WO2022002226A1 - 一种烷基苯胺聚醚苯磺酸盐及其制备方法 - Google Patents

一种烷基苯胺聚醚苯磺酸盐及其制备方法 Download PDF

Info

Publication number
WO2022002226A1
WO2022002226A1 PCT/CN2021/104139 CN2021104139W WO2022002226A1 WO 2022002226 A1 WO2022002226 A1 WO 2022002226A1 CN 2021104139 W CN2021104139 W CN 2021104139W WO 2022002226 A1 WO2022002226 A1 WO 2022002226A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylaniline
polyether
benzene sulfonate
alkyl
reaction
Prior art date
Application number
PCT/CN2021/104139
Other languages
English (en)
French (fr)
Inventor
李应成
鲍新宁
张卫东
沙鸥
吴欣悦
金军
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to CA3188582A priority Critical patent/CA3188582A1/en
Priority to MX2023000029A priority patent/MX2023000029A/es
Priority to EP21833687.3A priority patent/EP4177242A4/en
Priority to US18/003,395 priority patent/US20230242806A1/en
Priority to BR112022026903A priority patent/BR112022026903A2/pt
Publication of WO2022002226A1 publication Critical patent/WO2022002226A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/45Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/49Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2618Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen
    • C08G65/2621Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups
    • C08G65/2627Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups containing aromatic or arylaliphatic amine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/326Polymers modified by chemical after-treatment with inorganic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers

Definitions

  • the invention belongs to the field of surfactants, and in particular relates to an oil-displacing surfactant comprising alkylaniline polyether benzene sulfonate.
  • tertiary oil recovery is compared with primary oil recovery and secondary oil recovery.
  • primary oil recovery In layman's terms, in the early stage of oil exploitation, only the natural energy of the formation is used to extract oil, which is called primary oil recovery, and its recovery rate is only about 10%.
  • secondary oil recovery At present, a large number of oil fields in the world have adopted secondary oil recovery methods, but the recovery rate can generally only reach about 25% to 40%.
  • Tertiary oil recovery is a method of using physical, chemical and biological means to continue to exploit the remaining oil in the ground, so as to improve the oil recovery rate.
  • Chemical flooding is a very important and large-scale technology in enhanced oil recovery.
  • the effect of chemical flooding is the combined result of physical action and chemical action.
  • the physical action refers to the sweeping action of the displacement fluid, while the chemical action refers to the microscopic oil displacement action of the displacement fluid.
  • the key chemical agent is the surfactant.
  • the main mechanism of surfactant to enhance oil recovery is to reduce the interfacial tension between displacement fluid and crude oil and improve the wettability of reservoir. After the oilfield enters the high water cut period, the remaining oil is trapped in the pores of the reservoir rock as a discontinuous oil film.
  • the two main forces acting on the oil droplets are the viscous force and the capillary force. It can reduce the interfacial tension between oil and water, and reduce the interfacial tension between oil and water in the reservoir layer from 20 to 30 mN/m to a low or ultra-low value (10 -3 to 10 -4 mN/m), which can reduce the residual The resistance caused by the deformation of the oil droplets when the oil moves, thereby greatly improving the oil displacement efficiency.
  • the oil-displacing effect of surfactants is also manifested in that the lipophilic rock surface is transformed into water-wet or neutral-wet, that is, the adhesion work of crude oil in the reservoir is reduced, and the crude oil is more easily eluted from the formation surface, thereby improving the washing process. oil efficiency.
  • surfactants used in tertiary oil recovery are petroleum sulfonates, alkyl benzene sulfonates, heavy alkyl benzene sulfonates, olefin sulfonates and other surfactants (CN1203935A, CN1566258A, CN1426833A). Active agents are characterized by a wide range of materials and low prices. However, such surfactants also have a series of problems such as poor resistance to salt (especially resistance to divalent cations), and cannot be applied to oilfield blocks with high temperature and high salinity. At present, such surfactants are mainly used in ordinary oil reservoirs (CN1458219A), but for oil reservoirs with high temperature and high salinity, such surfactants have low activity and poor salt tolerance, resulting in low efficiency or even ineffectiveness.
  • the present invention provides an alkylaniline polyetherbenzene sulfonate, which has high interface activity when used as an oil-displacing surfactant, can well solve the above problems, and has a good application prospect.
  • the present invention provides a novel alkylaniline polyetherbenzenesulfonate, which can be used as an oil-displacing surfactant alone or in a mixture.
  • Alkylaniline polyetherbenzene sulfonate used as oil displacement surfactant has the advantage of high interfacial activity, which can achieve ultra-low interfacial tension of 10 -3 mN/m under alkali-free and high salinity conditions, which can improve the crude oil recovery.
  • One of the objects of the present invention is to provide a kind of alkylaniline polyether benzene sulfonate, its structure is as shown in formula (I):
  • R 1 and R 2 are independently selected from H, C 1 -C 40 hydrocarbyl or Are not simultaneously H;
  • R 3 is independently selected at each occurrence H, C 1 -C 10 hydrocarbon group is, C 1 -C 10 is a carbonyl group, an alkyl sulfonic acid group is C 1 -C 10, C 1 - C 10 alkyl alcohol sulfonic acid group, C 1 -C 10 alkyl carboxylic acid group and -SO 3 (M) n ;
  • -(Polyoxyalkylene) 1 - is -(PO) x1 -, -(EO) y1 -
  • -(Polyoxyalkylene) 2 - is a combination of one or more of -(PO) x2 -, -(EO) y2 -, -(BO) z2 - Combination; x 1 , x 2 , y
  • R 1 is a C 6 -C 20 hydrocarbon group, preferably R 1 is a C 6 -C 20 alkyl or alkenyl group;
  • R 2 is H or C 1 - C 30 hydrocarbyl;
  • R 3 at each occurrence is independently selected from H, -CH 3 and -CH 2 CH 3 ;
  • x 1 +x 2 2-10;
  • M is selected from sodium ion, potassium ion, calcium ion and magnesium ion.
  • R 1 or R 2 is
  • R 3 is -SO 3 (M) n , preferably, M appearing in formula (I) is the same.
  • the polyether chain is connected with the benzene ring through the N atom, and at the same time, the long hydrophobic chain (R 1 and R 2 ) is also directly connected with the benzene ring, and has a special structure, which is found through experiments. Can bring very good results.
  • Another object of the present invention is to provide a surfactant composition comprising one or more alkylaniline polyether benzene sulfonates according to the foregoing.
  • Another object of the present invention is to provide the preparation method of the alkylaniline polyether benzene sulfonate described in one of the objects of the present invention, comprising the following steps:
  • Step 1 using alkylaniline as an initiator, reacting with an epoxy compound, and optionally performing end-capping treatment after the reaction to obtain an alkylaniline polyether;
  • step 2 the alkylaniline polyether is subjected to sulfonation treatment to obtain the alkylaniline polyether benzene sulfonate.
  • the alkylaniline has the formula: R 1 -Ph-NH 2 , wherein Ph represents phenyl and R 1 is as claimed in any one of claims 1-4.
  • step 1 the alkylaniline can be purchased directly, or can be prepared by itself, for example: before step 1, step 1' and step 1" are optionally performed:
  • Step 1' take alkyl benzene as raw material, carry out nitration treatment, obtain alkyl nitrobenzene;
  • Step 1 hydrotreating the alkyl nitrobenzene to obtain the alkyl aniline.
  • the alkylbenzene is subjected to nitration treatment with a nitration reagent and an optional activator, wherein the nitration reagent is selected from at least one of nitric acid and dinitrogen pentoxide,
  • the activator is selected from at least one of concentrated sulfuric acid, glacial acetic acid, acetic anhydride and phosphorus pentoxide.
  • the molar ratio of the nitrating reagent to the alkylbenzene is (1-5):1, preferably (1-3):1.
  • the nitrification treatment in step 1' is performed as follows: at 0-80°C for 1-10 hours, preferably at 20-65°C for 2-8 hours.
  • step 1 hydroprocessing is performed in the presence of a hydrogenation catalyst, and the hydrogenation catalyst is selected from at least one of palladium carbon and Raney nickel.
  • the dosage ratio of the alkyl nitrobenzene to the hydrogenation catalyst is 0.1 wt % to 10 wt %, preferably 1.0 wt % to 5.0 wt %.
  • step 1" the hydroprocessing described in step 1" is performed as follows: at 20-150°C and 0-5MPa, preferably at 60-110°C and 0.5-4MPa.
  • the epoxy compound is selected from C 2 -C 6 epoxy compounds, preferably from propylene oxide and/or ethylene oxide.
  • step 1 react with propylene oxide and ethylene oxide in sequence.
  • step 1 the molar ratio of the epoxy compound to the alkylaniline is (1-60):1, preferably (2-25):1.
  • step 1 is carried out in the presence of a basic catalyst.
  • the basic catalyst is selected from at least one of alkali metals, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal alcoholates, and alkali metal oxides, preferably from alkali metal hydrogen oxides and/or alkaline earth metal hydroxides.
  • the dosage of the basic catalyst is 0.1 wt % to 10 wt %, preferably 0.5 wt % to 5.0 wt %.
  • the reaction conditions are: the reaction temperature is 140-200° C., and the reaction pressure is 0-5 MPa.
  • the reaction conditions are: the reaction temperature is 140-160° C., and the reaction pressure is 0.2-2 MPa.
  • the end-capping agent is selected from R' 3 -X or R" 3 -X'-R" 3 , wherein R' 3 is C 1 -C 10 Hydrocarbyl or C 1 -C 10 carbonyl, preferably R' 3 is C 1 -C 10 alkyl, alkenyl or phenylalkyl; X is selected from halogen or hydroxyl, when X is hydroxyl, R' 3 is C 1- C 10 carbonyl; R" 3 is selected from C 1 -C 10 carbonyl, X' is selected from O.
  • the end-capping agent is selected from methyl iodide, ethyl iodide, propane iodide, vinyl iodide, toluene iodide, acetic acid, acetic anhydride, acetyl chloride, and benzoyl chloride. at least one.
  • the molar ratio of the capping agent to the alkylaniline is (2-2.6):1, preferably (2.04-2.4):1.
  • step 3 the unreacted alkylaniline and epoxy compound in the reaction system are removed before the end-capping treatment, preferably, the removal treatment is carried out at 80-110 °C, The removal treatment is preferably carried out under vacuum or nitrogen bubbling at 80-110°C.
  • a sulfonation reagent is used for sulfonation treatment, and the sulfonation reagent is selected from at least one of concentrated sulfuric acid, oleum, and sulfur trioxide.
  • the molar ratio of the alkylaniline polyether to the sulfonating reagent is 1:(1-8), preferably 1:(1-5).
  • step 2 includes the following sub-steps:
  • Step 2-1 mixing the alkylaniline polyether with a sulfonating reagent, and performing a sulfonation reaction at 20-80° C. for 0.5-10 hours;
  • Step 2-2 adjusting the pH to 10-14 and performing a hydrolysis reaction for 0.5-5 hours to obtain the alkylaniline polyether benzene sulfonate surfactant.
  • the sulfonation reaction in step 2-1 is carried out as follows: at 30-60° C. for 1-3 hours.
  • Alkylaniline polyetherbenzene sulfonate used as oil displacement surfactant has good surface and interfacial activity, good salt resistance, and can form lower interfacial tension at the oil-water interface, so it can be used for chemical flooding enhanced oil recovery, It has broad application prospects and practical significance.
  • Another object of the present invention is to provide an oil displacing agent composition comprising the alkylaniline polyetherbenzenesulfonate of the present invention or the surfactant composition comprising the alkylaniline polyetherbenzenesulfonate or
  • the weight ratio of the surfactant to the water is 1:(50 ⁇ 2000) parts, preferably 1:(80 ⁇ 2000 parts by weight. 500) copies.
  • the water is selected from any one or more of mineralized water with a total salinity ranging from 0 to 80,000 mg/L, oil field injection water, formation water, seawater, rainwater and river water , preferably mineralized water and/or seawater with a total salinity ranging from 1000 to 50000 mg/L.
  • the oil displacement agent of the present invention may also include additives commonly used in the art, such as small molecular alcohols, DMSO, diethanolamine, CTAC and the like.
  • Another object of the present invention is to provide the application of the alkylaniline polyether benzene sulfonate of the present invention or the oil-displacing agent composition of the present invention in enhancing oil recovery.
  • the method for enhancing oil recovery using the surfactant or the composition comprises: injecting the oil displacement agent composition into a crude oil formation to displace the crude oil.
  • the present invention provides, for example, embodiments of the following aspects:
  • the structure of formula (II) of the present invention is a preferred embodiment of the structure of formula (I) of the present invention.
  • R 1 is a C 6 -C 20 hydrocarbon group
  • R 2 is H or C 1 -C 30 hydrocarbon group
  • R 3 is selected from H, -CH 3 or -CH 2 CH 3
  • x 1 +x 2 0-20
  • y 1 +y 2 1-20
  • M is selected from sodium ion, potassium ion , any of calcium ions or magnesium ions.
  • Step 1 using alkylaniline as an initiator, reacting with an epoxy compound, and optionally performing end-capping treatment after the reaction to obtain an alkylaniline polyether;
  • Step 2 performing sulfonation treatment on the alkylaniline polyether to obtain the alkylaniline polyether benzene sulfonate oil flooding surfactant.
  • step 1' and step 1" are optionally carried out before step 1:
  • Step 1' take alkyl benzene as raw material, carry out nitration treatment, obtain alkyl nitrobenzene;
  • Step 1 hydrotreating the alkyl nitrobenzene to obtain the alkyl aniline.
