WO2021258701A1 - 一种可持续亲水改性聚偏氟乙烯中空膜的制备方法 - Google Patents

一种可持续亲水改性聚偏氟乙烯中空膜的制备方法 Download PDF

Info

Publication number
WO2021258701A1
WO2021258701A1 PCT/CN2020/141177 CN2020141177W WO2021258701A1 WO 2021258701 A1 WO2021258701 A1 WO 2021258701A1 CN 2020141177 W CN2020141177 W CN 2020141177W WO 2021258701 A1 WO2021258701 A1 WO 2021258701A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane
polyvinylidene fluoride
hollow fiber
preparation
Prior art date
Application number
PCT/CN2020/141177
Other languages
English (en)
French (fr)
Inventor
陈慧英
洪昱斌
方富林
蓝伟光
Original Assignee
三达膜科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三达膜科技(厦门)有限公司 filed Critical 三达膜科技(厦门)有限公司
Publication of WO2021258701A1 publication Critical patent/WO2021258701A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the invention belongs to the technical field of membrane preparation, and specifically relates to a method for preparing a modified polyvinylidene fluoride hollow membrane.
  • Polyvinylpyrrolidone can be used as a porogen and hydrophilic additive to play an important role in the membrane formulation, but polyvinylpyrrolidone is very soluble in water, and polyvinylpyrrolidone will Slowly losing, and finally resulting in poor hydrophilicity of the membrane and low anti-fouling ability. Therefore, the research on the effective retention method of polyvinylpyrrolidone is particularly important.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a method for preparing a sustainable hydrophilic modified polyvinylidene fluoride hollow membrane.
  • a method for preparing a sustainable hydrophilic modified polyvinylidene fluoride hollow membrane includes the following steps:
  • the core liquid is made of ammonium persulfate.
  • Polyvinylpyrrolidone and RO water react to form;
  • the nascent membrane filaments obtained in step (1) are spun through a dry-wet spinning process to form a hollow fiber membrane, where the coagulation bath is water or a mixture of water and solvent.
  • Membrane moisturizing treatment the hollow fiber membrane obtained in step (2) is soaked in pure water at 15-40°C for at least 48 hours, and then placed in a mixture of water and glycerin for at least 12 hours, and then dried , That is, the sustainable hydrophilic modified polyvinylidene fluoride hollow membrane.
  • the mass percentage of each component in the core liquid is: 10-30% of ammonium persulfate, 9-11% of polyvinylpyrrolidone, and the RO water is made up to 100%.
  • the preparation method of the core liquid is: after mixing ammonium persulfate, polyvinylpyrrolidone and RO water, heating to 85-95°C for crosslinking reaction for 6-10h, and then cooling to 40-50°C, namely have to.
  • the polyvinylidene fluoride casting solution is composed of the following components by weight percentage:
  • the inorganic nano particles are at least one of nano silica, nano titanium dioxide, nano aluminum oxide, and nano silver antibacterial master particles.
  • the organic hydrophilic pore-forming agent is at least one of polyethylene oxide, polyethylene glycol and polyvinylpyrrolidone.
  • the surfactant is at least one of Tween, OP phosphate, alkylphenol polyoxyethylene ether, nonylphenol polyoxyethylene ether, and polyoxyethylene alkylbenzene sulfonate ammonium salt.
  • the organic solvent is at least one of dimethylformamide, dimethylacetamide, N-methylpyrrolidone and triethyl phosphate.
  • the mass content of glycerin in the mixed liquid of water and glycerin is 10-35%.
  • the model number of the polyvinylpyrrolidone is K-30 or K90.
  • the beneficial effect of the present invention is: the present invention uses the hydrophilic cross-linking liquid formed by the reaction of ammonium persulfate and polyvinylpyrrolidone as the core liquid, so that a hydrophilic layer that is not easy to fall off is formed inside the membrane filament, and the During use, the water flow will not cause the loss of hydrophilic additives, and a sustainable hydrophilic polyvinylidene fluoride membrane hollow membrane is formed, which achieves the purpose of sustainable flux recovery and improves the membrane filament flux and resistance. Pollution ability greatly broadens the application fields of membranes.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is soaked in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (20% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride is hollow
  • the outer diameter of the fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 20%.
  • the initial flux of pure water of the hollow fiber membrane is 350L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 68L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 19.4%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained was immersed in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (25% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride was hollow
  • the outer diameter of the fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 36%.
  • the initial flux of pure water of the hollow fiber membrane is 420L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 85L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 20.2%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is immersed in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (30% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride is hollow
  • the outer diameter of the fiber membrane is 1.3mm
  • the inner diameter is 0.8mm
  • the porosity is 42%.
