる。
 さらには、OD錠(口腔内崩壊錠)、チュアブル錠、発泡錠、即放性錠剤、糖衣錠等の錠剤、硬カプセル剤、軟カプセル剤等のカプセル剤、丸剤、及びトローチ剤等の固形製剤、ゼリー剤及びホイップ剤等の半固形製剤、懸濁剤、及び乳剤等の液状製剤等の剤形も採用することができる。
 特に、上述した分散剤が被覆されたセリウム化合物を含む医薬組成物は、分散剤により、セリウム化合物の反応界面積を確保しつつ、優れた再分散性を有しており、汎用性が高い。
 本発明の医薬組成物は、特に、ゼリー剤、ホイップ剤、シロップ剤、懸濁剤、又は乳剤等の半固形又は液状製剤を好適に採用することができる。
 すなわち、本発明の医薬組成物は、水を含む基剤を含む形態であることが好ましい。
 本発明の医薬組成物全量に対する水の含有量は、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上である。
 水の含有量を上記範囲とすることで、本発明の医薬組成物は、水なしで経口摂取した場合であっても、飲みやすい性状を有する。
 また、本発明の医薬組成物全量に対する水の含有量は、好ましくは99質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下である。
 基剤は、水の他に、増粘剤、ゲル化剤、油脂、糖等を含むことができる。
 また、上述の半固形又は液状製剤を採用する場合、本発明の医薬組成物全量に対するセリウム化合物の含有量は、好ましくは0.001~95質量%、より好ましくは0.01~90質量%、さらに好ましくは0.02~85質量%である。
 上述の半固形又は液状製剤を採用する場合、本発明の医薬組成物の粘度、破断応力、又は破断歪率等の物性は、以下に示す範囲であることが好ましい。
 本発明の医薬組成物の粘度は、好ましくは100Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは、1Pa・s以下である。
 本発明において、粘度は、測定温度25℃における粘度を示し、回転式B型粘度計(例えば、AMETEK BrookfieldのLVDV-E)を用いて測定することができる。以下、本明細書において粘度を規定する場合、上述と同様に測定することができる。
 本発明の医薬組成物の破断応力は、好ましくは1×10Pa以下、より好ましくは5×10Pa以下、さらに好ましくは、2×10Pa以下である。
 本発明の医薬組成物の破断歪率は、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは、85%以下である。
 本発明において、破断応力及び破断歪率は、測定温度25℃にて、クリープメータ(例えば、株式会社 山電のRE2-3305C)を用いて測定することができる。
 医薬組成物の物性を上記範囲とすることにより、服用者、特に嚥下機能が低下した高齢者にとっても、より服用しやすい製剤とすることができる。
 半固形製剤、あるいは液状製剤は、固形製剤に比べて服用が容易であり、特に、水なしで服用可能である特長があり、服薬アドヒアランスの維持向上に大きく寄与することができる。
 また、製剤化プロセス上、粒子凝集が懸念される粉体のような乾式状態を経ることなく、有効成分であるセリウム化合物の粒子形成から製剤化に至るまでの全プロセスを湿式系で通すことで、製剤プロセスにおけるセリウム化合物粒子同士の凝集懸念を排除できるため、セリウム化合物の粒子表面である反応界面積の確保につながる。これにより、セリウム化合物の有するリンや尿毒素前駆体への吸着能、その他作用対象物質への作用を十分に発揮させることができる。
 そして、セリウム化合物の粒子形成から製剤化までの全プロセスを湿式系で通すことができることで、製造プロセスが簡素化され、医薬製剤としての性能安定性及び製造安定性にもつながることが期待できる。
 上記のように、本発明の医薬組成物は、半固形又は液状製剤とすることで、服薬アドヒアランス、リンや尿毒素前駆体等の吸着性能、その他作用対象物質への作用性能、製剤製造の観点で大きな特長を持つことになる。
 また、本発明の医薬組成物は、必要に応じて、常法により、糖衣コーティング、及び腸溶性コーティング等のコーティングが施されていても良い。
 本発明においては、腸溶性物質を配合した医薬組成物の形態とすることが好ましい。
 また、本発明の医薬組成物は、本発明の目的を達成できる範囲内で、必要に応じて、医薬品に配合可能な添加物を含んでも良い。
 本発明の医薬組成物に配合可能な任意成分として、以下の成分が例示できる。
(a)糖(単糖類、二糖類、オリゴ糖類、又は多糖類)
 例えば、単糖類としては、ブドウ糖、果糖もしくはガラクトース、糖アルコール、マンニトール、キシリトール、イノシトールまたはソルビトール等、二糖類としては、ショ糖、乳糖、麦芽糖またはトレハロース等、オリゴ糖類としては、上記単糖類の重合体、多糖類としては、デキストリンまたはヒドロキシエチル澱粉等が挙げられる。
 これらは、単独で用いてもよいし、2種以上を混合して用いてもよく、中でもデキストリンもしくはトレハロース、又はこれらの混合物を好ましく用いる事ができる。
(b)電解質
 生体の機能や体液の電解質バランス維持のために、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、亜鉛、鉄、銅、マンガン、ヨウ素等が挙げられる。
 これらは、無機電解質成分として含有されていても良いし、有機電解質成分として含有されていてもよい。
 無機電解質成分としては、例えば、塩化物、硫酸化物、炭酸化物等のアルカリ金属またはアルカリ土類金属の塩類が挙げられる。
 有機電解質成分としては、有機酸、例えばクエン酸、乳酸、アミノ酸(例えば、グルタミン酸、アスパラギン酸など)、アルギン酸、リンゴ酸またはグルコン酸と、無機塩基、例えばアルカリ金属またはアルカリ土類金属との塩類が挙げられる。
(c)ビタミンB1類
 糖代謝を円滑に行わせるために、ビタミンB1類として、いわゆる活性型ビタミン(例えば、ビタミンB1硝酸塩またはフルスルチアミンなど)を使用してもよい。
(d)食物繊維
 腸内細菌叢の改善、腸粘膜萎縮の抑制、便性状の改善のために、例えば、難消化性デキストリン、ポリデキストロース等の水溶性食物繊維等が挙げられる。
 本発明の医薬組成物には、本発明の目的を達成できる範囲内で、必要に応じて、上記の成分以外にも、各種の栄養素、ビタミン類、香料、着色剤、甘味剤、酸化防止剤、賦形剤、滑沢剤、流動化剤、結合剤、崩壊剤等を、単独で、又は任意の2種類以上を組み合わせて添加配合することができる。
 本発明の医薬組成物は、食間、食前、食中又は食後の何れでも服用することができる。
 特に、有効成分として酸化セリウム系を含む場合、例えば、炭酸ランタンのように、胃酸の低pHによる溶解を必須として作用させるものではないため、食間や食中であっても服用することができる。また、胃酸との反応による炭酸ガスの発生やpH上昇の懸念を生じることがない。そして、pHによる溶解度を考慮した服用量の制限が無く、服用のタイミングにおいても制限なく有効に作用させることができる。
 吸着薬服用者の40%程度に飲み忘れがあるとの調査結果があるが、本発明のセリウム化合物を含む医薬組成物の場合には、追って服用することにより、胃以外の消化管内でのリン等の吸着も期待でき、服用時期に左右されることなく、セリウム化合物が有効成分としての効果を発揮することができる。
(5)医薬組成物の用途
 上述のセリウム化合物を含む本発明の医薬組成物は、血清クレアチニン(CRE)及び/又は血中尿素窒素(BUN)の測定値を低減する効果、又は前記測定値の上昇を抑制する効果を有する。
 すなわち、本発明の医薬組成物は、腎疾患治療薬として使用することができる。また、本発明の医薬組成物は、血清クレアチニン(CRE)値及び/又は血中尿素窒素(BUN)値の低減又は上昇の抑制のために用いることができる。
 なお、本発明において、腎疾患とは、慢性腎臓病、急性腎障害、慢性腎不全等により、腎機能が低下している状態を示す。また、本発明における腎疾患とは、単に腎臓の機能低下に係る疾患のみを示すのではなく、腎機能の低下により副次的に引き起こされる他臓器の疾患も含むものとする。他臓器の疾患としては、尿毒素によって引き起こされる各種疾患、例えば、心臓、血管系等の疾患が挙げられる。
 そして、本発明における腎疾患の治療とは、腎機能の低下を抑制及び/又は予防すること、腎機能を維持すること、腎機能を回復又は改善させること、腎機能の低下に伴う疾患の予防、抑制、改善又は治療をすること等の、腎疾患により引き起こされるあらゆる不調に対する治療を含む。
 また、上述のセリウム化合物は、腎疾患において体内に蓄積する物質を低減する作用を有する。すなわち、本発明の医薬組成物は、尿毒素又はその前駆体の低減剤である。
 その機序として、上述のセリウム化合物は、腎疾患において体内に蓄積する物質に対する吸着能を有することが分かっている。
