WO2024058004A1 - 負極、全固体電池 - Google Patents

負極、全固体電池 Download PDF

Info

Publication number
WO2024058004A1
WO2024058004A1 PCT/JP2023/032352 JP2023032352W WO2024058004A1 WO 2024058004 A1 WO2024058004 A1 WO 2024058004A1 JP 2023032352 W JP2023032352 W JP 2023032352W WO 2024058004 A1 WO2024058004 A1 WO 2024058004A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
solid electrolyte
solid
positive electrode
mass
Prior art date
Application number
PCT/JP2023/032352
Other languages
English (en)
French (fr)
Inventor
崇将 向井
太輔 堀川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2024058004A1 publication Critical patent/WO2024058004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a negative electrode and an all-solid-state battery equipped with the same.
  • Lithium-ion batteries are widely used as power sources in everything from vehicles such as EVs (electric vehicles) and HEVs (hybrid electric vehicles) to electronic devices such as mobile phones and notebook computers.
  • Conventional lithium ion batteries use an organic electrolyte as an electrolyte in which a lithium salt such as lithium hexafluorophosphate is dissolved as an organic solvent.
  • organic electrolytes are flammable and may be damaged by excessive temperature rise or impact. Furthermore, as lithium ion batteries containing organic electrolytes are repeatedly charged and discharged, dendrite-like lithium metal grows on the lithium metal surface, which may cause internal short circuits between electrodes and cause problems. In order to prevent such an internal short circuit between the electrodes, a member such as a separator is required between the electrodes.
  • all-solid-state lithium-ion batteries that use solid electrolytes have been proposed.
  • these all-solid-state batteries can suppress the growth of lithium metal and the resulting internal short circuit between electrodes, thereby improving the safety and durability of the battery (for example, see Patent Document 1). reference).
  • the present invention has been made in consideration of these circumstances, and provides a negative electrode capable of reducing irreversible capacity during charge/discharge cycles and improving charge/discharge efficiency, and an all-solid-state battery equipped with the same.
  • the purpose is to
  • a negative electrode according to one aspect of the present invention is a negative electrode for a battery including a negative electrode current collector and a negative electrode composite material layer formed on one surface of the negative electrode current collector, wherein the negative electrode composite material layer is a negative electrode It has an active material and a solid electrolyte material, the solid electrolyte material is a compound represented by formula (1), and the conductive carbon material in the composition of the negative electrode composite layer is 3% by mass or less .
  • A a E b G c X d ...(1) (In formula (1), A is at least one element selected from the group consisting of Li, K, and Na.
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids. At least one element.
  • G is OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO 3 , SiO 4 , Si 2 O 7 , Si3O9 , Si4O11 , Si6O18 , PO3 , PO4 , P2O7 , P3O10 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 , S2O7 , S2O8 , BF4 , PF6 , BOB, ( COO ) 2 , N , AlCl4 , CF3SO3 , CH3COO , CF3 At least one group selected from the group consisting of COO, O.
  • X is at least one element selected from the group
  • An all-solid-state battery includes the negative electrode described in the previous section, a solid electrolyte layer, and a positive electrode.
  • the present invention it is possible to provide a negative electrode capable of reducing irreversible capacity during charge/discharge cycles and improving charge/discharge efficiency, and an all-solid battery equipped with the same.
  • FIG. 1 is a schematic cross-sectional view of an all-solid-state battery according to the present embodiment. It is a graph showing the results of a verification example.
  • the negative electrode of this embodiment includes a negative electrode current collector and a negative electrode composite material layer formed on one surface of the negative electrode current collector.
  • the negative electrode current collector constitutes a negative electrode of an all-solid-state battery, which will be described later, and may be made of a conductive material.
  • a conductive metal such as copper, aluminum, nickel, stainless steel, or iron, or a conductive resin foil can be used.
  • the material shape of the negative electrode current collector may be, for example, powder, foil, punched, or expanded.
  • the negative electrode mixture layer includes a negative electrode active material and a solid electrolyte material. Furthermore, a conductive additive or a binder may be added to the solid electrolyte material as necessary.
  • the conductive carbon material contained in this negative electrode mixture layer is based on the mass of the negative electrode active material and the solid electrolyte material, as well as the total mass of the conductive additive and binder, if the conductive carbon material is included in the composition. , 3% by mass or less, preferably not at all. For example, in the past, it was common to use a conductive carbon material as a conductive additive to ensure electronic conductivity, but in the negative electrode of this embodiment, such a conductive carbon material is not used as a conductive additive. Alternatively, the conductive additive is not included in the negative electrode mixture layer.
  • the negative electrode active material has electron conductivity due to the insertion of Li
  • a conductive carbon material is not used as a conductive additive in the negative electrode mixture layer
  • a conductive carbon material is used as a conductive additive.
  • the initial irreversible capacity can be reduced when used as a negative electrode of an all-solid-state battery.
  • the conductive carbon material here refers to a carbon element having conductivity, such as a graphite-based material (graphite), and is not carbon contained in a compound but carbon as a simple substance.
  • the negative electrode active material constituting the negative electrode mixture layer is not particularly limited as long as it can reversibly intercalate and deintercalate lithium ions and insert and deintercalate lithium ions.
  • negative electrode active material negative electrode active materials used in known lithium ion secondary batteries can be used.
  • negative electrode active materials include metals that can be combined with lithium such as Si, SiO x , Sn, and aluminum, alloys of these metals, composite materials of these metals and materials other than carbon, and lithium titanate (Li 4 Examples include Ti 5 O 12 ), tin oxide (SnO 2 ), and metallic lithium (Li).
  • lithium titanate (Li 4 Ti 5 O 12 ) is particularly preferred as the negative electrode active material.
  • the solid electrolyte can operate within a stable potential window, thereby extending the life of the all-solid-state battery.
  • lithium titanate since lithium titanate has fast ion diffusion, it is difficult to maintain a high lithium ion concentration in the solid electrolyte and conductive additive outside the negative electrode active material and around the negative electrode active material, and the solid electrolyte material and surplus Side reactions of lithium ions can be suppressed.
  • the solid electrolyte material constituting the negative electrode mixture layer is a compound represented by the following formula (1).
  • A is at least one element selected from the group consisting of Li, K, and Na.
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids.
  • G is at least one element.G may be contained as necessary, and may include OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO3 , SiO4 , Si2O7 , Si3O9 , Si4O11 , Si6O18 , PO3 , PO4 , P2O7 , P3O10 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 , S2O7 , S2O8 , BF4 , PF6 , BOB, ( COO ) 2 , N, AlCl4 , CF 3 At least one group selected from the group consisting of SO 3 , CH 3 COO, CF 3 COO, O.
  • X is an essential element, and at least one group selected from the group consisting of F, Cl, Br, I It is a seed element.
  • X in the above formula (1) be Cl (chlorine).
  • the solid electrolyte materials represented by formula (1) by using a chlorine-based material in particular, the ionic conductivity can be improved compared to those in which other halogen elements are selected as the main element. This makes it possible to obtain an all-solid-state battery with improved rate characteristics and higher performance.
  • composition ratio of the solid electrolyte material and the conductive carbon material is set to satisfy the following formula (2), where x is the mass of the solid electrolyte material and y is the mass of the conductive carbon material. y/x ⁇ 0.3...(2)
  • the amount of conductive carbon material contained in the solid electrolyte material can be reduced to a very small amount. or not included at all, it is possible to reduce the irreversible capacity at the initial stage of the charge/discharge cycle when used as a negative electrode of an all-solid-state battery.
  • the content ratio of the solid electrolyte material contained in the negative electrode may be in the range of 10% by mass or more and 40% by mass or less based on the weight of the entire negative electrode. By keeping the content ratio of the solid electrolyte material in the entire negative electrode within this range, it is possible to suppress the content of the solid electrolyte material and increase the negative electrode active material, which improves the energy density when applied to an all-solid-state battery. It is possible to improve the
  • the negative electrode mixture layer may contain a binder as necessary.
  • the binder mutually binds the negative electrode active material and solid electrolyte material constituting the negative electrode mixture layer, and the conductive additive added as necessary. Further, the binder adheres the negative electrode mixture layer and the negative electrode current collector. Properties required of the binder include reduction resistance and good adhesiveness.
  • the binder used in the negative electrode mixture layer includes polyvinylidene fluoride (PVDF) or its copolymer, polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), and polybenzimidazole (PBI). ), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylic acid (PA) and its copolymers, metal ion crosslinked products of polyacrylic acid (PA) and its copolymers, grafted with maleic anhydride Polypropylene (PP) grafted with maleic anhydride, polyethylene (PE) grafted with maleic anhydride, or a mixture thereof.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PA polyamide
  • PI polyimide
  • PAI polyamideimide
  • PBI polybenzimidazole
  • SBR styrene-butad
  • the content of the binder in the negative electrode mixture layer is not particularly limited, but is preferably 1% by mass or more and 15% by mass or less, based on the total mass of the negative electrode active material, the conductive additive, and the binder. It is more preferably 1.5% by mass or more and 10% by mass or less. If the binder content is too low, it tends to be impossible to form a negative electrode with sufficient adhesive strength. Also, common binders are electrochemically inert and do not contribute to discharge capacity. Therefore, if the content of the binder is too high, it tends to be difficult to obtain a sufficient volumetric energy density or mass energy density.