  • the initial flux of pure water of the hollow fiber membrane is 460L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 92L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 20.0%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is soaked in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (20% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride is hollow
  • the outer diameter of the fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 76%.
  • the initial flux of pure water of the hollow fiber membrane is 880L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 669L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 76.0%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is soaked in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (20% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride is hollow
  • the outer diameter of the fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 56%.
  • the initial flux of pure water of the hollow fiber membrane is 520L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 257L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 46.0%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is soaked in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (20% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride is hollow
  • the outer diameter of the fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 86%.
  • the initial flux of pure water of the hollow fiber membrane is 1109L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 998/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 90.0%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is soaked in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (20% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride is hollow
  • the outer diameter of the fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 78%.
  • the initial flux of pure water of the hollow fiber membrane is 960L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 768L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 80.0%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is immersed in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (glycerin mass percentage 10-35%) for 12 hours, and the obtained polyvinylidene fluoride
  • the outer diameter of the ethylene hollow fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 86%.
  • the initial flux of pure water of the hollow fiber membrane is 1169L/m2 ⁇ h (0.1MPa), repeated 10 times continuously
  • the flux after water drying is 1052L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 90.0%.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained is immersed in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (glycerin mass percentage 10-35%) for 12 hours.
  • the obtained polyvinylidene fluoride The outer diameter of the ethylene hollow fiber membrane is 1.3mm, the inner diameter is 0.8mm, and the porosity is 96%.
  • the pure water initial flux of the hollow fiber membrane is measured to be 1698L/m2 ⁇ h (0.1MPa), repeated 10 consecutive times
  • the flux after water drying is 1630L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 96.0%.
  • the core liquid temperature is 45°C
  • the outer solidification bath is 45°C RO water
  • the casting liquid is extruded from the spinneret together with the core liquid after passing through the filter, and after walking 12cm in the air, it enters the outer solidification
  • the bath is shaped and wound by the winding wheel.
  • the polyvinylidene fluoride hollow fiber membrane thus obtained was immersed in pure water (room temperature 15-35°C) for 48 hours, and then immersed in glycerin water (25% by mass of glycerin) for 12 hours.
  • the resulting polyvinylidene fluoride was hollow
  • the outer diameter of the fiber membrane is 1.3mm
  • the inner diameter is 0.8mm
  • the porosity is 88%.
  • the initial flux of pure water of the hollow fiber membrane is measured to be 1230L/m2 ⁇ h (0.1MPa), and the water is repeated 10 times continuously.
  • the flux after drying is 1252L/m 2 ⁇ h (0.1MPa), and the flux recovery rate is 93..6%.
  • the invention discloses a method for preparing a sustainable hydrophilic modified polyvinylidene fluoride hollow membrane, which comprises the following steps: (1) the core liquid and the polyvinylidene fluoride casting liquid from the annular spinneret of the hollow fiber spinning equipment The nascent membrane filament is obtained by co-extrusion.
  • the core solution is formed by the reaction of ammonium persulfate, polyvinylpyrrolidone and RO water; (2) Pass the nascent membrane filament produced in step (1) at 40-50°C
  • the dry-wet spinning process spins to form hollow fiber membranes, in which the coagulation bath is water or a mixture of water and solvent, and hollow fiber membranes with different internal and external structures are obtained by controlling the flow rate of the core liquid, the temperature of the coagulation bath and its components; (3)
  • Membrane moisturizing treatment the hollow fiber membrane obtained in step (2) is soaked in pure water at 15-40°C for at least 48 hours, and then placed in a mixture of water and glycerin for at least 12 hours, and then dried , That is, the sustainable hydrophilic modified polyvinylidene fluoride hollow membrane is obtained, which has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种可持续亲水改性聚偏氟乙烯中空膜的制备方法,包括如下步骤:(1)将芯液和聚偏氟乙烯铸膜液从中空纤维纺丝设备的环形喷丝头共挤出,获得初生态膜丝,该芯液由过硫酸铵、聚乙烯吡咯烷酮和RO水反应形成;(2)40-50℃下,将步骤(1)制得的初生态膜丝通过干-湿纺丝工艺纺制形成中空纤维膜,其中的凝固浴为水或者水与溶剂的混合物,通过控制芯液的流量、凝固浴的温度及其成分以获得不同内外结构的中空纤维膜;(3)膜丝保湿处理:将步骤(2)所得的中空纤维膜于15-40℃的纯水中浸泡至少48h,再将其置于水与甘油的混合液中浸泡至少12h,然后晾干,即得所述可持续亲水改性聚偏氟乙烯中空膜。

