WO2021261591A1 - Si被膜を有する銅合金粉及びその製造方法 - Google Patents
Si被膜を有する銅合金粉及びその製造方法 Download PDFInfo
- Publication number
- WO2021261591A1 WO2021261591A1 PCT/JP2021/024219 JP2021024219W WO2021261591A1 WO 2021261591 A1 WO2021261591 A1 WO 2021261591A1 JP 2021024219 W JP2021024219 W JP 2021024219W WO 2021261591 A1 WO2021261591 A1 WO 2021261591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper alloy
- alloy powder
- less
- wtppm
- atoms
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 145
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 110
- 239000011248 coating agent Substances 0.000 title claims abstract description 11
- 238000000576 coating method Methods 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000010949 copper Substances 0.000 claims abstract description 34
- 239000012535 impurity Substances 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- 238000001069 Raman spectroscopy Methods 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 25
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 239000002184 metal Substances 0.000 abstract description 14
- 230000008021 deposition Effects 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 21
- 238000000034 method Methods 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 12
- 239000011651 chromium Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 230000001629 suppression Effects 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 239000005751 Copper oxide Substances 0.000 description 6
- 229910000431 copper oxide Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KSFBTBXTZDJOHO-UHFFFAOYSA-N diaminosilicon Chemical compound N[Si]N KSFBTBXTZDJOHO-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- -1 epoxysilane Chemical compound 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- CVBWTNHDKVVFMI-LBPRGKRZSA-N (2s)-1-[4-[2-[6-amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]purin-9-yl]ethyl]piperidin-1-yl]-2-hydroxypropan-1-one Chemical compound C1CN(C(=O)[C@@H](O)C)CCC1CCN1C2=NC=NC(N)=C2N=C1SC(C(=C1)Br)=CC2=C1OCO2 CVBWTNHDKVVFMI-LBPRGKRZSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910017526 Cu-Cr-Zr Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- 229910017810 Cu—Cr—Zr Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 238000003841 Raman measurement Methods 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- IYMSIPPWHNIMGE-UHFFFAOYSA-N silylurea Chemical compound NC(=O)N[SiH3] IYMSIPPWHNIMGE-UHFFFAOYSA-N 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12181—Composite powder [e.g., coated, etc.]
Definitions
- the present invention relates to a copper alloy powder having a Si coating and a method for producing the same.
- the 3D printer is also called a laminated molding (AM) method, and as one of the methods, a metal powder is thinly spread on a substrate to form a metal powder layer, and the metal powder layer is selectively based on two-dimensional data.
- AM laminated molding
- Efforts are being made to use pure copper powder or copper alloy powder, which has excellent conductivity and thermal conductivity, as a laminated model.
- the pure copper powder and the copper alloy powder are irradiated with a laser beam to form a laminated structure.
- the pure copper powder and the copper alloy powder have a low laser absorption rate, a high thermal conductivity, and a large heat escape.
- pure copper powder and copper alloy powder cannot be sufficiently melted with a normal laser output, and it is difficult to form a laminate.
- Patent Document 1 discloses a technique of forming an oxide film by heating copper atomized powder in an oxidizing atmosphere in order to increase the absorption rate of a laser.
- Patent Document 1 is an excellent technique in which the laser absorption rate can be increased by an oxide film, but on the other hand, slag (copper oxide) is formed during modeling, remains without melting, and is finally laminated. Occasionally, voids were created in the modeled object, reducing the density. Furthermore, since the laser absorption rate changes depending on the degree of oxidation, it is necessary to adjust the laser conditions and the like each time.
- Patent Document 2 by using a copper alloy powder in which a predetermined amount of chromium (Cr) is added to copper (Cu) as a modeling powder, the thermal conductivity is lowered as compared with pure copper, and modeling is performed. Techniques for facilitating are described. By adding the alloying element to copper in this way, modeling becomes easier than when forming pure copper, but there is a problem that sufficient density and conductivity cannot be achieved for use as a copper alloy product.
- Cr chromium
- the present invention provides a copper alloy powder used for laminated molding by a laser beam method, which can have a higher laser absorption rate and suppress heat conduction through necking, and a method for producing the copper alloy powder.
- the task is to do.
- One aspect of the present invention is a copper alloy powder containing 15 wt% or less of any one or more of Cr, Zr, and Nb in total, and the balance is Cu and unavoidable impurities, and the copper alloy powder contains Si. It is a copper alloy powder in which a film containing atoms is formed, and the Si concentration is 5 wtppm or more and 700 wtppm or less in the copper alloy powder on which the film is formed.
