WO2021261558A1 - 固体電解質および固体電解質電池 - Google Patents

固体電解質および固体電解質電池 Download PDF

Info

Publication number
WO2021261558A1
WO2021261558A1 PCT/JP2021/023957 JP2021023957W WO2021261558A1 WO 2021261558 A1 WO2021261558 A1 WO 2021261558A1 JP 2021023957 W JP2021023957 W JP 2021023957W WO 2021261558 A1 WO2021261558 A1 WO 2021261558A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
coo
ooc
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2021/023957
Other languages
English (en)
French (fr)
Inventor
長 鈴木
哲也 上野
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to DE112021003367.0T priority Critical patent/DE112021003367T5/de
Priority to JP2022532538A priority patent/JPWO2021261558A1/ja
Priority to US18/011,684 priority patent/US20230253614A1/en
Priority to CN202180044530.4A priority patent/CN115917820A/zh
Publication of WO2021261558A1 publication Critical patent/WO2021261558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to solid electrolytes and solid electrolyte batteries. This application claims priority based on Japanese Patent Application No. 2020-108610 filed in Japan on June 24, 2020, the contents of which are incorporated herein by reference.
  • solid electrolyte battery using a solid electrolyte as an electrolyte has attracted attention.
  • the solid electrolyte an oxide-based solid electrolyte, a sulfide-based solid electrolyte, a complex hydride-based solid electrolyte (LiBH 4, etc.) and the like are known.
  • Patent Document 1 describes a positive electrode having a positive electrode layer and a positive electrode current collector containing a Li element, a negative electrode layer containing a negative electrode active material and a negative electrode having a negative electrode current collector, and the positive electrode.
  • a solid electrolyte secondary battery comprising a solid electrolyte sandwiched between a layer and the negative electrode layer and composed of a compound represented by the following general formula is disclosed.
  • Patent Document 1 discloses a solid electrolyte secondary battery in which the potential of the negative electrode active material with respect to Li is 0.7 V or less on average.
  • Patent Document 2 discloses a solid electrolyte material represented by the following composition formula (1). Li 6-3Z Y Z X 6 ... Equation (1) Here, 0 ⁇ Z ⁇ 2, and X is Cl or Br.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a solid electrolyte having a wide potential window and sufficiently high ionic conductivity.
  • the present invention also provides a solid electrolyte battery in which at least one selected from the solid electrolyte layer, the positive electrode and the negative electrode contains the above solid electrolyte, can be operated in a wide potential range, has a small internal resistance, and has a large discharge capacity. The purpose is to do.
  • A is at least one element selected from the group consisting of Li, Cs and Ca.
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf and lanthanoids. At least one element.
  • G is OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO 3 , SiO 4 , Si 2 O 7 , Si 3 O 9 , Si 4 O 11 , Si 6 O 18 , PO 3 , PO 4 , P 2 O 7 , P 3 O 10 , SO 3 , SO 4 , SO 5 , S 2 O 3 , S 2 O 4 , S 2 O 5 , S 2 O 6 , S 2 O 7 , S 2 O 8 , BF 4 , PF 6 , BOB, (COO) 2 , N, AlCl 4 , CF 3 SO 3 , CH 3 COO, CF 3 COO, OOC- (CH 2 ) 2- COO, OOC-CH 2- COO, OOC-CH (OH) -CH (OH) -COO, OOC-CH (OH) -CH 2- COO, C 6 H 5 SO 3 , OOC-CH
  • X is at least one selected from the group consisting of F, Cl, Br, I. It is an element of the species. 0.5 ⁇ a ⁇ 6, 0 ⁇ b ⁇ 2, 0.1 ⁇ c ⁇ 6, 0 ⁇ d ⁇ 6.1.
  • a solid electrolyte battery comprising a solid electrolyte layer, a positive electrode, and a negative electrode, and at least one selected from the solid electrolyte layer, the positive electrode, and the negative electrode contains the solid electrolyte according to [1].
  • the present invention it is possible to provide a solid electrolyte having a wide potential window and sufficiently high ionic conductivity. Further, since the solid electrolyte battery of the present invention contains at least one selected from the solid electrolyte layer, the positive electrode and the negative electrode, the solid electrolyte battery of the present invention can be operated in a wide potential range, and the internal resistance is small and the discharge capacity is small. Will be a big one.
  • 9 is a cyclic voltammogram of the solid electrolyte of Example 29 when a platinum foil is used as the working electrode.
  • 6 is a cyclic voltammogram of the solid electrolyte of Example 37 when platinum foil is used as the working electrode. It is a cyclic voltammogram of the solid electrolyte of Example 71 when a platinum foil is used as a working electrode. It is a cyclic voltammogram of the solid electrolyte of Comparative Example 1 when a platinum foil is used as a working electrode.
  • the solid electrolyte of the present embodiment comprises a compound represented by the following formula (1).
  • A is at least one element selected from the group consisting of Li, Cs and Ca.
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf and lanthanoids. At least one element.
  • G is OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO 3 , SiO 4 , Si 2 O 7 , Si 3 O 9 , Si 4 O 11 , Si 6 O 18 , PO 3 , PO 4 , P 2 O 7 , P 3 O 10 , SO 3 , SO 4 , SO 5 , S 2 O 3 , S 2 O 4 , S 2 O 5 , S 2 O 6 , S 2 O 7 , S 2 O 8 , BF 4 , PF 6 , BOB, (COO) 2 , N, AlCl 4 , CF 3 SO 3 , CH 3 COO, CF 3 COO, OOC- (CH 2 ) 2- COO, OOC-CH 2- COO, OOC-CH (OH) -CH (OH) -COO, OOC-CH (OH) -CH 2- COO, C 6 H 5 SO 3 , OOC-CH
  • X is at least one selected from the group consisting of F, Cl, Br, I. It is an element of the species. 0.5 ⁇ a ⁇ 6, 0 ⁇ b ⁇ 2, 0.1 ⁇ c ⁇ 6, 0 ⁇ d ⁇ 6.1.
  • the solid electrolyte of the present embodiment may be in the state of powder (particles) made of the above compound, or may be in the state of a sintered body obtained by sintering the powder made of the above compound. Further, the solid electrolyte of the present embodiment is coated with a molded body obtained by compressing powder, a molded body formed by molding a mixture of powder and a binder, and a paint containing a powder, a binder and a solvent, and then heated to a solvent. It may be in the state of the coating film formed by removing the above.
  • A is at least one element selected from the group consisting of Li, Cs and Ca. Since A has a wide potential window on the reduction side, it is preferable that A contains only Li, contains both Li and Cs, or contains both Li and Ca. When A contains Li and Cs, the ratio of Li and Cs has a wider potential window on the reduction side, so that the molar ratio (Li: Cs) is 1.00: 0.03 to 1.00. : 0.20 is preferable, and 1.00: 0.04 to 1.00: 0.10 is more preferable. When A contains Li and Ca, the ratio of Li and Ca has a wider potential window on the reducing side, so that the molar ratio (Li: Ca) is 1.00: 0.03 to 1.00. : 0.20 is preferable, and 1.00: 0.04 to 1.00: 0.10 is more preferable.
  • a when E is Al, Sc, Y, or a lanthanoid, a is preferably 2.0 ⁇ a ⁇ 4.0, more preferably 2.5 ⁇ a ⁇ 3.5. .. When E is Zr or Hf, a is preferably 1.0 ⁇ a ⁇ 3.0, more preferably 1.5 ⁇ a ⁇ 2.5. In the compound represented by the formula (1), since a is 0.5 ⁇ a ⁇ 6, the content of Li contained in the compound becomes appropriate, and the solid electrolyte has high ionic conductivity.
  • E is an essential element and is an element forming the skeleton of the compound represented by the formula (1).
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). At least one element to be made.
  • the solid electrolyte has a wide potential window and high ionic conductivity. Since E is a solid electrolyte having higher ionic conductivity, it preferably contains Al, Sc, Y, Zr, Hf, and La, and particularly preferably contains Zr and Y.
  • b is 0 ⁇ b ⁇ 2.
  • b is preferably 0.6 ⁇ b because the effect of including E can be obtained more effectively.
  • E is an element forming the skeleton of the compound represented by the formula (1), and is an element having a relatively high density. When b is b ⁇ 1, the density of the solid electrolyte is low, which is preferable.
  • G is essential.
  • G is OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO 3 , SiO 4 , Si 2 O 7 , Si 3 O 9 , Si.
  • the potential window on the reduction side becomes wide. Since G has a strong covalent bond with E, it becomes a compound in which E ions are difficult to be reduced. Therefore, SO 4 , CO 3 , OH, (COO) 2 , BO 2 , B 4 O 7 , PO It is preferably at least one group selected from the group consisting of 3 , BF 4 , PF 6 , BOB, N, AlCl 4 , CF 3 SO 3 , in particular SO 4 , (COO) 2 , HCOO and CH 3. It is preferably at least one group selected from the group consisting of COOs. For unknown reasons, the stronger the covalent bond between E and G, the stronger the ionic bond between E and X. Therefore, it is presumed that the E ions in the compound are difficult to be reduced and the compound has a wide potential window on the reduction side.
  • the molecular shape of G is as follows.
  • the main molecular shapes and ion radii of G are OH (straight line, 1.19 ⁇ ), CO 3 (trigonal shape, 1.64 ⁇ ), MnO 4 (tetrahedron, 2.15 ⁇ ), BF 4 (tetrahedron, 1.64 ⁇ ).
  • Li 2 ZrCl 6 which is the source of A a E b G c X d according to the present invention
  • the structure of ZrCl 6 2- is known to be an octahedral structure (B. Krebs, Angew. Chem. Int). Ed. 1969, 8, 146).
  • a a E b G c X d according to the present invention it is considered that the octahedral structure of E b X d , which is the basic skeleton, is connected. It is presumed that some parts of the connected E b X d octahedral structure are replaced by G.
  • G is SO 4 (tetrahedron)
  • Eb X d octahedral structure
  • SO 4 tetrahedron
  • c is 0.1 ⁇ c ⁇ 6. It is preferable that c is 0.5 ⁇ c because the effect of widening the potential window on the reduction side due to the inclusion of G becomes more remarkable. c is preferably c ⁇ 3 so that the ionic conductivity of the solid electrolyte does not decrease due to the content of G being too high.
  • X is an element contained as needed.
  • X is at least one selected from the group consisting of F, Cl, Br, and I.
  • X has a large ionic radius per valence. Therefore, when the compound represented by the formula (1) contains X, the lithium ion can easily flow and the effect of increasing the ionic conductivity can be obtained. It is preferable that X contains Cl because it is a solid electrolyte having high ionic conductivity.
  • d is preferably 1 ⁇ d.
  • d is 1 ⁇ d, pellets having sufficient strength can be obtained when the solid electrolyte is pressure-molded into pellets, which is preferable.
  • d is 1 ⁇ d, the effect of increasing the ionic conductivity due to the inclusion of X can be sufficiently obtained.
  • d is preferably d ⁇ 5 so that G is insufficient due to the excessive content of X and the potential window of the solid electrolyte is not narrowed.
  • the compound represented by the formula (1) since the potential window is wide and the solid electrolyte has high ionic conductivity, A is Li, E is Zr, and G is SO 4 , CO 3 , OH, and so on. (COO) 2 , BO 2 , B 4 O 7 , PO 3 , BF 4 , PF 6 , BOB, N, AlCl 4 , CF 3 SO 3 , and X is Cl are preferable.
  • the compound represented by the formula (1) is a solid electrolyte having a good balance between ionic conductivity and the potential window, and therefore Li 2 ZrSO 4 Cl 4 , LiZrSO 4 Cl 3 , Li 2 ZrCO 3 Cl.
  • Li 2 Zr (OH) Cl 5 Li 2 Zr ((COO) 2 ) 0.5 Cl 5 , Li 2 ZrBO 2 Cl 5 , Li 2 Zr (B 4 O 7 ) 0.5 Cl 5 , Li 2 Zr (PO 3 ) Cl 5 , Li 2 Zr (BF 4 ) 0.5 Cl 5.5 , Li 2 Zr (PF 6 ) 0.1 Cl 5.9 , Li 2 Zr (BOB) 0.1 Cl 5.
  • Li 2 ZrN 0.1 Cl 5.7 Li 2 Zr (AlCl 4 ) Cl 5 , Li 2 Zr (CF 3 SO 3 ) 0.1 Cl 5.9 , Li 2 Zr (HCOO) 0.5 Cl It is preferably one of 5.5 and Li 2 Zr (CH 3 COO) 0.5 Cl 5.5.
  • the solid electrolyte of the present embodiment When the solid electrolyte of the present embodiment is in a powder state, it can be produced by, for example, a method of mixing raw material powders containing a predetermined element at a predetermined molar ratio and reacting them, that is, a so-called mechanochemical method.
  • the solid electrolyte of the present embodiment When the solid electrolyte of the present embodiment is in the state of a sintered body, it can be produced, for example, by the method shown below. First, the raw material powder containing a predetermined element is mixed at a predetermined molar ratio. Next, the mixed raw material powder is formed into a predetermined shape and sintered in vacuum or in an atmosphere of an inert gas.
  • the halogenated raw material When the halogenated raw material is contained in the raw material powder, the halide raw material tends to evaporate when the temperature is raised. Therefore, halogen gas may be allowed to coexist in the atmosphere at the time of sintering to supplement the halogen.
  • the halogenated raw material When the halogenated raw material is contained in the raw material powder, it may be sintered by a hot press method using a highly airtight mold. In this case, since the mold has a high degree of airtightness, evaporation of the halide raw material due to sintering can be suppressed. By sintering in this way, a solid electrolyte in the state of a sintered body made of a compound having a predetermined composition can be obtained.
  • heat treatment may be performed as necessary in the solid electrolyte manufacturing process.
  • the crystallite size of the solid electrolyte can be adjusted.
  • the heat treatment for example, it is preferably performed at 130 ° C. to 650 ° C. for 0.5 to 60 hours in an argon gas atmosphere, and more preferably performed at 175 ° C. to 600 ° C. for 1 to 30 hours.
  • a solid electrolyte having a crystallite size of 5 nm to 500 nm can be obtained.
  • G is OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO 3 , SiO 4 , Si 2 O 7 , Si 3 O 9 , Si 4 O 11 , Si 6 O 18 , PO 3 , PO 4 , P 2 O 7 , P 3 O 10 , SO 3 , SO 4 , SO 5 , S 2 O 3 , S 2 O 4 , S 2 O 5 , S 2 O 6 , S 2 O 7 , S 2 O 8 , BF 4 , PF 6 , BOB, (COO) 2 , N, AlCl 4 , CF 3 SO 3 , CH 3 COO, CF 3 COO, OOC- (CH 2 ) 2- CO
  • G is considered to have a strong covalent bond with E. Therefore, the compound represented by the formula (1) is stable and the reaction in which E ions in the compound are reduced is unlikely to occur even when the potential is close to that of the Li metal, and the potential window on the reduction side is wide. Therefore, in a solid electrolyte battery having a solid electrolyte layer containing the compound represented by the formula (1), the potential difference between the positive electrode and the negative electrode can be increased by using a negative electrode active material having a low potential oxidation-reduction potential. You can increase the energy.
  • a compound containing X (at least one selected from the group consisting of F, Cl, Br, and I) instead of G in the compound represented by the formula (1)
  • the E ions in the compound are easily reduced. This is because the binding force between X and E is weaker than the binding force between G and E. Therefore, in the compound represented by the formula (1), the compound containing X instead of G has a narrower potential window on the reducing side as compared with the compound represented by the formula (1).
  • FIG. 1 is a schematic cross-sectional view of the solid electrolyte battery according to the present embodiment.
  • the solid electrolyte battery 10 shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3.
  • the solid electrolyte layer 3 is sandwiched between the positive electrode 1 and the negative electrode 2.
  • the solid electrolyte layer 3 contains the above-mentioned solid electrolyte.
  • External terminals (not shown) are connected to the positive electrode 1 and the negative electrode 2, and are electrically connected to the outside.
  • the solid electrolyte battery 10 is charged or discharged by the transfer of ions between the positive electrode 1 and the negative electrode 2 via the solid electrolyte layer 3 and electrons via an external circuit.
  • the solid electrolyte battery 10 may be a laminated body in which a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3 are laminated, or may be a wound body in which the laminated body is wound.
  • the solid electrolyte battery is used in, for example, a laminated battery, a square battery, a cylindrical battery, a coin battery, a button battery and the like.