Description

一种可持续亲水改性聚偏氟乙烯中空膜的制备方法 技术领域
本发明属于膜制备技术领域,具体涉及一种改性聚偏氟乙烯中空膜的制备方法。
背景技术
中空膜用于水处理时,其材质的化学稳定性和亲水性是两个最重要的性质。化学稳定性决定了材料在酸碱、氧化剂、微生物等的作用下的寿命,它还直接关系到清洗可以采取的方法;亲水性则决定了膜材料对水中有机污染物的吸附程度,影响膜的通量。中空膜生产过程中加入亲水物质,使膜表面在水中呈现亲水性,但是一旦膜使用后,亲水物质会随着使用过程中流失,在膜干燥后,亲水性就会失去,变的不透水,而且中空膜丝变脆极易被折断损坏。在前几年的研究中往往采用后处理液中加入甘油,表面活性剂,防腐剂,亲水剂,RO水等物质使得膜丝保持湿润以维持膜丝的湿润性来保持通量,处理过程复杂却无法持久性的保持膜丝的亲水性。
聚乙烯吡络烷酮可以作为致孔剂和亲水添加剂在膜配方中发挥着重要的作用,但是聚乙烯吡络烷酮极易溶于水中,在膜使用过程中聚乙烯吡络烷酮会慢慢流失,最后造成膜亲水性差,抗污染能力低,因此对于聚乙烯吡络烷酮的有效保持性方法的研究显得尤为重要。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种可持续亲水改性聚偏氟乙烯中空膜的制备方法。
本发明的技术方案如下:
一种可持续亲水改性聚偏氟乙烯中空膜的制备方法,包括如下步骤:
(1)将芯液和聚偏氟乙烯铸膜液从中空纤维纺丝设备的环形喷丝头共挤出,经过5-15cm的干程后获得初生态膜丝,该芯液由过硫酸铵、聚乙烯吡咯烷酮和RO水反应形成;
(2)40-50℃下,将步骤(1)制得的初生态膜丝通过干-湿纺丝工艺纺制形成中空纤维膜,其中的凝固浴为水或者水与溶剂的混合物,通过控制芯液的流量、凝固浴的温度及其成分以获得不同内外结构的中空纤维膜;
(3)膜丝保湿处理:将步骤(2)所得的中空纤维膜于15-40℃的纯水中浸泡至少48h,再将其置于水与甘油的混合液中浸泡至少12h,然后晾干,即得所述可持续亲水改性聚偏氟乙烯中空膜。
在本发明的一个优选实施方案中,所述芯液中各组分的质量百分比为:过硫酸铵10-30%,聚乙烯吡咯烷酮9-11%,RO水补至100%。
进一步优选的,所述芯液的制备方法为:将过硫酸铵、聚乙烯吡咯烷酮和RO水混合后,加热至85-95℃进行交联反应6-10h,再冷却至40-50℃,即得。
在本发明的一个优选实施方案中,聚偏氟乙烯铸膜液由如下重量百分比的组分组成:
Figure PCTCN2020141177-appb-000001
进一步优选的,所述无机纳米粒子为纳米二氧化硅、纳米二氧化钛、纳米三氧化二铝和纳米银系抗菌母粒中的至少一种。
进一步优选的,所述有机亲水成孔剂为聚环氧乙烷,聚乙二醇和聚乙烯吡咯烷酮中的至少一种。
进一步优选的,所述表面活性剂为吐温、OP磷酸酯、烷基酚聚氧乙烯醚、壬基酚聚氧乙烯醚和聚氧化乙烯烷基苯磺酸铵盐中的至少一种。
进一步优选的,所述有机溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮和磷酸三乙酯中的至少一种。
在本发明的一个优选实施方案中,所述水与甘油的混合液中甘油的质量含量为10-35%。
在本发明的一个优选实施方案中,所述聚乙烯吡咯烷酮的型号为K-30或K90。
本发明的有益效果是:本发明将采用过硫酸铵与聚乙烯吡络烷酮反应下形成的亲水交联液作为芯液,使得膜丝内部形成不易脱落的亲水层,在膜丝的使用过程中不会因为水流的冲刷导致亲水添加剂的流失,形成可持续性亲水性的聚偏氟乙烯膜中空膜,达到通量可持续性恢复的目的,提高了膜丝通量及抗污染能力,大大拓宽了膜的 应用领域。
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
对比例1
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液和外凝固浴均为45℃的RO水,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量20%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为20%,25℃下,测得该中空纤维膜的纯水初始通量为350L/m2·h(0.1MPa),连续10次重复过水干燥后通量为68L/m 2·h(0.1MPa),通量恢复率为:19.4%。
对比例2
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为45℃的30%甘油水混合液,外凝固浴为45℃的RO水,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量25%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为36%,25℃下,测得该中空纤维膜的纯水初始通量为420L/m2·h(0.1MPa),连续10次重复过水干燥后通量为85L/m 2·h(0.1MPa),通量恢复率为:20.2%。
对比例3
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为45℃的40%二甲基乙酰胺混合液,外凝固浴为45℃的RO水,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量30%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为42%,25℃下,测得该中空纤维膜的纯水初始通量为460L/m2·h(0.1MPa),连续10次重复过水干燥后通量为92L/m 2·h(0.1MPa),通量恢复率为:20.0%。
对比例4
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为质量分数30%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在80℃条件下反应6h的交联液,且使用时芯液温度为45℃。铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量20%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为76%,25℃下,测得该中空纤维膜的纯水初始通量为880L/m2·h(0.1MPa),连续10次重复过水干燥后通量为669L/m 2·h(0.1MPa),通量恢复率为:76.0%。