- Another aspect of the present invention is a copper alloy powder containing 15 wt% or less of Cr and composed of the balance Cu and unavoidable impurities, wherein a film containing Si atoms is formed on the copper alloy powder, and the film is formed.
- it is a copper alloy powder containing 8 wt% or less of Cr and 7 wt% or less of Nb, and is composed of the balance Cu and unavoidable impurities, and a film containing Si atoms is formed on the copper alloy powder.
- a copper alloy powder having a Si concentration of 5 wtppm or more and 700 wtppm or less in the copper alloy powder on which the coating film is formed.
- the absorption rate of the laser of the metal powder used for the laminated molding can be further improved, and the heat conduction through necking can be suppressed.
- a dense (having a high relative density) laminated model can be produced.
- the metal powder can be sufficiently melted, and the load on the laser can be expected to be reduced.
- Patent Document 1 efforts to improve laser absorption by oxidizing pure copper (Patent Document 1) and efforts to reduce thermal conductivity by adding dissimilar metals to pure copper and alloying them (Patent). Document 2) is carried out.
- the suppression of heat escape through necking can efficiently melt the copper alloy powder, and it can be expected that a higher-density and high-definition laminated model can be obtained. Furthermore, since a high-density laminated model can be obtained with a low laser output, it can be expected that the load on the laser will be reduced.
- the copper alloy powder according to the present embodiment is a copper alloy powder containing at least 15 wt% of any one or more elements of Cr, Zr, and Nb in total, and the balance is Cu and unavoidable impurities.
- a film containing Si atoms is formed on the alloy powder, and the coated copper alloy powder is characterized in that the Si concentration is 5 wtppm or more and 700 wtppm or less. When the total content of the alloying elements is 15 wt% or less, it is possible to prevent an unnecessary decrease in conductivity.
- the copper alloy powders listed below can be used.
- the copper alloy powder according to this embodiment is characterized in that a film containing Si atoms is formed.
- a film containing Si atoms is formed means that when the cross section of the copper alloy powder is observed with a STEM (scanning transmission electron microscope), a film containing Si and no metal element is formed near the surface of the copper alloy powder. It can be judged by confirming that it exists.
- As the STEM JEM2100F manufactured by JEOL can be used.
- the copper alloy powder according to the present embodiment is a copper alloy powder on which a film containing Si atoms is formed, and the copper alloy powder on which the film is formed has a Si concentration of 5 wtppm or more and 700 wtppm or less.
- Si concentration 5 wtppm or more and 700 wtppm or less.
- Si is preferably present in the form of a compound, and more preferably SiO 2. This is because if Si exists as a single substance, Si may diffuse after modeling, which may reduce the conductivity. Since Si is a compound and exists as a more stable SiO 2 , it can be expected that a decrease in conductivity can be minimized.
- XPS X-ray photoelectron spectroscopy
- the maximum peak intensity exists at the binding energy of 101 to 105 eV.
- Si is a simple substance
- the maximum peak intensity is detected at a binding energy of 98 to 100 eV
- Si is a compound
- the maximum peak intensity is detected at a binding energy of 101 to 105 eV.
- SiO 2 is present, the maximum peak intensity is detected at the binding energy of 103 eV.
- the oxygen concentration is preferably 2000 wtppm or less. More preferably, it is 1000 wtppm or less.
- the oxygen concentration is high, slag (oxide) remains during the laminated molding by the laser beam, which leads to a decrease in the density of the finally obtained laminated molded product.
- the presence of oxygen in the modeled object may cause deterioration of mechanical properties.
- the maximum peak intensity exists at the binding energy of 569 to 571 eV.
- the maximum peak intensity appears at a binding energy of 568 eV or less, whereas with copper (I) oxide and copper (II) oxide, a maximum peak intensity appears at a binding energy of 569 to 571 eV.
- copper takes the form of copper oxide, the laser absorption rate is further improved and the formability may be improved. Therefore, the copper on the surface of the copper alloy powder is copper (I) oxide or copper (II) oxide. It is preferable that it exists in the form of.
- carbon preferably has a heat-resistant structure, and more preferably has a graphite structure.
- the thermal conductivity of the powder can be lowered and heat escape can be suppressed.
- carbon has a heat-resistant structure, heat dissipation can be suppressed even during modeling.
- having a graphite structure can increase the laser absorption rate and may improve the formability.
- organic substances without heat resistance may easily disappear during modeling and it may be difficult to suppress heat dissipation.
- Raman spectroscopy is a method for analyzing the existence of carbon. Similar to the above XPS, Raman measurement can confirm the bonding state of atoms on the surface, and in particular, carbon bonding can be analyzed in more detail.