  • the positive electrode 1 is provided with a positive electrode mixture layer 1B on a plate-shaped (foil-shaped) positive electrode current collector 1A.
  • the positive electrode current collector 1A may be any material having an electron conductivity that can withstand oxidation during charging and is not easily corroded.
  • a metal such as aluminum, stainless steel, nickel, or titanium, or a conductive resin can be used.
  • the positive electrode current collector 1A may be in the form of powder, foil, punching, or expanded.
  • the positive electrode mixture layer 1B contains a positive electrode active material and, if necessary, a solid electrolyte, a binder and a conductive auxiliary agent.
  • the positive electrode active material is not particularly limited as long as it can reversibly promote the occlusion / release and insertion / desorption (intercalation / deintercalation) of lithium ions.
  • a positive electrode active material used in a known lithium ion secondary battery can be used.
  • the positive electrode active material include lithium-containing metal oxides and lithium-containing metal phosphorus oxides.
  • LiCoO 2 lithium cobaltate
  • LiNiO 2 lithium nickel oxide
  • LiMn 2 O 4 lithium manganese spinel
  • a positive electrode active material containing no lithium can also be used.
  • a positive electrode active material lithium-free metal oxide (such as MnO 2, V 2 O 5) , (such as MoS 2) lithium-free metal sulfides, and lithium-free fluoride (FeF 3, VF 3 ) And so on.
  • the negative electrode may be doped with lithium ions in advance, or a negative electrode containing lithium ions may be used.
  • the positive electrode mixture layer 1B contains a binder.
  • the binder mutually binds the positive electrode active material, the solid electrolyte, and the conductive auxiliary agent constituting the positive electrode mixture layer 1B. Further, the binder adheres the positive electrode mixture layer 1B and the positive electrode current collector 1A.
  • the properties required for the binder include oxidation resistance and good adhesiveness.
  • binder used for the positive electrode mixture layer 1B examples include polyvinylidene fluoride (PVDF) or a copolymer thereof, polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), and polybenzoimidazole (polybenzoimidazole).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PA polyamide
  • PI polyimide
  • PAI polyamideimide
  • PA polybenzoimidazole
  • PBI polyether sulfone
  • PA polyacrylic acid
  • PA polyacrylic acid
  • PA polypropylene
  • PP polypropylene
  • PE Polyethylene
  • PE grafted with maleic anhydride, or a mixture thereof.
  • the content of the solid electrolyte in the positive electrode mixture layer 1B is not particularly limited, but may be 1% by volume to 50% by volume based on the total mass of the positive electrode active material, the solid electrolyte, the conductive auxiliary agent and the binder. It is preferably 5% by volume to 30% by volume, more preferably.
  • the content of the binder in the positive electrode mixture layer 1B is not particularly limited, but is preferably 1% by mass to 15% by mass based on the total mass of the positive electrode active material, the solid electrolyte, the conductive auxiliary agent, and the binder. It is more preferably 3% by mass to 5% by mass. If the content of the binder is too small, it tends to be impossible to form the positive electrode 1 having sufficient adhesive strength. Also, general binders are electrochemically inert and do not contribute to the discharge capacity. Therefore, if the content of the binder is too high, it tends to be difficult to obtain a sufficient volume energy density or mass energy density.
  • the conductive auxiliary agent is not particularly limited as long as it improves the electronic conductivity of the positive electrode mixture layer 1B, and a known conductive auxiliary agent can be used. Examples thereof include carbon materials such as carbon black, graphite, carbon nanotubes and graphene, metals such as aluminum, copper, nickel, stainless steel, iron and amorphous metals, conductive oxides such as ITO, or mixtures thereof.
  • the conductive auxiliary agent may be in the form of powder or fiber.
  • the content of the conductive auxiliary agent in the positive electrode mixture layer 1B is not particularly limited.
  • the positive electrode mixture layer 1B contains a conductive auxiliary agent, it is preferably 0.5% by mass to 20% by mass based on the total mass of the positive electrode active material, the solid electrolyte, the conductive auxiliary agent and the binder. More preferably, it is 1% by mass to 5% by mass.
  • the negative electrode 2 is provided with a negative electrode mixture layer 2B on a negative electrode current collector 2A.
  • the negative electrode current collector 2A may be conductive.
  • a metal such as copper, aluminum, nickel, stainless steel, or iron, or a conductive resin foil can be used.
  • the negative electrode current collector 2A may be in the form of powder, foil, punching, or expand.
  • the negative electrode mixture layer 2B contains a negative electrode active material and, if necessary, a solid electrolyte, a binder and a conductive auxiliary agent.
  • the negative electrode active material is not particularly limited as long as it can reversibly proceed with the storage and release of lithium ions and the insertion and desorption of lithium ions.
  • a negative electrode active material used in a known lithium ion secondary battery can be used.
  • the negative electrode active material include carbon materials such as natural graphite, artificial graphite, mesocarbon microbeads, mesocarbon fiber (MCF), cokes, glassy carbon, and calcined organic compound, Si, SiO x , Sn, and aluminum.
  • Examples thereof include metals that can be combined with lithium such as, alloys thereof, composite materials of these metals and carbon materials, lithium titanate (Li 4 Ti 5 O 12 ), oxides such as SnO 2 , and metallic lithium.
  • the negative electrode mixture layer 2B contains a binder.
  • the binder mutually binds the negative electrode active material constituting the negative electrode mixture layer 2B, the solid electrolyte, and the conductive auxiliary agent. Further, the binder adheres the negative electrode mixture layer 2B and the negative electrode current collector 2A.
  • the properties required for the binder include reduction resistance and good adhesiveness.
  • binder used for the negative electrode mixture layer 2B examples include polyvinylidene fluoride (PVDF) or a copolymer thereof, polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), and polybenzoimidazole (polybenzoimidazole).
  • PBI polyvinylidene fluoride
  • PA polyamide
  • PI polyimide
  • PAI polyamideimide
  • polybenzoimidazole polybenzoimidazole
  • PBI styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PA polyacrylic acid
  • PA polyacrylic acid
  • PA polyacrylic acid
  • PA polyacrylic acid
  • copolymer metal ion crosslinks examples thereof include polypropylene (PP), polyethylene (PE) grafted with maleic anhydride, or a mixture thereof.
  • the binder it is preferable to use one or more selected from SBR, CMC and PVDF
  • the content of the solid electrolyte in the negative electrode mixture layer 2B is not particularly limited, but may be 1% by volume to 50% by volume based on the total mass of the negative electrode active material, the solid electrolyte, the conductive auxiliary agent and the binder. It is preferably 5% by volume to 30% by volume, more preferably.
  • the content of the binder in the negative electrode mixture layer 2B is not particularly limited, but is preferably 1% by mass to 15% by mass based on the total mass of the negative electrode active material, the conductive auxiliary agent, and the binder. It is more preferably 5% by mass to 10% by mass. If the content of the binder is too small, it tends to be impossible to form the negative electrode 2 having sufficient adhesive strength. Also, general binders are electrochemically inert and do not contribute to the discharge capacity. Therefore, if the content of the binder is too high, it tends to be difficult to obtain a sufficient volume energy density or mass energy density.
  • the conductive auxiliary agent that may be contained in the negative electrode mixture layer 2B the same conductive auxiliary agent as described above that may be contained in the positive electrode mixture layer 1B, such as a carbon material, can be used.
  • the content of the conductive auxiliary agent in the negative electrode mixture layer 2B is not particularly limited.
  • the negative electrode mixture layer 2B contains a conductive auxiliary agent, it is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 12% by mass, based on the negative electrode active material.
  • the battery element composed of the positive electrode 1, the solid electrolyte layer 3, and the negative electrode 2 is housed in an exterior body and sealed.
  • the exterior body is not particularly limited as long as it can suppress the intrusion of moisture or the like from the outside to the inside.
  • a metal laminate film formed by coating both sides of a metal foil with a polymer film in a bag shape can be used as the exterior body. Such an exterior body is sealed by heat-sealing the opening.
  • metal foil forming the metal laminated film for example, aluminum foil, stainless steel foil, or the like can be used.
  • polymer film arranged on the outside of the exterior body it is preferable to use a polymer having a high melting point, and for example, polyethylene terephthalate (PET), polyamide or the like is preferably used.
  • PET polyethylene terephthalate
  • polyamide polyamide
  • polymer film arranged inside the exterior body for example, polyethylene (PE), polypropylene (PP) or the like is preferably used.
  • a positive electrode terminal is electrically connected to the positive electrode 1 of the battery element. Further, the negative electrode terminal is electrically connected to the negative electrode 2.
  • the positive electrode terminal is electrically connected to the positive electrode current collector 1A. Further, the negative electrode terminal is electrically connected to the negative electrode current collector 2A.
  • the connection portion between the positive electrode current collector 1A or the negative electrode current collector 2A and the external terminals (positive electrode terminal and negative electrode terminal) is arranged inside the exterior body.
  • the external terminal for example, one formed of a conductive material such as aluminum or nickel can be used.
  • PE grafted with maleic anhydride hereinafter, may be referred to as “acid-modified PE" or PP grafted with maleic anhydride (hereinafter, “acid-modified PP”).
  • a film made of (.) Is arranged. Since the portion where the film made of acid-modified PE or acid-modified PP is arranged is heat-sealed, a solid electrolyte battery having good adhesion between the exterior body and the external terminal can be obtained.
  • the above-mentioned solid electrolyte to be the solid electrolyte layer 3 provided in the solid electrolyte battery 10 of the present embodiment is prepared.
  • the solid electrolyte in the powder state is used as the material of the solid electrolyte layer 3.
  • the solid electrolyte layer 3 can be produced by using a powder forming method.
  • the positive electrode 1 is manufactured by applying a paste containing a positive electrode active material on the positive electrode current collector 1A and drying the paste to form the positive electrode mixture layer 1B.
  • the negative electrode 2 is manufactured by applying a paste containing a negative electrode active material on the negative electrode current collector 2A and drying the paste to form the negative electrode mixture layer 2B.
  • a guide having a hole is installed on the positive electrode 1, and the guide is filled with a solid electrolyte. Then, the surface of the solid electrolyte is smoothed, and the negative electrode 2 is placed on the solid electrolyte. As a result, the solid electrolyte is sandwiched between the positive electrode 1 and the negative electrode 2. Then, by applying pressure to the positive electrode 1 and the negative electrode 2, the solid electrolyte is pressure-molded. By pressure molding, a laminated body in which the positive electrode 1, the solid electrolyte layer 3 and the negative electrode 2 are laminated in this order can be obtained.
  • the solid electrolyte in the powder state has been described as an example, but the solid electrolyte in the state of the sintered body may be used as the solid electrolyte.
  • the solid electrolyte battery 10 having the solid electrolyte layer 3 can be obtained by a method in which the solid electrolyte in the state of the sintered body is sandwiched between the positive electrode 1 and the negative electrode 2 and pressure-molded.
  • the solid electrolyte layer 3 of the present embodiment contains the solid electrolyte of the present embodiment having a wide potential window and sufficiently high ionic conductivity. Therefore, the solid electrolyte battery 10 of the present embodiment provided with the solid electrolyte layer 3 of the present embodiment can be operated in a wide potential range, has a small internal resistance, and has a large discharge capacity.
  • Examples 1 to 100 Using a planetary ball mill device, the raw material powder containing the predetermined raw materials in the molar ratios shown in Tables 1 to 6 is set to have a rotation speed of 500 rpm and a revolution speed of 500 rpm, and the rotation direction of rotation and the rotation direction of revolution are opposite to each other.
  • the solid electrolytes of Examples 1 to 100 in a powder state composed of the compounds having the compositions shown in Tables 7 to 12 were produced by a method of mixing and reacting for 24 hours.
  • each solid electrolyte was determined by a method of analyzing each element except oxygen using an ICP (high frequency inductively coupled plasma emission spectroscopic analysis) device (manufactured by Shimadzu Corporation).
  • ICP high frequency inductively coupled plasma emission spectroscopic analysis
  • the content of fluorine contained in the solid electrolyte was analyzed by using an ion chromatography device (manufactured by Thermo Fisher Scientific Co., Ltd.).
  • Tables 1 to 6 show the raw materials used for each solid electrolyte and the raw material compounding ratios (molar ratios), respectively. Further, in Tables 7 to 12, regarding the composition of each solid electrolyte, the case where the above-mentioned formula (1) is satisfied is described as “ ⁇ ” and the case where the above-mentioned formula (1) is not satisfied is described as “x”. Further, Tables 7 to 12 show the composition of each solid electrolyte and the "E”, “G”, “G valence”, "X”, "a”, "b", and “b” when the composition is applied to the formula (1). “c” and "d” are shown respectively.
  • Example 2 The solid electrolyte of Example 2 was subjected to X-ray diffraction measurement using CuK ⁇ rays by the method shown below.
  • a glass XRD measurement holder was filled with a solid electrolyte in a glove box having a dew point of ⁇ 99 ° C. and an oxygen concentration of 1 ppm in which argon gas was circulated.
  • a polyimide tape for moisture resistance vacuum dried at 70 ° C. for 16 hours was attached and sealed so as to cover the packed surface, and an XRD measurement sample was prepared.
  • the XRD measurement sample was taken out into the atmosphere, and XRD measurement was performed using an X-ray diffractometer (manufactured by PANalytical). CuK ⁇ rays were used as the X-ray source.
  • the XRD measurement was performed at a scanning angle (2 ⁇ ) of 10 to 65 degrees, a tube voltage of 45 KV, and a tube current of 40 mA.
  • FIG. 2 is a chart showing the X-ray diffraction results of the solid electrolyte of Example 2. “ ⁇ ” shown in FIG. 2 indicates a diffraction peak confirmed in the X-ray diffraction measurement of the polyimide tape. As shown in FIG. 2, in the solid electrolyte of Example 2, no diffraction peak was observed in the X-ray diffraction measurement.