  • the conductive additive that may be included in the solid electrolyte material of the negative electrode mixture layer includes conductive substances that do not contain conductive carbon materials, such as metals such as aluminum, copper, nickel, stainless steel, iron, and amorphous metals, and ITO. or a mixture thereof.
  • a conductive aid may be in the form of powder or fiber.
  • the content of such conductive additives is not particularly limited.
  • the content is preferably, for example, 20 mass% or less, and more preferably 12 mass% or less, relative to the negative electrode active material.
  • the conductive carbon material contained in the negative electrode mixture layer is 3% by mass or less, or by not containing any conductive carbon material, the electrode contains no conductive carbon material to ensure electron conduction. This reduces the possibility of side reactions occurring at the contact area between the conductive carbon material and the solid electrolyte material. As a result, if the negative electrode of this embodiment is applied to an all-solid-state battery, it becomes possible to reduce the irreversible capacity at the initial stage of the charge/discharge cycle.
  • Method for producing solid electrolyte material As an example of a method for manufacturing the solid electrolyte material that constitutes the negative electrode of this embodiment, when the solid electrolyte material is in a powder state, for example, a method of mixing raw material powders containing a predetermined element at a predetermined molar ratio and reacting the mixture. It can be manufactured by For example, a method can be exemplified in which a raw material powder containing a predetermined raw material is reacted using a planetary ball mill device.
  • the planetary ball mill may be set to, for example, an autorotation speed of 500 rpm and a revolution speed of about 500 rpm, with the rotational direction of the autorotation and the rotational direction of the revolution being opposite directions, and the reaction can be carried out by mixing for about 24 hours.
  • As the closed container and balls for the planetary ball mill for example, those made of zirconia can be used.
  • a solid electrolyte material having a crystallite size of 5 nm to 500 nm, for example can be produced.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery according to an embodiment of the present invention.
  • the all-solid-state battery 10 shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3.
  • the negative electrode 2 uses the negative electrode of the embodiment described above, that is, a negative electrode having a negative electrode composite layer containing 3% by mass or less of a conductive carbon material, preferably no conductive carbon material.
  • the positive electrode 1 and the negative electrode 2 are connected to external terminals (not shown) and are electrically connected to the outside.
  • the all-solid-state battery 10 is charged or discharged by transferring ions between the positive electrode 1 and the negative electrode 2 through the solid electrolyte layer 3 and electrons through an external circuit.
  • the all-solid-state battery 10 may be a laminate in which the positive electrode 1, the negative electrode 2, and the solid electrolyte layer 3 are stacked, or may be a wound body in which the laminate is wound. All-solid-state batteries are used, for example, as laminate batteries, square batteries, cylindrical batteries, coin batteries, button batteries, and the like.
  • the positive electrode 1 includes a positive electrode mixture layer 1B provided on a plate-shaped (foil-shaped) positive electrode current collector 1A.
  • the positive electrode current collector 1A may be made of an electronically conductive material that can withstand oxidation during charging and is resistant to corrosion.
  • the positive electrode current collector 1A for example, metals such as aluminum, stainless steel, nickel, and titanium, or conductive resin can be used.
  • the positive electrode current collector 1A may be in the form of powder, foil, punching, or expanded.
  • the positive electrode mixture layer 1B contains a positive electrode active material, and, if necessary, a positive electrode solid electrolyte material, a binder, and a conductive aid.
  • the positive electrode active material is not particularly limited as long as it is capable of reversibly occluding, deintercalating, deintercalating, and deintercalating lithium ions (intercalation/deintercalation).
  • positive electrode active materials used in known lithium ion secondary batteries can be used. Examples of the positive electrode active material include lithium-containing metal oxides, lithium-containing metal phosphorus oxides, and the like.
  • a positive electrode active material that does not contain lithium can also be used.
  • Such positive electrode active materials include lithium-free metal oxides ( MnO2 , V2O5 , etc.), lithium-free metal sulfides ( MoS2, etc.), lithium-free fluorides ( FeF3 , VF3 , etc. ). etc.).
  • the negative electrode may be doped with lithium ions in advance, or a negative electrode containing lithium ions may be used.
  • the positive electrode mixture layer 1B may contain a binder as necessary.
  • the binder of the positive electrode mixture layer 1B mutually binds the positive electrode active material, the positive electrode solid electrolyte material, and the conductive additive that constitute the positive electrode mixture layer 1B. Further, the binder bonds the positive electrode mixture layer 1B and the positive electrode current collector 1A. Properties required of the binder include oxidation resistance and good adhesion.
  • the binder used in the positive electrode mixture layer 1B includes polyvinylidene fluoride (PVDF) or its copolymer, polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole ( PBI), polyethersulfone (PES), polyacrylic acid (PA) and its copolymers, metal ion crosslinked products of polyacrylic acid (PA) and its copolymers, polypropylene (PP) grafted with maleic anhydride , polyethylene (PE) grafted with maleic anhydride, or a mixture thereof.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PA polyamide
  • PI polyimide
  • PAI polyamideimide
  • PBI polybenzimidazole
  • PES polyethersulfone
  • PA polyacrylic acid
  • PA polypropylene
  • PP polypropylene
  • PE polyethylene
  • the content of the positive electrode solid electrolyte material in the positive electrode mixture layer 1B is not particularly limited, but is 1% by volume to 50% by volume based on the total mass of the positive electrode active material, solid electrolyte material, conductive aid, and binder. It is preferably 5% to 30% by volume, and more preferably 5% to 30% by volume.
  • the content of the binder in the positive electrode mixture layer 1B is not particularly limited, but is preferably 15% by mass or less based on the total mass of the positive electrode active material, the positive solid electrolyte material, the conductive additive, and the binder. , more preferably 5% by mass or less. If the content of the binder is too low, there is a tendency that the positive electrode 1 having sufficient adhesive strength cannot be formed. Also, common binders are electrochemically inert and do not contribute to discharge capacity. Therefore, if the content of the binder is too high, it tends to be difficult to obtain a sufficient volumetric energy density or mass energy density.
  • the conductive additive used in the positive electrode mixture layer 1B is not particularly limited as long as it improves the electronic conductivity of the positive electrode mixture layer 1B, and any known conductive additive can be used. Examples include carbon materials such as carbon black, graphite, carbon nanotubes, and graphene, metals such as aluminum, copper, nickel, stainless steel, iron, and amorphous metals, conductive oxides such as ITO, or mixtures thereof. These conductive aids may be in the form of powder or fiber.
  • the content of the conductive additive in the positive electrode mixture layer 1B is not particularly limited.
  • the positive electrode mixture layer 1B contains a conductive additive it should be 0.5% by mass to 20% by mass based on the total mass of the positive electrode active material, solid electrolyte material, conductive additive, and binder. It is preferably 1% by mass to 5% by mass.
  • the solid electrolyte layer 3 formed between the positive electrode 1 and the negative electrode 2 is made of the same material as the solid electrolyte material constituting the negative electrode mixture layer, and a compound represented by the following formula (1).
  • A is at least one element selected from the group consisting of Li, K, and Na.E is selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids.
  • G is at least one element.G may be contained as necessary, and is OH, BO 2 , BO 3 , BO 4 , B 3 O 6 , B 4 O 7 , CO 3 , NO 3 , AlO 2 , SiO 3 , SiO 4 , Si 2 O 7 , Si 3 O 9 , Si 4 O 11 , Si 6 O 18 , PO 3 , PO 4 , P 2 O 7 , P 3 O 10 , SO 3 , SO 4 , SO 5 , S2O3 , S2O4 , S2O5 , S2O6 , S2O7 , S2O8 , BF4 , PF6 , BOB , (COO) 2 , N, AlCl4 , At least one group selected from the group consisting of CF 3 SO 3 , CH 3 COO, CF 3 COO, and O.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I. (0.5 ⁇ a ⁇ 6, 0 ⁇ b
  • the solid electrolyte layer 3 may be in the form of a powder (particles) made of the compound represented by formula (1), or may be in the form of a sintered body obtained by sintering these powders.
  • the solid electrolyte layer 3 can be formed by compressing powder, molding a mixture of powder and binder, applying a paint containing powder, binder, and solvent, and then heating to remove the solvent. It may be in the state of a coating film formed by doing so.
  • A is at least one element selected from the group consisting of Li, K, and Na. Since A has a wide potential window on the reduction side, it is more preferable to use one containing only Li.
  • a when E is Al, Sc, Y, Zr, Hf, or a lanthanoid, a is preferably 2.0 ⁇ a ⁇ 4.0, and 2.5 ⁇ a ⁇ 3. 5 is more preferred.
  • E when E is Zr or Hf, a is preferably 1.0 ⁇ a ⁇ 3.0, more preferably 1.5 ⁇ a ⁇ 2.5.
  • a since a satisfies 0.5 ⁇ a ⁇ 6, the content of Li contained in the compound is appropriate, resulting in a solid electrolyte with high ionic conductivity.
  • E is an essential element and is an element that forms the skeleton of the compound represented by formula (1).
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf, lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at least one element that is By including E, the solid electrolyte has a wide potential window and high ionic conductivity.
  • E preferably contains Al, Sc, Y, Zr, Hf, and La, and particularly preferably contains Zr and Y, since it becomes a solid electrolyte with higher ionic conductivity.
  • b satisfies 0 ⁇ b ⁇ 2. Since the effect of including E can be obtained more effectively, b is preferably 0.6 ⁇ b. Further, E is an element that forms the skeleton of the compound represented by formula (1), and has a relatively high density. It is preferable for b to be b ⁇ 1 because the solid electrolyte density is low.
  • G is a component (group) that is included as necessary, and does not necessarily need to be included.