对比例5
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为质量分数8%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在90℃条件下反应6h的交联液,且使用时芯液温度为45℃。铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固 浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量20%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为56%,25℃下,测得该中空纤维膜的纯水初始通量为520L/m2·h(0.1MPa),连续10次重复过水干燥后通量为257L/m 2·h(0.1MPa),通量恢复率为:46.0%。
对比例6
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为质量分数为31%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在90℃条件下反应6h的交联液,且使用时芯液温度为45℃。铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量20%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为86%,25℃下,测得该中空纤维膜的纯水初始通量为1109L/m2·h(0.1MPa),连续10次重复过水干燥后通量为998/m 2·h(0.1MPa),通量恢复率为:90.0%。
对比例7
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为质量分数30%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在100℃条件下反应6h的交联液,且使用时芯液温度为45℃,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量20%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为78%,25℃下,测得该中空纤维膜的纯水初始通量为960L/m2·h(0.1MPa),连续10次重复过水干燥后通量为 768L/m 2·h(0.1MPa),通量恢复率为:80.0%。
实施例1
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为质量分数10%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在85℃条件下反应6h的交联液,且使用时芯液温度为45℃,外凝固浴为45℃的RO水,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量10-35%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为86%,25℃下,测得该中空纤维膜的纯水初始通量为1169L/m2·h(0.1MPa),连续10次重复过水干燥后通量为1052L/m 2·h(0.1MPa),通量恢复率为:90.0%。
实施例2
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中,搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;芯液为质量分数30%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在85℃条件下反应6h的交联液,且使用时芯液温度为45℃,外凝固浴为45℃的RO水,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量10-35%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为96%,25℃下,测得该中空纤维膜的纯水初始通量为1698L/m2·h(0.1MPa),连续10次重复过水干燥后通量为1630L/m 2·h(0.1MPa),通量恢复率为:96.0%。
实施例3
在高速搅拌下,将100g二氧化硅、80g吐温-20溶于7220g的二甲基乙酰胺中, 搅拌均匀后,加入1800g聚偏氟乙烯粉末、800g聚乙烯吡络烷酮K-30,搅拌溶解均匀,搅拌温度为70℃,静置脱泡24h;,芯液为质量分数15%过硫酸铵与质量分数10%聚乙烯吡络烷酮K30在90℃条件下反应6h的交联液,且使用时芯液温度为45℃,外凝固浴为45℃的RO水,铸膜液经过滤网后,与芯液一同由喷丝头挤出,在空气中行走12cm后,进入外凝固浴成型,并由绕丝轮卷绕。由此得到的聚偏氟乙烯中空纤维膜在纯水(室温15-35℃)中浸泡48h后,在甘油水(甘油质量百分含量25%)中继续浸泡12h,所得的聚偏氟乙烯中空纤维膜外径1.3mm,内径0.8mm,孔隙率为88%,25℃下,测得该中空纤维膜的纯水初始通量为1230L/m2·h(0.1MPa),连续10次重复过水干燥后通量为1252L/m 2·h(0.1MPa),通量恢复率为:93..6%。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种可持续亲水改性聚偏氟乙烯中空膜的制备方法,包括如下步骤:(1)将芯液和聚偏氟乙烯铸膜液从中空纤维纺丝设备的环形喷丝头共挤出,获得初生态膜丝,该芯液由过硫酸铵、聚乙烯吡咯烷酮和RO水反应形成;(2)40-50℃下,将步骤(1)制得的初生态膜丝通过干-湿纺丝工艺纺制形成中空纤维膜,其中的凝固浴为水或者水与溶剂的混合物,通过控制芯液的流量、凝固浴的温度及其成分以获得不同内外结构的中空纤维膜;(3)膜丝保湿处理:将步骤(2)所得的中空纤维膜于15-40℃的纯水中浸泡至少48h,再将其置于水与甘油的混合液中浸泡至少12h,然后晾干,即得所述可持续亲水改性聚偏氟乙烯中空膜,具有工业实用性。