- Raman shift 1000 to the maximum scattering intensity values
- Raman shift between 2000 cm -1 it is preferable to be confirmed in 1200 ⁇ 1850 cm -1. More preferably, the maximum scattering intensity can be confirmed at Raman shift: 1300 to 1700 cm -1.
- Raman shift It can be judged that it has a graphite structure by the appearance of the maximum scattering intensity at 1300 to 1700 cm -1.
- the average particle diameter D 50 (median diameter) of the copper alloy powder is 10 ⁇ m or more and 150 ⁇ m or less.
- the average particle diameter D 50 means the average particle size at an integrated value of 50% in the particle size distribution measured by image analysis.
- the laminated model produced by using the copper alloy powder according to the present embodiment has excellent physical properties such as high conductivity.
- the density of the laminated model is low, foreign matter enters the laminated model, so that the conductivity and mechanical characteristics are also lowered, which deteriorates various physical properties.
- the copper alloy powder according to the present embodiment is used, It can be expected to produce a laminated model with a low output and a relative density of 95% or more, and it can be expected to produce a laminated model having excellent physical characteristics.
- a method for producing the copper alloy powder according to the present embodiment will be described.
- a required amount of copper alloy powder (Cu—Cr, Cu—Cr—Zr, Cu—Cr—Nb, etc.) is prepared. It is preferable to use a copper alloy powder having an average particle diameter D 50 (median diameter) of 10 to 150 ⁇ m. The average particle size can be obtained by sieving to obtain a target particle size.
- the copper alloy powder can be produced by an atomizing method, but may be produced by another method, and is not limited to the one produced by this method.
- the natural oxide film can be removed (pickled) in advance if necessary.
- the natural oxide film can be removed by immersing the copper alloy powder in a dilute sulfuric acid aqueous solution. After pickling, it can be washed with pure water if desired.
- the above pretreatment is performed when a natural oxide film is formed on the copper alloy powder, and it is not necessary to perform this pretreatment on all the copper alloy powders.
- the copper alloy powder is immersed in a solution containing a silane coupling agent or the like.
- the solution temperature is preferably 5 ° C to 80 ° C. If the solution temperature is less than 5 ° C., the coverage of Si becomes low. Further, since the attached Si concentration increases as the immersion time becomes longer, it is preferable to adjust the immersion time according to the target Si concentration.
- silane coupling agent a commercially available silane coupling agent can be used, and aminosilane, vinylsilane, epoxysilane, mercaptosilane, methacrylicsilane, ureidosilane, alkylsilane, carboxyl group-containing silane and the like can be used. Can be done.
- a solution containing a silane coupling agent or the like a 0.1 to 30% aqueous solution diluted with pure water can be used. Since the higher the concentration of the solution, the higher the Si concentration, it is preferable to adjust the concentration according to the target Si concentration. Further, the above surface treatment may be performed while stirring as desired. After the dipping treatment, it is heated in vacuum or in the air to cause a coupling reaction, and then dried to form a film containing Si atoms. The drying temperature varies depending on the coupling agent used, but can be, for example, 70 ° C to 120 ° C.
- the copper alloy powder having a film containing Si atoms can be heat-treated to remove organic substances that decompose at a relatively low temperature. If organic matter that decomposes at a relatively low temperature remains in the powder, the film may be altered by heat conduction during modeling, and the powder may not be used repeatedly.
- the heat treatment temperature is preferably a high heat treatment temperature when the amount of Si is high, and a low heat treatment temperature when the amount of Si is low.
- the heat treatment temperature can be 400 ° C. or higher and 1000 ° C. or lower. If the heat treatment temperature is less than 400 ° C., it may not be possible to sufficiently remove organic substances. On the other hand, when the heat treatment temperature exceeds 1000 ° C., the sintering progresses quickly and the powder state may not be maintained. Further, heating can be performed in a vacuum ( about 10 -3 Pa).
- the heating time together with the temperature is preferably less than 12 hours.
- a copper alloy powder having a desired Si concentration and oxygen concentration which is a copper alloy powder having a film containing Si atoms.
- the following method can be used as the evaluation method for the copper alloy powder.
- Manufacturer SII company Device name: SPS3500DD
- Analytical method ICP-OES (high frequency inductively coupled plasma emission spectrometry)
- Measurement sample volume 1g Number of measurements: 2 times, and the average value is taken as the concentration.
- Si (About the bond state of Si) Whether Si exists alone or as a compound can be confirmed by XPS.