  • Raman spectroscopy was performed on the solid electrolyte of Example 2 by the method shown below. Raman spectroscopy was performed in an argon-substituted glove box with the measurement sample enclosed in a transparent sealed container without contact with oxygen and moisture in the atmosphere. An NRS-7100 (manufactured by JASCO Corporation) was used as a Raman spectroscopic measuring device, and measurement was performed at an excitation wavelength of 532.15 nm.
  • FIG. 3 is a Raman spectrum of the solid electrolyte of Example 2. As shown in FIG. 3, a peak indicating the presence of SO 4 was observed at about 1054 cm -1.
  • Electrochemical measurements were performed on each of the solid electrolytes of Examples 1 to 100 and Comparative Example 1 by the methods shown below, and the oxidation side potential window (Vvs.Li / Li +) and the reduction side potential window (Vvs) were performed. .Li / Li + ) were measured respectively. The results are shown in Tables 7 to 12.
  • a cylinder of a pressure forming die (made of PEEK (polyetheretherketone)) having a diameter of 30 mm and a height of 20 mm having a through hole with a diameter of 10 mm in the center was prepared.
  • a lower punch having a diameter of 9.99 mm made of alloy tool steel (SKD11) was inserted into the through hole of the cylinder from the lower side.
  • 110 mg of solid electrolyte powder was poured into the through hole of the cylinder from above.
  • an upper punch having a diameter of 9.99 mm made of alloy tool steel (SKD11) was inserted into the through hole of the cylinder from above.
  • the cylinder was mounted on a press machine, a load of 3 tons was applied between the upper punch and the lower punch, and the solid electrolyte powder was pressed (pressure molding).
  • the cylinder was removed from the press machine, the upper punch was removed from the cylinder, a metal foil (platinum foil or copper foil) was inserted into the cylinder as a working electrode having a diameter of 10 mm and a thickness of 100 ⁇ m, and the upper punch was inserted again.
  • a punch having a terminal for electrochemical measurement on the side surface was used as the upper punch.
  • turn the cylinder upside down remove the lower punch from the cylinder, and put an indium foil with a diameter of 10 mm and a thickness of 100 ⁇ m, a lithium foil with a diameter of 10 mm and a thickness of 100 ⁇ m, and an indium foil with a diameter of 10 mm and a thickness of 100 ⁇ m inside the cylinder.
  • two stainless steel plates with a diameter of 50 mm and a thickness of 5 mm and two Bakelite (registered trademark) plates with a diameter of 50 mm and a thickness of 2 mm were prepared.
  • the two stainless steel plates and the two Bakelite® plates were then provided with four holes for the screws.
  • the holes for the screws are the two stainless steel plates and the two Bakelite (registered trademark) plates when the electrochemical cell, the two stainless steel plates and the two Bakelite (registered trademark) plates are laminated. It was provided at a position where it overlaps in a plan view and does not overlap with an electrochemical cell in a plan view.
  • the counter electrode and reference electrode in the electrochemical measurement are a lithium-indium alloy or lithium.
  • the potential of the lithium-indium alloy is 0.62V (vs. Li / Li + ). Therefore, in the electrochemical measurement in the present specification, the value obtained by adding 0.62V to the potential value obtained for the lithium-indium alloy is expressed as the potential for Li / Li +.
  • the reduction current is represented by a minus, and the oxidation current is represented by a plus.
  • the electrochemical measurement of the electrochemical measurement cell was performed using the EC-Lab electrochemical measurement system VMP-300 manufactured by Bio-Logic. Cyclic voltammetry was performed as an electrochemical measurement.
  • the scan speed is 0.1 mV / sec
  • the reduction direction scans the working electrode up to -0.1 V (vs. Li / Li + )
  • the oxidation direction is 5.5 V (vs).
  • the working poles were scanned up to Li / Li +).
  • the working electrode was scanned up to 0 V (vs. Li / Li +) in the reducing direction
  • the working electrode was scanned up to 7.0 V (vs. Li / Li +) in the oxidation direction.
  • Example 20 the working electrode was scanned up to 0 V (vs. Li / Li +) in the reducing direction, and the working electrode was scanned up to 5.5 V (vs. Li / Li +) in the oxidation direction. Cyclic voltammetry starts from the natural potential (about 3 V (vs. Li / Li +)), and when finding the potential window on the reduction side, scan in the reduction direction and then scan in the oxidation direction to find the potential window on the oxidation side. Occasionally, it was scanned in the oxidation direction and then in the reduction direction. The reason is that when scanning in the oxidation direction after scanning to 0 V (vs.
  • the potential window on the oxidation side and the potential window on the reduction side of the solid electrolyte are the following potentials measured by the above-mentioned electrochemical measurement of the electrochemical measurement cell, respectively.
  • the potential of the working electrode is swept from the natural potential (about 3V (vs. Li / Li +)) in the reducing direction, the reducing current ( ⁇ A / cm 2 ) per area of the working electrode is -20 ⁇ A / cm 2 or less.
  • the potential with (the sign is negative and the absolute value is 20 ⁇ A / cm 2 or more) was used as the potential window on the reduction side.
  • the oxidation current ( ⁇ A / cm 2 ) per area of the working electrode is 20 ⁇ A / cm 2 or more (reference numeral).
  • the potential with a positive value and an absolute value of 20 ⁇ A / cm 2 or more was used as the potential window on the oxidation side.
  • FIGS. 4 to 10 The cyclic voltammograms of the solid electrolytes of Example 2, Example 20, Example 29, Example 37, Example 71 and Comparative Example 1 obtained by the above electrochemical measurement are shown in FIGS. 4 to 10.
  • FIG. 4 is a cyclic voltamogram of the solid electrolyte of Example 2 when a copper foil is used as the working electrode.
  • FIG. 5 is a cyclic voltammogram of the solid electrolyte of Example 2 when a platinum foil is used as the working electrode.
  • FIG. 6 is a cyclic voltamogram of the solid electrolyte of Example 20 when a platinum foil is used as the working electrode.
  • FIG. 7 is a cyclic voltammogram of the solid electrolyte of Example 29 when platinum foil is used as the working electrode.
  • FIG. 8 is a cyclic voltammogram of the solid electrolyte of Example 37 when platinum foil is used as the working electrode.
  • FIG. 9 is a cyclic voltammogram of the solid electrolyte of Example 71 when platinum foil is used as the working electrode.
  • FIG. 10 is a cyclic voltamogram of the solid electrolyte of Comparative Example 1 when a platinum foil is used as the working electrode.
  • the composition of the solid electrolyte of Example 2 is Li 2 ZrSO 4 Cl 4 .
  • FIG. 4 in the cyclic voltammogram of the solid electrolyte of Example 2 when a copper foil is used as the working electrode, lithium ions are contained at a potential near 0 V (vs. Li / Li +). A peak of the reduction current (negative current) indicating that the lithium metal was reduced and precipitated was observed. Further, as shown in FIG. 4, when the potential was near 0 V (vs. Li / Li +), a peak of the oxidation current (plus current) indicating that the lithium metal was oxidized and dissolved was observed. .. As shown in FIG. 4, in otherwise, the peak of -20 ⁇ A / cm 2 or less in a large reduction current is also the peak of 20 .mu.A / cm 2 or more large oxidation current was observed.
  • the potential windows on the reducing side and the oxidizing side were 0.030 V (vs. Li / Li + ) and 7.0 V (vs. Li / Li +) or more, respectively.
  • the potential at which the charging of graphite starts is about 0.21 V (vs. Li / Li + ) as measured in the electrolytic solution (J. Electrochem. Soc. Vol. 140, No. 9, pp 2490, Fig. 15). ),
  • the potential window on the reduction side of 0.030 V (vs. Li / Li + ) was sufficiently low for the graphite to be charged.
  • the composition of the solid electrolyte of Example 20 is LiZrSO 4 Cl 3 .
  • -20 ⁇ A / cm 2 or less in a large reduction current is also the peak of 20 .mu.A / cm 2 or more large oxidation current was observed.
  • the potential windows on the reducing side and the oxidizing side were 0.018 V (vs. Li / Li + ) and 5.5 V (vs. Li / Li +) or more, respectively.
  • the potential window on the reduction side of 0.018 V (vs. Li / Li + ) had a low potential at which graphite could be charged.
  • the composition of the solid electrolyte of Example 29 is Li 2 ZrOHCl 5 .
  • FIG. 7 in the cyclic voltammogram of the solid electrolyte of Example 29 when a platinum foil is used as the working electrode, lithium ions are contained at a potential near 0 V (vs. Li / Li +). A peak of the reduction current indicating that the alloying reaction with platinum was observed was observed. Further, as shown in FIG. 7, when the potential was around 0.5 to 1.5 V (vs. Li / Li +), lithium was dissolved from the alloy of lithium and platinum to generate lithium ions. A peak of oxidation current was observed. As shown in FIG.
  • the peak of -20 ⁇ A / cm 2 or less in a large reduction current is also the peak of 20 .mu.A / cm 2 or more large oxidation current was observed.
  • the potential windows on the reducing side and the oxidizing side were 0.059 V (vs. Li / Li + ) and 5.5 V (vs. Li / Li +) or more, respectively.
  • the potential window on the reducing side of 0.059 V (vs. Li / Li + ) was sufficiently low for the graphite to be charged.
  • the composition of the solid electrolyte of Example 37 is Li 2 ZrCO 3 Cl 4 .
  • FIG. 8 in the cyclic voltammogram of the solid electrolyte of Example 37 when a platinum foil is used as the working electrode, lithium ions are contained at a potential near 0 V (vs. Li / Li +). A peak of the reduction current indicating that the alloying reaction with platinum was observed was observed. Further, as shown in FIG. 8, when the potential was around 0.5 to 1.5 V (vs. Li / Li +), lithium was dissolved from the alloy of lithium and platinum to generate lithium ions. A peak of oxidation current was observed. As shown in FIG.
  • the peak of -20 ⁇ A / cm 2 or less in a large reduction current is also the peak of 20 .mu.A / cm 2 or more large oxidation current was observed.
  • the potential windows on the reducing side and the oxidizing side were 0.260 V (vs. Li / Li + ) and 5.5 V (vs. Li / Li +) or more, respectively.
  • the potential window on the reduction side of 0.260 V (vs. Li / Li + ) had a low potential at which graphite could be charged.
  • the composition of the solid electrolyte of Example 71 is Li 2 Zr ((COO) 2 ) 0.5 Cl 5 .
  • FIG. 9 in the cyclic voltammogram of the solid electrolyte of Example 71 when a platinum foil is used as the working electrode, lithium ions are contained at a potential near 0 V (vs. Li / Li +). A peak of the reduction current indicating that the alloying reaction with platinum was observed was observed. Further, as shown in FIG. 9, when the potential was around 0.5 to 1.5 V (vs. Li / Li +), lithium was dissolved from the alloy of lithium and platinum to generate lithium ions. A peak of oxidation current was observed. As shown in FIG.
  • the potential windows on the reducing side and the oxidizing side were 0.033 V (vs. Li / Li + ) and 5.5 V (vs. Li / Li +) or more, respectively.
  • the potential window on the reducing side of 0.033V (vs. Li / Li + ) was sufficiently low for the graphite to be charged.
  • the composition of the solid electrolyte of Comparative Example 1 is Li 2 ZrCl 6 .
  • a large reduction current peak was obtained near about 1.05 V (vs. Li / Li +).
  • the potential windows on the reducing side and the oxidizing side were 0.433V (vs. Li / Li + ) and 5.5V (vs. Li / Li +) or more, respectively.
  • the potential window on the reduction side of 0.433V (vs. Li / Li + ) had a high potential for graphite to be charged.
  • Example 2 As shown in the cyclic voltammograms of FIGS. 4 to 9, Example 2 (FIG. 4, FIG. 5), Example 20 (FIG. 6), Example 29 (FIG. 7), Example 37 (FIG. 8) and the embodiment.
  • Example 71 In the solid electrolyte of Example 71 (FIG. 9), the reduction current began to flow at a lower potential than that of the solid electrolyte of Comparative Example 1 (FIG. 10). From these results, the solid electrolytes of Example 2, Example 20, Example 29, Example 37 and Example 71 are more stable even at a lower potential than the solid electrolyte of Comparative Example 1, and are on the reducing side. It was confirmed that the potential window of was wide.
  • Solid electrolyte batteries having a solid electrolyte layer composed of the solid electrolytes of Examples 1 to 100 and Comparative Example 1 were produced.
  • the solid electrolyte battery was produced in a glove box having an argon atmosphere with a dew point of ⁇ 70 ° C. or lower.
  • a charge / discharge test of the solid electrolyte battery was performed by the method shown below, and the discharge capacity was measured.
  • lithium cobalt oxide LiCoO 2
  • graphite each solid electrolyte of Examples 1 to 100 and Comparative Example 1 was weighed so as to be 67:30: 3 parts by weight, and mixed in an agate mortar to prepare a negative electrode mixture. ..
  • a lower punch was inserted into the resin holder, and 110 mg of the solid electrolytes of Examples 1 to 100 and Comparative Example 1 were charged from above the resin holder.
  • An upper punch was inserted over the solid electrolyte. This set was placed on a press machine and pressure-molded at a pressure of 373 MPa. The set was removed from the press and the upper punch was removed. 39 mg of the positive electrode mixture was put onto the solid electrolyte (pellet) in the resin holder, the upper punch was inserted therein, the set was allowed to stand in a press machine, and pressure molding was performed at a pressure of 373 MPa. Next, I took out the set, turned it upside down, and removed the lower punch.
  • An aluminum laminated material was prepared as a material for the exterior body that encloses the battery element.
  • the aluminum laminate material consists of PET (12) / Al (40) / PP (50).
  • PET is polyethylene terephthalate and PP is polypropylene.
  • the numbers in parentheses represent the thickness of each layer (unit: ⁇ m).
  • This aluminum laminated material was cut into A4 size and folded back in the middle of the long side so that the PP was on the inner surface.
  • Aluminum foil (width 4 mm, length 40 mm, thickness 100 ⁇ m) was prepared as the positive electrode terminal. Further, as a negative electrode terminal, a nickel foil (width 4 mm, length 40 mm, thickness 100 ⁇ m) was prepared. Acid-modified PP was wound around these external terminals (positive electrode terminal and negative electrode terminal), respectively, and heat-bonded to the exterior body. This is to improve the sealing property between the external terminal and the exterior body.
  • the positive electrode terminal and the negative electrode terminal were installed so as to be sandwiched between the aluminum laminated materials in the middle of each of the two opposite sides of the folded aluminum laminated material, and heat-sealed.
  • the set was inserted into the exterior body, and the positive electrode and the positive electrode terminal were electrically connected by connecting the screw on the side surface of the upper punch and the positive electrode terminal in the exterior body with a lead wire.
  • the negative electrode and the negative electrode terminal were electrically connected by connecting the screw on the side surface of the lower punch and the negative electrode terminal in the exterior body with a lead wire. Then, the opening of the exterior body was heat-sealed to obtain a solid electrolyte battery.
  • nC (mA) is a current capable of charging / discharging the nominal capacity (mAh) at 1 / n (h).
  • the current of 0.2C is 14mA, and the current of 2C is 140mA.
  • Charging was performed at 0.2 C with a constant current and constant voltage (referred to as CCCV) up to 4.2 V. Charging was completed until the current became 1 / 20C. The discharge was 0.2 C to 3.0 V. The results are shown in Tables 7 to 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