Claims (8)

  1. 一种可持续亲水改性聚偏氟乙烯中空膜的制备方法,其特征在于:包括如下步骤:
    (1)将芯液和聚偏氟乙烯铸膜液从中空纤维纺丝设备的环形喷丝头共挤出,经过5-15cm的干程后获得初生态膜丝,该芯液由过硫酸铵、聚乙烯吡咯烷酮和RO水反应形成;
    (2)40-50℃下,将步骤(1)制得的初生态膜丝通过干-湿纺丝工艺纺制形成中空纤维膜,其中的凝固浴为水或者水与溶剂的混合物,通过控制芯液的流量、凝固浴的温度及其成分以获得不同内外结构的中空纤维膜;
    (3)膜丝保湿处理:将步骤(2)所得的中空纤维膜于15-40℃的纯水中浸泡至少48h,再将其置于水与甘油的混合液中浸泡至少12h,然后晾干,即得所述可持续性亲水改性聚偏氟乙烯中空膜;所述芯液中各组分的质量百分比为:过硫酸铵10-30%,聚乙烯吡咯烷酮9-11%,RO水补至100%;
    所述芯液的制备方法为:将过硫酸铵、聚乙烯吡咯烷酮和RO水混合后,加热至85-95℃进行交联反应6-10h,再冷却至40-50℃,即得。
  2. 如权利要求1所述的制备方法,其特征在于:聚偏氟乙烯铸膜液由如下重量百分比的组分组成:
    Figure PCTCN2020141177-appb-100001
  3. 如权利要求2所述的制备方法,其特征在于:所述无机纳米粒子为纳米二氧化硅、纳米二氧化钛、纳米三氧化二铝和纳米银系抗菌母粒中的至少一种。
  4. 如权利要求2所述的制备方法,其特征在于:所述有机亲水成孔剂为聚环氧乙烷,聚乙二醇和聚乙烯吡咯烷酮中的至少一种。
  5. 如权利要求2所述的制备方法,其特征在于:所述表面活性剂为吐温、OP磷酸酯、烷基酚聚氧乙烯醚、壬基酚聚氧乙烯醚和聚氧化乙烯烷基苯磺酸铵盐中的至少一种。
  6. 如权利要求2所述的制备方法,其特征在于:所述有机溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮和磷酸三乙酯中的至少一种。
  7. 如权利要求1所述的制备方法,其特征在于:所述水与甘油的混合液中甘油的质量含量为10-35%。
  8. 如权利要求1至9中任一权利要求所述的制备方法,其特征在于:所述聚乙烯吡咯烷酮的型号为K-30或K90。
PCT/CN2020/141177 2020-06-23 2020-12-30 一种可持续亲水改性聚偏氟乙烯中空膜的制备方法 WO2021258701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010583573.7 2020-06-23
CN202010583573.7A CN113828162B (zh) 2020-06-23 2020-06-23 一种可持续亲水改性聚偏氟乙烯中空膜的制备方法

Publications (1)

Publication Number Publication Date
WO2021258701A1 true WO2021258701A1 (zh) 2021-12-30

Family

ID=78964214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141177 WO2021258701A1 (zh) 2020-06-23 2020-12-30 一种可持续亲水改性聚偏氟乙烯中空膜的制备方法

Country Status (2)