- the 2p spectrum of Si is confirmed by XPS, and when the maximum peak intensity is present at the binding energy: 101 to 105 eV, it is determined that the Si compound is present.
- the presence of copper oxide can be confirmed by XPS.
- the LMM spectrum of Cu is confirmed by XPS, and if the maximum peak intensity is present at the binding energy: 569 to 571 eV, it is determined that copper oxide is present.
- the suppression of heat diffusion can be evaluated from the viewpoint of necking formation.
- the powder that has undergone necking (partial sintering) due to heating cannot pass through a sieve of a predetermined size because the powders are bonded to each other and the size increases. Therefore, if it can pass through a sieve, it can be determined that the effect of suppressing sintering by heating is exhibited.
- 50 g of copper alloy powder is placed in an alumina crucible of ⁇ 50 mm and heated at 800 ° C. for 4 hours in an atmosphere with a vacuum degree of 1 ⁇ 10 -3 Pa or less, and the heated copper alloy powder has an opening of 150 ⁇ m. It is confirmed whether or not it passes through the sieve, and if the weight passing through the sieve is 95% or more, it is judged as ⁇ , and if it is less than that, it is judged as x.
- Example 1 As the metal powder, CuCrNb powder prepared by the atomizing method was prepared. The average particle size (D 50 ) was 66 ⁇ m in Example 1 and 68 ⁇ m in Comparative Example 1. Next, in Example 1, CuCrNb powder was immersed in a diaminosilane coupling agent aqueous solution (5%) diluted with pure water for 60 minutes, and then dried in the air at 80 ° C. After drying, CuCrNb powder was heat-treated at 800 ° C. in vacuum. On the other hand, Comparative Example 1 does not undergo a series of treatments including surface treatment.
- Example 1 As a result of various analyzes on the CuCrNb powder obtained by the above treatment, in Example 1, a Si film was present, copper oxide was formed, and carbon having a graphite structure was confirmed. However, Comparative Example 1 So, I could't confirm these. Further, in Example 1, the laser absorption rate was 50% or more, and the result of "suppression of necking formation (heat diffusion suppression)" also showed good results, whereas in Comparative Example 1, the laser absorption rate was high. It was low, and "suppression of necking formation” did not show good results either.
- Example 1 a laminated model was produced by a laser deposition method. In both cases, high-density shaped objects were obtained, but when the output at that time was measured, the modeling of Example 1 could be performed with a lower output. From this, it is considered that the load on the laser at the time of modeling can be reduced by using CuCrNb powder having a film formed by the treatment. Table 1 shows a summary of the above results.
- Example 2 As the metal powder, CuCrZr powder prepared by the atomizing method was prepared. The average particle size (D 50 ) was 64 ⁇ m in Example 2, 65 ⁇ m in Example 3, and 67 ⁇ m in Comparative Example 2. Next, in Example 2, CuCrZr powder was immersed in a diaminosilane coupling agent aqueous solution (5%) diluted with pure water for 60 minutes, and then dried in the air at 80 ° C. After drying, CuCrZr powder was heat-treated at 800 ° C. in vacuum. In Example 3, CuCrZr powder was immersed in an aqueous epoxy silane coupling agent (5%) diluted with pure water for 60 minutes, and then dried in the air at 80 ° C. In Example 3, no heat treatment was performed. On the other hand, Comparative Example 2 does not undergo a series of treatments including surface treatment.
- Example 1 shows a summary of the above analysis results.
- the present invention in the laminated molding by the laser beam method, it is possible to improve the absorption rate of the laser and suppress the heat conduction by suppressing the formation of necking. This has an excellent effect that the density of the laminated model can be improved and the load of the laser device can be reduced.