固体電解質は、下記式で表される化合物からなる。 A(AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0.1<c≦6、0≦d≦6.1である。)

Description

固体電解質および固体電解質電池
 本発明は、固体電解質および固体電解質電池に関する。
 本願は、2020年6月24日に、日本に出願された特願2020-108610に基づき優先権を主張し、その内容をここに援用する。
 近年、エレクトロニクス技術の発達はめざましく、携帯電子機器の小型軽量化、薄型化、多機能化が図られている。それに伴って、電子機器の電源となる電池に対して、小型軽量化、薄型化、信頼性向上が強く望まれている。このため、電解質として固体電解質を用いる固体電解質電池が注目されている。固体電解質としては、酸化物系固体電解質、硫化物系固体電解質、錯体水素化物系固体電解質(LiBHなど)などが知られている。
 特許文献1には、Li元素を含む正極活物質を含有する正極層および正極集電体を備えた正極と、負極活物質を含有する負極層および負極集電体を備えた負極と、前記正極層および前記負極層の間に挟持され、下記一般式で表される化合物からなる固体電解質と、を有する固体電解質二次電池が開示されている。特許文献1には、負極活物質の対Li電位が平均で0.7V以下である固体電解質二次電池が開示されている。
 Li3-2XIn1-YM´6-ZL´
(式中、MおよびM´は金属元素であり、LおよびL´はハロゲン元素である。また、X、YおよびZは独立に0≦X<1.5、0≦Y<1、0≦Z≦6を満たす。)
 特許文献2には、下記の組成式(1)により表される、固体電解質材料が開示されている。
 Li6-3Z・・・式(1)
ここで、0<Z<2、を満たし、Xは、ClまたはBrである。
特開2006-244734号公報 国際公開第2018/025582号
 しかしながら、従来の固体電解質電池では、固体電解質の電位窓を広くすることが要求されている。また、固体電解質電池では、高い放電容量が得られるように、十分に高いイオン伝導度を有する固体電解質を用いることが求められている。
 本発明は、上記課題に鑑みてなされたものであり、電位窓が広く、十分に高いイオン伝導度を有する固体電解質を提供することを目的とする。
 また、本発明は、固体電解質層と正極と負極から選択される少なくとも1つが上記固体電解質を含む、広い電位範囲で動作させることができ、かつ内部抵抗が小さく放電容量の大きい固体電解質電池を提供することを目的とする。
[1]下記式(1)で表される化合物からなる、固体電解質。
・・・(1)
(式(1)中において、AはLi、Cs及びCaからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl4、CFSO、CHCOO、CFCOO、OOC-(CH-COO、OOC-CH-COO、OOC-CH(OH)-CH(OH)-COO、OOC-CH(OH)-CH-COO、CSO、OOC-CH=CH-COO、OOC-CH=CH-COO、C(OH)(CHCOOH)COO、AsO、BiO、CrO、MnO、PtF、PtCl、PtBr、PtI、SbO、SeO、TeO、HCOO、CHCOOからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0.1<c≦6、0≦d≦6.1である。BOBはビスオキサレートボラート、OOC-(CH-COOはコハク酸塩 、OOC-CH-COOはマロン酸塩、OOC-CH(OH)-CH(OH)-COOは酒石酸塩、OOC-CH(OH)-CH-COOはリンゴ酸塩、CSOはベンゼンスルホン酸塩、OOC-CH=CH-COOはフマル酸塩、OOC-CH=CH-COOはマレイン酸塩、及びC(OH)(CHCOOH)COOはクエン酸塩である。)
[2]固体電解質層と、正極と、負極と、を備え
 前記固体電解質層と前記正極と前記負極から選択される少なくとも1つが、[1]に記載の固体電解質を含む、固体電解質電池。
 本発明によれば、電位窓が広く、十分に高いイオン伝導度を有する固体電解質を提供できる。
 また、本発明の固体電解質電池は、固体電解質層と正極と負極から選択される少なくとも1つが本発明の固体電解質を含むため、広い電位範囲で動作させることができ、かつ内部抵抗が小さく放電容量の大きいものとなる。
本実施形態にかかる固体電解質電池の断面模式図である。 実施例2の固体電解質のX線回折結果を示したチャートである。 実施例2の固体電解質のラマンスペクトルである。 作用極として銅箔を用いた場合の実施例2の固体電解質のサイクリックボルタモグラムである。 作用極として白金箔を用いた場合の実施例2の固体電解質のサイクリックボルタモグラムである。 作用極として白金箔を用いた場合の実施例20の固体電解質のサイクリックボルタモグラムである。 作用極として白金箔を用いた場合の実施例29の固体電解質のサイクリックボルタモグラムである。 作用極として白金箔を用いた場合の実施例37の固体電解質のサイクリックボルタモグラムである。 作用極として白金箔を用いた場合の実施例71の固体電解質のサイクリックボルタモグラムである。 作用極として白金箔を用いた場合の比較例1の固体電解質のサイクリックボルタモグラムである。
 以下、本発明の固体電解質および固体電解質電池について、詳細に説明する。
[固体電解質]
 本実施形態の固体電解質は、下記式(1)で表される化合物からなる。
・・・(1)
(式(1)中において、AはLi、Cs及びCaからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl4、CFSO、CHCOO、CFCOO、OOC-(CH-COO、OOC-CH-COO、OOC-CH(OH)-CH(OH)-COO、OOC-CH(OH)-CH-COO、CSO、OOC-CH=CH-COO、OOC-CH=CH-COO、C(OH)(CHCOOH)COO、AsO、BiO、CrO、MnO、PtF、PtCl、PtBr、PtI、SbO、SeO、TeO、HCOO、CHCOOからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0.1<c≦6、0≦d≦6.1である。BOBはビスオキサレートボラート、OOC-(CH-COOはコハク酸塩 、OOC-CH-COOはマロン酸塩、OOC-CH(OH)-CH(OH)-COOは酒石酸塩、OOC-CH(OH)-CH-COOはリンゴ酸塩、CSOはベンゼンスルホン酸塩、OOC-CH=CH-COOはフマル酸塩、OOC-CH=CH-COOはマレイン酸塩、及びC(OH)(CHCOOH)COOはクエン酸塩である。)
 本実施形態の固体電解質は、上記化合物からなる粉末(粒子)の状態であってもよいし、上記化合物からなる粉末を焼結した焼結体の状態とされていてもよい。また、本実施形態の固体電解質は、粉末を圧縮して成形した成形体、粉末とバインダーとの混合物を成形した成形体、粉末とバインダーと溶媒とを含む塗料を塗布した後、加熱して溶媒を除去することにより形成した塗膜の状態とされていてもよい。
 式(1)で表される化合物において、AはLi、Cs及びCaからなる群から選択される少なくとも1種の元素である。Aは還元側の電位窓が広いものとなるため、Liのみを含むか、LiとCsの両方を含むか、またはLiとCaの両方を含むことが好ましい。AがLiおよびCsを含む場合、LiとCsとの割合は、還元側の電位窓がより一層広いものとなるため、モル比(Li:Cs)で1.00:0.03~1.00:0.20であることが好ましく、1.00:0.04~1.00:0.10であることがより好ましい。AがLi及びCaを含む場合、LiとCaとの割合は、還元側の電位窓がより一層広いものとなるため、モル比(Li:Ca)で1.00:0.03~1.00:0.20であることが好ましく、1.00:0.04~1.00:0.10であることがより好ましい。
 式(1)で表される化合物において、EがAl、Sc、Y、ランタノイドである場合、aは2.0≦a≦4.0が好ましく、2.5≦a≦3.5がより好ましい。EがZrまたはHfである場合、aは1.0≦a≦3.0が好ましく、1.5≦a≦2.5がより好ましい。式(1)で表される化合物においては、aが0.5≦a<6であるので、化合物中に含まれるLiの含有量が適正となり、イオン伝導度の高い固体電解質となる。
 式(1)で表される化合物において、Eは、必須の元素であり、式(1)で表される化合物の骨格を形成する元素である。Eは、Al、Sc、Y、Zr、Hf、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)からなる群から選択される少なくとも1種の元素である。
 Eを含むことにより、電位窓が広く、高いイオン伝導度を有する固体電解質となる。Eとしては、よりイオン伝導度の高い固体電解質となるため、Al、Sc、Y、Zr、Hf、Laを含むことが好ましく、特にZr、Yを含むことが好ましい。
 式(1)で表される化合物において、bは0<b<2である。bは、Eを含むことによる効果がより効果的に得られるため、0.6≦bであることが好ましい。また、Eは、式(1)で表される化合物の骨格を形成する元素であり、比較的密度の大きい元素である。bが、b≦1であると、密度の小さい固体電解質密度となるため、好ましい。
 式(1)で表される化合物において、Gは、必須である。Gは、OH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、OOC-(CH-COO、OOC-CH-COO、OOC-CH(OH)-CH(OH)-COO、OOC-CH(OH)-CH-COO、CSO、OOC-CH=CH-COO、OOC-CH=CH-COO、C(OH)(CHCOOH)COO、AsO、BiO、CrO、MnO、PtF、PtCl、PtBr、PtI、SbO、SeO、TeO、HCOO、CHCOOからなる群から選択される少なくとも1種の基である。
 式(1)で表される化合物がGを含むことにより、還元側の電位窓が広いものとなる。Gとしては、Eとの間の共有結合性が強いことにより、Eイオンが還元されにくい化合物となるため、SO、CO、OH、(COO)、BO、B、PO、BF、PF、BOB、N、AlCl、CFSOからなる群から選択される少なくとも1種の基であることが好ましく、特にSO、(COO)、HCOO及びCHCOOからなる群から選択される少なくとも1種の基であることが好ましい。詳細な理由は不明だが、EとGとの間の共有結合性が強いと、EとXとの間のイオン結合も強くなる。このため、化合物中のEイオンが還元されにくく、還元側の電位窓が広い化合物になるものと推定される。
 また、Gの分子形状とイオン半径から考えると以下のようになる。まず、主なGの分子形状及びイオン半径は、OH(直線、1.19Å)、CO(3角形、1.64Å)、MnO(4面体、2.15Å)、BF(4面体、2.18Å)、SeO(4面体、2.35Å)、PO(4面体、2.38Å)、CrO(4面体、2.40Å)、SO(4面体、2.44Å)、AsO(4面体、2.48Å)、TeO(4面体、2.54Å)、SbO(4面体、2.60Å)、BiO(4面体、2.68Å)、AlCl(4面体、2.81Å)、PtF(4面体、2.82Å)、PtCl(4面体、2.99Å)、PtBr(4面体、3.28Å)、PtI(4面体、3.28Å)となる。本発明に係るAの元となるLiZrClにおいてZrCl 2-の構造は、8面体構造であることが知られている(B.Krebs、Angew.Chem.Int.Ed.1969、8、146)。本発明に係るAにおいては、基本骨格であるEの8面体構造が連なっていると考えられる。その連なっているEの8面体構造のところどころが、Gで置換されているものと推察される。例えば、GがSO(4面体)であれば、連なっているE(8面体構造)のところどころがSO(4面体)で置換されている構造になっていると推察される。このような構造であると、理由は不明だが電気化学的に非常に安定となると考えられる。従って、Gの分子形状及びイオン半径が上述したものであれば、生成したAは電気化学的に非常に安定となると考えられる。特に、SOのような4面体構造であり2.4Å前後のイオン半径であれば、電気化学的にさらに安定となると考えられる。このため、化合物中のEイオンが還元されにくく、還元側の電位窓が広い化合物になるものと推定される。
 式(1)で表される化合物において、cは0.1<c≦6である。cは、Gを含むことによる還元側の電位窓が広くなる効果がより顕著となるため、0.5≦cであることが好ましい。cは、Gの含有量が多すぎることに起因する固体電解質のイオン伝導度の低下が生じないように、c≦3であることが好ましい。
 式(1)で表される化合物において、Xは、必要に応じて含有される元素である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種以上である。Xは価数当たりのイオン半径が大きい。このため、式(1)で表される化合物がXを含むことにより、リチウムイオンが流れやすくなり、イオン伝導度が高くなるという効果が得られる。Xとしては、イオン伝導度の高い固体電解質となるため、Clを含むことが好ましい。
