WO2022001681A1 - 一种硫化物全固态电池硫化铁复合正极材料的制备方法 - Google Patents

一种硫化物全固态电池硫化铁复合正极材料的制备方法 Download PDF

Info

Publication number
WO2022001681A1
WO2022001681A1 PCT/CN2021/100601 CN2021100601W WO2022001681A1 WO 2022001681 A1 WO2022001681 A1 WO 2022001681A1 CN 2021100601 W CN2021100601 W CN 2021100601W WO 2022001681 A1 WO2022001681 A1 WO 2022001681A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
positive electrode
sulfide
fes
electrode material
Prior art date
Application number
PCT/CN2021/100601
Other languages
English (en)
French (fr)
Inventor
徐若晨
刘明义
曹曦
裴杰
朱勇
曹传钊
朱连峻
郑建涛
李晴
徐越
孙超
李萌
朱耿峰
李海建
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
格尔木时代新能源发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司, 格尔木时代新能源发电有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022001681A1 publication Critical patent/WO2022001681A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of all-solid-state batteries, and in particular relates to a preparation method of an iron sulfide composite positive electrode material for a sulfide all-solid-state battery.
  • electrochemical energy storage is the future large-scale energy storage.
  • one of the developing trends there are still major safety problems in electrochemical energy storage batteries, so there is still a certain distance from large-scale applications.
  • All-solid-state lithium-ion batteries can completely solve the safety problem of batteries because they do not contain flammable organic electrolytes.
  • Solid-state electrolytes can be divided into inorganic solid-state electrolytes, organic solid-state electrolytes, and composite solid-state electrolytes.
  • sulfide solid-state electrolytes have high ionic conductivity at room temperature and are considered to be one of the most promising solid-state electrolytes for industrialization.
  • sulfide all-solid-state batteries still face many problems. The biggest problem is the interface between the solid electrolyte and the electrode.
  • the contact between the electrode and the electrolyte is a solid-solid contact, which is actually a point-to-point contact, and the excellent condition of the interface contact determines the electrochemical performance of the entire all-solid-state battery.
  • Object of the present invention to overcome the above disadvantages of current techniques to provide an all-solid battery sulfide FeS 2 prepared composite positive electrode material, which can greatly enhance the contact area between the positive electrode and the sulfide solid electrolyte solution interface problem.
  • the present invention adopts the following technical solutions:
  • step 2) the rotational speed of the ball milling is 120-180 rpm, and the ball milling time is 1-3 h.
  • step 3 the temperature of the high-temperature heat treatment in the vacuum device is 650-800° C., and the time is controlled at 1-3 h.
  • the argon gas atmosphere is realized by an argon gas glove box, and the O 2 content in the argon gas glove box is lower than 0.1 ppm, and the H 2 O content is lower than 0.1 ppm.
  • the present invention has the following beneficial technical effects:
  • the preparation of the FeS 2 composite positive electrode material for the sulfide all-solid-state battery by the high temperature quenching method has quite obvious advantages, and the main advantages are as follows: (1) The method improves the contact area between the FeS 2 positive electrode material and the solid electrolyte, from The point contact between solid and solid during mechanical cold pressing becomes surface contact, which accelerates the transport rate of lithium ions at the interface; (2) This method enhances the interaction between the positive electrode, carbon material and sulfide solid electrolyte.
  • Fig. 1 is the schematic diagram of the traditional FeS 2 composite cathode material
  • FIG. 2 is a schematic diagram of the FeS 2 composite cathode material prepared by the present invention.
  • 1 is FeS 2 positive electrode material; 2 is carbon material; 3 is sulfide solid electrolyte.
  • FeS 2 composite positive electrode material for sulfide all-solid-state battery A preparation method of FeS 2 composite positive electrode material for sulfide all-solid-state battery .