- the copper alloy powder according to this embodiment is particularly useful as a copper alloy powder for a metal 3D printer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
レーザービーム方式による積層造形において、レーザー吸収率の向上は、効率的な入熱を行うことが期待できる。また、ネッキングを通じた熱逃げの抑制は、銅合金粉末を効率よく溶融させることができ、より高密度で高精細な積層造形物を得ることが期待できる。さらに、低レーザー出力で高密度の積層造形物が得られるため、レーザーの負荷低減を期待できる。
1)Crを15wt%以下含有し、残部Cu及び不可避的不純物からなる銅合金粉末。2)Crを8wt%以下、Nbを7wt%以下含有し、残部Cu及び不可避的不純物からなる銅合金粉末。
3)Crを12wt%以下、Zrを3wt%以下含有し、残部Cu及び不可避的不純物からなる銅合金粉末。
4)Zrを3wt%以下含有し、残部Cu及び不可避的不純物からなる銅合金粉末。
まず、必要量の銅合金粉末(Cu-Cr、Cu-Cr-Zr、Cu-Cr-Nb等)を準備する。銅合金粉末は平均粒子径D50(メジアン径)が10~150μmのものを用いることが好ましい。平均粒子径は、篩別することで目標とする粒度のものを得ることができる。なお、銅合金粉末は、アトマイズ法を用いて作製することができるが、他の方法で作製されたものでもよく、この方法で作製されたものに限定されない。
以上により、Si原子を含む被膜が形成された銅合金粉末であって、所望のSi濃度、酸素濃度、を有する銅合金粉末を得ることができる。
(Si濃度について)
メーカー:SII社製
装置名:SPS3500DD
分析法:ICP-OES(高周波誘導結合プラズマ発光分析法)
測定サンプル量:1g
測定回数:2回として、その平均値を濃度とする。
メーカー:LECO社製
装置名:ONH分析装置
分析法:非分散型赤外線吸収法
測定サンプル量:1g
測定回数:2回として、その平均値を濃度とする。
Siが単体で存在しているか、化合物で存在しているかはXPSにより確かめることができる。XPSによりSiの2pスペクトルを確認し、結合エネルギー:101~105eVに最大ピーク強度が存在した場合、Siの化合物が存在すると判断する。
酸化銅の存在はXPSにより確かめることができる。XPSによりCuのLMMスペクトルを確認し、結合エネルギー:569~571eVに最大ピーク強度が存在する場合、酸化銅が存在すると判断する。
グラファイト構造の存在は、ラマン分光法により確認することができる。ラマン分光測定によりラマンシフト:1350~1650cm‐1に最大散乱強度値が存在した場合グラファイト構造が存在すると判断する。
銅合金粉末のレーザー吸収率は、以下の装置を用いて分析を行う。
メーカー:島津製作所株式会社
装置名:分光光度計(MPC-3100、粉末ホルダー使用)
測定波長:300-1500mm
スリット幅:20nm
リファレンス:BaSO4
測定物性値:反射率
吸収率(%)=1-(反射率(%))
熱拡散の抑制について、ネッキング形成の観点から評価を行うことができる。加熱によりネッキング(部分焼結)が進行した粉は、粉末同士が結合してサイズが大きくなるため、所定サイズの篩を通ることができない。したがって、篩を通ることができれば、加熱による焼結抑制効果の発現があると判断することができる。その検証として例えばφ50mmのアルミナ坩堝に50gの銅合金粉末を入れ、真空度1×10-3Pa以下の雰囲気で、800℃、4時間、加熱し、加熱後の銅合金粉末が目開き150μmの篩を通過するかどうかを確認し、ふるいを通過する重量が95%以上のものを〇、それ以下のものを×、と判定する。
金属粉として、アトマイズ法で作製したCuCrNb粉を用意した。平均粒子径(D50)は、実施例1では66μm、比較例1では68μmであった。次に、実施例1では、CuCrNb粉を純水で希釈したジアミノシランカップリング剤水溶液(5%)に60分間浸漬した後、大気中、80℃で乾燥させた。乾燥後、CuCrNb粉を真空中、800℃で熱処理した。一方、比較例1は、表面処理を含む一連の処理をしていない。
金属粉として、アトマイズ法で作製したCuCrZr粉を用意した。平均粒子径(D50)は、実施例2では64μm、実施例3は65μm、比較例2は67μmであった。次に、実施例2では、純水で希釈したジアミノシランカップリング剤水溶液(5%)にCuCrZr粉を60分間浸漬した後、大気中、80℃で乾燥させた。乾燥後、CuCrZr粉を真空中、800℃で熱処理した。実施例3では、純水で希釈したエポキシシランカップリング剤水溶液(5%)にCuCrZr粉を60分間浸漬した後、大気中、80℃で乾燥させた。なお、実施例3では熱処理は施していない。一方、比較例2は、表面処理を含む一連の処理をしていない。
Claims (10)
- Cr、Zr、Nbのうちいずれか一種以上の元素を合計15wt%以下含有し、残部がCu及び不可避的不純物からなる銅合金粉末であって、前記銅合金粉末にSi原子を含む被膜が形成され、前記被膜が形成された銅合金粉末において、Si濃度が5wtppm以上、700wtppm以下であることを特徴とする銅合金粉末。
- Crを15wt%以下含有し、残部Cu及び不可避的不純物からなる銅合金粉末であって、前記銅合金粉末にSi原子を含む被膜が形成され、前記被膜が形成された銅合金粉末において、Si濃度が5wtppm以上、700wtppm以下であることを特徴とする銅合金粉末。
- Crを12wt%以下、Zrを3wt%以下、含有し、残部Cu及び不可避的不純物からなる銅合金粉末であって、前記銅合金粉末にSi原子を含む被膜が形成され、前記被膜が形成された銅合金粉末において、Si濃度が5wtppm以上、700wtppm以下であることを特徴とする銅合金粉末。
- Crを8wt%以下、Nbを7wt%以下、含有し、残部Cu及び不可避的不純物からなる銅合金粉末であって、前記銅合金粉末にSi原子を含む被膜が形成され、前記被膜が形成された銅合金粉末において、Si濃度が5wtppm以上、700wtppm以下、であることを特徴とする銅合金粉末。
- 前記Si原子を含む被膜が形成された銅合金粉末において、酸素濃度が2000wtppm以下であることを特徴とする請求項1~4のいずれか一項に記載の銅合金粉末。