 式(1)で表される化合物においては、0<d≦6.1である。式(1)で表される化合物において、式(1)で表される化合物にXが含まれている場合、dは1≦dであることが好ましい。dが1≦dであると、固体電解質を加圧成形してペレット状に成形する場合に、十分な強度を有するペレットが得られるため、好ましい。また、dが1≦dであると、Xを含むことによるイオン伝導度が高くなる効果が十分に得られる。また、dは、Xの含有量が多すぎることによってGが不足して、固体電解質の電位窓が狭くならないように、d≦5であることが好ましい。
 式(1)で表される化合物においては、電位窓が広く、イオン伝導度の高い固体電解質となるため、AがLiであり、EがZrであり、GがSO、CO、OH、(COO)、BO、B、PO、BF、PF、BOB、N、AlCl、CFSOであり、XがClである化合物が好ましい。具体的には、式(1)で表される化合物は、イオン伝導度と電位窓のバランスが良好な固体電解質となるため、LiZrSOCl、LiZrSOCl、LiZrCOCl、LiZr(OH)Cl、LiZr((COO)0.5Cl、LiZrBOCl、LiZr(B0.5Cl、LiZr(PO)Cl、LiZr(BF0.5Cl5.5、LiZr(PF0.1Cl5.9、LiZr(BOB)0.1Cl5.9、LiZrN0.1Cl5.7、LiZr(AlCl)Cl、LiZr(CFSO0.1Cl5.9、LiZr(HCOO)0.5Cl5.5及びLiZr(CHCOO)0.5Cl5.5から選ばれるいずれかであることが好ましい。
(固体電解質の製造方法)
 本実施形態の固体電解質が粉末状態である場合、例えば、所定のモル比で所定の元素を含む原料粉末を混合し、反応させる方法、いわゆるメカノケミカル法により製造できる。
 本実施形態の固体電解質が焼結体の状態である場合、例えば、以下に示す方法により製造できる。まず、所定のモル比で所定の元素を含む原料粉末を混合する。次いで、混合した原料粉末を所定の形状に成形し、真空中または不活性ガス雰囲気中で焼結する。
 原材粉末中にハロゲン化物原料が含まれている場合、ハロゲン化物原料は、温度を上げると蒸発しやすい。このため、焼結する際の雰囲気中にハロゲンガスを共存させて、ハロゲンを補ってもよい。また、原材粉末中にハロゲン化物原料が含まれている場合、密閉性の高い型を用いてホットプレス法により焼結しても良い。この場合、型の密閉性が高いため、焼結によるハロゲン化物原料の蒸発を抑制できる。このようにして焼結することにより、所定の組成を有する化合物からなる焼結体の状態の固体電解質が得られる。
 本実施形態においては、固体電解質の製造工程において、必要に応じて熱処理を行ってもよい。熱処理を行うことにより、固体電解質の結晶子サイズを調整できる。熱処理としては、例えば、アルゴンガス雰囲気中で、130℃~650℃で0.5~60時間行うことが好ましく、175℃~600℃で1~30時間行うことがより好ましい。アルゴンガス雰囲気中で、150~550℃で5~24時間行うことにより、上記結晶子サイズが5nm~500nmである固体電解質が得られる。
 本実施形態の固体電解質は、式(1)で表される化合物からなるため、還元側の電位窓が広いものとなる。その理由は、詳細は不明であるが、次のように考えられる。
 式(1)で表される化合物において、Gは、OH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、OOC-(CH-COO、OOC-CH-COO、OOC-CH(OH)-CH(OH)-COO、OOC-CH(OH)-CH-COO、CSO、OOC-CH=CH-COO、OOC-CH=CH-COO、C(OH)(CHCOOH)COO、AsO、BiO、CrO、MnO、PtF、PtCl、PtBr、PtI、SbO、SeO、TeO、HCOO、CHCOOからなる群から選択される少なくとも1種の基である。Gは、Eとの間の共有結合性が強いと考えられる。このため、式(1)で表される化合物は、Li金属に対する電位に近くなっても、化合物中のEイオンが還元される反応が生じにくく安定であり、還元側の電位窓が広い。よって、式(1)で表される化合物を含む固体電解質層を有する固体電解質電池では、低電位の酸化還元電位を有する負極活物質を用いて正極と負極との電位差を大きくすることができ、エネルギーを大きくできる。
 これに対し、例えば、式(1)で表される化合物におけるGに代えて、X(F、Cl、Br、Iからなる群から選択される少なくとも1種以上)が含まれている化合物は、Li金属に対する電位に近くなると、化合物中のEイオンが容易に還元されてしまう。これは、XとEとの結合力が、GとEとの結合力よりも弱いためである。よって、式(1)で表される化合物におけるGに代えてXが含まれている化合物は、式(1)で表される化合物と比較して、還元側の電位窓が狭いものとなる。
[固体電解質電池]
 図1は、本実施形態にかかる固体電解質電池の断面模式図である。
 図1に示す固体電解質電池10は、正極1と負極2と固体電解質層3とを備える。
 固体電解質層3は、正極1と負極2とに挟まれている。固体電解質層3は、上述した固体電解質を含む。
 正極1および負極2には、外部端子(不図示)が接続されており、外部と電気的に接続されている。
 固体電解質電池10は、正極1と負極2の間での固体電解質層3を介したイオンおよび外部回路を介した電子の授受により、充電または放電する。固体電解質電池10は、正極1と負極2と固体電解質層3が積層された積層体であってもよいし、積層体を巻回した巻回体であってもよい。固体電解質電池は、例えば、ラミネート電池、角型電池、円筒型電池、コイン型電池、ボタン型電池等に用いられる。
(正極)
 図1に示すように、正極1は、板状(箔状)の正極集電体1A上に、正極合剤層1Bが設けられたものである。
(正極集電体)
 正極集電体1Aは、充電時の酸化に耐え、腐食しにくい電子伝導性の材料であれば良い。正極集電体1Aとしては、例えば、アルミニウム、ステンレス、ニッケル、チタンなどの金属、または、伝導性樹脂を用いることができる。正極集電体1Aは、粉体、箔、パンチング、エクスパンドの各形態であっても良い。
(正極合剤層)
 正極合剤層1Bは、正極活物質を含み、必要に応じて、固体電解質、バインダーおよび導電助剤を含む。
(正極活物質)
 正極活物質は、リチウムイオンの吸蔵・放出、挿入・脱離(インターカレーション・デインターカレーション)を可逆的に進行させることが可能なものであればよく、特に限定されない。正極活物質としては、公知のリチウムイオン二次電池に用いられている正極活物質を使用できる。正極活物質としては、例えば、リチウム含有金属酸化物、リチウム含有金属リン酸化物などが挙げられる。
 リチウム含有金属酸化物としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z=1)で表される複合金属酸化物、リチウムバナジウム化合物(LiVOPO、Li(PO)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Feから選択される少なくとも1種を示す)、チタン酸リチウム(LiTi12)などが挙げられる。
 また、リチウムを含有していない正極活物質も使用できる。このような正極活物質としては、リチウム非含有金属酸化物(MnO、Vなど)、リチウム非含有金属硫化物(MoSなど)、リチウム非含有フッ化物(FeF、VFなど)などが挙げられる。
 これらのリチウムを含有していない正極活物質を用いる場合、あらかじめ負極にリチウムイオンをドープしておく、またはリチウムイオンを含有する負極を用いればよい。
(バインダー)
 正極合剤層1Bには、バインダーが含まれていることが好ましい。バインダーは、正極合剤層1Bを構成する正極活物質と固体電解質と導電助剤とを相互に結合する。また、バインダーは、正極合剤層1Bと正極集電体1Aとを接着する。バインダーに要求される特性としては、耐酸化性があること、接着性が良いことが挙げられる。
 正極合剤層1Bに用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)またはそのコポリマー、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、ポリエーテルスルホン(PES)、ポリアクリル酸(PA)及びその共重合体、ポリアクリル酸(PA)及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)、無水マレイン酸をグラフト化したポリエチレン(PE)、または、これらの混合物などが挙げられる。これらの中でも、バインダーとしては、特にPVDFを用いることが好ましい。
 正極合剤層1Bにおける固体電解質の含有率は、特に限定されないが、正極活物質、固体電解質、導電助剤及びバインダーの質量の総和を基準にして、1体積%~50体積%であることが好ましく、5体積%~30体積%であることがより好ましい。
 正極合剤層1Bにおけるバインダーの含有率は、特に限定されないが、正極活物質、固体電解質、導電助剤及びバインダーの質量の総和を基準にして、1質量%~15質量%であることが好ましく、3質量%~5質量%であることがより好ましい。バインダーの含有率が少な過ぎると、十分な接着強度を有する正極1を形成できなくなる傾向がある。また、一般的なバインダーは、電気化学的に不活性であり、放電容量に寄与しない。このため、バインダーの含有率が多過ぎると、十分な体積エネルギー密度または質量エネルギー密度を得ることが困難となる傾向がある。
(導電助剤)
 導電助剤は、正極合剤層1Bの電子伝導性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラック、黒鉛、カーボンナノチューブ、グラフェンなどの炭素材料、アルミニウム、銅、ニッケル、ステンレス、鉄、アモルファス金属などの金属、ITOなどの伝導性酸化物、またはこれらの混合物が挙げられる。前記導電助剤は、粉体、繊維の各形態であっても良い。
 正極合剤層1Bにおける導電助剤の含有率は、特に限定されない。正極合剤層1Bが、導電助剤を含有する場合、正極活物質、固体電解質、導電助剤及びバインダーの質量の総和を基準にして、0.5質量%~20質量%であることが好ましく、1質量%~5質量%であることがより好ましい。
(負極)
 図1に示すように、負極2は、負極集電体2A上に、負極合剤層2Bが設けられたものである。
(負極集電体)
 負極集電体2Aは、伝導性であれば良い。負極集電体2Aとしては、例えば、銅、アルミニウム、ニッケル、ステンレス、鉄などの金属、または、伝導性樹脂箔を用いることができる。負極集電体2Aは、粉体、箔、パンチング、エクスパンドの各形態であっても良い。
(負極合剤層)
 負極合剤層2Bは、負極活物質を含み、必要に応じて、固体電解質、バインダーおよび導電助剤を含む。
(負極活物質)
 負極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの挿入及び脱離を可逆的に進行させることができればよく、特に限定されない。負極活物質としては、公知のリチウムイオン二次電池に用いられている負極活物質を使用できる。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、メソカーボンファイバー(MCF)、コークス類、ガラス状炭素、有機化合物焼成体などの炭素材料、Si、SiO、Sn、アルミニウムなどのリチウムと化合できる金属、これらの合金、これら金属と炭素材料との複合材料、チタン酸リチウム(LiTi12)、SnOなどの酸化物、金属リチウムなどが挙げられる。
(バインダー)
 負極合剤層2Bには、バインダーが含まれていることが好ましい。バインダーは、負極合剤層2Bを構成する負極活物質と固体電解質と導電助剤とを相互に結合する。また、バインダーは、負極合剤層2Bと負極集電体2Aとを接着する。バインダーに要求される特性としては、耐還元性があること、接着性が良いことが挙げられる。
 負極合剤層2Bに用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)またはそのコポリマー、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PA)及びその共重合体、ポリアクリル酸(PA)及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)、無水マレイン酸をグラフト化したポリエチレン(PE)、またはこれらの混合物などが挙げられる。これらの中でもバインダーとしては、SBR、CMC、PVDFから選ばれる1種または2種以上を用いることが好ましい。
 負極合剤層2Bにおける固体電解質の含有率は、特に限定されないが、負極活物質、固体電解質、導電助剤およびバインダーの質量の総和を基準にして、1体積%~50体積%であることが好ましく、5体積%~30体積%であることがより好ましい。
 負極合剤層2Bにおけるバインダーの含有率は、特に限定されないが、負極活物質、導電助剤及びバインダーの質量の総和を基準にして、1質量%~15質量%であることが好ましく、1.5質量%~10質量%であることがより好ましい。バインダーの含有率が少な過ぎると、十分な接着強度を有する負極2を形成できなくなる傾向がある。また、一般的なバインダーは、電気化学的に不活性であり、放電容量に寄与しない。このため、バインダーの含有率が多過ぎると、十分な体積エネルギー密度または質量エネルギー密度を得ることが困難となる傾向がある。