 本発明において、腎疾患において体内に蓄積する物質とは、尿毒症症状を引き起こす物質(尿毒素、uremic toxin)、及び/又は尿毒素前駆体のことを指す。セリウム化合物が吸着能を発揮する物質としては、トリプトファン、キヌレニン、セロトニン、トリプタン、インドール類(インドール酢酸、インドールプロピオン酸、インドール乳酸、インドール等)、チロシン、p-クレゾール、フェノール、ホスファチジルコリン、カルニチン、トリメチルアミン(TMA)等の尿毒素の前駆体が好適に挙げられる。
 尿毒素前駆体への吸着能を有することで、本発明の医薬組成物は、体内の尿毒素前駆体を体外へ排出することで、結果的に体内の尿毒素の残存量も低減させることができる。すなわち、本発明の医薬組成物は、尿毒素前駆体の吸着剤とすることができる。
 ただし、本発明の医薬組成物が尿毒素又はその前駆体を低減する作用機序は、上記に限定されない。すなわち、セリウム化合物が、尿毒素又はその前駆体の生成の抑制に関与するものであっても良い。
 このような作用機序としては、例えば、セリウム化合物が、尿毒素又はその前駆体の分解や無害化等に作用する形態が挙げられる。その対象となる尿毒素又はその前駆体としては、トリプトファン、キヌレニン、セロトニン、トリプタン、インドール類(インドール酢酸、インドールプロピオン酸、インドール乳酸、インドール等)、チロシン、p-クレゾール、フェノール、ホスファチジルコリン、カルニチン、トリメチルアミン(TMA)、インドキシル硫酸、p-クレジル硫酸、フェニル硫酸、及びトリメチルアミン-N-オキシド(TMAO)等が挙げられる。
 セリウム化合物が、食物由来成分を尿毒素前駆体又は尿毒素へ代謝する酵素の活性低減(酵素阻害)に作用してもよい。その対象となる酵素としては、トリプトファン 2,3-ジオキシゲナーゼ(TDO)、トリプトファン水酸化酵素(TPH)、芳香族L-アミノ酸脱炭酸酵素(AADC)、トリプトファナーゼ、チロシンフェノールリアーゼ(β-チロシナーゼ)、及びトリメチルアミンリアーゼ等が挙げられる。
 本発明の医薬組成物は、リン吸着能を有し、血清リン(IP)値の測定値を低減する効果、又は前記測定値の上昇を抑制する効果を有する。
 すなわち、本発明の医薬組成物は、血清リン(IP)値の低減又は上昇の抑制剤とすることができ、リン吸着剤とすることもできる。
 上記効果を有する本発明の医薬組成物は、摂食による各種成分の過剰吸収、リンの過剰摂取等に起因する種々の疾患、例えば、高リン血症、腎不全、及び骨粗鬆症等の予防または治療用として用いることができる。
 また、本発明の医薬組成物は、投与により血中のアラニンアミノトランスフェラーゼ(ALT)の値を上昇させないといった効果を有する。すなわち、本発明の医薬組成物は、従来の炭酸ランタンを含む吸着剤等と異なり、服薬により肝機能の低下を誘引しないという特徴を有する。
 また、本発明の一実施形態として、腎疾患治療薬の製造における、セリウム化合物の使用が挙げられる。さらには、リン吸着剤の製造におけるセリウム化合物の使用、血清クレアチニン(CRE)値及び/又は血中尿素窒素(BUN)値の低減又は上昇を抑制するための医薬組成物の製造におけるセリウム化合物の使用の形態とすることができる。
 また、本発明の一実施形態として、腎疾患治療のための有効成分としてのセリウム化合物の使用が挙げられる。さらには、リン吸着のための有効成分としてのセリウム化合物の使用、血清クレアチニン(CRE)値及び/又は血中尿素窒素(BUN)値の低減又は上昇の抑制するための有効成分としてのセリウム化合物の使用の形態とすることができる。
 また、本発明の一実施形態として、腎疾患治療に用いるための、セリウム化合物が挙げられる。さらには、リン吸着に用いるためのセリウム化合物、血清クレアチニン(CRE)値及び/又は血中尿素窒素(BUN)値の低減又は上昇を抑制するためのセリウム化合物の形態とすることができる。
 また、本発明の一実施形態として、セリウム化合物を、腎疾患の治療が必要な対象に投与することを含む、腎疾患の治療方法が挙げられる。さらには、セリウム化合物を血清リン(IP)値の低減又は上昇の抑制の治療が必要な対象に投与することを含む腎疾患の治療方法、セリウム化合物を血清クレアチニン(CRE)値、及び/又は血中尿素窒素(BUN)値の低減又は上昇の抑制の治療が必要な対象に投与することを含む腎疾患の治療方法の形態とすることができる。
 また、本発明の医薬組成物は、血液透析用組成物の形態で用いることも可能である。血液透析用組成物としては、透析液、及びカラムに充填する充填材が例示できる。
 透析液としては、ナトリウム、カリウム、カルシウム、マグネシウム、クロール、炭酸水素、ブドウ糖等を含む一般の透析液に対して、上述したセリウム化合物を配合する形態が例示できる。
 充填材としては、薬学的に許容される担体に、セリウム化合物を担持した形態が例示できる。担体としては、セルロース、ジェランガム、硫酸化ジェラン、デキストラン、キトサン、及び酢酸セルロース等の多糖類、ゼラチン、コラーゲン、及びエラスチン等のタンパク質、ポリスチレン、ポリアクリル酸、ポリアクリルアミド、ポリビニルアルコール、及びポリエチレン等の樹脂等が例示できる。
 本発明の医薬組成物は、セリウム化合物水分散液を、セリウム化合物が水溶液に分散した状態で、任意の剤形に製剤化する形態であることが好ましい。
 このように、製剤化プロセス上、粒子凝集が懸念される粉体のような乾式状態を経ることなく、有効成分であるセリウム化合物の粒子形成から製剤化に至るまでの全プロセスを湿式系で通すことができるので、製剤プロセスにおけるセリウム化合物粒子同士の凝集懸念を排除できる。また、粒子凝集が抑制されることで粒子表面である反応界面積の確保につながり、リンや尿毒素前駆体への吸着能、その他作用対象物質への作用性能を最も有効に発揮させることができる。
 そして、セリウム化合物の粒子形成から製剤化までの全プロセスを湿式系で通すことができることで、製造プロセスが簡素化され、医薬製剤としての性能安定性及び製造安定性にもつながることが期待できる。
 続いて、本発明の医薬組成物の好ましい形態である、1.ゼリー剤、及び、2.腸溶性医薬組成物について、詳細に説明する。
<1.ゼリー剤>
 以下、本発明の医薬組成物の一態様である、有効成分として酸化セリウム粒子を含むゼリー剤の製造方法について説明を加える。
 例えば、ゼリー状の形態(ゼリー剤)とするためには、通常、ゲル化剤が用いられる。ゲル化剤としては、薬学上許容でき、本発明の効果を妨げない範囲で、上述したセリウム化合物水分散液を必要な程度にゲル化して半固体状にすることができるものであれば、特に制限されない。例えば、ゼラチン、カラギナン、ペクチン、アラビアガム、キサンタンガム、ジェランガム、寒天、トラガントガム、タマリンドシードガム、グアーガム、ローカストビーンガム、澱粉、プルラン、キトサン、タラガム、アルギン酸またはその塩、グルコマンナン、アルギン酸ナトリウム、アルギン酸カリウム、ポリアクリル酸ナトリウム等を挙げることができる。
 これらの何れか一種以上を使用することができる。また、高分子多糖類にはゲル状態を形成する適正pHが存在するため、例えば、pH5~8において安定してゲル状態を維持させるために、ローカストビーンガムとキサンタンガムの併用、ローカストビーンガムとカラギナンの併用、又はそれらに加えて寒天を用いる等、適宜組み合せて使用することも好ましく行われる。
 ゼリー剤の調製方法は特に制限されるものではなく、全ての成分を同時に混合してもよく、また何れかの成分を別個に混合して調製された混合物に、他の成分または他の成分の混合物を添加混合して調製してもよい。
 また、各成分の混合操作は、常温下に実施することもでき、また加温下に実施することもできる。
 ゲル化剤は、セリウム化合物の粒子の形成から製剤化のあらゆる時期に使用することができる。保護コロイド能を有する場合、製造条件を調整することにより、セリウム化合物の粒子形成において分散剤として使用することも可能である。
 ゲル化剤の含有量は、用いるゲル化剤、セリウム化合物水分散液のpHなどにより異なるが、通常、0.01~10質量%の範囲内であり、0.02~8質量%の範囲内が好ましく、0.03~6質量%の範囲内がより好ましい。ゲル化剤の含有量が0.01質量%より少ないと、ゲル化が不十分となる懸念があり、10質量%より多いと硬くなりすぎて服用しにくくなる懸念がある。
 また、ゼリー剤は、低粘度で、さらっとした口当たりで、摂取しやすい粘度であることが好ましい。具体的には、ゼリー剤の粘度が、好ましくは100Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは、1Pa・s以下である。
<2.腸溶性医薬組成物>
 続いて、腸溶性物質を配合した医薬組成物(以下、腸溶性医薬組成物ともいう)について、説明を加える。