- 前記Si原子を含む被膜が形成された銅合金粉末において、XPS分析によりSiの2pスペクトルを解析したとき、結合エネルギー:101~105eVに最大ピーク強度が存在する請求項1~5のいずれか一項に記載の銅合金粉末。
- 前記Si原子を含む被膜が形成された銅合金粉末において、XPS分析によりCuのLMMスペクトルを解析したとき、結合エネルギー:569~571eVに最大ピーク強度が存在する請求項1~6のいずれか一項に記載の銅合金粉末。
- 前記Si原子を含む被膜が形成された銅合金粉末において、ラマン分析により解析したとき、ラマンシフト:1000~2000cm-1の範囲の最大散乱強度値が1200~1850cm-1に存在する請求項1~7のいずれか一項に記載の銅合金粉末。
- 前記銅合金粉末において、平均粒子径D50(メジアン径)が10μm以上150μm以下であることを特徴とする請求項1~8のいずれか一項に記載の銅合金粉末。
- 請求項1~9のいずれか一項に記載の銅合金粉末の製造方法であって、シラン系カップリング剤を含む溶液に銅合金粉末を浸漬して、当該銅合金粉末にSi原子を含む被膜を形成後、1000℃以下で加熱することを特徴とする銅合金粉末の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227015638A KR20220081373A (ko) | 2020-06-26 | 2021-06-25 | Si 피막을 갖는 구리 합금 분말 및 그 제조 방법 |
CA3158633A CA3158633C (en) | 2020-06-26 | 2021-06-25 | Copper alloy powder having si coating film and method for producing same |
EP21827563.4A EP4032639A4 (en) | 2020-06-26 | 2021-06-25 | COPPER ALLOY POWDER WITH SI COATING FILM AND METHOD FOR THE PRODUCTION THEREOF |
JP2022532554A JP7192161B2 (ja) | 2020-06-26 | 2021-06-25 | Si被膜を有する銅合金粉及びその製造方法 |
CN202180006563.XA CN114765968B (zh) | 2020-06-26 | 2021-06-25 | 具有Si覆膜的铜合金粉末及其制造方法 |
US17/771,552 US11872624B2 (en) | 2020-06-26 | 2021-06-25 | Copper alloy powder having Si coating film and method for producing same |
JP2022195930A JP7377337B2 (ja) | 2020-06-26 | 2022-12-07 | Si被膜を有する銅合金粉及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020110405 | 2020-06-26 | ||
JP2020-110405 | 2020-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261591A1 true WO2021261591A1 (ja) | 2021-12-30 |
Family
ID=79281441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024219 WO2021261591A1 (ja) | 2020-06-26 | 2021-06-25 | Si被膜を有する銅合金粉及びその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11872624B2 (ja) |
EP (1) | EP4032639A4 (ja) |
JP (3) | JP7192161B2 (ja) |
KR (1) | KR20220081373A (ja) |
CN (1) | CN114765968B (ja) |
CA (1) | CA3158633C (ja) |
TW (1) | TWI765758B (ja) |
WO (1) | WO2021261591A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024090449A1 (ja) * | 2022-10-24 | 2024-05-02 | 三菱マテリアル株式会社 | 金属am銅合金粉末および積層造形物の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202310A1 (ja) * | 2023-03-27 | 2024-10-03 | Jx金属株式会社 | 積層造形用金属粉末及び、積層造形用金属粉末の製造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028565A (ja) * | 2004-07-14 | 2006-02-02 | Ishihara Sangyo Kaisha Ltd | 金属質粒子の製造方法 |
JP2017025392A (ja) * | 2015-07-24 | 2017-02-02 | Jx金属株式会社 | 電子ビーム方式の3dプリンタ用表面処理金属粉およびその製造方法 |
JP2018178239A (ja) | 2017-04-21 | 2018-11-15 | Jx金属株式会社 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
WO2019044073A1 (ja) * | 2017-09-04 | 2019-03-07 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
JP2019044260A (ja) | 2017-09-04 | 2019-03-22 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
WO2019064745A1 (ja) * | 2017-09-29 | 2019-04-04 | Jx金属株式会社 | 金属積層造形用金属粉及び該金属粉を用いて作製した造形物 |