(導電助剤)
 負極合剤層2Bに含まれてもよい導電助剤としては、炭素材料など、正極合剤層1Bに含まれてもよい上述した導電助剤と同様のものを用いることができる。
 負極合剤層2Bにおける導電助剤の含有率は、特に限定されない。負極合剤層2Bが、導電助剤を含有する場合、負極活物質に対して0.5質量%~20質量%であることが好ましく、1質量%~12質量%とすることがより好ましい。
(外装体)
 本実施形態の固体電解質電池では、正極1と固体電解質層3と負極2とからなる電池要素は、外装体に収納され、密封されている。外装体は、外部から内部への水分などの侵入を抑止できるものであればよく、特に限定されない。
 例えば、外装体として、金属箔の両面を高分子フィルムでコーティングしてなる金属ラミネートフィルムを、袋状に形成したものを用いることができる。このような外装体は、開口部をヒートシールすることにより密閉される。
 金属ラミネートフィルムを形成している金属箔としては、例えばアルミニウム箔、ステンレス箔などを用いることができる。外装体の外側に配置される高分子フィルムとしては、融点の高い高分子を用いることが好ましく、例えばポリエチレンテレフタレート(PET)、ポリアミドなどを用いることが好ましい。外装体の内側に配置される高分子フィルムとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)などを用いることが好ましい。
(外部端子)
 電池要素の正極1には、正極端子が電気的に接続されている。また、負極2には、負極端子が電気的に接続されている。本実施形態では、正極集電体1Aに正極端子が電気的に接続されている。また、負極集電体2Aに負極端子が電気的に接続されている。正極集電体1Aまたは負極集電体2Aと、外部端子(正極端子および負極端子)との接続部分は、外装体の内部に配置されている。
 外部端子としては、例えば、アルミニウム、ニッケルなどの導電材料で形成されたものを用いることができる。
 外装体と外部端子との間には、無水マレイン酸をグラフト化したPE(以降、「酸変性PE」という場合がある。)、または無水マレイン酸をグラフト化したPP(以降、「酸変性PP」という場合がある。)からなるフィルムが配置されていることが好ましい。酸変性PEまたは酸変性PPからなるフィルムの配置されている部分が、ヒートシールされていることにより、外装体と外部端子との密着性が良好な固体電解質電池となる。
[固体電解質電池の製造方法]
 次に、本実施形態にかかる固体電解質電池の製造方法について説明する。
 まず、本実施形態の固体電解質電池10に備えられている固体電解質層3となる上述した固体電解質を準備する。本実施形態では、固体電解質層3の材料として、粉末の状態の固体電解質を用いる。固体電解質層3は、粉末形成法を用いて作製できる。
 また、例えば、正極集電体1A上に、正極活物質を含むペーストを塗布し、乾燥させて正極合剤層1Bを形成することにより、正極1を製造する。また、例えば、負極集電体2A上に、負極活物質を含むペーストを塗布し、乾燥させて負極合剤層2Bを形成することにより、負極2を製造する。
 次いで、例えば、正極1の上に、穴部を有するガイドを設置し、ガイド内に固体電解質を充填する。その後、固体電解質の表面をならし、固体電解質の上に負極2を重ねる。このことにより、正極1と負極2との間に固体電解質が挟まれる。その後、正極1および負極2に圧力を加えることで、固体電解質を加圧成形する。加圧成形されることにより、正極1と固体電解質層3と負極2が、この順に積層された積層体が得られる。
 次に、積層体を形成している正極1の正極集電体1Aおよび負極2の負極集電体2Aに、それぞれ公知の方法により外部端子を溶接し、正極集電体1Aまたは負極集電体2Aと外部端子とを電気的に接続する。その後、外部端子と接続された積層体を外装体に収納し、外装体の開口部をヒートシールすることにより密封する。
 以上の工程により、本実施形態の固体電解質電池10が得られる。
 上述した固体電解質電池10の製造方法では、粉末の状態の固体電解質を用いる場合を例に挙げて説明したが、固体電解質として、焼結体の状態の固体電解質を用いてもよい。 この場合、焼結体の状態の固体電解質を、正極1と負極2との間に挟んで、加圧成形する方法により、固体電解質層3を有する固体電解質電池10が得られる。
 本実施形態の固体電解質層3は、電位窓が広く、十分に高いイオン伝導度を有する本実施形態の固体電解質を含む。このため、本実施形態の固体電解質層3を備える本実施形態の固体電解質電池10は、広い電位範囲で動作させることができ、内部抵抗が小さく放電容量の大きいものとなる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
(実施例1~実施例100)
 表1~表6に示すモル比で所定の原材料を含む原料粉末を、遊星型ボールミル装置を用いて、自転回転数500rpm、公転回転数500rpmとし、自転の回転方向と公転の回転方向を逆方向として、24時間混合して反応させる方法により、表7~表12に示す組成を有する化合物からなる粉末状態の実施例1~実施例100の固体電解質を製造した。
 各固体電解質の組成は、酸素を除く各元素をICP(高周波誘導結合プラズマ発光分光分析)装置(株式会社島津製作所製)を用いて分析する方法により求めた。なお、フッ素を含む固体電解質については、固体電解質中に含まれるフッ素の含有量をイオンクロマトグラフィー装置(サーモフィッシャーサイエンティフィック株式会社製)法を用いて分析した。
 また、遊星型ボールミル用の密閉容器およびボールとして、ジルコニア製のものを用いた。そのため、製造した化合物中には、密閉容器およびボールに由来するジルコニウムがコンタミネーションとして混入している。密閉容器およびボールに由来するジルコニウムのコンタミネーション量は、ある一定量であることが分かっている。表7~表12には、化合物中のジルコニウム含有量の実測値を記載した。
 表1~表6には、各固体電解質に使用した原材料および原材料配合比(モル比)をそれぞれ示した。
 また、表7~表12には、各固体電解質の組成について、上述した式(1)を満たす場合を「〇」満たさない場合を「×」と記載した。さらに、表7~表12には、各固体電解質の組成と、それを式(1)に当てはめた時の「E」「G」「Gの価数」「X」「a」「b」「c」「d」をそれぞれ示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
[X線回折(XRD)測定]
 実施例2の固体電解質について、以下に示す方法により、CuKα線を用いたX線回折測定を行った。
 アルゴンガスを循環させた露点-99℃、酸素濃度1ppmのグローブボックス内で、固体電解質をガラス製のXRD測定用ホルダーに充填した。その後、充填面を覆うように、防湿のためのポリイミドテープ(70℃で16時間真空乾燥させたもの)を張り付けて封止し、XRD測定試料を準備した。次いで、XRD測定試料を大気中に取り出し、X線回折装置(パナリティカル社製)を用いてXRD測定を行った。
 X線源としては、CuKα線を用いた。XRD測定は、走査角度(2θ)10~65度、管電圧45KV、管電流40mAで行った。
 図2は、実施例2の固体電解質のX線回折結果を示したチャートである。図2に示す「●」は、ポリイミドテープのX線回折測定において確認された回折ピークを示す。
 図2に示すように、実施例2の固体電解質は、X線回折測定において回折ピークが観測されなかった。
[ラマン分光測定]
 実施例2の固体電解質について、以下に示す方法によりラマン分光測定を行った。ラマン分光測定は、アルゴン置換グローブボックス内において、測定試料を透明密封容器内に封入し、大気中の酸素及び水分に接触しない状態で行った。ラマン分光測定装置として、NRS-7100(日本分光株式会社製)を用い、励起波長532.15nmで測定を行った。図3は、実施例2の固体電解質のラマンスペクトルである。図3に示すように、約1054cm-1にSOの存在を示すピークが観測された。
[電気化学測定]
 実施例1~実施例100、比較例1の固体電解質のそれぞれについて、以下に示す方法により電気化学測定を行い、酸化側の電位窓(Vvs.Li/Li)および還元側の電位窓(Vvs.Li/Li)をそれぞれ測定した。その結果を、表7~表12に示す。
 中心に直径10mmの貫通孔を有する直径30mm、高さ20mmの加圧成形用ダイス(PEEK(ポリエーテルエーテルケトン)製)の円筒を準備した。次に、円筒の貫通孔に下側から、合金工具鋼(SKD11)からなる直径9.99mmの下パンチを挿入した。また、円筒の貫通孔に上側から固体電解質の粉体を110mg投入した。その後、円筒の貫通孔に上側から、合金工具鋼(SKD11)からなる直径9.99mmの上パンチを挿入した。そして、円筒をプレス機に装着し、上パンチと下パンチとの間に3トンの荷重を付与し、固体電解質の粉体のプレス(加圧成形)を行った。
 その後、円筒をプレス機から外し、円筒から上パンチを取り外し、円筒内に直径10mm、厚み100μmの作用極として金属箔(白金箔または銅箔)を挿入し、再び上パンチを挿入した。上パンチとしては、側面に電気化学測定用の端子が付いているものを用いた。次に、円筒を上下逆にして、円筒から下パンチを取り外し、円筒内に直径10mm、厚み100μmのインジウム箔と、直径10mm、厚み100μmのリチウム箔と、直径10mm、厚み100μmのインジウム箔をこの順番で挿入し、再び下パンチを挿入した。これは、対極及び参照極としてインジウム-リチウム合金を用いるためである。または、対極としてリチウムを用いた場合もある。この場合は、円筒から下パンチを取り外した後に、円筒内に直径10mm、厚み100μmのリチウム箔を挿入した。対極及び参照極にリチウム-インジウム合金またはリチウムのどちらを用いるかは、実験の都合によるものである。下パンチとしては、側面に電気化学測定用の端子が付いているものを用いた。このことにより、円筒内に、In-Li/固体電解質/金属箔またはLi/固体電解質/金属箔がこの順に積層された電気化学セルを形成した。
 また、直径50mm、厚み5mmのステンレス鋼板2枚と、直径50mm、厚み2mmのベークライト(登録商標)板2枚とを準備した。次いで、2枚のステンレス鋼板および2枚のベークライト(登録商標)板に、ネジを通す穴をそれぞれ4つずつ設けた。ネジを通す穴は、電気化学セルと、2枚のステンレス鋼板および2枚のベークライト(登録商標)板とを積層したときに、2枚のステンレス鋼板と2枚のベークライト(登録商標)板とが平面視で重なり、かつ電気化学セルと平面視で重ならない位置に設けた。
 その後、ステンレス鋼板、ベークライト(登録商標)板、電気化学セル、ベークライト(登録商標)板、ステンレス鋼板をこの順に積層し、上記のネジ穴にネジを入れて締めた。このようにして、電気化学セルの上パンチおよび下パンチが、ベークライト(登録商標)板によって絶縁された電気化学測定用セルを得た。
 次に、電気化学測定用セルを25℃の恒温槽に入れて、約50kgf/cmの圧力を付与しながら48時間静置した。このことにより、電気化学測定用セル内のインジウム箔とリチウム箔とインジウム箔とを一体化して、参照極としてリチウム-インジウム合金とした。これにより、インジウムとリチウムをリチウム-インジウム合金とすること、及び、開回路電圧を安定化するためである。
 電気化学測定における対極及び参照極は、リチウム-インジウム合金またはリチウムである。リチウム-インジウム合金の電位は、0.62V(vs.Li/Li)である。このため、本明細書中における電気化学測定では、リチウム-インジウム合金に対して得られた電位の値に0.62Vを加えた値を、Li/Liに対する電位として表す。また、還元電流はマイナス、酸化電流はプラスで表す。
 電気化学測定用セルの電気化学測定は、Bio-Logic社のEC-Lab電気化学測定システムVMP-300を用いて行った。電気化学測定としてサイクリックボルタンメトリーを行った。サイクリックボルタンメトリーにおいて、電気化学測定では、スキャン速度を0.1mV/secとし、還元方向は-0.1V(vs.Li/Li)まで作用極をスキャンし、酸化方向は5.5V(vs.Li/Li)まで作用極をスキャンした。但し、実施例2は、還元方向は0V(vs.Li/Li)まで作用極をスキャンし、酸化方向は7.0V(vs.Li/Li)まで作用極をスキャンした。実施例20は、還元方向は0V(vs.Li/Li)まで作用極をスキャンし、酸化方向は5.5V(vs.Li/Li)まで作用極をスキャンした。サイクリックボルタンメトリーは、自然電位(約3V(vs.Li/Li))から開始し、還元側の電位窓を求めるときは還元方向にスキャン後に酸化方向にスキャンし、酸化側の電位窓を求めるときは酸化方向にスキャン後に還元方向にスキャンした。その理由は、自然電位から0V(vs.Li/Li)以下(すなわち還元方向)にスキャン後に酸化方向にスキャンすると、還元で生じたリチウム金属の溶出を示す酸化電流が発生する。このため、固体電解質の酸化電流とリチウム金属の溶解の酸化電流との区別が困難となる。従って、固体電解質の酸化側の電位窓を求めるときは、上述のように自然電位(約3V(vs.Li/Li))から酸化方向にスキャン後に、還元方向にスキャンした。