 本発明で用いる腸溶性物質の種類は、本発明の効果を妨げない範囲で、目的の効果を持つものであれば特に限定されないが、具体的には、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)、セルロースアセテートフタレート(CAP)、セルロースアセテートサクシネート(CAS)、セルロースアセテートトリメリテート(CAT)、ヒドロキシプロピルメチルセルロースアセテートフタレート(HPMCP)、ヒドロキシプロピルメチルセルロースアセテートサクシネート(HPMCAS)、ヒドロキシプロピルメチルセルロースアセテートトリメリテート(HPMCAT)、カルボキシメチルエチルセルロース(CMEC)、エチルセルロース、ポリビニルアセテートフタレート、酢酸ビニル-無水マレイン酸コポリマー、ポリアクリレート、ポリメタクリレート、ポリアクリレートとポリメタクリレートのコポリマー、アミノアルキルメタクリレートコポリマー、メタクリル酸コポリマーL、メタクリル酸コポリマーLD、メタクリル酸コポリマーS、スチレン-マレイン酸コポリマー(SMA)、セラック等を挙げることができる。
 腸溶性医薬組成物は、有効成分であるセリウム化合物が作用対象物質以外に作用するのを抑制するように、セリウム化合物を腸溶性物質で被覆又は内包するか、腸溶性物質をセリウム化合物の周囲に分散させることで得ることができる。具体的な製造方法としては、セリウム化合物を腸溶性物質で被覆又は内包する方法、固形製剤を腸溶性物質で被覆又は内包する方法が挙げられる。
 セリウム化合物を腸溶性物質で被覆又は内包する場合、被覆又は内包する方法は特に限定されず、公知の技術を用いて行うことができる。
 ここで、被覆とは、セリウム化合物の周囲が腸溶性物質で覆われた状態を示し、内包とは、セリウム化合物が腸溶性物質に包含された状態を示す。セリウム化合物を腸溶性物質で被覆又は内包する場合、セリウム化合物をセリウム化合物水分散液の状態で腸溶性物質に被覆又は内包する形態とすることが好ましい。
 本明細書において、このように腸溶性物質により被覆又は内包されたセリウム化合物を、以下、腸溶性セリウム化合物ともいう。
 被覆又は内包後のセリウム化合物を用いて、既存の方法により、各種固形製剤、半固形製剤、液状製剤等に製剤化することができる。
 本発明では、特に、腸溶性セリウム化合物を含む半固形又は液状製剤とすることが好ましい。
 半固形又は液状製剤とする場合、半固形又は液状製剤の性状(剤形)は特に限定されないが、好ましくは、ゼリー剤及びホイップ剤等の半固形製剤、シロップ剤、懸濁剤、及び乳剤等の液状製剤等が挙げられる。
 半固形又は液状製剤とする場合、腸溶性セリウム化合物と、必要に応じて各種添加剤を加えた溶液を混合することで、腸溶性医薬組成物を得ることができる。
 具体的には、各種添加剤を加えた溶液中に腸溶性セリウム化合物を添加混合すること、逆に、腸溶性セリウム化合物の溶液中に各種添加剤を添加混合すること、又は、それぞれを同時に添加混合することにより、腸溶性医薬組成物を得ることができる。
 なお、腸溶性物質の混合は、セリウム化合物の粒子の形成から製剤化のあらゆる時期に使用することができる。保護コロイド能を有する腸溶性物質を使用する場合、製造条件を調整することにより、セリウム化合物の粒子形成において分散剤として使用することも可能である。
 半固形又は液状製剤の作製時、腸溶性セリウム化合物を混合するときの温度、添加混合速度、混合時間、撹拌混合力等の条件については特に制限はなく、本発明の効果を妨げない範囲で調整することができる。
 撹拌は、常法により行うことができ、例えば、ホモジナイザー等の撹拌装置を用いることが好ましい。
 半固形又は液状製剤中の剤形とした腸溶性医薬組成物は、そのまま半固形又は液状製剤として用いることもでき、得られた半固形又は液状の腸溶性医薬組成物をさらにカプセル等に内包させた製剤へ加工した上で用いることもできる。
 固形製剤を腸溶性物質で被覆又は内包する場合、被覆又は内包する固形製剤の性状(剤形)は、特に限定されるものではなく、錠剤(OD錠(口腔内崩壊錠)、チュアブル錠、発泡錠、即放性錠剤、糖衣錠等を含む)、散剤、顆粒剤、カプセル剤(硬カプセル剤、軟カプセル剤等を含む)、丸剤、及びトローチ剤等が挙げられる。
 腸溶性物質による固形製剤の被覆又は内包は、既存のコーティング装置を用いて行うことができる。コーティング装置としては、例えば、パンコーティング装置、ドラムタイプコーティング装置、流動層コーティング装置、撹拌流動コーティング装置、転動流動コーティング装置等が挙げられる。スプレー装置としては、エアースプレー、エアレススプレー、3流体スプレー等を用いることができる。
 腸溶性物質をコーティング装置に送液する際の温度は、任意に設定することが可能であるが、0~50℃であることが好ましく、2~40℃であることがより好ましく、5~30℃であることがさらに好ましい。
 被覆又は内包後は、乾燥させ、水を除去することができれば特に処理方法は制限されない。例えば、コーティング装置内又はコーティング装置から取り出した後に、加熱又は風乾等を行うことができる。乾燥温度は、15~95℃とすることができる。
 腸溶性物質の含有量は、被覆、内包する組成物の剤形、大きさや量、添加剤の種類や量によって異なり、適宜調節することが可能である。好ましい形態としては、腸溶性医薬組成物(完成製剤)全量に対する腸溶性物質の含有量は、0.001~99%であることが好ましく、0.005~95%であることがより好ましく、0.01~90%であることがさらに好ましい。
 腸溶性物質を上記含有量とすることで、セリウム化合物からの腸溶性物質の溶解、脱離の速度を好ましく調整することができる。
 セリウム化合物に対する腸溶性物質の含有量の質量比は、好ましくは1:0.001~1:1000、より好ましくは1:0.002~1:100、さらに好ましくは1:0.003~1:10である。
 上記質量比とすることで、セリウム化合物からの腸溶性物質の溶解、脱離の速度を好ましく調整することができる。
 腸溶性物質は、既定のpHとなった場合に溶解する性質を有し、pH依存的に被覆又は内包された有効成分を脱離することができる。本実施形態では、有効成分であるセリウム化合物の周囲、特には、被吸着物の吸着する吸着サイトを腸溶性物質で被覆又は内包することにより、又は、腸溶性物質をセリウム化合物の周囲に分散させることで、腸溶性医薬組成物の服用後、消化管内、特に小腸までの間で目的外の被吸着物との反応を抑制し、特に大腸においてセリウム化合物の効果を発揮させることができる。
 腸溶性物質を含有する腸溶性医薬組成物は、低pH値を維持する胃では、分解失活せずに不溶性である。一方で、腸溶性物質は約5.0~6.5以上のpHで溶解する。すなわち、本発明の腸溶性医薬組成物であれば、特に大腸内でセリウム化合物を放出することができ、消化管内、特に小腸までの間でリンを過剰に吸着する懸念が無く、低リン血症を引き起こすことなく使用することができる。
 上記の特徴を有する腸溶性医薬組成物は、血清リン濃度を抑制する必要のない患者、例えば、慢性腎臓病のステージ1~2の患者に対しても適用することができる。
 また、上記の特徴を有する腸溶性医薬組成物は、主として大腸で効果を発揮することから、腸内に存在する過剰な尿毒素又はその前駆体を被吸着物等の作用対象物質とすることができる。
[実施例1]
<粒子1の調製(本発明)>
 撹拌機を備えた反応容器に、水134.69g、塩化セリウム七水和物(ニッキ株式会社)65.66g、分散剤として酢酸ナトリウム(富士フイルム和光純薬株式会社)1.22gを入れ、セリウム溶液濃度1.1mol/Lの溶液温度を20℃に撹拌保持した。
 この溶液に35.4質量%の過酸化水素水(関東化学株式会社)4.19gを添加して5分間撹拌保持した。
 更に4mol/Lの水酸化ナトリウム水溶液(富士フイルム和光純薬株式会社)94.67gを添加して5分間撹拌保持した。
 そして溶液を10分かけて50℃に昇温して、120分間の撹拌を維持した後、室温まで降温させた。
 なお、最終的な溶液のセリウム濃度は0.7mol/Lであった。
 その後、反応溶液を濾過して、酸化セリウム濃度が11.9質量%の水分散液とした。
 得られた粒子を透過型電子顕微鏡(TEM)で観察を行ったところ、平均粒子サイズは4.0nmであった。
 粒子1の透過型電子顕微鏡(TEM)写真を図1に記す。
<粒子2~6の調製(本発明)、粒子7の調製(比較例)>
 粒子1の調製において、酢酸ナトリウム1.22gを表1に記した分散剤に変更することにより、粒子2~6を調製した。
 また、特開昭61-4529の実施例1を参考に、粒子7を調製した。
 具体的には、撹拌機を備えた反応容器に、水150.00g、塩化セリウム七水和物6.00gを入れ、溶液の温度を20℃に撹拌保持した。
 この溶液に、水48.45gと35.0質量%の過酸化水素水1.55gをあらかじめ混合した過酸化水素水を添加して30分間撹拌保持した。
 更に29.1質量%アンモニア水を添加してpH10に調整した。
そして溶液を20分かけて85℃に昇温して、12時間の撹拌を維持した後、室温まで降温させた。
 なお、最終的な溶液のセリウム濃度は0.1mol/L未満であった。
その後、反応溶液を濾過して水洗・濾過し、50℃で乾燥させた。
 粒子2~7の平均粒子サイズを、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、分散剤の存在下でセリウム化合物粒子を形成することで、粒子サイズを小さくすることができた。
[実施例2]<リン吸着実験>