CN109794602A (zh) * | 2019-01-29 | 2019-05-24 | 西安国宏天易智能科技有限公司 | 一种用于增材制造的铜合金粉末及其制备方法和应用 |
JP2019173058A (ja) * | 2018-03-27 | 2019-10-10 | Jx金属株式会社 | 被膜が形成された金属粉及びその製造方法並びに該金属粉を用いた積層造形物 |
WO2019239655A1 (ja) * | 2018-06-14 | 2019-12-19 | 古河電気工業株式会社 | 銅合金粉末、積層造形物および積層造形物の製造方法ならびに各種金属部品 |
WO2020138274A1 (ja) * | 2018-12-27 | 2020-07-02 | Jx金属株式会社 | Siの被膜を有する純銅粉を用いた積層造形物の製造方法 |
WO2020138273A1 (ja) * | 2018-12-27 | 2020-07-02 | Jx金属株式会社 | Siの被膜を有する純銅粉及びその製造方法並びに該純銅粉を用いた積層造形物 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049426A (en) * | 1976-10-04 | 1977-09-20 | Olin Corporation | Copper-base alloys containing chromium, niobium and zirconium |
KR100877115B1 (ko) * | 2001-04-27 | 2009-01-07 | 도와 홀딩스 가부시끼가이샤 | 내산화성이 우수한 전기전도 페이스트용 구리 분말 및이의 제법 |
EP2528077B1 (en) | 2011-05-27 | 2016-04-06 | ABB Technology AG | Contact material for vacuum interrupter, and method of making a contact material |
US9822430B2 (en) * | 2012-02-29 | 2017-11-21 | The United States Of America As Represented By The Secretary Of The Army | High-density thermodynamically stable nanostructured copper-based bulk metallic systems, and methods of making the same |
JP6011841B2 (ja) * | 2012-03-09 | 2016-10-19 | 国立研究開発法人産業技術総合研究所 | 樹脂/銅めっき積層体およびその製造方法 |
JP5843821B2 (ja) * | 2013-08-13 | 2016-01-13 | Jx日鉱日石金属株式会社 | 金属粉ペースト、及びその製造方法 |
JP6030186B1 (ja) * | 2015-05-13 | 2016-11-24 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
CN107109633B (zh) * | 2015-05-21 | 2020-08-11 | 捷客斯金属株式会社 | 铜合金溅射靶及其制造方法 |
WO2017217302A1 (ja) | 2016-06-14 | 2017-12-21 | コニカミノルタ株式会社 | 粉末材料、粉末材料の製造方法、立体造形物の製造方法および立体造形装置 |
CN110029245A (zh) * | 2019-05-10 | 2019-07-19 | 长沙新材料产业研究院有限公司 | 一种铜合金粉末及其制备方法、应用 |
-
2021
- 2021-06-25 CA CA3158633A patent/CA3158633C/en active Active
- 2021-06-25 KR KR1020227015638A patent/KR20220081373A/ko active Search and Examination
- 2021-06-25 US US17/771,552 patent/US11872624B2/en active Active
- 2021-06-25 CN CN202180006563.XA patent/CN114765968B/zh active Active
- 2021-06-25 WO PCT/JP2021/024219 patent/WO2021261591A1/ja unknown
- 2021-06-25 TW TW110123465A patent/TWI765758B/zh active
- 2021-06-25 JP JP2022532554A patent/JP7192161B2/ja active Active
- 2021-06-25 EP EP21827563.4A patent/EP4032639A4/en active Pending
-
2022
- 2022-12-07 JP JP2022195931A patent/JP7377338B2/ja active Active
- 2022-12-07 JP JP2022195930A patent/JP7377337B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028565A (ja) * | 2004-07-14 | 2006-02-02 | Ishihara Sangyo Kaisha Ltd | 金属質粒子の製造方法 |
JP2017025392A (ja) * | 2015-07-24 | 2017-02-02 | Jx金属株式会社 | 電子ビーム方式の3dプリンタ用表面処理金属粉およびその製造方法 |
JP2018178239A (ja) | 2017-04-21 | 2018-11-15 | Jx金属株式会社 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
WO2019044073A1 (ja) * | 2017-09-04 | 2019-03-07 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