  • a nitrating agent and an optional activator are used to nitrate the alkylbenzene, and the nitrating agent is selected from nitric acid, dinitrogen pentoxide At least one of the activators is selected from at least one of concentrated sulfuric acid, glacial acetic acid, acetic anhydride, and phosphorus pentoxide.
  • the molar ratio of the nitrating reagent to the alkylbenzene is (1-5):1, preferably (1-3):1; and/or
  • step 1' The nitration treatment described in step 1' is carried out as follows: at 0-80°C for 1-10 hours, preferably at 20-65°C for 2-8 hours.
  • step 1 hydroprocessing is carried out in the presence of a hydrogenation catalyst selected from at least one of palladium carbon and Raney nickel. ;and / or
  • the dosage ratio of the alkyl nitrobenzene to the hydrogenation catalyst is 0.1wt% to 10wt%, preferably 1.0wt% to 5.0wt%; and/or
  • step 1 The hydroprocessing described in step 1" is performed as follows: at 20-150°C and 0-5MPa, preferably, at 50-110°C and 0.5-4MPa.
  • preparation method according to aspect 4 is characterized in that,
  • the epoxy compound is selected from C 2 -C 6 epoxy compounds, preferably from propylene oxide and/or ethylene oxide; and/or
  • step 1 the molar ratio of the epoxy compound to the alkylaniline is (1-60):1, preferably (2-25):1; and/or
  • Step 1 is carried out in the presence of a basic catalyst; preferably, the basic catalyst is selected from at least one of alkali metals, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal alcoholates, and alkali metal oxides; More preferably, the dosage of the basic catalyst is 0.1wt%-10wt%, preferably 0.5wt%-5.0wt%;
  • step 1 the reaction conditions are as follows: the reaction temperature is 140-200° C., and the reaction pressure is 0-5 MPa.
  • step 1 the end-capping agent is selected from R 4 -X and R 5 -X, wherein X is selected from halogen, hydroxyl or acyl, preferably , the end-capping agent is selected from at least one of halogenated hydrocarbons, organic acids, compounds containing acid anhydride groups and compounds containing acid halide groups; more preferably, the end-capping agent is selected from methyl iodide, iodine At least one of ethane, propane iodide, vinyl iodide, toluene iodide, acetic acid, acetic anhydride, acetyl chloride, and benzoyl chloride; preferably, the molar ratio of the capping agent to the alkylaniline is (2 to 2.6) : 1, preferably (2.04 to 2.4): 1.
  • step 2 the sulfonation treatment is carried out by using a sulfonation reagent, and the sulfonation reagent is selected from at least one of concentrated sulfuric acid, oleum, and sulfur trioxide.
  • step 2 comprises the following substeps:
  • Step 2-1 mixing the alkylaniline polyether with a sulfonating reagent, and performing a sulfonation reaction at 20-80° C. for 0.5-10 hours;
  • Step 2-2 adjusting the pH to 10-14 and performing a hydrolysis reaction for 0.5-5 hours to obtain the alkylaniline polyether benzene sulfonate surfactant.
  • An oil-displacing agent composition comprising the alkylaniline polyether benzene sulfonate surfactant described in one of aspects 1 to 3 or the alkylaniline polyether benzene obtained by the preparation method described in one of aspects 4 to 12 Sulfonate surfactant and water, wherein the weight ratio of the surfactant to water is 1:(50-2000) parts, preferably 1:(80-500) parts.
  • alkylaniline polyether benzene sulfonate surfactant according to any one of aspects 1 to 3 or the oil-displacing agent composition according to aspect 13 in enhancing oil recovery.
  • the present invention has the following beneficial effects:
  • the oil-displacing surfactant comprising alkylaniline polyether benzene sulfonate according to the present invention is a novel anionic and nonionic sulfonate type surfactant, which has the advantage of high interfacial activity;
  • the oil displacement surfactant containing alkylaniline polyetherbenzene sulfonate has the advantage of high interfacial activity, which can reach ultra-low interfacial tension of 10 -3 mN/m under alkali-free and high salinity conditions, Thus, oil recovery can be enhanced.
  • the viscosity of Chengdong dehydrated crude oil of Shengli Oilfield used is 44 mPa.s and the density is 0.908 g/cm ⁇ 3 .
  • step c) 0.84mol 4-octylaniline polyoxypropylene (30) polyoxyethylene (16) ether synthesized in step c) is added in the reactor that condensing device, dripping device, stirring device are housed, and 3.0mol 20 is added dropwise. % oleum, control the reaction temperature to be 50 ° C, continue to react for 1 hour after the dropwise addition, wash with water and extract to remove excess acid, add sodium hydroxide to the organic phase and adjust the pH to 9 to obtain 0.78mol of 4-octylaniline Polyoxypropylene (30) Polyoxyethylene (16) Sodium ether disulfonate Sodium benzenesulfonate.
  • the oil-displacing agent obtained by mixing 1 part by weight of the above-mentioned surfactant with 399 parts by weight of seawater was used for the evaluation of interfacial tension and the oil-displacing experiment.
  • the composition of the seawater used in all the examples and comparative examples of the present invention is shown in Table 1.
  • the compositions of the oil-displacing agents are listed in Table 2 for the convenience of comparison.
  • the TX-500C rotating drop interfacial tension meter produced by the University of Texas was used to measure the interfacial tension between the above oil-displacing agent and Chengdong dehydrated crude oil in Shengli Oilfield under the condition of 80 °C and 4500 rpm. table 3.
  • the obtained dodecylaniline polyoxyethylene (6) ether was dissolved in a benzene solvent, sodium hydroxide was added in a ratio of 1:3, alkalized at 60 ° C for 1 hour, and a carboxylation reagent chloroacetic acid was added in a ratio of 1:2.5 The sodium reacted for 8 hours to obtain 0.75 mol of sodium 4-dodecylaniline polyoxyethylene (6) ether dicarboxylate.
  • step c) 0.75mol of 4-dodecylaniline polyoxyethylene (6) sodium ether dicarboxylate synthesized in step c) was added to the reactor equipped with condensation device, dripping device and stirring device, and 3.0mol 20% was added dropwise. fuming sulfuric acid, the control reaction temperature is 50 °C, continue to react for 1 hour after dripping, then add sodium hydroxide to adjust pH to be 13, hydrolysis reaction 2 hours, obtain 0.70mol 4-dodecylaniline polyoxyethylene (6) Sodium ether dicarboxylate sodium benzene sulfonate.
  • the performance evaluation method is the same as that of Example 1 except that the composition of the oil displacement agent is different.
  • the composition of the oil-displacing agent is listed in Table 2, and the evaluation results are listed in Table 3.
  • step c) 0.85mol of 2-dodecyl-4-octylaniline polyoxypropylene (4) polyoxyethylene (8) ether synthesized in step c) is added to the reactor equipped with condensation device, dripping device, stirring device In the medium, 2.8mol SO 3 was introduced , and the reaction temperature was controlled to be 50°C, and the reaction was carried out for 2 hours. Then, the pH of the system was adjusted to 12 by dropwise addition of a 10% aqueous sodium hydroxide solution, and hydrolyzed at 80° C. for 2 hours to obtain 0.74 mol of 2-dodecyl-4-octylaniline polyoxypropylene (4) Sodium polyoxyethylene (8) ether benzene sulfonate.
  • the performance evaluation method is the same as that of Example 1 except that the composition of the oil displacement agent is different.
  • the composition of the oil-displacing agent is listed in Table 2, and the evaluation results are listed in Table 3.
  • step c) 0.78mol of 4-tridecylaniline polyoxypropylene (6) polyoxyethylene (20) ether synthesized in step c) was added to the reactor equipped with condensation device, dripping device and stirring device, and 4.0mol was added dropwise. 98% sulfuric acid, control temperature of reaction is 50 °C, continue to react 1 hour after dripping, then add sodium hydroxide to adjust pH to be 13, hydrolysis reaction 2 hours, obtain 0.72mol4-tridecylaniline polyoxypropylene ( 6) Sodium polyoxyethylene (20) ether disulfonate and sodium benzenesulfonate.
  • the performance evaluation method is the same as that of Example 1 except that the composition of the oil displacement agent is different.
  • the composition of the oil-displacing agent is listed in Table 2, and the evaluation results are listed in Table 3.
  • step c) The 0.82mol 4-hexadecylaniline polyoxyethylene (8) dimethyl ether synthesized in step c) was added to the reactor equipped with the condensation device, the dripping device and the stirring device, and 1.2mol SO 3 was introduced to control the The reaction temperature was 50° C., the reaction was performed for 1 hour, then sodium hydroxide was added to adjust the pH to 12, and the hydrolysis reaction was performed for 2 hours to obtain 0.74 mol of 4-hexadecylaniline polyoxyethylene (8) sodium dimethyl ether benzene sulfonate.
  • the performance evaluation method is the same as that of Example 1 except that the composition of the oil displacement agent is different.
  • the composition of the oil-displacing agent is listed in Table 2, and the evaluation results are listed in Table 3.
  • step c) 0.82mol 4-octylaniline polyoxybutene (2) polyoxypropylene (2) polyoxyethylene (4) ether synthesized in step c) is added to the reactor equipped with condensation device, dripping device, stirring device 3.5mol 20% oleum was added dropwise, the reaction temperature was controlled to be 50°C, and the reaction was continued for 1 hour after the dropwise addition. Then, the pH of the system was adjusted to 12 by dropwise addition of 10% aqueous sodium hydroxide solution, and hydrolyzed at 80° C. for 2 hours to obtain 0.73 mol of 4-octylaniline polyoxybutene (2) polyoxypropylene (2) polyoxyethylene Sodium oxyethylene (4) ether benzene sulfonate.
  • the performance evaluation method is the same as that of Example 1 except that the composition of the oil displacement agent is different.
  • the composition of the oil-displacing agent is listed in Table 2, and the evaluation results are listed in Table 3.
  • step c) 0.81mol of 4-octylaniline polyoxybutene (2) polyoxypropylene (2) polyoxyethylene (4) ether synthesized in step c) is added to the reactor equipped with condensation device, dripping device, stirring device 3.0mol SO 3 was introduced into the medium, the reaction temperature was controlled to be 60°C, and the reaction was carried out for 2 hours. Then, the pH of the system was adjusted to 12 by dropwise addition of a 10% aqueous sodium hydroxide solution, and hydrolyzed at 80° C. for 2 hours to obtain 0.75 mol of 4-octylaniline polyoxybutene (2) polyoxypropylene (2) polyoxyethylene Sodium oxyethylene (4) ether-3,5-disulfonate.
  • the performance evaluation method is the same as that of Example 1 except that the composition of the oil displacement agent is different.
  • the composition of the oil-displacing agent is listed in Table 2, and the evaluation results are listed in Table 3.
  • the crude oil was dehydrated crude oil from Chengdong Oilfield of Shengli Oilfield.
  • the simulated oil displacement experiments were carried out on cores with a rate of 1.5 m 2 .
  • the oil-displacing agents prepared in [Example 2] and [Example 5] were evaluated by oil displacement experiments, and the results showed that the oil recovery factor was increased by 10.1% and 12.8%, respectively.
  • the evaluation method is the same as that of [Example 2], except that sodium petroleum sulfonate (Daqing Refinery) is used to replace the dodecylaniline polyoxyethylene (6) sodium ether benzene sulfonate surfactant in [Example 1].
  • sodium petroleum sulfonate (Daqing Refinery) is used to replace the dodecylaniline polyoxyethylene (6) sodium ether benzene sulfonate surfactant in [Example 1].
  • an interfacial tension of 0.024 mN/m was measured between this composition and the Chengdong dehydrated crude oil of Shengli Oilfield.
  • Oil displacement was carried out with the method of [Example 6], and it was measured that the enhanced oil recovery was 4.5%.
  • Example 5 Same as Example 5, the difference is that the initiator of the etherification reaction is different, and aniline is used.
  • Aniline polyoxyethylene (8) hexadecyl ether was added to the reactor equipped with condensation device, dripping device and stirring device, and 3.0mol 50% oleum was added dropwise, and the control reaction temperature was 55 °C. After completion, the reaction was continued for 1 hour, then sodium hydroxide was added to adjust the pH to 10, and the hydrolysis reaction was performed for 2 hours to obtain aniline polyoxyethylene (8) sodium hexadecyl ether benzene sulfonate.
  • Example 5 The process of Example 5 was repeated, except that pentylbenzene was used to replace hexadecylbenzene, and other conditions were unchanged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种烷基苯胺聚醚苯磺酸盐驱油表面活性剂,其结构如式(I)所示,所述烷基苯胺聚醚苯磺酸盐驱油表面活性剂的结构中聚醚链通过N原子与苯环相连,具有高界面活性,在无碱、高矿化度条件下可以达到10 -3mN/m的界面张力。