[実施例2-1]
 pH1.0及びpH7.0の3mmol/Lリン酸水溶液を調製した。pHの調整には塩酸を用いた。
 これらの水溶液に、43nmの粒子サイズの市販の酸化セリウム粒子(ソルベイ・スペシャルケム・ジャパン株式会社)を任意量添加した。
 これらの各分散液を恒温槽にて38℃で1時間の保温撹拌を行った。
 同様に、79nm、144nm、209nmの粒子サイズの酸化セリウム粒子についても、任意量を添加し、これらの各分散液を恒温槽にて38℃で1時間の保温撹拌を行った。
 その後、それぞれの溶液について、遠心分離(10,000×g、5分)で固液分離を行い、上澄を回収した。
 回収した上澄に残留するリン酸の濃度評価方法として、モリブテンブルーとマカライトグリーンを含む市販のリン酸検出試薬(商品名 PiBlue Phosphate Assay Kit;POPB-500、バイオアッセイシステムス社)を用いた比色定量を行った。結果を図2~4に示す。
 図2及び図3に示した結果から、平均粒子サイズが小さいほど、リン酸に対する吸着能が高いことが判る。よって、粒子径が小さいため、粒子総表面積が大きくなるセリウム化合物微粒子を用いることで、リン吸着能が高い医薬組成物を得ることができると示された。
 また、図4より、粒子径が小さいほどpHの依存性が小さいことも判った。
[実施例2-2]
 pH7.0の3mmol/Lのリン酸水溶液を調製した。pH調整には、Bis-Tris・塩酸緩衝液を用いた。(リン酸、塩化ナトリウム;富士フイルム和光純薬株式会社、Bis-Tris;同仁化学研究所)
 これらの水溶液に、粒子1を任意量で添加した。
 これらの各分散液を、恒温槽にて38℃で1時間の保温撹拌を行った。
 同様に、粒子7についても、任意量を添加し、これらの各分散液を恒温槽にて38℃で1時間の保温撹拌を行った。
 その後、それぞれの溶液について、遠心分離(10,000×g、5分)で固液分離を行い、上澄を回収した。
 回収した上澄に残留するリン酸の濃度評価方法として、モリブテンブルーとマカライトグリーンを含む市販のリン酸検出試薬(商品名:PiBlue Phosphate Assay Kit;POPB-500、バイオアッセイシステムス社)を用いた比色定量を行った。結果を図5に示す。
 3mmolのリン酸をすべて吸着するのに必要な酸化セリウム量は、粒子1で1.9g、粒子7で28.5gであった(図5)。
 分散剤を使用している粒子1のリン吸着能は、分散剤を使用していない粒子7のそれに対して明らかに高いことが判った。
[実施例2-3]
 pH2.5及びpH7.0の3mmol/Lリン酸水溶液を調製した。pH調整には、Bis-Tris・塩酸緩衝液及びグリシン-塩酸緩衝液を用いた(リン酸、塩化ナトリウム、グリシン;富士フイルム和光純薬株式会社、Bis-Tris;同仁化学研究所)。
 これらの水溶液に、粒子1を任意量で添加した。
 これらの各分散液を恒温槽にて38℃で1時間の保温撹拌を行った。
 同様に、市販の炭酸ランタン試薬(ニッキ株式会社)についても、任意量を添加し、これらの各分散液を恒温槽にて38℃で1時間の保温撹拌を行った。
 この時、炭酸ランタン試薬を添加したpH2.5の溶液においては気泡が認められ、ガスが発生したことを確認した。一方、粒子1の場合には気泡の生成は起こらなかった。
 その後、それぞれの溶液について、遠心分離(10,000×g、5分)で固液分離を行い、上澄を回収した。
 回収した上澄に残留するリン酸の濃度評価方法として、モリブテンブルーとマカライトグリーンを含む市販のリン酸検出試薬(商品名 PiBlue Phosphate Assay Kit;POPB-500)を用いた比色定量を行った。
 その結果、3mmolのリン酸すべてを吸着させるのに必要な粒子の質量は、粒子1ではpH2.5のとき1.45g、pH7.0のときに1.87g、炭酸ランタンではpH2.5のとき1.15g、pH7.0のときに5.95gとなった。
 3mmolのリン酸すべてを吸着させるのに必要な粒子質量の逆数を取り、リン吸着能として表したものを図6に示す。
 本発明に係る酸化セリウム微粒子である粒子1のリン吸着能は、炭酸ランタンの79%であるものの、逆に、21%分の質量を増量することで炭酸ランタンと同等のリン吸着量にできることを意味している。一方、中性域では、粒子1のリン吸着能は炭酸ランタンの318%と、極めて優れた吸着能を有していた。これらの結果から、本発明のセリウム化合物を含むリン吸着剤(医薬組成物)は、pH依存性が小さいことから、総合的に優れたリン吸着能を有することが解る。
 つまり、本発明のリン吸着剤(医薬組成物)は、特に、中性pH域で大きなリン吸着能をもつため、消化管中のpH環境に左右されず、例えば、服用のタイミングを計る必要が無い利点を有することを示している。
[実施例3]
 水8.933gに塩化セリウム七水和物(ニッキ株式会社)0.067g、カゼインホスホペプチド(富士フイルム和光純薬株式会社)1.000gを入れ、水溶液の温度を25℃で1時間撹拌保持した(水溶液A)。
 水8.969gに実施例1の粒子1を固形分で0.032g、カゼインホスホペプチド1.000gを入れ、水溶液の温度を25℃で1時間撹拌保持した(水溶液B)。
 その後、遠心分離(10,000×g、5分)で固液分離を行い、上澄を回収した。
 そして、水溶液A及びBの各上澄について、分光光度計を用いてCe3+に相当する吸収スペクトルを測定した。
 なお、塩化セリウム七水和物水溶液及びカゼインホスホペプチド水溶液を調製し、検量線を作成して測定値の補正に用いた。
 その結果、カゼインホスホペプチドが無い場合の同モル濃度の塩化セリウム七水和物水溶液の吸収スペクトル強度を1とすると、水溶液A及びBの強度比率は、0.27及びほぼゼロと換算された。
 この結果から、水溶液Aのカゼインホスホペプチドの存在下では、フリーのセリウムイオンの73%は錯体化したために検出されなかったと推測される。一方、水溶液Bの酸化セリウム微粒子の場合には変化は認められなかったことになる。
 よって、カゼインホスホペプチドと金属イオンが共存すると、反応することにより錯体を形成する可能性が示唆された。
 金属イオンを経る場合、カゼインホスホペプチドと金属錯体を形成することで腸管吸収される懸念が生じるが、本発明のように不溶性微粒子の場合ではその懸念がないことが示唆された。
[実施例4]<尿毒素前駆体の吸着実験>
 以下の手順で、セリウム化合物水分散液を調製した。
(1)撹拌機を備えた反応容器に、水134.69g、塩化セリウム七水和物(ニッキ株式会社)65.66g、分散剤として酢酸ナトリウム(富士フイルム和光純薬株式会社)1.22gを入れ、セリウム溶液濃度1.15mol/Lの溶液温度を20℃に撹拌保持した。
(2)この溶液に、35.4質量%の過酸化水素水(関東化学株式会社)4.19gを添加して5分間撹拌保持した。
(3)更に、4mol/Lの水酸化ナトリウム水溶液(富士フイルム和光純薬株式会社)100.68gを添加して5分間撹拌保持した。
(4)そして、溶液を10分かけて50℃に昇温して、90分間の撹拌を維持した後、室温まで降温し、粒子調製を行った。
 なお、このときの溶液のセリウム濃度は0.72mol/Lであった。
(5)得られた酸化セリウム水分散液に、水275.8gを、続いて、1mol/Lの水酸化ナトリウム水溶液(富士フイルム和光純薬株式会社)30.7gを添加して撹拌した後、静置・沈殿させた。その後、上澄312.5gを除去し、酸化セリウム濃度が10.0質量%の水分散液(セリウム化合物水分散液)とした。
 以下に吸着実験用のサンプル調製について記載する。
 調製した酸化セリウム水分散液(固形分濃度:10質量%)に水を加えて、酸化セリウム濃度を10g/Lに調整した。
 また、L-トリプトファン(富士フイルム和光純薬株式会社)、インドール酢酸(シグマ アルドリッチ社)、インドール乳酸(富士フイルム和光純薬株式会社)、及びインドール(富士フイルム和光純薬株式会社)の各添加物について、濃度1.0mmol/Lの添加物水溶液を調製した。
 そして、ポリプロピレン製15mL遠沈管に、10g/Lの酸化セリウム水分散液0.5mLを秤量し、水4.0mLを添加して、撹拌混合した。続いて、L-トリプトファン水溶液0.5mLを添加して、撹拌混合した。
 同様に、インドール酢酸、インドール乳酸、及びインドール水溶液をそれぞれ添加したサンプルについても調製した。
 また、酸化セリウム水分散液のみのサンプルを補正用サンプルとして準備し、各添加物水溶液のみのサンプルを吸着前(未吸着)の基準サンプルとして準備した。
 調製したこれらの各混合液を、38℃に設定した恒温槽内で保温した。1時間後、恒温槽から各サンプルを取り出して、遠心分離(10,000×g、5分)を行い、それぞれの上澄サンプルを回収した。
 回収した各上澄サンプルについて、分光光度計MultiSpec-1500(株式会社 島津製作所)で吸光度を測定した。