 本明細書中において、固体電解質の酸化側の電位窓および還元側の電位窓とは、それぞれ電気化学測定用セルを上記の電気化学測定によって測定した以下の電位である。
(還元側の電位窓)
 作用極の電位を自然電位(約3V(vs.Li/Li))から還元方向に掃引したときに、作用極の面積当たりの還元電流(μA/cm)が、-20μA/cm以下(符号がマイナスで絶対値が20μA/cm以上の値である。)となった電位を還元側の電位窓とした。
(酸化側の電位窓)
 作用極の電位を自然電位(約3V(vs.Li/Li))から酸化方向に掃引したときに、作用極の面積当たり酸化電流(μA/cm)が、20μA/cm以上(符号がプラスで絶対値が20μA/cm以上の値である。)となった電位を酸化側の電位窓とした。
 上記の電気化学測定によって得られた実施例2、実施例20、実施例29、実施例37、実施例71及び比較例1の固体電解質のサイクリックボルタモグラムを図4~図10に示す。
 図4は、作用極として銅箔を用いた場合の実施例2の固体電解質のサイクリックボルタモグラムである。図5は、作用極として白金箔を用いた場合の実施例2の固体電解質のサイクリックボルタモグラムである。また、図6は、作用極として白金箔を用いた場合の実施例20の固体電解質のサイクリックボルタモグラムである。図7は、作用極として白金箔を用いた場合の実施例29の固体電解質のサイクリックボルタモグラムである。図8は、作用極として白金箔を用いた場合の実施例37の固体電解質のサイクリックボルタモグラムである。図9は、作用極として白金箔を用いた場合の実施例71の固体電解質のサイクリックボルタモグラムである。図10は、作用極として白金箔を用いた場合の比較例1の固体電解質のサイクリックボルタモグラムである。
 実施例2の固体電解質の組成はLiZrSOClである。図4に示すように、作用極として銅箔を用いた場合の実施例2の固体電解質のサイクリックボルタモグラムには、0V(vs.Li/Li)付近の電位であるときに、リチウムイオンが還元されてリチウム金属が析出したことを示す還元電流(マイナスの電流)のピークが観察された。また、図4に示すように、0V(vs.Li/Li)付近の電位であるときに、リチウム金属が酸化されて溶解したことを示す酸化電流(プラスの電流)のピークが観察された。図4に示すように、それ以外には、-20μA/cm以下の大きな還元電流のピークも、20μA/cm以上の大きな酸化電流のピークも観測されなかった。
 図5に示すように、作用極として白金箔を用いた場合の実施例2の固体電解質のサイクリックボルタモグラムには、0V(vs.Li/Li)付近の電位であるときに、リチウムイオンが白金と合金化反応したことを示す還元電流のピークが観察された。また、図5に示すように、0.5~1.5V(vs.Li/Li)付近の電位であるときに、リチウムと白金との合金からリチウムが溶解してリチウムイオンが生成したことを示す酸化電流の3つのピークが観察された。図5に示すように、それ以外には、-20μA/cm以下の大きな還元電流のピークも、20μA/cm以上の大きな酸化電流のピークも観測されなかった。還元側及び酸化側の電位窓は、それぞれ0.030V(vs.Li/Li)及び7.0V(vs.Li/Li)以上であった。黒鉛の充電が始まる電位は、電解液における測定であるが約0.21V(vs.Li/Li)であるので(J.Electrochem.Soc.Vol.140、No.9、pp2490、Fig.15)、0.030V(vs.Li/Li)という還元側の電位窓は、黒鉛が充電するためには十分低い電位であった。
 実施例20の固体電解質の組成はLiZrSOClである。図6に示すように、-20μA/cm以下の大きな還元電流も、20μA/cm以上の大きな酸化電流のピークも観測されなかった。還元側及び酸化側の電位窓は、それぞれ0.018V(vs.Li/Li)及び5.5V(vs.Li/Li)以上であった。0.018V(vs.Li/Li)という還元側の電位窓は、黒鉛が充電できる低い電位であった。
 実施例29の固体電解質の組成はLiZrOHClである。図7に示すように、作用極として白金箔を用いた場合の実施例29の固体電解質のサイクリックボルタモグラムには、0V(vs.Li/Li)付近の電位であるときに、リチウムイオンが白金と合金化反応したことを示す還元電流のピークが観察された。また、図7に示すように、0.5~1.5V(vs.Li/Li)付近の電位であるときに、リチウムと白金との合金からリチウムが溶解してリチウムイオンが生成したことを示す酸化電流のピークが観察された。図7に示すように、それ以外には、-20μA/cm以下の大きな還元電流のピークも、20μA/cm以上の大きな酸化電流のピークも観測されなかった。還元側及び酸化側の電位窓は、それぞれ0.059V(vs.Li/Li)及び5.5V(vs.Li/Li)以上であった。0.059V(vs.Li/Li)という還元側の電位窓は、黒鉛が充電するためには十分低い電位であった。
 実施例37の固体電解質の組成はLiZrCOClである。図8に示すように、作用極として白金箔を用いた場合の実施例37の固体電解質のサイクリックボルタモグラムには、0V(vs.Li/Li)付近の電位であるときに、リチウムイオンが白金と合金化反応したことを示す還元電流のピークが観察された。また、図8に示すように、0.5~1.5V(vs.Li/Li)付近の電位であるときに、リチウムと白金との合金からリチウムが溶解してリチウムイオンが生成したことを示す酸化電流のピークが観察された。図8に示すように、それ以外には、-20μA/cm以下の大きな還元電流のピークも、20μA/cm以上の大きな酸化電流のピークも観測されなかった。還元側及び酸化側の電位窓は、それぞれ0.260V(vs.Li/Li)及び5.5V(vs.Li/Li)以上であった。0.260V(vs.Li/Li)という還元側の電位窓は、黒鉛が充電できる低い電位であった。
 実施例71の固体電解質の組成はLiZr((COO)0.5Clである。図9に示すように、作用極として白金箔を用いた場合の実施例71の固体電解質のサイクリックボルタモグラムには、0V(vs.Li/Li)付近の電位であるときに、リチウムイオンが白金と合金化反応したことを示す還元電流のピークが観察された。また、図9に示すように、0.5~1.5V(vs.Li/Li)付近の電位であるときに、リチウムと白金との合金からリチウムが溶解してリチウムイオンが生成したことを示す酸化電流のピークが観察された。図8に示すように、それ以外には、-20μA/cm以下の大きな還元電流のピークも、20μA/cm以上の大きな酸化電流のピークも観測されなかった。還元側及び酸化側の電位窓は、それぞれ0.033V(vs.Li/Li)及び5.5V(vs.Li/Li)以上であった。0.033V(vs.Li/Li)という還元側の電位窓は、黒鉛が充電するためには十分低い電位であった。
 比較例1の固体電解質の組成はLiZrClである。図10に示すように、作用極として白金箔を用いた場合の比較例1の固体電解質のサイクリックボルタモグラムには、約1.05V(vs.Li/Li)付近に、大きな還元電流のピークが観察された。これは、固体電解質自体が還元されたものと考えられる。また、約0.63V(vs.Li/Li)以下においても、大きな還元電流が観察された。還元側及び酸化側の電位窓は、それぞれ0.433V(vs.Li/Li)及び5.5V(vs.Li/Li)以上であった。0.433V(vs.Li/Li)という還元側の電位窓は、黒鉛が充電するためには高い電位であった。
 図4~図9のサイクリックボルタモグラムに示すように、実施例2(図4、図5)、実施例20(図6)、実施例29(図7)、実施例37(図8)及び実施例71(図9)の固体電解質では、比較例1(図10)の固体電解質よりも低い電位において還元電流が流れ始めた。これらの結果から、実施例2、実施例20、実施例29、実施例37及び実施例71の固体電解質は、比較例1の固体電解質と比較して、低い電位においても安定であり、還元側の電位窓が広いことが確認できた。
[イオン伝導度の測定]
 酸化側の電位窓および還元側の電位窓の測定を行う場合と同様にして、電気化学測定用セルを得た。そして、電気化学測定用セルを25℃の恒温槽に入れて、約50kgf/cmの圧力を付与しながら20分間静置した。
 その後、電気化学測定用セルのイオン伝導度の測定を行った。電気化学測定用セルのイオン伝導度は、電気化学インピーダンス測定法により、周波数応答アナライザを搭載したポテンシオスタットを用いて測定した。イオン伝導度の測定は、周波数範囲を7MHz~0.1Hzとし、振幅10mVの条件で行った。その結果を、表7~表12に示す。
[固体電解質電池の作製]
 以下に示す方法により、実施例1~実施例100、比較例1の固体電解質からなる固体電解質層を備える固体電解質電池をそれぞれ作製した。固体電解質電池の作製は、露点-70℃以下のアルゴン雰囲気としたグローブボックス内で行った。また、以下に示す方法により、固体電解質電池の充放電試験を行い、放電容量を測定した。
 まず、コバルト酸リチウム(LiCoO):実施例1~実施例100、比較例1の各固体電解質:カーボンブラック=81:16:3重量部になるように秤量し、めのう乳鉢で混合して、正極合剤とした。次に、黒鉛:実施例1~実施例100、比較例1の各固体電解質:カーボンブラック=67:30:3重量部になるように秤量し、めのう乳鉢で混合して、負極合剤とした。
 樹脂ホルダーに下パンチを挿入し、樹脂ホルダーの上から実施例1~実施例100、比較例1の固体電解質を110mg投入した。固体電解質の上に上パンチを挿入した。このセットをプレス機に載置し、圧力373MPaで加圧成形した。前記セットをプレス機から取り出し、上パンチを取り外した。
 樹脂ホルダー内の固体電解質(ペレット状)の上に正極合剤を39mg投入し、その上に上パンチを挿入し、プレス機にセットを静置し、圧力373MPaで加圧成形した。次に、セットを取り出し、上下を逆にして下パンチを取り外した。固体電解質(ペレット)の上に負極合剤を20mg投入し、その上に下パンチを挿入し、プレス機にセットを静置し、圧力373MPaで加圧成形した。
 このことにより、樹脂ホルダーの中に、正極と固体電解質と負極とがこの順に積層された電池要素を作製した。上下パンチの側面のネジ穴に、充放電用の端子としてネジを差し込んだ。
 前記電池要素を封入する外装体の材料として、アルミニウムラミネート材料を準備した。アルミニウムラミネート材料は、PET(12)/Al(40)/PP(50)からなる。PETはポリエチレンテレフタレート、PPはポリプロピレンである。かっこ内の数値は、各層の厚み(単位はμm)を表す。このアルミラミネート材料をA4サイズにカットし、PPが内面となるように、長辺の真ん中で折り返した。
 正極端子として、アルミニウム箔(幅4mm、長さ40mm、厚み100μm)を準備した。また、負極端子として、ニッケル箔(幅4mm、長さ40mm、厚み100μm)を準備した。これらの外部端子(正極端子および負極端子)にそれぞれ酸変性PPを巻き付け、外装体に熱接着した。これは外部端子と外装体とのシール性を向上させるためである。
 前記折り返したアルミラミネート材料の対向している2辺のそれぞれ中程に、正極端子および負極端子をアルミラミネート材料で挟むように設置し、ヒートシールした。その後、外装体の中に前記セットを挿入し、上パンチの側面のネジと外装体内の正極端子とをリード線で接続することにより、正極と正極端子とを電気的に接続した。また、下パンチの側面のネジと外装体内の負極端子とをリード線で接続することにより、負極と負極端子とを電気的に接続した。その後、外装体の開口部をヒートシールして、固体電解質電池とした。
 固体電解質電池の充放電試験は、25℃の恒温槽内で行った。充放電電流の表記には、C(シー)レートを用いた。nC(mA)は、公称容量(mAh)を1/n(h)で充放電できる電流である。例えば、公称容量70mAhの電池の場合、0.05Cの電流は3.5mA(計算式70×0.05=3.5)である。同様に、0.2Cの電流は14mA、2Cの電流は140mAである。充電は0.2Cで4.2Vまで定電流定電圧(CCCVと言う)で行った。充電終了は、電流が1/20Cになるまで行った。放電は、0.2Cで3.0Vまで放電した。その結果を、表7~表12に示す。
 表7~表12に示すように、実施例1~実施例100の固体電解質からなる固体電解質層を有する固体電解質電池は、いずれも十分に放電容量が大きいものであった。これに対し、比較例1の固体電解質からなる固体電解質層を有する固体電解質電池は、実施例1~実施例100の固体電解質からなる固体電解質層を有する固体電解質電池と比較して、放電容量の小さいものであった。
 また、表7~表12に示すように、実施例1~実施例100の固体電解質は、比較例1の固体電解質と比較して、いずれも還元側の電位窓が広いものであった。
1…正極、1A…正極集電体、1B…正極合剤層、2…負極、2A…負極集電体、2B…負極合剤層、3…固体電解質層、10…固体電解質電池。