Country Link
CN (1) CN113828162B (zh)
WO (1) WO2021258701A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114263039A (zh) * 2022-02-17 2022-04-01 王进 一种载药缓释性能涂料修复剂及其制备方法
CN114870638A (zh) * 2022-05-20 2022-08-09 吉林大学 一种具有电化学响应的聚苯胺/聚芳醚酮复合膜、制备方法及其应用
CN115105957A (zh) * 2022-07-26 2022-09-27 浙江易膜新材料科技有限公司 一种pan/pvdf/pvb三元合金中空纤维超滤膜及其制备方法
CN115198529A (zh) * 2022-07-07 2022-10-18 苏州新升源材料科技有限公司 一种检测试纸用新型亲水膜制备工艺
CN116041773A (zh) * 2023-03-11 2023-05-02 西南石油大学 一种微纳尺度强三维互穿网状聚偏氟乙烯疏水膜及其制备方法
CN116407957A (zh) * 2022-12-29 2023-07-11 南京水诺环保科技有限公司 一步成型高脱盐纳滤膜制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117358065A (zh) * 2023-12-06 2024-01-09 天津大学浙江研究院 基于反应表面偏析的中空纤维膜及制备、应用和膜组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618533A (en) * 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
CN1159770A (zh) * 1994-07-28 1997-09-17 米利波尔公司 多孔复合膜及其制法
CN102430352A (zh) * 2011-09-07 2012-05-02 三达膜科技(厦门)有限公司 一种聚偏氟乙烯有机-无机杂化膜及其制备方法
CN103182256A (zh) * 2013-04-01 2013-07-03 杭州求是膜技术有限公司 一种高稳定性的中空纤维膜及其制备方法
CN108479432A (zh) * 2018-02-08 2018-09-04 东华大学 一种亲水性酚酞聚醚砜复合纳米纤维超滤膜的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013791B2 (ja) * 2003-03-04 2007-11-28 Nok株式会社 ポリエーテルイミド系樹脂多孔質中空糸膜
JP2005205358A (ja) * 2004-01-26 2005-08-04 Toray Ind Inc 多孔質中空糸膜の製造方法
JP2006051419A (ja) * 2004-08-10 2006-02-23 Nitto Denko Corp 中空糸多孔質膜及びその製造方法
JP5076320B2 (ja) * 2006-01-11 2012-11-21 東洋紡績株式会社 ポリフッ化ビニリデン系中空糸型微多孔膜の製造方法
CN100562356C (zh) * 2007-06-18 2009-11-25 海南立昇净水科技实业有限公司 亲水性聚氯乙烯合金中空纤维过滤膜及其制备方法
CN101314110A (zh) * 2008-07-14 2008-12-03 天津新膜科技有限责任公司 一种中空纤维膜及其制备方法
JP2011020071A (ja) * 2009-07-17 2011-02-03 Toyobo Co Ltd ポリスルホン系中空糸膜の製造方法
CN101745324B (zh) * 2009-12-10 2015-03-11 桐乡市健民过滤材料有限公司 干态强亲水性聚偏氟乙烯中空纤维膜的制备方法