Description

一种烷基苯胺聚醚苯磺酸盐及其制备方法 技术领域
本发明属于表面活性剂领域,尤其涉及包含烷基苯胺聚醚苯磺酸盐的驱油表面活性剂。
背景技术
经过几十年的开采,许多油田都进入了高含水阶段,产量面临着下降,发展三次采油是提高石油采收的重要途径。三次采油,是对比一次采油、二次采油而言的。通俗地讲,在石油开采初期,只是利用地层的天然能量开采石油,称为一次采油,其采收率仅为10%左右。通过向地层补充能量,比如注水来开采石油的方法,称为二次采油。目前世界上已有大量油田采用二次采油方法,但采收率一般也只能达到25%到40%左右。三次采油是利用物理、化学和生物等手段,继续开采地下剩余的石油,以此提高原油采收率的方法。化学驱是强化采油中非常重要并大规模实施的技术。化学驱的效果是物理作用和化学作用的共同结果,物理作用是指驱替液的波及作用,而化学作用是指驱替液的微观驱油作用,其关键化学剂便是表面活性剂。
表面活性剂提高原油采收率的主要机理是:降低驱替液与原油的界面张力及改善油藏的润湿性。在油田进入高含水期后,剩余油以不连续的油膜被圈闭在油藏岩石的孔隙中,作用于油珠上的两个主要力是粘滞力和毛细管力,如果选用合适的表面活性剂体系,降低油水间的界面张力,使储油层油水间的界面张力从20~30mN/m降至较低或超低值(10 -3~10 -4mN/m),便能减少使剩余油移动时油珠变形所带来的阻力,从而大幅提高驱油效率。表面活性剂的驱油效果还表现在使亲油的岩石表面转变成水湿或中性湿,即降低原油在油藏中的粘附功,使原油更易从地层表面洗脱下来,从而提高洗油效率。
目前,三次采油表面活性剂应用的多数还是石油磺酸盐、烷基苯磺酸盐、重烷基苯磺酸盐、烯烃磺酸盐等表面活性剂(CN1203935A、CN1566258A、CN1426833A),这类表面活性剂的特点是取材广泛、价 格低廉。但是,这类表面活性剂也存在耐盐(特别是耐二价阳离子)性能较差等一系列问题,不能适用于高温、高矿化度的油田区块。目前,这类表面活性剂主要应用在普通油藏中(CN1458219A),但是对于高温、高矿化度的油藏来说,这类表面活性剂活性低、耐盐性差而导致低效甚至无效。
因此,开发新型的高效表面活性剂对于三次采油产业具有极为重要的意义。
发明内容
本发明提供了烷基苯胺聚醚苯磺酸盐,其用于驱油表面活性剂时界面活性高,可以很好的解决上述问题,有良好的应用前景。
为了克服现有技术中存在的问题,本发明提供了一种新型烷基苯胺聚醚苯磺酸盐,其可单独或以混合物的形式用作驱油表面活性剂。烷基苯胺聚醚苯磺酸盐用作驱油表面活性剂具有高界面活性,在无碱、高矿化度条件下可以达到10 -3mN/m的超低界面张力的优点,从而可以提高原油采收率。
本发明的目的之一在于提供一种烷基苯胺聚醚苯磺酸盐,其结构如式(I)所示:
Figure PCTCN2021104139-appb-000001
在式(I)中:R 1和R 2独立地选自H、C 1-C 40的烃基或
Figure PCTCN2021104139-appb-000002
且不同时为H;R 3在每次出现时独立地选自H、C 1-C 10的烃基、C 1-C 10的羰基、C 1-C 10的烷基磺酸基、C 1-C 10的烷基醇磺酸基、C 1-C 10的烷基羧酸基和-SO 3(M) n;-(Polyoxyalkylene) 1-为-(PO) x1-、-(EO) y1-、-(BO) z1-中的一个或多个的组合;-(Polyoxyalkylene) 2-为-(PO) x2-、-(EO) y2-、-(BO) z2-中的一个或多个的组合;x 1、x 2、y 1、y 2、z 1和z 2各自独立地选自0至50之间的任意整数,且x 1+x 2=0~50,y 1+y 2=1~50,z 1+z 2=0~50;M 选自碱金属和碱土金属,当M为碱金属时n为1,当M为碱土金属时n为0.5;以及其中PO为丙氧基,EO为乙氧基,BO为丁氧基。
在一种优选的实施方式中,在式(I)中,R 1为C 6-C 30的烃基,优选R 1为C 6-C 30的烷基或烯基,R 2为H、C 1-C 30的烃基或
Figure PCTCN2021104139-appb-000003
R 3在每次出现时独立地为H、-CH 3、-CH 2CH 3、-CH 2SO 3(M) n、-CH 2(CHOH)SO 3(M) n、-CH 2COO(M) n或-SO 3(M) n,x 1+x 2=0~30,y 1+y 2=1~30,z 1+z 2=0~30。
在进一步优选的实施方式中,在式(I)中,R 1为C 6-C 20的烃基,优选R 1为C 6-C 20的烷基或烯基;R 2为H或C 1-C 30的烃基;R 3在每次出现时独立地选自H、-CH 3和-CH 2CH 3;x 1+x 2=0~20,优选x 1+x 2=1~10,或优选x 1+x 2=2~10;y 1+y 2=1~20,优选y 1+y 2=2~20;z 1+z 2=0~20,优选z 1+z 2=1~10,或优选z 1+z 2=2~10;M选自钠离子、钾离子、钙离子和镁离子。
在一种优选的实施方式中,在式(I)中,R 1或R 2
Figure PCTCN2021104139-appb-000004
在一种优选的实施方式中,在式(I)中,每次出现的R 3相同。
在一种优选的实施方式中,在式(I)中,R 3为-SO 3(M) n,优选地,该式(I)中出现的M相同。
本发明所述表面活性剂的结构中聚醚链通过N原子与苯环相连,同时,疏水长链(R 1和R 2)也是直接与苯环相连,具有特殊结构,经实验发现该特殊结构可以带来非常优异的效果。
本发明的另一目的在于提供一种表面活性剂组合物,其包括一种或多种根据如前所述的烷基苯胺聚醚苯磺酸盐。
本发明的另一目的在于提供本发明目的之一所述烷基苯胺聚醚苯磺酸盐的制备方法,包括以下步骤:
步骤1、以烷基苯胺为起始剂,与环氧化合物反应,反应结束后任选地进行封端处理,得到烷基苯胺聚醚;
步骤2、对所述烷基苯胺聚醚进行磺化处理,得到所述烷基苯胺聚醚 苯磺酸盐。
优选地,所述烷基苯胺具有式:R 1-Ph-NH 2,其中Ph代表苯基,R 1如权利要求1-4中任一项所述。
在步骤1中,所述烷基苯胺可以直接购买,也可以自行制备,例如:在步骤1之前任选地进行步骤1’和步骤1”:
步骤1’、以烷基苯为原料,进行硝化处理,得到烷基硝基苯;
步骤1”、对所述烷基硝基苯进行加氢处理,得到烷基苯胺。
在一种优选的实施方式中,在步骤1’中,采用硝化试剂和任选的活化剂对烷基苯进行硝化处理,所述硝化试剂选自硝酸、五氧化二氮中的至少一种,所述活化剂选自浓硫酸、冰醋酸、乙酸酐、五氧化二磷中的至少一种。
在进一步优选的实施方式中,所述硝化试剂与烷基苯的摩尔比为(1~5):1,优选为(1~3):1。
在更进一步优选的实施方式中,步骤1’所述硝化处理如下进行:于0~80℃进行1~10小时,优选地,于20~65℃进行2~8小时。
在一种优选的实施方式中,在步骤1”中,在加氢催化剂存在下进行加氢处理,所述加氢催化剂选自钯碳、雷尼镍中的至少一种。
在进一步优选的实施方式中,所述烷基硝基苯与所述加氢催化剂的用量比为0.1wt%~10wt%,优选为1.0wt%~5.0wt%。
在一种优选的实施方式中,步骤1”所述加氢处理如下进行:于20~150℃、0~5MPa下进行,优选地,于60~110℃、0.5~4MPa下进行。
在一种优选的实施方式中,在步骤1中,所述环氧化合物选自C 2~C 6的环氧化合物,优选自环氧丙烷和/或环氧乙烷。
优选地,在步骤1中,依次与环氧丙烷、环氧乙烷反应。
在进一步优选的实施方式中,在步骤1中,所述环氧化合物与所述烷基苯胺的摩尔比为(1~60):1,优选为(2~25):1。
在一种优选的实施方式中,步骤1于碱性催化剂存在下进行。
在进一步优选的实施方式中,所述碱性催化剂选自碱金属、碱金属氢氧化物、碱土金属氢氧化物、碱金属醇化物、碱金属氧化物中的至少一种, 优选自碱金属氢氧化物和/或碱土金属氢氧化物。
在更进一步优选的实施方式中,所述碱性催化剂的用量为0.1wt%~10wt%,优选为0.5wt%~5.0wt%。
在一种优选的实施方式中,在步骤1中,所述反应的条件为:反应温度为140~200℃,反应压力为0~5MPa。
在进一步优选的实施方式中,在步骤1中,所述反应的条件为:反应温度为140~160℃,反应压力为0.2~2MPa。
在一种优选的实施方式中,在步骤1中,所述封端剂选自R’ 3-X或R” 3-X’-R” 3,其中,R’ 3为C 1-C 10的烃基或C 1-C 10的羰基,优选R’ 3为C 1-C 10的烷基、烯基或苯基烷基;X选自卤素或羟基,当X为羟基时,R’ 3为C 1-C 10的羰基;R” 3选自C 1-C 10的羰基,X’选自O。
在进一步优选的实施方式中,在步骤1中,所述封端剂选自碘甲烷、碘乙烷、碘丙烷、碘乙烯、碘化甲苯、醋酸、醋酸酐、乙酰氯、苯甲酰氯中的至少一种。
在更进一步优选的实施方式中,所述封端剂与烷基苯胺的摩尔用量比为(2~2.6):1,优选为(2.04~2.4):1。
在一种优选的实施方式中,在步骤3中,在封端处理之前先脱除反应体系中未反应的烷基苯胺和环氧化合物,优选地,于80~110℃下进行脱除处理,优选80~110℃真空或氮气鼓泡下进行脱除处理。
在一种优选的实施方式中,在步骤2中,采用磺化试剂进行磺化处理,所述磺化试剂选自浓硫酸、发烟硫酸、三氧化硫中的至少一种。
在进一步优选的实施方式中,在步骤2中,所述烷基苯胺聚醚与所述磺化试剂的摩尔比为1:(1~8),优选为1:(1~5)。
在更进一步优选的实施方式中,步骤2包括以下子步骤:
步骤2-1、将所述烷基苯胺聚醚与磺化试剂混合,在20~80℃下进行磺化反应0.5~10小时;
步骤2-2、调pH至10~14进行水解反应0.5~5小时,得到所述烷基苯胺聚醚苯磺酸盐表面活性剂。
在一种优选的实施方式中,步骤2-1所述磺化反应如下进行:于30~60℃下进行1~3小时。
烷基苯胺聚醚苯磺酸盐用于驱油表面活性剂具有很好的表、界面活性,较好的抗盐能力,可以在油水界面形成较低界面张力,从而用于化学驱强化采油,具有广泛的应用前景及实际意义。
本发明的另一目的在于提供一种驱油剂组合物,包括本发明所述烷基苯胺聚醚苯磺酸盐或包含所述烷基苯胺聚醚苯磺酸盐的表面活性剂组合物或根据本发明所述制备方法得到的烷基苯胺聚醚苯磺酸盐和水,其中,所述表面活性剂与水的重量比为1:(50~2000)份,优选为1:(80~500)份。
在一种优选的实施方式中,所述水选自总矿化度范围为0~80000mg/L的矿化水、油田注入水、地层水、海水、雨水和河水中的任意一种或多种,优选为总矿化度范围为1000~50000mg/L的矿化水和/或海水。
其中,出于施工方便、节约水资源等方面的考虑,更优选为海水,例如本发明实施例采用的黄海海水,组成见表1。为了增加驱油效果,本发明驱油剂中还可以包括本领域常用的添加剂,例如小分子醇类、DMSO、二乙醇胺、CTAC等。
本发明的再一目的在于提供本发明所述烷基苯胺聚醚苯磺酸盐或本发明所述驱油剂组合物在提高原油采收率中的应用。
在一种优选的实施方式中,利用所述表面活性剂或所述组合物提高采收率的方法包括:将所述驱油剂组合物注入原油地层,将原油驱替出来。
由此,本发明例如提供了以下方面的实施方式:
1.一种烷基苯胺聚醚苯磺酸盐驱油表面活性剂,其结构如式(II)所示:
Figure PCTCN2021104139-appb-000005