 なお、L-トリプトファン、インドール酢酸、インドール乳酸、及びインドールの各添加物水溶液は、280nm付近に、その構造に由来する吸収ピークを有する。一方、酸化セリウム水分散液もこの近傍に吸収を有するため、その影響を除外するために、酸化セリウム水分散液のみの補正用サンプルで補正を行った。また、各添加物水溶液のみのサンプルを、吸着前(未吸着)の基準とした。
 吸着前(未吸着)の基準サンプルの吸光度を100%とし、酸化セリウムを添加混合した上澄サンプルの吸光度の差を、各添加物が酸化セリウムに吸着した吸着率とした。その結果を図7に示す。
L-トリプトファン、インドール酢酸、インドール乳酸、及びインドールの何れの各添加物も、酸化セリウム粒子に吸着することが判った。また、吸着量は、L-トリプトファン、インドール酢酸及びインドール乳酸、インドールの順に大きくなり、インドール酢酸とインドール乳酸は同等であった。
 以上の結果から、本発明のセリウム化合物を有効成分とする医薬組成物は、腎機能低下の原因の一つともいわれる尿毒素の前駆体であるインドール等を吸着することが示され、腎機能の補助、維持又は改善に有効であることが示された。
[実施例5]<動物実験>
 実施例5で用いた動物実験用の材料、飼料、及び機器等を以下に記す。
・ラット(日本エスエルシー株式会社)
 Slc:Wistarラットの腎臓5/6摘出動物
 (1)3週齢で生産所から日本エスエルシー株式会社バイオテクニカルセンターへ移動
 (2)4週齢で左腎臓を2/3摘出
 (3)5週齢で右腎臓を全摘出
 (4)6週齢で納品
・粉末飼料(株式会社フナバシファーム)
 AIN-93G改変粉末飼料(タンパク源を大豆タンパクに置換)
・飼料調製用撹拌機(ボッシュ株式会社)
 コンパクトキッチンマシンMUM4415JP
・水又はお湯
 浄水器に通してからポットで煮沸したものを使用
・動物実験用飼料ラボMRストック(日本農産工業株式会社)
・炭酸ランタン(ニッキ株式会社)
 炭酸ランタン粉末(La(CO・12.7HO;Lot No.200801)
・動物実験用翼付採血針
 CL-4597(日本クレア株式会社)
 実施例4と同様の手順で、セリウム化合物水分散液を調製した。
 以下の手順で、本発明の餌の調製を行った。
(1)粉末飼料250gを秤量し、キッチンマシンで撹拌した。
(2)調製した酸化セリウム水分散液(固形分濃度:10質量%)32.7gを、撹拌中の粉末飼料に少量ずつ添加し、3分間キッチンマシンで撹拌した後に、壁面についたエサを一度かき落としてから、再度、3分間撹拌した。続けて、約110mLのお湯を添加した。
(3)一度手でまとめた後、更に均一になるまでキッチンマシンでこねた。
(4)こねた餌を、直径1cm、長さ2.5cm程度の円柱形に成形した。
(5)成形した餌を、室温、扇風機下、又は38℃インキュベーター中で2日間乾燥させた。
(6)乾燥後、重量を測定して残留水分の割合を算出した。
(7)調製した餌は、チャック付きの袋に入れて冷蔵保存した。
上記(1)~(7)を必要量繰り返して、餌の調製を行った。
 以下の手順で、ラットの飼育を行った。
(1)5/6腎切除モデルラットの体重を計量し、3群に振り分けた。
(2)各群は、自由摂餌、自由摂水とし、餌は飼育MRストックで順化させた。飼養室条件は室温22±2℃、照明は1日12時間点灯とした。
(3)その後、調製した特別食で自由摂餌、自由摂水として飼育した。飼養室条件は馴化時と同様に、室温22±2℃、照明は1日12時間点灯とした。
(4)0、7、14、21、28日目は、代謝ケージで24時間飼育した。0日目の飼育ではラボMRストックを、それ以降は特別食を与えて飼育し、摂餌量、摂水量、尿量、及び糞量を測定し、尿と糞をサンプリングした。
(5)代謝ケージから出して、体重測定を行い、体重測定の後に翼状針で採血を行った。採血量は約400μLとし、血液は室温で1時間インキュベート後、遠心分離(1,700×g、20分)して血清を得た。
 以降、(4)代謝ケージでの飼育と(5)体重測定・採血を繰り返した。
(6)最終28日目は、1日絶食させた後、解剖を行った。解剖は、麻酔下で開腹、下大静脈より採血して放血死させた。得られた血液を遠心分離(1,700×g、20分)して血清を得た。放血死したラットの肝臓、腎臓、脾臓、小腸、胃を採取した。小腸、胃は切開して内容物を取り除き、PBSで2回洗浄した。ここまでを3回繰り返し、各群6匹とした。
(比較例1)
 本発明の餌の調製の(2)において、酸化セリウム水分散液を添加せず、つまり何も添加せず、お湯の量を約110mLから約140mLに変更した以外は同様にして、比較例1の餌を調製した。
(比較例2)
 本発明の餌の調製の(2)において、酸化セリウム水分散液を添加する代わりに、炭酸ランタン粉末3.09gを添加し、お湯の量を約110mLから約140mLに変更した以外は同様にして、比較例2の餌を調製した。
 採取した血液サンプルの分析は、オリエンタル酵母工業株式会社に依頼した。
 以下に、各試験項目の分析方法及び分析用試薬を記す。
 ・血清クレアチニン(CRE):酵素法、Lタイプワコー CRE・M(富士フイルム和光純薬)
 ・血中尿素窒素(BUN):ウレアーゼ-GLDH法、オリエンタル酵母工業株式会社製試薬(オリエンタル酵母工業株式会社)
 ・血清リン(IP):酵素法、デタミナーL IP II(日立化成ダイアグノスティックス・システムズ)
 ・アラニンアミノトランスフェラーゼ(ALT):JSCC標準化対応法、Lタイプワコー ALT・J2(富士フイルム和光純薬)
 上記4項目は、日立7180型自動分析装置を使用して測定された。
 なお、ALTについては、最終日に採取した血液サンプルについてのみの測定となった。
 血清クレアチニン(CRE)、血中尿素窒素(BUN)、血清リン(IP)、及びアラニンアミノトランスフェラーゼ(ALT)についての分析値を、それぞれ図8~11に示す。
 何れの試験項目についても、酸化セリウムを添加した群の測定値は、無添加の比較例1の群に対して低値となっていた。すなわち、酸化セリウムを含む飼料を摂餌することにより、腎機能を示す血清クレアチニン(CRE)及び血中尿素窒素(BUN)、そして肝機能を示す血清ALT(GPT)の値が低く維持されていることが判る。
 また、炭酸ランタンを添加した比較例2の群と比較し、酸化セリウムを添加した群の測定値は、血清リン(IP)の値は同程度であった(図8)。これにより、酸化セリウムを含む本発明の医薬組成物は、リン吸着剤として、炭酸ランタンと同程度の効果を発揮することが明らかとなった。
 一方、酸化セリウムを添加した群の血清クレアチニン(CRE)、血中尿素窒素(BUN)の値は、増加することなく一定値を維持しているが、炭酸ランタンを添加した群の血清クレアチニン(CRE)、血中尿素窒素(BUN)の値は、酸化セリウムを添加した群と比してやや増加傾向にあった(図9及び10)。
 また、酸化セリウムを添加した群は、血清ALT(GPT)の値が未添加の群と同程度であるのに対し、炭酸ランタンを添加した群は、血清ALT(GPT)の値が未添加の群と比して顕著に増加していた(図11)。
 以上の結果から、セリウム化合物を有効成分とする本発明の医薬組成物は、腎機能の補助、維持又は改善に有効であるばかりでなく、従来のリン吸着剤である炭酸ランタンを服薬した場合に見られる肝機能の悪化を引き起こさないことが分かる。
[実施例6]
 続いて、以下の手順で、本発明のセリウム化合物を含むゼリー剤を2種調製した。
<実施例6-1>ゲル化剤:ゼラチン
(1)上記のセリウム化合物水分散液の調製において、(5)に記載した上澄除去量を変更することにより、酸化セリウム濃度が18.0質量%の水分散液を調製した。
(2)撹拌する酸化セリウム水分散液100.0gに、ゼラチン(富士フイルム和光純薬株式会社)2.0gを少量ずつ添加し、十分に混合して、ゼリー剤Aを得た。
<実施例6-2>ゲル化剤:寒天
(1)上記のセリウム化合物水分散液の調製において、(5)に記載した上澄除去量を変更することにより、酸化セリウム濃度が18.0質量%の水分散液を調製した。
(2)撹拌する水100.0gに、寒天粉末(富士フイルム和光純薬株式会社)1.4gを少量ずつ添加し、加熱溶解した後、降温した。
(3)撹拌する酸化セリウム水分散液100.0gに、50℃の寒天水溶液50.7gを混合・撹拌して、室温まで降温し、ゼリー剤Bを得た。
 調製したゼリー剤A及びゼリー剤Bについて、口に含んで服用感の評価を行った。なお、1回分の服用量を酸化セリウム0.66g分と仮定し、ゼリー剤Aは3.7g、そしてゼリー剤Bは5.5gと設定した。
 ゼリー剤のみを口に含むと、ゼリー剤A及びBの何れにおいても、無味無臭で、苦味、刺激感やザラツキ等はなく、また口内の唾液が急激に吸い取られることもないことを確認できた。吐き出した後の口残りの感じを含めると、噛み砕く必要なく、水なしでそのまま飲み込むことが容易である感触を得た。
 炭酸ランタン製剤のOD錠を口に含んだ場合、口内の唾液が急激に吸い取られ、実質的に水なしで服用するのが困難であった。したがって、本発明の一態様であるゼリー剤は、比較例の炭酸ランタン製剤のOD錠と比して明らかに服用しやすいことが判った。
 本発明は、腎疾患、及びこれに伴う副次的な疾患の治療、予防、及び/又は悪化抑制のために用いることができる。

 

Claims (18)

  1.  セリウム化合物を有効成分として含む、医薬組成物。
  2.  腎疾患治療のための、請求項1に記載の医薬組成物。
  3.  リン吸着剤である、請求項1又は2に記載の医薬組成物。
  4.  尿毒素前駆体の吸着剤である、請求項1~3の何れか一項に記載の医薬組成物。
  5.  血清クレアチニン(CRE)値の低減、又は上昇の抑制のために用いる、請求項1~4の何れか一項に記載の医薬組成物。
  6.  血中尿素窒素(BUN)値の低減、又は上昇の抑制のために用いる、請求項1~5の何れか一項に記載の医薬組成物。
  7.  前記セリウム化合物が、分散剤に被覆されてなる、請求項1~6の何れか一項に記載の医薬組成物。
  8.  前記分散剤が、カルボキシ基、及び/又はカルボキシレート基を有する分散剤である、請求項7に記載の医薬組成物。
  9.  前記分散剤が、脂肪酸、ポリカルボン酸、アミノ酸及びこれらの薬学上許容される塩、又は誘導体からなる群から選択される1種又は2種以上である、請求項7又は8に記載の医薬組成物。
  10.  前記脂肪酸の炭素数が、8個以下である、請求項9に記載の医薬組成物。
  11.  前記ポリカルボン酸が、ポリアクリル酸である、請求項9に記載の医薬組成物。
  12.  前記アミノ酸の炭素数が、8個以下である、請求項9に記載の医薬組成物。
  13.  前記セリウム化合物が、セリウム化合物微粒子であって、前記セリウム化合物微粒子の平均一次粒子径が、100nm以下である、請求項1~12の何れか一項に記載の医薬組成物。
  14.  前記セリウム化合物が、水不溶性である、請求項1~13の何れか一項に記載の医薬組成物。
  15.  前記セリウム化合物が、セリウムの酸化物、水酸化物、酸水酸化物、シュウ酸化物、フッ化物からなる群から選択される1種又は2種以上である、請求項1~14の何れか一項に記載の医薬組成物。
  16.  経口剤である、請求項1~15の何れか一項に記載の医薬組成物。
  17.  血液透析用組成物である、請求項1~15の何れか一項に記載の医薬組成物。
  18.  以下の工程を含む、酸化セリウム微粒子の製造方法。
    (工程A)
     反応容器に、0.2mol/L以上のセリウム塩、分散剤、水を入れ、溶液の温度を5~35℃に維持しながら、撹拌し、溶液を調製する。
    (工程B)
     次いで、撹拌を保持しながら、前記溶液に過酸化水素水を必要量添加する。
    (工程C)
     次いで、撹拌を保持しながら、前記溶液に1mol/L以上の水酸化物イオン源を添加する。
    (工程D)
     撹拌を保持しながら、この溶液を昇温して、所定時間維持した後、室温まで降温させる。
    (工程E)
     その後、溶液を所定の濃度に調整し、酸化セリウム水分散液を得る。