JP5906665B2 (ja) * 2011-10-28 2016-04-20 Nok株式会社 多孔質膜の製造方法
CN102600733B (zh) * 2012-03-28 2014-03-19 天津工业大学 一种同质增强型聚偏氟乙烯中空纤维膜的制备方法
KR102006324B1 (ko) * 2013-01-21 2019-08-01 주식회사 엘지화학 압출기를 이용한 연속공정으로 친수화된 중공사막을 제조하는 방법
CN104117294B (zh) * 2014-08-11 2016-08-24 东莞市长安东阳光铝业研发有限公司 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
CN104607064A (zh) * 2015-01-11 2015-05-13 王丽莉 一种聚偏氟乙烯-氧化石墨烯复合中空纤维膜的制备方法
CN107638813B (zh) * 2017-08-22 2022-01-28 中国海洋大学 一种中空纤维耐溶剂纳滤膜的制备方法及其应用
CN109395593A (zh) * 2018-10-31 2019-03-01 浙江工业大学 一种亲水的聚偏氟乙烯中空纤维膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618533A (en) * 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
CN1159770A (zh) * 1994-07-28 1997-09-17 米利波尔公司 多孔复合膜及其制法
CN102430352A (zh) * 2011-09-07 2012-05-02 三达膜科技(厦门)有限公司 一种聚偏氟乙烯有机-无机杂化膜及其制备方法
CN103182256A (zh) * 2013-04-01 2013-07-03 杭州求是膜技术有限公司 一种高稳定性的中空纤维膜及其制备方法
CN108479432A (zh) * 2018-02-08 2018-09-04 东华大学 一种亲水性酚酞聚醚砜复合纳米纤维超滤膜的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114263039A (zh) * 2022-02-17 2022-04-01 王进 一种载药缓释性能涂料修复剂及其制备方法
CN114870638A (zh) * 2022-05-20 2022-08-09 吉林大学 一种具有电化学响应的聚苯胺/聚芳醚酮复合膜、制备方法及其应用
CN114870638B (zh) * 2022-05-20 2023-07-21 吉林大学 一种具有电化学响应的聚苯胺/聚芳醚酮复合膜、制备方法及其应用
CN115198529A (zh) * 2022-07-07 2022-10-18 苏州新升源材料科技有限公司 一种检测试纸用新型亲水膜制备工艺
CN115198529B (zh) * 2022-07-07 2023-11-10 苏州新升源材料科技有限公司 一种检测试纸用亲水膜制备工艺
CN115105957A (zh) * 2022-07-26 2022-09-27 浙江易膜新材料科技有限公司 一种pan/pvdf/pvb三元合金中空纤维超滤膜及其制备方法
CN115105957B (zh) * 2022-07-26 2023-05-12 浙江易膜新材料科技有限公司 一种pan/pvdf/pvb三元合金中空纤维超滤膜及其制备方法
CN116407957A (zh) * 2022-12-29 2023-07-11 南京水诺环保科技有限公司 一步成型高脱盐纳滤膜制备方法
CN116407957B (zh) * 2022-12-29 2023-09-26 南京水诺环保科技有限公司 一步成型高脱盐纳滤膜制备方法
CN116041773A (zh) * 2023-03-11 2023-05-02 西南石油大学 一种微纳尺度强三维互穿网状聚偏氟乙烯疏水膜及其制备方法