在式(II)中,R 1和R 2独立地选自H、C 1-C 40的烃基或-N((PO) x1(EO) y1R 3) 2、且不同时为H,R 3选自H、C 1-C 10的烃基、烷基磺酸盐、烷基醇磺酸盐、醋酸盐或-SO 3(M) n,x 1+x 2=0~50,y 1+y 2=1~50,M 选自碱金属、碱土金属中任意一种,当M为碱金属时n为1,当M为碱土金属时n为0.5。
本发明所述式(II)的结构是本发明所述式(I)结构的一个优选实施方式。
2.根据方面1所述的烷基苯胺聚醚苯磺酸盐驱油表面活性剂,其特征在于,在式(II)中,R 1为C 6-C 30的烃基,R 2为H、C 1-C 30的烃基或-N((PO) x1(EO) y1R 3) 2,R 3为H、-CH 3、-CH 2CH 3、-CH 2SO 3(M) n、-CH 2(CHOH)SO 3(M) n、-CH 2COO(M) n或-SO 3(M) n,x 1+x 2=0~30,y 1+y 2=1~30。
3.根据方面1或2所述的烷基苯胺聚醚苯磺酸盐驱油表面活性剂,在式(II)中,R 1为C 6-C 20的烃基,R 2为H或C 1-C 30的烃基,R 3选自H、-CH 3或-CH 2CH 3,x 1+x 2=0~20,y 1+y 2=1~20,M选自钠离子、钾离子、钙离子或镁离子中的任意一种。
4.一种方面1~3之一所述烷基苯胺聚醚苯磺酸盐驱油表面活性剂的制备方法,包括以下步骤:
步骤1、以烷基苯胺为起始剂,与环氧化合物反应,反应结束后任选地进行封端处理,得到烷基苯胺聚醚;
步骤2、对所述烷基苯胺聚醚进行磺化处理,得到所述烷基苯胺聚醚苯磺酸盐驱油表面活性剂。
5.根据方面4所述的制备方法,其特征在于,在步骤1之前任选地进行步骤1’和步骤1”:
步骤1’、以烷基苯为原料,进行硝化处理,得到烷基硝基苯;
步骤1”、对所述烷基硝基苯进行加氢处理,得到烷基苯胺。
6.根据方面5所述的制备方法,其特征在于,在步骤1’中,采用硝化试剂和任选的活化剂对烷基苯进行硝化处理,所述硝化试剂选自硝酸、五氧化二氮中的至少一种,所述活化剂选自浓硫酸、冰醋酸、乙酸酐、五氧化二磷中的至少一种。
7.根据方面6所述的制备方法,其特征在于,
所述硝化试剂与烷基苯的摩尔比为(1~5):1,优选为(1~3):1;和/或
步骤1’所述硝化处理如下进行:于0~80℃进行1~10小时,优选地,于20~65℃进行2~8小时。
8.根据方面5所述的制备方法,其特征在于,在步骤1”中,在加氢催化剂存在下进行加氢处理,所述加氢催化剂选自钯碳、雷尼镍中的至少一种;和/或
所述烷基硝基苯与所述加氢催化剂的用量比为0.1wt%~10wt%,优选为1.0wt%~5.0wt%;和/或
步骤1”所述加氢处理如下进行:于20~150℃、0~5MPa下进行,优选地,于50~110℃、0.5~4MPa下进行。
9.根据方面4所述的制备方法,其特征在于,
在步骤1中,所述环氧化合物选自C 2~C 6的环氧化合物,优选自环氧丙烷和/或环氧乙烷;和/或
在步骤1中,所述环氧化合物与所述烷基苯胺的摩尔比为(1~60):1,优选为(2~25):1;和/或
步骤1于碱性催化剂存在下进行;优选地,所述碱性催化剂选自碱金属、碱金属氢氧化物、碱土金属氢氧化物、碱金属醇化物、碱金属氧化物中的至少一种;更优选地,所述碱性催化剂的用量为0.1wt%~10wt%,优选为0.5wt%~5.0wt%;
在步骤1中,所述反应的条件为:反应温度为140~200℃,反应压力为0~5MPa。
10.根据方面4所述的制备方法,其特征在于,在步骤1中,所述封端剂选自R 4-X和R 5-X,其中,X选自卤素、羟基或酰基,优选地,所述封端剂选自卤代烃、有机酸、含酸酐基团的化合物和含酰卤基团的化合物中的至少一种;更优选地,所述封端剂选自碘甲烷、碘乙烷、碘丙烷、碘乙烯、碘化甲苯、醋酸、醋酸酐、乙酰氯、苯甲酰氯中的至少一种;优选所述封端剂与烷基苯胺的摩尔用量比为(2~2.6):1,优选为(2.04~2.4):1。
11.根据方面4~10之一所述的制备方法,其特征在于,
在步骤2中,采用磺化试剂进行磺化处理,所述磺化试剂选自浓硫酸、发烟硫酸、三氧化硫中的至少一种。
12.根据方面11所述的制备方法,其特征在于,步骤2包括以下子步骤:
步骤2-1、将所述烷基苯胺聚醚与磺化试剂混合,在20~80℃下进行磺化反应0.5~10小时;
步骤2-2、调pH至10~14进行水解反应0.5~5小时,得到所述烷基苯胺聚醚苯磺酸盐表面活性剂。
13.一种驱油剂组合物,包括方面1~3之一所述烷基苯胺聚醚苯磺酸盐表面活性剂或方面4~12之一所述制备方法得到的烷基苯胺聚醚苯磺酸盐表面活性剂和水,其中,所述表面活性剂与水的重量比为1:(50~2000)份,优选为1:(80~500)份。
14.方面1~3之一所述烷基苯胺聚醚苯磺酸盐表面活性剂或方面13所述驱油剂组合物在提高原油采收率中的应用。
与现有技术相比,本发明具有如下有益效果:
(1)本发明所述包含烷基苯胺聚醚苯磺酸盐的驱油表面活性剂是一种新型的阴非离子磺酸盐型表面活性剂,具有界面活性高的优点;
(2)包含烷基苯胺聚醚苯磺酸盐的驱油表面活性剂具有高界面活性,在无碱、高矿化度条件下可以达到10 -3mN/m的超低界面张力的优点,从而可以提高原油采收率。
具体实施方式
下面结合具体实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
实施例与对比例中采用的原料,如果没有特别限定,那么均是现有技术公开的,例如可直接购买获得或者根据现有技术公开的制备方法制得。
在实施例和对比例中,采用的胜利油田埕东脱水原油的粘度为44mPa.s,密度为0.908g/cm -3
【实施例1】
1. 4-辛烷基苯胺聚氧丙烯(30)聚氧乙烯(16)醚二磺酸钠苯磺酸盐的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的辛烷基苯,滴加1.5mol的65%浓硝酸和20g 98%的浓硫酸,控制反应温度为30℃,滴加完毕后,继续反应2小时,得到4-辛烷基硝基苯0.88mol。
b)将0.88mol 4-辛烷基硝基苯加入到反应釜中,加入5g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到4-辛烷基苯胺0.85mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.85mol4-辛烷基苯胺和2.5g氢氧化钠,在持续通入氮气的情况下加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,-0.08MPa脱水1小时,然后用氮气吹扫4次以除去体系中的空气,将体系反应温度调至150℃,随后依次缓缓通入25.5mol环氧丙烷和13.6mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,冷却后中和、脱水,得0.84mol 4-辛烷基苯胺聚氧丙烯(30)聚氧乙烯(16)醚。
d)步骤c)合成的0.84mol4-辛烷基苯胺聚氧丙烯(30)聚氧乙烯(16)醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,滴加3.0mol 20%的发烟硫酸,控制反应温度为50℃,滴加完毕后继续反应1小时,水洗、萃取除去多余的酸,有机相加氢氧化钠调至pH为9,得到0.78mol4-辛烷基苯胺聚氧丙烯(30)聚氧乙烯(16)醚二磺酸钠苯磺酸钠。
2.表面活性剂性能评价
驱油剂配制:
将上述表面活性剂1重量份与海水399重量份混合得到的驱油剂用于界面张力评价和驱油实验。其中本发明所有实施例和比较例中所用海水的组成见表1。为便于比较将驱油剂的组成列于表2。
界面张力评价:
采用美国德克萨斯大学生产TX-500C旋转滴界面张力仪,在80℃下,转速为4500转/分条件下,测定上述驱油剂与胜利油田埕东脱水原油之间的界面张力结果见表3。
【实施例2】
1. 4-十二烷基苯胺聚氧乙烯(6)醚二羧酸钠苯磺酸盐的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的十二烷基苯,滴加1.05mol 65%硝酸和50g 98%的浓硫酸,控制反应温度为20℃,滴加完毕后,继续反应1小时,得到4-十二烷基硝基苯0.90mol。
b)将0.90mol 4-十二烷基硝基苯加入到高压反应釜中,加入5.1g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到4-十二烷基苯胺0.86mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.86mol4-十二烷基苯胺和2.5g氢氧化钠,边通氮气边加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,-0.08MPa脱水1小时,然后用氮气吹扫4次以除去体系中的空气,然后将体系反应温度调至150℃缓缓通入5.16mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,冷却后中和、脱水,得0.81mol4-十二烷基苯胺聚氧乙烯(6)醚。
将所得十二烷基苯胺聚氧乙烯(6)醚溶解到苯溶剂中,按照1:3的比例加入氢氧化钠,在60℃下碱化1小时,按照1:2.5加入羧化试剂氯乙酸钠反应8小时得到4-十二烷基苯胺聚氧乙烯(6)醚二羧酸钠0.75mol。
d)步骤c)合成的0.75mol4-十二烷基苯胺聚氧乙烯(6)醚二羧酸钠加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,滴加3.0mol 20%的发烟硫酸,控制反应温度为50℃,滴加完毕后继续反应1小时,然后加氢氧化钠调至pH为13,水解反应2小时,得到0.70mol 4-十二烷基苯胺聚氧乙烯(6)醚二羧酸钠苯磺酸钠。
2.表面活性剂性能评价
除了驱油剂组成不同以外,性能评价方法同实施例1。为便于比较将 驱油剂的组成列于表2,将评价结果列于表3。
【实施例3】
1. 2-十二烷基-4-辛烷基苯胺聚氧丙烯(4)聚氧乙烯(8)醚苯磺酸盐的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的十二烷基辛烷基苯,滴加1.2mol 65%硝酸和50g 98%的浓硫酸,控制反应温度为20℃,滴加完毕后,继续反应1小时,得到2-十二烷基-4-辛烷基硝基苯0.91mol。
b)将0.95mol2-十二烷基-4-辛烷基硝基苯加入到高压反应釜中,加入5g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到2-十二烷基-4-辛烷基苯胺0.89mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.89mol2-十二烷基-4-辛烷基苯胺和2.5g氢氧化钠,边通氮气边加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,-0.08MPa脱水1小时,然后用氮气吹扫4次以除去体系中的空气,然后将体系反应温度调至150℃依次缓缓通入3.56mol环氧丙烷和7.12mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,冷却后中和、脱水,得0.85mol2-十二烷基-4-辛烷基苯胺聚氧丙烯(4)聚氧乙烯(8)醚。