     
PCT/JP2021/017295 2020-07-13 2021-04-30 セリウム化合物を有効成分として含む、医薬組成物 WO2022014122A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21842561.9A EP4180048A4 (en) 2020-07-13 2021-04-30 PHARMACEUTICAL COMPOSITION CONTAINING A CER COMPOUND AS ACTIVE INGREDIENT
CA3189026A CA3189026A1 (en) 2020-07-13 2021-04-30 Pharmaceutical composition containing cerium compound as active ingredient
AU2021309295A AU2021309295A1 (en) 2020-07-13 2021-04-30 Pharmaceutical composition containing cerium compound as active ingredient
CN202180061366.8A CN116456993A (zh) 2020-07-13 2021-04-30 包含铈化合物作为有效成分的药物组合物
JP2022536143A JPWO2022014122A1 (ja) 2020-07-13 2021-04-30
US18/153,124 US20230233603A1 (en) 2020-07-13 2023-01-11 Pharmaceutical composition containing cerium compound as active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020119746 2020-07-13
JP2020-119746 2020-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/153,124 Continuation-In-Part US20230233603A1 (en) 2020-07-13 2023-01-11 Pharmaceutical composition containing cerium compound as active ingredient

Publications (1)

Publication Number Publication Date
WO2022014122A1 true WO2022014122A1 (ja) 2022-01-20

Family

ID=79554628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017295 WO2022014122A1 (ja) 2020-07-13 2021-04-30 セリウム化合物を有効成分として含む、医薬組成物

Country Status (8)