Also Published As

Publication number Publication date
CN113828162A (zh) 2021-12-24
CN113828162B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2021258701A1 (zh) 一种可持续亲水改性聚偏氟乙烯中空膜的制备方法
CN102527262B (zh) 一种化学致孔的聚偏氟乙烯中空纤维超滤膜的制备方法
JPS5812932B2 (ja) 中空繊維の製造方法
CN108246125B (zh) 一种高抗污染性内支撑聚偏氟乙烯中空纤维膜及其制备方法
CN108079795A (zh) 一种分级多孔的聚偏氟乙烯中空纤维复合膜及其制造方法
WO2005014151A1 (fr) Procede de preparation de membrane a fibres creuses de poly(fluorure de vinylidene) du type a pression externe filee par un procede d'immersion-coagulation, et produit obtenu
CN108993173B (zh) 一种用于膜蒸馏的pvdf中空纤维膜及其制备和应用
KR101150285B1 (ko) 내오염성이 우수한 수처리용 분리막 및 이의 제조방법
CN109012214B (zh) 一种基于化学成孔制备高通透性超滤膜的方法
CN106731901A (zh) 聚酯纤维编织管增强型复合中空纤维正渗透膜的制备方法
CN106422808A (zh) 一种超亲水性聚丙烯晴中空纤维超滤膜及其制备方法
EP3348323A1 (en) Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
CN106268371A (zh) 一种聚丙烯腈中空纤维超滤膜及其制备方法
CN112090293A (zh) 一种聚合物杂化超滤膜及其双程纺丝制备法
JP3686936B2 (ja) 気体分離膜
KR101775137B1 (ko) 중공사막의 제조 방법 및 중공사막
CN109621744B (zh) 一种基于双临界溶解温度体系的中空纤维膜的制备方法
JP5983981B2 (ja) 多孔質膜の製造方法
CN107670512B (zh) 一种聚偏氟乙烯中空纤维膜及其制备方法
KR20120059755A (ko) 셀룰로오스계 수지를 이용한 수처리용 중공사막의 제조방법
CN102512987B (zh) 一种高通量的聚偏氟乙烯中空纤维膜的制备方法
JPS63296940A (ja) ポリフッ化ビニリデン系樹脂多孔性膜およびその製造方法
JPS6138208B2 (zh)
CN109621741B (zh) 一种正渗透复合膜的制备方法
JP4502324B2 (ja) 多孔質膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941594

Country of ref document: EP

Kind code of ref document: A1