  • FeS 2 raw material is placed in a ball milling tank, and the particle size of FeS 2 is reduced by high-energy ball milling.
  • the ball milling speed is 370-510 rpm, and the ball milling time is 2 -4 h, FeS 2 powder was obtained.
  • FeS 2 powder and carbon materials carbon materials such as conductive carbon black, carbon fibers, carbon nanorods, carbon nanotubes, etc.
  • a ball mill in a mass ratio of (2.0 ⁇ 4.0):1 Mixing in medium, at room temperature, the ball milling speed is 120-180 rpm, and the ball milling time is 1-3 h to obtain FeS 2 /carbon composite materials.
  • the quartz tube is heat treated at a high temperature of 650-800 °C for 1-3 h. When the heating is over, the hot quartz tube is immediately placed in ice water for quenching.
  • the quartz tube After cooling to room temperature, the quartz tube is heat-treated again at 240-260 °C for 1-3 h to crystallize the quenched glass solid electrolyte. After cooling, open the quartz tube in the argon gas glove box, and the O 2 content in the argon gas glove box is less than 0.1 ppm, and the H 2 O content is less than 0.1 ppm, and the FeS 2 composite positive electrode material can be obtained.
  • Figure 2 shows the preparation of the present invention.
  • FIG. 1 is a schematic diagram of a traditional FeS 2 composite cathode material, there are large pores between the cathode materials, and the contact area is also very small.
  • the mass of Li 2 S 0.9827 g, the mass of P 2 S 5 2.0173 g, and the composite material of FeS 2 /conductive carbon black 3.0 g were weighed and mixed together in the glove box, and the mixed powder was placed in a stainless steel container, and then the mixture containing The stainless steel container of the mixed powder is sealed in a vacuum quartz tube, and the vacuum degree of the vacuum quartz glass tube is lower than 0.1Mpa.
  • the quartz tube was heat treated again for a period of time, the temperature of the secondary heat treatment was 240 °C, and the sintering time was controlled at 3.0 h, so that the glass solid electrolyte obtained by quenching was crystallized and recrystallized.
  • open the quartz tube in an argon atmosphere take out the sample and grind it into powder to obtain FeS 2 composite cathode material.
  • the mass of Li 2 S 1.1554 g, the mass of P 2 S 5 1.8445 g, and the composite material of FeS 2 /carbon fiber 1.5 g were weighed in the glove box and mixed together, the mixed powder was placed in a stainless steel container, and then the mixed powder containing the mixed powder was weighed and mixed together.
  • the stainless steel container is sealed in a vacuum quartz tube, and the vacuum degree of the vacuum quartz glass tube is lower than 0.1Mpa.
  • High temperature heat treatment vacuum quartz tube, the heat treatment temperature is 750 °C, and the sintering time is controlled at 2.0 h. When the heating is over, the hot quartz tube is immediately quenched in sub-zero ice water.
  • the method combines the sulfide solid-state electrolyte material, the carbon material and the positive electrode material by a melting method, which increases the interface contact area, reduces the interface impedance, and further improves the density of the positive electrode, thereby increasing the energy density of the all-solid-state battery.
  • the disclosed technical contents are mainly aimed at the preparation method of sulfide composite positive electrode materials for all-solid-state batteries.
  • the above are only the embodiments of the present invention, but the protection scope of the present invention is not limited
  • any changes or substitutions that can be easily thought of by those skilled in the art within the technical scope disclosed in the present invention, or equivalent structures or equivalent process transformations made by using the contents of the description and accompanying drawings of the present invention, or direct, Indirect application in other related technical fields shall be covered by the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种硫化物全固态电池硫化铁复合正极材料的制备方法,本发明首先通过球磨减小FeS 2的颗粒粒径,然后将FeS 2、碳材料和硫化物固态电解质原料通过高温熔融法将其结合在一起,然后再通过低温回火得到高性能的FeS 2复合正极材料。与传统的复合正极相比,该方法提高了正极材料与固态电解质的接触面积,加快了锂离子在界面处的传输速率;进一步增强了正极、碳材料和硫化物固态电解质三者之间的接触紧密性,并促进了它们的均分分布;可有效抑制正极和固态电解质的界面电荷层,降低界面阻抗;制备的复合正极材料具有更高的致密度,能够提高全固态电池的能量密度。

Description

一种硫化物全固态电池硫化铁复合正极材料的制备方法 技术领域
本发明属于全固态电池领域,具体涉及一种硫化物全固态电池硫化铁复合正极材料的制备方法。
背景技术
近年来,风电、光伏等新能源迅猛增长,新能源在大发展的同时,其装机规模远远超过了电网的消纳能力,造成较多的弃风和弃光率。此外,风电、光伏等可再生能源具有间歇性、波动性等特征,造成电网调节、抗干扰能力不断下降,给新能源的消纳上网及电网的稳定运行带来一系列的重大挑战。在波动性发电达到如此高比例的情况下,保证电力供应与需求之间的实时平衡更具挑战性。采用储能装置可有效对与高比例风力发电和太阳能发电相关的波动性和不确定性进行管理。而目前电化学储能发展势头迅猛,电化学储能因其具有能量密度高、倍率性能好、自放电率低、寿命长、能量转换效率高、反应速度快等优点,是未来大规模储能发展的趋势之一。但是目前电化学储能中电池还存在较大的安全问题,因此其离大规模应用还存在一定的距离。
技术问题
全固态锂离子电池因其不含有可燃的有机电解液可完全解决电池的安全性问题。固态电解质可分为无机固态电解质、有机固态电解质和复合固态电解质,其中硫化物固态电解质具有较高的常温离子电导率被认为是最有产业化前景的固态电解质之一。但是目前,硫化物全固态电池仍面临较多问题,最大的问题在于固态电解质和电极之间的界面问题。因为在全固态电池中没有液体的浸润,电极和电解质之间的接触是固-固接触,实际上是点与点的接触,而界面接触的优良状况决定着整个全固态电池的电化学性能。
技术解决方案
本发明的目的在于克服上述现在技术的缺点,提供一种硫化物全固态电池FeS 2复合正极材料的制备方法,该方法可以极大地提升正极与硫化物固态电解质之间的接触面积,解决界面的问题。
为达到上述目的,本发明采用如下技术方案:
一种硫化物全固态电池硫化铁复合正极材料的制备方法,包括以下步骤:
1)将FeS 2原料进行球磨,得到FeS 2粉末;
2)在氩气气氛下,将FeS 2粉末和碳材料混合球磨,得到FeS 2/碳的复合材料;
3)将FeS 2/碳的复合材料、Li 2S和P 2S 5混合后放在容器中,然后将含有混合粉末的容器密封于在真空装置中,高温热处理真空装置,待加热结束时,将炙热的真空装置立刻置于冰水中淬冷;
4)冷却至常温后,将真空装置再次热处理,让淬冷得到的玻璃固态电解质结晶,再次冷却后,在氩气气氛下打开真空装置,即得到FeS 2复合正极材料。
进一步地,步骤1)中球磨的转速为370-510rpm,球磨时间为2-4 h。
进一步地,所述碳材料为导电炭黑、碳纤维、碳纳米棒或碳纳米管。
进一步地,所述的FeS 2粉末和碳材料的质量比为(2.0~4.0):1。
进一步地,步骤2)中球磨的转速为120-180rpm,球磨时间为1-3 h。
进一步地,步骤3)中FeS 2/碳的复合材料、Li 2S和P 2S 5在混合时,Li 2S和P 2S 5按摩尔比为Li 2S:P 2S 5=(2.0~4.0):1加入,FeS 2/碳的复合材料与Li 2S+P 2S 5的质量比为1:(1.0~3.0)。
进一步地,步骤3)中将含有混合粉末的容器密封于在真空装置中,真空装置的真空度低于0.1Mpa。
进一步地,步骤3)中真空装置高温热处理的温度为650-800℃,时间控制在1-3 h。
进一步地,步骤4)中热处理的温度为240-260℃,时间控制在1-3 h。
进一步地,所述氩气气氛通过氩气手套箱实现,氩气手套箱中O 2含量低于0.1 ppm,H 2O含量低于0.1 ppm。
有益效果
与现有技术相比,本发明具有以下有益的技术效果:
本发明通过高温淬冷法制备硫化物全固态电池FeS 2复合正极材料具有相当明显的优势,最主要的优势表现为:(1)该方法提高了FeS 2正极材料与固态电解质的接触面积,从原本机械冷压时固体与固体之间的点接触变成了面接触,加快了锂离子在界面处的传输速率;(2)该方法增强了正极、碳材料和硫化物固态电解质三者之间的接触紧密性,且熔融法促进了三者在复合正极中的均分分布;(3)该法制备的正极材料可以有效抑制正极和固态电解质的界面电荷层,降低界面阻抗;(4)该法制备的正极材料比常规方法压制的正极材料具有更高的致密度,可以提高电池中正极材料的密度,从而提高电池的能量密度。
附图说明
图1为传统的FeS 2复合正极材料的示意图;
图2为本发明制备的FeS 2复合正极材料的示意图。
其中,1为FeS 2正极材料;2为碳材料;3为硫化物固态电解质。
本发明的最佳实施方式
下面对本发明的实施方式做进一步详细描述:
一种硫化物全固态电池FeS 2复合正极材料的制备方法,首先将FeS 2原料放置于球磨罐中,通过高能球磨减小FeS 2的粒径,球磨的转速为370-510rpm,球磨时间为2-4 h,得到FeS 2粉末。在氩气气氛下,取制备得到的适量FeS 2粉末和碳材料(导电炭黑、碳纤维、碳纳米棒、碳纳米管等碳材料)按照(2.0~4.0):1的质量比置于球磨罐中混合,在常温下,球磨的转速为120-180rpm,球磨时间为1-3 h,得到FeS 2/碳的复合材料。然后,将FeS 2/碳、Li 2S、P 2S 5按一定比例混合,其中加入的Li 2S和P 2S 5按摩尔比为Li 2S:P 2S 5=(2.0~4.0):1,FeS 2/碳与Li 2S+P 2S 5两者的质量比为1:(1.0~3.0),将混合粉末放在不锈钢容器中,然后将含有混合粉末的不锈钢容器密封于在真空石英管中,真空石英玻璃管的真空度低于0.1Mpa。在650-800℃的温度下高温热处理石英管1-3 h,待加热结束时,将炙热的石英管立刻置于冰水中淬冷。冷却至常温后,将石英管在240-260℃温度下再次热处理1-3 h,让淬冷得到的玻璃固态电解质结晶。冷却后,在氩气手套箱中打开石英管,氩气手套箱中O 2含量低于0.1 ppm,H 2O含量低于0.1 ppm,即可得到FeS 2复合正极材料,图2为本发明制备的FeS 2复合正极材料的示意图,可以从示意图看出通过高温淬冷法制备的复合正极材料中FeS 2正极材料1、碳材料2和硫化物固态电解质3的接触更为紧密,且分布均匀,提高了材料间的接触面积,拓宽了锂离子的传输通道。相比来看,图1为传统的FeS 2复合正极材料的示意图,正极材料之间存在较大的孔隙,且接触面积也十分小。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合实施例对本发明做进一步详细描述:
实施例1
首先取2.0 gFeS 2原料放置于球磨罐中,通过高能球磨减小FeS 2的粒径,球磨的转速为370rpm,球磨时间为4.0 h。在手套箱中(O 2< 0.1 ppm, H 2O< 0.1 ppm),取减小粒径后的FeS 2粉末2.0 g和导电炭黑1.0 g置于球磨罐中混合,在常温下以120 rpm的转速球磨3.0 h后得到FeS 2/导电炭黑的复合材料。然后,在手套箱中称取Li 2S质量0.9827 g,P 2S 5质量2.0173 g,FeS 2/导电炭黑的复合材料3.0 g混合在一起,将混合粉末放在不锈钢容器中,然后将含有混合粉末的不锈钢容器密封于在真空石英管中,真空石英玻璃管的真空度低于0.1Mpa。高温热处理真空石英管,热处理的温度在650℃,烧结时间控制在3.0 h。待加热结束时,将炙热的石英管立刻置于低于零度的冰水中淬冷。冷却至常温后,将石英管再次热处理一段时间,二次热处理的温度在240℃,烧结时间控制在3.0 h,让淬冷得到的玻璃固态电解质结晶再结晶。冷却后,在氩气气氛下打开石英管,取出样品后磨成粉末,即可得到FeS 2复合正极材料。
实施例2
首先取3.0 gFeS 2原料放置于球磨罐中,通过高能球磨减小FeS 2的粒径,球磨的转速为450 rpm,球磨时间为3.0 h。在手套箱中(O 2< 0.1 ppm, H 2O< 0.1 ppm),取减小粒径后的FeS 2粉末3.0 g和碳纤维1.0 g置于球磨罐中混合,在常温下以150 rpm的转速球磨2.0 h后得到FeS 2/碳纤维的复合材料。然后,在手套箱中称取Li 2S质量1.1554 g,P 2S 5质量1.8445 g,FeS 2/碳纤维的复合材料1.5 g混合在一起,将混合粉末放在不锈钢容器中,然后将含有混合粉末的不锈钢容器密封于在真空石英管中,真空石英玻璃管的真空度低于0.1Mpa。高温热处理真空石英管,热处理的温度在750℃,烧结时间控制在2.0 h。待加热结束时,将炙热的石英管立刻置于低于零度的冰水中淬冷。冷却至常温后,将石英管再次热处理一段时间,二次热处理的温度在250℃,烧结时间控制在2.0 h,让淬冷得到的玻璃固态电解质结晶再结晶。冷却后,在氩气气氛下打开石英管,取出样品后磨成粉末,即可得到FeS 2复合正极材料。
实施例3
首先取4.0 gFeS 2原料放置于球磨罐中,通过高能球磨减小FeS 2的粒径,球磨的转速为510 rpm,球磨时间为2.0 h。在手套箱中(O 2< 0.1 ppm, H 2O< 0.1 ppm),取减小粒径后的FeS 2粉末4.0 g和碳纳米管1.0 g置于球磨罐中混合,在常温下以180 rpm的转速球磨1.0 h后得到FeS 2/碳纳米管的复合材料。然后,在手套箱中称取Li 2S质量1.358 g,P 2S 5质量1.642 g,FeS 2/碳纳米管的复合材料1.0 g混合在一起,将混合粉末放在不锈钢容器中,然后将含有混合粉末的不锈钢容器密封于在真空石英管中,真空石英玻璃管的真空度低于0.1Mpa。高温热处理真空石英管,热处理的温度在800℃,烧结时间控制在1.0 h。待加热结束时,将炙热的石英管立刻置于低于零度的冰水中淬冷。冷却至常温后,将石英管再次热处理一段时间,二次热处理的温度在260℃,烧结时间控制在1.0 h,让淬冷得到的玻璃固态电解质结晶再结晶。冷却后,在氩气气氛下打开石英管,取出样品后磨成粉末,即可得到FeS 2复合正极材料。
该方法将硫化物固态电解质材料、碳材料和正极材料通过熔融法结合到一起,增大了界面接触面积、减小了界面阻抗,进一步提升了正极的密度从而提升了全固态电池的能量密度。
在本申请所提供的实施例中,所揭露的技术内容,主要是针对全固态电池硫化物复合正极材料的制备方法,以上所述仅为本发明实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内可轻易想到的变化或者替换,或利用本发明说明书及附图内容所作的等效结构或者等效流程变换,或直接、间接运用在其他相关技术领域的情况,均应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,包括以下步骤:
    1)将FeS 2原料进行球磨,得到FeS 2粉末;
    2)在氩气气氛下,将FeS 2粉末和碳材料混合球磨,得到FeS 2/碳的复合材料;
    3)将FeS 2/碳的复合材料、Li 2S和P 2S 5混合后放在容器中,然后将含有混合粉末的容器密封于在真空装置中,高温热处理真空装置,待加热结束时,将炙热的真空装置立刻置于冰水中淬冷;
    4)冷却至常温后,将真空装置再次热处理,让淬冷得到的玻璃固态电解质结晶,再次冷却后,在氩气气氛下打开真空装置,即得到FeS 2复合正极材料。
  2. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,步骤1)中球磨的转速为370-510rpm,球磨时间为2-4 h。
  3. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,所述碳材料为导电炭黑、碳纤维、碳纳米棒或碳纳米管。
  4. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,所述的FeS 2粉末和碳材料的质量比为(2.0~4.0):1。
  5. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,步骤2)中球磨的转速为120-180rpm,球磨时间为1-3 h。
  6. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,步骤3)中FeS 2/碳的复合材料、Li 2S和P 2S 5在混合时,Li 2S和P 2S 5按摩尔比为Li 2S:P 2S 5=(2.0~4.0):1加入,FeS 2/碳的复合材料与Li 2S+P 2S 5的质量比为1:(1.0~3.0)。
  7. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,步骤3)中将含有混合粉末的容器密封于在真空装置中,真空装置的真空度低于0.1Mpa。
  8. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,步骤3)中真空装置高温热处理的温度为650-800℃,时间控制在1-3 h。
  9. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,步骤4)中热处理的温度为240-260℃,时间控制在1-3 h。
  10. 根据权利要求1所述的一种硫化物全固态电池硫化铁复合正极材料的制备方法,其特征在于,所述氩气气氛通过氩气手套箱实现,氩气手套箱中O 2含量低于0.1 ppm,H 2O含量低于0.1 ppm。
PCT/CN2021/100601 2020-06-28 2021-06-17 一种硫化物全固态电池硫化铁复合正极材料的制备方法 WO2022001681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010598568.3A CN111653753A (zh) 2020-06-28 2020-06-28 一种硫化物全固态电池硫化铁复合正极材料的制备方法
CN202010598568.3 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022001681A1 true WO2022001681A1 (zh) 2022-01-06

Family

ID=72346134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100601 WO2022001681A1 (zh) 2020-06-28 2021-06-17 一种硫化物全固态电池硫化铁复合正极材料的制备方法

Country Status (2)

Country Link
CN (1) CN111653753A (zh)
WO (1) WO2022001681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646503A (zh) * 2023-07-27 2023-08-25 河南师范大学 一种碳包覆过渡金属碲化物的制备方法及其在水系锌离子电池中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949092B2 (en) * 2018-03-16 2024-04-02 University Of Maryland, College Park All solid-state sodium-sulfur or lithium-sulfur battery prepared using cast-annealing method
CN111653753A (zh) * 2020-06-28 2020-09-11 中国华能集团清洁能源技术研究院有限公司 一种硫化物全固态电池硫化铁复合正极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923031A (zh) * 2018-07-11 2018-11-30 中国科学院宁波材料技术与工程研究所 一种过渡金属硫化物复合电极材料及其制备方法和全固态锂电池
US20190067695A1 (en) * 2017-08-25 2019-02-28 Samsung Electronics Co., Ltd. All-solid-state secondary battery
CN110048083A (zh) * 2019-04-30 2019-07-23 哈尔滨工业大学 一种全固态锂电池正极的制备方法
CN111653753A (zh) * 2020-06-28 2020-09-11 中国华能集团清洁能源技术研究院有限公司 一种硫化物全固态电池硫化铁复合正极材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684441B (zh) * 2017-01-09 2019-03-12 郑州新世纪材料基因组工程研究院有限公司 一种硫磷化物固体电解质及其制备方法
CN107611476B (zh) * 2017-09-15 2020-03-31 浙江锋锂新能源科技有限公司 一种表面为非晶态物质的无机固体电解质及其制备方法
CN110620261A (zh) * 2019-09-19 2019-12-27 成都新柯力化工科技有限公司 一种锂电池高电导玻璃陶瓷态固态电解质及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190067695A1 (en) * 2017-08-25 2019-02-28 Samsung Electronics Co., Ltd. All-solid-state secondary battery
CN108923031A (zh) * 2018-07-11 2018-11-30 中国科学院宁波材料技术与工程研究所 一种过渡金属硫化物复合电极材料及其制备方法和全固态锂电池
CN110048083A (zh) * 2019-04-30 2019-07-23 哈尔滨工业大学 一种全固态锂电池正极的制备方法
CN111653753A (zh) * 2020-06-28 2020-09-11 中国华能集团清洁能源技术研究院有限公司 一种硫化物全固态电池硫化铁复合正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN XIULIN, YUE JIE, HAN FUDONG, CHEN JI, DENG TAO, ZHOU XIUQUAN, HOU SINGYUK, WANG CHUNSHENG: "High-Performance All-Solid-State Na–S Battery Enabled by Casting–Annealing Technology", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 4, 24 April 2018 (2018-04-24), US , pages 3360 - 3368, XP055884151, ISSN: 1936-0851, DOI: 10.1021/acsnano.7b08856 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646503A (zh) * 2023-07-27 2023-08-25 河南师范大学 一种碳包覆过渡金属碲化物的制备方法及其在水系锌离子电池中的应用

Also Published As

Publication number Publication date
CN111653753A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2022001681A1 (zh) 一种硫化物全固态电池硫化铁复合正极材料的制备方法
CN105895879B (zh) 一种氟掺杂碳包覆正极复合材料及其制备方法及应用
WO2021248766A1 (zh) 一种复合聚合物固态电解质材料及其制备方法和应用
CN112397776B (zh) 一种Ga、Al共掺杂LLZO固态电解质、多元固态电池及其制备方法
CN103311551A (zh) 锂离子电池的负极材料及其制备方法
WO2023030025A1 (zh) 一种硫银锗矿型固态电解质的制备及其全固态电池应用
CN109904408B (zh) MoS2纳米片镶嵌在碳基底复合材料的制备方法及应用
CN111653754A (zh) 一种硫化物全固态电池锂负极复合材料的制备方法
CN115360320B (zh) 一种低界面电阻高锂金属稳定性全固态电池及其制备方法
CN105514395A (zh) 微波液相法制备掺杂石墨烯锂硫电池正极材料的方法
CN112038614B (zh) 一种钠离子电池用负极材料及其制备方法
CN109585807A (zh) 用于锂硫电池的正极材料及其制备方法和应用
CN114843589A (zh) 一种固态三元锂导热电池
CN111600019A (zh) 一种氮掺杂多孔碳-多壳空心SnS2的锂离子电池负极材料及其制法
CN108242535A (zh) 一种三元正极材料锂离子电池的制备方法
CN111320161A (zh) 一种沥青基碳纳米片的制备方法及其应用
CN102299334A (zh) 一种碳包覆LiFePO4多孔正极及其制备方法
CN115763715A (zh) 一种BixSey/C复合材料及其制备方法和应用、调控该复合材料铋硒原子比的方法
CN103545492A (zh) 锂离子电池的多重复合负极材料的制备方法
CN213026226U (zh) 一种以锂复合材料为负极的硫化物全固态电池
CN113097562A (zh) 一种硼氢化锂-石榴石型氧化物复合固态电解质材料及其制备方法与应用
CN109786667A (zh) 一种复合高分子三维结构金属锂电极及锂离子电池
CN115285947B (zh) 一种钠离子电池用硒化物负极材料及其制备方法、钠离子电池
CN105428610A (zh) 一种锂离子电池复合负极材料的制备方法
CN114552017B (zh) 一种电解液添加剂稳定金属锂负极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833736

Country of ref document: EP

Kind code of ref document: A1