Country Link
US (1) US20230233603A1 (ja)
EP (1) EP4180048A4 (ja)
JP (1) JPWO2022014122A1 (ja)
CN (1) CN116456993A (ja)
AU (1) AU2021309295A1 (ja)
CA (1) CA3189026A1 (ja)
TW (1) TW202202154A (ja)
WO (1) WO2022014122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154771A1 (ja) * 2023-01-18 2024-07-25 株式会社applause Pharma 3価のセリウムを含むセリウム化合物を有効成分とする医薬組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614529A (ja) 1984-06-15 1986-01-10 Asahi Chem Ind Co Ltd リン酸イオンの吸着剤
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
JPH11503119A (ja) 1995-03-25 1999-03-23 ジョンソン マッセイ パブリック リミティド カンパニー 選択された炭酸ランタン水和物を含有する医薬組成物
JP2007022836A (ja) * 2005-07-14 2007-02-01 Sumitomo Osaka Cement Co Ltd 希土類元素添加酸化セリウム粉体の製造方法
JP2016514163A (ja) * 2013-03-14 2016-05-19 ペロキシウム・インコーポレイテッド,デラウェア・シー・コーポレーション ナノカプセル化およびコーティングによる療法用CeO2粒子の生体分布および組織ターゲティング特性を増強する方法
JP2018508568A (ja) * 2015-01-20 2018-03-29 セリオン,リミティド ライアビリティ カンパニー カタラーゼ様活性を有するeddsでキレート化されたナノセリア
JP2020045290A (ja) * 2018-09-14 2020-03-26 恒隆 川口 メラニン生成抑制剤
JP2020045291A (ja) * 2018-09-14 2020-03-26 恒隆 川口 酸化セリウム含有組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810610A (ja) * 1994-07-05 1996-01-16 Ishihara Sangyo Kaisha Ltd リン吸着剤
JP6664631B2 (ja) * 2014-08-11 2020-03-13 学校法人法政大学 リン吸着剤、吸着剤の製造方法および吸着剤を用いた吸着方法
EP3777920A1 (en) * 2015-11-30 2021-02-17 Toray Industries, Inc. Phosphorus adsorbent, porous fiber and phosphorus adsorption column
US20210387110A1 (en) * 2018-10-23 2021-12-16 Northwestern University Metal-organic frameworks for the removal of uremic toxins
CN109939125B (zh) * 2019-04-22 2021-05-18 南昌大学第二附属医院 一种抗氧化剂及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
JPS614529A (ja) 1984-06-15 1986-01-10 Asahi Chem Ind Co Ltd リン酸イオンの吸着剤
JPH11503119A (ja) 1995-03-25 1999-03-23 ジョンソン マッセイ パブリック リミティド カンパニー 選択された炭酸ランタン水和物を含有する医薬組成物
JP2007022836A (ja) * 2005-07-14 2007-02-01 Sumitomo Osaka Cement Co Ltd 希土類元素添加酸化セリウム粉体の製造方法
JP2016514163A (ja) * 2013-03-14 2016-05-19 ペロキシウム・インコーポレイテッド,デラウェア・シー・コーポレーション ナノカプセル化およびコーティングによる療法用CeO2粒子の生体分布および組織ターゲティング特性を増強する方法
JP2018508568A (ja) * 2015-01-20 2018-03-29 セリオン,リミティド ライアビリティ カンパニー カタラーゼ様活性を有するeddsでキレート化されたナノセリア
JP2020045290A (ja) * 2018-09-14 2020-03-26 恒隆 川口 メラニン生成抑制剤
JP2020045291A (ja) * 2018-09-14 2020-03-26 恒隆 川口 酸化セリウム含有組成物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
MASAYA IWAMUROHIROMITSU KANZAKISEIJI KAWANOYOSHIRO KAWAHARATAKEHIRO TANAKAHIROYUKI OKADA: "Endoscopic Features of Lanthanum Deposition in the Gastroduodenal Mucosa", GASTROENTEROL ENDOSC., vol. 59, no. 6, 2017, pages 1428 - 1434
MIYAKAWA, KAZUKI ET AL.: "XC237 Ce02 nanoparticle hydrothermal synthesis with amino base for the production of nanocomposite materials", SCEJ 80TH ANNUAL MEETING; TOKYO, JAPAN; MARCH 19-21, 2015, vol. 80, 30 November 2014 (2014-11-30) - 21 March 2015 (2015-03-21), JP, pages XC237, XP009534214 *
MUNEHIRO YOSHIDAISSEI NISHIZAKIEMI KOMURARYOTA HOSAMIKENJI FUKUNAGA: "Effect of difference in dietary protein on serum phosphorus and tissue lanthanum concentration in rats administered lanthanum carbonate", TRACE NUTRIENTS RESEARCH, vol. 36, 2019, pages 29 - 34
OGURA MITSUO, HITOSHI IWAMOTO, TAKASHI AKIBA, SEINOSUKE NAKAGAWA: "Development of non-aluminum phosphate binder - Hydrous cerium oxide ", JOURNAL OF ARTIFICIAL ORGANS, vol. 15, no. 3, 1 January 1986 (1986-01-01), pages 775 - 778, XP055898169 *
SAIFI, M. A. ET AL.: "Protective Effect of Nanoceria on Cisplatin-induced Nephrotoxicity by Amelioration of Oxidative Stress and Pro- inflammatory Mechanisms", BIOLOGICAL TRACE ELEMENT RESEARCH, vol. 189, 2019, pages 145 - 156, XP036747226, DOI: 10.1007/s12011-018-1457-0 *
See also references of EP4180048A4
TOSHIMITSU NIWATAKASHI MIYAZAKI: "Current State of Uremic Substance Research '98 - from the 43rd Current Concept of the Japanese Society for Dialysis Therapy", JOURNAL OF JAPANESE SOCIETY FOR DIALYSIS THERAPY, vol. 31, no. 12, 1998, pages 1423 - 1429

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154771A1 (ja) * 2023-01-18 2024-07-25 株式会社applause Pharma 3価のセリウムを含むセリウム化合物を有効成分とする医薬組成物
WO2024154276A1 (ja) * 2023-01-18 2024-07-25 株式会社applause Pharma 3価のセリウムを含むセリウム化合物を有効成分とする医薬組成物

Also Published As

Publication number Publication date
EP4180048A4 (en) 2024-07-10
EP4180048A1 (en) 2023-05-17
JPWO2022014122A1 (ja) 2022-01-20
CN116456993A (zh) 2023-07-18
TW202202154A (zh) 2022-01-16
AU2021309295A1 (en) 2023-03-09
CA3189026A1 (en) 2022-01-20
US20230233603A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP5456969B2 (ja) 製造方法
DK2319804T3 (en) Iron (III) -carbohydrat-based phosphatadsorbens
WO2012098562A2 (en) Liquid oral compositions of lanthanum salts
CZ170294A3 (en) Water-soluble complex of anionic polysaccharide with a cation, process of its preparation, its mixture in a dry agglomerated form, low-viscosity, heat-sterilizable nutritive beverage, foodstuff and pharmaceutical composition containing thereof
KR20110018434A (ko) 철 함유 인산염 흡착제의 제조를 위한 제조 방법
JPH0326169B2 (ja)
EA019635B1 (ru) Лиганд-модифицированные полиоксогидроксидные материалы с ионами металла, их применение и способы их получения
US20230233603A1 (en) Pharmaceutical composition containing cerium compound as active ingredient
CN102470183A (zh) 一种含二甲硅油/西甲硅油的药物组合物
US11213505B2 (en) Product based on iron bis-glycinate chelate and alginic acid and/or water-soluble salts thereof, formulations thereof, and pharmaceutical uses thereof
CN113905619A (zh) 钠排出粒子
WO2008116215A2 (en) Phosphorus binder for treatment of renal disease
JP2018530565A (ja) カルボキシレート配位子修飾水酸化第二鉄コロイドおよび関連組成物を生成するための方法ならびに使用
ES2908336T3 (es) Suspensión que comprende hidróxido de aluminio e hidróxido de magnesio y procedimiento de preparación de la misma
JP4616195B2 (ja) キトサンの難溶性塩を含有する組成物
JP2024509476A (ja) 鉄欠乏症の処置を受けた対象体における胃腸炎症の処置に用いるための鉄ベースの組成物
EP3609473B1 (en) Oral compositions for the treatment of iron deficiency disorders
WO2024154276A1 (ja) 3価のセリウムを含むセリウム化合物を有効成分とする医薬組成物
JP2004051615A (ja) キトサン・オロチン酸塩を使用する胆汁酸吸着剤。
US11865099B2 (en) Product based on iron bis-glycinate chelate and alginic acid and/or water-soluble salts thereof, formulations thereof, and pharmaceutical uses thereof
TW202432148A (zh) 含有三價鈰之鈰化合物之用途
JP2023520709A (ja) 肝疾患と関連する鉄欠乏症の治療または予防における使用のためのカルボン酸塩リガンド修飾水酸化第二鉄組成物
EA043686B1 (ru) Фармацевтическая композиция для снижения уровня связанных с белками уремических токсинов
JP2022122264A (ja) 薬剤の製造方法
US20090239914A1 (en) Phosphorus binder for treatment of renal disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3189026

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180061366.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022536143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021842561

Country of ref document: EP

Effective date: 20230213

ENP Entry into the national phase

Ref document number: 2021309295

Country of ref document: AU

Date of ref document: 20210430

Kind code of ref document: A