  • G is OH, BO2 , BO3 , BO4, B3O6 , B4O7 , CO3, NO3 , AlO2 , SiO3 , SiO4 , Si2O7 , Si3O9 , Si 4O11 , Si6O18 , PO3 , PO4, P2O7, P3O10 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S From the group consisting of 2O6 , S2O7 , S2O8 , BF4 , PF6 , BOB , ( COO ) 2 , N, AlCl4 , CF3SO3 , CH3COO , CF3COO , O at least one group selected.
  • the potential window on the reduction side becomes wide. Since G has a strong covalent bond with E, the E ion becomes a compound that is difficult to reduce, so at least G is selected from the group consisting of SO 4 , BO 2 , CO 3 , BF 4 , and PF 6 . One type of group is preferred, and SO 4 is particularly preferred. Although the detailed reason is unknown, if the covalent bond between E and G is strong, the ionic bond between E and X will also be strong. Therefore, it is presumed that the E ions in the compound are less likely to be reduced, resulting in a compound with a wide potential window on the reduction side. Furthermore, by including G in the compound represented by formula (1), the crystal structure can be distorted to further improve the ionic conductivity.
  • c satisfies 0 ⁇ c ⁇ 6. It is preferable that c satisfies 0.5 ⁇ c because when G is included, the effect of widening the potential window on the reduction side becomes more pronounced. It is more preferable that c ⁇ 3 so that the ionic conductivity of the solid electrolyte does not decrease due to too much G content.
  • X is an essential halogen element.
  • X is at least one member selected from the group consisting of F, Cl, Br, and I.
  • X has a large ionic radius per valence. Therefore, when the compound represented by formula (1) contains X, lithium ions flow more easily and the ionic conductivity becomes higher. If Cl is particularly selected as X, a solid electrolyte with high ionic conductivity can be obtained.
  • d satisfies 1 ⁇ d.
  • d is 1 ⁇ d
  • pellets having sufficient strength can be obtained when the solid electrolyte is press-molded into pellets, which is preferable.
  • d is 1 ⁇ d
  • the effect of increasing ionic conductivity due to the inclusion of X can be sufficiently obtained.
  • d is preferably d ⁇ 5 so that the potential window of the solid electrolyte does not become narrow due to insufficient G due to too much X content.
  • the compound represented by formula (1) has a wide potential window and becomes a solid electrolyte with high ionic conductivity, so A is Li, E is Zr or Y, and G is SO 4 , BO 2 , Preference is given to compounds in which CO 3 or BF 4 and X is Cl.
  • the compound represented by formula (1) serves as a solid electrolyte with a good balance between ionic conductivity and potential window, so Li 2 ZrSO 4 Cl 4 , Li 2 ZrCO 3 Cl 4 , Li 2 ZrBO 2Cl5 , Li2ZrBF4Cl5 , Li3YSO4Cl4 , Li3YCO3Cl4 , Li3YBO2Cl5 , and Li3YBF4Cl5 .
  • the negative electrode 2 has a negative electrode mixture layer 2B provided on a negative electrode current collector 2A.
  • a negative electrode 2 uses the negative electrode of the embodiment described above, that is, a negative electrode having a negative electrode composite layer containing 3% by mass or less of a conductive carbon material, preferably no conductive carbon material.
  • a battery element consisting of a positive electrode 1, a solid electrolyte layer 3, and a negative electrode 2 is housed in an exterior body and sealed.
  • the exterior body is not particularly limited as long as it can prevent moisture from entering the interior from the outside.
  • a bag-shaped metal laminate film formed by coating both sides of a metal foil with a polymer film can be used as the exterior body.
  • Such an exterior body is sealed by heat-sealing the opening.
  • metal foil forming the metal laminate film for example, aluminum foil, stainless steel foil, etc. can be used.
  • polymer film placed on the outside of the exterior body it is preferable to use a polymer with a high melting point, such as polyethylene terephthalate (PET), polyamide, or the like.
  • PET polyethylene terephthalate
  • polyamide polyamide
  • polymer film disposed inside the exterior body it is preferable to use, for example, polyethylene (PE), polypropylene (PP), or the like.
  • a positive electrode terminal is electrically connected to the positive electrode 1 of the battery element. Further, a negative electrode terminal is electrically connected to the negative electrode 2 . In this embodiment, a positive electrode terminal is electrically connected to the positive electrode current collector 1A. Further, a negative electrode terminal is electrically connected to the negative electrode current collector 2A.
  • a connection portion between the positive electrode current collector 1A or the negative electrode current collector 2A and an external terminal is arranged inside the exterior body.
  • the external terminal for example, one made of a conductive material such as aluminum or nickel can be used.
  • a film made of PE grafted with maleic anhydride (acid-modified PE) or PP grafted with maleic anhydride (acid-modified PP) is preferably disposed between the exterior body and the external terminal. .
  • the portion where the film made of acid-modified PE or acid-modified PP is placed is heat-sealed, resulting in an all-solid-state battery with good adhesion between the exterior body and the external terminals.
  • the solid electrolyte layer 3 included in the all-solid-state battery 10 of this embodiment is prepared.
  • a solid electrolyte in powder form is used as the material for the solid electrolyte layer 3.
  • Solid electrolyte layer 3 can be produced using a powder forming method.
  • the positive electrode 1 is manufactured by applying a paste containing a positive electrode active material onto the positive electrode current collector 1A and drying it to form the positive electrode mixture layer 1B.
  • the negative electrode 2 of the above-described embodiment is manufactured by applying a paste containing a negative electrode active material onto the negative electrode current collector 2A and drying it to form the negative electrode mixture layer 2B.
  • a guide having a hole is placed on top of the positive electrode 1, and the guide is filled with a solid electrolyte. Thereafter, the surface of the solid electrolyte is leveled, and the negative electrode 2 is placed on top of the solid electrolyte. As a result, the solid electrolyte is sandwiched between the positive electrode 1 and the negative electrode 2. Thereafter, pressure is applied to the positive electrode 1 and the negative electrode 2 to pressure mold the solid electrolyte. By pressure molding, a laminate in which the positive electrode 1, the solid electrolyte layer 3, and the negative electrode 2 are laminated in this order is obtained.
  • the case where a solid electrolyte in a powder state is used has been described as an example, but a solid electrolyte in a sintered body state may also be used as the solid electrolyte.
  • the all-solid-state battery 10 having the solid electrolyte layer 3 is obtained by sandwiching the solid electrolyte in the form of a sintered body between the positive electrode 1 and the negative electrode 2 and press-molding the solid electrolyte.
  • Solid electrolyte materials for negative electrodes that contain a conductive agent (conductive carbon material source) or do not contain a conductive agent at the mass ratios shown in Tables 1 and 2 (Examples 1 to 43, Comparative Examples 1 to 12) )It was created.
  • raw material powder containing predetermined raw materials in respective weight ratios is rotated at an autorotation speed of 500 rpm and an orbital rotation speed of 500 rpm using a planetary ball mill device, and the rotation direction of the autorotation and the rotation direction of the revolution are adjusted.
  • a solid electrolyte material in a powder state was manufactured by a method of mixing for 24 hours in the opposite direction.
  • the all-solid-state battery was manufactured in a glove box with an argon atmosphere with a dew point of ⁇ 70° C. or lower.
  • a lower punch was inserted into the resin holder, a solid electrolyte was introduced from above the resin holder, and an upper punch was inserted onto the solid electrolyte. This set was placed in a press machine and the solid electrolyte was pressure-molded.
  • battery samples (Examples 1 to 43, Comparative Examples 1 to 12) were prepared in which a positive electrode, a solid electrolyte, and a negative electrode were laminated in this order in a resin holder. A screw was inserted into the screw hole on the side of the upper and lower punches as a charging/discharging terminal.
  • the aluminum laminate material was prepared as the material for the exterior body that encloses the battery sample.
  • the aluminum laminate material consists of PET/Al/PP.
  • PET is polyethylene terephthalate and PP is polypropylene.
  • This aluminum laminate material was cut into A4 size and folded back in the middle of the long side so that the PP was on the inner surface.
  • Aluminum foil was prepared as a positive electrode terminal. Further, nickel foil was prepared as a negative electrode terminal. Acid-modified PP was wrapped around each of these external terminals (positive electrode terminal and negative electrode terminal) and thermally bonded to the exterior body. This is to improve the sealing performance between the external terminal and the exterior body.
  • a positive electrode terminal and a negative electrode terminal were placed in the middle of each of the two opposing sides of the folded aluminum laminate material so as to be sandwiched between the aluminum laminate materials, and heat-sealed. Thereafter, the set was inserted into the outer case, and the screw on the side surface of the upper punch and the positive electrode terminal inside the outer case were connected with a lead wire, thereby electrically connecting the positive electrode and the positive electrode terminal. Further, the negative electrode and the negative electrode terminal were electrically connected by connecting the screw on the side surface of the lower punch and the negative electrode terminal inside the exterior body with a lead wire. Thereafter, the opening of the exterior body was heat-sealed to obtain all solid-state batteries of Examples 1 to 43 and Comparative Examples 1 to 12.
  • FIG. 2 shows a graph comparing the irreversible capacity of Example 1 and Comparative Example 5.
  • the all-solid-state batteries of Examples which are examples of the present invention, have excellent initial charge and discharge efficiency, with initial charge and discharge efficiency exceeding at least 70% and reaching 95.1% at maximum. It was confirmed that the efficiency, ie irreversible capacity, was very low.
  • all solid-state batteries of comparative examples which are conventional examples, had an initial charge/discharge efficiency of less than 70%, and remained at a minimum of about 47.5%. From the above results, it is possible to realize an all-solid-state battery with a very small irreversible capacity by using a negative electrode in which the conductive carbon material in the composition of the negative electrode composite layer is 3% by mass or less, as in the present invention. It becomes possible.
  • the present invention can be applied to batteries for vehicles such as EVs (electric vehicles) and HEVs (hybrid electric vehicles), and electronic devices such as mobile phones and notebook computers, by reducing irreversible capacity during charge and discharge cycles and improving charge and discharge efficiency.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • electronic devices such as mobile phones and notebook computers