d)步骤c)合成的0.85mol2-十二烷基-4-辛烷基苯胺聚氧丙烯(4)聚氧乙烯(8)醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,通入2.8molSO 3,控制反应温度为50℃,,反应2小时。然后,通过滴加10%的氢氧化钠水溶液,将体系的pH调12,80℃下,水解2小时,得到0.74mol 2-十二烷基-4-辛烷基苯胺聚氧丙烯(4)聚氧乙烯(8)醚苯磺酸钠。
2.表面活性剂性能评价
除了驱油剂组成不同以外,性能评价方法同实施例1。为便于比较将驱油剂的组成列于表2,将评价结果列于表3。
【实施例4】
1. 4-三十烷基苯胺聚氧丙烯(6)聚氧乙烯醚(20)苯磺酸盐的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的三十烷基苯,滴加1.1mol 65%硝酸和50g 98%的浓硫酸,控制反应温度为20℃,滴加完毕后,继续反应1小时,得到4-三十烷基硝基苯0.86mol。
b)将0.86mol4-三十烷基硝基苯加入到高压反应釜中,加入5g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到4-三十烷基苯胺0.82mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.82mol4-三十烷基苯胺和2.5g氢氧化钠,边通氮气边加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,-0.08MPa脱水1小时,然后用氮气吹扫4次以除去体系中的空气,然后将体系反应温度调至150℃依次缓缓通入4.92mol环氧丙烷和16.4mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,冷却后中和、脱水,得0.78mol4-三十烷基苯胺聚氧丙烯(6)聚氧乙烯(20)醚。
d)步骤c)合成的0.78mol4-三十烷基苯胺聚氧丙烯(6)聚氧乙烯(20)醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,滴加4.0mol 98%的硫酸,控制反应温度为50℃,滴加完毕后继续反应1小时,然后加氢氧化钠调至pH为13,水解反应2小时,得到0.72mol4-三十烷基苯胺聚氧丙烯(6)聚氧乙烯(20)醚二磺酸钠苯磺酸钠。
2.表面活性剂性能评价
除了驱油剂组成不同以外,性能评价方法同实施例1。为便于比较将驱油剂的组成列于表2,将评价结果列于表3。
【实施例5】
1. 4-十六烷基苯胺聚氧乙烯(8)二甲基醚苯磺酸盐的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的十六烷基苯,滴加1.2mol 65%硝酸和30g 98%的浓硫酸,控制反应温度为20℃,滴加完毕后,继续反应1小时,得到4-十六烷基硝基苯0.87mol。
b)将0.87mol4-十六烷基硝基苯加入到高压反应釜中,加入5.5g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到4-十六烷基苯胺0.85mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.85mol4-十六烷基苯胺和2.5g氢氧化钠,边通氮气边加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,抽真空脱水1小时,然后用氮气吹扫4次以除去体系中的空气,然后将体系反应温度调至150℃缓缓通入6.8mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,加入2.4摩尔量的碘甲烷,90℃下,反应1小时,冷却后中和、脱水,得0.82mol4-十六烷基苯胺聚氧乙烯(8)二甲基醚。
d)步骤c)合成的0.82mol4-十六烷基苯胺聚氧乙烯(8)二甲基醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,通入1.2molSO 3,控制反应温度为50℃,反应1小时,然后加氢氧化钠调至pH为12,水解反应2小时,得到0.74mol4-十六烷基苯胺聚氧乙烯(8)二甲基醚苯磺酸钠。
2.表面活性剂性能评价
除了驱油剂组成不同以外,性能评价方法同实施例1。为便于比较将驱油剂的组成列于表2,将评价结果列于表3。
【实施例6】
1. 4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚苯磺酸盐的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的辛烷基苯,滴加1.5mol的65%浓硝酸和20g 98%的浓硫酸,控制反应温度为30℃,滴加完毕后,继续反应2小时,得到4-辛烷基硝基苯0.87mol。
b)将0.87mol4-辛烷基硝基苯加入到反应釜中,加入5g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到4-辛烷基苯胺0.84mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.84mol4-辛烷基苯胺和2.5g氢氧化钠,在持续通入氮气的情况下加热至 85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,-0.08MPa脱水1小时,然后用氮气吹扫4次以除去体系中的空气,将体系反应温度调至150℃,随后依次缓缓通入1.68mol环氧丁烷、1.68mol环氧丙烷和3.36mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,冷却后中和、脱水,得0.82mol4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚。
d)步骤c)合成的0.82mol4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,滴加3.5mol 20%的发烟硫酸,控制反应温度为50℃,滴加完毕后继续反应1小时。然后,通过滴加10%的氢氧化钠水溶液,将体系的pH调12,80℃下,水解2小时,得到0.73mol4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚苯磺酸钠。
2.表面活性剂性能评价
除了驱油剂组成不同以外,性能评价方法同实施例1。为便于比较将驱油剂的组成列于表2,将评价结果列于表3。
【实施例7】
1. 4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚-3,5-二磺酸钠的合成
a)向装有冷凝装置、搅拌装置的反应器中加入1.0mol的辛烷基苯,滴加5mol的发烟硝酸,控制反应温度为50℃,滴加完毕后,继续反应4小时,得到4-辛烷基硝基苯0.85mol。
b)将0.85mol4-辛烷基硝基苯加入到反应釜中,加入5g 10%的钯碳,密封反应釜。充氮气置换5次,然后通氢气置换5次,升温到60℃,开始加氢,控制体系压力1-4MPa,反应6小时,得到4-辛烷基苯胺0.82mol。
c)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.82mol4-辛烷基苯胺和2.5g氢氧化钠,在持续通入氮气的情况下加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,-0.08MPa脱水1小时,然后用氮气吹扫4次以除去体系中的空气,将体系反应温度调至150℃,随后依次缓缓通入1.86mol环氧丁烷、1.86mol环氧丙烷和 3.72mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,冷却后中和、脱水,得0.81mol4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚。
d)步骤c)合成的0.81mol4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,通入3.0mol SO 3,控制反应温度为60℃,反应2小时。然后,通过滴加10%的氢氧化钠水溶液,将体系的pH调12,80℃下,水解2小时,得到0.75mol4-辛烷基苯胺聚氧丁烯(2)聚氧丙烯(2)聚氧乙烯(4)醚-3,5-二磺酸钠。
2.表面活性剂性能评价
除了驱油剂组成不同以外,性能评价方法同实施例1。为便于比较将驱油剂的组成列于表2,将评价结果列于表3。
【实施例8】
按照SY/T6424-2000复合驱油体系性能测试方法中的复合驱油体系物理模拟驱油效果测试,原油采用胜利油田埕东脱水原油,在80℃下,长度为30cm,直径为2.5cm,渗透率为1.5m 2的岩心上进行模拟驱油实验。先用海水进行水驱至含水98%,水驱结束后,转注0.3pv(岩心孔隙体积)上述驱油剂,然后水驱至含水98%,计算提高原油采收率。
按照上述方法对【实施例2】和【实施例5】制备的驱油剂进行驱油实验评价,结果分别提高原油采收率10.1%和12.8%。
【比较例1】
评价方法同【实施例2】,不同之处以石油磺酸钠(大庆炼油厂)替代【实施例1】中的十二烷基苯胺聚氧乙烯(6)醚苯磺酸钠表面活性剂,其余相同,测得此组合物与胜利油田埕东脱水原油之间形成0.024mN/m的界面张力。
同【实施例6】的方法进行驱油,测得提高原油采收率3.8%。
【比较例2】
按照专利CN200410096431.9中实施例1的方法合成C 16-18烷基苯磺酸盐,评价方法同【实施例1】,测得此组合物与胜利油田埕东脱水原油之间形成0.012mN/m的界面张力。
同【实施例6】的方法进行驱油,测得提高原油采收率4.5%。
【比较例3】
同实施例5,区别在于醚化反应的起始剂不同,采用苯胺。
向装有冷凝装置、搅拌装置和气体分散器的反应器中加入0.1mol苯胺和2.5g氢氧化钠,边通氮气边加热至85℃时,搅拌反应1小时。开启真空系统,在90℃温度下,抽真空脱水1小时,然后用氮气吹扫4次以除去体系中的空气,然后将体系反应温度调至150℃缓缓通入7.20mol环氧乙烷,控制压力≤0.40MPa进行醚化反应;反应结束后,用氮气吹扫体系,加入2.4摩尔量的碘十六烷,90℃下,反应1小时,冷却后中和、脱水,得苯胺聚氧乙烯(8)十六基醚。
将苯胺聚氧乙烯(8)十六基醚加入到装有冷凝装置、滴加装置、搅拌装置的反应釜中,滴加3.0mol 50%的发烟硫酸,控制反应温度为55℃,滴加完毕后继续反应1小时,然后加氢氧化钠调至pH为10,水解反应2小时,得到苯胺聚氧乙烯(8)十六基醚苯磺酸钠。
同【实施例6】的方法进行驱油,测得提高原油采收率5.3%。
【比较例4】
重复实施例5的过程,区别在于采用戊基苯替换十六烷基苯,其它条件不变。
同【实施例6】的方法进行驱油,测得提高原油采收率3.2%。
表1海水
Figure PCTCN2021104139-appb-000006
表2实施例1-5驱油剂组成
Figure PCTCN2021104139-appb-000007
表3实施例1-5驱油剂界面张力性能
实施例 界面张力(mN/m)
1 0.0078
2 0.0035
3 0.0084
4 0.0063
5 0.00011
6 0.0023
7 0.012