Claims (2)

  1.  下記式(1)で表される化合物からなる、固体電解質。
    ・・・(1)
    (式(1)中において、AはLi、Cs及びCaからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、OOC-(CH-COO、OOC-CH-COO、OOC-CH(OH)-CH(OH)-COO、OOC-CH(OH)-CH-COO、CSO、OOC-CH=CH-COO、OOC-CH=CH-COO、C(OH)(CHCOOH)COO、AsO、BiO、CrO、MnO、PtF、PtCl、PtBr、PtI、SbO、SeO、TeO、HCOO、CHCOOからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0.1<c≦6、0≦d≦6.1である。BOBはビスオキサレートボラート、OOC-(CH-COOはコハク酸塩 、OOC-CH-COOはマロン酸塩、OOC-CH(OH)-CH(OH)-COOは酒石酸塩、OOC-CH(OH)-CH-COOはリンゴ酸塩、CSOはベンゼンスルホン酸塩、OOC-CH=CH-COOはフマル酸塩、OOC-CH=CH-COOはマレイン酸塩、及びC(OH)(CHCOOH)COOはクエン酸塩である。)
  2.  固体電解質層と、正極と、負極と、を備え、
     前記固体電解質層と前記正極と前記負極から選択される少なくとも1つが請求項1に記載の固体電解質を含む、固体電解質電池。 
PCT/JP2021/023957 2020-06-24 2021-06-24 固体電解質および固体電解質電池 WO2021261558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021003367.0T DE112021003367T5 (de) 2020-06-24 2021-06-24 Festelektrolyt und festelektrolyt-akkumulator
JP2022532538A JPWO2021261558A1 (ja) 2020-06-24 2021-06-24
US18/011,684 US20230253614A1 (en) 2020-06-24 2021-06-24 Solid electrolyte and solid electrolyte battery
CN202180044530.4A CN115917820A (zh) 2020-06-24 2021-06-24 固体电解质及固体电解质电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108610 2020-06-24
JP2020-108610 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021261558A1 true WO2021261558A1 (ja) 2021-12-30

Family

ID=79281333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023957 WO2021261558A1 (ja) 2020-06-24 2021-06-24 固体電解質および固体電解質電池

Country Status (5)

Country Link
US (1) US20230253614A1 (ja)
JP (1) JPWO2021261558A1 (ja)
CN (1) CN115917820A (ja)
DE (1) DE112021003367T5 (ja)
WO (1) WO2021261558A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153394A1 (ja) * 2022-02-10 2023-08-17 Tdk株式会社 固体電解質電池用負極及び固体電解質電池
WO2023171825A1 (ja) * 2022-03-11 2023-09-14 Tdk株式会社 固体電解質、固体電解質層及び固体電解質電池
WO2023171044A1 (ja) * 2022-03-11 2023-09-14 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
EP4318646A1 (en) * 2022-08-02 2024-02-07 Samsung SDI Co., Ltd. Solid ion conductor compound, electrochemical cell, and method of preparing the solid ion conductor compound
WO2024070660A1 (ja) * 2022-09-30 2024-04-04 Tdk株式会社 固体電解質、固体電解質層及び固体電解質電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039134A (zh) * 2023-09-08 2023-11-10 江苏大学 一种无机氯化物固态电解质、其制备方法及应用和锂电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065021A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 全固体電池
WO2018088424A1 (ja) * 2016-11-09 2018-05-17 第一稀元素化学工業株式会社 リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法
JP2020080231A (ja) * 2018-11-12 2020-05-28 Jx金属株式会社 全固体リチウムイオン電池用複合固体電解質ペレット及び全固体リチウムイオン電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108205B2 (ja) 2005-02-28 2012-12-26 国立大学法人静岡大学 全固体型リチウム二次電池
CN114937812A (zh) 2016-08-04 2022-08-23 松下知识产权经营株式会社 固体电解质材料和电池
JP7306669B2 (ja) 2019-01-04 2023-07-11 株式会社ユニバーサルエンターテインメント 遊技機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065021A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 全固体電池
WO2018088424A1 (ja) * 2016-11-09 2018-05-17 第一稀元素化学工業株式会社 リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法
JP2020080231A (ja) * 2018-11-12 2020-05-28 Jx金属株式会社 全固体リチウムイオン電池用複合固体電解質ペレット及び全固体リチウムイオン電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153394A1 (ja) * 2022-02-10 2023-08-17 Tdk株式会社 固体電解質電池用負極及び固体電解質電池
WO2023171825A1 (ja) * 2022-03-11 2023-09-14 Tdk株式会社 固体電解質、固体電解質層及び固体電解質電池
WO2023171044A1 (ja) * 2022-03-11 2023-09-14 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
EP4318646A1 (en) * 2022-08-02 2024-02-07 Samsung SDI Co., Ltd. Solid ion conductor compound, electrochemical cell, and method of preparing the solid ion conductor compound
WO2024070660A1 (ja) * 2022-09-30 2024-04-04 Tdk株式会社 固体電解質、固体電解質層及び固体電解質電池

Also Published As

Publication number Publication date
CN115917820A (zh) 2023-04-04
JPWO2021261558A1 (ja) 2021-12-30
DE112021003367T5 (de) 2023-05-04
US20230253614A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2021261558A1 (ja) 固体電解質および固体電解質電池
WO2021024785A1 (ja) 固体電解質、固体電解質層および固体電解質電池
EP3352277B1 (en) Secondary battery comprising a composite electrolyte and battery pack
CN114207896B (zh) 固体电解质、固体电解质层以及固体电解质电池
US20220294007A1 (en) Solid electrolyte, solid electrolyte layer, and solid electrolyte battery
EP3067321B1 (en) Active material, nonaqueous electrolyte battery, battery pack, and battery module
JP7010697B2 (ja) 二次電池用複合電解質、二次電池及び電池パック
JP6947321B1 (ja) 電池及び電池の製造方法
WO2022044720A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2021163522A (ja) 固体電解質、固体電解質層および固体電解質電池
JP2022110517A (ja) 活物質層、負極及び全固体電池
JP2019121499A (ja) リチウムイオン電池用複合粒子及びその製造方法
WO2023127357A1 (ja) 固体電解質電池用負極及び固体電解質電池
EP0837037B1 (en) Lithium iron oxide, method of its synthesis, and lithium battery using the same
WO2022154112A1 (ja) 電池及びその製造方法
WO2023171825A1 (ja) 固体電解質、固体電解質層及び固体電解質電池
WO2022210495A1 (ja) 固体電解質材および全固体電池
JP2021026921A (ja) 活物質、リチウム硫黄電池用電極及びリチウム硫黄電池
WO2023127358A1 (ja) 物質及びリチウムイオン2次電池
JP2023049024A (ja) 固体電解質、及び固体電解質電池
WO2023153394A1 (ja) 固体電解質電池用負極及び固体電解質電池
WO2022172945A1 (ja) 電池及び電池の製造方法
WO2024070660A1 (ja) 固体電解質、固体電解質層及び固体電解質電池
WO2024071221A1 (ja) 全固体電池
WO2024058004A1 (ja) 負極、全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532538

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21829839

Country of ref document: EP

Kind code of ref document: A1