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

充放電サイクルにおける不可逆容量を低減し、充放電効率を向上させることが可能な負極、およびこれを備えた全固体電池を提供する。負極集電体と、前記負極集電体の一面に形成される負極合材層とを備えた電池の負極であって、前記負極合材層は、負極活物質材料と、固体電解質材料とを有し、前記固体電解質材料は式(1)で表される化合物であり、前記負極合材層の組成中の導電性炭素材料は3質量%以下である、負極。 A・・・(1)

Description

負極、全固体電池
 本発明は、負極、およびこれを備えた全固体電池に関する。
 本願は、2022年9月14日に日本に出願された特願2022-145928号に基づき優先権を主張し、その内容をここに援用する。
 EV(電気自動車)やHEV(ハイブリッド電気自動車)等の車両から、携帯電話、ノートパソコン等の電子機器に至るまで、電源としてリチウムイオン電池が広く用いられている。従来のリチウムイオン電池は、電解質として有機溶媒として、例えば六フッ化リン酸リチウムなどのリチウム塩を溶解した有機電解液が用いられている。
 こうした有機電解液は可燃性であり、過度な昇温、衝撃によって破損する可能性がある。また、有機電解液を含むリチウムイオン電池は、充放電を繰り返すうちに、リチウム金属表面にデンドライト状リチウム金属が成長して、これが電極間の内部短絡の原因となり不具合を引き起こす可能性がある。このような電極間の内部短絡を防ぐために、電極間にセパレータなどの部材が必要とされている。
 このような有機電解液を使用した従来のリチウムイオン電池の安全性、耐久性を向上させるために、固体電解質を使用した全固体型のリチウムイオン電池(全固体電池)が提案されている。こうした全固体電池は、固体電解質を用いることで、リチウム金属の成長とそれに伴う電極間の内部短絡を抑制できるため、電池の安全性、耐久性を向上させることができる(例えば、特許文献1を参照)。
特開2018-85310号公報
 現在の一般的な全固体電池は、負極として、充電容量を発現するための活物質、イオン電導性を確保するための固体電解質、電子伝導性を確保するための導電助剤と、必要に応じて形状維持のためにバインダーを加えたものが主流となっている。従来のこうした固体電池の負極は、初回の充放電サイクルに大きな不可逆容量を生じることが多く、初回の充放電効率を著しく低下させているという課題があった。
 本発明は、このような事情を考慮してなされたものであり、充放電サイクルにおける不可逆容量を低減し、充放電効率を向上させることが可能な負極、およびこれを備えた全固体電池を提供することを目的とする。
 上記課題を解決するため、以下の手段を提供する。
 本発明の一態様に係る負極は、負極集電体と、前記負極集電体の一面に形成される負極合材層とを備えた電池の負極であって、前記負極合材層は、負極活物質材料と、固体電解質材料とを有し、前記固体電解質材料は式(1)で表される化合物であり、前記負極合材層の組成中の導電性炭素材料は3質量%以下である。
・・・(1)
(式(1)中において、AはLi、K、Naからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、Oからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1である。)
 本発明の一態様に係る全固体電池は、前項に記載された負極と、固体電解質層と、正極と、を備える。
 本発明によれば、充放電サイクルにおける不可逆容量を低減し、充放電効率を向上させることが可能な負極、およびこれを備えた全固体電池を提供することができる。
本実施形態にかかる全固体電池の断面模式図である。 検証例の結果を示すグラフである。
 以下、本発明を適用した一実施形態である負極、およびこれを備えた全固体電池について図面を参照して説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
[負極]
 本実施形態の負極は、負極集電体と、この負極集電体の一面に形成される負極合材層とを備えている。
(負極集電体)
 負極集電体は、後述する全固体電池の負極電極を構成するものであり、導電性材料で形成されていればよい。負極集電体としては、例えば、銅、アルミニウム、ニッケル、ステンレス、鉄などの導電性の金属、または、導電性樹脂箔を用いることができる。負極集電体の材料形状は、例えば、粉体、箔、パンチング、エクスパンドの各形態であっても良い。
(負極合剤層)
 負極合剤層は、負極活物質材料と、固体電解質材料と、を含むものから構成されている。また、固体電解質材料には、更に必要に応じておよび導電助剤やバインダーが添加されてもよい。
 この負極合剤層は、その組成中に含まれる導電性炭素材料が、負極活物質材料と固体電解質材料との質量、更に導電助剤やバインダーを含む場合、これらを含む質量の総和に対して、3質量%以下、好ましくは全く含まないように、構成材料が選択される。例えば、従来は導電助剤として導電性炭素材料を用いて電子伝導性を確保するのが一般的であったが、本実施形態の負極においては、こうした導電助剤として導電性炭素材料を用いないか、あるいは負極合剤層に導電助剤を含ませない。
 本実施形態の負極では、負極活物質材料がLi挿入されることで電子伝導性を持つことに着目し、負極合剤層の導電助剤として導電性炭素材料を用いないか、あるいは導電助剤を含ませないことで、全固体電池の負極として用いた際に、初期の不可逆容量を低減することができる。
 なお、ここでいう導電性炭素材料とは、導電性を有する炭素元素、例えばグラファイト系材料(黒鉛)であり、化合物に含まれる炭素ではなく、単体としての炭素である。
 <負極活物質材料>
 負極合剤層を構成する負極活物質材料は、リチウムイオンの吸蔵及び放出、リチウムイオンの挿入及び脱離を可逆的に進行させることができればよく、特に限定されない。負極活物質材料としては、公知のリチウムイオン二次電池に用いられている負極活物質材料を使用できる。
 負極活物質材料の具体例としては、例えば、Si、SiO、Sn、アルミニウムなどのリチウムと化合できる金属、これらの合金、これら金属と炭素以外の材料との複合材料、チタン酸リチウム(LiTi12)、酸化錫(SnO)、金属リチウム(Li)などが挙げられる。
 このうち、負極活物質材料としては特にチタン酸リチウム(LiTi12)が好ましい。チタン酸リチウムを用いることにより、固体電解質が安定な電位窓の範囲で動作することで、全固体電池の寿命を延長することができる。また、チタン酸リチウムはイオン拡散が早いため、負極活物質材料活物質の外側や負極活物質材料の周辺の固体電解質、導電助剤のリチウムイオン濃度が高いまま保持されにくく、固体電解質材料と余剰リチウムイオンの副反応を抑制することができる。
 <負極の固体電解質材料>
 負極合剤層を構成する固体電解質材料は、下記の式(1)で表される化合物である。
・・・(1)
(式(1)中において、AはLi、K、Naからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。Gは必要に応じて含有されればよく、OH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、Oからなる群から選択される少なくとも1つの基である。Xは必須元素であり、F、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0、0≦c≦6、0<d≦6.1である。)
 また、上述した式(1)中のXをCl(塩素)にすることが好ましい。式(1)に示される固体電解質材料のうち、特に塩素系の材料を用いることによって、他のハロゲン元素を主元素として選択するものに比べイオン電導度を向上させることができる。これにより、レート特性などが有利となり、更に高性能な全固体電池を得ることができる。
 こうした固体電解質材料と導電性炭素材料との組成比は、固体電解質材料の質量をx、導電性炭素材料の質量をyとしたときに、下記の式(2)を満たすようにされる。
y/x≦0.3・・・(2)
 このように、上述した式(1)で表される固体電解質材料に含まれる導電性炭素材料を式(2)を満たすようにすることで、固体電解質材料に含まれる導電性炭素材料がごく僅かであるか、または全く含まれないことにより、全固体電池の負極として用いた際に、充放電サイクルの初期の不可逆容量を低減することができる。
 負極に含まれる固体電解質材料の含有割合としては、負極全体の重量に対して、10質量%以上、40質量%以下の範囲であればよい。
 固体電解質材料の負極全体に対する含有割合をこのような範囲にすることで、固体電解質材料の含有量を抑制して負極活物質材料を増やすことができ、全固体電池に適用した際に、エネルギー密度の向上を図ることができる。
 <バインダー>
 負極合剤層には、必要に応じてバインダーが含まれていてもよい。バインダーは、負極合剤層を構成する負極活物質材料と固体電解質材料と、必要に応じて加えられる導電助剤とを相互に結合する。また、バインダーは、負極合剤層と負極集電体とを接着する。バインダーに要求される特性としては、耐還元性があること、接着性が良いことが挙げられる。
 負極合剤層に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)またはそのコポリマー、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PA)及びその共重合体、ポリアクリル酸(PA)及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)、無水マレイン酸をグラフト化したポリエチレン(PE)、またはこれらの混合物などが挙げられる。これらの中でもバインダーとしては、SBR、CMC、PVDFから選ばれる1種または2種以上を用いることが好ましい。
 負極合剤層におけるバインダーの含有率は、特に限定されないが、負極活物質材料、導電助剤及びバインダーの質量の総和を基準にして、1質量%以上、15質量%以下であることが好ましく、1.5質量%以上、10質量%以下であることがより好ましい。バインダーの含有率が少な過ぎると、十分な接着強度を有する負極を形成できなくなる傾向がある。また、一般的なバインダーは、電気化学的に不活性であり、放電容量に寄与しない。このため、バインダーの含有率が多過ぎると、十分な体積エネルギー密度または質量エネルギー密度を得ることが困難となる傾向がある。
 <導電助剤>
 負極合剤層の固体電解質材料に含まれてもよい導電助剤としては、導電性炭素材料を含まない導電性物質、例えば、アルミニウム、銅、ニッケル、ステンレス、鉄、アモルファス金属などの金属、ITOなどの伝導性酸化物、またはこれらの混合物が挙げられる。
 こうした導電助剤は、粉体、繊維の各形態であっても良い。
 こうした導電助剤の含有率は、特に限定されない。負極合剤層が、導電性炭素を含まない導電助剤を含有する場合、負極活物質材料に対して、例えば20質量%以下であることが好ましく、12質量%以下にすることがより好ましい。
 以上のような構成の負極によれば、負極合剤層に含まれる導電性炭素材料を3質量%以下、あるいは導電性炭素材料を含まないことによって、電子伝導を確保するために電極中に含まれる導電性炭素材料と固体電解質材料との接触部で副反応を起こす可能性を低下させる。これにより、本実施形態の負極を全固体電池に適用すれば、充放電サイクルの初期段階における不可逆容量を低減することが可能になる。
(固体電解質材料の製造方法)
 本実施形態の負極を構成する固体電解質材料の製造方法の一例としては、固体電解質材料が粉末状態である場合、例えば、所定のモル比で所定の元素を含む原料粉末を混合し、反応させる方法により製造できる。
 例えば、所定の原材料を含む原料粉末を、遊星型ボールミル装置を用いて原料粉末を反応させる方法が例示できる。
 遊星型ボールミルは、例えば、自転回転数500rpm、公転回転数500rpm程度に設定して、自転の回転方向と公転の回転方向とを逆方向として、24時間程度混合することで反応させればよい。遊星型ボールミル用の密閉容器およびボールとしては、例えば、ジルコニア製のものを用いることができる。
 このように遊星型ボールミルを用いて原料粉末を混合し、反応させることにより、例えば、結晶子サイズが5nm~500nmの固体電解質材料を製造することができる。
[全固体電池]
 図1は、本発明の一実施形態にかかる全固体電池を示す断面模式図である。
 図1に示す全固体電池10は、正極1と、負極2と、固体電解質層3とを備える。
 負極2は、上述した実施形態の負極、即ち、導電性炭素材料が3質量%以下、好ましくは導電性炭素材料を全く含まない負極合材層を有する負極を用いる。
 正極1および負極2には、外部端子(不図示)が接続されており、外部と電気的に接続されている。
 全固体電池10は、正極1と負極2の間での固体電解質層3を介したイオンおよび外部回路を介した電子の授受により、充電または放電する。全固体電池10は、正極1と負極2と固体電解質層3が積層された積層体であってもよいし、積層体を巻回した巻回体であってもよい。全固体電池は、例えば、ラミネート電池、角型電池、円筒型電池、コイン型電池、ボタン型電池等に用いられる。
(正極)
 図1に示すように、正極1は、板状(箔状)の正極集電体1A上に、正極合剤層1Bが設けられたものである。
(正極集電体)
 正極集電体1Aは、充電時の酸化に耐え、腐食しにくい電子伝導性の材料であれば良い。正極集電体1Aとしては、例えば、アルミニウム、ステンレス、ニッケル、チタンなどの金属、または、伝導性樹脂を用いることができる。正極集電体1Aは、粉体、箔、パンチング、エクスパンドの各形態であっても良い。
(正極合剤層)
 正極合剤層1Bは、正極活物質材料を含み、必要に応じて、正極固体電解質材料、バインダーおよび導電助剤を含む。
 <正極活物質材料>
 正極活物質材料は、リチウムイオンの吸蔵・放出、挿入・脱離(インターカレーション・デインターカレーション)を可逆的に進行させることが可能なものであればよく、特に限定されない。正極活物質材料としては、公知のリチウムイオン二次電池に用いられている正極活物質材料を使用できる。正極活物質材料としては、例えば、リチウム含有金属酸化物、リチウム含有金属リン酸化物などが挙げられる。
 リチウム含有金属酸化物としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z=1)で表される複合金属酸化物、リチウムバナジウム化合物(LiVOPO、Li(PO)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Feから選択される少なくとも1種を示す)、チタン酸リチウム(LiTi12)などが挙げられる。
 また、リチウムを含有していない正極活物質材料も使用できる。このような正極活物質材料としては、リチウム非含有金属酸化物(MnO、Vなど)、リチウム非含有金属硫化物(MoSなど)、リチウム非含有フッ化物(FeF、VFなど)などが挙げられる。
 これらのリチウムを含有していない正極活物質材料を用いる場合、あらかじめ負極にリチウムイオンをドープしておくか、あるいはリチウムイオンを含有する負極を用いればよい。
 <バインダー>
 正極合剤層1Bには、必要に応じてバインダーが含まれていてもよい。正極合剤層1Bのバインダーは、正極合剤層1Bを構成する正極活物質材料と正極固体電解質材料と導電助剤とを相互に結合する。また、バインダーは、正極合剤層1Bと正極集電体1Aとを接着する。バインダーに要求される特性としては、耐酸化性があること、接着性が良いことが挙げられる。
 正極合剤層1Bに用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)またはそのコポリマー、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、ポリエーテルスルホン(PES)、ポリアクリル酸(PA)及びその共重合体、ポリアクリル酸(PA)及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)、無水マレイン酸をグラフト化したポリエチレン(PE)、または、これらの混合物などが挙げられる。これらの中でも、バインダーとしては、特にPVDFを用いることが好ましい。
 正極合剤層1Bにおける正極固体電解質材料の含有率は、特に限定されないが、正極活物質材料、固体電解質材料、導電助剤及びバインダーの質量の総和を基準にして、1体積%~50体積%であることが好ましく、5体積%~30体積%であることがより好ましい。
 正極合剤層1Bにおけるバインダーの含有率は、特に限定されないが、正極活物質材料、正極固体電解質材料、導電助剤及びバインダーの質量の総和を基準にして、15質量%以下であることが好ましく、5質量%以下であることがより好ましい。バインダーの含有率が少な過ぎると、十分な接着強度を有する正極1を形成できなくなる傾向がある。また、一般的なバインダーは、電気化学的に不活性であり、放電容量に寄与しない。このため、バインダーの含有率が多過ぎると、十分な体積エネルギー密度または質量エネルギー密度を得ることが困難となる傾向がある。
 <導電助剤>
 正極合剤層1Bに用いられる導電助剤は、正極合剤層1Bの電子伝導性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラック、黒鉛、カーボンナノチューブ、グラフェンなどの炭素材料、アルミニウム、銅、ニッケル、ステンレス、鉄、アモルファス金属などの金属、ITOなどの伝導性酸化物、またはこれらの混合物が挙げられる。
 これらの導電助剤は、粉体、繊維の各形態であっても良い。
 正極合剤層1Bにおける導電助剤の含有率は、特に限定されない。正極合剤層1Bが、導電助剤を含有する場合、正極活物質材料、固体電解質材料、導電助剤及びバインダーの質量の総和を基準にして、0.5質量%~20質量%であることが好ましく、1質量%~5質量%であることがより好ましい。
(固体電解質層)
 正極1と負極2との間に形成される固体電解質層3は、負極合剤層を構成する固体電解質材料と同様の材料、下記の式(1)で表される化合物が用いられる。
 A・・・(1)
(式(1)中において、AはLi、K、Naからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。Gは必要に応じて含有されればよく、はOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、Oからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1である。)
 固体電解質層3は、式(1)で表される化合物からなる粉末(粒子)の状態であってもよいし、これら粉末を焼結した焼結体の状態とされていてもよい。また、固体電解質層3は、粉末を圧縮して成形した成形体、粉末とバインダーとの混合物を成形した成形体、粉末とバインダーと溶媒とを含む塗料を塗布した後、加熱して溶媒を除去することにより形成した塗膜の状態とされていてもよい。
 式(1)で表される化合物において、AはLi、K、Naからなる群から選択される少なくとも1種の元素である。Aは還元側の電位窓が広いものとなるため、Liのみを含むものがより好ましい。
 式(1)で表される化合物において、EがAl、Sc、Y、Zr、Hf、ランタノイドである場合、aは2.0≦a≦4.0が好ましく、2.5≦a≦3.5がより好ましい。EがZrまたはHfである場合、aは1.0≦a≦3.0が好ましく、1.5≦a≦2.5がより好ましい。式(1)で表される化合物においては、aが0.5≦a<6であるので、化合物中に含まれるLiの含有量が適正となり、イオン伝導度の高い固体電解質となる。
 式(1)で表される化合物において、Eは、必須の元素であり、式(1)で表される化合物の骨格を形成する元素である。Eは、Al、Sc、Y、Zr、Hf、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)からなる群から選択される少なくとも1種の元素である。
 Eを含むことにより、電位窓が広く、高いイオン伝導度を有する固体電解質となる。Eとしては、よりイオン伝導度の高い固体電解質となるため、Al、Sc、Y、Zr、Hf、Laを含むことが好ましく、特にZr、Yを含むことが好ましい。
 式(1)で表される化合物において、bは0<b<2である。bは、Eを含むことによる効果がより効果的に得られるため、0.6≦bであることが好ましい。また、Eは、式(1)で表される化合物の骨格を形成する元素であり、比較的密度の大きい元素である。
bが、b≦1であると、密度の小さい固体電解質密度となるため、好ましい。
 式(1)で表される化合物において、Gは、必要に応じて含有される成分(基)であり、必ずしも含有されていなくてもよい。Gは、OH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、Oからなる群から選択される少なくとも1つの基である。
 式(1)で表される化合物がGを含むことにより、還元側の電位窓が広いものとなる。
Gとしては、Eとの間の共有結合性が強いことにより、Eイオンが還元されにくい化合物となるため、SO、BO、CO、BF、PFからなる群から選択される少なくとも1種の基であることが好ましく、特にSOであることが好ましい。詳細な理由は不明だが、EとGとの間の共有結合性が強いと、EとXとの間のイオン結合も強くなる。このため、化合物中のEイオンが還元されにくく、還元側の電位窓が広い化合物になるものと推定される。また、式(1)で表される化合物がGを含むことにより、結晶構造の歪みを生じさせてイオン電導度の更なる向上を図ることができる。
 式(1)で表される化合物において、cは0≦c≦6である。cは、Gを含む場合、還元側の電位窓が広くなる効果がより顕著となるため、0.5≦cであることが好ましい。cは、Gの含有量が多すぎることに起因する固体電解質のイオン伝導度の低下が生じないように、c≦3であることがより好ましい。
 式(1)で表される化合物において、Xは必須のハロゲン元素である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種以上である。Xは価数当たりのイオン半径が大きい。このため、式(1)で表される化合物がXを含むことにより、リチウムイオンが流れやすくなり、イオン伝導度が高くなるという効果が得られる。Xとして特にClを選択すれば、イオン伝導度の高い固体電解質にすることができる。
 式(1)で表される化合物においては、0<d≦6.1である。式(1)で表される化合物において、式(1)で表される化合物にXが含まれている場合、dは1≦dであることが好ましい。dが1≦dであると、固体電解質を加圧成形してペレット状に成形する場合に、十分な強度を有するペレットが得られるため、好ましい。また、dが1≦dであると、Xを含むことによるイオン伝導度が高くなる効果が十分に得られる。また、dは、Xの含有量が多すぎることによってGが不足して、固体電解質の電位窓が狭くならないように、d≦5であることが好ましい。
 式(1)で表される化合物においては、電位窓が広く、イオン伝導度の高い固体電解質となるため、AがLiであり、EがZrまたはYであり、GがSO、BO、COまたはBFであり、XがClである化合物が好ましい。具体的には、式(1)で表される化合物は、イオン伝導度と電位窓のバランスが良好な固体電解質となるため、LiZrSOCl、LiZrCOCl、LiZrBOCl、LiZrBFCl、LiYSOCl、LiYCOCl、LiYBOCl、LiYBFClから選ばれるいずれかであることが好ましい。
(負極)
 図1に示すように、負極2は、負極集電体2A上に、負極合剤層2Bが設けられたものである。こうした負極2は、上述した実施形態の負極、即ち、導電性炭素材料が3質量%以下、好ましくは導電性炭素材料を全く含まない負極合材層を有する負極を用いる。
(外装体)
 本実施形態の全固体電池10では、正極1と固体電解質層3と負極2とからなる電池要素は、外装体に収納され、密封されている。外装体は、外部から内部への水分などの侵入を抑止できるものであればよく、特に限定されない。
 例えば、外装体として、金属箔の両面を高分子フィルムでコーティングしてなる金属ラミネートフィルムを、袋状に形成したものを用いることができる。このような外装体は、開口部をヒートシールすることにより密閉される。
 金属ラミネートフィルムを形成している金属箔としては、例えばアルミニウム箔、ステンレス箔などを用いることができる。外装体の外側に配置される高分子フィルムとしては、融点の高い高分子を用いることが好ましく、例えばポリエチレンテレフタレート(PET)、ポリアミドなどを用いることが好ましい。外装体の内側に配置される高分子フィルムとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)などを用いることが好ましい。
(外部端子)
 電池要素の正極1には、正極端子が電気的に接続されている。また、負極2には、負極端子が電気的に接続されている。本実施形態では、正極集電体1Aに正極端子が電気的に接続されている。また、負極集電体2Aに負極端子が電気的に接続されている。正極集電体1Aまたは負極集電体2Aと、外部端子(正極端子および負極端子)との接続部分は、外装体の内部に配置されている。
 外部端子としては、例えば、アルミニウム、ニッケルなどの導電材料で形成されたものを用いることができる。
 外装体と外部端子との間には、無水マレイン酸をグラフト化したPE(酸変性PE)、または無水マレイン酸をグラフト化したPP(酸変性PP)からなるフィルムが配置されていることが好ましい。酸変性PEまたは酸変性PPからなるフィルムの配置されている部分が、ヒートシールされていることにより、外装体と外部端子との密着性が良好な全固体電池となる。
[全固体電池の製造方法]
 次に、本実施形態にかかる全固体電池の製造方法について説明する。
 まず、本実施形態の全固体電池10に備えられている固体電解質層3を準備する。本実施形態では、固体電解質層3の材料として、粉末の状態の固体電解質を用いる。固体電解質層3は、粉末形成法を用いて作製できる。
 また、例えば、正極集電体1A上に、正極活物質を含むペーストを塗布し、乾燥させて正極合剤層1Bを形成することにより、正極1を製造する。また、例えば、負極集電体2A上に、負極活物質を含むペーストを塗布し、乾燥させて負極合剤層2Bを形成することにより、上述した実施形態の負極2を製造する。
 次いで、例えば、正極1の上に、穴部を有するガイドを設置し、ガイド内に固体電解質を充填する。その後、固体電解質の表面をならし、固体電解質の上に負極2を重ねる。このことにより、正極1と負極2との間に固体電解質が挟まれる。その後、正極1および負極2に圧力を加えることで、固体電解質を加圧成形する。加圧成形されることにより、正極1と固体電解質層3と負極2が、この順に積層された積層体が得られる。
 次に、積層体を形成している正極1の正極集電体1Aおよび負極2の負極集電体2Aに、それぞれ公知の方法により外部端子を溶接し、正極集電体1Aまたは負極集電体2Aと外部端子とを電気的に接続する。その後、外部端子と接続された積層体を外装体に収納し、外装体の開口部をヒートシールすることにより密封する。
 以上の工程により、本実施形態の全固体電池10が得られる。
 上述した全固体電池10の製造方法では、粉末の状態の固体電解質を用いる場合を例に挙げて説明したが、固体電解質として、焼結体の状態の固体電解質を用いてもよい。
 この場合、焼結体の状態の固体電解質を、正極1と負極2との間に挟んで、加圧成形する方法により、固体電解質層3を有する全固体電池10が得られる。
 以上、本発明の一実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 本発明の負極の効果を検証した。
 表1、表2に示す質量比で導電助剤(導電性炭素材料源)を含むか、あるいは導電助剤を含まない負極の固体電解質材料(実施例1~実施例43、比較例1~12)を作成した。固体電解質材料の作成は、それぞれの重量比で所定の原材料を含む原料粉末を、遊星型ボールミル装置を用いて、自転回転数500rpm、公転回転数500rpmとし、自転の回転方向と公転の回転方向とを逆方向として24時間混合する方法により、粉末状態の固体電解質材料を製造した。
 次に、この負極の固体電解質材料を用いて負極を作成した。そして、それぞれ作成した負極を用いて、全固体電池を組み立てた。
 全固体電池の作製は、露点-70℃以下のアルゴン雰囲気としたグローブボックス内で行った。まず、樹脂ホルダーに下パンチを挿入し、樹脂ホルダーの上から固体電解質を投入し、固体電解質の上に上パンチを挿入した。このセットをプレス機に載置して固体電解質を加圧成形した。このセットをプレス機から取り出し、上パンチを取り外した後、樹脂ホルダー内の固体電解質(ペレット状)の上に正極合剤を投入し、その上に上パンチを挿入し、プレス機にセットを静置して加圧成形した。次に、セットを取り出し、上下を逆にして下パンチを取り外した。そして、固体電解質の上に、実施例1~実施例43、比較例1~12の負極の固体電解質材料をそれぞれ含む負極合剤を投入し、その上に下パンチを挿入し、プレス機にセットを静置して加圧成形した。
 その後、樹脂ホルダーの中に、正極と固体電解質と負極とがこの順に積層された電池試料(実施例1~実施例43、比較例1~12)を作製した。上下パンチの側面のネジ穴に、充放電用の端子としてネジを差し込んだ。
 電池試料を封入する外装体の材料として、アルミニウムラミネート材料を準備した。アルミニウムラミネート材料は、PET/Al/PPからなる。PETはポリエチレンテレフタレート、PPはポリプロピレンである。このアルミラミネート材料をA4サイズにカットし、PPが内面となるように、長辺の真ん中で折り返した。
 正極端子として、アルミニウム箔を準備した。また、負極端子として、ニッケル箔を準備した。これらの外部端子(正極端子および負極端子)にそれぞれ酸変性PPを巻き付け、外装体に熱接着した。これは外部端子と外装体とのシール性を向上させるためである。
 そして、折り返したアルミラミネート材料の対向している2辺のそれぞれ中程に、正極端子および負極端子をアルミラミネート材料で挟むように設置し、ヒートシールした。その後、外装体の中に前記セットを挿入し、上パンチの側面のネジと外装体内の正極端子とをリード線で接続することにより、正極と正極端子とを電気的に接続した。また、下パンチの側面のネジと外装体内の負極端子とをリード線で接続することにより、負極と負極端子とを電気的に接続した。その後、外装体の開口部をヒートシールして、実施例1~実施例43、比較例1~12の全固体電池を得た。
 それぞれの全固体電池の充放電試験は、25℃の恒温槽内で行った。そして、1回目の充電容量と、1回目の放電容量を測定し、この値から初期充放電効率を算出した。
 この結果を表1(実施例1~20)、表2(実施例21~43)、表3(比較例1~12)に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表1~3において、各材料の略号は以下の通りである。
LCO:LiCoO
LTO:LiTi12
LZSOC:LiZrSOCl
LZSOF:LiZrSO
LZSOI:LiZrSO
KS-6:導電性グラファイト
SuperP:導電性カーボンブラック
 また、実施例1、比較例5に関して、それぞれ不可逆容量を比較したグラフを図2に示す。
 上述した検証結果によれば、本発明例である実施例の全固体電池は、いずれも初回充放電効率が最低でも70%を超え、最大で95.1%に達するなど、優れた初回充放電効率、即ち不可逆容量が非常に小さいことが確認された。
 一方、従来例である比較例の全固体電池は、いずれも初回充放電効率が70%未満であり、最小で47.5%程度に留まった。
 以上の結果から、本願発明のように、負極合材層の組成中の導電性炭素材料を3質量%以下にした負極を用いることで、不可逆容量が非常に小さい全固体電池を実現することが可能になる。
 本発明は、EV(電気自動車)やHEV(ハイブリッド電気自動車)等の車両、携帯電話、ノートパソコン等の電子機器などの電池として適用可能な、充放電サイクルにおける不可逆容量を低減し充放電効率を向上させる負極、およびこれを備えた全固体電池を提供する。よって、産業上の利用可能性を有する。
 1…正極、1A…正極集電体、1B…正極合剤層、2…負極、2A…負極集電体、2B…負極合剤層、3…固体電解質層、10…全固体電池。

Claims (8)

  1.  負極集電体と、前記負極集電体の一面に形成される負極合材層とを備えた電池の負極であって、
     前記負極合材層は、負極活物質材料と、固体電解質材料とを有し、
     前記固体電解質材料は式(1)で表される化合物であり、
     前記負極合材層の組成中の導電性炭素材料は3質量%以下である、負極。
    ・・・(1)
    (式(1)中において、AはLi、K、Naからなる群から選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOB、(COO)、N、AlCl、CFSO、CHCOO、CFCOO、Oからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1である。)
  2.  前記固体電解質材料の質量をx、前記導電性炭素材料の質量をyとしたときに、前記固体電解質材料と前記導電性炭素材料との組成比は、式(2)を満たす、請求項1に記載の負極。
    y/x≦0.3・・・(2)
  3.  前記負極活物質材料は、チタン酸リチウムである、請求項1または2に記載の負極。
  4.  式(1)中のXは、Clである、請求項1または2に記載の負極。
  5.  前記負極合材層の組成中に前記導電性炭素材料を含ませない、請求項1または2に記載の負極。
  6.  前記導電性炭素材料は、グラファイト系材料である、請求項1または2に記載の負極。
  7.  前記負極に含まれる前記固体電解質材料の含有割合は、10質量%以上、40質量%以下である、請求項1または2に記載の負極。
  8.  請求項1または2に記載の負極と、固体電解質層と、正極と、を備える、全固体電池。
PCT/JP2023/032352 2022-09-14 2023-09-05 負極、全固体電池 WO2024058004A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145928A JP2024041233A (ja) 2022-09-14 2022-09-14 負極、全固体電池
JP2022-145928 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024058004A1 true WO2024058004A1 (ja) 2024-03-21

Family

ID=90274862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032352 WO2024058004A1 (ja) 2022-09-14 2023-09-05 負極、全固体電池

Country Status (2)

Country Link
JP (1) JP2024041233A (ja)
WO (1) WO2024058004A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022110517A (ja) * 2021-01-18 2022-07-29 Tdk株式会社 活物質層、負極及び全固体電池
JP2022153951A (ja) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 全固体電池
JP7194299B1 (ja) * 2022-03-15 2022-12-21 積水化学工業株式会社 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7234450B1 (ja) * 2022-08-30 2023-03-07 積水化学工業株式会社 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022110517A (ja) * 2021-01-18 2022-07-29 Tdk株式会社 活物質層、負極及び全固体電池
JP2022153951A (ja) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 全固体電池
JP7194299B1 (ja) * 2022-03-15 2022-12-21 積水化学工業株式会社 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7234450B1 (ja) * 2022-08-30 2023-03-07 積水化学工業株式会社 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Also Published As

Publication number Publication date
JP2024041233A (ja) 2024-03-27

Similar Documents

Publication Publication Date Title
JP6892492B2 (ja) 二次電池、電池パック及び車両
CN114207895B (zh) 固体电解质、固体电解质层以及固体电解质电池
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP5178111B2 (ja) 非水電解質電池およびパック電池
JP5079461B2 (ja) リチウムイオン二次電池用正極、その製造方法及びリチウムイオン二次電池
JP6696692B2 (ja) 電極、非水電解質電池、電池パック及び車両
WO2013136446A1 (ja) リチウムイオン伝導性酸化物、固体電解質二次電池および電池パック
WO2013140565A1 (ja) 電気化学セル、電気化学セルの製造方法、電池パック及び車
US10923708B2 (en) Fiber-reinforced sintered electrode
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
WO2012111546A1 (ja) 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
JP7055899B2 (ja) 電極、電池、及び電池パック
JP6947321B1 (ja) 電池及び電池の製造方法
US20180254486A1 (en) Negative electrode active material, negative electrode and lithium ion secondary battery
JP5585834B2 (ja) リチウムイオン二次電池
JP2022110517A (ja) 活物質層、負極及び全固体電池
WO2023127357A1 (ja) 固体電解質電池用負極及び固体電解質電池
JP7069938B2 (ja) リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
WO2022154112A1 (ja) 電池及びその製造方法
WO2024058004A1 (ja) 負極、全固体電池
WO2023026482A1 (ja) 電極、電池、及び電池パック
WO2015159331A1 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP2023161442A (ja) 電極及び全固体電池
JP2012043658A (ja) リチウムイオン二次電池とその製造方法
CN114342118A (zh) 全固体电池用负极和全固体电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865359

Country of ref document: EP

Kind code of ref document: A1