Claims (18)

  1. 一种烷基苯胺聚醚苯磺酸盐,其结构如式(I)所示:
    Figure PCTCN2021104139-appb-100001
    在式(I)中:
    R 1和R 2独立地选自H、C 1-C 40的烃基或
    Figure PCTCN2021104139-appb-100002
    且不同时为H;
    R 3在每次出现时独立地选自H、C 1-C 10的烃基、C 1-C 10的羰基、C 1-C 10的烷基磺酸基、C 1-C 10的烷基醇磺酸基、C 1-C 10的烷基羧酸基和-SO 3(M) n
    -(Polyoxyalkylene) 1-为-(PO) x1-、-(EO) y1-、-(BO) z1-中的一个或多个的组合;
    -(Polyoxyalkylene) 2-为-(PO) x2-、-(EO) y2-、-(BO) z2-中的一个或多个的组合;
    x 1、x 2、y 1、y 2、z 1和z 2各自独立地选自0至50之间的任意整数,且x 1+x 2=0~50,y 1+y 2=1~50,z 1+z 2=0~50;
    M选自碱金属和碱土金属,当M为碱金属时n为1,当M为碱土金属时n为0.5;以及
    其中PO为丙氧基,EO为乙氧基,BO为丁氧基。
  2. 根据权利要求1所述的烷基苯胺聚醚苯磺酸盐,其特征在于,在式(I)中,R 1为C 6-C 30的烃基,优选R 1为C 6-C 30的烷基或烯基,R 2为H、C 1-C 30的烃基或
    Figure PCTCN2021104139-appb-100003
    R 3在每次出现时独立地为H、-CH 3、-CH 2CH 3、-CH 2SO 3(M) n、-CH 2(CHOH)SO 3(M) n、-CH 2COO(M) n或-SO 3(M) n,x 1+x 2=0~30,y 1+y 2=1~30,z 1+z 2=0~30。
  3. 根据权利要求1或2所述的烷基苯胺聚醚苯磺酸盐,在式(I)中, R 1为C 6-C 20的烃基,优选R 1为C 6-C 20的烷基或烯基;R 2为H或C 1-C 30的烃基;R 3在每次出现时独立地选自H、-CH 3和-CH 2CH 3;x 1+x 2=0~20,优选x 1+x 2=1~10,或优选x 1+x 2=2~10;y 1+y 2=1~20,优选y 1+y 2=2~20;z 1+z 2=0~20,优选z 1+z 2=1~10,或优选z 1+z 2=2~10;M选自钠离子、钾离子、钙离子和镁离子。
  4. 根据权利要求1~3所述的烷基苯胺聚醚苯磺酸盐,在式(I)中,R 1或R 2
    Figure PCTCN2021104139-appb-100004
  5. 根据权利要求1~4所述的烷基苯胺聚醚苯磺酸盐,其中每次出现的R 3相同。
  6. 根据权利要求1~5所述的烷基苯胺聚醚苯磺酸盐,其中R 3
    -SO 3(M) n,优选地,该式(I)中出现的M相同。
  7. 一种表面活性剂组合物,包括一种或多种根据前述权利要求中任一项所述的烷基苯胺聚醚苯磺酸盐。
  8. 制备如权利要求1~6任一项所述烷基苯胺聚醚苯磺酸盐的方法,包括以下步骤:
    步骤1、以烷基苯胺为起始剂,与环氧化合物反应,任选地随后用封端剂对反应产物进行封端处理,得到烷基苯胺聚醚;
    步骤2、用磺化试剂对所述烷基苯胺聚醚进行磺化处理,得到所述烷基苯胺聚醚苯磺酸盐。
  9. 根据权利要求8所述的方法,其特征在于,所述烷基苯胺具有式:R 1-Ph-NH 2,其中Ph代表苯基,R 1如权利要求1-4中任一项所述。
  10. 根据权利要求8或9所述的方法,其特征在于,在步骤1之前进行步骤1’和步骤1”:
    步骤1’、以烷基苯为原料,进行硝化处理,得到烷基硝基苯;
    步骤1”、对所述烷基硝基苯进行加氢处理,得到烷基苯胺。
  11. 根据权利要求10所述的方法,其特征在于,在步骤1’中,采用硝化试剂和任选的活化剂对烷基苯进行硝化处理,所述硝化试剂选自硝酸、五氧化二氮,所述活化剂选自浓硫酸、冰醋酸、乙酸酐、五氧化二磷。
  12. 根据权利要求11所述的方法,其特征在于,
    所述硝化试剂与烷基苯的摩尔比为(1~5):1,优选为(1~3):1;和/或
    步骤1’所述硝化处理如下进行:于0~80℃,优选20~65℃,进行1~10小时,优选进行2~8小时。
  13. 根据权利要求10所述的方法,其特征在于,在步骤1”中,在加氢催化剂存在下进行加氢处理,所述加氢催化剂选自钯碳、雷尼镍;和/或
    所述加氢催化剂的用量为所述烷基硝基苯的0.1wt%~10wt%,优选为1.0wt%~5.0wt%;和/或
    步骤1”所述加氢处理如下进行:于20~150℃、优选50~110℃、以及0~5MPa、优选0.5~4MPa下进行。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,
    在步骤1中,所述环氧化合物选自C 2~C 6的环氧化合物,优选选自环氧丙烷和环氧乙烷;和/或
    在步骤1中,所述环氧化合物与所述烷基苯胺的摩尔比为(1~150):1,优选为(1~90):1,更优选为(1~60):1,进一步优选为(1~40):1或(2~40):1;和/或
    步骤1于碱性催化剂存在下进行;优选地,所述碱性催化剂选自碱金属、碱金属氢氧化物、碱土金属氢氧化物、碱金属醇化物和碱金属氧化物;更优选地,所述碱性催化剂的用量占反应物总重量的0.1wt%~10wt%,优选为0.5wt%~5.0wt%;以及
    在步骤1中,所述反应的条件为:反应温度为140~200℃,反应压力为0~5MPa。
  15. 根据权利要求8所述的方法,其特征在于,在步骤1中,所述封端剂选自R’ 3-X或R” 3-X’-R” 3,其中,R’ 3为C 1-C 10的烃基或C 1-C 10的羰 基,X选自卤素或羟基,当X为羟基时,R’ 3为C 1-C 10的羰基;R” 3选自C 1-C 10的羰基,X’选自O;优选卤素为F、Cl或Br,R’ 3为C 1-C 10的烷基、烯基或苯基烷基;更优选地,所述封端剂选自碘甲烷、碘乙烷、碘丙烷、碘乙烯、碘化甲苯、醋酸、醋酸酐、乙酰氯、苯甲酰氯;优选所述封端剂与烷基苯胺的摩尔用量比为(2~2.6):1,优选为(2.04~2.4):1。
  16. 根据权利要求8~15任一项所述的方法,其特征在于,
    所述磺化试剂选自浓硫酸、发烟硫酸和三氧化硫。
  17. 根据权利要求8~16任一项所述的方法,其特征在于,步骤2包括以下子步骤:
    步骤2-1、将所述烷基苯胺聚醚与磺化试剂混合,在20~80℃下进行磺化反应0.5~10小时;
    步骤2-2、调pH至10~14进行水解反应0.5~5小时,得到所述烷基苯胺聚醚苯磺酸盐。
  18. 一种驱油剂组合物,包括权利要求1~6任一项所述烷基苯胺聚醚苯磺酸盐作为表面活性剂、权利要求7所述的表面活性剂组合物、或权利要求8~17任一项所述制备方法得到的烷基苯胺聚醚苯磺酸盐作为表面活性剂,和水,其中,所述表面活性剂与水的重量比为1:(50~2000),优选为1:(80~500)。
PCT/CN2021/104139 2020-07-02 2021-07-02 一种烷基苯胺聚醚苯磺酸盐及其制备方法 WO2022002226A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3188582A CA3188582A1 (en) 2020-07-02 2021-07-02 Alkylaniline polyether benzenesulfonate and a process of producing same
MX2023000029A MX2023000029A (es) 2020-07-02 2021-07-02 Bencenosulfonato de poliéter de alquilanilina y un proceso para producir el mismo.
EP21833687.3A EP4177242A4 (en) 2020-07-02 2021-07-02 ALKYLANILINE POLYETHERBENZENESULFONATE AND PRODUCTION PROCESS THEREOF
US18/003,395 US20230242806A1 (en) 2020-07-02 2021-07-02 Alkylaniline Polyether Benzenesulfonate and Process of Producing Same
BR112022026903A BR112022026903A2 (pt) 2020-07-02 2021-07-02 Alquil anilina poliéter benzeno sulfonato e um processo para produção do mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010624678.2 2020-07-02
CN202010624678.2A CN113881418B (zh) 2020-07-02 2020-07-02 一种烷基苯胺聚醚苯磺酸盐驱油表面活性剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022002226A1 true WO2022002226A1 (zh) 2022-01-06

Family

ID=79012772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104139 WO2022002226A1 (zh) 2020-07-02 2021-07-02 一种烷基苯胺聚醚苯磺酸盐及其制备方法

Country Status (7)

Country Link
US (1) US20230242806A1 (zh)
EP (1) EP4177242A4 (zh)
CN (1) CN113881418B (zh)
BR (1) BR112022026903A2 (zh)
CA (1) CA3188582A1 (zh)
MX (1) MX2023000029A (zh)
WO (1) WO2022002226A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710351A (zh) * 2021-08-23 2023-02-24 中国石油化工股份有限公司 烃基萘满聚醚磺酸盐稠油驱油剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203935A (zh) 1998-05-07 1999-01-06 深圳市爱博特实业发展有限公司 三次采油用石油磺酸盐、制法及其应用
CN1426833A (zh) 2001-12-21 2003-07-02 大庆油田有限责任公司 烷基苯磺酸盐表面活性剂、其制备及在三次采油中的应用
CN1458219A (zh) 2002-05-17 2003-11-26 中国石油天然气股份有限公司 三次采油应用的表面活性剂-聚合物纯二元超低界面张力复合驱配方
CN1566258A (zh) 2003-07-04 2005-01-19 大庆高新区鑫诺精细化工有限公司 烷基芳基烷基磺酸盐型表面活性剂组合物及其在三次采油中的应用
CN103571220A (zh) * 2013-10-31 2014-02-12 山西青山化工有限公司 一种四磺酸两性荧光增白剂及其制备方法
CN109681175A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 采用pH值响应的固体泡沫排水剂排液采气的方法
CN109679612A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 固体耐油泡沫排水剂组合物和制备方法及其应用
CN110791273A (zh) * 2019-10-15 2020-02-14 东营施普瑞石油工程技术有限公司 一种气井泡排剂组合物、制备方法及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164277A (en) * 1965-11-02 1969-09-17 Ici Ltd Process for the Preparation of Polyether Polyols.
US3578781A (en) * 1968-12-31 1971-05-18 Shell Oil Co Clay treating and oil-wetting dispersion and method of use thereof
US4235811A (en) * 1979-04-02 1980-11-25 Texaco Development Corp. Compounds from aminated alkoxylated aliphatic alcohol
US7341983B2 (en) * 2003-08-04 2008-03-11 Ecolab Inc. Antimicrobial compositions including carboxylic acids and alkoxylated amines
CN101279935B (zh) * 2007-04-04 2011-04-27 中国石油化工股份有限公司 烷基酚磺酸聚氧乙烯醚羧酸盐及其制备方法
CN101054514A (zh) * 2007-05-21 2007-10-17 孙安顺 烷基苯胺的羧酸盐或磺酸盐表面活性剂
CN101298554A (zh) * 2008-07-07 2008-11-05 大庆石油管理局 一种驱油用表面活性剂、其配方体系及其在三次采油中的应用
AR096063A1 (es) * 2013-04-24 2015-12-02 Univ Texas Composiciones de alcoxilato de alquilamina de cadena corta
CN104232044B (zh) * 2013-06-17 2017-08-11 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物、制备方法及应用
CN105368426B (zh) * 2014-08-27 2018-08-17 中国石油化工股份有限公司 双亲水头基阴离子表面活性剂及其制备方法
CN105441054B (zh) * 2014-08-27 2018-09-14 中国石油化工股份有限公司 适用于低钙镁油藏的表面活性剂组合物及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203935A (zh) 1998-05-07 1999-01-06 深圳市爱博特实业发展有限公司 三次采油用石油磺酸盐、制法及其应用
CN1426833A (zh) 2001-12-21 2003-07-02 大庆油田有限责任公司 烷基苯磺酸盐表面活性剂、其制备及在三次采油中的应用
CN1458219A (zh) 2002-05-17 2003-11-26 中国石油天然气股份有限公司 三次采油应用的表面活性剂-聚合物纯二元超低界面张力复合驱配方
CN1566258A (zh) 2003-07-04 2005-01-19 大庆高新区鑫诺精细化工有限公司 烷基芳基烷基磺酸盐型表面活性剂组合物及其在三次采油中的应用
CN103571220A (zh) * 2013-10-31 2014-02-12 山西青山化工有限公司 一种四磺酸两性荧光增白剂及其制备方法
CN109681175A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 采用pH值响应的固体泡沫排水剂排液采气的方法
CN109679612A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 固体耐油泡沫排水剂组合物和制备方法及其应用
CN110791273A (zh) * 2019-10-15 2020-02-14 东营施普瑞石油工程技术有限公司 一种气井泡排剂组合物、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177242A4

Also Published As

Publication number Publication date
EP4177242A1 (en) 2023-05-10
CN113881418A (zh) 2022-01-04
CN113881418B (zh) 2023-10-31
MX2023000029A (es) 2023-04-12
EP4177242A4 (en) 2024-07-03
US20230242806A1 (en) 2023-08-03
BR112022026903A2 (pt) 2023-01-24
CA3188582A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
CN102464598B (zh) 脂肪酸酰胺聚氧乙烯醚苯磺酸盐及其制备方法
CN102277146A (zh) 可大幅度提高采收率的组合物及其制备方法
CN103965853A (zh) 组合表面活性剂及其制备方法
CN113896881B (zh) 一种烷基萘胺聚醚萘磺酸盐表面活性剂及其制备方法和应用
WO2022099826A1 (zh) 一种驱油用Gemini聚氧乙烯醚琥珀酸盐表面活性剂及其制备方法
CN103032055B (zh) 使用含磺酸盐阴非表活剂组合物的驱油方法
CN106590582A (zh) 耐盐驱油表面活性剂及其制备方法
CN102278102B (zh) 用于高温高盐油藏的新型二元驱油方法
WO2022002226A1 (zh) 一种烷基苯胺聚醚苯磺酸盐及其制备方法
CN103031119B (zh) 含磺酸盐阴非表活剂组合物及制备方法
WO2021093601A1 (zh) 表面活性剂及其制备方法
CN110746955B (zh) 一种驱油用双子表面活性剂、二元复合体系及其制备方法与应用
CN111087608B (zh) 烃基酚聚醚双苯磺酸盐驱油表面活性剂、组合物及其制备方法和应用
CN113801316B (zh) 烷氧基嵌段聚醚磺酸盐阴离子表面活性剂及其制备方法
CN111087601B (zh) 采油用表面活性剂、组合物及其制备方法
CN116023308B (zh) 一种稠油降粘剂及其制备方法和应用
WO2023025058A1 (zh) 烃基萘满聚醚磺酸盐及其制备方法和应用
CN113912832B (zh) 胺基二苯烷聚醚苯磺酸盐表面活性剂及其制备方法和应用
CN112791663A (zh) 三聚氰胺基表面活性剂及其制备方法
CN109679626B (zh) 含聚醚羧酸盐无碱黏弹性表面活性剂组合物及制备方法和用途
CN112791662A (zh) 烷氧基聚醚阴非离子表面活性剂及其制备方法
CN115772260A (zh) 萘系阴非离子表面活性剂及其制备方法和应用
CN116254101A (zh) 聚合物-表面活性剂驱油组合物及其制备方法和应用方法
CN116254100A (zh) 一种复合表面活性剂及其制备方法
CN105080420A (zh) 一种孪连表面活性剂及其制备方法和使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 140150140003007039

Country of ref document: IR

ENP Entry into the national phase

Ref document number: 3188582

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022026903

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022026903

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221228

WWE Wipo information: entry into national phase

Ref document number: 2021833687

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021833687

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523442009

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 523442009

Country of ref document: SA