JP2019044260A (ja) | 2017-09-04 | 2019-03-22 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
WO2019064745A1 (ja) * | 2017-09-29 | 2019-04-04 | Jx金属株式会社 | 金属積層造形用金属粉及び該金属粉を用いて作製した造形物 |
JP2019173058A (ja) * | 2018-03-27 | 2019-10-10 | Jx金属株式会社 | 被膜が形成された金属粉及びその製造方法並びに該金属粉を用いた積層造形物 |
WO2019239655A1 (ja) * | 2018-06-14 | 2019-12-19 | 古河電気工業株式会社 | 銅合金粉末、積層造形物および積層造形物の製造方法ならびに各種金属部品 |
WO2020138274A1 (ja) * | 2018-12-27 | 2020-07-02 | Jx金属株式会社 | Siの被膜を有する純銅粉を用いた積層造形物の製造方法 |
WO2020138273A1 (ja) * | 2018-12-27 | 2020-07-02 | Jx金属株式会社 | Siの被膜を有する純銅粉及びその製造方法並びに該純銅粉を用いた積層造形物 |
CN109794602A (zh) * | 2019-01-29 | 2019-05-24 | 西安国宏天易智能科技有限公司 | 一种用于增材制造的铜合金粉末及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4032639A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024090449A1 (ja) * | 2022-10-24 | 2024-05-02 | 三菱マテリアル株式会社 | 金属am銅合金粉末および積層造形物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7377338B2 (ja) | 2023-11-09 |
US20220362844A1 (en) | 2022-11-17 |
EP4032639A4 (en) | 2023-11-15 |
JP2023025225A (ja) | 2023-02-21 |
CA3158633A1 (en) | 2021-12-30 |
JPWO2021261591A1 (ja) | 2021-12-30 |
EP4032639A1 (en) | 2022-07-27 |
JP7192161B2 (ja) | 2022-12-19 |
US11872624B2 (en) | 2024-01-16 |
TW202204643A (zh) | 2022-02-01 |
JP7377337B2 (ja) | 2023-11-09 |
CA3158633C (en) | 2023-12-19 |
TWI765758B (zh) | 2022-05-21 |
CN114765968B (zh) | 2024-08-02 |
KR20220081373A (ko) | 2022-06-15 |
CN114765968A (zh) | 2022-07-19 |
JP2023025226A (ja) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7377338B2 (ja) | Si被膜を有する銅合金粉及びその製造方法 | |
JP7377324B2 (ja) | 銅粉、それを用いた光造形物の製造方法、および銅による光造形物 | |
CN109843479A (zh) | 金属增材制造用金属粉以及使用该金属粉制作的成型物 | |
JP7109222B2 (ja) | 被膜が形成された金属粉及びその製造方法並びに該金属粉を用いた積層造形物 | |
JP7119380B2 (ja) | 銅粉末及びその製造方法 | |
EP3760342B1 (en) | Copper alloy powder having excellent laser absorptivity | |
JP6722838B1 (ja) | Siの被膜を有する純銅粉及びその製造方法並びに該純銅粉を用いた積層造形物 | |
JPWO2019225589A1 (ja) | 銅系粉末、表面被覆銅系粉末およびこれらの混合粉末ならびに積層造形物およびその製造方法ならびに各種金属部品 | |
JP6722837B1 (ja) | Siの被膜を有する純銅粉を用いた積層造形物の製造方法 | |
JP7522937B2 (ja) | 積層造形用純銅又は銅合金粉末 | |
JP2022076864A (ja) | 銅合金粉末 | |
TW202012645A (zh) | 高反射性金層粉末於積層製造上的用途 | |
JP2024138622A (ja) | 積層造形用金属粉末 | |
JP2024138621A (ja) | 積層造形用金属粉末 | |
WO2023136285A1 (ja) | アルミニウム粉末製品、その製造方法、および積層造形物 | |
JP2021134423A (ja) | 積層造形用銅合金粉末及びその製造方法 | |
JP2022105150A (ja) | 被膜が形成された金属粉及びその製造方法並びに該金属粉を用いた積層造形物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022532554 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21827563 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3158633 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2021827563 Country of ref document: EP Effective date: 20220422 |
|
ENP | Entry into the national phase |
Ref document number: 20227015638 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |