WO2021261105A1 - 測定装置、曲げ加工機、及び測定方法 - Google Patents

測定装置、曲げ加工機、及び測定方法 Download PDF

Info

Publication number
WO2021261105A1
WO2021261105A1 PCT/JP2021/018155 JP2021018155W WO2021261105A1 WO 2021261105 A1 WO2021261105 A1 WO 2021261105A1 JP 2021018155 W JP2021018155 W JP 2021018155W WO 2021261105 A1 WO2021261105 A1 WO 2021261105A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
color
unit
image
laser beam
Prior art date
Application number
PCT/JP2021/018155
Other languages
English (en)
French (fr)
Inventor
佳光 窪内
秀貢 河合
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to JP2022532390A priority Critical patent/JP7367874B2/ja
Publication of WO2021261105A1 publication Critical patent/WO2021261105A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a measuring device, a bending machine, and a measuring method.
  • a bending machine equipped with a measuring device for irradiating a workpiece after bending with a laser beam and measuring the bending angle of the workpiece by a measuring unit based on an image of the laser beam on the surface of the workpiece is disclosed (patented). See Document 1).
  • the bending machine of Patent Document 1 includes a lower mold, an upper mold that moves up and down above the lower mold, a light source, and a CCD camera.
  • a light source a CCD camera.
  • slit light such as a monochromatic laser beam is applied to the work after bending.
  • the image of the slit light emitted onto the work is captured by a CCD camera, and the tilt angle of the slit light is measured by image processing to detect the bending angle of the work.
  • the measuring device includes an irradiation unit capable of irradiating a bent work with a laser beam of a plurality of colors and irradiating a laser beam of one or a plurality of colors among the laser beams of the plurality of colors.
  • the bending machine includes a bending processing portion for bending the work by sandwiching the work between the upper mold and the lower mold, and a measuring device according to the above-described aspect.
  • the measuring method according to the aspect of the present invention is to irradiate the work bent by the bending portion with the laser light of any one or a plurality of colors of the laser light of a plurality of colors, and to irradiate the work with the laser light. Including measuring the bending angle of the work based on.
  • the irradiation unit can irradiate the bent work with the laser light of any one or a plurality of colors of the laser beams of a plurality of colors, the workpiece is bent.
  • the laser light on the surface of the work can be reliably measured by the measuring unit. That is, the measurement accuracy of the bending angle of the work can be improved regardless of the color of the work.
  • the measuring device of the above aspect may include a selection unit that selects the color of the laser beam emitted from the irradiation unit to be different from the color of the work based on the color of the work.
  • a selection unit that selects the color of the laser beam emitted from the irradiation unit to be different from the color of the work based on the color of the work.
  • the color of the laser beam emitted from the irradiation unit is selected to be different from the color of the work based on the discriminator for discriminating the color of the work and the color of the work discriminated by the discriminating unit. It may be provided with a selection unit to be used.
  • the irradiation unit irradiates laser light of a plurality of different colors, and the measuring unit bends the work based on the laser light that can be identified on the surface of the work among the laser light of the plurality of colors. The angle may be measured.
  • the bending angle of the work can be measured by the measuring unit based on the laser light of any color regardless of the color of the work.
  • the irradiation unit may irradiate the work with a laser beam so as to form a linear image.
  • the bending angle can be easily measured by the measuring unit by using the linear image by the laser beam.
  • two colors of laser light are irradiated to form adjacent rectangular images in the work, and the measuring unit bends the work based on the boundary between the adjacent rectangular images. The angle may be measured.
  • the adjacent rectangular images are formed by irradiating the laser beams of two colors, the boundary becomes linear, and by using the boundary, the measuring unit of the work is used regardless of the color of the work. The bending angle can be measured reliably.
  • the work is irradiated with the laser beam of the first color to form a rectangular image
  • the laser beam of the second color identifiable with respect to the first color is rectangular.
  • the inside of the image of the shape may be irradiated to form a linear image
  • the measuring unit may measure the bending angle of the work based on the linear image.
  • the linear image of the second color becomes clear in the rectangular image of the first color. Therefore, by using this linear image, the laser beam of the second color becomes the color of the work. Even if it is difficult to identify, the bending angle of the work can be reliably measured by the measuring unit.
  • FIG. 1 It is a schematic diagram which shows an example of the measuring apparatus and bending machine of 1st Embodiment. An example of a method of calculating the inclination of the work is shown, (A) is a diagram showing a state before the work is tilted, and (B) is a diagram showing a state in which the work is tilted. It is a schematic diagram which shows an example of the measuring apparatus and bending machine of 2nd Embodiment. This is an example of a selection table for the color of the work and the color of the laser beam stored in the storage unit of the second embodiment. It is a flow chart which shows an example of the measurement method which concerns on 2nd Embodiment.
  • FIG. 1 is a schematic view showing an example of the measuring device 30 and the bending machine 10 of the present embodiment.
  • the bending machine 10 includes a bending unit 20 and a measuring device 30.
  • the bending machine 10 bends the work W by the bending unit 20, and measures the bending angle of the work W bent by the measuring device 30.
  • the work W will be described by taking a foldable plate-shaped work W as an example.
  • the bending angle is an angle ⁇ between one piece W1 and the other piece W2 sandwiching the bending line of the plate-shaped work W bent into a V shape, for example. It may be the inclination of one piece W1 of the work W with respect to the reference plane (for example, a horizontal plane or a vertical plane).
  • the bending portion 20 has an upper die 22, a lower die 24, and a drive source (not shown).
  • the upper mold 22 is a mold that is arranged downward at the lower end of the ram 21 via a holder (not shown) and has a lower end portion having a V-shaped cross section.
  • the ram 21 is held so as to be able to move up and down by a guide (not shown) or the like.
  • the lower mold 24 is a mold that is arranged below the upper mold 22 in the vertical direction (Z direction) at the upper end of the table 23 and has a V-shaped groove 24A into which the lower end portion of the upper mold 22 enters. ..
  • the table 23 is placed, for example, on the floor of a building.
  • the upper die 22 is driven by a drive source and moves up and down (moves in the vertical direction).
  • the upper mold 22 and the lower mold 24 shown in the figure are examples, and other forms of the upper mold 22 and the lower mold 24 may be applied.
  • the bending section 20 bends the work W by sandwiching the work W between the upper die 22 and the lower die 24.
  • the upper die 22 is raised and lowered by the drive source, but the upper die 22 may be fixed and the lower die 24 may be raised and lowered by the drive source, and the upper die 22 and the lower die 24 may be raised and lowered. Both may be configured to move up and down depending on the drive source.
  • the measuring device 30 has an irradiation unit 32, a measuring unit 100, and a control unit 36.
  • the irradiation unit 32 irradiates the bent work W with the laser beam L of any one of the plurality of colors or the laser beam L of a plurality of colors.
  • the measuring unit 100 measures the bending angle ⁇ of the work W based on the laser beam L applied to the work W.
  • the control unit 36 controls the irradiation unit 32 and the image pickup unit 34 of the measurement unit 100 described later.
  • the irradiation unit 32 and the image pickup unit 34 are fixed by a table, a stay (not shown), or the like. This table or stay may be connected to the frame (not shown) of the table 23 or the bending machine 10 so that the relative positions of the irradiation unit 32 and the imaging unit 34 and the bending unit 20 do not shift.
  • the irradiation unit 32 is arranged at a position corresponding to one outer surface W12 of the work W bent into a V shape.
  • the irradiation unit 32 may be arranged so as to irradiate the outer surface W12 with the laser beam L from diagonally below, or may be arranged so as to irradiate the outer surface W12 with the laser beam L from the horizontal direction. Then, the irradiation unit 32 irradiates the laser beam L so as to form an image I forming a straight line on one outer surface W12 of the work W bent into a V shape.
  • the irradiation unit 32 can irradiate the laser beam L of a plurality of colors, and irradiates the laser beam of any one of the laser beams L of the plurality of colors or the laser beam of the plurality of colors.
  • a device capable of irradiating laser light L of a plurality of colors (two or more colors, two or more different wavelength colors) such as a laser projector is applied to the irradiation unit 32.
  • the measurement unit 100 is formed by an image pickup unit 34 and a calculation unit 50 included in the control unit 36.
  • the details of the calculation unit 50 will be described later.
  • the image pickup unit 34 is arranged next to the irradiation unit 32 (away from the irradiation unit 32) at a position corresponding to one outer surface W12 of the work W bent into a V shape.
  • the image pickup unit 34 may be arranged so as to take an image I of the outer surface W12 from diagonally below, or may be arranged so as to take an image I of the outer surface W12 from the horizontal direction.
  • the irradiation unit 32 and the image pickup unit 34 may be set at the same height or may be set at different heights.
  • the image pickup unit 34 captures an image I formed on the outer surface W12 of the work W by the irradiation unit 32.
  • a device capable of capturing an image I such as a digital camera or a video camera equipped with an image sensor such as a CCD or CMOS, is applied to the image pickup unit 34.
  • the image pickup unit 34 may be a device capable of acquiring a color image, or may be a device capable of acquiring a specific two-color image.
  • the image pickup axis AX of the image pickup unit 34 deviates from the irradiation axis LX of the laser beam L irradiated by the irradiation unit 32 (that is, the optical axis of the irradiation optical system in the irradiation unit 32). Both intersect on the outer surface W12 of the work W. However, the image pickup axis AX of the image pickup unit 34 and the irradiation axis LX of the irradiation unit 32 do not have to intersect.
  • the control unit 36 has a selection unit 40 and a calculation unit 50.
  • the selection unit 40 is connected to the irradiation unit 32 and selects the color of the laser beam L irradiated by the irradiation unit 32.
  • the calculation unit 50 measures the bending angle ⁇ of the work W based on the image I imaged by the image pickup unit 34, that is, based on the laser beam L irradiated to the work W. As described above, the combination of the image pickup unit 34 and the calculation unit 50 is the measurement unit 100. The method of measuring the bending angle ⁇ of the work W by the measuring unit 100 will be described later.
  • the work W before machining is placed at a predetermined position of the lower mold 24.
  • the work W is sandwiched between the upper die 22 and the lower die 24 and bent.
  • the processed work W is bent into a V shape.
  • both before and after bending are referred to as work W, and appropriately referred to as work W before machining and work W after bending.
  • the irradiation unit 32 controlled by the control unit 36 irradiates the outer surface W12 of the work W with the laser light L of any one color or the plurality of colors of the laser light L of a plurality of colors, and displays the image I on the outer surface W12.
  • the color of the laser beam L irradiated by the irradiation unit 32 is, for example, the color selected from the selection unit 40 by the measurer.
  • the measurer may select the laser beam L having a color different from the color of the outer surface W12 of the work W based on the color of the work W by the image pickup unit 34.
  • the measurer may select the color of the laser beam L that can distinguish the image I and the portion other than the image I on the outer surface W12 of the work W.
  • different colors are used to mean that at least one of lightness, saturation, and chromaticity is different between the two colors to be compared.
  • the calculation unit 50 analyzes the distribution of the light intensity of the linear image I from the image captured by the image pickup unit 34, and compares the orientation of the image I in the image with a predetermined position.
  • the inclination of the image I is calculated.
  • 2A and 2B show an example of a method of calculating the inclination of the work W
  • FIG. 2A is a diagram showing a state before the work W is tilted
  • FIG. 2B is a diagram showing a state in which the work W is tilted.
  • the image I of the laser beam L is captured in the image 35 by the image sensor of the image pickup unit 34.
  • the direction indicated by the longitudinal direction of this image IA is the horizontal direction.
  • the image I of the laser beam L is acquired as the image IB in the image 35. Will be done.
  • the calculation unit 50 calculates the angle between the image IA and the image IB to calculate the tilt angle ⁇ 1 of the piece W1.
  • This angle ⁇ 1 is an inclination angle of one piece W1 with respect to the horizontal direction. Therefore, the inclination angle ⁇ 2 of the piece W1 with respect to the vertical direction is expressed by 90 ° ⁇ 1.
  • a predetermined position in the image 35 is set in advance as a reference position, and the tilt angle ⁇ 1 (or angle ⁇ 2) of the piece W1 is set from the angle between the reference position and the image IB. It may be calculated.
  • the calculation unit 50 can obtain the bending angle ⁇ between the piece W1 and the piece W2 by obtaining ⁇ 2 ⁇ 2 obtained by doubling the inclination angle ⁇ 2 calculated above. That is, the measuring unit 100 measures the bending angle ⁇ of the work W based on the laser beam L applied to the work W.
  • the measurement of the bending angle by the measuring unit 100 described above is an example, and is not limited to this method.
  • the irradiation unit 32 and the imaging unit 34 are arranged on both the one-sided W1 side and the one-sided W2 side of the work W, and the tilt angle of the one-sided W1 with respect to the vertical direction and the tilting angle of the one-sided W2 with respect to the vertical direction are calculated individually.
  • the bending angle between the one piece W1 and the one piece W2 may be obtained by adding the two angles.
  • the irradiation unit 32 can irradiate the work W with the laser beam L of any one of the plurality of colors or the laser beam L of a plurality of colors.
  • the color of the laser beam L irradiated by the irradiation unit 32 can be set to be different from the color of the work W (so that the image pickup unit 34 can be identified). Therefore, the measuring device 30 of the present embodiment can reliably measure the laser beam L on the surface of the work W by the measuring unit 100. That is, the measuring device 30 can improve the measurement accuracy of the bending angle ⁇ of the work W regardless of the color of the work W. Further, the measuring method of the present embodiment can improve the measurement accuracy of the bending angle ⁇ of the work W regardless of the color of the work W.
  • FIG. 3 is a schematic view showing an example of the measuring device 30A and the bending machine 10A of the present embodiment.
  • FIG. 4 is an example of the selection table 62 which is the data stored in the storage unit 60 of the present embodiment.
  • the selection table 62 is a data table in which the color of the work W and the color of the laser beam L are associated with each other.
  • FIG. 5 is a flow chart showing an example of the measurement method according to the present embodiment.
  • the bending machine 10A of the present embodiment includes a bending section 20 and a measuring device 30A.
  • the measuring device 30A has an irradiation unit 32, a measuring unit 100, and a control unit 36A.
  • the control unit 36A has a storage unit 60 in addition to the components (selection unit 40 and calculation unit 50) of the control unit 36 of the first embodiment. Further, the control unit 36A is connected to the host device 70 wirelessly or by wire, and can acquire various information from the host device 70.
  • the host device 70 sends information (material, dimension, color, etc.) about the work W to the control unit 36A as a part of the information.
  • the storage unit 60 stores a color selection table 62 for the laser beam L to irradiate the irradiation unit 32 with respect to the color of the work W.
  • the correspondence between the color of the work W and the color of the laser beam L in the selection table 62 of FIG. 4 is only an example. This correspondence is determined so that the color of the image I imaged by the image pickup unit 34 (the color of the laser beam L) is different from the color of the work W, or the image I can be identified by the image pickup unit 34. It is set based on the color difference or the specified light intensity. As described above, the host device 70 is connected to the control unit 36A, and transmits the color information of the work W to the control unit 36A as information regarding the work W.
  • the host device 70 stores the color information of each workpiece in the machining order, and the color of the workpiece is stored. Information may be sequentially sent to the control unit 36A.
  • the control unit 36A acquires the color information of the work W from the host device 70 (S10).
  • the control unit 36A selects the color of the laser beam L irradiated by the irradiation unit 32 based on the color information of the work W acquired from the host device 70 and the selection table 62 stored in the storage unit 60. Let the unit 40 select (S20).
  • the control unit 36A irradiates the color of the laser beam L selected by the selection unit 40 with the irradiation unit 32 (S30).
  • the control unit 36A causes the image pickup unit 34 to image the image I formed on the outer surface W12 of the work W (S40).
  • control unit 36A causes the arithmetic unit 50 to analyze the distribution of the light intensity of the linear image I from the image captured by the image pickup unit 34, and determines the inclination of the image I based on the orientation of the image I in the image. calculate.
  • the calculation unit 50 calculates the tilt angle of the piece W1 of the work W from the tilt of the image I, and calculates the bending angle ⁇ between the piece W1 and the piece W2 from the tilt angle of the piece W1. That is, the measuring unit 100 measures the bending angle ⁇ of the work W between the piece W1 and the piece W2 based on the laser beam L applied to the work W (S50).
  • the measuring device 30A of the present embodiment is irradiated from the irradiation unit 32 so as to be different from the color of the work W on the outer surface W12 of the work W (so that the laser beam L can be identified) based on the color of the work W. Select the color of the laser beam L. Therefore, the measuring device 30A can accurately measure the bending angle ⁇ of the work W by automatically selecting a different (identifiable) laser beam L according to the color of the work W. Further, since the measuring device 30A includes a storage unit 60 for storing the selection table 62, the color of the laser beam L irradiated by the irradiation unit 32 does not need to be set by the measurer, unlike the first embodiment. That is, the color of the laser beam L is automatically set.
  • FIGS. 6 and 7 the parts of the present embodiment that differ from the second embodiment (see FIGS. 3 to 5) will be described.
  • the same names and reference numerals are used. It will be explained using.
  • FIG. 6 is a schematic view showing an example of the measuring device 30B and the bending machine 10B of the present embodiment.
  • FIG. 7 is a flow chart showing an example of the measurement method according to the present embodiment.
  • the bending machine 10B of the present embodiment includes a bending section 20 and a measuring device 30B.
  • the measuring device 30B has an irradiation unit 32, a measuring unit 100, and a control unit 36B.
  • the control unit 36B has a discrimination unit 80 in addition to the components (selection unit 40, calculation unit 50, and storage unit 60) of the control unit 36A of the second embodiment.
  • the discrimination unit 80 is connected to the image pickup unit 34, and discriminates the color of the work W imaged by the image pickup unit 34.
  • the control unit 36B may be connected to the host device 70 (see FIG. 3).
  • the control unit 36B causes the image pickup unit 34 to image the outer surface W12 of the work W (S110).
  • the control unit 36B causes the discrimination unit 80 to discriminate the color of the work W based on the information of the work W imaged by the image pickup unit 34 (S120).
  • the control unit 36B selects the color of the laser beam L irradiated by the irradiation unit 32 based on the color information of the work W determined by the discrimination unit 80 and the selection table 62 stored in the storage unit 60. Let the unit 40 select (S130).
  • control unit 36B irradiates the color of the laser beam L selected by the selection unit 40 with the irradiation unit 32 (S140).
  • control unit 36B causes the image pickup unit 34 to image the image I formed on the outer surface W12 of the work W (S150).
  • control unit 36A analyzes the distribution of the light intensity of the linear image I captured by the image pickup unit 34, and calculates the tilt angle of the image I based on the orientation of the image I in the image.
  • the calculation unit 50 calculates the tilt angle ⁇ 1 of the piece W1 of the work W from the tilt of the image I, and calculates the bending angle ⁇ between the piece W1 and the piece W2 from the tilt angle of the piece W1. That is, the measuring unit 100 measures the bending angle ⁇ of the work W based on the laser beam L applied to the work W (S160).
  • the measuring device 30B of the present embodiment includes a discriminating unit 80 for discriminating the color of the work W. Therefore, the measuring device 30B can automatically select the laser beam L (identifiable laser beam L) whose color is different according to the color of the work W discriminated by the discriminating unit 80 by the selection unit 40. That is, it is not necessary for the measurer to set the color of the laser beam L. Further, since the measuring device 30B causes the image pickup unit 34 to image the color of the work W and causes the discrimination unit 80 to discriminate the color of the work W, even if the color information of the work W is not known in advance (in the case of the second embodiment). The color of the laser beam L, which is different (identifiable) from the color of the work W, can be easily set without acquiring the color information of the work W from the host device 70 as described above.
  • control unit 36B may be connected to the host device 70 and acquire the color information of the work W from the host device 70.
  • the control unit 36B compares the color information of the work W acquired from the host device 70 with the color of the work W determined by the discrimination unit 80, confirms that both are the same, and then selects the selection unit.
  • the color of the laser beam L may be selected by 40, and the laser beam L may be irradiated from the irradiation unit 32.
  • FIG. 8 is a schematic view showing an example of the bending machine 10C and the measuring device 30C of the present embodiment.
  • the bending machine 10C of the present embodiment includes a bending section 20 and a measuring device 30C.
  • the measuring device 30C has an irradiation unit 32, a measuring unit 100, and a control unit 36.
  • the measuring device 30C has the same configuration as the measuring device 30 of the first embodiment.
  • the irradiation unit 32 irradiates laser beams LR, LG, and LB of a plurality of different colors (the colors of LR, LG, and LB are, for example, red, green, and blue, respectively).
  • the measuring unit 100 determines that the work W is based on the laser light L (any of the laser light LR, LG, LB) that can be identified by the outer surface W12 of the work W among the laser light LR, LG, and LB of a plurality of colors. Measure the bending angle ⁇ .
  • the irradiation unit 32 simultaneously irradiates different portions of the outer surface W12 of the work W with laser beams LR, LG, and LB of different colors to the outer surface W12.
  • Linear images IR, IG, and IB of different colors are formed so as not to overlap each other.
  • the irradiation unit 32 irradiates the laser beams LR, LG, and LB so that the linear images IR, IG, and IB are arranged side by side on the outer surface W12 and are parallel to each other.
  • the measuring unit 100 has a plurality of colors of laser light LR, LG.
  • the bending angle ⁇ of the work W is measured based on the laser light (any of the laser light LR, LG, and LB) identifiable by the outer surface W12 of the work W in the LB.
  • the identifiable laser light is, for example, laser light LG or LB.
  • the imaging unit 34 may be set to an angle of view so that linear images IR, IG, and IB lined up with each other can be simultaneously imaged, or along the arrangement direction of the linear images IR, IG, and IB. It may be movable (rotatable) so as to sequentially image images.
  • the imaging unit 34 simultaneously captures linear images IR, IG, and IB, and based on one or more image IRs, IGs, and IBs that can be identified from the images.
  • the bending angle ⁇ of the work W is measured by the calculation unit 50.
  • the image pickup unit 34 takes an image while moving along the arrangement direction of the linear images IR, IG, and IB, and when the distinguishable image IR, IG, and IB are imaged, the calculation unit 50 causes the work W to take an image. Measure the bending angle ⁇ .
  • the irradiation unit 32 irradiates laser beams LR, LG, and LB of different colors. Therefore, the measuring device 30C can measure the bending angle ⁇ of the work W based on the laser beams LR, LG, and LB of any color (red, green, and blue in the case of the present embodiment). Therefore, the measuring device 30C reliably obtains the bending angle ⁇ of the work W even if the color information of the work W is not known in advance (even if the color information of the work W is not acquired from the host device 70 (see FIG. 3)). Can be measured. Further, since the measuring device 30C does not need to include the discrimination unit 80 and the storage unit 60 (see FIG. 6) for storing the selection table 62, the control unit 36 can be simplified.
  • the number of colors of the laser beams LR, LG, and LB of a plurality of colors is set to 3 colors, but 2 colors or 4 or more colors may be used. Even in this form, the bending angle ⁇ of the work W can be reliably measured as described above. Further, in the present embodiment, the timing at which the irradiation unit 32 irradiates the outer surface W12 of the work W with the laser beams LR, LG, and LB of a plurality of colors is set at the same time, but this timing does not have to be the same.
  • the image pickup unit 34 obtains an image in the same manner as described above, for example, by taking an image at a shutter speed that includes times of different timings, or by taking an image of a moving image that includes times of different timings. Therefore, the bending angle ⁇ of the work W can be reliably measured.
  • the irradiation unit 32 irradiates the outer surface W12 with the laser beams LR, LG, and LB so that the linear images IR, IG, and IB do not overlap each other, but the laser beams LR, LG, and LB are applied to the outer surface. It may be in the form of irradiating the same position of W12 at different timings.
  • the image pickup unit 34 may take an image at the timing of irradiating the laser beams LR, LG, and LB, and measure the bending angle ⁇ of the work W based on the image I that can be identified from each image. ..
  • FIG. 9 is a schematic view showing an example of the bending machine 10D and the measuring device 30D of the present embodiment.
  • the bending machine 10D of the present embodiment includes a bending section 20 and a measuring device 30D.
  • the measuring device 30D has an irradiation unit 32, a measuring unit 100, and a control unit 36.
  • the measuring device 30D has the same configuration as the measuring device 30 of the first embodiment.
  • the irradiation unit 32 irradiates the laser beams LW and LK of two colors (the colors of LW and LK are, for example, white and black, respectively) on the outer surface W12 of the work W.
  • a plurality of adjacent rectangular images IW and IK are formed.
  • the measuring unit 100 measures the bending angle ⁇ of the work W based on the boundary BL of the plurality of adjacent rectangular images IW and IK imaged by the imaging unit 34.
  • the irradiation unit 32 simultaneously irradiates the outer surface W12 of the work W with laser beams LW and LK of two colors, and a plurality of rectangular images IW arranged in a staggered pattern on the outer surface W12. , IKs are formed so as to be adjacent to each other.
  • the image pickup unit 34 captures a plurality of images IW and IK.
  • the calculation unit 50 calculates the direction of the boundary BL from the image captured by the image pickup unit 34 based on the boundary BL forming a straight line formed by a plurality of rectangular images IW and IK adjacent to each other, and the direction of the boundary BL.
  • the bending angle ⁇ of the work W is calculated by obtaining the tilt angle of the piece W1 from. That is, the measuring device 30D measures the bending angle ⁇ of the work W.
  • the bending angle ⁇ of the work W can be reliably measured as in the first embodiment described above.
  • the configuration of the measuring device 30D of the present embodiment may be combined with the configurations of the second to fourth embodiments described above.
  • a plurality of rectangular images IW and IK are arranged in a staggered pattern so as to be adjacent to each other, but the present invention is not limited to this embodiment.
  • one rectangular image IW extending in one direction and one rectangular image IK extending in one direction may be formed so as to be adjacent to each other.
  • FIG. 10 is a schematic view showing an example of the bending machine 10E and the measuring device 30E of the present embodiment.
  • the bending machine 10E of the present embodiment includes a bending section 20 and a measuring device 30E.
  • the measuring device 30E has an irradiation unit 32, a measuring unit 100, and a control unit 36.
  • the measuring device 30E has the same configuration as the measuring device 30 of the first embodiment.
  • the irradiation unit 32 irradiates the work W with the laser beam L1 of the first color to form a rectangular image I1, and the first color is identifiable.
  • a two-color laser beam L2 is applied to the inside of the rectangular image I1 to form a linear image I2.
  • the irradiation unit 32 irradiates the laser beam L1 of the first color and the laser beam L2 of the second color so as to superimpose the linear image I2 on the rectangular image I1.
  • the measuring unit 100 measures the bending angle ⁇ of the work W based on the linear image I2 in the rectangular image I1 imaged by the imaging unit 34.
  • the irradiation unit 32 irradiates the work W with the laser beam L1 of the first color to form a rectangular image I1.
  • the first color is black as an example.
  • the irradiation unit 32 irradiates the inside of the rectangular image I1 with the laser beam L2 of the second color (identifiable second color) different from the first color to form the linear image I2.
  • the second color is white as an example.
  • the image pickup unit 34 takes an image at an angle of view including at least a linear image I2.
  • the image pickup unit 34 may not be able to capture the entire rectangular image I1 as long as it can capture an image including the linear image I2.
  • the rectangular image I1 of the first color functions as a base for the linear image I2 of the second color. Therefore, even when the laser beam L2 of the second color is difficult to discriminate with respect to the outer surface W12, the linear image I2 can be discriminated by using the color of the rectangular image I1 as a base.
  • the image pickup unit 34 takes an image of the linear image I2 in the rectangular image I1.
  • the calculation unit 50 calculates the bending angle ⁇ of the work W by obtaining the tilt angle of the piece W1 based on the linear image I2 from the image captured by the image pickup unit 34. That is, the measuring device 30E measures the bending angle ⁇ of the work W.
  • the bending angle ⁇ of the work W can be reliably measured as in the first embodiment described above.
  • the configuration of the measuring device 30E may be combined with the configuration of the above-mentioned second to fifth embodiments.
  • the first color is black and the second color is white, but the present invention is not limited to this embodiment.
  • the first color may be white and the second color may be black.
  • the combination of the first color and the second color can be arbitrarily set as long as it is a second color that can be identified with respect to the first color that is the base.
  • the first color may be red and the second color may be green.
  • the present invention may omit some of the components described in these embodiments. Further, for example, in the present invention, another component may be added while a part of the components described in these embodiments is omitted. Further, for example, the present invention may appropriately combine a plurality of components described in these embodiments.
  • FIG. 11 is a flow chart showing an example of a measurement method according to a modified example.
  • the flow of the measurement method according to the second embodiment may be changed.
  • step S10 shown in FIG. 5 is changed to S210 for determining whether to select the color of the laser beam L and an affirmative determination is made in this step S210 (YES in step S210), it is the same as after step S20 in FIG. Have them perform the same steps.
  • a negative determination is made in step S210 (NO in step S210), as in the fourth embodiment (see FIG. 8), it is selected to irradiate the laser beam L of a plurality of colors (S230), and FIG.
  • the same steps as those in step S40 and subsequent steps may be executed.
  • step S130 in the flow of the measurement method (see FIG. 7), when the color of the laser beam L is selected in step S130 after the color of the work W is determined in step S120.
  • the embodiment using the selection table 62 has been described as an example, the present invention is not limited to this embodiment.
  • step S130 the laser beam L of a different color (CA, CB, CC, CD) is irradiated toward the work W from the irradiation unit 32 without using the selection table 62, and the laser light L of each color is irradiated by the measurement unit 100.
  • the light intensity of the image I may be measured, and the laser beam L having a color equal to or higher than the predetermined light intensity PLI may be used at the time of measurement.
  • the control unit 36B may store the defined light intensity PLI in the storage unit 60.
  • FIG. 12 is a graph showing an example of the relationship between the color of the laser beam L and the light intensity. As shown in FIG. 11, when the laser beam L of a color having a light intensity PLI or higher is the laser beam L of the colors CC and CD among the laser beams L of different colors emitted from the irradiation unit 32, the selection unit 40 May select the laser beam L of the colors CC and CD at the time of measurement.
  • the configuration in which the laser beam L of a plurality of colors can be irradiated from one irradiation unit 32 is described as an example, but the present invention is not limited to this embodiment.
  • a plurality of irradiation units that irradiate laser beams L having different colors may be collectively used as the irradiation unit 32 of the present embodiment.
  • the user irradiates the laser beam L from any one or more irradiation units, or the selection unit 40 irradiates the laser beam L from any one or more irradiation units, so that the laser light of a plurality of colors is emitted. It is possible to realize the irradiation unit 32 that irradiates the laser beam L of any one color or a plurality of colors of L.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

【課題】ワークの色に関わらず、ワークの曲げ角度の測定精度を向上させる。 【解決手段】測定装置30は、曲げ加工されたワークWに複数色のレーザ光Lを照射可能であり、複数色のレーザ光のうちいずれか一色又は複数色のレーザ光Lを照射する照射部32と、ワークWに照射されたレーザ光Lに基づいて、ワークWの曲げ角度θを測定する測定部100と、を備える。

Description

測定装置、曲げ加工機、及び測定方法
 本発明は、測定装置、曲げ加工機、及び測定方法に関する。
 曲げ加工後のワークに対してレーザ光を照射し、ワークの表面におけるレーザ光の像に基づいて測定部によりワークの曲げ角度を測定する測定装置を備えた曲げ加工機が開示されている(特許文献1参照)。特許文献1の曲げ加工機は、下型と、下型の上方で昇降する上型と、光源と、CCDカメラとを備えている。特許文献1によれば、ワークが上型と下型の間に挿入され、上型が降下すると、ワークは上型と下型とに挟まれて折り曲げられる。光源からは、単色のレーザ光等のスリット光が、曲げ加工後のワークに対して照射される。ワーク上に照射されたスリット光の像はCCDカメラによって撮像され、画像処理によってスリット光の傾斜角度が計測されることで、ワークの曲げ角度が検出される。
特許第2751614号公報
 特許文献1に開示されている折曲げ装置では、ワークに対して単色のレーザ光を照射しているため、ワークの色によっては照射したレーザ光(反射光)の視認性が悪い場合がある。そのため、CCDカメラによってスリット光の像を撮像しても、そのスリット光の像が背景(ワークの色)に紛れてしまい、撮像した画像から画像処理しても、測定された曲げ角度の測定精度が低い、又は測定不能となる場合がある。
 本発明は、ワークの色に関わらず、ワークの曲げ角度の測定精度を向上させることが可能な測定装置、曲げ加工機、及び測定方法を提供することを目的とする。
 本発明の態様に係る測定装置は、曲げ加工されたワークに複数色のレーザ光を照射可能であり、複数色のレーザ光のうちいずれか一色又は複数色のレーザ光を照射可能な照射部と、ワークに照射されたレーザ光に基づいて、ワークの曲げ角度を測定する測定部と、を備える。
 また、本発明の態様に係る曲げ加工機は、上型と下型との間にワークを挟み込むことにより前記ワークを曲げ加工する曲げ加工部と、上記した態様の測定装置と、を備える。
 本発明の態様に係る測定方法は、曲げ加工部により曲げ加工されたワークに複数色のレーザ光のうちいずれか一色又は複数色のレーザ光を照射することと、ワークに照射されたレーザ光に基づいて、ワークの曲げ角度を測定することと、を含む。
 本発明の態様に係る測定装置及び測定方法によれば、照射部が曲げ加工されたワークに複数色のレーザ光のうちいずれか一色又は複数色のレーザ光を照射可能であるので、曲げ加工するワークの色に対して識別可能な色のレーザ光を照射部から照射させることにより、ワーク表面のレーザ光を確実に測定部で測定することができる。すなわち、ワークの色に関わらず、ワークの曲げ角度の測定精度を向上できる。
 また、上記態様の測定装置において、ワークの色に基づいて、照射部から照射されるレーザ光の色をワークの色と異なる色に選択する選択部を備えてもよい。この態様によれば、選択部によりレーザ光の色をワークの色と異なる色に選択するので、ワークの色に応じて識別可能なレーザ光を容易に選択できる。また、上記態様の測定装置において、ワークの色を判別する判別部と、判別部により判別されたワークの色に基づいて、照射部から照射するレーザ光の色をワークの色と異なる色に選択する選択部と、を備えてもよい。この態様によれば、ワークの色を判別部によって判別するので、ワークの色を予め取得していない場合であっても識別可能なレーザ光を容易に選択できる。また、上記態様の測定装置において、照射部は、それぞれ異なる複数色のレーザ光を照射し、測定部は、複数色のレーザ光のうちワークの表面で識別可能なレーザ光に基づいてワークの曲げ角度を測定してもよい。この態様によれば、照射部がそれぞれ異なる複数色のレーザ光を照射するので、ワークの色に関わらず、測定部によりいずれかの色のレーザ光に基づいてワークの曲げ角度を測定できる。また、上記態様の測定装置において、照射部は、ワークに対して直線状の像を形成するようにレーザ光を照射してもよい。この態様によれば、レーザ光による直線状の像を用いることで、測定部により曲げ角度を容易に測定できる。また、上記態様の測定装置において、2色のレーザ光を照射して、ワークにおいて隣り合う矩形状の像を形成し、測定部は、隣り合う矩形状の像の境界に基づいて、ワークの曲げ角度を測定してもよい。この態様によれば、2色のレーザ光を照射して隣り合う矩形状の像を形成するのでその境界が直線状となり、その境界を用いることでワークの色に関わらず、測定部によりワークの曲げ角度を確実に測定できる。また、上記態様の測定装置において、ワークに対して第1色のレーザ光を照射して矩形状の像を形成し、かつ、第1色に対して識別可能な第2色のレーザ光を矩形状の像の内側に照射して直線状の像を形成し、測定部は、直線状の像に基づいて、ワークの曲げ角度を測定してもよい。この態様によれば、第1色の矩形状の像において第2色の直線状の像が明確となるので、この直線状の像を用いることで、第2色のレーザ光がワークの色と識別し難い場合であっても、測定部によりワークの曲げ角度を確実に測定することができる。
第1実施形態の測定装置及び曲げ加工機の一例を示す概略図である。 ワークの傾きを算出する方法の一例を示し、(A)はワークが傾く前の状態を示す図、(B)はワークが傾いた状態を示す図である。 第2実施形態の測定装置及び曲げ加工機の一例を示す概略図である。 第2実施形態の記憶部に保存されているワークの色とレーザ光の色との選択テーブルの一例である。 第2実施形態に係る測定方法の一例を示すフロー図である。 第3実施形態の測定装置及び曲げ加工機の一例を示す概略図である。 第3実施形態に係る測定方法の一例を示すフロー図である。 第4実施形態の測定装置及び曲げ加工機の一例を示す概略図である。 第5実施形態の測定装置及び曲げ加工機の一例を示す概略図である。 第6実施形態の測定装置及び曲げ加工機の一例を示す概略図である。 変形例に係る測定方法の一例を示すフロー図である。 レーザ光の色と光強度との関係の一例を示すグラフである。
 以下、複数の実施形態及び変形例について説明する。以下の説明で参照する図面では、その説明の容易化等の観点から、各構成要素等を実際の大きさと異なる大きさで記載する、他の構成要素に対して大きく記載する、他の構成要素に対して強調して記載する等、適宜縮尺を変更して表現する場合がある。
<第1実施形態>
 第1実施形態について図1を参照しながら説明する。図1は、本実施形態の測定装置30及び曲げ加工機10の一例を示す概略図である。曲げ加工機10は、図1に示すように、曲げ加工部20と、測定装置30とを備える。曲げ加工機10は、曲げ加工部20によってワークWに対して曲げ加工を行い、測定装置30によって曲げ加工されたワークWの曲げ角度を測定する。本実施形態において、ワークWは、折り曲げ可能な板状のワークWを例に挙げて説明する。また、ここで、曲げ角度とは、V字状に曲げ加工された板状のワークWの曲げ線を挟んだ一方の片W1と他方の片W2との間の角度θとするが、例えば、基準面(例えば水平面又は鉛直面)に対するワークWの片W1の傾きであってもよい。
 曲げ加工部20は、上型22と、下型24と、駆動源(図示省略)とを有する。上型22は、ラム21の下端にホルダ(図示省略)を介して下向きに配置され、横断面がV字状の下端部分を有する金型である。ラム21は、ガイド(図示省略)等によって昇降可能に保持されている。下型24は、テーブル23の上端において上型22に対して上下方向(Z方向)の下方に配置され、上型22の下端部分が入り込むV字状の溝24Aが形成された金型である。テーブル23は、例えば、建屋の床面等に載置される。上型22は、駆動源により駆動されて昇降する(上下方向に移動する)。なお、図示した上型22及び下型24は一例であり、他の形態の上型22及び下型24が適用されてもよい。
 曲げ加工部20は、上型22と下型24との間にワークWを挟み込むことによりワークWを曲げ加工する。前述の説明では上型22が駆動源により昇降する構成としたが、上型22が固定されかつ下型24が駆動源により昇降する構成であってもよいし、上型22及び下型24の双方が駆動源により昇降する構成であってもよい。
 測定装置30は、照射部32と、測定部100と、制御部36とを有する。照射部32は、曲げ加工されたワークWに複数色のレーザ光Lのうちいずれか一色又は複数色のレーザ光Lを照射する。測定部100は、ワークWに照射されたレーザ光Lに基づいて、ワークWの曲げ角度θを測定する。制御部36は、照射部32、及び後述する測定部100の撮像部34を制御する。照射部32及び撮像部34は、テーブル又はステー(図示省略)等により固定されている。このテーブル又はステーは、テーブル23又は曲げ加工機10のフレーム(図示省略)と連結され、照射部32及び撮像部34と、曲げ加工部20との相対位置がずれないようにしてもよい。
 照射部32は、一例として、V字状に曲げ加工されたワークWの一方の外側表面W12に対応する位置に配置されている。照射部32は、斜め下方からレーザ光Lを外側表面W12に照射するように配置されてもよいし、水平方向からレーザ光Lを外側表面W12に照射するように配置されてもよい。そして、照射部32は、V字状に曲げ加工されたワークWの一方の外側表面W12に直線を成す像Iを形成するように、レーザ光Lを照射する。また、照射部32は、複数色のレーザ光Lを照射可能であり、複数色のレーザ光Lのうちいずれか一色又は複数色のレーザ光を照射する。ここで、照射部32は、一例として,レーザプロジェクタ等の複数色(2色以上の色、異なる2以上の波長の色)のレーザ光Lを照射可能な装置が適用される。
 測定部100は、撮像部34と、制御部36に含まれる演算部50とにより形成される。なお、演算部50の詳細については後述する。撮像部34は、一例として、V字状に曲げ加工されたワークWの一方の外側表面W12に対応する位置であって照射部32の隣に(照射部32から離れて)配置されている。撮像部34は、斜め下方から外側表面W12の像Iを撮像するように配置されてもよいし、水平方向から外側表面W12の像Iを撮像するように配置されてもよい。また、照射部32と撮像部34とは、同じ高さに設定されてもよいし、異なる高さに設定されてもよい。
 撮像部34は、照射部32によってワークWの外側表面W12に形成される像Iを撮像する。ここで、撮像部34は、一例として、CCD、CMOS等のイメージセンサを備えるデジタルカメラ、ビデオカメラ等、像Iを撮像可能な装置が適用される。撮像部34は、カラー画像を取得可能な装置であってもよいし、特定の2色の画像を取得可能な装置であってもよい。撮像部34の撮像軸AX(すなわち撮像部34における撮像光学系の光軸)は、照射部32が照射するレーザ光Lの照射軸LX(すなわち照射部32における照射光学系の光軸)からずれており、ワークWの外側表面W12において双方が交差している。ただし、撮像部34の撮像軸AXと、照射部32の照射軸LXとは交差していなくてもよい。
 制御部36は、選択部40と、演算部50とを有する。選択部40は、照射部32に接続されており、照射部32が照射するレーザ光Lの色を選択する。演算部50は、撮像部34が撮像した像Iに基づいて、すなわち、ワークWに照射されたレーザ光Lに基づいて、ワークWの曲げ角度θを測定する。上述したように、撮像部34と演算部50との組合せが測定部100である。測定部100によるワークWの曲げ角度θの測定方法については後述する。
 次に、曲げ加工機10を用いたワークWの曲げ加工方法、及び実施形態に係る測定方法について、図1を参照しながら説明する。まず、下型24の定められた位置に加工前のワークWを配置する。次いで、駆動部により上型22を駆動させて上型22を下降させると、ワークWが上型22と下型24との間に挟み込まれて曲げ加工される。その結果、加工後のワークWは、V字状に曲げ加工される。なお、本実施形態では、曲げ加工前及び曲げ加工後の双方についてワークWと称し、適宜、加工前のワークW、曲げ加工後のワークWと称する。
 次いで、制御部36に制御された照射部32は、複数色のレーザ光Lのうちいずれか一色又は複数色のレーザ光LをワークWの外側表面W12に照射し、外側表面W12に像Iを形成させる。この場合、照射部32が照射するレーザ光Lの色は、一例として測定者が選択部40から選択した色となる。具体的には、測定者は、撮像部34がワークWの色に基づいて、ワークWの外側表面W12の色と異なる色のレーザ光Lを選択すればよい。すなわち、測定者は、ワークWの外側表面W12における像Iと像I以外の部分とを識別可能なレーザ光Lの色を選択すればよい。ここで、色が異なるとは、比較対象となる2色において、明度、彩度、色度の少なくとも一つが異なることの意味で用いている。次いで、測定部100では、撮像部34によって像Iを撮像し、演算部50によって撮像部34によって撮像された像Iに基づいてワークWの曲げ角度θを測定する。
 具体的には、演算部50は、撮像部34が撮像した画像から直線状の像Iの光強度の分布を解析し、画像内での像Iの向きと、予め定めた位置とを比較して像Iの傾きを算出する。図2は、ワークWの傾きを算出する方法の一例を示し、(A)はワークWが傾く前の状態を示す図、(B)はワークWが傾いた状態を示す図である。図2(A)に示すように、ワークWを折り曲げる前の状態(ワークWの片W1が傾く前の状態)では、レーザ光Lの像Iは、撮像部34のイメージセンサにより画像35内の像IAとして取得されている。この像IAの長手方向が指す向きは水平方向である。続いて、図2(B)に示すように、ワークWを折り曲げた後の状態(ワークWの片W1が傾いた状態)では、レーザ光Lの像Iは、画像35内の像IBとして取得される。演算部50(図1参照)は、像IAと像IBとの角度を演算して片W1の傾き角度θ1を算出する。この角度θ1は、水平方向に対する片W1の傾き角度である。従って、鉛直方向に対する片W1の傾き角度θ2は90°-θ1で表せられる。なお、像IAを取得せずに、画像35内における所定位置を予め基準位置として設定しておき、その基準位置と像IBとの間の角度から片W1の傾き角度θ1(又は角度θ2)を算出してもよい。ここで、ワークWが曲げ加工された状態では、片W1と片W2とは、曲げ線を含む鉛直面に対して対称となっている。従って、演算部50は、上記で算出した傾き角度θ2を2倍したθ2×2を求めることで、片W1と片W2との間の曲げ角度θを求めることができる。すなわち、測定部100は、ワークWに照射されたレーザ光Lに基づいて、ワークWの曲げ角度θを測定する。なお、上記した測定部100による曲げ角度の測定は一例であって、この方法に限定されない。例えば、ワークWの片W1側と片W2側の双方にそれぞれ照射部32及び撮像部34を配置し、鉛直方向に対する片W1の傾き角度と、鉛直方向に対する片W2の傾き角度とを個別に算出し、2つの角度を足し合わせることで片W1と片W2との間の曲げ角度を求めてもよい。
 次に、本実施形態の効果について図1を参照しながら説明する。例えば、前述の特許文献1に開示されているような、ワークWに対して単色のレーザ光しか照射できない構成では、ワークWの色によっては照射したレーザ光(反射光)の撮像部による視認性が悪い場合がある。そのため、この構成でワークWの曲げ角度θを測定すると、ワークWの色(又はワークWの外側表面W12の色)によっては曲げ角度θの測定精度が低い又は測定不能となる場合がある。これに対して、本実施形態では、照射部32がワークWに複数色のレーザ光Lのうちいずれか一色又は複数色のレーザ光Lを照射可能である。そのため、本実施形態では、照射部32が照射するレーザ光Lの色をワークWの色と異なるように(撮像部34が識別可能となるように)設定することができる。従って、本実施形態の測定装置30は、ワークW表面のレーザ光Lを確実に測定部100で測定することができる。すなわち、測定装置30は、ワークWの色に関わらず、ワークWの曲げ角度θの測定精度を向上させることができる。また、本実施形態の測定方法は、ワークWの色に関わらず、ワークWの曲げ角度θの測定精度を向上させることができる。
<第2実施形態>
 次に、第2実施形態について図3~図5を参照しながら説明する。以下、本実施形態における、第1実施形態(図1参照)と異なる部分について説明する。また、本実施形態において、第1実施形態の曲げ加工機10の構成要素と同じ構成要素を用いる場合は、これらと同じ名称及び符号を用いて説明する。同じ名称及び符号を用いる場合、その構成要素の説明を省略又は簡略化する場合がある。図3は、本実施形態の測定装置30A及び曲げ加工機10Aの一例を示す概略図である。図4は、本実施形態の記憶部60に保存されているデータである選択テーブル62の一例である。選択テーブル62は、ワークWの色とレーザ光Lの色とを関連付けたデータテーブルである。図5は、本実施形態に係る測定方法の一例を示すフロー図である。
 本実施形態の曲げ加工機10Aは、図3に示されるように、曲げ加工部20と、測定装置30Aとを備える。測定装置30Aは、照射部32と、測定部100と、制御部36Aとを有する。制御部36Aは、第1実施形態の制御部36の構成要素(選択部40及び演算部50)に加えて記憶部60を有する。また、制御部36Aは、無線又は有線により上位装置70と接続されており、上位装置70からの各種情報を取得することができる。上位装置70は、情報の一部として、ワークWに関する情報(材質、寸法、色など)を制御部36Aに送る。記憶部60には、図4に示されるように、ワークWの色に対して照射部32に照射させるレーザ光Lの色の選択テーブル62が保存されている。
 ここで、図4の選択テーブル62における、ワークWの色とレーザ光Lの色との対応関係は、一例に過ぎない。この対応関係は、撮像部34が撮像する像Iの色(レーザ光Lの色)がワークWの色と異なるように、又は像Iが撮像部34により識別可能となるように、定められた色差、又は定められた光強度などから設定されている。上位装置70は、上述したように、制御部36Aに接続されており、ワークWに関する情報としてワークWの色情報を制御部36Aに伝達する。例えば、それぞれ色の異なる複数のワークWが連続的に曲げ加工機10Aによって曲げ加工される場合、上位装置70は、これらの加工順の各ワークの色情報を記憶していて、そのワークの色情報を順次制御部36Aに送ってもよい。
 次に、本実施形態に係る測定方法について図5を参照しながら説明する。まず、制御部36Aは、上位装置70からワークWの色情報を取得する(S10)。次いで、制御部36Aは、上位装置70から取得したワークWの色情報と、記憶部60に記憶されている選択テーブル62とに基づいて、照射部32が照射するレーザ光Lの色を、選択部40に選択させる(S20)。次いで、制御部36Aは、選択部40が選択したレーザ光Lの色を照射部32により照射させる(S30)。次いで、制御部36Aは、ワークWの外側表面W12に形成された像Iを撮像部34により撮像させる(S40)。次いで、制御部36Aは、撮像部34により撮像された画像から演算部50により直線状の像Iの光強度の分布を解析させ、画像内での像Iの向きに基づいて像Iの傾きを算出する。演算部50は、上記したように、像Iの傾きからワークWの片W1の傾き角度を算出し、片W1の傾き角度から、片W1と片W2との間の曲げ角度θを算出する。すなわち、測定部100は、ワークWに照射されたレーザ光Lに基づいて、片W1と片W2との間のワークWの曲げ角度θを測定する(S50)。
 本実施形態の測定装置30Aは、ワークWの色に基づいて、ワークWの外側表面W12でワークWの色と異なるように(レーザ光Lを識別可能となるように)照射部32から照射されるレーザ光Lの色を選択する。従って、測定装置30Aは、ワークWの色に応じて異なる(識別可能な)レーザ光Lを自動で選択することにより、ワークWの曲げ角度θを精度よく測定することができる。また、測定装置30Aは、選択テーブル62を保存する記憶部60を備えているため、第1実施形態と異なり、照射部32が照射するレーザ光Lの色は測定者が設定する必要がない。すなわち、レーザ光Lの色は、自動で設定される。
<第3実施形態>
 次に、第3実施形態について図6及び図7を参照しながら説明する。以下、本実施形態における、第2実施形態(図3~図5参照)と異なる部分について説明する。また、本実施形態において、第1実施形態の曲げ加工機10(図1参照)及び第2実施形態の曲げ加工機10Aの構成要素と同じ構成要素を用いる場合は、これらと同じ名称及び符号を用いて説明する。同じ名称及び符号を用いる場合、その構成要素の説明を省略又は簡略化する場合がある。図6は、本実施形態の測定装置30B及び曲げ加工機10Bの一例を示す概略図である。図7は、本実施形態に係る測定方法の一例を示すフロー図である。
 本実施形態の曲げ加工機10Bは、図6に示されるように、曲げ加工部20と、測定装置30Bとを備える。測定装置30Bは、照射部32と、測定部100と、制御部36Bとを有する。制御部36Bは、第2実施形態の制御部36Aの構成要素(選択部40、演算部50及び記憶部60)に加えて判別部80を有する。判別部80は、撮像部34に接続されており、撮像部34が撮像したワークWの色を判別する。なお、制御部36Bは、上位装置70(図3参照)と接続されていてもよい。
 次に、本実施形態に係る測定方法について図7を参照しながら説明する。まず、制御部36Bは、撮像部34にワークWの外側表面W12を撮像させる(S110)。次いで、制御部36Bは、撮像部34が撮像したワークWの情報に基づき、判別部80にワークWの色を判別させる(S120)。次いで、制御部36Bは、判別部80が判別したワークWの色情報と、記憶部60に記憶されている選択テーブル62とに基づいて、照射部32が照射するレーザ光Lの色を、選択部40に選択させる(S130)。次いで、制御部36Bは、選択部40が選択したレーザ光Lの色を照射部32により照射させる(S140)。次いで、制御部36Bは、ワークWの外側表面W12に形成された像Iを撮像部34により撮像させる(S150)。次いで、制御部36Aは、撮像部34により撮像された直線状の像Iの光強度の分布を解析させ、画像内での像Iの向きに基づいて、像Iの傾き角度を算出する。演算部50は、像Iの傾きからワークWの片W1の傾き角度θ1を算出し、片W1の傾き角度から、片W1と片W2との間の曲げ角度θを算出する。すなわち、測定部100は、ワークWに照射されたレーザ光Lに基づいて、ワークWの曲げ角度θを測定する(S160)。
 本実施形態の測定装置30Bは、ワークWの色を判別する判別部80を備える。従って、測定装置30Bは、判別部80が判別したワークWの色に応じて色が異なるレーザ光L(識別可能なレーザ光L)を選択部40により自動で選択することができる。すなわち、レーザ光Lの色を測定者が設定する必要がない。さらに、測定装置30Bは、撮像部34にワークWの色を撮像させて判別部80によりワークWの色を判別させるため、予めワークWの色情報がわからなくても(第2実施形態の場合のようにワークWの色情報を上位装置70から取得しなくても)、ワークWの色に対して色が異なる(識別可能な)レーザ光Lの色を容易に設定することができる。
 なお、本実施形態において、制御部36Bは、上位装置70に接続されて、上位装置70からワークWの色情報を取得してもよい。この場合、制御部36Bは、上位装置70から取得したワークWの色情報と、判別部80が判別したワークWの色とを比較して、双方が同一であることを確認してから選択部40によりレーザ光Lの色を選択して、照射部32からレーザ光Lを照射させてもよい。
<第4実施形態>
 次に、第4実施形態について図8を参照しながら説明する。以下、本実施形態における、第1実施形態(図1参照)と異なる部分について説明する。また、本実施形態において、第1実施形態の曲げ加工機10の構成要素と同じ構成要素を用いる場合は、これらと同じ名称及び符号を用いて説明する。同じ名称及び符号を用いる場合、その構成要素の説明を省略又は簡略化する場合がある。図8は、本実施形態の曲げ加工機10C及び測定装置30Cの一例を示す概略図である。
 本実施形態の曲げ加工機10Cは、図8に示されるように、曲げ加工部20と、測定装置30Cとを備える。測定装置30Cは、照射部32と、測定部100と、制御部36とを有する。測定装置30Cは、第1実施形態の測定装置30の構成と同じである。ただし、測定装置30Cでは、照射部32が、それぞれ異なる複数色のレーザ光LR、LG、LB(LR、LG、LBの色は、一例としてそれぞれ赤色、緑色、青色である。)を照射し、測定部100が、複数色のレーザ光LR、LG、LBのうちワークWの外側表面W12で識別可能なレーザ光L(レーザ光LR、LG、LBのうちのいずれか)に基づいてワークWの曲げ角度θを測定する。
 具体的には、図8に示されるように、照射部32は、それぞれ異なる複数色のレーザ光LR、LG、LBをワークWの外側表面W12の異なる部分に同時に照射して、外側表面W12にそれぞれ色の異なる直線状の像IR、IG、IBを互いに重ならないように形成する。照射部32は、一例として、外側表面W12において直線状の像IR、IG、IBを並べて互いに平行となるように、レーザ光LR、LG、LBを照射する。測定部100は、複数色のレーザ光LR、LG.LBのうちワークWの外側表面W12で識別可能なレーザ光(レーザ光LR、LG、LBのうちのいずれか)に基づいてワークWの曲げ角度θを測定する。例えば、ワークWの色が赤の場合、識別可能なレーザ光とは、例えばレーザ光LG、LBである。また、撮像部34は、互いに並ぶ直線状の像IR、IG、IBを同時に撮像できるような画角に設定されていてもよいし、直線状の像IR、IG、IBの並び方向に沿って順次撮像するように移動可能(回動可能)であってもよい。
 本実施形態に係る測定方法では、撮像部34は、直線状の像IR、IG、IBを同時に撮像して、その画像から識別可能な1つ又は複数の像IR、IG、IBに基づいて、演算部50によりワークWの曲げ角度θを測定する。また、撮像部34は、直線状の像IR、IG、IBの並び方向に沿って移動しながら撮像し、識別可能な像IR、IG、IBを撮像した際に、演算部50によりワークWの曲げ角度θを測定する。
 本実施形態の測定装置30Cは、照射部32がそれぞれ異なる複数色のレーザ光LR、LG、LBを照射する。従って、測定装置30Cは、いずれかの色(本実施形態の場合は、赤、緑及び青)のレーザ光LR、LG、LBに基づいてワークWの曲げ角度θを測定することができる。そのため、測定装置30Cは、予めワークWの色情報がわからなくても(上位装置70(図3参照)からワークWの色情報を取得しなくても)、ワークWの曲げ角度θを確実に測定することができる。また、測定装置30Cは、判別部80及び選択テーブル62を保存する記憶部60(図6参照)を備える必要がないため、制御部36を簡略化できる。
 なお、本実施形態では、複数色のレーザ光LR、LG、LBの色数を3色としたが、2色又は4色以上でもよい。この形態であっても、前述と同様に、ワークWの曲げ角度θを確実に測定することができる。また、本実施形態では、照射部32が複数色のレーザ光LR、LG、LBをワークWの外側表面W12に照射するタイミングを同時としたが、このタイミングは同時でなくてもよい。この場合、撮像部34は、例えば、異なるタイミングの時間を含むようなシャッタースピードで撮像することにより、又は異なるタイミングの時間を含むような動画を撮像することにより、前述と同様に、取得した画像からワークWの曲げ角度θを確実に測定することができる。
 また、照射部32は、直線状の像IR、IG、IBが互いに重ならないように、レーザ光LR、LG、LBを外側表面W12に照射するとしたが、レーザ光LR、LG、LBを外側表面W12の同じ位置に異なるタイミングで照射する形態であってもよい。この場合、撮像部34は、各レーザ光LR、LG、LBを照射するタイミングでそれぞれ撮像し、各画像の中から識別可能な像Iに基づいてワークWの曲げ角度θを測定してもよい。
<第5実施形態>
 次に、第5実施形態について図9を参照しながら説明する。以下、本実施形態における、第1実施形態(図1参照)と異なる部分について説明する。また、本実施形態において、第1実施形態の曲げ加工機10の構成要素と同じ構成要素を用いる場合は、これらと同じ名称及び符号を用いて説明する。同じ名称及び符号を用いる場合、その構成要素の説明を省略又は簡略化する場合がある。図9は、本実施形態の曲げ加工機10D及び測定装置30Dの一例を示す概略図である。
 本実施形態の曲げ加工機10Dは、図9に示されるように、曲げ加工部20と、測定装置30Dとを備える。測定装置30Dは、照射部32と、測定部100と、制御部36とを有する。測定装置30Dは、第1実施形態の測定装置30の構成と同じである。ただし、測定装置30Dでは、照射部32が、2色のレーザ光LW、LK(LW、LKの色は、一例としてそれぞれ白色、黒色である。)を照射して、ワークWの外側表面W12において隣り合う複数の矩形状の像IW、IKを形成する。測定部100は、撮像部34により撮像された隣り合う複数の矩形状の像IW、IKの境界BLに基づいて、ワークWの曲げ角度θを測定する。
 本実施形態に係る測定方法では、照射部32は、2色のレーザ光LW、LKをワークWの外側表面W12に同時に照射して、外側表面W12に千鳥状に並ぶ複数の矩形状の像IW、IKを互い隣り合うように形成する。撮像部34は、複数の像IW、IKを撮像する。演算部50は、撮像部34が撮像した画像から、互い隣り合う複数の矩形状の像IW、IKによって形成された直線を成す境界BLに基づいて境界BLの向きを算出し、境界BLの向きから片W1の傾き角度を求めてワークWの曲げ角度θを算出する。すなわち、測定装置30Dは、ワークWの曲げ角度θを測定する。
 本実施形態では、前述の第1実施形態と同様に、ワークWの曲げ角度θを確実に測定することができる。なお、本実施形態の測定装置30Dの構成に、前述の第2~第4実施形態の構成を組み合わせてもよい。また、本実施形態では、複数の矩形状の像IW、IKを互い隣り合うように千鳥状に並ぶとしたが、この形態に限定されない。例えば、一方向に延びる1つの矩形状の像IWと、同じく一方向に延びる1つの矩形状の像IKが互いに隣り合うように形成される構成であってもよい。
<第6実施形態>
 次に、第6実施形態について図10を参照しながら説明する。以下、本実施形態における、第1実施形態(図1参照)と異なる部分について説明する。また、本実施形態において、第1実施形態の曲げ加工機10の構成要素と同じ構成要素を用いる場合は、これらと同じ名称及び符号を用いて説明する。同じ名称及び符号を用いる場合、その構成要素の説明を省略又は簡略化する場合がある。図10は、本実施形態の曲げ加工機10E及び測定装置30Eの一例を示す概略図である。
 本実施形態の曲げ加工機10Eは、図10に示されるように、曲げ加工部20と、測定装置30Eとを備える。測定装置30Eは、照射部32と、測定部100と、制御部36とを有する。測定装置30Eは、第1実施形態の測定装置30の構成と同じである。ただし、測定装置30Eでは、照射部32が、ワークWに対して第1色のレーザ光L1を照射して矩形状の像I1を形成し、かつ、この第1色に対して識別可能な第2色のレーザ光L2を矩形状の像I1の内側に照射して直線状の像I2を形成する。照射部32は、矩形状の像I1内に直線状の像I2を重ねて形成するように、第1色のレーザ光L1及び第2色のレーザ光L2を照射する。測定部100は、撮像部34により撮像された矩形状の像I1内の直線状の像I2に基づいて、ワークWの曲げ角度θを測定する。
 本実施形態に係る測定方法では、照射部32は、ワークWに対して第1色のレーザ光L1を照射して矩形状の像I1を形成する。第1色は、一例として黒である。さらに、照射部32は、第1色に対して異なる第2色(識別可能な第2色)のレーザ光L2を矩形状の像I1の内側に照射して直線状の像I2を形成する。第2色は、一例として白である。撮像部34は、少なくとも直線状の像I2を含む画角で撮像する。撮像部34は、直線状の像I2を含む画像を撮像できれば、矩形状の像I1の全体を撮像できなくてもよい。第1色の矩形状の像I1は、第2色の直線状の像I2の下地として機能する。従って、第2色のレーザ光L2が外側表面W12に対して識別し難い場合であっても、矩形状の像I1の色が下地となって直線状の像I2が識別可能となる。撮像部34は、矩形状の像I1内における直線状の像I2を撮像する。演算部50は、撮像部34が撮像した画像から、直線状の像I2に基づいて片W1の傾き角度を求めてワークWの曲げ角度θを算出する。すなわち、測定装置30Eは、ワークWの曲げ角度θを測定する。
 また、本実施形態では、前述の第1実施形態と同様に、ワークWの曲げ角度θを確実に測定することができる。なお、測定装置30Eの構成に、前述の第2~第5実施形態の構成を組み合わせてもよい。また、本実施形態では、第1色を黒とし、第2色を白としているが、この形態に限定されない。例えば、第1色を白とし、第2色を黒としてもよい。また、下地である第1色に対して識別可能となる第2色であれば、第1色及び第2色の組み合わせは任意に設定できる。例えば、第1色を赤とし、第2色を緑としてもよい。
 以上のとおり、本発明について複数の実施形態を説明したが、本発明の技術的範囲はこれらの実施形態で説明された形態に限定されない。例えば、本発明は、これらの実施形態で説明した構成要素の一部が省略されてもよい。また、例えば、本発明は、これらの実施形態で説明した構成要素の一部が省略されつつ、別の構成要素が追加されてもよい。また、例えば、本発明は、これらの実施形態で説明した複数の構成要素を適宜組み合わせてもよい。
 図11は、変形例に係る測定方法の一例を示すフロー図である。例えば、図11に示されるフロー図のように、第2実施形態に係る測定方法のフロー(図5参照)を変更してもよい。図5に示すステップS10を、レーザ光Lの色を選択するかについて判断させるS210に変更し、このステップS210において肯定判断をした場合(ステップS210のYES)には、図5のステップS20以降と同じステップを実行させる。また、ステップS210において否定判断した場合(ステップS210のNO)には、第4実施形態(図8参照)のように、複数色のレーザ光Lを照射することを選択させ(S230)、図5のステップS40以降と同じステップを実行させるようにしてもよい。
 また、例えば、第3実施形態(図6参照)では、その測定方法のフロー(図7参照)において、ステップS120でワークWの色を判別した後にステップS130でレーザ光Lの色を選択する際に選択テーブル62(図4参照)を用いる形態を例に挙げて説明したが、この形態に限定されない。例えば、ステップS130では選択テーブル62を用いずに、照射部32から異なる色(CA、CB、CC、CD)のレーザ光LをワークWに向けて照射させ、測定部100により各色のレーザ光Lによる像Iの光強度を測定させて、定められた光強度PLI以上となる色のレーザ光Lを測定時に用いるようにしてもよい。
 制御部36B(図6参照)は、定められた光強度PLIを記憶部60に記憶しておいてもよい。図12は、レーザ光Lの色と光強度との関係の一例を示すグラフである。図11に示すように、照射部32から照射された異なる色のレーザ光Lのうち、光強度PLI以上となる色のレーザ光Lが色CC、CDのレーザ光Lである場合、選択部40は、色CC、CDのレーザ光Lを測定時に選択するようにしてもよい。
 また、上記した実施形態では、1つの照射部32から複数色のレーザ光Lを照射可能な構成を例に挙げて説明しているが、この形態に限定されない。例えば、色が異なるレーザ光Lを照射する複数の照射部をまとめて、本実施形態の照射部32とする構成であってもよい。この場合、使用者がいずれか一つ以上の照射部からレーザ光Lを照射させ、又は選択部40によりいずれか一つ以上の照射部からレーザ光Lを照射させることで、複数色のレーザ光Lのうちいずれか一色又は複数色のレーザ光Lを照射する照射部32を実現することができる。
 なお、上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本特許出願である特願2020-108963、及び、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。
10、10A、10B、10C、10D、10E・・・曲げ加工機
20・・・曲げ加工部
22・・・上型
24・・・下型
30、30A、30B、30C、30D、30E・・・測定装置
32・・・照射部
34・・・撮像部
40・・・選択部
80・・・判別部
100・・・測定部
BL・・・境界
I、I、I、IB、IG、IK、IR、IW・・・像
L、L、L、LB、LG、LK、LR、LW・・・レーザ光
W・・・ワーク
W12・・・外側表面(表面)

Claims (9)

  1.  曲げ加工されたワークに複数色のレーザ光を照射可能であり、複数色のレーザ光のうちいずれか一色又は複数色のレーザ光を照射する照射部と、
     前記ワークに照射されたレーザ光に基づいて、前記ワークの曲げ角度を測定する測定部と、を備える、測定装置。
  2.  前記ワークの色に基づいて、前記照射部から照射されるレーザ光の色を前記ワークの色と異なる色に選択する選択部を備える、
     請求項1に記載の測定装置。
  3.  前記ワークの色を判別する判別部と、
     前記判別部により判別された前記ワークの色に基づいて、前記照射部から照射するレーザ光の色を前記ワークの色と異なる色に選択する選択部と、を備える、
     請求項1に記載の測定装置。
  4.  前記照射部は、それぞれ異なる複数色のレーザ光を照射し、
     前記測定部は、複数色のレーザ光のうち前記ワークの表面で識別可能なレーザ光に基づいて前記ワークの曲げ角度を測定する、
     請求項1に記載の測定装置。
  5.  前記照射部は、前記ワークに対して直線状の像を形成するようにレーザ光を照射する、
     請求項1から請求項4のいずれか一項に記載の測定装置。
  6.  前記照射部は、2色のレーザ光を照射して、前記ワークにおいて隣り合う矩形状の像を形成し、
     前記測定部は、隣り合う前記矩形状の像の境界に基づいて、前記ワークの曲げ角度を測定する、
     請求項1から請求項4のいずれか一項に記載の測定装置。
  7.  前記照射部は、前記ワークに対して第1色のレーザ光を照射して矩形状の像を形成し、かつ、前記第1色に対して識別可能な第2色のレーザ光を前記矩形状の像の内側に照射して直線状の像を形成し、
     前記測定部は、前記直線状の像に基づいて、前記ワークの曲げ角度を測定する、
     請求項1から請求項4のいずれか一項に記載の測定装置。
  8.  上型と下型との間にワークを挟み込むことにより前記ワークを曲げ加工する曲げ加工部と、
     請求項1から請求項7のいずれか一項に記載の測定装置と、を備える、曲げ加工機。
  9.  曲げ加工されたワークに複数色のレーザ光のうちいずれか一色又は複数色のレーザ光を照射することと、
     前記ワークに照射されたレーザ光に基づいて、前記ワークの曲げ角度を測定することと、
     を含む、測定方法。
PCT/JP2021/018155 2020-06-24 2021-05-13 測定装置、曲げ加工機、及び測定方法 WO2021261105A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022532390A JP7367874B2 (ja) 2020-06-24 2021-05-13 測定装置、曲げ加工機、及び測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108963 2020-06-24
JP2020-108963 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021261105A1 true WO2021261105A1 (ja) 2021-12-30

Family

ID=79282404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018155 WO2021261105A1 (ja) 2020-06-24 2021-05-13 測定装置、曲げ加工機、及び測定方法

Country Status (2)

Country Link
JP (1) JP7367874B2 (ja)
WO (1) WO2021261105A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115108A (ja) * 1990-09-05 1992-04-16 Matsushita Electric Ind Co Ltd 三次元スキャナ
JPH04145315A (ja) * 1990-10-05 1992-05-19 Komatsu Ltd 曲げ角度検出可能な折曲げ装置
JP2003014430A (ja) * 2001-07-03 2003-01-15 Minolta Co Ltd 3次元測定方法および3次元測定装置
JP2018059850A (ja) * 2016-10-06 2018-04-12 ファナック株式会社 投影パターン作成装置および3次元計測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115108A (ja) * 1990-09-05 1992-04-16 Matsushita Electric Ind Co Ltd 三次元スキャナ
JPH04145315A (ja) * 1990-10-05 1992-05-19 Komatsu Ltd 曲げ角度検出可能な折曲げ装置
JP2003014430A (ja) * 2001-07-03 2003-01-15 Minolta Co Ltd 3次元測定方法および3次元測定装置
JP2018059850A (ja) * 2016-10-06 2018-04-12 ファナック株式会社 投影パターン作成装置および3次元計測装置

Also Published As

Publication number Publication date
JP7367874B2 (ja) 2023-10-24
JPWO2021261105A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
JP5436431B2 (ja) 被検体の凹凸検出方法とその装置
US9756314B2 (en) Three-dimensional image processing apparatus, three-dimensional image processing method, three-dimensional image processing program, computer-readable recording medium, and recording device
US9536295B2 (en) Three-dimensional image processing apparatus, three-dimensional image processing method, three-dimensional image processing program, computer-readable recording medium, and recording device
JP3872007B2 (ja) 計測装置及び検査装置
KR102213983B1 (ko) 고속 자동초점 시스템
JP5972563B2 (ja) 構造化照明を用いるエッジ検出
US7899239B2 (en) Inspection method of bonded status of ball in wire bonding
JP6279060B1 (ja) レーザセンサ、及び計測方法
JP6230434B2 (ja) 画像検査装置、画像検査方法及び画像検査プログラム並びにコンピュータで読み取り可能な記録媒体
JP2018039028A (ja) レーザ加工機、及びレーザ加工方法
JP5782786B2 (ja) 形状測定装置
WO2021261105A1 (ja) 測定装置、曲げ加工機、及び測定方法
JP6908373B2 (ja) 検査対象物の表面の凹凸を検査する方法及びその表面検査装置
JP2023176008A (ja) 像解析装置、解析装置、形状測定装置、像解析方法、測定条件決定方法、形状測定方法及びプログラム
JP2007225384A (ja) 反射特性測定装置
US20170069110A1 (en) Shape measuring method
JP5065189B2 (ja) オートフォーカス装置
US20230241710A1 (en) Method for Analyzing a Workpiece Surface for a Laser Machining Process and Analysis Device for Analyzing a Workpiece Surface
CN107121058B (zh) 测量方法
JP4062100B2 (ja) 形状測定装置
JP4851931B2 (ja) 人体形状測定装置と測定方法
JP6252178B2 (ja) 形状測定装置、姿勢制御装置、構造物製造システム、及び、形状測定方法
JP2001305372A (ja) 光ファイバのコア測定装置,融着接続装置及びそれに用いる焦点位置設定方法並びに光ファイバの識別方法
JP5280918B2 (ja) 形状測定装置
KR102634943B1 (ko) 3d머신비전 검사장치 및 그 검사방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532390

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830046

Country of ref document: EP

Kind code of ref document: A1